Athspi commited on
Commit
868debc
·
verified ·
1 Parent(s): fa03377

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -13
app.py CHANGED
@@ -116,7 +116,28 @@ LANGUAGE_NAME_TO_CODE = {
116
  "Sundanese": "su",
117
  }
118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
  def transcribe_audio(audio_file, language="Auto Detect", model_size="Base (Faster)"):
 
120
  # Load the selected Whisper model
121
  model = whisper.load_model(MODELS[model_size])
122
 
@@ -142,25 +163,34 @@ def transcribe_audio(audio_file, language="Auto Detect", model_size="Base (Faste
142
  return f"Detected Language: {detected_language}\n\nTranscription:\n{result['text']}"
143
 
144
  # Define the Gradio interface
145
- iface = gr.Interface(
146
- fn=transcribe_audio,
147
- inputs=[
148
- gr.Audio(type="filepath", label="Upload Audio File"),
149
- gr.Dropdown(
 
 
 
 
 
 
 
 
150
  choices=list(LANGUAGE_NAME_TO_CODE.keys()), # Full language names
151
  label="Select Language",
152
  value="Auto Detect"
153
- ),
154
- gr.Dropdown(
155
  choices=list(MODELS.keys()), # Model options
156
  label="Select Model",
157
  value="Base (Faster)" # Default to "Base" model
158
  )
159
- ],
160
- outputs=gr.Textbox(label="Transcription and Detected Language"),
161
- title="Audio Transcription with Language and Model Selection",
162
- description="Upload an audio file, select a language (or choose 'Auto Detect'), and choose a model for transcription."
163
- )
 
164
 
165
  # Launch the Gradio interface
166
- iface.launch()
 
116
  "Sundanese": "su",
117
  }
118
 
119
+ def detect_language(audio_file):
120
+ """Detect the language of the audio file."""
121
+ # Load the Whisper model (use "base" for faster detection)
122
+ model = whisper.load_model("base")
123
+
124
+ # Convert audio to 16kHz mono for better compatibility with Whisper
125
+ audio = AudioSegment.from_file(audio_file)
126
+ audio = audio.set_frame_rate(16000).set_channels(1)
127
+ processed_audio_path = "processed_audio.wav"
128
+ audio.export(processed_audio_path, format="wav")
129
+
130
+ # Detect the language
131
+ result = model.transcribe(processed_audio_path, task="detect_language", fp16=False)
132
+ detected_language = result.get("language", "unknown")
133
+
134
+ # Clean up processed audio file
135
+ os.remove(processed_audio_path)
136
+
137
+ return f"Detected Language: {detected_language}"
138
+
139
  def transcribe_audio(audio_file, language="Auto Detect", model_size="Base (Faster)"):
140
+ """Transcribe the audio file."""
141
  # Load the selected Whisper model
142
  model = whisper.load_model(MODELS[model_size])
143
 
 
163
  return f"Detected Language: {detected_language}\n\nTranscription:\n{result['text']}"
164
 
165
  # Define the Gradio interface
166
+ with gr.Blocks() as demo:
167
+ gr.Markdown("# Audio Transcription and Language Detection")
168
+
169
+ with gr.Tab("Detect Language"):
170
+ gr.Markdown("Upload an audio file to detect its language.")
171
+ detect_audio_input = gr.Audio(type="filepath", label="Upload Audio File")
172
+ detect_language_output = gr.Textbox(label="Detected Language")
173
+ detect_button = gr.Button("Detect Language")
174
+
175
+ with gr.Tab("Transcribe Audio"):
176
+ gr.Markdown("Upload an audio file, select a language (or choose 'Auto Detect'), and choose a model for transcription.")
177
+ transcribe_audio_input = gr.Audio(type="filepath", label="Upload Audio File")
178
+ language_dropdown = gr.Dropdown(
179
  choices=list(LANGUAGE_NAME_TO_CODE.keys()), # Full language names
180
  label="Select Language",
181
  value="Auto Detect"
182
+ )
183
+ model_dropdown = gr.Dropdown(
184
  choices=list(MODELS.keys()), # Model options
185
  label="Select Model",
186
  value="Base (Faster)" # Default to "Base" model
187
  )
188
+ transcribe_output = gr.Textbox(label="Transcription and Detected Language")
189
+ transcribe_button = gr.Button("Transcribe Audio")
190
+
191
+ # Link buttons to functions
192
+ detect_button.click(detect_language, inputs=detect_audio_input, outputs=detect_language_output)
193
+ transcribe_button.click(transcribe_audio, inputs=[transcribe_audio_input, language_dropdown, model_dropdown], outputs=transcribe_output)
194
 
195
  # Launch the Gradio interface
196
+ demo.launch()