file
stringlengths
21
79
dependencies
listlengths
1
16
definitions
listlengths
1
625
theorem_idx
int64
0
574
theorem
stringlengths
3
121
theorem_loc
listlengths
2
2
tactic_idx
int64
0
155
tactic_len
int64
1
156
tactic
stringlengths
3
5.76k
state_before
stringlengths
7
13.6k
state_after
stringlengths
7
13.6k
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
17
Ordinal.opow_isLimit_left
[ [ 131, 93 ], [ 136, 35 ] ]
2
8
Β· rw [opow_succ] exact mul_isLimit (opow_pos _ l.pos) l
case inr.inl.intro a : Ordinal.{u_1} l : a.IsLimit b : Ordinal.{u_1} hb : succ b β‰  0 ⊒ (a ^ succ b).IsLimit case inr.inr a b : Ordinal.{u_1} l : a.IsLimit hb : b β‰  0 l' : b.IsLimit ⊒ (a ^ b).IsLimit
case inr.inr a b : Ordinal.{u_1} l : a.IsLimit hb : b β‰  0 l' : b.IsLimit ⊒ (a ^ b).IsLimit
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
17
Ordinal.opow_isLimit_left
[ [ 131, 93 ], [ 136, 35 ] ]
3
8
Β· exact opow_isLimit l.one_lt l'
case inr.inr a b : Ordinal.{u_1} l : a.IsLimit hb : b β‰  0 l' : b.IsLimit ⊒ (a ^ b).IsLimit
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
17
Ordinal.opow_isLimit_left
[ [ 131, 93 ], [ 136, 35 ] ]
4
8
exact absurd e hb
case inl a b : Ordinal.{u_1} l : a.IsLimit hb : b β‰  0 e : b = 0 ⊒ (a ^ b).IsLimit
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
17
Ordinal.opow_isLimit_left
[ [ 131, 93 ], [ 136, 35 ] ]
5
8
rw [opow_succ]
case inr.inl.intro a : Ordinal.{u_1} l : a.IsLimit b : Ordinal.{u_1} hb : succ b β‰  0 ⊒ (a ^ succ b).IsLimit
case inr.inl.intro a : Ordinal.{u_1} l : a.IsLimit b : Ordinal.{u_1} hb : succ b β‰  0 ⊒ (a ^ b * a).IsLimit
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
17
Ordinal.opow_isLimit_left
[ [ 131, 93 ], [ 136, 35 ] ]
6
8
exact mul_isLimit (opow_pos _ l.pos) l
case inr.inl.intro a : Ordinal.{u_1} l : a.IsLimit b : Ordinal.{u_1} hb : succ b β‰  0 ⊒ (a ^ b * a).IsLimit
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
17
Ordinal.opow_isLimit_left
[ [ 131, 93 ], [ 136, 35 ] ]
7
8
exact opow_isLimit l.one_lt l'
case inr.inr a b : Ordinal.{u_1} l : a.IsLimit hb : b β‰  0 l' : b.IsLimit ⊒ (a ^ b).IsLimit
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
18
Ordinal.opow_le_opow_right
[ [ 139, 91 ], [ 144, 34 ] ]
0
6
rcases lt_or_eq_of_le (one_le_iff_pos.2 h₁) with h₁ | h₁
a b c : Ordinal.{u_1} h₁ : 0 < a hβ‚‚ : b ≀ c ⊒ a ^ b ≀ a ^ c
case inl a b c : Ordinal.{u_1} hβ‚βœ : 0 < a hβ‚‚ : b ≀ c h₁ : 1 < a ⊒ a ^ b ≀ a ^ c case inr a b c : Ordinal.{u_1} hβ‚βœ : 0 < a hβ‚‚ : b ≀ c h₁ : 1 = a ⊒ a ^ b ≀ a ^ c
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
18
Ordinal.opow_le_opow_right
[ [ 139, 91 ], [ 144, 34 ] ]
1
6
Β· exact (opow_le_opow_iff_right h₁).2 hβ‚‚
case inl a b c : Ordinal.{u_1} hβ‚βœ : 0 < a hβ‚‚ : b ≀ c h₁ : 1 < a ⊒ a ^ b ≀ a ^ c case inr a b c : Ordinal.{u_1} hβ‚βœ : 0 < a hβ‚‚ : b ≀ c h₁ : 1 = a ⊒ a ^ b ≀ a ^ c
case inr a b c : Ordinal.{u_1} hβ‚βœ : 0 < a hβ‚‚ : b ≀ c h₁ : 1 = a ⊒ a ^ b ≀ a ^ c
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
18
Ordinal.opow_le_opow_right
[ [ 139, 91 ], [ 144, 34 ] ]
2
6
Β· subst a simp only [one_opow, le_refl]
case inr a b c : Ordinal.{u_1} hβ‚βœ : 0 < a hβ‚‚ : b ≀ c h₁ : 1 = a ⊒ a ^ b ≀ a ^ c
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
18
Ordinal.opow_le_opow_right
[ [ 139, 91 ], [ 144, 34 ] ]
3
6
exact (opow_le_opow_iff_right h₁).2 hβ‚‚
case inl a b c : Ordinal.{u_1} hβ‚βœ : 0 < a hβ‚‚ : b ≀ c h₁ : 1 < a ⊒ a ^ b ≀ a ^ c
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
18
Ordinal.opow_le_opow_right
[ [ 139, 91 ], [ 144, 34 ] ]
4
6
subst a
case inr a b c : Ordinal.{u_1} hβ‚βœ : 0 < a hβ‚‚ : b ≀ c h₁ : 1 = a ⊒ a ^ b ≀ a ^ c
case inr b c : Ordinal.{u_1} hβ‚‚ : b ≀ c h₁ : 0 < 1 ⊒ 1 ^ b ≀ 1 ^ c
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
18
Ordinal.opow_le_opow_right
[ [ 139, 91 ], [ 144, 34 ] ]
5
6
simp only [one_opow, le_refl]
case inr b c : Ordinal.{u_1} hβ‚‚ : b ≀ c h₁ : 0 < 1 ⊒ 1 ^ b ≀ 1 ^ c
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
19
Ordinal.opow_le_opow_left
[ [ 147, 89 ], [ 162, 96 ] ]
0
14
by_cases a0 : a = 0
a b c : Ordinal.{u_1} ab : a ≀ b ⊒ a ^ c ≀ b ^ c
case pos a b c : Ordinal.{u_1} ab : a ≀ b a0 : a = 0 ⊒ a ^ c ≀ b ^ c case neg a b c : Ordinal.{u_1} ab : a ≀ b a0 : Β¬a = 0 ⊒ a ^ c ≀ b ^ c
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
19
Ordinal.opow_le_opow_left
[ [ 147, 89 ], [ 162, 96 ] ]
1
14
Β· subst a by_cases c0 : c = 0 Β· subst c simp only [opow_zero, le_refl] Β· simp only [zero_opow c0, Ordinal.zero_le]
case pos a b c : Ordinal.{u_1} ab : a ≀ b a0 : a = 0 ⊒ a ^ c ≀ b ^ c case neg a b c : Ordinal.{u_1} ab : a ≀ b a0 : Β¬a = 0 ⊒ a ^ c ≀ b ^ c
case neg a b c : Ordinal.{u_1} ab : a ≀ b a0 : Β¬a = 0 ⊒ a ^ c ≀ b ^ c
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
19
Ordinal.opow_le_opow_left
[ [ 147, 89 ], [ 162, 96 ] ]
2
14
Β· induction c using limitRecOn with | H₁ => simp only [opow_zero, le_refl] | Hβ‚‚ c IH => simpa only [opow_succ] using mul_le_mul' IH ab | H₃ c l IH => exact (opow_le_of_limit a0 l).2 fun b' h => (IH _ h).trans (opow_le_opow_right ((Ordinal.pos_iff_ne_zero.2 a0).trans_le ab) h.le)
case neg a b c : Ordinal.{u_1} ab : a ≀ b a0 : Β¬a = 0 ⊒ a ^ c ≀ b ^ c
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
19
Ordinal.opow_le_opow_left
[ [ 147, 89 ], [ 162, 96 ] ]
3
14
subst a
case pos a b c : Ordinal.{u_1} ab : a ≀ b a0 : a = 0 ⊒ a ^ c ≀ b ^ c
case pos b c : Ordinal.{u_1} ab : 0 ≀ b ⊒ 0 ^ c ≀ b ^ c
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
19
Ordinal.opow_le_opow_left
[ [ 147, 89 ], [ 162, 96 ] ]
4
14
by_cases c0 : c = 0
case pos b c : Ordinal.{u_1} ab : 0 ≀ b ⊒ 0 ^ c ≀ b ^ c
case pos b c : Ordinal.{u_1} ab : 0 ≀ b c0 : c = 0 ⊒ 0 ^ c ≀ b ^ c case neg b c : Ordinal.{u_1} ab : 0 ≀ b c0 : Β¬c = 0 ⊒ 0 ^ c ≀ b ^ c
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
19
Ordinal.opow_le_opow_left
[ [ 147, 89 ], [ 162, 96 ] ]
5
14
Β· subst c simp only [opow_zero, le_refl]
case pos b c : Ordinal.{u_1} ab : 0 ≀ b c0 : c = 0 ⊒ 0 ^ c ≀ b ^ c case neg b c : Ordinal.{u_1} ab : 0 ≀ b c0 : Β¬c = 0 ⊒ 0 ^ c ≀ b ^ c
case neg b c : Ordinal.{u_1} ab : 0 ≀ b c0 : Β¬c = 0 ⊒ 0 ^ c ≀ b ^ c
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
19
Ordinal.opow_le_opow_left
[ [ 147, 89 ], [ 162, 96 ] ]
6
14
Β· simp only [zero_opow c0, Ordinal.zero_le]
case neg b c : Ordinal.{u_1} ab : 0 ≀ b c0 : Β¬c = 0 ⊒ 0 ^ c ≀ b ^ c
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
19
Ordinal.opow_le_opow_left
[ [ 147, 89 ], [ 162, 96 ] ]
7
14
subst c
case pos b c : Ordinal.{u_1} ab : 0 ≀ b c0 : c = 0 ⊒ 0 ^ c ≀ b ^ c
case pos b : Ordinal.{u_1} ab : 0 ≀ b ⊒ 0 ^ 0 ≀ b ^ 0
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
19
Ordinal.opow_le_opow_left
[ [ 147, 89 ], [ 162, 96 ] ]
8
14
simp only [opow_zero, le_refl]
case pos b : Ordinal.{u_1} ab : 0 ≀ b ⊒ 0 ^ 0 ≀ b ^ 0
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
19
Ordinal.opow_le_opow_left
[ [ 147, 89 ], [ 162, 96 ] ]
9
14
simp only [zero_opow c0, Ordinal.zero_le]
case neg b c : Ordinal.{u_1} ab : 0 ≀ b c0 : Β¬c = 0 ⊒ 0 ^ c ≀ b ^ c
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
19
Ordinal.opow_le_opow_left
[ [ 147, 89 ], [ 162, 96 ] ]
10
14
induction c using limitRecOn with | H₁ => simp only [opow_zero, le_refl] | Hβ‚‚ c IH => simpa only [opow_succ] using mul_le_mul' IH ab | H₃ c l IH => exact (opow_le_of_limit a0 l).2 fun b' h => (IH _ h).trans (opow_le_opow_right ((Ordinal.pos_iff_ne_zero.2 a0).trans_le ab) h.le)
case neg a b c : Ordinal.{u_1} ab : a ≀ b a0 : Β¬a = 0 ⊒ a ^ c ≀ b ^ c
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
19
Ordinal.opow_le_opow_left
[ [ 147, 89 ], [ 162, 96 ] ]
11
14
simp only [opow_zero, le_refl]
case neg.H₁ a b : Ordinal.{u_1} ab : a ≀ b a0 : Β¬a = 0 ⊒ a ^ 0 ≀ b ^ 0
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
19
Ordinal.opow_le_opow_left
[ [ 147, 89 ], [ 162, 96 ] ]
12
14
simpa only [opow_succ] using mul_le_mul' IH ab
case neg.Hβ‚‚ a b : Ordinal.{u_1} ab : a ≀ b a0 : Β¬a = 0 c : Ordinal.{u_1} IH : a ^ c ≀ b ^ c ⊒ a ^ succ c ≀ b ^ succ c
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
19
Ordinal.opow_le_opow_left
[ [ 147, 89 ], [ 162, 96 ] ]
13
14
exact (opow_le_of_limit a0 l).2 fun b' h => (IH _ h).trans (opow_le_opow_right ((Ordinal.pos_iff_ne_zero.2 a0).trans_le ab) h.le)
case neg.H₃ a b : Ordinal.{u_1} ab : a ≀ b a0 : Β¬a = 0 c : Ordinal.{u_1} l : c.IsLimit IH : βˆ€ o' < c, a ^ o' ≀ b ^ o' ⊒ a ^ c ≀ b ^ c
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
20
Ordinal.left_le_opow
[ [ 165, 78 ], [ 173, 50 ] ]
0
10
nth_rw 1 [← opow_one a]
a b : Ordinal.{u_1} b1 : 0 < b ⊒ a ≀ a ^ b
a b : Ordinal.{u_1} b1 : 0 < b ⊒ a ^ 1 ≀ a ^ b
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
20
Ordinal.left_le_opow
[ [ 165, 78 ], [ 173, 50 ] ]
1
10
cases' le_or_gt a 1 with a1 a1
a b : Ordinal.{u_1} b1 : 0 < b ⊒ a ^ 1 ≀ a ^ b
case inl a b : Ordinal.{u_1} b1 : 0 < b a1 : a ≀ 1 ⊒ a ^ 1 ≀ a ^ b case inr a b : Ordinal.{u_1} b1 : 0 < b a1 : a > 1 ⊒ a ^ 1 ≀ a ^ b
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
20
Ordinal.left_le_opow
[ [ 165, 78 ], [ 173, 50 ] ]
2
10
Β· rcases lt_or_eq_of_le a1 with a0 | a1 Β· rw [lt_one_iff_zero] at a0 rw [a0, zero_opow Ordinal.one_ne_zero] exact Ordinal.zero_le _ rw [a1, one_opow, one_opow]
case inl a b : Ordinal.{u_1} b1 : 0 < b a1 : a ≀ 1 ⊒ a ^ 1 ≀ a ^ b case inr a b : Ordinal.{u_1} b1 : 0 < b a1 : a > 1 ⊒ a ^ 1 ≀ a ^ b
case inr a b : Ordinal.{u_1} b1 : 0 < b a1 : a > 1 ⊒ a ^ 1 ≀ a ^ b
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
20
Ordinal.left_le_opow
[ [ 165, 78 ], [ 173, 50 ] ]
3
10
rwa [opow_le_opow_iff_right a1, one_le_iff_pos]
case inr a b : Ordinal.{u_1} b1 : 0 < b a1 : a > 1 ⊒ a ^ 1 ≀ a ^ b
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
20
Ordinal.left_le_opow
[ [ 165, 78 ], [ 173, 50 ] ]
4
10
rcases lt_or_eq_of_le a1 with a0 | a1
case inl a b : Ordinal.{u_1} b1 : 0 < b a1 : a ≀ 1 ⊒ a ^ 1 ≀ a ^ b
case inl.inl a b : Ordinal.{u_1} b1 : 0 < b a1 : a ≀ 1 a0 : a < 1 ⊒ a ^ 1 ≀ a ^ b case inl.inr a b : Ordinal.{u_1} b1 : 0 < b a1✝ : a ≀ 1 a1 : a = 1 ⊒ a ^ 1 ≀ a ^ b
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
20
Ordinal.left_le_opow
[ [ 165, 78 ], [ 173, 50 ] ]
5
10
Β· rw [lt_one_iff_zero] at a0 rw [a0, zero_opow Ordinal.one_ne_zero] exact Ordinal.zero_le _
case inl.inl a b : Ordinal.{u_1} b1 : 0 < b a1 : a ≀ 1 a0 : a < 1 ⊒ a ^ 1 ≀ a ^ b case inl.inr a b : Ordinal.{u_1} b1 : 0 < b a1✝ : a ≀ 1 a1 : a = 1 ⊒ a ^ 1 ≀ a ^ b
case inl.inr a b : Ordinal.{u_1} b1 : 0 < b a1✝ : a ≀ 1 a1 : a = 1 ⊒ a ^ 1 ≀ a ^ b
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
20
Ordinal.left_le_opow
[ [ 165, 78 ], [ 173, 50 ] ]
6
10
rw [a1, one_opow, one_opow]
case inl.inr a b : Ordinal.{u_1} b1 : 0 < b a1✝ : a ≀ 1 a1 : a = 1 ⊒ a ^ 1 ≀ a ^ b
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
20
Ordinal.left_le_opow
[ [ 165, 78 ], [ 173, 50 ] ]
7
10
rw [lt_one_iff_zero] at a0
case inl.inl a b : Ordinal.{u_1} b1 : 0 < b a1 : a ≀ 1 a0 : a < 1 ⊒ a ^ 1 ≀ a ^ b
case inl.inl a b : Ordinal.{u_1} b1 : 0 < b a1 : a ≀ 1 a0 : a = 0 ⊒ a ^ 1 ≀ a ^ b
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
20
Ordinal.left_le_opow
[ [ 165, 78 ], [ 173, 50 ] ]
8
10
rw [a0, zero_opow Ordinal.one_ne_zero]
case inl.inl a b : Ordinal.{u_1} b1 : 0 < b a1 : a ≀ 1 a0 : a = 0 ⊒ a ^ 1 ≀ a ^ b
case inl.inl a b : Ordinal.{u_1} b1 : 0 < b a1 : a ≀ 1 a0 : a = 0 ⊒ 0 ≀ 0 ^ b
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
20
Ordinal.left_le_opow
[ [ 165, 78 ], [ 173, 50 ] ]
9
10
exact Ordinal.zero_le _
case inl.inl a b : Ordinal.{u_1} b1 : 0 < b a1 : a ≀ 1 a0 : a = 0 ⊒ 0 ≀ 0 ^ b
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
22
Ordinal.opow_lt_opow_left_of_succ
[ [ 180, 95 ], [ 184, 81 ] ]
0
2
rw [opow_succ, opow_succ]
a b c : Ordinal.{u_1} ab : a < b ⊒ a ^ succ c < b ^ succ c
a b c : Ordinal.{u_1} ab : a < b ⊒ a ^ c * a < b ^ c * b
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
22
Ordinal.opow_lt_opow_left_of_succ
[ [ 180, 95 ], [ 184, 81 ] ]
1
2
exact (mul_le_mul_right' (opow_le_opow_left c ab.le) a).trans_lt (mul_lt_mul_of_pos_left ab (opow_pos c ((Ordinal.zero_le a).trans_lt ab)))
a b c : Ordinal.{u_1} ab : a < b ⊒ a ^ c * a < b ^ c * b
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
23
Ordinal.opow_add
[ [ 187, 69 ], [ 208, 18 ] ]
0
17
rcases eq_or_ne a 0 with (rfl | a0)
a b c : Ordinal.{u_1} ⊒ a ^ (b + c) = a ^ b * a ^ c
case inl b c : Ordinal.{u_1} ⊒ 0 ^ (b + c) = 0 ^ b * 0 ^ c case inr a b c : Ordinal.{u_1} a0 : a β‰  0 ⊒ a ^ (b + c) = a ^ b * a ^ c
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
23
Ordinal.opow_add
[ [ 187, 69 ], [ 208, 18 ] ]
1
17
Β· rcases eq_or_ne c 0 with (rfl | c0) Β· simp have : b + c β‰  0 := ((Ordinal.pos_iff_ne_zero.2 c0).trans_le (le_add_left _ _)).ne' simp only [zero_opow c0, zero_opow this, mul_zero]
case inl b c : Ordinal.{u_1} ⊒ 0 ^ (b + c) = 0 ^ b * 0 ^ c case inr a b c : Ordinal.{u_1} a0 : a β‰  0 ⊒ a ^ (b + c) = a ^ b * a ^ c
case inr a b c : Ordinal.{u_1} a0 : a β‰  0 ⊒ a ^ (b + c) = a ^ b * a ^ c
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
23
Ordinal.opow_add
[ [ 187, 69 ], [ 208, 18 ] ]
2
17
rcases eq_or_lt_of_le (one_le_iff_ne_zero.2 a0) with (rfl | a1)
case inr a b c : Ordinal.{u_1} a0 : a β‰  0 ⊒ a ^ (b + c) = a ^ b * a ^ c
case inr.inl b c : Ordinal.{u_1} a0 : 1 β‰  0 ⊒ 1 ^ (b + c) = 1 ^ b * 1 ^ c case inr.inr a b c : Ordinal.{u_1} a0 : a β‰  0 a1 : 1 < a ⊒ a ^ (b + c) = a ^ b * a ^ c
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
23
Ordinal.opow_add
[ [ 187, 69 ], [ 208, 18 ] ]
3
17
Β· simp only [one_opow, mul_one]
case inr.inl b c : Ordinal.{u_1} a0 : 1 β‰  0 ⊒ 1 ^ (b + c) = 1 ^ b * 1 ^ c case inr.inr a b c : Ordinal.{u_1} a0 : a β‰  0 a1 : 1 < a ⊒ a ^ (b + c) = a ^ b * a ^ c
case inr.inr a b c : Ordinal.{u_1} a0 : a β‰  0 a1 : 1 < a ⊒ a ^ (b + c) = a ^ b * a ^ c
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
23
Ordinal.opow_add
[ [ 187, 69 ], [ 208, 18 ] ]
4
17
induction c using limitRecOn with | H₁ => simp | Hβ‚‚ c IH => rw [add_succ, opow_succ, IH, opow_succ, mul_assoc] | H₃ c l IH => refine eq_of_forall_ge_iff fun d => (((opow_isNormal a1).trans (add_isNormal b)).limit_le l).trans ?_ dsimp only [Function.comp_def] simp (config := { contextual := true }) only [IH] exact (((mul_isNormal <| opow_pos b (Ordinal.pos_iff_ne_zero.2 a0)).trans (opow_isNormal a1)).limit_le l).symm
case inr.inr a b c : Ordinal.{u_1} a0 : a β‰  0 a1 : 1 < a ⊒ a ^ (b + c) = a ^ b * a ^ c
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
23
Ordinal.opow_add
[ [ 187, 69 ], [ 208, 18 ] ]
5
17
rcases eq_or_ne c 0 with (rfl | c0)
case inl b c : Ordinal.{u_1} ⊒ 0 ^ (b + c) = 0 ^ b * 0 ^ c
case inl.inl b : Ordinal.{u_1} ⊒ 0 ^ (b + 0) = 0 ^ b * 0 ^ 0 case inl.inr b c : Ordinal.{u_1} c0 : c β‰  0 ⊒ 0 ^ (b + c) = 0 ^ b * 0 ^ c
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
23
Ordinal.opow_add
[ [ 187, 69 ], [ 208, 18 ] ]
6
17
Β· simp
case inl.inl b : Ordinal.{u_1} ⊒ 0 ^ (b + 0) = 0 ^ b * 0 ^ 0 case inl.inr b c : Ordinal.{u_1} c0 : c β‰  0 ⊒ 0 ^ (b + c) = 0 ^ b * 0 ^ c
case inl.inr b c : Ordinal.{u_1} c0 : c β‰  0 ⊒ 0 ^ (b + c) = 0 ^ b * 0 ^ c
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
23
Ordinal.opow_add
[ [ 187, 69 ], [ 208, 18 ] ]
7
17
have : b + c β‰  0 := ((Ordinal.pos_iff_ne_zero.2 c0).trans_le (le_add_left _ _)).ne'
case inl.inr b c : Ordinal.{u_1} c0 : c β‰  0 ⊒ 0 ^ (b + c) = 0 ^ b * 0 ^ c
case inl.inr b c : Ordinal.{u_1} c0 : c β‰  0 this : b + c β‰  0 ⊒ 0 ^ (b + c) = 0 ^ b * 0 ^ c
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
23
Ordinal.opow_add
[ [ 187, 69 ], [ 208, 18 ] ]
8
17
simp only [zero_opow c0, zero_opow this, mul_zero]
case inl.inr b c : Ordinal.{u_1} c0 : c β‰  0 this : b + c β‰  0 ⊒ 0 ^ (b + c) = 0 ^ b * 0 ^ c
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
23
Ordinal.opow_add
[ [ 187, 69 ], [ 208, 18 ] ]
9
17
simp
case inl.inl b : Ordinal.{u_1} ⊒ 0 ^ (b + 0) = 0 ^ b * 0 ^ 0
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
23
Ordinal.opow_add
[ [ 187, 69 ], [ 208, 18 ] ]
10
17
simp only [one_opow, mul_one]
case inr.inl b c : Ordinal.{u_1} a0 : 1 β‰  0 ⊒ 1 ^ (b + c) = 1 ^ b * 1 ^ c
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
23
Ordinal.opow_add
[ [ 187, 69 ], [ 208, 18 ] ]
11
17
simp
case inr.inr.H₁ a b : Ordinal.{u_1} a0 : a β‰  0 a1 : 1 < a ⊒ a ^ (b + 0) = a ^ b * a ^ 0
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
23
Ordinal.opow_add
[ [ 187, 69 ], [ 208, 18 ] ]
12
17
rw [add_succ, opow_succ, IH, opow_succ, mul_assoc]
case inr.inr.Hβ‚‚ a b : Ordinal.{u_1} a0 : a β‰  0 a1 : 1 < a c : Ordinal.{u_1} IH : a ^ (b + c) = a ^ b * a ^ c ⊒ a ^ (b + succ c) = a ^ b * a ^ succ c
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
23
Ordinal.opow_add
[ [ 187, 69 ], [ 208, 18 ] ]
13
17
refine eq_of_forall_ge_iff fun d => (((opow_isNormal a1).trans (add_isNormal b)).limit_le l).trans ?_
case inr.inr.H₃ a b : Ordinal.{u_1} a0 : a β‰  0 a1 : 1 < a c : Ordinal.{u_1} l : c.IsLimit IH : βˆ€ o' < c, a ^ (b + o') = a ^ b * a ^ o' ⊒ a ^ (b + c) = a ^ b * a ^ c
case inr.inr.H₃ a b : Ordinal.{u_1} a0 : a β‰  0 a1 : 1 < a c : Ordinal.{u_1} l : c.IsLimit IH : βˆ€ o' < c, a ^ (b + o') = a ^ b * a ^ o' d : Ordinal.{u_1} ⊒ (βˆ€ b_1 < c, ((fun x => a ^ x) ∘ fun x => b + x) b_1 ≀ d) ↔ a ^ b * a ^ c ≀ d
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
23
Ordinal.opow_add
[ [ 187, 69 ], [ 208, 18 ] ]
14
17
dsimp only [Function.comp_def]
case inr.inr.H₃ a b : Ordinal.{u_1} a0 : a β‰  0 a1 : 1 < a c : Ordinal.{u_1} l : c.IsLimit IH : βˆ€ o' < c, a ^ (b + o') = a ^ b * a ^ o' d : Ordinal.{u_1} ⊒ (βˆ€ b_1 < c, ((fun x => a ^ x) ∘ fun x => b + x) b_1 ≀ d) ↔ a ^ b * a ^ c ≀ d
case inr.inr.H₃ a b : Ordinal.{u_1} a0 : a β‰  0 a1 : 1 < a c : Ordinal.{u_1} l : c.IsLimit IH : βˆ€ o' < c, a ^ (b + o') = a ^ b * a ^ o' d : Ordinal.{u_1} ⊒ (βˆ€ b_1 < c, a ^ (b + b_1) ≀ d) ↔ a ^ b * a ^ c ≀ d
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
23
Ordinal.opow_add
[ [ 187, 69 ], [ 208, 18 ] ]
15
17
simp (config := { contextual := true }) only [IH]
case inr.inr.H₃ a b : Ordinal.{u_1} a0 : a β‰  0 a1 : 1 < a c : Ordinal.{u_1} l : c.IsLimit IH : βˆ€ o' < c, a ^ (b + o') = a ^ b * a ^ o' d : Ordinal.{u_1} ⊒ (βˆ€ b_1 < c, a ^ (b + b_1) ≀ d) ↔ a ^ b * a ^ c ≀ d
case inr.inr.H₃ a b : Ordinal.{u_1} a0 : a β‰  0 a1 : 1 < a c : Ordinal.{u_1} l : c.IsLimit IH : βˆ€ o' < c, a ^ (b + o') = a ^ b * a ^ o' d : Ordinal.{u_1} ⊒ (βˆ€ b_1 < c, a ^ b * a ^ b_1 ≀ d) ↔ a ^ b * a ^ c ≀ d
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
23
Ordinal.opow_add
[ [ 187, 69 ], [ 208, 18 ] ]
16
17
exact (((mul_isNormal <| opow_pos b (Ordinal.pos_iff_ne_zero.2 a0)).trans (opow_isNormal a1)).limit_le l).symm
case inr.inr.H₃ a b : Ordinal.{u_1} a0 : a β‰  0 a1 : 1 < a c : Ordinal.{u_1} l : c.IsLimit IH : βˆ€ o' < c, a ^ (b + o') = a ^ b * a ^ o' d : Ordinal.{u_1} ⊒ (βˆ€ b_1 < c, a ^ b * a ^ b_1 ≀ d) ↔ a ^ b * a ^ c ≀ d
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
24
Ordinal.opow_one_add
[ [ 211, 67 ], [ 211, 93 ] ]
0
1
rw [opow_add, opow_one]
a b : Ordinal.{u_1} ⊒ a ^ (1 + b) = a * a ^ b
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
27
Ordinal.opow_mul
[ [ 226, 67 ], [ 248, 56 ] ]
0
21
by_cases b0 : b = 0
a b c : Ordinal.{u_1} ⊒ a ^ (b * c) = (a ^ b) ^ c
case pos a b c : Ordinal.{u_1} b0 : b = 0 ⊒ a ^ (b * c) = (a ^ b) ^ c case neg a b c : Ordinal.{u_1} b0 : ¬b = 0 ⊒ a ^ (b * c) = (a ^ b) ^ c
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
27
Ordinal.opow_mul
[ [ 226, 67 ], [ 248, 56 ] ]
1
21
Β· simp only [b0, zero_mul, opow_zero, one_opow]
case pos a b c : Ordinal.{u_1} b0 : b = 0 ⊒ a ^ (b * c) = (a ^ b) ^ c case neg a b c : Ordinal.{u_1} b0 : ¬b = 0 ⊒ a ^ (b * c) = (a ^ b) ^ c
case neg a b c : Ordinal.{u_1} b0 : ¬b = 0 ⊒ a ^ (b * c) = (a ^ b) ^ c
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
27
Ordinal.opow_mul
[ [ 226, 67 ], [ 248, 56 ] ]
2
21
by_cases a0 : a = 0
case neg a b c : Ordinal.{u_1} b0 : ¬b = 0 ⊒ a ^ (b * c) = (a ^ b) ^ c
case pos a b c : Ordinal.{u_1} b0 : ¬b = 0 a0 : a = 0 ⊒ a ^ (b * c) = (a ^ b) ^ c case neg a b c : Ordinal.{u_1} b0 : ¬b = 0 a0 : ¬a = 0 ⊒ a ^ (b * c) = (a ^ b) ^ c
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
27
Ordinal.opow_mul
[ [ 226, 67 ], [ 248, 56 ] ]
3
21
Β· subst a by_cases c0 : c = 0 Β· simp only [c0, mul_zero, opow_zero] simp only [zero_opow b0, zero_opow c0, zero_opow (mul_ne_zero b0 c0)]
case pos a b c : Ordinal.{u_1} b0 : ¬b = 0 a0 : a = 0 ⊒ a ^ (b * c) = (a ^ b) ^ c case neg a b c : Ordinal.{u_1} b0 : ¬b = 0 a0 : ¬a = 0 ⊒ a ^ (b * c) = (a ^ b) ^ c
case neg a b c : Ordinal.{u_1} b0 : ¬b = 0 a0 : ¬a = 0 ⊒ a ^ (b * c) = (a ^ b) ^ c
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
27
Ordinal.opow_mul
[ [ 226, 67 ], [ 248, 56 ] ]
4
21
cases' eq_or_lt_of_le (one_le_iff_ne_zero.2 a0) with a1 a1
case neg a b c : Ordinal.{u_1} b0 : ¬b = 0 a0 : ¬a = 0 ⊒ a ^ (b * c) = (a ^ b) ^ c
case neg.inl a b c : Ordinal.{u_1} b0 : ¬b = 0 a0 : ¬a = 0 a1 : 1 = a ⊒ a ^ (b * c) = (a ^ b) ^ c case neg.inr a b c : Ordinal.{u_1} b0 : ¬b = 0 a0 : ¬a = 0 a1 : 1 < a ⊒ a ^ (b * c) = (a ^ b) ^ c
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
27
Ordinal.opow_mul
[ [ 226, 67 ], [ 248, 56 ] ]
5
21
Β· subst a1 simp only [one_opow]
case neg.inl a b c : Ordinal.{u_1} b0 : ¬b = 0 a0 : ¬a = 0 a1 : 1 = a ⊒ a ^ (b * c) = (a ^ b) ^ c case neg.inr a b c : Ordinal.{u_1} b0 : ¬b = 0 a0 : ¬a = 0 a1 : 1 < a ⊒ a ^ (b * c) = (a ^ b) ^ c
case neg.inr a b c : Ordinal.{u_1} b0 : ¬b = 0 a0 : ¬a = 0 a1 : 1 < a ⊒ a ^ (b * c) = (a ^ b) ^ c
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
27
Ordinal.opow_mul
[ [ 226, 67 ], [ 248, 56 ] ]
6
21
induction c using limitRecOn with | H₁ => simp only [mul_zero, opow_zero] | Hβ‚‚ c IH => rw [mul_succ, opow_add, IH, opow_succ] | H₃ c l IH => refine eq_of_forall_ge_iff fun d => (((opow_isNormal a1).trans (mul_isNormal (Ordinal.pos_iff_ne_zero.2 b0))).limit_le l).trans ?_ dsimp only [Function.comp_def] simp (config := { contextual := true }) only [IH] exact (opow_le_of_limit (opow_ne_zero _ a0) l).symm
case neg.inr a b c : Ordinal.{u_1} b0 : ¬b = 0 a0 : ¬a = 0 a1 : 1 < a ⊒ a ^ (b * c) = (a ^ b) ^ c
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
27
Ordinal.opow_mul
[ [ 226, 67 ], [ 248, 56 ] ]
7
21
simp only [b0, zero_mul, opow_zero, one_opow]
case pos a b c : Ordinal.{u_1} b0 : b = 0 ⊒ a ^ (b * c) = (a ^ b) ^ c
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
27
Ordinal.opow_mul
[ [ 226, 67 ], [ 248, 56 ] ]
8
21
subst a
case pos a b c : Ordinal.{u_1} b0 : ¬b = 0 a0 : a = 0 ⊒ a ^ (b * c) = (a ^ b) ^ c
case pos b c : Ordinal.{u_1} b0 : ¬b = 0 ⊒ 0 ^ (b * c) = (0 ^ b) ^ c
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
27
Ordinal.opow_mul
[ [ 226, 67 ], [ 248, 56 ] ]
9
21
by_cases c0 : c = 0
case pos b c : Ordinal.{u_1} b0 : ¬b = 0 ⊒ 0 ^ (b * c) = (0 ^ b) ^ c
case pos b c : Ordinal.{u_1} b0 : ¬b = 0 c0 : c = 0 ⊒ 0 ^ (b * c) = (0 ^ b) ^ c case neg b c : Ordinal.{u_1} b0 : ¬b = 0 c0 : ¬c = 0 ⊒ 0 ^ (b * c) = (0 ^ b) ^ c
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
27
Ordinal.opow_mul
[ [ 226, 67 ], [ 248, 56 ] ]
10
21
Β· simp only [c0, mul_zero, opow_zero]
case pos b c : Ordinal.{u_1} b0 : ¬b = 0 c0 : c = 0 ⊒ 0 ^ (b * c) = (0 ^ b) ^ c case neg b c : Ordinal.{u_1} b0 : ¬b = 0 c0 : ¬c = 0 ⊒ 0 ^ (b * c) = (0 ^ b) ^ c
case neg b c : Ordinal.{u_1} b0 : ¬b = 0 c0 : ¬c = 0 ⊒ 0 ^ (b * c) = (0 ^ b) ^ c
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
27
Ordinal.opow_mul
[ [ 226, 67 ], [ 248, 56 ] ]
11
21
simp only [zero_opow b0, zero_opow c0, zero_opow (mul_ne_zero b0 c0)]
case neg b c : Ordinal.{u_1} b0 : ¬b = 0 c0 : ¬c = 0 ⊒ 0 ^ (b * c) = (0 ^ b) ^ c
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
27
Ordinal.opow_mul
[ [ 226, 67 ], [ 248, 56 ] ]
12
21
simp only [c0, mul_zero, opow_zero]
case pos b c : Ordinal.{u_1} b0 : ¬b = 0 c0 : c = 0 ⊒ 0 ^ (b * c) = (0 ^ b) ^ c
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
27
Ordinal.opow_mul
[ [ 226, 67 ], [ 248, 56 ] ]
13
21
subst a1
case neg.inl a b c : Ordinal.{u_1} b0 : ¬b = 0 a0 : ¬a = 0 a1 : 1 = a ⊒ a ^ (b * c) = (a ^ b) ^ c
case neg.inl b c : Ordinal.{u_1} b0 : ¬b = 0 a0 : ¬1 = 0 ⊒ 1 ^ (b * c) = (1 ^ b) ^ c
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
27
Ordinal.opow_mul
[ [ 226, 67 ], [ 248, 56 ] ]
14
21
simp only [one_opow]
case neg.inl b c : Ordinal.{u_1} b0 : ¬b = 0 a0 : ¬1 = 0 ⊒ 1 ^ (b * c) = (1 ^ b) ^ c
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
27
Ordinal.opow_mul
[ [ 226, 67 ], [ 248, 56 ] ]
15
21
simp only [mul_zero, opow_zero]
case neg.inr.H₁ a b : Ordinal.{u_1} b0 : Β¬b = 0 a0 : Β¬a = 0 a1 : 1 < a ⊒ a ^ (b * 0) = (a ^ b) ^ 0
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
27
Ordinal.opow_mul
[ [ 226, 67 ], [ 248, 56 ] ]
16
21
rw [mul_succ, opow_add, IH, opow_succ]
case neg.inr.Hβ‚‚ a b : Ordinal.{u_1} b0 : Β¬b = 0 a0 : Β¬a = 0 a1 : 1 < a c : Ordinal.{u_1} IH : a ^ (b * c) = (a ^ b) ^ c ⊒ a ^ (b * succ c) = (a ^ b) ^ succ c
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
27
Ordinal.opow_mul
[ [ 226, 67 ], [ 248, 56 ] ]
17
21
refine eq_of_forall_ge_iff fun d => (((opow_isNormal a1).trans (mul_isNormal (Ordinal.pos_iff_ne_zero.2 b0))).limit_le l).trans ?_
case neg.inr.H₃ a b : Ordinal.{u_1} b0 : Β¬b = 0 a0 : Β¬a = 0 a1 : 1 < a c : Ordinal.{u_1} l : c.IsLimit IH : βˆ€ o' < c, a ^ (b * o') = (a ^ b) ^ o' ⊒ a ^ (b * c) = (a ^ b) ^ c
case neg.inr.H₃ a b : Ordinal.{u_1} b0 : Β¬b = 0 a0 : Β¬a = 0 a1 : 1 < a c : Ordinal.{u_1} l : c.IsLimit IH : βˆ€ o' < c, a ^ (b * o') = (a ^ b) ^ o' d : Ordinal.{u_1} ⊒ (βˆ€ b_1 < c, ((fun x => a ^ x) ∘ fun x => b * x) b_1 ≀ d) ↔ (a ^ b) ^ c ≀ d
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
27
Ordinal.opow_mul
[ [ 226, 67 ], [ 248, 56 ] ]
18
21
dsimp only [Function.comp_def]
case neg.inr.H₃ a b : Ordinal.{u_1} b0 : Β¬b = 0 a0 : Β¬a = 0 a1 : 1 < a c : Ordinal.{u_1} l : c.IsLimit IH : βˆ€ o' < c, a ^ (b * o') = (a ^ b) ^ o' d : Ordinal.{u_1} ⊒ (βˆ€ b_1 < c, ((fun x => a ^ x) ∘ fun x => b * x) b_1 ≀ d) ↔ (a ^ b) ^ c ≀ d
case neg.inr.H₃ a b : Ordinal.{u_1} b0 : Β¬b = 0 a0 : Β¬a = 0 a1 : 1 < a c : Ordinal.{u_1} l : c.IsLimit IH : βˆ€ o' < c, a ^ (b * o') = (a ^ b) ^ o' d : Ordinal.{u_1} ⊒ (βˆ€ b_1 < c, a ^ (b * b_1) ≀ d) ↔ (a ^ b) ^ c ≀ d
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
27
Ordinal.opow_mul
[ [ 226, 67 ], [ 248, 56 ] ]
19
21
simp (config := { contextual := true }) only [IH]
case neg.inr.H₃ a b : Ordinal.{u_1} b0 : Β¬b = 0 a0 : Β¬a = 0 a1 : 1 < a c : Ordinal.{u_1} l : c.IsLimit IH : βˆ€ o' < c, a ^ (b * o') = (a ^ b) ^ o' d : Ordinal.{u_1} ⊒ (βˆ€ b_1 < c, a ^ (b * b_1) ≀ d) ↔ (a ^ b) ^ c ≀ d
case neg.inr.H₃ a b : Ordinal.{u_1} b0 : Β¬b = 0 a0 : Β¬a = 0 a1 : 1 < a c : Ordinal.{u_1} l : c.IsLimit IH : βˆ€ o' < c, a ^ (b * o') = (a ^ b) ^ o' d : Ordinal.{u_1} ⊒ (βˆ€ b_1 < c, (a ^ b) ^ b_1 ≀ d) ↔ (a ^ b) ^ c ≀ d
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
27
Ordinal.opow_mul
[ [ 226, 67 ], [ 248, 56 ] ]
20
21
exact (opow_le_of_limit (opow_ne_zero _ a0) l).symm
case neg.inr.H₃ a b : Ordinal.{u_1} b0 : Β¬b = 0 a0 : Β¬a = 0 a1 : 1 < a c : Ordinal.{u_1} l : c.IsLimit IH : βˆ€ o' < c, a ^ (b * o') = (a ^ b) ^ o' d : Ordinal.{u_1} ⊒ (βˆ€ b_1 < c, (a ^ b) ^ b_1 ≀ d) ↔ (a ^ b) ^ c ≀ d
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
29
Ordinal.log_def
[ [ 267, 48 ], [ 267, 77 ] ]
0
1
simp only [log, dif_pos h]
b : Ordinal.{u_1} h : 1 < b x : Ordinal.{u_1} ⊒ log b x = (sInf {o | x < b ^ o}).pred
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
30
Ordinal.log_of_not_one_lt_left
[ [ 270, 90 ], [ 271, 29 ] ]
0
1
simp only [log, dif_neg h]
b : Ordinal.{u_1} h : ¬1 < b x : Ordinal.{u_1} ⊒ log b x = 0
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
35
Ordinal.succ_log_def
[ [ 300, 58 ], [ 308, 76 ] ]
0
11
let t := sInf { o : Ordinal | x < b ^ o }
b x : Ordinal.{u_1} hb : 1 < b hx : x β‰  0 ⊒ succ (log b x) = sInf {o | x < b ^ o}
b x : Ordinal.{u_1} hb : 1 < b hx : x β‰  0 t : Ordinal.{u_1} := sInf {o | x < b ^ o} ⊒ succ (log b x) = sInf {o | x < b ^ o}
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
35
Ordinal.succ_log_def
[ [ 300, 58 ], [ 308, 76 ] ]
1
11
have : x < (b^t) := csInf_mem (log_nonempty hb)
b x : Ordinal.{u_1} hb : 1 < b hx : x β‰  0 t : Ordinal.{u_1} := sInf {o | x < b ^ o} ⊒ succ (log b x) = sInf {o | x < b ^ o}
b x : Ordinal.{u_1} hb : 1 < b hx : x β‰  0 t : Ordinal.{u_1} := sInf {o | x < b ^ o} this : x < b ^ t ⊒ succ (log b x) = sInf {o | x < b ^ o}
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
35
Ordinal.succ_log_def
[ [ 300, 58 ], [ 308, 76 ] ]
2
11
rcases zero_or_succ_or_limit t with (h | h | h)
b x : Ordinal.{u_1} hb : 1 < b hx : x β‰  0 t : Ordinal.{u_1} := sInf {o | x < b ^ o} this : x < b ^ t ⊒ succ (log b x) = sInf {o | x < b ^ o}
case inl b x : Ordinal.{u_1} hb : 1 < b hx : x β‰  0 t : Ordinal.{u_1} := sInf {o | x < b ^ o} this : x < b ^ t h : t = 0 ⊒ succ (log b x) = sInf {o | x < b ^ o} case inr.inl b x : Ordinal.{u_1} hb : 1 < b hx : x β‰  0 t : Ordinal.{u_1} := sInf {o | x < b ^ o} this : x < b ^ t h : βˆƒ a, t = succ a ⊒ succ (log b x) = sInf {o | x < b ^ o} case inr.inr b x : Ordinal.{u_1} hb : 1 < b hx : x β‰  0 t : Ordinal.{u_1} := sInf {o | x < b ^ o} this : x < b ^ t h : t.IsLimit ⊒ succ (log b x) = sInf {o | x < b ^ o}
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
35
Ordinal.succ_log_def
[ [ 300, 58 ], [ 308, 76 ] ]
3
11
Β· refine ((one_le_iff_ne_zero.2 hx).not_lt ?_).elim simpa only [h, opow_zero] using this
case inl b x : Ordinal.{u_1} hb : 1 < b hx : x β‰  0 t : Ordinal.{u_1} := sInf {o | x < b ^ o} this : x < b ^ t h : t = 0 ⊒ succ (log b x) = sInf {o | x < b ^ o} case inr.inl b x : Ordinal.{u_1} hb : 1 < b hx : x β‰  0 t : Ordinal.{u_1} := sInf {o | x < b ^ o} this : x < b ^ t h : βˆƒ a, t = succ a ⊒ succ (log b x) = sInf {o | x < b ^ o} case inr.inr b x : Ordinal.{u_1} hb : 1 < b hx : x β‰  0 t : Ordinal.{u_1} := sInf {o | x < b ^ o} this : x < b ^ t h : t.IsLimit ⊒ succ (log b x) = sInf {o | x < b ^ o}
case inr.inl b x : Ordinal.{u_1} hb : 1 < b hx : x β‰  0 t : Ordinal.{u_1} := sInf {o | x < b ^ o} this : x < b ^ t h : βˆƒ a, t = succ a ⊒ succ (log b x) = sInf {o | x < b ^ o} case inr.inr b x : Ordinal.{u_1} hb : 1 < b hx : x β‰  0 t : Ordinal.{u_1} := sInf {o | x < b ^ o} this : x < b ^ t h : t.IsLimit ⊒ succ (log b x) = sInf {o | x < b ^ o}
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
35
Ordinal.succ_log_def
[ [ 300, 58 ], [ 308, 76 ] ]
4
11
Β· rw [show log b x = pred t from log_def hb x, succ_pred_iff_is_succ.2 h]
case inr.inl b x : Ordinal.{u_1} hb : 1 < b hx : x β‰  0 t : Ordinal.{u_1} := sInf {o | x < b ^ o} this : x < b ^ t h : βˆƒ a, t = succ a ⊒ succ (log b x) = sInf {o | x < b ^ o} case inr.inr b x : Ordinal.{u_1} hb : 1 < b hx : x β‰  0 t : Ordinal.{u_1} := sInf {o | x < b ^ o} this : x < b ^ t h : t.IsLimit ⊒ succ (log b x) = sInf {o | x < b ^ o}
case inr.inr b x : Ordinal.{u_1} hb : 1 < b hx : x β‰  0 t : Ordinal.{u_1} := sInf {o | x < b ^ o} this : x < b ^ t h : t.IsLimit ⊒ succ (log b x) = sInf {o | x < b ^ o}
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
35
Ordinal.succ_log_def
[ [ 300, 58 ], [ 308, 76 ] ]
5
11
Β· rcases (lt_opow_of_limit (zero_lt_one.trans hb).ne' h).1 this with ⟨a, h₁, hβ‚‚βŸ© exact h₁.not_le.elim ((le_csInf_iff'' (log_nonempty hb)).1 le_rfl a hβ‚‚)
case inr.inr b x : Ordinal.{u_1} hb : 1 < b hx : x β‰  0 t : Ordinal.{u_1} := sInf {o | x < b ^ o} this : x < b ^ t h : t.IsLimit ⊒ succ (log b x) = sInf {o | x < b ^ o}
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
35
Ordinal.succ_log_def
[ [ 300, 58 ], [ 308, 76 ] ]
6
11
refine ((one_le_iff_ne_zero.2 hx).not_lt ?_).elim
case inl b x : Ordinal.{u_1} hb : 1 < b hx : x β‰  0 t : Ordinal.{u_1} := sInf {o | x < b ^ o} this : x < b ^ t h : t = 0 ⊒ succ (log b x) = sInf {o | x < b ^ o}
case inl b x : Ordinal.{u_1} hb : 1 < b hx : x β‰  0 t : Ordinal.{u_1} := sInf {o | x < b ^ o} this : x < b ^ t h : t = 0 ⊒ x < 1
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
35
Ordinal.succ_log_def
[ [ 300, 58 ], [ 308, 76 ] ]
7
11
simpa only [h, opow_zero] using this
case inl b x : Ordinal.{u_1} hb : 1 < b hx : x β‰  0 t : Ordinal.{u_1} := sInf {o | x < b ^ o} this : x < b ^ t h : t = 0 ⊒ x < 1
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
35
Ordinal.succ_log_def
[ [ 300, 58 ], [ 308, 76 ] ]
8
11
rw [show log b x = pred t from log_def hb x, succ_pred_iff_is_succ.2 h]
case inr.inl b x : Ordinal.{u_1} hb : 1 < b hx : x β‰  0 t : Ordinal.{u_1} := sInf {o | x < b ^ o} this : x < b ^ t h : βˆƒ a, t = succ a ⊒ succ (log b x) = sInf {o | x < b ^ o}
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
35
Ordinal.succ_log_def
[ [ 300, 58 ], [ 308, 76 ] ]
9
11
rcases (lt_opow_of_limit (zero_lt_one.trans hb).ne' h).1 this with ⟨a, h₁, hβ‚‚βŸ©
case inr.inr b x : Ordinal.{u_1} hb : 1 < b hx : x β‰  0 t : Ordinal.{u_1} := sInf {o | x < b ^ o} this : x < b ^ t h : t.IsLimit ⊒ succ (log b x) = sInf {o | x < b ^ o}
case inr.inr.intro.intro b x : Ordinal.{u_1} hb : 1 < b hx : x β‰  0 t : Ordinal.{u_1} := sInf {o | x < b ^ o} this : x < b ^ t h : t.IsLimit a : Ordinal.{u_1} h₁ : a < t hβ‚‚ : x < b ^ a ⊒ succ (log b x) = sInf {o | x < b ^ o}
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
35
Ordinal.succ_log_def
[ [ 300, 58 ], [ 308, 76 ] ]
10
11
exact h₁.not_le.elim ((le_csInf_iff'' (log_nonempty hb)).1 le_rfl a hβ‚‚)
case inr.inr.intro.intro b x : Ordinal.{u_1} hb : 1 < b hx : x β‰  0 t : Ordinal.{u_1} := sInf {o | x < b ^ o} this : x < b ^ t h : t.IsLimit a : Ordinal.{u_1} h₁ : a < t hβ‚‚ : x < b ^ a ⊒ succ (log b x) = sInf {o | x < b ^ o}
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
36
Ordinal.lt_opow_succ_log_self
[ [ 312, 31 ], [ 316, 38 ] ]
0
6
rcases eq_or_ne x 0 with (rfl | hx)
b : Ordinal.{u_1} hb : 1 < b x : Ordinal.{u_1} ⊒ x < b ^ succ (log b x)
case inl b : Ordinal.{u_1} hb : 1 < b ⊒ 0 < b ^ succ (log b 0) case inr b : Ordinal.{u_1} hb : 1 < b x : Ordinal.{u_1} hx : x β‰  0 ⊒ x < b ^ succ (log b x)
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
36
Ordinal.lt_opow_succ_log_self
[ [ 312, 31 ], [ 316, 38 ] ]
1
6
Β· apply opow_pos _ (zero_lt_one.trans hb)
case inl b : Ordinal.{u_1} hb : 1 < b ⊒ 0 < b ^ succ (log b 0) case inr b : Ordinal.{u_1} hb : 1 < b x : Ordinal.{u_1} hx : x β‰  0 ⊒ x < b ^ succ (log b x)
case inr b : Ordinal.{u_1} hb : 1 < b x : Ordinal.{u_1} hx : x β‰  0 ⊒ x < b ^ succ (log b x)
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
36
Ordinal.lt_opow_succ_log_self
[ [ 312, 31 ], [ 316, 38 ] ]
2
6
Β· rw [succ_log_def hb hx] exact csInf_mem (log_nonempty hb)
case inr b : Ordinal.{u_1} hb : 1 < b x : Ordinal.{u_1} hx : x β‰  0 ⊒ x < b ^ succ (log b x)
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
36
Ordinal.lt_opow_succ_log_self
[ [ 312, 31 ], [ 316, 38 ] ]
3
6
apply opow_pos _ (zero_lt_one.trans hb)
case inl b : Ordinal.{u_1} hb : 1 < b ⊒ 0 < b ^ succ (log b 0)
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
36
Ordinal.lt_opow_succ_log_self
[ [ 312, 31 ], [ 316, 38 ] ]
4
6
rw [succ_log_def hb hx]
case inr b : Ordinal.{u_1} hb : 1 < b x : Ordinal.{u_1} hx : x β‰  0 ⊒ x < b ^ succ (log b x)
case inr b : Ordinal.{u_1} hb : 1 < b x : Ordinal.{u_1} hx : x β‰  0 ⊒ x < b ^ sInf {o | x < b ^ o}
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
36
Ordinal.lt_opow_succ_log_self
[ [ 312, 31 ], [ 316, 38 ] ]
5
6
exact csInf_mem (log_nonempty hb)
case inr b : Ordinal.{u_1} hb : 1 < b x : Ordinal.{u_1} hx : x β‰  0 ⊒ x < b ^ sInf {o | x < b ^ o}
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
37
Ordinal.opow_log_le_self
[ [ 319, 88 ], [ 327, 39 ] ]
0
11
rcases eq_or_ne b 0 with (rfl | b0)
b x : Ordinal.{u_1} hx : x β‰  0 ⊒ b ^ log b x ≀ x
case inl x : Ordinal.{u_1} hx : x β‰  0 ⊒ 0 ^ log 0 x ≀ x case inr b x : Ordinal.{u_1} hx : x β‰  0 b0 : b β‰  0 ⊒ b ^ log b x ≀ x
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
37
Ordinal.opow_log_le_self
[ [ 319, 88 ], [ 327, 39 ] ]
1
11
Β· rw [zero_opow'] exact (sub_le_self _ _).trans (one_le_iff_ne_zero.2 hx)
case inl x : Ordinal.{u_1} hx : x β‰  0 ⊒ 0 ^ log 0 x ≀ x case inr b x : Ordinal.{u_1} hx : x β‰  0 b0 : b β‰  0 ⊒ b ^ log b x ≀ x
case inr b x : Ordinal.{u_1} hx : x β‰  0 b0 : b β‰  0 ⊒ b ^ log b x ≀ x
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
37
Ordinal.opow_log_le_self
[ [ 319, 88 ], [ 327, 39 ] ]
2
11
rcases lt_or_eq_of_le (one_le_iff_ne_zero.2 b0) with (hb | rfl)
case inr b x : Ordinal.{u_1} hx : x β‰  0 b0 : b β‰  0 ⊒ b ^ log b x ≀ x
case inr.inl b x : Ordinal.{u_1} hx : x β‰  0 b0 : b β‰  0 hb : 1 < b ⊒ b ^ log b x ≀ x case inr.inr x : Ordinal.{u_1} hx : x β‰  0 b0 : 1 β‰  0 ⊒ 1 ^ log 1 x ≀ x
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a β‰  0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a β‰  0) (h : IsLimit b) :\n a ^ b ≀ c ↔ βˆ€ b' < b, a ^ b' ≀ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b β‰  0) (h : IsLimit c) :\n a < b ^ c ↔ βˆƒ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a β‰  0) : a ^ b β‰  0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ Β·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≀ a ^ c ↔ b ≀ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b β†’ IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b β‰  0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (hβ‚‚ : b ≀ c) : a ^ b ≀ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≀ b) : a ^ c ≀ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≀ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≀ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≀ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≀ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : Β¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≀ 1) : βˆ€ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : βˆ€ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : βˆ€ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x β‰  0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x β‰  0) : b ^ log b x ≀ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : b ^ c ≀ x ↔ c ≀ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x β‰  0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≀ y) : log b x ≀ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≀ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o β‰  0) (hbo : b ≀ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b β‰  0) (u : Ordinal) (hv : v β‰  0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v β‰  0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o β‰  0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x β‰  0) (hy : y β‰  0) :\n log b x + log b y ≀ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : β„•) : βˆ€ n : β„•, ↑(m ^ n : β„•) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : β„• => o ^ (n : Ordinal)) = o ^ Ο‰", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
37
Ordinal.opow_log_le_self
[ [ 319, 88 ], [ 327, 39 ] ]
3
11
Β· refine le_of_not_lt fun h => (lt_succ (log b x)).not_le ?_ have := @csInf_le' _ _ { o | x < b ^ o } _ h rwa [← succ_log_def hb hx] at this
case inr.inl b x : Ordinal.{u_1} hx : x β‰  0 b0 : b β‰  0 hb : 1 < b ⊒ b ^ log b x ≀ x case inr.inr x : Ordinal.{u_1} hx : x β‰  0 b0 : 1 β‰  0 ⊒ 1 ^ log 1 x ≀ x
case inr.inr x : Ordinal.{u_1} hx : x β‰  0 b0 : 1 β‰  0 ⊒ 1 ^ log 1 x ≀ x