File size: 16,636 Bytes
305c59b
7fe102a
16649a3
7fe102a
6bfef72
60d2e23
 
 
 
 
 
 
 
 
 
16649a3
7fe102a
 
 
 
 
 
ba6b40b
0a51f5f
16649a3
 
7fe102a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfd9ff1
 
 
60d2e23
 
 
 
 
 
 
 
 
 
 
 
6b2690e
 
60d2e23
 
dbffdf4
60d2e23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b2690e
6bfef72
 
 
 
 
 
 
 
 
 
 
 
60d2e23
 
6bfef72
60d2e23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13b616e
60d2e23
 
 
 
13b616e
60d2e23
 
 
 
 
 
380d6cf
60d2e23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2eebdd2
dff986d
868debc
60d2e23
 
7fe102a
60d2e23
 
 
0a51f5f
60d2e23
 
 
 
 
 
dbffdf4
60d2e23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfd9ff1
16649a3
60d2e23
 
 
 
 
 
 
 
 
 
 
 
 
 
8ceb7c6
60d2e23
 
 
 
 
 
 
 
 
1e0f1bc
7fe102a
868debc
60d2e23
6b2690e
 
 
 
 
 
868debc
 
 
 
 
7fe102a
 
 
868debc
 
7fe102a
 
0a51f5f
16649a3
7fe102a
868debc
 
 
dff986d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60d2e23
 
 
 
 
 
 
 
 
 
 
 
 
6b2690e
 
6bfef72
 
dff986d
6bfef72
 
dff986d
 
 
 
 
60d2e23
 
 
 
 
1e0f1bc
7fe102a
868debc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import gradio as gr
import whisper
import torch
import os
from pydub import AudioSegment, silence
from faster_whisper import WhisperModel
import numpy as np
from scipy.io import wavfile
from scipy.signal import correlate
import tempfile
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Mapping of model names to Whisper model sizes
MODELS = {
    "Tiny (Fastest)": "tiny",
    "Base (Faster)": "base",
    "Small (Balanced)": "small",
    "Medium (Accurate)": "medium",
    "Large (Most Accurate)": "large",
    "Faster Whisper Large v3": "Systran/faster-whisper-large-v3"  # Renamed and set as default
}

# Mapping of full language names to language codes
LANGUAGE_NAME_TO_CODE = {
    "Auto Detect": "Auto Detect",
    "English": "en",
    "Chinese": "zh",
    "German": "de",
    "Spanish": "es",
    "Russian": "ru",
    "Korean": "ko",
    "French": "fr",
    "Japanese": "ja",
    "Portuguese": "pt",
    "Turkish": "tr",
    "Polish": "pl",
    "Catalan": "ca",
    "Dutch": "nl",
    "Arabic": "ar",
    "Swedish": "sv",
    "Italian": "it",
    "Indonesian": "id",
    "Hindi": "hi",
    "Finnish": "fi",
    "Vietnamese": "vi",
    "Hebrew": "he",
    "Ukrainian": "uk",
    "Greek": "el",
    "Malay": "ms",
    "Czech": "cs",
    "Romanian": "ro",
    "Danish": "da",
    "Hungarian": "hu",
    "Tamil": "ta",
    "Norwegian": "no",
    "Thai": "th",
    "Urdu": "ur",
    "Croatian": "hr",
    "Bulgarian": "bg",
    "Lithuanian": "lt",
    "Latin": "la",
    "Maori": "mi",
    "Malayalam": "ml",
    "Welsh": "cy",
    "Slovak": "sk",
    "Telugu": "te",
    "Persian": "fa",
    "Latvian": "lv",
    "Bengali": "bn",
    "Serbian": "sr",
    "Azerbaijani": "az",
    "Slovenian": "sl",
    "Kannada": "kn",
    "Estonian": "et",
    "Macedonian": "mk",
    "Breton": "br",
    "Basque": "eu",
    "Icelandic": "is",
    "Armenian": "hy",
    "Nepali": "ne",
    "Mongolian": "mn",
    "Bosnian": "bs",
    "Kazakh": "kk",
    "Albanian": "sq",
    "Swahili": "sw",
    "Galician": "gl",
    "Marathi": "mr",
    "Punjabi": "pa",
    "Sinhala": "si",  # Sinhala support
    "Khmer": "km",
    "Shona": "sn",
    "Yoruba": "yo",
    "Somali": "so",
    "Afrikaans": "af",
    "Occitan": "oc",
    "Georgian": "ka",
    "Belarusian": "be",
    "Tajik": "tg",
    "Sindhi": "sd",
    "Gujarati": "gu",
    "Amharic": "am",
    "Yiddish": "yi",
    "Lao": "lo",
    "Uzbek": "uz",
    "Faroese": "fo",
    "Haitian Creole": "ht",
    "Pashto": "ps",
    "Turkmen": "tk",
    "Nynorsk": "nn",
    "Maltese": "mt",
    "Sanskrit": "sa",
    "Luxembourgish": "lb",
    "Burmese": "my",
    "Tibetan": "bo",
    "Tagalog": "tl",
    "Malagasy": "mg",
    "Assamese": "as",
    "Tatar": "tt",
    "Hawaiian": "haw",
    "Lingala": "ln",
    "Hausa": "ha",
    "Bashkir": "ba",
    "Javanese": "jw",
    "Sundanese": "su",
}

# Reverse mapping of language codes to full language names
CODE_TO_LANGUAGE_NAME = {v: k for k, v in LANGUAGE_NAME_TO_CODE.items()}

def convert_to_wav(audio_file):
    """Convert any audio file to WAV format."""
    audio = AudioSegment.from_file(audio_file)
    with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav:
        wav_path = temp_wav.name
        audio.export(wav_path, format="wav")
    return wav_path

def resample_audio(audio_segment, target_sample_rate):
    """Resample an audio segment to the target sample rate."""
    return audio_segment.set_frame_rate(target_sample_rate)

def detect_language(audio_file):
    """Detect the language of the audio file."""
    if audio_file is None:
        return "Error: No audio file uploaded."
    
    try:
        # Convert audio to WAV format
        wav_path = convert_to_wav(audio_file)
        
        # Define device and compute type for faster-whisper
        device = "cuda" if torch.cuda.is_available() else "cpu"
        compute_type = "float32" if device == "cuda" else "int8"
        
        # Load the faster-whisper model for language detection
        model = WhisperModel(MODELS["Faster Whisper Large v3"], device=device, compute_type=compute_type)
        
        # Detect the language using faster-whisper
        segments, info = model.transcribe(wav_path, task="translate", language=None)
        detected_language_code = info.language
        
        # Get the full language name from the code
        detected_language = CODE_TO_LANGUAGE_NAME.get(detected_language_code, "Unknown Language")
        
        # Clean up temporary WAV file
        os.remove(wav_path)
        
        return f"Detected Language: {detected_language}"
    except Exception as e:
        logger.error(f"Error in detect_language: {str(e)}")
        return f"Error: {str(e)}"

def remove_silence(audio_file, silence_threshold=-40, min_silence_len=500):
    """
    Remove silence from the audio file using AI-based silence detection.
    
    Args:
        audio_file (str): Path to the input audio file.
        silence_threshold (int): Silence threshold in dB. Default is -40 dB.
        min_silence_len (int): Minimum length of silence to remove in milliseconds. Default is 500 ms.
    
    Returns:
        str: Path to the output audio file with silence removed.
    """
    if audio_file is None:
        return None
    
    try:
        # Convert audio to WAV format
        wav_path = convert_to_wav(audio_file)
        
        # Load the audio file
        audio = AudioSegment.from_file(wav_path)
        
        # Detect silent chunks
        silent_chunks = silence.detect_silence(
            audio,
            min_silence_len=min_silence_len,
            silence_thresh=silence_threshold
        )
        
        # Remove silent chunks
        non_silent_audio = AudioSegment.empty()
        start = 0
        for chunk in silent_chunks:
            non_silent_audio += audio[start:chunk[0]]  # Add non-silent part
            start = chunk[1]  # Move to the end of the silent chunk
        non_silent_audio += audio[start:]  # Add the remaining part
        
        # Export the processed audio
        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_output:
            output_path = temp_output.name
            non_silent_audio.export(output_path, format="wav")
        
        # Clean up temporary WAV file
        os.remove(wav_path)
        
        return output_path
    except Exception as e:
        logger.error(f"Error in remove_silence: {str(e)}")
        return f"Error: {str(e)}"

def detect_and_trim_audio(main_audio, target_audio, threshold=0.5):
    """
    Detect the target audio in the main audio and trim the main audio to include only the detected segments.
    
    Args:
        main_audio (str): Path to the main audio file.
        target_audio (str): Path to the target audio file.
        threshold (float): Detection threshold (0 to 1). Higher values mean stricter detection.
    
    Returns:
        str: Path to the trimmed audio file.
        str: Detected timestamps in the format "start-end (in seconds)".
    """
    if main_audio is None or target_audio is None:
        return None, "Error: Please upload both main and target audio files."
    
    try:
        # Convert audio files to WAV format
        main_wav_path = convert_to_wav(main_audio)
        target_wav_path = convert_to_wav(target_audio)
        
        # Load audio files
        main_rate, main_data = wavfile.read(main_wav_path)
        target_rate, target_data = wavfile.read(target_wav_path)
        
        # Ensure both audio files have the same sample rate
        if main_rate != target_rate:
            logger.warning(f"Sample rates differ: main_audio={main_rate}, target_audio={target_rate}. Resampling target audio.")
            target_segment = AudioSegment.from_file(target_wav_path)
            target_segment = resample_audio(target_segment, main_rate)
            with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_resampled:
                resampled_path = temp_resampled.name
                target_segment.export(resampled_path, format="wav")
            target_rate, target_data = wavfile.read(resampled_path)
        
        # Normalize audio data
        main_data = main_data.astype(np.float32) / np.iinfo(main_data.dtype).max
        target_data = target_data.astype(np.float32) / np.iinfo(target_data.dtype).max
        
        # Perform cross-correlation to detect the target audio in the main audio
        correlation = correlate(main_data, target_data, mode='valid')
        correlation = np.abs(correlation)
        max_corr = np.max(correlation)
        
        # Find the peak in the cross-correlation result
        peak_index = np.argmax(correlation)
        peak_value = correlation[peak_index]
        
        # Check if the peak value exceeds the threshold
        if peak_value < threshold * max_corr:
            return None, "Error: Target audio not detected in the main audio."
        
        # Calculate the start and end times of the target audio in the main audio
        start_time = peak_index / main_rate
        end_time = (peak_index + len(target_data)) / main_rate
        
        # Trim the main audio to include only the detected segment
        main_audio_segment = AudioSegment.from_file(main_wav_path)
        start_ms = int(start_time * 1000)
        end_ms = int(end_time * 1000)
        trimmed_audio = main_audio_segment[start_ms:end_ms]
        
        # Export the trimmed audio
        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_output:
            output_path = temp_output.name
            trimmed_audio.export(output_path, format="wav")
        
        # Format timestamps
        timestamps_str = f"{start_time:.2f}-{end_time:.2f}"
        
        # Clean up temporary WAV files
        os.remove(main_wav_path)
        os.remove(target_wav_path)
        if 'resampled_path' in locals():
            os.remove(resampled_path)
        
        return output_path, timestamps_str
    except Exception as e:
        logger.error(f"Error in detect_and_trim_audio: {str(e)}")
        return None, f"Error: {str(e)}"

def transcribe_audio(audio_file, language="Auto Detect", model_size="Faster Whisper Large v3"):
    """Transcribe the audio file."""
    if audio_file is None:
        return "Error: No audio file uploaded."
    
    try:
        # Convert audio to WAV format
        wav_path = convert_to_wav(audio_file)
        
        # Convert audio to 16kHz mono for better compatibility
        audio = AudioSegment.from_file(wav_path)
        audio = audio.set_frame_rate(16000).set_channels(1)
        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_processed:
            processed_audio_path = temp_processed.name
            audio.export(processed_audio_path, format="wav")
        
        # Load the appropriate model
        if model_size == "Faster Whisper Large v3":
            # Define device and compute type for faster-whisper
            device = "cuda" if torch.cuda.is_available() else "cpu"
            compute_type = "float32" if device == "cuda" else "int8"
            
            # Use faster-whisper for the Systran model
            model = WhisperModel(MODELS[model_size], device=device, compute_type=compute_type)
            segments, info = model.transcribe(
                processed_audio_path,
                task="transcribe",
                word_timestamps=True,
                repetition_penalty=1.1,
                temperature=[0.0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0],
            )
            transcription = " ".join([segment.text for segment in segments])
            detected_language_code = info.language
            detected_language = CODE_TO_LANGUAGE_NAME.get(detected_language_code, "Unknown Language")
        else:
            # Use the standard Whisper model
            model = whisper.load_model(MODELS[model_size])
            
            # Transcribe the audio
            if language == "Auto Detect":
                result = model.transcribe(processed_audio_path, fp16=False)  # Auto-detect language
                detected_language_code = result.get("language", "unknown")
                detected_language = CODE_TO_LANGUAGE_NAME.get(detected_language_code, "Unknown Language")
            else:
                language_code = LANGUAGE_NAME_TO_CODE.get(language, "en")  # Default to English if not found
                result = model.transcribe(processed_audio_path, language=language_code, fp16=False)
                detected_language = language
            
            transcription = result["text"]
        
        # Clean up processed audio file
        os.remove(processed_audio_path)
        os.remove(wav_path)
        
        # Return transcription and detected language
        return f"Detected Language: {detected_language}\n\nTranscription:\n{transcription}"
    except Exception as e:
        logger.error(f"Error in transcribe_audio: {str(e)}")
        return f"Error: {str(e)}"

# Define the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Audio Processing Tool")
    
    with gr.Tab("Detect Language"):
        gr.Markdown("Upload an audio file to detect its language.")
        detect_audio_input = gr.Audio(type="filepath", label="Upload Audio File")
        detect_language_output = gr.Textbox(label="Detected Language")
        detect_button = gr.Button("Detect Language")
    
    with gr.Tab("Transcribe Audio"):
        gr.Markdown("Upload an audio file, select a language (or choose 'Auto Detect'), and choose a model for transcription.")
        transcribe_audio_input = gr.Audio(type="filepath", label="Upload Audio File")
        language_dropdown = gr.Dropdown(
            choices=list(LANGUAGE_NAME_TO_CODE.keys()),  # Full language names
            label="Select Language",
            value="Auto Detect"
        )
        model_dropdown = gr.Dropdown(
            choices=list(MODELS.keys()),  # Model options
            label="Select Model",
            value="Faster Whisper Large v3",  # Default to "Faster Whisper Large v3"
            interactive=True  # Allow model selection by default
        )
        transcribe_output = gr.Textbox(label="Transcription and Detected Language")
        transcribe_button = gr.Button("Transcribe Audio")
    
    with gr.Tab("Remove Silence"):
        gr.Markdown("Upload an audio file to remove silence.")
        silence_audio_input = gr.Audio(type="filepath", label="Upload Audio File")
        silence_threshold_slider = gr.Slider(
            minimum=-60, maximum=-20, value=-40, step=1,
            label="Silence Threshold (dB)",
            info="Lower values detect quieter sounds as silence."
        )
        min_silence_len_slider = gr.Slider(
            minimum=100, maximum=2000, value=500, step=100,
            label="Minimum Silence Length (ms)",
            info="Minimum duration of silence to remove."
        )
        silence_output = gr.Audio(label="Processed Audio (Silence Removed)", type="filepath")
        silence_button = gr.Button("Remove Silence")
    
    with gr.Tab("Detect and Trim Audio"):
        gr.Markdown("Upload a main audio file and a target audio file. The app will detect the target audio in the main audio and trim it.")
        main_audio_input = gr.Audio(type="filepath", label="Upload Main Audio File")
        target_audio_input = gr.Audio(type="filepath", label="Upload Target Audio File")
        threshold_slider = gr.Slider(
            minimum=0.1, maximum=1.0, value=0.5, step=0.1,
            label="Detection Threshold",
            info="Higher values mean stricter detection."
        )
        trimmed_audio_output = gr.Audio(label="Trimmed Audio", type="filepath")
        timestamps_output = gr.Textbox(label="Detected Timestamps (in seconds)")
        detect_trim_button = gr.Button("Detect and Trim")
    
    # Link buttons to functions
    detect_button.click(detect_language, inputs=detect_audio_input, outputs=detect_language_output)
    transcribe_button.click(
        transcribe_audio,
        inputs=[transcribe_audio_input, language_dropdown, model_dropdown],
        outputs=transcribe_output
    )
    silence_button.click(
        remove_silence,
        inputs=[silence_audio_input, silence_threshold_slider, min_silence_len_slider],
        outputs=silence_output
    )
    detect_trim_button.click(
        detect_and_trim_audio,
        inputs=[main_audio_input, target_audio_input, threshold_slider],
        outputs=[trimmed_audio_output, timestamps_output]
    )

# Launch the Gradio interface
demo.launch()