Update app.py
Browse files
app.py
CHANGED
@@ -1,224 +1,28 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
|
4 |
-
from
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
"
|
21 |
-
"
|
22 |
-
"
|
23 |
-
"
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
"
|
29 |
-
"Portuguese": "pt",
|
30 |
-
"Turkish": "tr",
|
31 |
-
"Polish": "pl",
|
32 |
-
"Catalan": "ca",
|
33 |
-
"Dutch": "nl",
|
34 |
-
"Arabic": "ar",
|
35 |
-
"Swedish": "sv",
|
36 |
-
"Italian": "it",
|
37 |
-
"Indonesian": "id",
|
38 |
-
"Hindi": "hi",
|
39 |
-
"Finnish": "fi",
|
40 |
-
"Vietnamese": "vi",
|
41 |
-
"Hebrew": "he",
|
42 |
-
"Ukrainian": "uk",
|
43 |
-
"Greek": "el",
|
44 |
-
"Malay": "ms",
|
45 |
-
"Czech": "cs",
|
46 |
-
"Romanian": "ro",
|
47 |
-
"Danish": "da",
|
48 |
-
"Hungarian": "hu",
|
49 |
-
"Tamil": "ta",
|
50 |
-
"Norwegian": "no",
|
51 |
-
"Thai": "th",
|
52 |
-
"Urdu": "ur",
|
53 |
-
"Croatian": "hr",
|
54 |
-
"Bulgarian": "bg",
|
55 |
-
"Lithuanian": "lt",
|
56 |
-
"Latin": "la",
|
57 |
-
"Maori": "mi",
|
58 |
-
"Malayalam": "ml",
|
59 |
-
"Welsh": "cy",
|
60 |
-
"Slovak": "sk",
|
61 |
-
"Telugu": "te",
|
62 |
-
"Persian": "fa",
|
63 |
-
"Latvian": "lv",
|
64 |
-
"Bengali": "bn",
|
65 |
-
"Serbian": "sr",
|
66 |
-
"Azerbaijani": "az",
|
67 |
-
"Slovenian": "sl",
|
68 |
-
"Kannada": "kn",
|
69 |
-
"Estonian": "et",
|
70 |
-
"Macedonian": "mk",
|
71 |
-
"Breton": "br",
|
72 |
-
"Basque": "eu",
|
73 |
-
"Icelandic": "is",
|
74 |
-
"Armenian": "hy",
|
75 |
-
"Nepali": "ne",
|
76 |
-
"Mongolian": "mn",
|
77 |
-
"Bosnian": "bs",
|
78 |
-
"Kazakh": "kk",
|
79 |
-
"Albanian": "sq",
|
80 |
-
"Swahili": "sw",
|
81 |
-
"Galician": "gl",
|
82 |
-
"Marathi": "mr",
|
83 |
-
"Punjabi": "pa",
|
84 |
-
"Sinhala": "si",
|
85 |
-
"Khmer": "km",
|
86 |
-
"Shona": "sn",
|
87 |
-
"Yoruba": "yo",
|
88 |
-
"Somali": "so",
|
89 |
-
"Afrikaans": "af",
|
90 |
-
"Occitan": "oc",
|
91 |
-
"Georgian": "ka",
|
92 |
-
"Belarusian": "be",
|
93 |
-
"Tajik": "tg",
|
94 |
-
"Sindhi": "sd",
|
95 |
-
"Gujarati": "gu",
|
96 |
-
"Amharic": "am",
|
97 |
-
"Yiddish": "yi",
|
98 |
-
"Lao": "lo",
|
99 |
-
"Uzbek": "uz",
|
100 |
-
"Faroese": "fo",
|
101 |
-
"Haitian Creole": "ht",
|
102 |
-
"Pashto": "ps",
|
103 |
-
"Turkmen": "tk",
|
104 |
-
"Nynorsk": "nn",
|
105 |
-
"Maltese": "mt",
|
106 |
-
"Sanskrit": "sa",
|
107 |
-
"Luxembourgish": "lb",
|
108 |
-
"Burmese": "my",
|
109 |
-
"Tibetan": "bo",
|
110 |
-
"Tagalog": "tl",
|
111 |
-
"Malagasy": "mg",
|
112 |
-
"Assamese": "as",
|
113 |
-
"Tatar": "tt",
|
114 |
-
"Hawaiian": "haw",
|
115 |
-
"Lingala": "ln",
|
116 |
-
"Hausa": "ha",
|
117 |
-
"Bashkir": "ba",
|
118 |
-
"Javanese": "jw",
|
119 |
-
"Sundanese": "su",
|
120 |
-
}
|
121 |
-
|
122 |
-
def detect_language(audio_file):
|
123 |
-
"""Detect the language of the audio file."""
|
124 |
-
# Load the Whisper model (use "base" for faster detection)
|
125 |
-
model = whisper.load_model("base")
|
126 |
-
|
127 |
-
# Convert audio to 16kHz mono for better compatibility with Whisper
|
128 |
-
audio = AudioSegment.from_file(audio_file)
|
129 |
-
audio = audio.set_frame_rate(16000).set_channels(1)
|
130 |
-
processed_audio_path = "processed_audio.wav"
|
131 |
-
audio.export(processed_audio_path, format="wav")
|
132 |
-
|
133 |
-
# Detect the language
|
134 |
-
result = model.transcribe(processed_audio_path, task="detect_language", fp16=False)
|
135 |
-
detected_language = result.get("language", "unknown")
|
136 |
-
|
137 |
-
# Clean up processed audio file
|
138 |
-
os.remove(processed_audio_path)
|
139 |
-
|
140 |
-
return f"Detected Language: {detected_language}"
|
141 |
-
|
142 |
-
def transcribe_audio(audio_file, language="Auto Detect", model_size="Base (Faster)"):
|
143 |
-
"""Transcribe the audio file."""
|
144 |
-
# Map language to fine-tuned model
|
145 |
-
language_to_model = {
|
146 |
-
"Hindi": "yash-04/whisper-base-hindi",
|
147 |
-
"Tamil": "mahimairaja/whisper-base-tamil",
|
148 |
-
# Add more mappings as needed
|
149 |
-
}
|
150 |
-
|
151 |
-
# Load the selected Whisper model
|
152 |
-
if language in language_to_model:
|
153 |
-
model_name = language_to_model[language]
|
154 |
-
model = WhisperForConditionalGeneration.from_pretrained(model_name)
|
155 |
-
processor = WhisperProcessor.from_pretrained(model_name)
|
156 |
-
else:
|
157 |
-
model = whisper.load_model(MODELS[model_size])
|
158 |
-
processor = None # Use default Whisper processor
|
159 |
-
|
160 |
-
# Convert audio to 16kHz mono for better compatibility with Whisper
|
161 |
-
audio = AudioSegment.from_file(audio_file)
|
162 |
-
audio = audio.set_frame_rate(16000).set_channels(1)
|
163 |
-
processed_audio_path = "processed_audio.wav"
|
164 |
-
audio.export(processed_audio_path, format="wav")
|
165 |
-
|
166 |
-
# Transcribe the audio
|
167 |
-
if language == "Auto Detect":
|
168 |
-
if processor:
|
169 |
-
inputs = processor(processed_audio_path, return_tensors="pt", sampling_rate=16000)
|
170 |
-
result = model.generate(inputs.input_features)
|
171 |
-
transcription = processor.batch_decode(result, skip_special_tokens=True)[0]
|
172 |
-
else:
|
173 |
-
result = model.transcribe(processed_audio_path, fp16=False)
|
174 |
-
transcription = result["text"]
|
175 |
-
detected_language = result.get("language", "unknown")
|
176 |
-
else:
|
177 |
-
language_code = LANGUAGE_NAME_TO_CODE.get(language, "en") # Default to English if not found
|
178 |
-
if processor:
|
179 |
-
inputs = processor(processed_audio_path, return_tensors="pt", sampling_rate=16000)
|
180 |
-
result = model.generate(inputs.input_features, language=language_code)
|
181 |
-
transcription = processor.batch_decode(result, skip_special_tokens=True)[0]
|
182 |
-
else:
|
183 |
-
result = model.transcribe(processed_audio_path, language=language_code, fp16=False)
|
184 |
-
transcription = result["text"]
|
185 |
-
detected_language = language_code
|
186 |
-
|
187 |
-
# Clean up processed audio file
|
188 |
-
os.remove(processed_audio_path)
|
189 |
-
|
190 |
-
# Return transcription and detected language
|
191 |
-
return f"Detected Language: {detected_language}\n\nTranscription:\n{transcription}"
|
192 |
-
|
193 |
-
# Define the Gradio interface
|
194 |
-
with gr.Blocks() as demo:
|
195 |
-
gr.Markdown("# Audio Transcription and Language Detection")
|
196 |
-
|
197 |
-
with gr.Tab("Detect Language"):
|
198 |
-
gr.Markdown("Upload an audio file to detect its language.")
|
199 |
-
detect_audio_input = gr.Audio(type="filepath", label="Upload Audio File")
|
200 |
-
detect_language_output = gr.Textbox(label="Detected Language")
|
201 |
-
detect_button = gr.Button("Detect Language")
|
202 |
-
|
203 |
-
with gr.Tab("Transcribe Audio"):
|
204 |
-
gr.Markdown("Upload an audio file, select a language (or choose 'Auto Detect'), and choose a model for transcription.")
|
205 |
-
transcribe_audio_input = gr.Audio(type="filepath", label="Upload Audio File")
|
206 |
-
language_dropdown = gr.Dropdown(
|
207 |
-
choices=list(LANGUAGE_NAME_TO_CODE.keys()), # Full language names
|
208 |
-
label="Select Language",
|
209 |
-
value="Auto Detect"
|
210 |
-
)
|
211 |
-
model_dropdown = gr.Dropdown(
|
212 |
-
choices=list(MODELS.keys()), # Model options
|
213 |
-
label="Select Model",
|
214 |
-
value="Base (Faster)" # Default to "Base" model
|
215 |
-
)
|
216 |
-
transcribe_output = gr.Textbox(label="Transcription and Detected Language")
|
217 |
-
transcribe_button = gr.Button("Transcribe Audio")
|
218 |
-
|
219 |
-
# Link buttons to functions
|
220 |
-
detect_button.click(detect_language, inputs=detect_audio_input, outputs=detect_language_output)
|
221 |
-
transcribe_button.click(transcribe_audio, inputs=[transcribe_audio_input, language_dropdown, model_dropdown], outputs=transcribe_output)
|
222 |
-
|
223 |
-
# Launch the Gradio interface
|
224 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load the Whisper model from Hugging Face
|
5 |
+
model_name = "Subhaka/whisper-small-Sinhala-Fine_Tune"
|
6 |
+
transcriber = pipeline("automatic-speech-recognition", model=model_name)
|
7 |
+
|
8 |
+
# Define a transcription function
|
9 |
+
def transcribe_audio(audio_file):
|
10 |
+
try:
|
11 |
+
transcription = transcriber(audio_file)["text"]
|
12 |
+
return transcription
|
13 |
+
except Exception as e:
|
14 |
+
return f"Error: {str(e)}"
|
15 |
+
|
16 |
+
# Create Gradio interface
|
17 |
+
interface = gr.Interface(
|
18 |
+
fn=transcribe_audio,
|
19 |
+
inputs=gr.Audio(source="upload", type="filepath", label="Upload Audio"),
|
20 |
+
outputs=gr.Textbox(label="Transcription"),
|
21 |
+
title="Sinhala Audio-to-Text Transcription",
|
22 |
+
description="Upload an audio file and get the transcription in Sinhala using the Whisper model fine-tuned by Subhaka.",
|
23 |
+
allow_flagging="never"
|
24 |
+
)
|
25 |
+
|
26 |
+
# Launch the Gradio app
|
27 |
+
if __name__ == "__main__":
|
28 |
+
interface.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|