file
stringlengths 21
79
| dependencies
sequencelengths 1
16
| definitions
listlengths 1
625
| theorem_idx
int64 0
574
| theorem
stringlengths 3
121
| theorem_loc
sequencelengths 2
2
| tactic_idx
int64 0
155
| tactic_len
int64 1
156
| tactic
stringlengths 3
5.76k
| state_before
stringlengths 7
13.6k
| state_after
stringlengths 7
13.6k
|
---|---|---|---|---|---|---|---|---|---|---|
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 32 | Surreal.Multiplication.numeric_of_ih | [
[
318,
62
],
[
321,
57
]
] | 4 | 5 | exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero | case right
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
⊢ CutExpand IsOption (Args.P1 x₂ y).toMultiset (Args.P24 x₁ x₂ y).toMultiset | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 33 | Surreal.Multiplication.ih24_neg | [
[
324,
73
],
[
331,
73
]
] | 0 | 9 | simp_rw [IH24, ← P24_neg_right, isOption_neg] | x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
⊢ IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) | x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
⊢ (∀ ⦃z : PGame⦄, (z.IsOption x₁ → P24 z x₂ y) ∧ (z.IsOption x₂ → P24 x₁ z y) ∧ (z.IsOption y → P24 x₁ x₂ z)) →
(∀ ⦃z : PGame⦄,
((-z).IsOption x₂ → P24 z (-x₁) y) ∧ ((-z).IsOption x₁ → P24 (-x₂) z y) ∧ (z.IsOption y → P24 (-x₂) (-x₁) z)) ∧
∀ ⦃z : PGame⦄, (z.IsOption x₁ → P24 z x₂ y) ∧ (z.IsOption x₂ → P24 x₁ z y) ∧ ((-z).IsOption y → P24 x₁ x₂ z) |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 33 | Surreal.Multiplication.ih24_neg | [
[
324,
73
],
[
331,
73
]
] | 1 | 9 | refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,
fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩ | x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
⊢ (∀ ⦃z : PGame⦄, (z.IsOption x₁ → P24 z x₂ y) ∧ (z.IsOption x₂ → P24 x₁ z y) ∧ (z.IsOption y → P24 x₁ x₂ z)) →
(∀ ⦃z : PGame⦄,
((-z).IsOption x₂ → P24 z (-x₁) y) ∧ ((-z).IsOption x₁ → P24 (-x₂) z y) ∧ (z.IsOption y → P24 (-x₂) (-x₁) z)) ∧
∀ ⦃z : PGame⦄, (z.IsOption x₁ → P24 z x₂ y) ∧ (z.IsOption x₂ → P24 x₁ z y) ∧ ((-z).IsOption y → P24 x₁ x₂ z) | case refine_1
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h : ∀ ⦃z : PGame⦄, (z.IsOption x₁ → P24 z x₂ y) ∧ (z.IsOption x₂ → P24 x₁ z y) ∧ (z.IsOption y → P24 x₁ x₂ z)
z : PGame
⊢ (-z).IsOption x₂ → P24 z (-x₁) y
case refine_2
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h : ∀ ⦃z : PGame⦄, (z.IsOption x₁ → P24 z x₂ y) ∧ (z.IsOption x₂ → P24 x₁ z y) ∧ (z.IsOption y → P24 x₁ x₂ z)
z : PGame
⊢ (-z).IsOption x₁ → P24 (-x₂) z y
case refine_3
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h : ∀ ⦃z : PGame⦄, (z.IsOption x₁ → P24 z x₂ y) ∧ (z.IsOption x₂ → P24 x₁ z y) ∧ (z.IsOption y → P24 x₁ x₂ z)
z : PGame
⊢ z.IsOption y → P24 (-x₂) (-x₁) z |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 33 | Surreal.Multiplication.ih24_neg | [
[
324,
73
],
[
331,
73
]
] | 2 | 9 | all_goals
rw [P24_neg_left]
simp only [neg_neg]
first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2 | case refine_1
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h : ∀ ⦃z : PGame⦄, (z.IsOption x₁ → P24 z x₂ y) ∧ (z.IsOption x₂ → P24 x₁ z y) ∧ (z.IsOption y → P24 x₁ x₂ z)
z : PGame
⊢ (-z).IsOption x₂ → P24 z (-x₁) y
case refine_2
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h : ∀ ⦃z : PGame⦄, (z.IsOption x₁ → P24 z x₂ y) ∧ (z.IsOption x₂ → P24 x₁ z y) ∧ (z.IsOption y → P24 x₁ x₂ z)
z : PGame
⊢ (-z).IsOption x₁ → P24 (-x₂) z y
case refine_3
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h : ∀ ⦃z : PGame⦄, (z.IsOption x₁ → P24 z x₂ y) ∧ (z.IsOption x₂ → P24 x₁ z y) ∧ (z.IsOption y → P24 x₁ x₂ z)
z : PGame
⊢ z.IsOption y → P24 (-x₂) (-x₁) z | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 33 | Surreal.Multiplication.ih24_neg | [
[
324,
73
],
[
331,
73
]
] | 3 | 9 | rw [P24_neg_left] | case refine_3
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h : ∀ ⦃z : PGame⦄, (z.IsOption x₁ → P24 z x₂ y) ∧ (z.IsOption x₂ → P24 x₁ z y) ∧ (z.IsOption y → P24 x₁ x₂ z)
z : PGame
⊢ z.IsOption y → P24 (-x₂) (-x₁) z | case refine_3
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h : ∀ ⦃z : PGame⦄, (z.IsOption x₁ → P24 z x₂ y) ∧ (z.IsOption x₂ → P24 x₁ z y) ∧ (z.IsOption y → P24 x₁ x₂ z)
z : PGame
⊢ z.IsOption y → P24 (- -x₁) (- -x₂) z |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 33 | Surreal.Multiplication.ih24_neg | [
[
324,
73
],
[
331,
73
]
] | 4 | 9 | simp only [neg_neg] | case refine_3
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h : ∀ ⦃z : PGame⦄, (z.IsOption x₁ → P24 z x₂ y) ∧ (z.IsOption x₂ → P24 x₁ z y) ∧ (z.IsOption y → P24 x₁ x₂ z)
z : PGame
⊢ z.IsOption y → P24 (- -x₁) (- -x₂) z | case refine_3
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h : ∀ ⦃z : PGame⦄, (z.IsOption x₁ → P24 z x₂ y) ∧ (z.IsOption x₂ → P24 x₁ z y) ∧ (z.IsOption y → P24 x₁ x₂ z)
z : PGame
⊢ z.IsOption y → P24 x₁ x₂ z |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 33 | Surreal.Multiplication.ih24_neg | [
[
324,
73
],
[
331,
73
]
] | 5 | 9 | first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2 | case refine_3
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h : ∀ ⦃z : PGame⦄, (z.IsOption x₁ → P24 z x₂ y) ∧ (z.IsOption x₂ → P24 x₁ z y) ∧ (z.IsOption y → P24 x₁ x₂ z)
z : PGame
⊢ z.IsOption y → P24 x₁ x₂ z | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 33 | Surreal.Multiplication.ih24_neg | [
[
324,
73
],
[
331,
73
]
] | 6 | 9 | exact (@h <| -z).2.1 | case refine_1
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h : ∀ ⦃z : PGame⦄, (z.IsOption x₁ → P24 z x₂ y) ∧ (z.IsOption x₂ → P24 x₁ z y) ∧ (z.IsOption y → P24 x₁ x₂ z)
z : PGame
⊢ (-z).IsOption x₂ → P24 x₁ (-z) y | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 33 | Surreal.Multiplication.ih24_neg | [
[
324,
73
],
[
331,
73
]
] | 7 | 9 | exact (@h <| -z).1 | case refine_2
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h : ∀ ⦃z : PGame⦄, (z.IsOption x₁ → P24 z x₂ y) ∧ (z.IsOption x₂ → P24 x₁ z y) ∧ (z.IsOption y → P24 x₁ x₂ z)
z : PGame
⊢ (-z).IsOption x₁ → P24 (-z) x₂ y | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 33 | Surreal.Multiplication.ih24_neg | [
[
324,
73
],
[
331,
73
]
] | 8 | 9 | exact (@h z).2.2 | case refine_3
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h : ∀ ⦃z : PGame⦄, (z.IsOption x₁ → P24 z x₂ y) ∧ (z.IsOption x₂ → P24 x₁ z y) ∧ (z.IsOption y → P24 x₁ x₂ z)
z : PGame
⊢ z.IsOption y → P24 x₁ x₂ z | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 34 | Surreal.Multiplication.ih4_neg | [
[
334,
69
],
[
338,
47
]
] | 0 | 6 | simp_rw [IH4, isOption_neg] | x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
⊢ IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) | x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
⊢ (∀ ⦃z w : PGame⦄, w.IsOption y → (z.IsOption x₁ → P2 z x₂ w) ∧ (z.IsOption x₂ → P2 x₁ z w)) →
(∀ ⦃z w : PGame⦄, w.IsOption y → ((-z).IsOption x₂ → P2 z (-x₁) w) ∧ ((-z).IsOption x₁ → P2 (-x₂) z w)) ∧
∀ ⦃z w : PGame⦄, (-w).IsOption y → (z.IsOption x₁ → P2 z x₂ w) ∧ (z.IsOption x₂ → P2 x₁ z w) |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 34 | Surreal.Multiplication.ih4_neg | [
[
334,
69
],
[
338,
47
]
] | 1 | 6 | refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩ | x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
⊢ (∀ ⦃z w : PGame⦄, w.IsOption y → (z.IsOption x₁ → P2 z x₂ w) ∧ (z.IsOption x₂ → P2 x₁ z w)) →
(∀ ⦃z w : PGame⦄, w.IsOption y → ((-z).IsOption x₂ → P2 z (-x₁) w) ∧ ((-z).IsOption x₁ → P2 (-x₂) z w)) ∧
∀ ⦃z w : PGame⦄, (-w).IsOption y → (z.IsOption x₁ → P2 z x₂ w) ∧ (z.IsOption x₂ → P2 x₁ z w) | case refine_1
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h : ∀ ⦃z w : PGame⦄, w.IsOption y → (z.IsOption x₁ → P2 z x₂ w) ∧ (z.IsOption x₂ → P2 x₁ z w)
z w : PGame
h' : w.IsOption y
⊢ ((-z).IsOption x₂ → P2 z (-x₁) w) ∧ ((-z).IsOption x₁ → P2 (-x₂) z w)
case refine_2
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h : ∀ ⦃z w : PGame⦄, w.IsOption y → (z.IsOption x₁ → P2 z x₂ w) ∧ (z.IsOption x₂ → P2 x₁ z w)
z w : PGame
h' : (-w).IsOption y
⊢ (z.IsOption x₁ → P2 z x₂ w) ∧ (z.IsOption x₂ → P2 x₁ z w) |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 34 | Surreal.Multiplication.ih4_neg | [
[
334,
69
],
[
338,
47
]
] | 2 | 6 | · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg] | case refine_1
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h : ∀ ⦃z w : PGame⦄, w.IsOption y → (z.IsOption x₁ → P2 z x₂ w) ∧ (z.IsOption x₂ → P2 x₁ z w)
z w : PGame
h' : w.IsOption y
⊢ ((-z).IsOption x₂ → P2 z (-x₁) w) ∧ ((-z).IsOption x₁ → P2 (-x₂) z w)
case refine_2
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h : ∀ ⦃z w : PGame⦄, w.IsOption y → (z.IsOption x₁ → P2 z x₂ w) ∧ (z.IsOption x₂ → P2 x₁ z w)
z w : PGame
h' : (-w).IsOption y
⊢ (z.IsOption x₁ → P2 z x₂ w) ∧ (z.IsOption x₂ → P2 x₁ z w) | case refine_2
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h : ∀ ⦃z w : PGame⦄, w.IsOption y → (z.IsOption x₁ → P2 z x₂ w) ∧ (z.IsOption x₂ → P2 x₁ z w)
z w : PGame
h' : (-w).IsOption y
⊢ (z.IsOption x₁ → P2 z x₂ w) ∧ (z.IsOption x₂ → P2 x₁ z w) |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 34 | Surreal.Multiplication.ih4_neg | [
[
334,
69
],
[
338,
47
]
] | 3 | 6 | · convert h h' using 2 <;> rw [P2_neg_right] | case refine_2
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h : ∀ ⦃z w : PGame⦄, w.IsOption y → (z.IsOption x₁ → P2 z x₂ w) ∧ (z.IsOption x₂ → P2 x₁ z w)
z w : PGame
h' : (-w).IsOption y
⊢ (z.IsOption x₁ → P2 z x₂ w) ∧ (z.IsOption x₂ → P2 x₁ z w) | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 34 | Surreal.Multiplication.ih4_neg | [
[
334,
69
],
[
338,
47
]
] | 4 | 6 | convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg] | case refine_1
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h : ∀ ⦃z w : PGame⦄, w.IsOption y → (z.IsOption x₁ → P2 z x₂ w) ∧ (z.IsOption x₂ → P2 x₁ z w)
z w : PGame
h' : w.IsOption y
⊢ ((-z).IsOption x₂ → P2 z (-x₁) w) ∧ ((-z).IsOption x₁ → P2 (-x₂) z w) | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 34 | Surreal.Multiplication.ih4_neg | [
[
334,
69
],
[
338,
47
]
] | 5 | 6 | convert h h' using 2 <;> rw [P2_neg_right] | case refine_2
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h : ∀ ⦃z w : PGame⦄, w.IsOption y → (z.IsOption x₁ → P2 z x₂ w) ∧ (z.IsOption x₂ → P2 x₁ z w)
z w : PGame
h' : (-w).IsOption y
⊢ (z.IsOption x₁ → P2 z x₂ w) ∧ (z.IsOption x₂ → P2 x₁ z w) | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 35 | Surreal.Multiplication.mulOption_lt_mul_of_equiv | [
[
341,
49
],
[
346,
25
]
] | 0 | 7 | convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1 | x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : x₁.Numeric
h : IH24 x₁ x₂ y
he : x₁ ≈ x₂
i : x₁.LeftMoves
j : y.LeftMoves
⊢ ⟦x₁.mulOption y i j⟧ < ⟦x₂ * y⟧ | case h.e'_3
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : x₁.Numeric
h : IH24 x₁ x₂ y
he : x₁ ≈ x₂
i : x₁.LeftMoves
j : y.LeftMoves
⊢ ⟦x₁.mulOption y i j⟧ = ⟦x₁.moveLeft i * y⟧ + ⟦x₂ * y.moveLeft j⟧ - ⟦x₁.moveLeft i * y.moveLeft j⟧
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : x₁.Numeric
h : IH24 x₁ x₂ y
he : x₁ ≈ x₂
i : x₁.LeftMoves
j : y.LeftMoves
⊢ x₁.moveLeft i < x₂ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 35 | Surreal.Multiplication.mulOption_lt_mul_of_equiv | [
[
341,
49
],
[
346,
25
]
] | 1 | 7 | · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]
rfl | case h.e'_3
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : x₁.Numeric
h : IH24 x₁ x₂ y
he : x₁ ≈ x₂
i : x₁.LeftMoves
j : y.LeftMoves
⊢ ⟦x₁.mulOption y i j⟧ = ⟦x₁.moveLeft i * y⟧ + ⟦x₂ * y.moveLeft j⟧ - ⟦x₁.moveLeft i * y.moveLeft j⟧
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : x₁.Numeric
h : IH24 x₁ x₂ y
he : x₁ ≈ x₂
i : x₁.LeftMoves
j : y.LeftMoves
⊢ x₁.moveLeft i < x₂ | x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : x₁.Numeric
h : IH24 x₁ x₂ y
he : x₁ ≈ x₂
i : x₁.LeftMoves
j : y.LeftMoves
⊢ x₁.moveLeft i < x₂ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 35 | Surreal.Multiplication.mulOption_lt_mul_of_equiv | [
[
341,
49
],
[
346,
25
]
] | 2 | 7 | · rw [← lt_congr_right he]
apply hn.moveLeft_lt | x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : x₁.Numeric
h : IH24 x₁ x₂ y
he : x₁ ≈ x₂
i : x₁.LeftMoves
j : y.LeftMoves
⊢ x₁.moveLeft i < x₂ | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 35 | Surreal.Multiplication.mulOption_lt_mul_of_equiv | [
[
341,
49
],
[
346,
25
]
] | 3 | 7 | rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he] | case h.e'_3
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : x₁.Numeric
h : IH24 x₁ x₂ y
he : x₁ ≈ x₂
i : x₁.LeftMoves
j : y.LeftMoves
⊢ ⟦x₁.mulOption y i j⟧ = ⟦x₁.moveLeft i * y⟧ + ⟦x₂ * y.moveLeft j⟧ - ⟦x₁.moveLeft i * y.moveLeft j⟧ | case h.e'_3
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : x₁.Numeric
h : IH24 x₁ x₂ y
he : x₁ ≈ x₂
i : x₁.LeftMoves
j : y.LeftMoves
⊢ ⟦x₁.mulOption y i j⟧ = ⟦x₁.moveLeft i * y⟧ + ⟦x₁ * y.moveLeft j⟧ - ⟦x₁.moveLeft i * y.moveLeft j⟧ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 35 | Surreal.Multiplication.mulOption_lt_mul_of_equiv | [
[
341,
49
],
[
346,
25
]
] | 4 | 7 | rfl | case h.e'_3
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : x₁.Numeric
h : IH24 x₁ x₂ y
he : x₁ ≈ x₂
i : x₁.LeftMoves
j : y.LeftMoves
⊢ ⟦x₁.mulOption y i j⟧ = ⟦x₁.moveLeft i * y⟧ + ⟦x₁ * y.moveLeft j⟧ - ⟦x₁.moveLeft i * y.moveLeft j⟧ | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 35 | Surreal.Multiplication.mulOption_lt_mul_of_equiv | [
[
341,
49
],
[
346,
25
]
] | 5 | 7 | rw [← lt_congr_right he] | x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : x₁.Numeric
h : IH24 x₁ x₂ y
he : x₁ ≈ x₂
i : x₁.LeftMoves
j : y.LeftMoves
⊢ x₁.moveLeft i < x₂ | x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : x₁.Numeric
h : IH24 x₁ x₂ y
he : x₁ ≈ x₂
i : x₁.LeftMoves
j : y.LeftMoves
⊢ x₁.moveLeft i < x₁ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 35 | Surreal.Multiplication.mulOption_lt_mul_of_equiv | [
[
341,
49
],
[
346,
25
]
] | 6 | 7 | apply hn.moveLeft_lt | x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : x₁.Numeric
h : IH24 x₁ x₂ y
he : x₁ ≈ x₂
i : x₁.LeftMoves
j : y.LeftMoves
⊢ x₁.moveLeft i < x₁ | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 36 | Surreal.Multiplication.mul_right_le_of_equiv | [
[
350,
83
],
[
362,
73
]
] | 0 | 16 | have he' := neg_equiv_neg_iff.2 he | x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
⊢ x₁ * y ≤ x₂ * y | x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
⊢ x₁ * y ≤ x₂ * y |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 36 | Surreal.Multiplication.mul_right_le_of_equiv | [
[
350,
83
],
[
362,
73
]
] | 1 | 16 | apply PGame.le_of_forall_lt <;> simp_rw [lt_iff_game_lt] | x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
⊢ x₁ * y ≤ x₂ * y | case h₁
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
⊢ ∀ (i : (x₁ * y).LeftMoves), ⟦(x₁ * y).moveLeft i⟧ < ⟦x₂ * y⟧
case h₂
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
⊢ ∀ (j : (x₂ * y).RightMoves), ⟦x₁ * y⟧ < ⟦(x₂ * y).moveRight j⟧ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 36 | Surreal.Multiplication.mul_right_le_of_equiv | [
[
350,
83
],
[
362,
73
]
] | 2 | 16 | · rw [leftMoves_mul_iff (_ > ·)]
refine ⟨mulOption_lt_mul_of_equiv h₁ h₁₂ he, ?_⟩
rw [← quot_neg_mul_neg]
exact mulOption_lt_mul_of_equiv h₁.neg (ih24_neg <| (ih24_neg h₂₁).1).2 he' | case h₁
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
⊢ ∀ (i : (x₁ * y).LeftMoves), ⟦(x₁ * y).moveLeft i⟧ < ⟦x₂ * y⟧
case h₂
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
⊢ ∀ (j : (x₂ * y).RightMoves), ⟦x₁ * y⟧ < ⟦(x₂ * y).moveRight j⟧ | case h₂
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
⊢ ∀ (j : (x₂ * y).RightMoves), ⟦x₁ * y⟧ < ⟦(x₂ * y).moveRight j⟧ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 36 | Surreal.Multiplication.mul_right_le_of_equiv | [
[
350,
83
],
[
362,
73
]
] | 3 | 16 | · rw [rightMoves_mul_iff]
constructor <;> intros <;> rw [lt_neg]
· rw [← quot_mul_neg]
apply mulOption_lt_mul_of_equiv h₂ (ih24_neg h₂₁).2 (symm he)
· rw [← quot_neg_mul]
apply mulOption_lt_mul_of_equiv h₂.neg (ih24_neg h₁₂).1 (symm he') | case h₂
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
⊢ ∀ (j : (x₂ * y).RightMoves), ⟦x₁ * y⟧ < ⟦(x₂ * y).moveRight j⟧ | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 36 | Surreal.Multiplication.mul_right_le_of_equiv | [
[
350,
83
],
[
362,
73
]
] | 4 | 16 | rw [leftMoves_mul_iff (_ > ·)] | case h₁
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
⊢ ∀ (i : (x₁ * y).LeftMoves), ⟦(x₁ * y).moveLeft i⟧ < ⟦x₂ * y⟧ | case h₁
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
⊢ (∀ (i : x₁.LeftMoves) (j : y.LeftMoves), ⟦x₂ * y⟧ > ⟦x₁.mulOption y i j⟧) ∧
∀ (i : (-x₁).LeftMoves) (j : (-y).LeftMoves), ⟦x₂ * y⟧ > ⟦(-x₁).mulOption (-y) i j⟧ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 36 | Surreal.Multiplication.mul_right_le_of_equiv | [
[
350,
83
],
[
362,
73
]
] | 5 | 16 | refine ⟨mulOption_lt_mul_of_equiv h₁ h₁₂ he, ?_⟩ | case h₁
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
⊢ (∀ (i : x₁.LeftMoves) (j : y.LeftMoves), ⟦x₂ * y⟧ > ⟦x₁.mulOption y i j⟧) ∧
∀ (i : (-x₁).LeftMoves) (j : (-y).LeftMoves), ⟦x₂ * y⟧ > ⟦(-x₁).mulOption (-y) i j⟧ | case h₁
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
⊢ ∀ (i : (-x₁).LeftMoves) (j : (-y).LeftMoves), ⟦x₂ * y⟧ > ⟦(-x₁).mulOption (-y) i j⟧ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 36 | Surreal.Multiplication.mul_right_le_of_equiv | [
[
350,
83
],
[
362,
73
]
] | 6 | 16 | rw [← quot_neg_mul_neg] | case h₁
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
⊢ ∀ (i : (-x₁).LeftMoves) (j : (-y).LeftMoves), ⟦x₂ * y⟧ > ⟦(-x₁).mulOption (-y) i j⟧ | case h₁
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
⊢ ∀ (i : (-x₁).LeftMoves) (j : (-y).LeftMoves), ⟦-x₂ * -y⟧ > ⟦(-x₁).mulOption (-y) i j⟧ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 36 | Surreal.Multiplication.mul_right_le_of_equiv | [
[
350,
83
],
[
362,
73
]
] | 7 | 16 | exact mulOption_lt_mul_of_equiv h₁.neg (ih24_neg <| (ih24_neg h₂₁).1).2 he' | case h₁
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
⊢ ∀ (i : (-x₁).LeftMoves) (j : (-y).LeftMoves), ⟦-x₂ * -y⟧ > ⟦(-x₁).mulOption (-y) i j⟧ | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 36 | Surreal.Multiplication.mul_right_le_of_equiv | [
[
350,
83
],
[
362,
73
]
] | 8 | 16 | rw [rightMoves_mul_iff] | case h₂
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
⊢ ∀ (j : (x₂ * y).RightMoves), ⟦x₁ * y⟧ < ⟦(x₂ * y).moveRight j⟧ | case h₂
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
⊢ (∀ (i : x₂.LeftMoves) (j : (-y).LeftMoves), ⟦x₁ * y⟧ < -⟦x₂.mulOption (-y) i j⟧) ∧
∀ (i : (-x₂).LeftMoves) (j : y.LeftMoves), ⟦x₁ * y⟧ < -⟦(-x₂).mulOption y i j⟧ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 36 | Surreal.Multiplication.mul_right_le_of_equiv | [
[
350,
83
],
[
362,
73
]
] | 9 | 16 | constructor <;> intros <;> rw [lt_neg] | case h₂
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
⊢ (∀ (i : x₂.LeftMoves) (j : (-y).LeftMoves), ⟦x₁ * y⟧ < -⟦x₂.mulOption (-y) i j⟧) ∧
∀ (i : (-x₂).LeftMoves) (j : y.LeftMoves), ⟦x₁ * y⟧ < -⟦(-x₂).mulOption y i j⟧ | case h₂.left
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
i✝ : x₂.LeftMoves
j✝ : (-y).LeftMoves
⊢ ⟦x₂.mulOption (-y) i✝ j✝⟧ < -⟦x₁ * y⟧
case h₂.right
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
i✝ : (-x₂).LeftMoves
j✝ : y.LeftMoves
⊢ ⟦(-x₂).mulOption y i✝ j✝⟧ < -⟦x₁ * y⟧ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 36 | Surreal.Multiplication.mul_right_le_of_equiv | [
[
350,
83
],
[
362,
73
]
] | 10 | 16 | · rw [← quot_mul_neg]
apply mulOption_lt_mul_of_equiv h₂ (ih24_neg h₂₁).2 (symm he) | case h₂.left
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
i✝ : x₂.LeftMoves
j✝ : (-y).LeftMoves
⊢ ⟦x₂.mulOption (-y) i✝ j✝⟧ < -⟦x₁ * y⟧
case h₂.right
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
i✝ : (-x₂).LeftMoves
j✝ : y.LeftMoves
⊢ ⟦(-x₂).mulOption y i✝ j✝⟧ < -⟦x₁ * y⟧ | case h₂.right
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
i✝ : (-x₂).LeftMoves
j✝ : y.LeftMoves
⊢ ⟦(-x₂).mulOption y i✝ j✝⟧ < -⟦x₁ * y⟧ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 36 | Surreal.Multiplication.mul_right_le_of_equiv | [
[
350,
83
],
[
362,
73
]
] | 11 | 16 | · rw [← quot_neg_mul]
apply mulOption_lt_mul_of_equiv h₂.neg (ih24_neg h₁₂).1 (symm he') | case h₂.right
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
i✝ : (-x₂).LeftMoves
j✝ : y.LeftMoves
⊢ ⟦(-x₂).mulOption y i✝ j✝⟧ < -⟦x₁ * y⟧ | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 36 | Surreal.Multiplication.mul_right_le_of_equiv | [
[
350,
83
],
[
362,
73
]
] | 12 | 16 | rw [← quot_mul_neg] | case h₂.left
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
i✝ : x₂.LeftMoves
j✝ : (-y).LeftMoves
⊢ ⟦x₂.mulOption (-y) i✝ j✝⟧ < -⟦x₁ * y⟧ | case h₂.left
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
i✝ : x₂.LeftMoves
j✝ : (-y).LeftMoves
⊢ ⟦x₂.mulOption (-y) i✝ j✝⟧ < ⟦x₁ * -y⟧ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 36 | Surreal.Multiplication.mul_right_le_of_equiv | [
[
350,
83
],
[
362,
73
]
] | 13 | 16 | apply mulOption_lt_mul_of_equiv h₂ (ih24_neg h₂₁).2 (symm he) | case h₂.left
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
i✝ : x₂.LeftMoves
j✝ : (-y).LeftMoves
⊢ ⟦x₂.mulOption (-y) i✝ j✝⟧ < ⟦x₁ * -y⟧ | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 36 | Surreal.Multiplication.mul_right_le_of_equiv | [
[
350,
83
],
[
362,
73
]
] | 14 | 16 | rw [← quot_neg_mul] | case h₂.right
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
i✝ : (-x₂).LeftMoves
j✝ : y.LeftMoves
⊢ ⟦(-x₂).mulOption y i✝ j✝⟧ < -⟦x₁ * y⟧ | case h₂.right
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
i✝ : (-x₂).LeftMoves
j✝ : y.LeftMoves
⊢ ⟦(-x₂).mulOption y i✝ j✝⟧ < ⟦-x₁ * y⟧ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 36 | Surreal.Multiplication.mul_right_le_of_equiv | [
[
350,
83
],
[
362,
73
]
] | 15 | 16 | apply mulOption_lt_mul_of_equiv h₂.neg (ih24_neg h₁₂).1 (symm he') | case h₂.right
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
h₁ : x₁.Numeric
h₂ : x₂.Numeric
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
he : x₁ ≈ x₂
he' : -x₁ ≈ -x₂
i✝ : (-x₂).LeftMoves
j✝ : y.LeftMoves
⊢ ⟦(-x₂).mulOption y i✝ j✝⟧ < ⟦-x₁ * y⟧ | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 37 | Surreal.Multiplication.mulOptionsLTMul_of_numeric | [
[
373,
58
],
[
386,
15
]
] | 0 | 17 | constructor | x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
⊢ (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧ MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y | case left
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
⊢ MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)
case right
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
⊢ MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 37 | Surreal.Multiplication.mulOptionsLTMul_of_numeric | [
[
373,
58
],
[
386,
15
]
] | 1 | 17 | · have h := hn.moveLeft_lt
simp_rw [lt_iff_game_lt] at h
convert (leftMoves_mul_iff <| GT.gt _).1 h
rw [← quot_neg_mul_neg]
rfl | case left
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
⊢ MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)
case right
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
⊢ MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y | case right
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
⊢ MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 37 | Surreal.Multiplication.mulOptionsLTMul_of_numeric | [
[
373,
58
],
[
386,
15
]
] | 2 | 17 | · have h := hn.lt_moveRight
simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h
refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_
all_goals
rw [lt_neg]
first | rw [quot_mul_neg] | rw [quot_neg_mul]
exact id | case right
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
⊢ MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 37 | Surreal.Multiplication.mulOptionsLTMul_of_numeric | [
[
373,
58
],
[
386,
15
]
] | 3 | 17 | have h := hn.moveLeft_lt | case left
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
⊢ MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y) | case left
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
h : ∀ (i : (x * y).LeftMoves), (x * y).moveLeft i < x * y
⊢ MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y) |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 37 | Surreal.Multiplication.mulOptionsLTMul_of_numeric | [
[
373,
58
],
[
386,
15
]
] | 4 | 17 | simp_rw [lt_iff_game_lt] at h | case left
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
h : ∀ (i : (x * y).LeftMoves), (x * y).moveLeft i < x * y
⊢ MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y) | case left
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
h : ∀ (i : (x * y).LeftMoves), ⟦(x * y).moveLeft i⟧ < ⟦x * y⟧
⊢ MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y) |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 37 | Surreal.Multiplication.mulOptionsLTMul_of_numeric | [
[
373,
58
],
[
386,
15
]
] | 5 | 17 | convert (leftMoves_mul_iff <| GT.gt _).1 h | case left
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
h : ∀ (i : (x * y).LeftMoves), ⟦(x * y).moveLeft i⟧ < ⟦x * y⟧
⊢ MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y) | case h.e'_2.a
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
h : ∀ (i : (x * y).LeftMoves), ⟦(x * y).moveLeft i⟧ < ⟦x * y⟧
⊢ MulOptionsLTMul (-x) (-y) ↔ ∀ (i : (-x).LeftMoves) (j : (-y).LeftMoves), ⟦x * y⟧ > ⟦(-x).mulOption (-y) i j⟧ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 37 | Surreal.Multiplication.mulOptionsLTMul_of_numeric | [
[
373,
58
],
[
386,
15
]
] | 6 | 17 | rw [← quot_neg_mul_neg] | case h.e'_2.a
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
h : ∀ (i : (x * y).LeftMoves), ⟦(x * y).moveLeft i⟧ < ⟦x * y⟧
⊢ MulOptionsLTMul (-x) (-y) ↔ ∀ (i : (-x).LeftMoves) (j : (-y).LeftMoves), ⟦x * y⟧ > ⟦(-x).mulOption (-y) i j⟧ | case h.e'_2.a
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
h : ∀ (i : (x * y).LeftMoves), ⟦(x * y).moveLeft i⟧ < ⟦x * y⟧
⊢ MulOptionsLTMul (-x) (-y) ↔ ∀ (i : (-x).LeftMoves) (j : (-y).LeftMoves), ⟦-x * -y⟧ > ⟦(-x).mulOption (-y) i j⟧ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 37 | Surreal.Multiplication.mulOptionsLTMul_of_numeric | [
[
373,
58
],
[
386,
15
]
] | 7 | 17 | rfl | case h.e'_2.a
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
h : ∀ (i : (x * y).LeftMoves), ⟦(x * y).moveLeft i⟧ < ⟦x * y⟧
⊢ MulOptionsLTMul (-x) (-y) ↔ ∀ (i : (-x).LeftMoves) (j : (-y).LeftMoves), ⟦-x * -y⟧ > ⟦(-x).mulOption (-y) i j⟧ | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 37 | Surreal.Multiplication.mulOptionsLTMul_of_numeric | [
[
373,
58
],
[
386,
15
]
] | 8 | 17 | have h := hn.lt_moveRight | case right
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
⊢ MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y | case right
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
h : ∀ (j : (x * y).RightMoves), x * y < (x * y).moveRight j
⊢ MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 37 | Surreal.Multiplication.mulOptionsLTMul_of_numeric | [
[
373,
58
],
[
386,
15
]
] | 9 | 17 | simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h | case right
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
h : ∀ (j : (x * y).RightMoves), x * y < (x * y).moveRight j
⊢ MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y | case right
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
h :
(∀ (i : x.LeftMoves) (j : (-y).LeftMoves), ⟦x * y⟧ < -⟦x.mulOption (-y) i j⟧) ∧
∀ (i : (-x).LeftMoves) (j : y.LeftMoves), ⟦x * y⟧ < -⟦(-x).mulOption y i j⟧
⊢ MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 37 | Surreal.Multiplication.mulOptionsLTMul_of_numeric | [
[
373,
58
],
[
386,
15
]
] | 10 | 17 | refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_ | case right
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
h :
(∀ (i : x.LeftMoves) (j : (-y).LeftMoves), ⟦x * y⟧ < -⟦x.mulOption (-y) i j⟧) ∧
∀ (i : (-x).LeftMoves) (j : y.LeftMoves), ⟦x * y⟧ < -⟦(-x).mulOption y i j⟧
⊢ MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y | case right.refine_1
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
h :
(∀ (i : x.LeftMoves) (j : (-y).LeftMoves), ⟦x * y⟧ < -⟦x.mulOption (-y) i j⟧) ∧
∀ (i : (-x).LeftMoves) (j : y.LeftMoves), ⟦x * y⟧ < -⟦(-x).mulOption y i j⟧
a : x.LeftMoves
b : (-y).LeftMoves
⊢ ⟦x * y⟧ < -⟦x.mulOption (-y) a b⟧ → ⟦x.mulOption (-y) a b⟧ < ⟦x * -y⟧
case right.refine_2
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
h :
(∀ (i : x.LeftMoves) (j : (-y).LeftMoves), ⟦x * y⟧ < -⟦x.mulOption (-y) i j⟧) ∧
∀ (i : (-x).LeftMoves) (j : y.LeftMoves), ⟦x * y⟧ < -⟦(-x).mulOption y i j⟧
a : (-x).LeftMoves
b : y.LeftMoves
⊢ ⟦x * y⟧ < -⟦(-x).mulOption y a b⟧ → ⟦(-x).mulOption y a b⟧ < ⟦-x * y⟧ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 37 | Surreal.Multiplication.mulOptionsLTMul_of_numeric | [
[
373,
58
],
[
386,
15
]
] | 11 | 17 | all_goals
rw [lt_neg]
first | rw [quot_mul_neg] | rw [quot_neg_mul]
exact id | case right.refine_1
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
h :
(∀ (i : x.LeftMoves) (j : (-y).LeftMoves), ⟦x * y⟧ < -⟦x.mulOption (-y) i j⟧) ∧
∀ (i : (-x).LeftMoves) (j : y.LeftMoves), ⟦x * y⟧ < -⟦(-x).mulOption y i j⟧
a : x.LeftMoves
b : (-y).LeftMoves
⊢ ⟦x * y⟧ < -⟦x.mulOption (-y) a b⟧ → ⟦x.mulOption (-y) a b⟧ < ⟦x * -y⟧
case right.refine_2
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
h :
(∀ (i : x.LeftMoves) (j : (-y).LeftMoves), ⟦x * y⟧ < -⟦x.mulOption (-y) i j⟧) ∧
∀ (i : (-x).LeftMoves) (j : y.LeftMoves), ⟦x * y⟧ < -⟦(-x).mulOption y i j⟧
a : (-x).LeftMoves
b : y.LeftMoves
⊢ ⟦x * y⟧ < -⟦(-x).mulOption y a b⟧ → ⟦(-x).mulOption y a b⟧ < ⟦-x * y⟧ | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 37 | Surreal.Multiplication.mulOptionsLTMul_of_numeric | [
[
373,
58
],
[
386,
15
]
] | 12 | 17 | rw [lt_neg] | case right.refine_2
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
h :
(∀ (i : x.LeftMoves) (j : (-y).LeftMoves), ⟦x * y⟧ < -⟦x.mulOption (-y) i j⟧) ∧
∀ (i : (-x).LeftMoves) (j : y.LeftMoves), ⟦x * y⟧ < -⟦(-x).mulOption y i j⟧
a : (-x).LeftMoves
b : y.LeftMoves
⊢ ⟦x * y⟧ < -⟦(-x).mulOption y a b⟧ → ⟦(-x).mulOption y a b⟧ < ⟦-x * y⟧ | case right.refine_2
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
h :
(∀ (i : x.LeftMoves) (j : (-y).LeftMoves), ⟦x * y⟧ < -⟦x.mulOption (-y) i j⟧) ∧
∀ (i : (-x).LeftMoves) (j : y.LeftMoves), ⟦x * y⟧ < -⟦(-x).mulOption y i j⟧
a : (-x).LeftMoves
b : y.LeftMoves
⊢ ⟦(-x).mulOption y a b⟧ < -⟦x * y⟧ → ⟦(-x).mulOption y a b⟧ < ⟦-x * y⟧ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 37 | Surreal.Multiplication.mulOptionsLTMul_of_numeric | [
[
373,
58
],
[
386,
15
]
] | 13 | 17 | first | rw [quot_mul_neg] | rw [quot_neg_mul] | case right.refine_2
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
h :
(∀ (i : x.LeftMoves) (j : (-y).LeftMoves), ⟦x * y⟧ < -⟦x.mulOption (-y) i j⟧) ∧
∀ (i : (-x).LeftMoves) (j : y.LeftMoves), ⟦x * y⟧ < -⟦(-x).mulOption y i j⟧
a : (-x).LeftMoves
b : y.LeftMoves
⊢ ⟦(-x).mulOption y a b⟧ < -⟦x * y⟧ → ⟦(-x).mulOption y a b⟧ < ⟦-x * y⟧ | case right.refine_2
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
h :
(∀ (i : x.LeftMoves) (j : (-y).LeftMoves), ⟦x * y⟧ < -⟦x.mulOption (-y) i j⟧) ∧
∀ (i : (-x).LeftMoves) (j : y.LeftMoves), ⟦x * y⟧ < -⟦(-x).mulOption y i j⟧
a : (-x).LeftMoves
b : y.LeftMoves
⊢ ⟦(-x).mulOption y a b⟧ < -⟦x * y⟧ → ⟦(-x).mulOption y a b⟧ < -⟦x * y⟧ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 37 | Surreal.Multiplication.mulOptionsLTMul_of_numeric | [
[
373,
58
],
[
386,
15
]
] | 14 | 17 | exact id | case right.refine_2
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
h :
(∀ (i : x.LeftMoves) (j : (-y).LeftMoves), ⟦x * y⟧ < -⟦x.mulOption (-y) i j⟧) ∧
∀ (i : (-x).LeftMoves) (j : y.LeftMoves), ⟦x * y⟧ < -⟦(-x).mulOption y i j⟧
a : (-x).LeftMoves
b : y.LeftMoves
⊢ ⟦(-x).mulOption y a b⟧ < -⟦x * y⟧ → ⟦(-x).mulOption y a b⟧ < -⟦x * y⟧ | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 37 | Surreal.Multiplication.mulOptionsLTMul_of_numeric | [
[
373,
58
],
[
386,
15
]
] | 15 | 17 | rw [quot_mul_neg] | case right.refine_1
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
h :
(∀ (i : x.LeftMoves) (j : (-y).LeftMoves), ⟦x * y⟧ < -⟦x.mulOption (-y) i j⟧) ∧
∀ (i : (-x).LeftMoves) (j : y.LeftMoves), ⟦x * y⟧ < -⟦(-x).mulOption y i j⟧
a : x.LeftMoves
b : (-y).LeftMoves
⊢ ⟦x.mulOption (-y) a b⟧ < -⟦x * y⟧ → ⟦x.mulOption (-y) a b⟧ < ⟦x * -y⟧ | case right.refine_1
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
h :
(∀ (i : x.LeftMoves) (j : (-y).LeftMoves), ⟦x * y⟧ < -⟦x.mulOption (-y) i j⟧) ∧
∀ (i : (-x).LeftMoves) (j : y.LeftMoves), ⟦x * y⟧ < -⟦(-x).mulOption y i j⟧
a : x.LeftMoves
b : (-y).LeftMoves
⊢ ⟦x.mulOption (-y) a b⟧ < -⟦x * y⟧ → ⟦x.mulOption (-y) a b⟧ < -⟦x * y⟧ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 37 | Surreal.Multiplication.mulOptionsLTMul_of_numeric | [
[
373,
58
],
[
386,
15
]
] | 16 | 17 | rw [quot_neg_mul] | case right.refine_2
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
h :
(∀ (i : x.LeftMoves) (j : (-y).LeftMoves), ⟦x * y⟧ < -⟦x.mulOption (-y) i j⟧) ∧
∀ (i : (-x).LeftMoves) (j : y.LeftMoves), ⟦x * y⟧ < -⟦(-x).mulOption y i j⟧
a : (-x).LeftMoves
b : y.LeftMoves
⊢ ⟦(-x).mulOption y a b⟧ < -⟦x * y⟧ → ⟦(-x).mulOption y a b⟧ < ⟦-x * y⟧ | case right.refine_2
x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
hn : (x * y).Numeric
h :
(∀ (i : x.LeftMoves) (j : (-y).LeftMoves), ⟦x * y⟧ < -⟦x.mulOption (-y) i j⟧) ∧
∀ (i : (-x).LeftMoves) (j : y.LeftMoves), ⟦x * y⟧ < -⟦(-x).mulOption y i j⟧
a : (-x).LeftMoves
b : y.LeftMoves
⊢ ⟦(-x).mulOption y a b⟧ < -⟦x * y⟧ → ⟦(-x).mulOption y a b⟧ < -⟦x * y⟧ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 39 | Surreal.Multiplication.P3_of_le_left | [
[
404,
23
],
[
408,
18
]
] | 0 | 6 | obtain (hl|he) := lt_or_equiv_of_le hl | x x₁ x₂ x₃ x' y y₁✝ y₂✝ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
y₁ y₂ : PGame
i : x₂.LeftMoves
h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂
hl : x₁ ≤ x₂.moveLeft i
⊢ P3 x₁ x₂ y₁ y₂ | case inl
x x₁ x₂ x₃ x' y y₁✝ y₂✝ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
y₁ y₂ : PGame
i : x₂.LeftMoves
h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂
hl✝ : x₁ ≤ x₂.moveLeft i
hl : x₁ < x₂.moveLeft i
⊢ P3 x₁ x₂ y₁ y₂
case inr
x x₁ x₂ x₃ x' y y₁✝ y₂✝ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
y₁ y₂ : PGame
i : x₂.LeftMoves
h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂
hl : x₁ ≤ x₂.moveLeft i
he : x₁ ≈ x₂.moveLeft i
⊢ P3 x₁ x₂ y₁ y₂ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 39 | Surreal.Multiplication.P3_of_le_left | [
[
404,
23
],
[
408,
18
]
] | 1 | 6 | · exact (h.2.2.2 hl).trans h.2.2.1 | case inl
x x₁ x₂ x₃ x' y y₁✝ y₂✝ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
y₁ y₂ : PGame
i : x₂.LeftMoves
h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂
hl✝ : x₁ ≤ x₂.moveLeft i
hl : x₁ < x₂.moveLeft i
⊢ P3 x₁ x₂ y₁ y₂
case inr
x x₁ x₂ x₃ x' y y₁✝ y₂✝ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
y₁ y₂ : PGame
i : x₂.LeftMoves
h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂
hl : x₁ ≤ x₂.moveLeft i
he : x₁ ≈ x₂.moveLeft i
⊢ P3 x₁ x₂ y₁ y₂ | case inr
x x₁ x₂ x₃ x' y y₁✝ y₂✝ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
y₁ y₂ : PGame
i : x₂.LeftMoves
h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂
hl : x₁ ≤ x₂.moveLeft i
he : x₁ ≈ x₂.moveLeft i
⊢ P3 x₁ x₂ y₁ y₂ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 39 | Surreal.Multiplication.P3_of_le_left | [
[
404,
23
],
[
408,
18
]
] | 2 | 6 | · rw [P3, h.1 he, h.2.1 he]
exact h.2.2.1 | case inr
x x₁ x₂ x₃ x' y y₁✝ y₂✝ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
y₁ y₂ : PGame
i : x₂.LeftMoves
h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂
hl : x₁ ≤ x₂.moveLeft i
he : x₁ ≈ x₂.moveLeft i
⊢ P3 x₁ x₂ y₁ y₂ | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 39 | Surreal.Multiplication.P3_of_le_left | [
[
404,
23
],
[
408,
18
]
] | 3 | 6 | exact (h.2.2.2 hl).trans h.2.2.1 | case inl
x x₁ x₂ x₃ x' y y₁✝ y₂✝ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
y₁ y₂ : PGame
i : x₂.LeftMoves
h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂
hl✝ : x₁ ≤ x₂.moveLeft i
hl : x₁ < x₂.moveLeft i
⊢ P3 x₁ x₂ y₁ y₂ | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 39 | Surreal.Multiplication.P3_of_le_left | [
[
404,
23
],
[
408,
18
]
] | 4 | 6 | rw [P3, h.1 he, h.2.1 he] | case inr
x x₁ x₂ x₃ x' y y₁✝ y₂✝ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
y₁ y₂ : PGame
i : x₂.LeftMoves
h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂
hl : x₁ ≤ x₂.moveLeft i
he : x₁ ≈ x₂.moveLeft i
⊢ P3 x₁ x₂ y₁ y₂ | case inr
x x₁ x₂ x₃ x' y y₁✝ y₂✝ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
y₁ y₂ : PGame
i : x₂.LeftMoves
h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂
hl : x₁ ≤ x₂.moveLeft i
he : x₁ ≈ x₂.moveLeft i
⊢ ⟦x₂.moveLeft i * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₂.moveLeft i * y₁⟧ + ⟦x₂ * y₂⟧ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 39 | Surreal.Multiplication.P3_of_le_left | [
[
404,
23
],
[
408,
18
]
] | 5 | 6 | exact h.2.2.1 | case inr
x x₁ x₂ x₃ x' y y₁✝ y₂✝ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
y₁ y₂ : PGame
i : x₂.LeftMoves
h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂
hl : x₁ ≤ x₂.moveLeft i
he : x₁ ≈ x₂.moveLeft i
⊢ ⟦x₂.moveLeft i * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₂.moveLeft i * y₁⟧ + ⟦x₂ * y₂⟧ | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 40 | Surreal.Multiplication.P3_of_lt | [
[
414,
23
],
[
419,
45
]
] | 0 | 7 | obtain (⟨i,hi⟩|⟨i,hi⟩) := lf_iff_exists_le.1 (lf_of_lt hl) | x x₁ x₂ x₃ x' y y₁✝ y₂✝ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
y₁ y₂ : PGame
h : ∀ (i : x₂.LeftMoves), IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂
hs : ∀ (i : (-x₁).LeftMoves), IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂
hl : x₁ < x₂
⊢ P3 x₁ x₂ y₁ y₂ | case inl.intro
x x₁ x₂ x₃ x' y y₁✝ y₂✝ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
y₁ y₂ : PGame
h : ∀ (i : x₂.LeftMoves), IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂
hs : ∀ (i : (-x₁).LeftMoves), IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂
hl : x₁ < x₂
i : x₂.LeftMoves
hi : x₁ ≤ x₂.moveLeft i
⊢ P3 x₁ x₂ y₁ y₂
case inr.intro
x x₁ x₂ x₃ x' y y₁✝ y₂✝ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
y₁ y₂ : PGame
h : ∀ (i : x₂.LeftMoves), IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂
hs : ∀ (i : (-x₁).LeftMoves), IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂
hl : x₁ < x₂
i : x₁.RightMoves
hi : x₁.moveRight i ≤ x₂
⊢ P3 x₁ x₂ y₁ y₂ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 40 | Surreal.Multiplication.P3_of_lt | [
[
414,
23
],
[
419,
45
]
] | 1 | 7 | · exact P3_of_le_left i (h i) hi | case inl.intro
x x₁ x₂ x₃ x' y y₁✝ y₂✝ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
y₁ y₂ : PGame
h : ∀ (i : x₂.LeftMoves), IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂
hs : ∀ (i : (-x₁).LeftMoves), IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂
hl : x₁ < x₂
i : x₂.LeftMoves
hi : x₁ ≤ x₂.moveLeft i
⊢ P3 x₁ x₂ y₁ y₂
case inr.intro
x x₁ x₂ x₃ x' y y₁✝ y₂✝ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
y₁ y₂ : PGame
h : ∀ (i : x₂.LeftMoves), IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂
hs : ∀ (i : (-x₁).LeftMoves), IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂
hl : x₁ < x₂
i : x₁.RightMoves
hi : x₁.moveRight i ≤ x₂
⊢ P3 x₁ x₂ y₁ y₂ | case inr.intro
x x₁ x₂ x₃ x' y y₁✝ y₂✝ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
y₁ y₂ : PGame
h : ∀ (i : x₂.LeftMoves), IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂
hs : ∀ (i : (-x₁).LeftMoves), IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂
hl : x₁ < x₂
i : x₁.RightMoves
hi : x₁.moveRight i ≤ x₂
⊢ P3 x₁ x₂ y₁ y₂ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 40 | Surreal.Multiplication.P3_of_lt | [
[
414,
23
],
[
419,
45
]
] | 2 | 7 | · exact P3_neg.2 <| P3_of_le_left _ (hs _) <| by
rw [moveLeft_neg]
exact neg_le_neg (le_iff_game_le.1 hi) | case inr.intro
x x₁ x₂ x₃ x' y y₁✝ y₂✝ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
y₁ y₂ : PGame
h : ∀ (i : x₂.LeftMoves), IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂
hs : ∀ (i : (-x₁).LeftMoves), IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂
hl : x₁ < x₂
i : x₁.RightMoves
hi : x₁.moveRight i ≤ x₂
⊢ P3 x₁ x₂ y₁ y₂ | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 40 | Surreal.Multiplication.P3_of_lt | [
[
414,
23
],
[
419,
45
]
] | 3 | 7 | exact P3_of_le_left i (h i) hi | case inl.intro
x x₁ x₂ x₃ x' y y₁✝ y₂✝ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
y₁ y₂ : PGame
h : ∀ (i : x₂.LeftMoves), IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂
hs : ∀ (i : (-x₁).LeftMoves), IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂
hl : x₁ < x₂
i : x₂.LeftMoves
hi : x₁ ≤ x₂.moveLeft i
⊢ P3 x₁ x₂ y₁ y₂ | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 40 | Surreal.Multiplication.P3_of_lt | [
[
414,
23
],
[
419,
45
]
] | 4 | 7 | exact P3_neg.2 <| P3_of_le_left _ (hs _) <| by
rw [moveLeft_neg]
exact neg_le_neg (le_iff_game_le.1 hi) | case inr.intro
x x₁ x₂ x₃ x' y y₁✝ y₂✝ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
y₁ y₂ : PGame
h : ∀ (i : x₂.LeftMoves), IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂
hs : ∀ (i : (-x₁).LeftMoves), IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂
hl : x₁ < x₂
i : x₁.RightMoves
hi : x₁.moveRight i ≤ x₂
⊢ P3 x₁ x₂ y₁ y₂ | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 40 | Surreal.Multiplication.P3_of_lt | [
[
414,
23
],
[
419,
45
]
] | 5 | 7 | rw [moveLeft_neg] | x x₁ x₂ x₃ x' y y₁✝ y₂✝ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
y₁ y₂ : PGame
h : ∀ (i : x₂.LeftMoves), IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂
hs : ∀ (i : (-x₁).LeftMoves), IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂
hl : x₁ < x₂
i : x₁.RightMoves
hi : x₁.moveRight i ≤ x₂
⊢ -x₂ ≤ (-x₁).moveLeft ?m.49249 | x x₁ x₂ x₃ x' y y₁✝ y₂✝ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
y₁ y₂ : PGame
h : ∀ (i : x₂.LeftMoves), IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂
hs : ∀ (i : (-x₁).LeftMoves), IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂
hl : x₁ < x₂
i : x₁.RightMoves
hi : x₁.moveRight i ≤ x₂
⊢ -x₂ ≤ -x₁.moveRight ?m.49258
x x₁ x₂ x₃ x' y y₁✝ y₂✝ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
y₁ y₂ : PGame
h : ∀ (i : x₂.LeftMoves), IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂
hs : ∀ (i : (-x₁).LeftMoves), IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂
hl : x₁ < x₂
i : x₁.RightMoves
hi : x₁.moveRight i ≤ x₂
⊢ x₁.RightMoves |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 40 | Surreal.Multiplication.P3_of_lt | [
[
414,
23
],
[
419,
45
]
] | 6 | 7 | exact neg_le_neg (le_iff_game_le.1 hi) | x x₁ x₂ x₃ x' y y₁✝ y₂✝ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
y₁ y₂ : PGame
h : ∀ (i : x₂.LeftMoves), IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂
hs : ∀ (i : (-x₁).LeftMoves), IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂
hl : x₁ < x₂
i : x₁.RightMoves
hi : x₁.moveRight i ≤ x₂
⊢ -x₂ ≤ -x₁.moveRight ?m.49258
x x₁ x₂ x₃ x' y y₁✝ y₂✝ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
y₁ y₂ : PGame
h : ∀ (i : x₂.LeftMoves), IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂
hs : ∀ (i : (-x₁).LeftMoves), IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂
hl : x₁ < x₂
i : x₁.RightMoves
hi : x₁.moveRight i ≤ x₂
⊢ x₁.RightMoves | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 41 | Surreal.Multiplication.main | [
[
422,
49
],
[
448,
50
]
] | 0 | 23 | apply argsRel_wf.induction a | x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
a : Args
⊢ a.Numeric → P124 a | x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
a : Args
⊢ ∀ (x : Args), (∀ (y : Args), ArgsRel y x → y.Numeric → P124 y) → x.Numeric → P124 x |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 41 | Surreal.Multiplication.main | [
[
422,
49
],
[
448,
50
]
] | 1 | 23 | intros a ih ha | x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
a : Args
⊢ ∀ (x : Args), (∀ (y : Args), ArgsRel y x → y.Numeric → P124 y) → x.Numeric → P124 x | x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
a✝ a : Args
ih : ∀ (y : Args), ArgsRel y a → y.Numeric → P124 y
ha : a.Numeric
⊢ P124 a |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 41 | Surreal.Multiplication.main | [
[
422,
49
],
[
448,
50
]
] | 2 | 23 | replace ih : ∀ a', ArgsRel a' a → P124 a' := fun a' hr ↦ ih a' hr (hr.numeric_closed ha) | x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
a✝ a : Args
ih : ∀ (y : Args), ArgsRel y a → y.Numeric → P124 y
ha : a.Numeric
⊢ P124 a | x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
a✝ a : Args
ha : a.Numeric
ih : ∀ (a' : Args), ArgsRel a' a → P124 a'
⊢ P124 a |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 41 | Surreal.Multiplication.main | [
[
422,
49
],
[
448,
50
]
] | 3 | 23 | cases a with
| P1 x y =>
rw [Args.numeric_P1] at ha
exact P1_of_ih ih ha.1 ha.2
| P24 x₁ x₂ y =>
have h₁₂ := ih₁₂ ih
have h₂₁ := ih₂₁ ih
have h4 := ih4 ih
obtain ⟨h₁₂x, h₁₂y⟩ := ih24_neg h₁₂
obtain ⟨h4x, h4y⟩ := ih4_neg h4
refine ⟨fun he ↦ Quotient.sound ?_, fun hl ↦ ?_⟩
·
rw [Args.numeric_P24] at ha
exact ⟨mul_right_le_of_equiv ha.1 ha.2.1 h₁₂ h₂₁ he,
mul_right_le_of_equiv ha.2.1 ha.1 h₂₁ h₁₂ (symm he)⟩
·
obtain ⟨hn₁, hn₂⟩ := numeric_of_ih ih
obtain ⟨⟨h₁, -⟩, h₂, -⟩ := mulOptionsLTMul_of_numeric hn₂
obtain ⟨⟨-, h₃⟩, -, h₄⟩ := mulOptionsLTMul_of_numeric hn₁
constructor <;> intro <;> refine P3_of_lt ?_ ?_ hl <;> intro <;> apply ih3_of_ih
any_goals assumption
exacts [(ih24_neg h₁₂y).1, (ih4_neg h4y).1] | x x₁ x₂ x₃ x' y y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y) → P124 a
hx : x.Numeric
hy : y.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y) → P124 a
a✝ a : Args
ha : a.Numeric
ih : ∀ (a' : Args), ArgsRel a' a → P124 a'
⊢ P124 a | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 41 | Surreal.Multiplication.main | [
[
422,
49
],
[
448,
50
]
] | 4 | 23 | rw [Args.numeric_P1] at ha | case P1
x✝ x₁ x₂ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x✝ y✝) → P124 a
hx : x✝.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y✝) → P124 a
a : Args
x y : PGame
ha : (Args.P1 x y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P1 x y) → P124 a'
⊢ P124 (Args.P1 x y) | case P1
x✝ x₁ x₂ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x✝ y✝) → P124 a
hx : x✝.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y✝) → P124 a
a : Args
x y : PGame
ha : x.Numeric ∧ y.Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P1 x y) → P124 a'
⊢ P124 (Args.P1 x y) |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 41 | Surreal.Multiplication.main | [
[
422,
49
],
[
448,
50
]
] | 5 | 23 | exact P1_of_ih ih ha.1 ha.2 | case P1
x✝ x₁ x₂ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x✝ y✝) → P124 a
hx : x✝.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁ x₂ y✝) → P124 a
a : Args
x y : PGame
ha : x.Numeric ∧ y.Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P1 x y) → P124 a'
⊢ P124 (Args.P1 x y) | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 41 | Surreal.Multiplication.main | [
[
422,
49
],
[
448,
50
]
] | 6 | 23 | have h₁₂ := ih₁₂ ih | case P24
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
⊢ P124 (Args.P24 x₁ x₂ y) | case P24
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
⊢ P124 (Args.P24 x₁ x₂ y) |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 41 | Surreal.Multiplication.main | [
[
422,
49
],
[
448,
50
]
] | 7 | 23 | have h₂₁ := ih₂₁ ih | case P24
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
⊢ P124 (Args.P24 x₁ x₂ y) | case P24
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
⊢ P124 (Args.P24 x₁ x₂ y) |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 41 | Surreal.Multiplication.main | [
[
422,
49
],
[
448,
50
]
] | 8 | 23 | have h4 := ih4 ih | case P24
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
⊢ P124 (Args.P24 x₁ x₂ y) | case P24
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
⊢ P124 (Args.P24 x₁ x₂ y) |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 41 | Surreal.Multiplication.main | [
[
422,
49
],
[
448,
50
]
] | 9 | 23 | obtain ⟨h₁₂x, h₁₂y⟩ := ih24_neg h₁₂ | case P24
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
⊢ P124 (Args.P24 x₁ x₂ y) | case P24.intro
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
⊢ P124 (Args.P24 x₁ x₂ y) |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 41 | Surreal.Multiplication.main | [
[
422,
49
],
[
448,
50
]
] | 10 | 23 | obtain ⟨h4x, h4y⟩ := ih4_neg h4 | case P24.intro
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
⊢ P124 (Args.P24 x₁ x₂ y) | case P24.intro.intro
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
⊢ P124 (Args.P24 x₁ x₂ y) |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 41 | Surreal.Multiplication.main | [
[
422,
49
],
[
448,
50
]
] | 11 | 23 | refine ⟨fun he ↦ Quotient.sound ?_, fun hl ↦ ?_⟩ | case P24.intro.intro
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
⊢ P124 (Args.P24 x₁ x₂ y) | case P24.intro.intro.refine_1
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
he : x₁ ≈ x₂
⊢ x₁ * y ≈ x₂ * y
case P24.intro.intro.refine_2
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
⊢ (∀ (i : y.LeftMoves), P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ (j : (-y).LeftMoves), P3 x₁ x₂ ((-y).moveLeft j) (-y) |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 41 | Surreal.Multiplication.main | [
[
422,
49
],
[
448,
50
]
] | 12 | 23 | ·
rw [Args.numeric_P24] at ha
exact ⟨mul_right_le_of_equiv ha.1 ha.2.1 h₁₂ h₂₁ he,
mul_right_le_of_equiv ha.2.1 ha.1 h₂₁ h₁₂ (symm he)⟩ | case P24.intro.intro.refine_1
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
he : x₁ ≈ x₂
⊢ x₁ * y ≈ x₂ * y
case P24.intro.intro.refine_2
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
⊢ (∀ (i : y.LeftMoves), P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ (j : (-y).LeftMoves), P3 x₁ x₂ ((-y).moveLeft j) (-y) | case P24.intro.intro.refine_2
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
⊢ (∀ (i : y.LeftMoves), P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ (j : (-y).LeftMoves), P3 x₁ x₂ ((-y).moveLeft j) (-y) |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 41 | Surreal.Multiplication.main | [
[
422,
49
],
[
448,
50
]
] | 13 | 23 | ·
obtain ⟨hn₁, hn₂⟩ := numeric_of_ih ih
obtain ⟨⟨h₁, -⟩, h₂, -⟩ := mulOptionsLTMul_of_numeric hn₂
obtain ⟨⟨-, h₃⟩, -, h₄⟩ := mulOptionsLTMul_of_numeric hn₁
constructor <;> intro <;> refine P3_of_lt ?_ ?_ hl <;> intro <;> apply ih3_of_ih
any_goals assumption
exacts [(ih24_neg h₁₂y).1, (ih4_neg h4y).1] | case P24.intro.intro.refine_2
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
⊢ (∀ (i : y.LeftMoves), P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ (j : (-y).LeftMoves), P3 x₁ x₂ ((-y).moveLeft j) (-y) | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 41 | Surreal.Multiplication.main | [
[
422,
49
],
[
448,
50
]
] | 14 | 23 | rw [Args.numeric_P24] at ha | case P24.intro.intro.refine_1
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
he : x₁ ≈ x₂
⊢ x₁ * y ≈ x₂ * y | case P24.intro.intro.refine_1
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
he : x₁ ≈ x₂
⊢ x₁ * y ≈ x₂ * y |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 41 | Surreal.Multiplication.main | [
[
422,
49
],
[
448,
50
]
] | 15 | 23 | exact ⟨mul_right_le_of_equiv ha.1 ha.2.1 h₁₂ h₂₁ he,
mul_right_le_of_equiv ha.2.1 ha.1 h₂₁ h₁₂ (symm he)⟩ | case P24.intro.intro.refine_1
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
he : x₁ ≈ x₂
⊢ x₁ * y ≈ x₂ * y | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 41 | Surreal.Multiplication.main | [
[
422,
49
],
[
448,
50
]
] | 16 | 23 | obtain ⟨hn₁, hn₂⟩ := numeric_of_ih ih | case P24.intro.intro.refine_2
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
⊢ (∀ (i : y.LeftMoves), P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ (j : (-y).LeftMoves), P3 x₁ x₂ ((-y).moveLeft j) (-y) | case P24.intro.intro.refine_2.intro
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
⊢ (∀ (i : y.LeftMoves), P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ (j : (-y).LeftMoves), P3 x₁ x₂ ((-y).moveLeft j) (-y) |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 41 | Surreal.Multiplication.main | [
[
422,
49
],
[
448,
50
]
] | 17 | 23 | obtain ⟨⟨h₁, -⟩, h₂, -⟩ := mulOptionsLTMul_of_numeric hn₂ | case P24.intro.intro.refine_2.intro
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
⊢ (∀ (i : y.LeftMoves), P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ (j : (-y).LeftMoves), P3 x₁ x₂ ((-y).moveLeft j) (-y) | case P24.intro.intro.refine_2.intro.intro.intro.intro
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
⊢ (∀ (i : y.LeftMoves), P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ (j : (-y).LeftMoves), P3 x₁ x₂ ((-y).moveLeft j) (-y) |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 41 | Surreal.Multiplication.main | [
[
422,
49
],
[
448,
50
]
] | 18 | 23 | obtain ⟨⟨-, h₃⟩, -, h₄⟩ := mulOptionsLTMul_of_numeric hn₁ | case P24.intro.intro.refine_2.intro.intro.intro.intro
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
⊢ (∀ (i : y.LeftMoves), P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ (j : (-y).LeftMoves), P3 x₁ x₂ ((-y).moveLeft j) (-y) | case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
⊢ (∀ (i : y.LeftMoves), P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ (j : (-y).LeftMoves), P3 x₁ x₂ ((-y).moveLeft j) (-y) |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 41 | Surreal.Multiplication.main | [
[
422,
49
],
[
448,
50
]
] | 19 | 23 | constructor <;> intro <;> refine P3_of_lt ?_ ?_ hl <;> intro <;> apply ih3_of_ih | case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
⊢ (∀ (i : y.LeftMoves), P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ (j : (-y).LeftMoves), P3 x₁ x₂ ((-y).moveLeft j) (-y) | case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.left.refine_1.h24
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
i✝¹ : y.LeftMoves
i✝ : x₂.LeftMoves
⊢ IH24 x₁ x₂ y
case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.left.refine_1.h4
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
i✝¹ : y.LeftMoves
i✝ : x₂.LeftMoves
⊢ IH4 x₁ x₂ y
case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.left.refine_1.hl
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
i✝¹ : y.LeftMoves
i✝ : x₂.LeftMoves
⊢ MulOptionsLTMul x₂ y
case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.left.refine_2.h24
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
i✝¹ : y.LeftMoves
i✝ : (-x₁).LeftMoves
⊢ IH24 (-x₂) (-x₁) y
case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.left.refine_2.h4
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
i✝¹ : y.LeftMoves
i✝ : (-x₁).LeftMoves
⊢ IH4 (-x₂) (-x₁) y
case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.left.refine_2.hl
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
i✝¹ : y.LeftMoves
i✝ : (-x₁).LeftMoves
⊢ MulOptionsLTMul (-x₁) y
case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.right.refine_1.h24
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
j✝ : (-y).LeftMoves
i✝ : x₂.LeftMoves
⊢ IH24 x₁ x₂ (-y)
case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.right.refine_1.h4
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
j✝ : (-y).LeftMoves
i✝ : x₂.LeftMoves
⊢ IH4 x₁ x₂ (-y)
case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.right.refine_1.hl
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
j✝ : (-y).LeftMoves
i✝ : x₂.LeftMoves
⊢ MulOptionsLTMul x₂ (-y)
case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.right.refine_2.h24
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
j✝ : (-y).LeftMoves
i✝ : (-x₁).LeftMoves
⊢ IH24 (-x₂) (-x₁) (-y)
case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.right.refine_2.h4
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
j✝ : (-y).LeftMoves
i✝ : (-x₁).LeftMoves
⊢ IH4 (-x₂) (-x₁) (-y)
case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.right.refine_2.hl
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
j✝ : (-y).LeftMoves
i✝ : (-x₁).LeftMoves
⊢ MulOptionsLTMul (-x₁) (-y) |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 41 | Surreal.Multiplication.main | [
[
422,
49
],
[
448,
50
]
] | 20 | 23 | any_goals assumption | case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.left.refine_1.h24
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
i✝¹ : y.LeftMoves
i✝ : x₂.LeftMoves
⊢ IH24 x₁ x₂ y
case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.left.refine_1.h4
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
i✝¹ : y.LeftMoves
i✝ : x₂.LeftMoves
⊢ IH4 x₁ x₂ y
case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.left.refine_1.hl
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
i✝¹ : y.LeftMoves
i✝ : x₂.LeftMoves
⊢ MulOptionsLTMul x₂ y
case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.left.refine_2.h24
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
i✝¹ : y.LeftMoves
i✝ : (-x₁).LeftMoves
⊢ IH24 (-x₂) (-x₁) y
case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.left.refine_2.h4
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
i✝¹ : y.LeftMoves
i✝ : (-x₁).LeftMoves
⊢ IH4 (-x₂) (-x₁) y
case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.left.refine_2.hl
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
i✝¹ : y.LeftMoves
i✝ : (-x₁).LeftMoves
⊢ MulOptionsLTMul (-x₁) y
case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.right.refine_1.h24
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
j✝ : (-y).LeftMoves
i✝ : x₂.LeftMoves
⊢ IH24 x₁ x₂ (-y)
case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.right.refine_1.h4
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
j✝ : (-y).LeftMoves
i✝ : x₂.LeftMoves
⊢ IH4 x₁ x₂ (-y)
case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.right.refine_1.hl
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
j✝ : (-y).LeftMoves
i✝ : x₂.LeftMoves
⊢ MulOptionsLTMul x₂ (-y)
case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.right.refine_2.h24
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
j✝ : (-y).LeftMoves
i✝ : (-x₁).LeftMoves
⊢ IH24 (-x₂) (-x₁) (-y)
case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.right.refine_2.h4
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
j✝ : (-y).LeftMoves
i✝ : (-x₁).LeftMoves
⊢ IH4 (-x₂) (-x₁) (-y)
case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.right.refine_2.hl
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
j✝ : (-y).LeftMoves
i✝ : (-x₁).LeftMoves
⊢ MulOptionsLTMul (-x₁) (-y) | case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.right.refine_2.h24
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
j✝ : (-y).LeftMoves
i✝ : (-x₁).LeftMoves
⊢ IH24 (-x₂) (-x₁) (-y)
case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.right.refine_2.h4
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
j✝ : (-y).LeftMoves
i✝ : (-x₁).LeftMoves
⊢ IH4 (-x₂) (-x₁) (-y) |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 41 | Surreal.Multiplication.main | [
[
422,
49
],
[
448,
50
]
] | 21 | 23 | exacts [(ih24_neg h₁₂y).1, (ih4_neg h4y).1] | case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.right.refine_2.h24
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
j✝ : (-y).LeftMoves
i✝ : (-x₁).LeftMoves
⊢ IH24 (-x₂) (-x₁) (-y)
case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.right.refine_2.h4
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
j✝ : (-y).LeftMoves
i✝ : (-x₁).LeftMoves
⊢ IH4 (-x₂) (-x₁) (-y) | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 41 | Surreal.Multiplication.main | [
[
422,
49
],
[
448,
50
]
] | 22 | 23 | assumption | case P24.intro.intro.refine_2.intro.intro.intro.intro.intro.intro.intro.right.refine_2.hl
x x₁✝ x₂✝ x₃ x' y✝ y₁ y₂ y₃ y' : PGame
ih✝ : ∀ (a : Args), ArgsRel a (Args.P1 x y✝) → P124 a
hx : x.Numeric
hy : y✝.Numeric
ih' : ∀ (a : Args), ArgsRel a (Args.P24 x₁✝ x₂✝ y✝) → P124 a
a : Args
x₁ x₂ y : PGame
ha : (Args.P24 x₁ x₂ y).Numeric
ih : ∀ (a' : Args), ArgsRel a' (Args.P24 x₁ x₂ y) → P124 a'
h₁₂ : IH24 x₁ x₂ y
h₂₁ : IH24 x₂ x₁ y
h4 : IH4 x₁ x₂ y
h₁₂x : IH24 (-x₂) (-x₁) y
h₁₂y : IH24 x₁ x₂ (-y)
h4x : IH4 (-x₂) (-x₁) y
h4y : IH4 x₁ x₂ (-y)
hl : x₁ < x₂
hn₁ : (x₁ * y).Numeric
hn₂ : (x₂ * y).Numeric
h₁ : MulOptionsLTMul x₂ y
h₂ : MulOptionsLTMul x₂ (-y)
h₃ : MulOptionsLTMul (-x₁) (-y)
h₄ : MulOptionsLTMul (-x₁) y
j✝ : (-y).LeftMoves
i✝ : (-x₁).LeftMoves
⊢ MulOptionsLTMul (-x₁) (-y) | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 47 | SetTheory.PGame.P3_of_lt_of_lt | [
[
475,
74
],
[
489,
72
]
] | 0 | 13 | revert x₁ x₂ | x x₁ x₂ y y₁ y₂ : PGame
hx✝ : x.Numeric
hx₁ : x₁.Numeric
hx₂ : x₂.Numeric
hy✝ : y.Numeric
hy₁ : y₁.Numeric
hy₂ : y₂.Numeric
hx : x₁ < x₂
hy : y₁ < y₂
⊢ P3 x₁ x₂ y₁ y₂ | x y y₁ y₂ : PGame
hx : x.Numeric
hy✝ : y.Numeric
hy₁ : y₁.Numeric
hy₂ : y₂.Numeric
hy : y₁ < y₂
⊢ ∀ {x₁ x₂ : PGame}, x₁.Numeric → x₂.Numeric → x₁ < x₂ → P3 x₁ x₂ y₁ y₂ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 47 | SetTheory.PGame.P3_of_lt_of_lt | [
[
475,
74
],
[
489,
72
]
] | 1 | 13 | rw [← Prod.forall'] | x y y₁ y₂ : PGame
hx : x.Numeric
hy✝ : y.Numeric
hy₁ : y₁.Numeric
hy₂ : y₂.Numeric
hy : y₁ < y₂
⊢ ∀ {x₁ x₂ : PGame}, x₁.Numeric → x₂.Numeric → x₁ < x₂ → P3 x₁ x₂ y₁ y₂ | x y y₁ y₂ : PGame
hx : x.Numeric
hy✝ : y.Numeric
hy₁ : y₁.Numeric
hy₂ : y₂.Numeric
hy : y₁ < y₂
⊢ ∀ (x : PGame × PGame), x.1.Numeric → x.2.Numeric → x.1 < x.2 → P3 x.1 x.2 y₁ y₂ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 47 | SetTheory.PGame.P3_of_lt_of_lt | [
[
475,
74
],
[
489,
72
]
] | 2 | 13 | refine (wf_isOption.prod_gameAdd wf_isOption).fix ?_ | x y y₁ y₂ : PGame
hx : x.Numeric
hy✝ : y.Numeric
hy₁ : y₁.Numeric
hy₂ : y₂.Numeric
hy : y₁ < y₂
⊢ ∀ (x : PGame × PGame), x.1.Numeric → x.2.Numeric → x.1 < x.2 → P3 x.1 x.2 y₁ y₂ | x y y₁ y₂ : PGame
hx : x.Numeric
hy✝ : y.Numeric
hy₁ : y₁.Numeric
hy₂ : y₂.Numeric
hy : y₁ < y₂
⊢ ∀ (x : PGame × PGame),
(∀ (y : PGame × PGame),
Prod.GameAdd IsOption IsOption y x → y.1.Numeric → y.2.Numeric → y.1 < y.2 → P3 y.1 y.2 y₁ y₂) →
x.1.Numeric → x.2.Numeric → x.1 < x.2 → P3 x.1 x.2 y₁ y₂ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 47 | SetTheory.PGame.P3_of_lt_of_lt | [
[
475,
74
],
[
489,
72
]
] | 3 | 13 | rintro ⟨x₁, x₂⟩ ih hx₁ hx₂ hx | x y y₁ y₂ : PGame
hx : x.Numeric
hy✝ : y.Numeric
hy₁ : y₁.Numeric
hy₂ : y₂.Numeric
hy : y₁ < y₂
⊢ ∀ (x : PGame × PGame),
(∀ (y : PGame × PGame),
Prod.GameAdd IsOption IsOption y x → y.1.Numeric → y.2.Numeric → y.1 < y.2 → P3 y.1 y.2 y₁ y₂) →
x.1.Numeric → x.2.Numeric → x.1 < x.2 → P3 x.1 x.2 y₁ y₂ | case mk
x y y₁ y₂ : PGame
hx✝ : x.Numeric
hy✝ : y.Numeric
hy₁ : y₁.Numeric
hy₂ : y₂.Numeric
hy : y₁ < y₂
x₁ x₂ : PGame
ih :
∀ (y : PGame × PGame),
Prod.GameAdd IsOption IsOption y (x₁, x₂) → y.1.Numeric → y.2.Numeric → y.1 < y.2 → P3 y.1 y.2 y₁ y₂
hx₁ : (x₁, x₂).1.Numeric
hx₂ : (x₁, x₂).2.Numeric
hx : (x₁, x₂).1 < (x₁, x₂).2
⊢ P3 (x₁, x₂).1 (x₁, x₂).2 y₁ y₂ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 47 | SetTheory.PGame.P3_of_lt_of_lt | [
[
475,
74
],
[
489,
72
]
] | 4 | 13 | refine P3_of_lt ?_ ?_ hx <;> intro i | case mk
x y y₁ y₂ : PGame
hx✝ : x.Numeric
hy✝ : y.Numeric
hy₁ : y₁.Numeric
hy₂ : y₂.Numeric
hy : y₁ < y₂
x₁ x₂ : PGame
ih :
∀ (y : PGame × PGame),
Prod.GameAdd IsOption IsOption y (x₁, x₂) → y.1.Numeric → y.2.Numeric → y.1 < y.2 → P3 y.1 y.2 y₁ y₂
hx₁ : (x₁, x₂).1.Numeric
hx₂ : (x₁, x₂).2.Numeric
hx : (x₁, x₂).1 < (x₁, x₂).2
⊢ P3 (x₁, x₂).1 (x₁, x₂).2 y₁ y₂ | case mk.refine_1
x y y₁ y₂ : PGame
hx✝ : x.Numeric
hy✝ : y.Numeric
hy₁ : y₁.Numeric
hy₂ : y₂.Numeric
hy : y₁ < y₂
x₁ x₂ : PGame
ih :
∀ (y : PGame × PGame),
Prod.GameAdd IsOption IsOption y (x₁, x₂) → y.1.Numeric → y.2.Numeric → y.1 < y.2 → P3 y.1 y.2 y₁ y₂
hx₁ : (x₁, x₂).1.Numeric
hx₂ : (x₁, x₂).2.Numeric
hx : (x₁, x₂).1 < (x₁, x₂).2
i : (x₁, x₂).2.LeftMoves
⊢ IH3 (x₁, x₂).1 ((x₁, x₂).2.moveLeft i) (x₁, x₂).2 y₁ y₂
case mk.refine_2
x y y₁ y₂ : PGame
hx✝ : x.Numeric
hy✝ : y.Numeric
hy₁ : y₁.Numeric
hy₂ : y₂.Numeric
hy : y₁ < y₂
x₁ x₂ : PGame
ih :
∀ (y : PGame × PGame),
Prod.GameAdd IsOption IsOption y (x₁, x₂) → y.1.Numeric → y.2.Numeric → y.1 < y.2 → P3 y.1 y.2 y₁ y₂
hx₁ : (x₁, x₂).1.Numeric
hx₂ : (x₁, x₂).2.Numeric
hx : (x₁, x₂).1 < (x₁, x₂).2
i : (-(x₁, x₂).1).LeftMoves
⊢ IH3 (-(x₁, x₂).2) ((-(x₁, x₂).1).moveLeft i) (-(x₁, x₂).1) y₁ y₂ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 47 | SetTheory.PGame.P3_of_lt_of_lt | [
[
475,
74
],
[
489,
72
]
] | 5 | 13 | · have hi := hx₂.moveLeft i
exact ⟨(P24 hx₁ hi hy₁).1, (P24 hx₁ hi hy₂).1,
P3_comm.2 <| ((P24 hy₁ hy₂ hx₂).2 hy).1 _,
ih _ (snd <| IsOption.moveLeft i) hx₁ hi⟩ | case mk.refine_1
x y y₁ y₂ : PGame
hx✝ : x.Numeric
hy✝ : y.Numeric
hy₁ : y₁.Numeric
hy₂ : y₂.Numeric
hy : y₁ < y₂
x₁ x₂ : PGame
ih :
∀ (y : PGame × PGame),
Prod.GameAdd IsOption IsOption y (x₁, x₂) → y.1.Numeric → y.2.Numeric → y.1 < y.2 → P3 y.1 y.2 y₁ y₂
hx₁ : (x₁, x₂).1.Numeric
hx₂ : (x₁, x₂).2.Numeric
hx : (x₁, x₂).1 < (x₁, x₂).2
i : (x₁, x₂).2.LeftMoves
⊢ IH3 (x₁, x₂).1 ((x₁, x₂).2.moveLeft i) (x₁, x₂).2 y₁ y₂
case mk.refine_2
x y y₁ y₂ : PGame
hx✝ : x.Numeric
hy✝ : y.Numeric
hy₁ : y₁.Numeric
hy₂ : y₂.Numeric
hy : y₁ < y₂
x₁ x₂ : PGame
ih :
∀ (y : PGame × PGame),
Prod.GameAdd IsOption IsOption y (x₁, x₂) → y.1.Numeric → y.2.Numeric → y.1 < y.2 → P3 y.1 y.2 y₁ y₂
hx₁ : (x₁, x₂).1.Numeric
hx₂ : (x₁, x₂).2.Numeric
hx : (x₁, x₂).1 < (x₁, x₂).2
i : (-(x₁, x₂).1).LeftMoves
⊢ IH3 (-(x₁, x₂).2) ((-(x₁, x₂).1).moveLeft i) (-(x₁, x₂).1) y₁ y₂ | case mk.refine_2
x y y₁ y₂ : PGame
hx✝ : x.Numeric
hy✝ : y.Numeric
hy₁ : y₁.Numeric
hy₂ : y₂.Numeric
hy : y₁ < y₂
x₁ x₂ : PGame
ih :
∀ (y : PGame × PGame),
Prod.GameAdd IsOption IsOption y (x₁, x₂) → y.1.Numeric → y.2.Numeric → y.1 < y.2 → P3 y.1 y.2 y₁ y₂
hx₁ : (x₁, x₂).1.Numeric
hx₂ : (x₁, x₂).2.Numeric
hx : (x₁, x₂).1 < (x₁, x₂).2
i : (-(x₁, x₂).1).LeftMoves
⊢ IH3 (-(x₁, x₂).2) ((-(x₁, x₂).1).moveLeft i) (-(x₁, x₂).1) y₁ y₂ |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 47 | SetTheory.PGame.P3_of_lt_of_lt | [
[
475,
74
],
[
489,
72
]
] | 6 | 13 | · have hi := hx₁.neg.moveLeft i
exact ⟨(P24 hx₂.neg hi hy₁).1, (P24 hx₂.neg hi hy₂).1,
P3_comm.2 <| ((P24 hy₁ hy₂ hx₁).2 hy).2 _, by
rw [moveLeft_neg', ← P3_neg, neg_lt_neg_iff]
exact ih _ (fst <| IsOption.moveRight _) (hx₁.moveRight _) hx₂⟩ | case mk.refine_2
x y y₁ y₂ : PGame
hx✝ : x.Numeric
hy✝ : y.Numeric
hy₁ : y₁.Numeric
hy₂ : y₂.Numeric
hy : y₁ < y₂
x₁ x₂ : PGame
ih :
∀ (y : PGame × PGame),
Prod.GameAdd IsOption IsOption y (x₁, x₂) → y.1.Numeric → y.2.Numeric → y.1 < y.2 → P3 y.1 y.2 y₁ y₂
hx₁ : (x₁, x₂).1.Numeric
hx₂ : (x₁, x₂).2.Numeric
hx : (x₁, x₂).1 < (x₁, x₂).2
i : (-(x₁, x₂).1).LeftMoves
⊢ IH3 (-(x₁, x₂).2) ((-(x₁, x₂).1).moveLeft i) (-(x₁, x₂).1) y₁ y₂ | no goals |
Mathlib/SetTheory/Surreal/Multiplication.lean | [
[
"Mathlib.SetTheory.Surreal.Basic",
"Mathlib/SetTheory/Surreal/Basic.lean"
],
[
"Mathlib.Logic.Hydra",
"Mathlib/Logic/Hydra.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
]
] | [
{
"code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)",
"end": [
74,
81
],
"full_name": "Surreal.Multiplication.P1",
"kind": "commanddeclaration",
"start": [
71,
1
]
},
{
"code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)",
"end": [
77,
67
],
"full_name": "Surreal.Multiplication.P2",
"kind": "commanddeclaration",
"start": [
76,
1
]
},
{
"code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)",
"end": [
80,
87
],
"full_name": "Surreal.Multiplication.P3",
"kind": "commanddeclaration",
"start": [
79,
1
]
},
{
"code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)",
"end": [
87,
84
],
"full_name": "Surreal.Multiplication.P4",
"kind": "commanddeclaration",
"start": [
82,
1
]
},
{
"code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y",
"end": [
90,
60
],
"full_name": "Surreal.Multiplication.P24",
"kind": "commanddeclaration",
"start": [
89,
1
]
},
{
"code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]",
"end": [
98,
34
],
"full_name": "Surreal.Multiplication.P3_comm",
"kind": "lemma",
"start": [
96,
1
]
},
{
"code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
103,
44
],
"full_name": "Surreal.Multiplication.P3.trans",
"kind": "lemma",
"start": [
100,
1
]
},
{
"code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf",
"end": [
108,
10
],
"full_name": "Surreal.Multiplication.P3_neg",
"kind": "lemma",
"start": [
105,
1
]
},
{
"code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)",
"end": [
116,
16
],
"full_name": "Surreal.Multiplication.P2_neg_left",
"kind": "lemma",
"start": [
110,
1
]
},
{
"code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]",
"end": [
119,
51
],
"full_name": "Surreal.Multiplication.P2_neg_right",
"kind": "lemma",
"start": [
118,
1
]
},
{
"code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]",
"end": [
122,
62
],
"full_name": "Surreal.Multiplication.P4_neg_left",
"kind": "lemma",
"start": [
121,
1
]
},
{
"code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]",
"end": [
125,
33
],
"full_name": "Surreal.Multiplication.P4_neg_right",
"kind": "lemma",
"start": [
124,
1
]
},
{
"code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]",
"end": [
127,
99
],
"full_name": "Surreal.Multiplication.P24_neg_left",
"kind": "lemma",
"start": [
127,
1
]
},
{
"code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]",
"end": [
128,
99
],
"full_name": "Surreal.Multiplication.P24_neg_right",
"kind": "lemma",
"start": [
128,
1
]
},
{
"code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]",
"end": [
136,
53
],
"full_name": "Surreal.Multiplication.mulOption_lt_iff_P1",
"kind": "lemma",
"start": [
132,
1
]
},
{
"code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'",
"end": [
141,
27
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3",
"kind": "lemma",
"start": [
138,
1
]
},
{
"code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel",
"end": [
146,
56
],
"full_name": "Surreal.Multiplication.P1_of_eq",
"kind": "lemma",
"start": [
143,
1
]
},
{
"code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel",
"end": [
150,
44
],
"full_name": "Surreal.Multiplication.P1_of_lt",
"kind": "lemma",
"start": [
148,
1
]
},
{
"code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args",
"end": [
155,
37
],
"full_name": "Surreal.Multiplication.Args",
"kind": "commanddeclaration",
"start": [
152,
1
]
},
{
"code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}",
"end": [
160,
38
],
"full_name": "Surreal.Multiplication.Args.toMultiset",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x",
"end": [
163,
77
],
"full_name": "Surreal.Multiplication.Args.Numeric",
"kind": "commanddeclaration",
"start": [
162,
1
]
},
{
"code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
166,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P1",
"kind": "lemma",
"start": [
165,
1
]
},
{
"code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]",
"end": [
170,
39
],
"full_name": "Surreal.Multiplication.Args.numeric_P24",
"kind": "lemma",
"start": [
168,
1
]
},
{
"code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset",
"end": [
177,
73
],
"full_name": "Surreal.Multiplication.ArgsRel",
"kind": "commanddeclaration",
"start": [
174,
1
]
},
{
"code": "theorem argsRel_wf : WellFounded ArgsRel",
"end": [
180,
89
],
"full_name": "Surreal.Multiplication.argsRel_wf",
"kind": "commanddeclaration",
"start": [
179,
1
]
},
{
"code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y",
"end": [
185,
38
],
"full_name": "Surreal.Multiplication.P124",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption",
"end": [
189,
95
],
"full_name": "Surreal.Multiplication.ArgsRel.numeric_closed",
"kind": "lemma",
"start": [
187,
1
]
},
{
"code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'",
"end": [
193,
88
],
"full_name": "Surreal.Multiplication.IH1",
"kind": "commanddeclaration",
"start": [
191,
1
]
},
{
"code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)",
"end": [
200,
38
],
"full_name": "Surreal.Multiplication.ih1_neg_left",
"kind": "lemma",
"start": [
197,
1
]
},
{
"code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h",
"end": [
205,
12
],
"full_name": "Surreal.Multiplication.ih1_neg_right",
"kind": "lemma",
"start": [
202,
1
]
},
{
"code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)",
"end": [
212,
63
],
"full_name": "Surreal.Multiplication.numeric_option_mul",
"kind": "lemma",
"start": [
211,
1
]
},
{
"code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)",
"end": [
215,
64
],
"full_name": "Surreal.Multiplication.numeric_mul_option",
"kind": "lemma",
"start": [
214,
1
]
},
{
"code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)",
"end": [
218,
99
],
"full_name": "Surreal.Multiplication.numeric_option_mul_option",
"kind": "lemma",
"start": [
217,
1
]
},
{
"code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)",
"end": [
223,
64
],
"full_name": "Surreal.Multiplication.ih1",
"kind": "lemma",
"start": [
220,
1
]
},
{
"code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih",
"end": [
227,
11
],
"full_name": "Surreal.Multiplication.ih1_swap",
"kind": "lemma",
"start": [
225,
1
]
},
{
"code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i",
"end": [
232,
64
],
"full_name": "Surreal.Multiplication.P3_of_ih",
"kind": "lemma",
"start": [
229,
1
]
},
{
"code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)",
"end": [
235,
64
],
"full_name": "Surreal.Multiplication.P24_of_ih",
"kind": "lemma",
"start": [
234,
1
]
},
{
"code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k",
"end": [
245,
95
],
"full_name": "Surreal.Multiplication.mulOption_lt_of_lt",
"kind": "lemma",
"start": [
243,
1
]
},
{
"code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h",
"end": [
254,
87
],
"full_name": "Surreal.Multiplication.mulOption_lt",
"kind": "lemma",
"start": [
247,
1
]
},
{
"code": "theorem P1_of_ih : (x * y).Numeric",
"end": [
281,
56
],
"full_name": "Surreal.Multiplication.P1_of_ih",
"kind": "commanddeclaration",
"start": [
258,
1
]
},
{
"code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)",
"end": [
285,
100
],
"full_name": "Surreal.Multiplication.IH24",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)",
"end": [
289,
84
],
"full_name": "Surreal.Multiplication.IH4",
"kind": "commanddeclaration",
"start": [
287,
1
]
},
{
"code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)",
"end": [
301,
63
],
"full_name": "Surreal.Multiplication.ih₁₂",
"kind": "lemma",
"start": [
295,
1
]
},
{
"code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel",
"end": [
307,
7
],
"full_name": "Surreal.Multiplication.ih₂₁",
"kind": "lemma",
"start": [
303,
1
]
},
{
"code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'",
"end": [
316,
69
],
"full_name": "Surreal.Multiplication.ih4",
"kind": "lemma",
"start": [
309,
1
]
},
{
"code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero",
"end": [
321,
57
],
"full_name": "Surreal.Multiplication.numeric_of_ih",
"kind": "lemma",
"start": [
318,
1
]
},
{
"code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2",
"end": [
331,
73
],
"full_name": "Surreal.Multiplication.ih24_neg",
"kind": "lemma",
"start": [
323,
1
]
},
{
"code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]",
"end": [
338,
47
],
"full_name": "Surreal.Multiplication.ih4_neg",
"kind": "lemma",
"start": [
333,
1
]
},
{
"code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt",
"end": [
346,
25
],
"full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv",
"kind": "lemma",
"start": [
340,
1
]
},
{
"code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y",
"end": [
362,
73
],
"full_name": "Surreal.Multiplication.mul_right_le_of_equiv",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)",
"end": [
365,
92
],
"full_name": "Surreal.Multiplication.MulOptionsLTMul",
"kind": "commanddeclaration",
"start": [
364,
1
]
},
{
"code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id",
"end": [
386,
15
],
"full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric",
"kind": "lemma",
"start": [
367,
1
]
},
{
"code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)",
"end": [
395,
76
],
"full_name": "Surreal.Multiplication.IH3",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩",
"end": [
401,
93
],
"full_name": "Surreal.Multiplication.ih3_of_ih",
"kind": "lemma",
"start": [
397,
1
]
},
{
"code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1",
"end": [
408,
18
],
"full_name": "Surreal.Multiplication.P3_of_le_left",
"kind": "lemma",
"start": [
403,
1
]
},
{
"code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂",
"end": [
419,
45
],
"full_name": "Surreal.Multiplication.P3_of_lt",
"kind": "commanddeclaration",
"start": [
410,
1
]
},
{
"code": "theorem main (a : Args) : a.Numeric → P124 a",
"end": [
448,
50
],
"full_name": "Surreal.Multiplication.main",
"kind": "commanddeclaration",
"start": [
421,
1
]
},
{
"code": "theorem Numeric.mul : Numeric (x * y)",
"end": [
459,
80
],
"full_name": "SetTheory.PGame.Numeric.mul",
"kind": "commanddeclaration",
"start": [
459,
1
]
},
{
"code": "theorem P24 : P24 x₁ x₂ y",
"end": [
461,
75
],
"full_name": "SetTheory.PGame.P24",
"kind": "commanddeclaration",
"start": [
461,
1
]
},
{
"code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y",
"end": [
464,
47
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_left",
"kind": "commanddeclaration",
"start": [
463,
1
]
},
{
"code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂",
"end": [
467,
92
],
"full_name": "SetTheory.PGame.Equiv.mul_congr_right",
"kind": "commanddeclaration",
"start": [
466,
1
]
},
{
"code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂",
"end": [
470,
74
],
"full_name": "SetTheory.PGame.Equiv.mul_congr",
"kind": "commanddeclaration",
"start": [
469,
1
]
},
{
"code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂",
"end": [
489,
72
],
"full_name": "SetTheory.PGame.P3_of_lt_of_lt",
"kind": "commanddeclaration",
"start": [
474,
1
]
},
{
"code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂",
"end": [
495,
13
],
"full_name": "SetTheory.PGame.Numeric.mul_pos",
"kind": "commanddeclaration",
"start": [
491,
1
]
}
] | 47 | SetTheory.PGame.P3_of_lt_of_lt | [
[
475,
74
],
[
489,
72
]
] | 7 | 13 | have hi := hx₂.moveLeft i | case mk.refine_1
x y y₁ y₂ : PGame
hx✝ : x.Numeric
hy✝ : y.Numeric
hy₁ : y₁.Numeric
hy₂ : y₂.Numeric
hy : y₁ < y₂
x₁ x₂ : PGame
ih :
∀ (y : PGame × PGame),
Prod.GameAdd IsOption IsOption y (x₁, x₂) → y.1.Numeric → y.2.Numeric → y.1 < y.2 → P3 y.1 y.2 y₁ y₂
hx₁ : (x₁, x₂).1.Numeric
hx₂ : (x₁, x₂).2.Numeric
hx : (x₁, x₂).1 < (x₁, x₂).2
i : (x₁, x₂).2.LeftMoves
⊢ IH3 (x₁, x₂).1 ((x₁, x₂).2.moveLeft i) (x₁, x₂).2 y₁ y₂ | case mk.refine_1
x y y₁ y₂ : PGame
hx✝ : x.Numeric
hy✝ : y.Numeric
hy₁ : y₁.Numeric
hy₂ : y₂.Numeric
hy : y₁ < y₂
x₁ x₂ : PGame
ih :
∀ (y : PGame × PGame),
Prod.GameAdd IsOption IsOption y (x₁, x₂) → y.1.Numeric → y.2.Numeric → y.1 < y.2 → P3 y.1 y.2 y₁ y₂
hx₁ : (x₁, x₂).1.Numeric
hx₂ : (x₁, x₂).2.Numeric
hx : (x₁, x₂).1 < (x₁, x₂).2
i : (x₁, x₂).2.LeftMoves
hi : ((x₁, x₂).2.moveLeft i).Numeric
⊢ IH3 (x₁, x₂).1 ((x₁, x₂).2.moveLeft i) (x₁, x₂).2 y₁ y₂ |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.