Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ import whisper
|
|
3 |
import torch
|
4 |
import os
|
5 |
from pydub import AudioSegment
|
6 |
-
from transformers import pipeline
|
7 |
from faster_whisper import WhisperModel # Import faster-whisper
|
8 |
|
9 |
# Mapping of model names to Whisper model sizes
|
@@ -13,20 +12,7 @@ MODELS = {
|
|
13 |
"Small (Balanced)": "small",
|
14 |
"Medium (Accurate)": "medium",
|
15 |
"Large (Most Accurate)": "large",
|
16 |
-
"
|
17 |
-
}
|
18 |
-
|
19 |
-
# Fine-tuned models for specific languages
|
20 |
-
FINE_TUNED_MODELS = {
|
21 |
-
"Tamil": {
|
22 |
-
"model": "vasista22/whisper-tamil-medium",
|
23 |
-
"language": "ta"
|
24 |
-
},
|
25 |
-
"Sinhala": {
|
26 |
-
"model": "Subhaka/whisper-small-Sinhala-Fine_Tune", # Add the new fine-tuned model
|
27 |
-
"language": "si" # Sinhala language code
|
28 |
-
},
|
29 |
-
# Add more fine-tuned models for other languages here
|
30 |
}
|
31 |
|
32 |
# Mapping of full language names to language codes
|
@@ -138,18 +124,22 @@ CODE_TO_LANGUAGE_NAME = {v: k for k, v in LANGUAGE_NAME_TO_CODE.items()}
|
|
138 |
|
139 |
def detect_language(audio_file):
|
140 |
"""Detect the language of the audio file."""
|
141 |
-
#
|
142 |
-
|
|
|
143 |
|
144 |
-
#
|
|
|
|
|
|
|
145 |
audio = AudioSegment.from_file(audio_file)
|
146 |
audio = audio.set_frame_rate(16000).set_channels(1)
|
147 |
processed_audio_path = "processed_audio.wav"
|
148 |
audio.export(processed_audio_path, format="wav")
|
149 |
|
150 |
-
# Detect the language
|
151 |
-
|
152 |
-
detected_language_code =
|
153 |
|
154 |
# Get the full language name from the code
|
155 |
detected_language = CODE_TO_LANGUAGE_NAME.get(detected_language_code, "Unknown Language")
|
@@ -159,7 +149,7 @@ def detect_language(audio_file):
|
|
159 |
|
160 |
return f"Detected Language: {detected_language}"
|
161 |
|
162 |
-
def transcribe_audio(audio_file, language="Auto Detect", model_size="
|
163 |
"""Transcribe the audio file."""
|
164 |
# Convert audio to 16kHz mono for better compatibility
|
165 |
audio = AudioSegment.from_file(audio_file)
|
@@ -168,56 +158,38 @@ def transcribe_audio(audio_file, language="Auto Detect", model_size="Base (Faste
|
|
168 |
audio.export(processed_audio_path, format="wav")
|
169 |
|
170 |
# Load the appropriate model
|
171 |
-
if
|
172 |
-
#
|
173 |
-
device = "cuda
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
179 |
)
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
)
|
184 |
-
result = transcribe(processed_audio_path)
|
185 |
-
transcription = result["text"]
|
186 |
-
detected_language = language
|
187 |
else:
|
188 |
-
# Use the
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
model = WhisperModel(MODELS[model_size], device=device, compute_type=compute_type)
|
196 |
-
segments, info = model.transcribe(
|
197 |
-
processed_audio_path,
|
198 |
-
task="transcribe",
|
199 |
-
word_timestamps=True,
|
200 |
-
repetition_penalty=1.1,
|
201 |
-
temperature=[0.0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0],
|
202 |
-
)
|
203 |
-
transcription = " ".join([segment.text for segment in segments])
|
204 |
-
detected_language_code = info.language
|
205 |
detected_language = CODE_TO_LANGUAGE_NAME.get(detected_language_code, "Unknown Language")
|
206 |
else:
|
207 |
-
#
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
result = model.transcribe(processed_audio_path, fp16=False) # Auto-detect language
|
213 |
-
detected_language_code = result.get("language", "unknown")
|
214 |
-
detected_language = CODE_TO_LANGUAGE_NAME.get(detected_language_code, "Unknown Language")
|
215 |
-
else:
|
216 |
-
language_code = LANGUAGE_NAME_TO_CODE.get(language, "en") # Default to English if not found
|
217 |
-
result = model.transcribe(processed_audio_path, language=language_code, fp16=False)
|
218 |
-
detected_language = language
|
219 |
-
|
220 |
-
transcription = result["text"]
|
221 |
|
222 |
# Clean up processed audio file
|
223 |
os.remove(processed_audio_path)
|
@@ -246,7 +218,7 @@ with gr.Blocks() as demo:
|
|
246 |
model_dropdown = gr.Dropdown(
|
247 |
choices=list(MODELS.keys()), # Model options
|
248 |
label="Select Model",
|
249 |
-
value="
|
250 |
interactive=True # Allow model selection by default
|
251 |
)
|
252 |
transcribe_output = gr.Textbox(label="Transcription and Detected Language")
|
|
|
3 |
import torch
|
4 |
import os
|
5 |
from pydub import AudioSegment
|
|
|
6 |
from faster_whisper import WhisperModel # Import faster-whisper
|
7 |
|
8 |
# Mapping of model names to Whisper model sizes
|
|
|
12 |
"Small (Balanced)": "small",
|
13 |
"Medium (Accurate)": "medium",
|
14 |
"Large (Most Accurate)": "large",
|
15 |
+
"Faster Whisper Large v3": "Systran/faster-whisper-large-v3" # Renamed and set as default
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
}
|
17 |
|
18 |
# Mapping of full language names to language codes
|
|
|
124 |
|
125 |
def detect_language(audio_file):
|
126 |
"""Detect the language of the audio file."""
|
127 |
+
# Define device and compute type for faster-whisper
|
128 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
129 |
+
compute_type = "float32" if device == "cuda" else "int8"
|
130 |
|
131 |
+
# Load the faster-whisper model for language detection
|
132 |
+
model = WhisperModel(MODELS["Faster Whisper Large v3"], device=device, compute_type=compute_type)
|
133 |
+
|
134 |
+
# Convert audio to 16kHz mono for better compatibility
|
135 |
audio = AudioSegment.from_file(audio_file)
|
136 |
audio = audio.set_frame_rate(16000).set_channels(1)
|
137 |
processed_audio_path = "processed_audio.wav"
|
138 |
audio.export(processed_audio_path, format="wav")
|
139 |
|
140 |
+
# Detect the language using faster-whisper
|
141 |
+
segments, info = model.transcribe(processed_audio_path, task="translate", language=None)
|
142 |
+
detected_language_code = info.language
|
143 |
|
144 |
# Get the full language name from the code
|
145 |
detected_language = CODE_TO_LANGUAGE_NAME.get(detected_language_code, "Unknown Language")
|
|
|
149 |
|
150 |
return f"Detected Language: {detected_language}"
|
151 |
|
152 |
+
def transcribe_audio(audio_file, language="Auto Detect", model_size="Faster Whisper Large v3"):
|
153 |
"""Transcribe the audio file."""
|
154 |
# Convert audio to 16kHz mono for better compatibility
|
155 |
audio = AudioSegment.from_file(audio_file)
|
|
|
158 |
audio.export(processed_audio_path, format="wav")
|
159 |
|
160 |
# Load the appropriate model
|
161 |
+
if model_size == "Faster Whisper Large v3":
|
162 |
+
# Define device and compute type for faster-whisper
|
163 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
164 |
+
compute_type = "float32" if device == "cuda" else "int8"
|
165 |
+
|
166 |
+
# Use faster-whisper for the Systran model
|
167 |
+
model = WhisperModel(MODELS[model_size], device=device, compute_type=compute_type)
|
168 |
+
segments, info = model.transcribe(
|
169 |
+
processed_audio_path,
|
170 |
+
task="transcribe",
|
171 |
+
word_timestamps=True,
|
172 |
+
repetition_penalty=1.1,
|
173 |
+
temperature=[0.0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0],
|
174 |
)
|
175 |
+
transcription = " ".join([segment.text for segment in segments])
|
176 |
+
detected_language_code = info.language
|
177 |
+
detected_language = CODE_TO_LANGUAGE_NAME.get(detected_language_code, "Unknown Language")
|
|
|
|
|
|
|
|
|
178 |
else:
|
179 |
+
# Use the standard Whisper model
|
180 |
+
model = whisper.load_model(MODELS[model_size])
|
181 |
+
|
182 |
+
# Transcribe the audio
|
183 |
+
if language == "Auto Detect":
|
184 |
+
result = model.transcribe(processed_audio_path, fp16=False) # Auto-detect language
|
185 |
+
detected_language_code = result.get("language", "unknown")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
detected_language = CODE_TO_LANGUAGE_NAME.get(detected_language_code, "Unknown Language")
|
187 |
else:
|
188 |
+
language_code = LANGUAGE_NAME_TO_CODE.get(language, "en") # Default to English if not found
|
189 |
+
result = model.transcribe(processed_audio_path, language=language_code, fp16=False)
|
190 |
+
detected_language = language
|
191 |
+
|
192 |
+
transcription = result["text"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
# Clean up processed audio file
|
195 |
os.remove(processed_audio_path)
|
|
|
218 |
model_dropdown = gr.Dropdown(
|
219 |
choices=list(MODELS.keys()), # Model options
|
220 |
label="Select Model",
|
221 |
+
value="Faster Whisper Large v3", # Default to "Faster Whisper Large v3"
|
222 |
interactive=True # Allow model selection by default
|
223 |
)
|
224 |
transcribe_output = gr.Textbox(label="Transcription and Detected Language")
|