Update app.py
Browse files
app.py
CHANGED
@@ -260,6 +260,69 @@ def detect_voice_activity(audio_file, threshold=0.02):
|
|
260 |
|
261 |
return output_path
|
262 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
def transcribe_audio(audio_file, language="Auto Detect", model_size="Faster Whisper Large v3"):
|
264 |
"""Transcribe the audio file."""
|
265 |
# Convert audio to 16kHz mono for better compatibility
|
@@ -352,16 +415,15 @@ with gr.Blocks() as demo:
|
|
352 |
silence_button = gr.Button("Remove Silence")
|
353 |
|
354 |
with gr.Tab("Voice Detection and Trimming"):
|
355 |
-
gr.Markdown("Upload
|
356 |
-
|
357 |
-
voice_audio_input2 = gr.Audio(type="filepath", label="Upload Audio File 2")
|
358 |
voice_threshold_slider = gr.Slider(
|
359 |
minimum=0.01, maximum=0.1, value=0.02, step=0.01,
|
360 |
label="Voice Detection Threshold",
|
361 |
info="Higher values detect louder sounds as voice."
|
362 |
)
|
363 |
-
|
364 |
-
|
365 |
voice_button = gr.Button("Detect and Trim Voice")
|
366 |
|
367 |
# Link buttons to functions
|
@@ -377,9 +439,9 @@ with gr.Blocks() as demo:
|
|
377 |
outputs=silence_output
|
378 |
)
|
379 |
voice_button.click(
|
380 |
-
|
381 |
-
inputs=[
|
382 |
-
outputs=[
|
383 |
)
|
384 |
|
385 |
# Launch the Gradio interface
|
|
|
260 |
|
261 |
return output_path
|
262 |
|
263 |
+
def detect_and_trim_audio(audio_file, threshold=0.02):
|
264 |
+
"""
|
265 |
+
Detect voice activity in the audio file, trim the audio to include only voice segments,
|
266 |
+
and return the timestamps of the detected segments.
|
267 |
+
|
268 |
+
Args:
|
269 |
+
audio_file (str): Path to the input audio file.
|
270 |
+
threshold (float): Amplitude threshold for voice detection. Default is 0.02.
|
271 |
+
|
272 |
+
Returns:
|
273 |
+
str: Path to the output audio file with only voice segments.
|
274 |
+
list: List of timestamps (start, end) for the detected segments.
|
275 |
+
"""
|
276 |
+
# Convert the input audio to WAV format
|
277 |
+
wav_path = convert_to_wav(audio_file)
|
278 |
+
|
279 |
+
# Load the WAV file
|
280 |
+
sample_rate, data = wavfile.read(wav_path)
|
281 |
+
|
282 |
+
# If the audio is stereo, convert it to mono by averaging the channels
|
283 |
+
if len(data.shape) > 1:
|
284 |
+
data = np.mean(data, axis=1)
|
285 |
+
|
286 |
+
# Normalize the audio data to the range [-1, 1]
|
287 |
+
if data.dtype != np.float32:
|
288 |
+
data = data.astype(np.float32) / np.iinfo(data.dtype).max
|
289 |
+
|
290 |
+
# Detect voice activity
|
291 |
+
voice_segments = []
|
292 |
+
is_voice = False
|
293 |
+
start = 0
|
294 |
+
for i, sample in enumerate(data):
|
295 |
+
if abs(sample) > threshold and not is_voice:
|
296 |
+
is_voice = True
|
297 |
+
start = i
|
298 |
+
elif abs(sample) <= threshold and is_voice:
|
299 |
+
is_voice = False
|
300 |
+
voice_segments.append((start, i))
|
301 |
+
|
302 |
+
# If the last segment is voice, add it
|
303 |
+
if is_voice:
|
304 |
+
voice_segments.append((start, len(data)))
|
305 |
+
|
306 |
+
# Trim the audio to include only voice segments
|
307 |
+
trimmed_audio = np.array([], dtype=np.float32)
|
308 |
+
for segment in voice_segments:
|
309 |
+
trimmed_audio = np.concatenate((trimmed_audio, data[segment[0]:segment[1]]))
|
310 |
+
|
311 |
+
# Convert the trimmed audio back to 16-bit integer format
|
312 |
+
trimmed_audio_int16 = np.int16(trimmed_audio * 32767)
|
313 |
+
|
314 |
+
# Export the trimmed audio
|
315 |
+
output_path = "voice_trimmed_audio.wav"
|
316 |
+
wavfile.write(output_path, sample_rate, trimmed_audio_int16)
|
317 |
+
|
318 |
+
# Calculate timestamps in seconds
|
319 |
+
timestamps = [(start / sample_rate, end / sample_rate) for start, end in voice_segments]
|
320 |
+
|
321 |
+
# Clean up the converted WAV file
|
322 |
+
os.remove(wav_path)
|
323 |
+
|
324 |
+
return output_path, timestamps
|
325 |
+
|
326 |
def transcribe_audio(audio_file, language="Auto Detect", model_size="Faster Whisper Large v3"):
|
327 |
"""Transcribe the audio file."""
|
328 |
# Convert audio to 16kHz mono for better compatibility
|
|
|
415 |
silence_button = gr.Button("Remove Silence")
|
416 |
|
417 |
with gr.Tab("Voice Detection and Trimming"):
|
418 |
+
gr.Markdown("Upload an audio file to detect voice activity and trim the audio.")
|
419 |
+
voice_audio_input = gr.Audio(type="filepath", label="Upload Audio File")
|
|
|
420 |
voice_threshold_slider = gr.Slider(
|
421 |
minimum=0.01, maximum=0.1, value=0.02, step=0.01,
|
422 |
label="Voice Detection Threshold",
|
423 |
info="Higher values detect louder sounds as voice."
|
424 |
)
|
425 |
+
voice_output = gr.Audio(label="Trimmed Audio", type="filepath")
|
426 |
+
timestamps_output = gr.Textbox(label="Detected Timestamps (seconds)")
|
427 |
voice_button = gr.Button("Detect and Trim Voice")
|
428 |
|
429 |
# Link buttons to functions
|
|
|
439 |
outputs=silence_output
|
440 |
)
|
441 |
voice_button.click(
|
442 |
+
detect_and_trim_audio,
|
443 |
+
inputs=[voice_audio_input, voice_threshold_slider],
|
444 |
+
outputs=[voice_output, timestamps_output]
|
445 |
)
|
446 |
|
447 |
# Launch the Gradio interface
|