Athspi commited on
Commit
16649a3
·
verified ·
1 Parent(s): f3d071f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -42
app.py CHANGED
@@ -1,7 +1,12 @@
1
  import gradio as gr
2
  import whisper
 
3
  import os
4
  from pydub import AudioSegment
 
 
 
 
5
 
6
  # Mapping of model names to Whisper model sizes
7
  MODELS = {
@@ -12,6 +17,15 @@ MODELS = {
12
  "Large (Most Accurate)": "large"
13
  }
14
 
 
 
 
 
 
 
 
 
 
15
  # Mapping of full language names to language codes
16
  LANGUAGE_NAME_TO_CODE = {
17
  "Auto Detect": "Auto Detect",
@@ -116,61 +130,55 @@ LANGUAGE_NAME_TO_CODE = {
116
  "Sundanese": "su",
117
  }
118
 
119
- def detect_language(audio_file):
120
- """Detect the language of the audio file."""
121
- # Load the Whisper model (use "base" for faster detection)
122
- model = whisper.load_model("base")
123
-
124
- # Convert audio to 16kHz mono for better compatibility with Whisper
125
- audio = AudioSegment.from_file(audio_file)
126
- audio = audio.set_frame_rate(16000).set_channels(1)
127
- processed_audio_path = "processed_audio.wav"
128
- audio.export(processed_audio_path, format="wav")
129
-
130
- # Detect the language
131
- result = model.transcribe(processed_audio_path, task="detect_language", fp16=False)
132
- detected_language = result.get("language", "unknown")
133
-
134
- # Clean up processed audio file
135
- os.remove(processed_audio_path)
136
-
137
- return f"Detected Language: {detected_language}"
138
-
139
  def transcribe_audio(audio_file, language="Auto Detect", model_size="Base (Faster)"):
140
  """Transcribe the audio file."""
141
- # Load the selected Whisper model
142
- model = whisper.load_model(MODELS[model_size])
143
-
144
- # Convert audio to 16kHz mono for better compatibility with Whisper
145
  audio = AudioSegment.from_file(audio_file)
146
  audio = audio.set_frame_rate(16000).set_channels(1)
147
  processed_audio_path = "processed_audio.wav"
148
  audio.export(processed_audio_path, format="wav")
149
 
150
- # Transcribe the audio
151
- if language == "Auto Detect":
152
- result = model.transcribe(processed_audio_path, fp16=False) # Auto-detect language
153
- detected_language = result.get("language", "unknown")
 
 
 
 
 
 
 
 
 
 
 
 
 
154
  else:
155
- language_code = LANGUAGE_NAME_TO_CODE.get(language, "en") # Default to English if not found
156
- result = model.transcribe(processed_audio_path, language=language_code, fp16=False)
157
- detected_language = language_code
 
 
 
 
 
 
 
 
 
 
158
 
159
  # Clean up processed audio file
160
  os.remove(processed_audio_path)
161
 
162
  # Return transcription and detected language
163
- return f"Detected Language: {detected_language}\n\nTranscription:\n{result['text']}"
164
 
165
  # Define the Gradio interface
166
  with gr.Blocks() as demo:
167
- gr.Markdown("# Audio Transcription and Language Detection")
168
-
169
- with gr.Tab("Detect Language"):
170
- gr.Markdown("Upload an audio file to detect its language.")
171
- detect_audio_input = gr.Audio(type="filepath", label="Upload Audio File")
172
- detect_language_output = gr.Textbox(label="Detected Language")
173
- detect_button = gr.Button("Detect Language")
174
 
175
  with gr.Tab("Transcribe Audio"):
176
  gr.Markdown("Upload an audio file, select a language (or choose 'Auto Detect'), and choose a model for transcription.")
@@ -183,13 +191,24 @@ with gr.Blocks() as demo:
183
  model_dropdown = gr.Dropdown(
184
  choices=list(MODELS.keys()), # Model options
185
  label="Select Model",
186
- value="Base (Faster)" # Default to "Base" model
 
187
  )
188
  transcribe_output = gr.Textbox(label="Transcription and Detected Language")
189
  transcribe_button = gr.Button("Transcribe Audio")
190
 
191
- # Link buttons to functions
192
- detect_button.click(detect_language, inputs=detect_audio_input, outputs=detect_language_output)
 
 
 
 
 
 
 
 
 
 
193
  transcribe_button.click(transcribe_audio, inputs=[transcribe_audio_input, language_dropdown, model_dropdown], outputs=transcribe_output)
194
 
195
  # Launch the Gradio interface
 
1
  import gradio as gr
2
  import whisper
3
+ import torch
4
  import os
5
  from pydub import AudioSegment
6
+ from transformers import pipeline
7
+
8
+ # Ensure compatible versions of torch and transformers are installed
9
+ # Run: pip install torch==1.13.1 transformers==4.26.1
10
 
11
  # Mapping of model names to Whisper model sizes
12
  MODELS = {
 
17
  "Large (Most Accurate)": "large"
18
  }
19
 
20
+ # Fine-tuned models for specific languages
21
+ FINE_TUNED_MODELS = {
22
+ "Tamil": {
23
+ "model": "vasista22/whisper-tamil-medium",
24
+ "language": "ta"
25
+ },
26
+ # Add more fine-tuned models for other languages here
27
+ }
28
+
29
  # Mapping of full language names to language codes
30
  LANGUAGE_NAME_TO_CODE = {
31
  "Auto Detect": "Auto Detect",
 
130
  "Sundanese": "su",
131
  }
132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133
  def transcribe_audio(audio_file, language="Auto Detect", model_size="Base (Faster)"):
134
  """Transcribe the audio file."""
135
+ # Convert audio to 16kHz mono for better compatibility
 
 
 
136
  audio = AudioSegment.from_file(audio_file)
137
  audio = audio.set_frame_rate(16000).set_channels(1)
138
  processed_audio_path = "processed_audio.wav"
139
  audio.export(processed_audio_path, format="wav")
140
 
141
+ # Load the appropriate model
142
+ if language in FINE_TUNED_MODELS:
143
+ # Use the fine-tuned Whisper model for the selected language
144
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
145
+ transcribe = pipeline(
146
+ task="automatic-speech-recognition",
147
+ model=FINE_TUNED_MODELS[language]["model"],
148
+ chunk_length_s=30,
149
+ device=device
150
+ )
151
+ transcribe.model.config.forced_decoder_ids = transcribe.tokenizer.get_decoder_prompt_ids(
152
+ language=FINE_TUNED_MODELS[language]["language"],
153
+ task="transcribe"
154
+ )
155
+ result = transcribe(processed_audio_path)
156
+ transcription = result["text"]
157
+ detected_language = language
158
  else:
159
+ # Use the selected Whisper model
160
+ model = whisper.load_model(MODELS[model_size])
161
+
162
+ # Transcribe the audio
163
+ if language == "Auto Detect":
164
+ result = model.transcribe(processed_audio_path, fp16=False) # Auto-detect language
165
+ detected_language = result.get("language", "unknown")
166
+ else:
167
+ language_code = LANGUAGE_NAME_TO_CODE.get(language, "en") # Default to English if not found
168
+ result = model.transcribe(processed_audio_path, language=language_code, fp16=False)
169
+ detected_language = language_code
170
+
171
+ transcription = result["text"]
172
 
173
  # Clean up processed audio file
174
  os.remove(processed_audio_path)
175
 
176
  # Return transcription and detected language
177
+ return f"Detected Language: {detected_language}\n\nTranscription:\n{transcription}"
178
 
179
  # Define the Gradio interface
180
  with gr.Blocks() as demo:
181
+ gr.Markdown("# Audio Transcription with Fine-Tuned Models")
 
 
 
 
 
 
182
 
183
  with gr.Tab("Transcribe Audio"):
184
  gr.Markdown("Upload an audio file, select a language (or choose 'Auto Detect'), and choose a model for transcription.")
 
191
  model_dropdown = gr.Dropdown(
192
  choices=list(MODELS.keys()), # Model options
193
  label="Select Model",
194
+ value="Base (Faster)", # Default to "Base" model
195
+ interactive=True # Allow model selection by default
196
  )
197
  transcribe_output = gr.Textbox(label="Transcription and Detected Language")
198
  transcribe_button = gr.Button("Transcribe Audio")
199
 
200
+ # Update model dropdown based on language selection
201
+ def update_model_dropdown(language):
202
+ if language in FINE_TUNED_MODELS:
203
+ # Add "Fine-Tuned Model" to the dropdown choices and disable it
204
+ return gr.Dropdown(choices=["Fine-Tuned Model"], value="Fine-Tuned Model", interactive=False)
205
+ else:
206
+ # Reset the dropdown to standard Whisper models
207
+ return gr.Dropdown(choices=list(MODELS.keys()), value="Base (Faster)", interactive=True)
208
+
209
+ language_dropdown.change(update_model_dropdown, inputs=language_dropdown, outputs=model_dropdown)
210
+
211
+ # Link button to function
212
  transcribe_button.click(transcribe_audio, inputs=[transcribe_audio_input, language_dropdown, model_dropdown], outputs=transcribe_output)
213
 
214
  # Launch the Gradio interface