file
stringlengths
21
79
dependencies
sequencelengths
1
16
definitions
listlengths
1
625
theorem_idx
int64
0
574
theorem
stringlengths
3
121
theorem_loc
sequencelengths
2
2
tactic_idx
int64
0
155
tactic_len
int64
1
156
tactic
stringlengths
3
5.76k
state_before
stringlengths
7
13.6k
state_after
stringlengths
7
13.6k
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric → P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ x₂ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
47
SetTheory.PGame.P3_of_lt_of_lt
[ [ 475, 74 ], [ 489, 72 ] ]
8
13
exact ⟨(P24 hx₁ hi hy₁).1, (P24 hx₁ hi hy₂).1, P3_comm.2 <| ((P24 hy₁ hy₂ hx₂).2 hy).1 _, ih _ (snd <| IsOption.moveLeft i) hx₁ hi⟩
case mk.refine_1 x y y₁ y₂ : PGame hx✝ : x.Numeric hy✝ : y.Numeric hy₁ : y₁.Numeric hy₂ : y₂.Numeric hy : y₁ < y₂ x₁ x₂ : PGame ih : ∀ (y : PGame × PGame), Prod.GameAdd IsOption IsOption y (x₁, x₂) → y.1.Numeric → y.2.Numeric → y.1 < y.2 → P3 y.1 y.2 y₁ y₂ hx₁ : (x₁, x₂).1.Numeric hx₂ : (x₁, x₂).2.Numeric hx : (x₁, x₂).1 < (x₁, x₂).2 i : (x₁, x₂).2.LeftMoves hi : ((x₁, x₂).2.moveLeft i).Numeric ⊢ IH3 (x₁, x₂).1 ((x₁, x₂).2.moveLeft i) (x₁, x₂).2 y₁ y₂
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric → P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ x₂ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
47
SetTheory.PGame.P3_of_lt_of_lt
[ [ 475, 74 ], [ 489, 72 ] ]
9
13
have hi := hx₁.neg.moveLeft i
case mk.refine_2 x y y₁ y₂ : PGame hx✝ : x.Numeric hy✝ : y.Numeric hy₁ : y₁.Numeric hy₂ : y₂.Numeric hy : y₁ < y₂ x₁ x₂ : PGame ih : ∀ (y : PGame × PGame), Prod.GameAdd IsOption IsOption y (x₁, x₂) → y.1.Numeric → y.2.Numeric → y.1 < y.2 → P3 y.1 y.2 y₁ y₂ hx₁ : (x₁, x₂).1.Numeric hx₂ : (x₁, x₂).2.Numeric hx : (x₁, x₂).1 < (x₁, x₂).2 i : (-(x₁, x₂).1).LeftMoves ⊢ IH3 (-(x₁, x₂).2) ((-(x₁, x₂).1).moveLeft i) (-(x₁, x₂).1) y₁ y₂
case mk.refine_2 x y y₁ y₂ : PGame hx✝ : x.Numeric hy✝ : y.Numeric hy₁ : y₁.Numeric hy₂ : y₂.Numeric hy : y₁ < y₂ x₁ x₂ : PGame ih : ∀ (y : PGame × PGame), Prod.GameAdd IsOption IsOption y (x₁, x₂) → y.1.Numeric → y.2.Numeric → y.1 < y.2 → P3 y.1 y.2 y₁ y₂ hx₁ : (x₁, x₂).1.Numeric hx₂ : (x₁, x₂).2.Numeric hx : (x₁, x₂).1 < (x₁, x₂).2 i : (-(x₁, x₂).1).LeftMoves hi : ((-(x₁, x₂).1).moveLeft i).Numeric ⊢ IH3 (-(x₁, x₂).2) ((-(x₁, x₂).1).moveLeft i) (-(x₁, x₂).1) y₁ y₂
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric → P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ x₂ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
47
SetTheory.PGame.P3_of_lt_of_lt
[ [ 475, 74 ], [ 489, 72 ] ]
10
13
exact ⟨(P24 hx₂.neg hi hy₁).1, (P24 hx₂.neg hi hy₂).1, P3_comm.2 <| ((P24 hy₁ hy₂ hx₁).2 hy).2 _, by rw [moveLeft_neg', ← P3_neg, neg_lt_neg_iff] exact ih _ (fst <| IsOption.moveRight _) (hx₁.moveRight _) hx₂⟩
case mk.refine_2 x y y₁ y₂ : PGame hx✝ : x.Numeric hy✝ : y.Numeric hy₁ : y₁.Numeric hy₂ : y₂.Numeric hy : y₁ < y₂ x₁ x₂ : PGame ih : ∀ (y : PGame × PGame), Prod.GameAdd IsOption IsOption y (x₁, x₂) → y.1.Numeric → y.2.Numeric → y.1 < y.2 → P3 y.1 y.2 y₁ y₂ hx₁ : (x₁, x₂).1.Numeric hx₂ : (x₁, x₂).2.Numeric hx : (x₁, x₂).1 < (x₁, x₂).2 i : (-(x₁, x₂).1).LeftMoves hi : ((-(x₁, x₂).1).moveLeft i).Numeric ⊢ IH3 (-(x₁, x₂).2) ((-(x₁, x₂).1).moveLeft i) (-(x₁, x₂).1) y₁ y₂
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric → P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ x₂ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
47
SetTheory.PGame.P3_of_lt_of_lt
[ [ 475, 74 ], [ 489, 72 ] ]
11
13
rw [moveLeft_neg', ← P3_neg, neg_lt_neg_iff]
x y y₁ y₂ : PGame hx✝ : x.Numeric hy✝ : y.Numeric hy₁ : y₁.Numeric hy₂ : y₂.Numeric hy : y₁ < y₂ x₁ x₂ : PGame ih : ∀ (y : PGame × PGame), Prod.GameAdd IsOption IsOption y (x₁, x₂) → y.1.Numeric → y.2.Numeric → y.1 < y.2 → P3 y.1 y.2 y₁ y₂ hx₁ : (x₁, x₂).1.Numeric hx₂ : (x₁, x₂).2.Numeric hx : (x₁, x₂).1 < (x₁, x₂).2 i : (-(x₁, x₂).1).LeftMoves hi : ((-(x₁, x₂).1).moveLeft i).Numeric ⊢ -(x₁, x₂).2 < (-(x₁, x₂).1).moveLeft i → P3 (-(x₁, x₂).2) ((-(x₁, x₂).1).moveLeft i) y₁ y₂
x y y₁ y₂ : PGame hx✝ : x.Numeric hy✝ : y.Numeric hy₁ : y₁.Numeric hy₂ : y₂.Numeric hy : y₁ < y₂ x₁ x₂ : PGame ih : ∀ (y : PGame × PGame), Prod.GameAdd IsOption IsOption y (x₁, x₂) → y.1.Numeric → y.2.Numeric → y.1 < y.2 → P3 y.1 y.2 y₁ y₂ hx₁ : (x₁, x₂).1.Numeric hx₂ : (x₁, x₂).2.Numeric hx : (x₁, x₂).1 < (x₁, x₂).2 i : (-(x₁, x₂).1).LeftMoves hi : ((-(x₁, x₂).1).moveLeft i).Numeric ⊢ (x₁, x₂).1.moveRight (toLeftMovesNeg.symm i) < (x₁, x₂).2 → P3 ((x₁, x₂).1.moveRight (toLeftMovesNeg.symm i)) (x₁, x₂).2 y₁ y₂
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric → P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ x₂ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
47
SetTheory.PGame.P3_of_lt_of_lt
[ [ 475, 74 ], [ 489, 72 ] ]
12
13
exact ih _ (fst <| IsOption.moveRight _) (hx₁.moveRight _) hx₂
x y y₁ y₂ : PGame hx✝ : x.Numeric hy✝ : y.Numeric hy₁ : y₁.Numeric hy₂ : y₂.Numeric hy : y₁ < y₂ x₁ x₂ : PGame ih : ∀ (y : PGame × PGame), Prod.GameAdd IsOption IsOption y (x₁, x₂) → y.1.Numeric → y.2.Numeric → y.1 < y.2 → P3 y.1 y.2 y₁ y₂ hx₁ : (x₁, x₂).1.Numeric hx₂ : (x₁, x₂).2.Numeric hx : (x₁, x₂).1 < (x₁, x₂).2 i : (-(x₁, x₂).1).LeftMoves hi : ((-(x₁, x₂).1).moveLeft i).Numeric ⊢ (x₁, x₂).1.moveRight (toLeftMovesNeg.symm i) < (x₁, x₂).2 → P3 ((x₁, x₂).1.moveRight (toLeftMovesNeg.symm i)) (x₁, x₂).2 y₁ y₂
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric → P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ x₂ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
48
SetTheory.PGame.Numeric.mul_pos
[ [ 491, 72 ], [ 495, 13 ] ]
0
4
rw [lt_iff_game_lt]
x x₁ x₂ y y₁ y₂ : PGame hx : x.Numeric hx₁ : x₁.Numeric hx₂ : x₂.Numeric hy : y.Numeric hy₁ : y₁.Numeric hy₂ : y₂.Numeric hp₁ : 0 < x₁ hp₂ : 0 < x₂ ⊢ 0 < x₁ * x₂
x x₁ x₂ y y₁ y₂ : PGame hx : x.Numeric hx₁ : x₁.Numeric hx₂ : x₂.Numeric hy : y.Numeric hy₁ : y₁.Numeric hy₂ : y₂.Numeric hp₁ : 0 < x₁ hp₂ : 0 < x₂ ⊢ ⟦0⟧ < ⟦x₁ * x₂⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric → P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ x₂ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
48
SetTheory.PGame.Numeric.mul_pos
[ [ 491, 72 ], [ 495, 13 ] ]
1
4
have := P3_of_lt_of_lt numeric_zero hx₁ numeric_zero hx₂ hp₁ hp₂
x x₁ x₂ y y₁ y₂ : PGame hx : x.Numeric hx₁ : x₁.Numeric hx₂ : x₂.Numeric hy : y.Numeric hy₁ : y₁.Numeric hy₂ : y₂.Numeric hp₁ : 0 < x₁ hp₂ : 0 < x₂ ⊢ ⟦0⟧ < ⟦x₁ * x₂⟧
x x₁ x₂ y y₁ y₂ : PGame hx : x.Numeric hx₁ : x₁.Numeric hx₂ : x₂.Numeric hy : y.Numeric hy₁ : y₁.Numeric hy₂ : y₂.Numeric hp₁ : 0 < x₁ hp₂ : 0 < x₂ this : P3 0 x₁ 0 x₂ ⊢ ⟦0⟧ < ⟦x₁ * x₂⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric → P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ x₂ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
48
SetTheory.PGame.Numeric.mul_pos
[ [ 491, 72 ], [ 495, 13 ] ]
2
4
simp_rw [P3, quot_zero_mul, quot_mul_zero, add_lt_add_iff_left] at this
x x₁ x₂ y y₁ y₂ : PGame hx : x.Numeric hx₁ : x₁.Numeric hx₂ : x₂.Numeric hy : y.Numeric hy₁ : y₁.Numeric hy₂ : y₂.Numeric hp₁ : 0 < x₁ hp₂ : 0 < x₂ this : P3 0 x₁ 0 x₂ ⊢ ⟦0⟧ < ⟦x₁ * x₂⟧
x x₁ x₂ y y₁ y₂ : PGame hx : x.Numeric hx₁ : x₁.Numeric hx₂ : x₂.Numeric hy : y.Numeric hy₁ : y₁.Numeric hy₂ : y₂.Numeric hp₁ : 0 < x₁ hp₂ : 0 < x₂ this : ⟦0⟧ < ⟦x₁ * x₂⟧ ⊢ ⟦0⟧ < ⟦x₁ * x₂⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ x₂ x₃ y₁ y₂ y₃ : PGame) :=\n ⟦x₁ * y₁⟧ + ⟦x₂ * y₂⟧ - ⟦x₁ * y₂⟧ < ⟦x₃ * y₁⟧ + ⟦x₂ * y₃⟧ - (⟦x₃ * y₃⟧ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ x₂ y : PGame) := x₁ ≈ x₂ → ⟦x₁ * y⟧ = (⟦x₂ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ x₂ y₁ y₂ : PGame) := ⟦x₁ * y₂⟧ + ⟦x₂ * y₁⟧ < ⟦x₁ * y₁⟧ + (⟦x₂ * y₂⟧ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ x₂ y : PGame) :=\n x₁ < x₂ → (∀ i, P3 x₁ x₂ (y.moveLeft i) y) ∧ ∀ j, P3 x₁ x₂ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ x₂ y : PGame) : Prop := P2 x₁ x₂ y ∧ P4 x₁ x₂ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ x₂ y₁ y₂ ↔ P3 y₁ y₂ x₁ x₂ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ x₂ y₁ y₂) (h₂ : P3 x₂ x₃ y₁ y₂) : P3 x₁ x₃ y₁ y₂ := by\n rw [P3] at h₁ h₂\n rw [P3, ← add_lt_add_iff_left (⟦x₂ * y₁⟧ + ⟦x₂ * y₂⟧)]\n convert add_lt_add h₁ h₂ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ x₂ y₁ y₂ ↔ P3 (-x₂) (-x₁) y₁ y₂ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ x₂ y ↔ P2 (-x₂) (-x₁) y := by\n rw [P2, P2]\n constructor\n · rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (· ·)\n · rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (· ·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ x₂ y ↔ P2 x₁ x₂ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ x₂ y ↔ P4 (-x₂) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ x₂ y ↔ P4 x₁ x₂ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ x₂ y ↔ P24 (-x₂) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ x₂ y ↔ P24 x₁ x₂ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ ≈ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ x₂ y₂ y₃) :\n P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * y₁⟧ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ x₂ y₂ y₃) (h₂ : P3 x₁ x₃ y₂ y₁) : P1 x₁ x₂ x₃ y₁ y₂ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * y₂⟧]\n convert add_lt_add h₁ h₂ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ x₂ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args → Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ x₂ y) => {x₁, x₂, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := ∀ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ x₂ y} :\n (Args.P24 x₁ x₂ y).Numeric ↔ x₁.Numeric ∧ x₂.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args → Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ x₂ y) => P24 x₁ x₂ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a → a.Numeric → a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n ∀ ⦃x₁ x₂ y'⦄, IsOption x₁ x → IsOption x₂ x → (y' = y ∨ IsOption y' y) → P24 x₁ x₂ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y → IH1 (-x) y :=\n fun h x₁ x₂ y' h₁ h₂ hy ↦ by\n rw [isOption_neg] at h₁ h₂\n exact P24_neg_left.2 (h h₂ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y → IH1 x (-y) :=\n fun h x₁ x₂ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ x₂ y' h₁ h₂ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ h₂)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊢\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n · exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n · have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n · rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z⦄, (IsOption z x₁ → P24 z x₂ y) ∧ (IsOption z x₂ → P24 x₁ z y) ∧ (IsOption z y → P24 x₁ x₂ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ x₂ y : PGame) : Prop :=\n ∀ ⦃z w⦄, IsOption w y → (IsOption z x₁ → P2 z x₂ w) ∧ (IsOption z x₂ → P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ x₂ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n · exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 x₂ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊢\n suffices {x₁, y, x₂} = {x₂, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊢\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ x₂ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (x₂ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n · exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n · exact (cutExpand_add_right {x₂, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ x₂ y → IH24 (-x₂) (-x₁) y ∧ IH24 x₁ x₂ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ x₂ y → IH4 (-x₂) (-x₁) y ∧ IH4 x₁ x₂ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n · convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n · convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ x₂ y) (he : x₁ ≈ x₂) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦x₂ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n · rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n · rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (h₂ : x₂.Numeric)\n (h₁₂ : IH24 x₁ x₂ y) (h₂₁ : IH24 x₂ x₁ y) (he : x₁ ≈ x₂) : x₁ * y ≤ x₂ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := ∀ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n · have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n · have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forall₂_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' x₂ y₁ y₂ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' y₂ ∧ P3 x' x₂ y₁ y₂ ∧ (x₁ < x' → P3 x₁ x' y₁ y₂)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ x₂ y) (h4 : IH4 x₁ x₂ y) (hl : MulOptionsLTMul x₂ y) (i j) :\n IH3 x₁ (x₂.moveLeft i) x₂ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ y₂} (i) (h : IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂) (hl : x₁ ≤ x₂.moveLeft i) :\n P3 x₁ x₂ y₁ y₂ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n · exact (h.2.2.2 hl).trans h.2.2.1\n · rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ y₂} (h : ∀ i, IH3 x₁ (x₂.moveLeft i) x₂ y₁ y₂)\n (hs : ∀ i, IH3 (-x₂) ((-x₁).moveLeft i) (-x₁) y₁ y₂) (hl : x₁ < x₂) :\n P3 x₁ x₂ y₁ y₂", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric → P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ x₂ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ ≈ x₂) : x₁ * y ≈ x₂ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ ≈ y₂) : x * y₁ ≈ x * y₂", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ * y₁ ≈ x₂ * y₂", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < x₂) (hy : y₁ < y₂) : P3 x₁ x₂ y₁ y₂", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hp₂ : 0 < x₂) : 0 < x₁ * x₂", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
48
SetTheory.PGame.Numeric.mul_pos
[ [ 491, 72 ], [ 495, 13 ] ]
3
4
exact this
x x₁ x₂ y y₁ y₂ : PGame hx : x.Numeric hx₁ : x₁.Numeric hx₂ : x₂.Numeric hy : y.Numeric hy₁ : y₁.Numeric hy₂ : y₂.Numeric hp₁ : 0 < x₁ hp₂ : 0 < x₂ this : ⟦0⟧ < ⟦x₁ * x₂⟧ ⊢ ⟦0⟧ < ⟦x₁ * x₂⟧
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
0
Ordinal.CNFRec_zero
[ [ 56, 79 ], [ 58, 6 ] ]
0
2
rw [CNFRec, dif_pos rfl]
C : Ordinal.{u_2} → Sort u_1 b : Ordinal.{u_2} H0 : C 0 H : (o : Ordinal.{u_2}) → o ≠ 0 → C (o % b ^ log b o) → C o ⊢ b.CNFRec H0 H 0 = H0
C : Ordinal.{u_2} → Sort u_1 b : Ordinal.{u_2} H0 : C 0 H : (o : Ordinal.{u_2}) → o ≠ 0 → C (o % b ^ log b o) → C o ⊢ ⋯.mpr H0 = H0
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
0
Ordinal.CNFRec_zero
[ [ 56, 79 ], [ 58, 6 ] ]
1
2
rfl
C : Ordinal.{u_2} → Sort u_1 b : Ordinal.{u_2} H0 : C 0 H : (o : Ordinal.{u_2}) → o ≠ 0 → C (o % b ^ log b o) → C o ⊢ ⋯.mpr H0 = H0
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
1
Ordinal.CNFRec_pos
[ [ 64, 57 ], [ 64, 83 ] ]
0
1
rw [CNFRec, dif_neg ho]
b o : Ordinal.{u_2} C : Ordinal.{u_2} → Sort u_1 ho : o ≠ 0 H0 : C 0 H : (o : Ordinal.{u_2}) → o ≠ 0 → C (o % b ^ log b o) → C o ⊢ b.CNFRec H0 H o = H o ho (b.CNFRec H0 H (o % b ^ log b o))
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
4
Ordinal.zero_CNF
[ [ 93, 69 ], [ 93, 93 ] ]
0
1
simp [CNF_ne_zero ho]
o : Ordinal.{u_1} ho : o ≠ 0 ⊢ CNF 0 o = [(0, o)]
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
5
Ordinal.one_CNF
[ [ 97, 68 ], [ 97, 92 ] ]
0
1
simp [CNF_ne_zero ho]
o : Ordinal.{u_1} ho : o ≠ 0 ⊢ CNF 1 o = [(0, o)]
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
6
Ordinal.CNF_of_le_one
[ [ 101, 89 ], [ 104, 21 ] ]
0
5
rcases le_one_iff.1 hb with (rfl | rfl)
b o : Ordinal.{u_1} hb : b ≤ 1 ho : o ≠ 0 ⊢ CNF b o = [(0, o)]
case inl o : Ordinal.{u_1} ho : o ≠ 0 hb : 0 ≤ 1 ⊢ CNF 0 o = [(0, o)] case inr o : Ordinal.{u_1} ho : o ≠ 0 hb : 1 ≤ 1 ⊢ CNF 1 o = [(0, o)]
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
6
Ordinal.CNF_of_le_one
[ [ 101, 89 ], [ 104, 21 ] ]
1
5
· exact zero_CNF ho
case inl o : Ordinal.{u_1} ho : o ≠ 0 hb : 0 ≤ 1 ⊢ CNF 0 o = [(0, o)] case inr o : Ordinal.{u_1} ho : o ≠ 0 hb : 1 ≤ 1 ⊢ CNF 1 o = [(0, o)]
case inr o : Ordinal.{u_1} ho : o ≠ 0 hb : 1 ≤ 1 ⊢ CNF 1 o = [(0, o)]
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
6
Ordinal.CNF_of_le_one
[ [ 101, 89 ], [ 104, 21 ] ]
2
5
· exact one_CNF ho
case inr o : Ordinal.{u_1} ho : o ≠ 0 hb : 1 ≤ 1 ⊢ CNF 1 o = [(0, o)]
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
6
Ordinal.CNF_of_le_one
[ [ 101, 89 ], [ 104, 21 ] ]
3
5
exact zero_CNF ho
case inl o : Ordinal.{u_1} ho : o ≠ 0 hb : 0 ≤ 1 ⊢ CNF 0 o = [(0, o)]
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
6
Ordinal.CNF_of_le_one
[ [ 101, 89 ], [ 104, 21 ] ]
4
5
exact one_CNF ho
case inr o : Ordinal.{u_1} ho : o ≠ 0 hb : 1 ≤ 1 ⊢ CNF 1 o = [(0, o)]
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
7
Ordinal.CNF_of_lt
[ [ 108, 85 ], [ 109, 84 ] ]
0
1
simp only [CNF_ne_zero ho, log_eq_zero hb, opow_zero, div_one, mod_one, CNF_zero]
b o : Ordinal.{u_1} ho : o ≠ 0 hb : o < b ⊢ CNF b o = [(0, o)]
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
9
Ordinal.CNF_fst_le_log
[ [ 122, 36 ], [ 129, 74 ] ]
0
12
refine CNFRec b ?_ (fun o ho H ↦ ?_) o
b o : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} ⊢ x ∈ CNF b o → x.1 ≤ log b o
case refine_1 b o : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} ⊢ x ∈ CNF b 0 → x.1 ≤ log b 0 case refine_2 b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 H : x ∈ CNF b (o % b ^ log b o) → x.1 ≤ log b (o % b ^ log b o) ⊢ x ∈ CNF b o → x.1 ≤ log b o
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
9
Ordinal.CNF_fst_le_log
[ [ 122, 36 ], [ 129, 74 ] ]
1
12
· rw [CNF_zero] intro contra; contradiction
case refine_1 b o : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} ⊢ x ∈ CNF b 0 → x.1 ≤ log b 0 case refine_2 b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 H : x ∈ CNF b (o % b ^ log b o) → x.1 ≤ log b (o % b ^ log b o) ⊢ x ∈ CNF b o → x.1 ≤ log b o
case refine_2 b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 H : x ∈ CNF b (o % b ^ log b o) → x.1 ≤ log b (o % b ^ log b o) ⊢ x ∈ CNF b o → x.1 ≤ log b o
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
9
Ordinal.CNF_fst_le_log
[ [ 122, 36 ], [ 129, 74 ] ]
2
12
· rw [CNF_ne_zero ho, mem_cons] rintro (rfl | h) · exact le_rfl · exact (H h).trans (log_mono_right _ (mod_opow_log_lt_self b ho).le)
case refine_2 b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 H : x ∈ CNF b (o % b ^ log b o) → x.1 ≤ log b (o % b ^ log b o) ⊢ x ∈ CNF b o → x.1 ≤ log b o
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
9
Ordinal.CNF_fst_le_log
[ [ 122, 36 ], [ 129, 74 ] ]
3
12
rw [CNF_zero]
case refine_1 b o : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} ⊢ x ∈ CNF b 0 → x.1 ≤ log b 0
case refine_1 b o : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} ⊢ x ∈ [] → x.1 ≤ log b 0
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
9
Ordinal.CNF_fst_le_log
[ [ 122, 36 ], [ 129, 74 ] ]
4
12
intro contra
case refine_1 b o : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} ⊢ x ∈ [] → x.1 ≤ log b 0
case refine_1 b o : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} contra : x ∈ [] ⊢ x.1 ≤ log b 0
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
9
Ordinal.CNF_fst_le_log
[ [ 122, 36 ], [ 129, 74 ] ]
5
12
contradiction
case refine_1 b o : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} contra : x ∈ [] ⊢ x.1 ≤ log b 0
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
9
Ordinal.CNF_fst_le_log
[ [ 122, 36 ], [ 129, 74 ] ]
6
12
rw [CNF_ne_zero ho, mem_cons]
case refine_2 b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 H : x ∈ CNF b (o % b ^ log b o) → x.1 ≤ log b (o % b ^ log b o) ⊢ x ∈ CNF b o → x.1 ≤ log b o
case refine_2 b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 H : x ∈ CNF b (o % b ^ log b o) → x.1 ≤ log b (o % b ^ log b o) ⊢ x = (log b o, o / b ^ log b o) ∨ x ∈ CNF b (o % b ^ log b o) → x.1 ≤ log b o
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
9
Ordinal.CNF_fst_le_log
[ [ 122, 36 ], [ 129, 74 ] ]
7
12
rintro (rfl | h)
case refine_2 b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 H : x ∈ CNF b (o % b ^ log b o) → x.1 ≤ log b (o % b ^ log b o) ⊢ x = (log b o, o / b ^ log b o) ∨ x ∈ CNF b (o % b ^ log b o) → x.1 ≤ log b o
case refine_2.inl b o✝ o : Ordinal.{u} ho : o ≠ 0 H : (log b o, o / b ^ log b o) ∈ CNF b (o % b ^ log b o) → (log b o, o / b ^ log b o).1 ≤ log b (o % b ^ log b o) ⊢ (log b o, o / b ^ log b o).1 ≤ log b o case refine_2.inr b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 H : x ∈ CNF b (o % b ^ log b o) → x.1 ≤ log b (o % b ^ log b o) h : x ∈ CNF b (o % b ^ log b o) ⊢ x.1 ≤ log b o
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
9
Ordinal.CNF_fst_le_log
[ [ 122, 36 ], [ 129, 74 ] ]
8
12
· exact le_rfl
case refine_2.inl b o✝ o : Ordinal.{u} ho : o ≠ 0 H : (log b o, o / b ^ log b o) ∈ CNF b (o % b ^ log b o) → (log b o, o / b ^ log b o).1 ≤ log b (o % b ^ log b o) ⊢ (log b o, o / b ^ log b o).1 ≤ log b o case refine_2.inr b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 H : x ∈ CNF b (o % b ^ log b o) → x.1 ≤ log b (o % b ^ log b o) h : x ∈ CNF b (o % b ^ log b o) ⊢ x.1 ≤ log b o
case refine_2.inr b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 H : x ∈ CNF b (o % b ^ log b o) → x.1 ≤ log b (o % b ^ log b o) h : x ∈ CNF b (o % b ^ log b o) ⊢ x.1 ≤ log b o
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
9
Ordinal.CNF_fst_le_log
[ [ 122, 36 ], [ 129, 74 ] ]
9
12
· exact (H h).trans (log_mono_right _ (mod_opow_log_lt_self b ho).le)
case refine_2.inr b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 H : x ∈ CNF b (o % b ^ log b o) → x.1 ≤ log b (o % b ^ log b o) h : x ∈ CNF b (o % b ^ log b o) ⊢ x.1 ≤ log b o
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
9
Ordinal.CNF_fst_le_log
[ [ 122, 36 ], [ 129, 74 ] ]
10
12
exact le_rfl
case refine_2.inl b o✝ o : Ordinal.{u} ho : o ≠ 0 H : (log b o, o / b ^ log b o) ∈ CNF b (o % b ^ log b o) → (log b o, o / b ^ log b o).1 ≤ log b (o % b ^ log b o) ⊢ (log b o, o / b ^ log b o).1 ≤ log b o
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
9
Ordinal.CNF_fst_le_log
[ [ 122, 36 ], [ 129, 74 ] ]
11
12
exact (H h).trans (log_mono_right _ (mod_opow_log_lt_self b ho).le)
case refine_2.inr b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 H : x ∈ CNF b (o % b ^ log b o) → x.1 ≤ log b (o % b ^ log b o) h : x ∈ CNF b (o % b ^ log b o) ⊢ x.1 ≤ log b o
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
11
Ordinal.CNF_lt_snd
[ [ 140, 91 ], [ 145, 15 ] ]
0
8
refine CNFRec b (by simp) (fun o ho IH ↦ ?_) o
b o : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} ⊢ x ∈ CNF b o → 0 < x.2
b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → 0 < x.2 ⊢ x ∈ CNF b o → 0 < x.2
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
11
Ordinal.CNF_lt_snd
[ [ 140, 91 ], [ 145, 15 ] ]
1
8
rw [CNF_ne_zero ho]
b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → 0 < x.2 ⊢ x ∈ CNF b o → 0 < x.2
b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → 0 < x.2 ⊢ x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o) → 0 < x.2
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
11
Ordinal.CNF_lt_snd
[ [ 140, 91 ], [ 145, 15 ] ]
2
8
rintro (h | ⟨_, h⟩)
b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → 0 < x.2 ⊢ x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o) → 0 < x.2
case head b o✝ o : Ordinal.{u} ho : o ≠ 0 IH : (log b o, o / b ^ log b o) ∈ CNF b (o % b ^ log b o) → 0 < (log b o, o / b ^ log b o).2 ⊢ 0 < (log b o, o / b ^ log b o).2 case tail b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → 0 < x.2 h : Mem x (CNF b (o % b ^ log b o)) ⊢ 0 < x.2
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
11
Ordinal.CNF_lt_snd
[ [ 140, 91 ], [ 145, 15 ] ]
3
8
· exact div_opow_log_pos b ho
case head b o✝ o : Ordinal.{u} ho : o ≠ 0 IH : (log b o, o / b ^ log b o) ∈ CNF b (o % b ^ log b o) → 0 < (log b o, o / b ^ log b o).2 ⊢ 0 < (log b o, o / b ^ log b o).2 case tail b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → 0 < x.2 h : Mem x (CNF b (o % b ^ log b o)) ⊢ 0 < x.2
case tail b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → 0 < x.2 h : Mem x (CNF b (o % b ^ log b o)) ⊢ 0 < x.2
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
11
Ordinal.CNF_lt_snd
[ [ 140, 91 ], [ 145, 15 ] ]
4
8
· exact IH h
case tail b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → 0 < x.2 h : Mem x (CNF b (o % b ^ log b o)) ⊢ 0 < x.2
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
11
Ordinal.CNF_lt_snd
[ [ 140, 91 ], [ 145, 15 ] ]
5
8
simp
b o : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} ⊢ x ∈ CNF b 0 → 0 < x.2
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
11
Ordinal.CNF_lt_snd
[ [ 140, 91 ], [ 145, 15 ] ]
6
8
exact div_opow_log_pos b ho
case head b o✝ o : Ordinal.{u} ho : o ≠ 0 IH : (log b o, o / b ^ log b o) ∈ CNF b (o % b ^ log b o) → 0 < (log b o, o / b ^ log b o).2 ⊢ 0 < (log b o, o / b ^ log b o).2
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
11
Ordinal.CNF_lt_snd
[ [ 140, 91 ], [ 145, 15 ] ]
7
8
exact IH h
case tail b o✝ : Ordinal.{u} x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → 0 < x.2 h : Mem x (CNF b (o % b ^ log b o)) ⊢ 0 < x.2
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
12
Ordinal.CNF_snd_lt
[ [ 151, 30 ], [ 158, 17 ] ]
0
12
refine CNFRec b ?_ (fun o ho IH ↦ ?_) o
b o : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} ⊢ x ∈ CNF b o → x.2 < b
case refine_1 b o : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} ⊢ x ∈ CNF b 0 → x.2 < b case refine_2 b o✝ : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → x.2 < b ⊢ x ∈ CNF b o → x.2 < b
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
12
Ordinal.CNF_snd_lt
[ [ 151, 30 ], [ 158, 17 ] ]
1
12
· simp only [CNF_zero, not_mem_nil, IsEmpty.forall_iff]
case refine_1 b o : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} ⊢ x ∈ CNF b 0 → x.2 < b case refine_2 b o✝ : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → x.2 < b ⊢ x ∈ CNF b o → x.2 < b
case refine_2 b o✝ : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → x.2 < b ⊢ x ∈ CNF b o → x.2 < b
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
12
Ordinal.CNF_snd_lt
[ [ 151, 30 ], [ 158, 17 ] ]
2
12
· rw [CNF_ne_zero ho] intro h cases' (mem_cons.mp h) with h h · rw [h]; simpa only using div_opow_log_lt o hb · exact IH h
case refine_2 b o✝ : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → x.2 < b ⊢ x ∈ CNF b o → x.2 < b
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
12
Ordinal.CNF_snd_lt
[ [ 151, 30 ], [ 158, 17 ] ]
3
12
simp only [CNF_zero, not_mem_nil, IsEmpty.forall_iff]
case refine_1 b o : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} ⊢ x ∈ CNF b 0 → x.2 < b
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
12
Ordinal.CNF_snd_lt
[ [ 151, 30 ], [ 158, 17 ] ]
4
12
rw [CNF_ne_zero ho]
case refine_2 b o✝ : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → x.2 < b ⊢ x ∈ CNF b o → x.2 < b
case refine_2 b o✝ : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → x.2 < b ⊢ x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o) → x.2 < b
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
12
Ordinal.CNF_snd_lt
[ [ 151, 30 ], [ 158, 17 ] ]
5
12
intro h
case refine_2 b o✝ : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → x.2 < b ⊢ x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o) → x.2 < b
case refine_2 b o✝ : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → x.2 < b h : x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o) ⊢ x.2 < b
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
12
Ordinal.CNF_snd_lt
[ [ 151, 30 ], [ 158, 17 ] ]
6
12
cases' (mem_cons.mp h) with h h
case refine_2 b o✝ : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → x.2 < b h : x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o) ⊢ x.2 < b
case refine_2.inl b o✝ : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → x.2 < b h✝ : x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o) h : x = (log b o, o / b ^ log b o) ⊢ x.2 < b case refine_2.inr b o✝ : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → x.2 < b h✝ : x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o) h : x ∈ CNF b (o % b ^ log b o) ⊢ x.2 < b
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
12
Ordinal.CNF_snd_lt
[ [ 151, 30 ], [ 158, 17 ] ]
7
12
· rw [h]; simpa only using div_opow_log_lt o hb
case refine_2.inl b o✝ : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → x.2 < b h✝ : x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o) h : x = (log b o, o / b ^ log b o) ⊢ x.2 < b case refine_2.inr b o✝ : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → x.2 < b h✝ : x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o) h : x ∈ CNF b (o % b ^ log b o) ⊢ x.2 < b
case refine_2.inr b o✝ : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → x.2 < b h✝ : x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o) h : x ∈ CNF b (o % b ^ log b o) ⊢ x.2 < b
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
12
Ordinal.CNF_snd_lt
[ [ 151, 30 ], [ 158, 17 ] ]
8
12
· exact IH h
case refine_2.inr b o✝ : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → x.2 < b h✝ : x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o) h : x ∈ CNF b (o % b ^ log b o) ⊢ x.2 < b
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
12
Ordinal.CNF_snd_lt
[ [ 151, 30 ], [ 158, 17 ] ]
9
12
rw [h]
case refine_2.inl b o✝ : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → x.2 < b h✝ : x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o) h : x = (log b o, o / b ^ log b o) ⊢ x.2 < b
case refine_2.inl b o✝ : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → x.2 < b h✝ : x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o) h : x = (log b o, o / b ^ log b o) ⊢ (log b o, o / b ^ log b o).2 < b
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
12
Ordinal.CNF_snd_lt
[ [ 151, 30 ], [ 158, 17 ] ]
10
12
simpa only using div_opow_log_lt o hb
case refine_2.inl b o✝ : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → x.2 < b h✝ : x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o) h : x = (log b o, o / b ^ log b o) ⊢ (log b o, o / b ^ log b o).2 < b
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
12
Ordinal.CNF_snd_lt
[ [ 151, 30 ], [ 158, 17 ] ]
11
12
exact IH h
case refine_2.inr b o✝ : Ordinal.{u} hb : 1 < b x : Ordinal.{u} × Ordinal.{u} o : Ordinal.{u} ho : o ≠ 0 IH : x ∈ CNF b (o % b ^ log b o) → x.2 < b h✝ : x ∈ (log b o, o / b ^ log b o) :: CNF b (o % b ^ log b o) h : x ∈ CNF b (o % b ^ log b o) ⊢ x.2 < b
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
13
Ordinal.CNF_sorted
[ [ 163, 81 ], [ 174, 83 ] ]
0
17
refine CNFRec b ?_ (fun o ho IH ↦ ?_) o
b o : Ordinal.{u_1} ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o))
case refine_1 b o : Ordinal.{u_1} ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b 0)) case refine_2 b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o))
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
13
Ordinal.CNF_sorted
[ [ 163, 81 ], [ 174, 83 ] ]
1
17
· simp only [gt_iff_lt, CNF_zero, map_nil, sorted_nil]
case refine_1 b o : Ordinal.{u_1} ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b 0)) case refine_2 b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o))
case refine_2 b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o))
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
13
Ordinal.CNF_sorted
[ [ 163, 81 ], [ 174, 83 ] ]
2
17
· rcases le_or_lt b 1 with hb | hb · simp only [CNF_of_le_one hb ho, gt_iff_lt, map_cons, map, sorted_singleton] · cases' lt_or_le o b with hob hbo · simp only [CNF_of_lt ho hob, gt_iff_lt, map_cons, map, sorted_singleton] · rw [CNF_ne_zero ho, map_cons, sorted_cons] refine ⟨fun a H ↦ ?_, IH⟩ rw [mem_map] at H rcases H with ⟨⟨a, a'⟩, H, rfl⟩ exact (CNF_fst_le_log H).trans_lt (log_mod_opow_log_lt_log_self hb ho hbo)
case refine_2 b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o))
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
13
Ordinal.CNF_sorted
[ [ 163, 81 ], [ 174, 83 ] ]
3
17
simp only [gt_iff_lt, CNF_zero, map_nil, sorted_nil]
case refine_1 b o : Ordinal.{u_1} ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b 0))
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
13
Ordinal.CNF_sorted
[ [ 163, 81 ], [ 174, 83 ] ]
4
17
rcases le_or_lt b 1 with hb | hb
case refine_2 b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o))
case refine_2.inl b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : b ≤ 1 ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o)) case refine_2.inr b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o))
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
13
Ordinal.CNF_sorted
[ [ 163, 81 ], [ 174, 83 ] ]
5
17
· simp only [CNF_of_le_one hb ho, gt_iff_lt, map_cons, map, sorted_singleton]
case refine_2.inl b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : b ≤ 1 ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o)) case refine_2.inr b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o))
case refine_2.inr b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o))
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
13
Ordinal.CNF_sorted
[ [ 163, 81 ], [ 174, 83 ] ]
6
17
· cases' lt_or_le o b with hob hbo · simp only [CNF_of_lt ho hob, gt_iff_lt, map_cons, map, sorted_singleton] · rw [CNF_ne_zero ho, map_cons, sorted_cons] refine ⟨fun a H ↦ ?_, IH⟩ rw [mem_map] at H rcases H with ⟨⟨a, a'⟩, H, rfl⟩ exact (CNF_fst_le_log H).trans_lt (log_mod_opow_log_lt_log_self hb ho hbo)
case refine_2.inr b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o))
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
13
Ordinal.CNF_sorted
[ [ 163, 81 ], [ 174, 83 ] ]
7
17
simp only [CNF_of_le_one hb ho, gt_iff_lt, map_cons, map, sorted_singleton]
case refine_2.inl b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : b ≤ 1 ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o))
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
13
Ordinal.CNF_sorted
[ [ 163, 81 ], [ 174, 83 ] ]
8
17
cases' lt_or_le o b with hob hbo
case refine_2.inr b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o))
case refine_2.inr.inl b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b hob : o < b ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o)) case refine_2.inr.inr b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b hbo : b ≤ o ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o))
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
13
Ordinal.CNF_sorted
[ [ 163, 81 ], [ 174, 83 ] ]
9
17
· simp only [CNF_of_lt ho hob, gt_iff_lt, map_cons, map, sorted_singleton]
case refine_2.inr.inl b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b hob : o < b ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o)) case refine_2.inr.inr b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b hbo : b ≤ o ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o))
case refine_2.inr.inr b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b hbo : b ≤ o ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o))
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
13
Ordinal.CNF_sorted
[ [ 163, 81 ], [ 174, 83 ] ]
10
17
· rw [CNF_ne_zero ho, map_cons, sorted_cons] refine ⟨fun a H ↦ ?_, IH⟩ rw [mem_map] at H rcases H with ⟨⟨a, a'⟩, H, rfl⟩ exact (CNF_fst_le_log H).trans_lt (log_mod_opow_log_lt_log_self hb ho hbo)
case refine_2.inr.inr b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b hbo : b ≤ o ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o))
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
13
Ordinal.CNF_sorted
[ [ 163, 81 ], [ 174, 83 ] ]
11
17
simp only [CNF_of_lt ho hob, gt_iff_lt, map_cons, map, sorted_singleton]
case refine_2.inr.inl b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b hob : o < b ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o))
no goals
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
13
Ordinal.CNF_sorted
[ [ 163, 81 ], [ 174, 83 ] ]
12
17
rw [CNF_ne_zero ho, map_cons, sorted_cons]
case refine_2.inr.inr b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b hbo : b ≤ o ⊢ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b o))
case refine_2.inr.inr b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b hbo : b ≤ o ⊢ (∀ b_1 ∈ map Prod.fst (CNF b (o % b ^ log b o)), (log b o, o / b ^ log b o).1 > b_1) ∧ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o)))
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
13
Ordinal.CNF_sorted
[ [ 163, 81 ], [ 174, 83 ] ]
13
17
refine ⟨fun a H ↦ ?_, IH⟩
case refine_2.inr.inr b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b hbo : b ≤ o ⊢ (∀ b_1 ∈ map Prod.fst (CNF b (o % b ^ log b o)), (log b o, o / b ^ log b o).1 > b_1) ∧ Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o)))
case refine_2.inr.inr b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b hbo : b ≤ o a : Ordinal.{u_1} H : a ∈ map Prod.fst (CNF b (o % b ^ log b o)) ⊢ (log b o, o / b ^ log b o).1 > a
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
13
Ordinal.CNF_sorted
[ [ 163, 81 ], [ 174, 83 ] ]
14
17
rw [mem_map] at H
case refine_2.inr.inr b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b hbo : b ≤ o a : Ordinal.{u_1} H : a ∈ map Prod.fst (CNF b (o % b ^ log b o)) ⊢ (log b o, o / b ^ log b o).1 > a
case refine_2.inr.inr b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b hbo : b ≤ o a : Ordinal.{u_1} H : ∃ a_1 ∈ CNF b (o % b ^ log b o), a_1.1 = a ⊢ (log b o, o / b ^ log b o).1 > a
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
13
Ordinal.CNF_sorted
[ [ 163, 81 ], [ 174, 83 ] ]
15
17
rcases H with ⟨⟨a, a'⟩, H, rfl⟩
case refine_2.inr.inr b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b hbo : b ≤ o a : Ordinal.{u_1} H : ∃ a_1 ∈ CNF b (o % b ^ log b o), a_1.1 = a ⊢ (log b o, o / b ^ log b o).1 > a
case refine_2.inr.inr.intro.mk.intro b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b hbo : b ≤ o a a' : Ordinal.{u_1} H : (a, a') ∈ CNF b (o % b ^ log b o) ⊢ (log b o, o / b ^ log b o).1 > (a, a').1
Mathlib/SetTheory/Ordinal/CantorNormalForm.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Mathlib.SetTheory.Ordinal.Exponential", "Mathlib/SetTheory/Ordinal/Exponential.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "@[elab_as_elim]\nnoncomputable def CNFRec (b : Ordinal) {C : Ordinal → Sort*} (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : ∀ o, C o := fun o ↦ by\n by_cases h : o = 0\n · rw [h]; exact H0\n · exact H o h (CNFRec _ H0 H (o % b ^ log b o))\n termination_by o => o\n decreasing_by exact mod_opow_log_lt_self b h", "end": [ 50, 49 ], "full_name": "Ordinal.CNFRec", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem CNFRec_zero {C : Ordinal → Sort*} (b : Ordinal) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) : @CNFRec b C H0 H 0 = H0", "end": [ 58, 6 ], "full_name": "Ordinal.CNFRec_zero", "kind": "commanddeclaration", "start": [ 54, 1 ] }, { "code": "theorem CNFRec_pos (b : Ordinal) {o : Ordinal} {C : Ordinal → Sort*} (ho : o ≠ 0) (H0 : C 0)\n (H : ∀ o, o ≠ 0 → C (o % b ^ log b o) → C o) :\n @CNFRec b C H0 H o = H o ho (@CNFRec b C H0 H _)", "end": [ 64, 83 ], "full_name": "Ordinal.CNFRec_pos", "kind": "commanddeclaration", "start": [ 62, 1 ] }, { "code": "@[pp_nodot]\ndef CNF (b o : Ordinal) : List (Ordinal × Ordinal) :=\n CNFRec b [] (fun o _ho IH ↦ (log b o, o / b ^ log b o)::IH) o", "end": [ 76, 64 ], "full_name": "Ordinal.CNF", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "@[simp]\ntheorem CNF_zero (b : Ordinal) : CNF b 0 = []", "end": [ 82, 20 ], "full_name": "Ordinal.CNF_zero", "kind": "commanddeclaration", "start": [ 80, 1 ] }, { "code": "theorem CNF_ne_zero {b o : Ordinal} (ho : o ≠ 0) :\n CNF b o = (log b o, o / b ^ log b o)::CNF b (o % b ^ log b o)", "end": [ 89, 22 ], "full_name": "Ordinal.CNF_ne_zero", "kind": "commanddeclaration", "start": [ 86, 1 ] }, { "code": "theorem zero_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 0 o = [⟨0, o⟩]", "end": [ 93, 93 ], "full_name": "Ordinal.zero_CNF", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem one_CNF {o : Ordinal} (ho : o ≠ 0) : CNF 1 o = [⟨0, o⟩]", "end": [ 97, 92 ], "full_name": "Ordinal.one_CNF", "kind": "commanddeclaration", "start": [ 97, 1 ] }, { "code": "theorem CNF_of_le_one {b o : Ordinal} (hb : b ≤ 1) (ho : o ≠ 0) : CNF b o = [⟨0, o⟩]", "end": [ 104, 21 ], "full_name": "Ordinal.CNF_of_le_one", "kind": "commanddeclaration", "start": [ 101, 1 ] }, { "code": "theorem CNF_of_lt {b o : Ordinal} (ho : o ≠ 0) (hb : o < b) : CNF b o = [⟨0, o⟩]", "end": [ 109, 84 ], "full_name": "Ordinal.CNF_of_lt", "kind": "commanddeclaration", "start": [ 108, 1 ] }, { "code": "theorem CNF_foldr (b o : Ordinal) : (CNF b o).foldr (fun p r ↦ b ^ p.1 * p.2 + r) 0 = o", "end": [ 116, 74 ], "full_name": "Ordinal.CNF_foldr", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem CNF_fst_le_log {b o : Ordinal.{u}} {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.1 ≤ log b o", "end": [ 129, 74 ], "full_name": "Ordinal.CNF_fst_le_log", "kind": "commanddeclaration", "start": [ 120, 1 ] }, { "code": "theorem CNF_fst_le {b o : Ordinal.{u}} {x : Ordinal × Ordinal} (h : x ∈ CNF b o) : x.1 ≤ o", "end": [ 135, 46 ], "full_name": "Ordinal.CNF_fst_le", "kind": "commanddeclaration", "start": [ 133, 1 ] }, { "code": "theorem CNF_lt_snd {b o : Ordinal.{u}} {x : Ordinal × Ordinal} : x ∈ CNF b o → 0 < x.2", "end": [ 145, 15 ], "full_name": "Ordinal.CNF_lt_snd", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem CNF_snd_lt {b o : Ordinal.{u}} (hb : 1 < b) {x : Ordinal × Ordinal} :\n x ∈ CNF b o → x.2 < b", "end": [ 158, 17 ], "full_name": "Ordinal.CNF_snd_lt", "kind": "commanddeclaration", "start": [ 149, 1 ] }, { "code": "theorem CNF_sorted (b o : Ordinal) : ((CNF b o).map Prod.fst).Sorted (· > ·)", "end": [ 174, 83 ], "full_name": "Ordinal.CNF_sorted", "kind": "commanddeclaration", "start": [ 162, 1 ] } ]
13
Ordinal.CNF_sorted
[ [ 163, 81 ], [ 174, 83 ] ]
16
17
exact (CNF_fst_le_log H).trans_lt (log_mod_opow_log_lt_log_self hb ho hbo)
case refine_2.inr.inr.intro.mk.intro b o✝ o : Ordinal.{u_1} ho : o ≠ 0 IH : Sorted (fun x x_1 => x > x_1) (map Prod.fst (CNF b (o % b ^ log b o))) hb : 1 < b hbo : b ≤ o a a' : Ordinal.{u_1} H : (a, a') ∈ CNF b (o % b ^ log b o) ⊢ (log b o, o / b ^ log b o).1 > (a, a').1
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
1
Ordinal.zero_opow'
[ [ 42, 53 ], [ 42, 85 ] ]
0
1
simp only [opow_def, if_true]
a : Ordinal.{u_1} ⊢ 0 ^ a = 1 - a
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
2
Ordinal.zero_opow
[ [ 46, 73 ], [ 47, 67 ] ]
0
1
rwa [zero_opow', Ordinal.sub_eq_zero_iff_le, one_le_iff_ne_zero]
a : Ordinal.{u_1} a0 : a ≠ 0 ⊢ 0 ^ a = 0
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
3
Ordinal.opow_zero
[ [ 51, 60 ], [ 54, 52 ] ]
0
5
by_cases h : a = 0
a : Ordinal.{u_1} ⊢ a ^ 0 = 1
case pos a : Ordinal.{u_1} h : a = 0 ⊢ a ^ 0 = 1 case neg a : Ordinal.{u_1} h : ¬a = 0 ⊢ a ^ 0 = 1
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
3
Ordinal.opow_zero
[ [ 51, 60 ], [ 54, 52 ] ]
1
5
· simp only [opow_def, if_pos h, sub_zero]
case pos a : Ordinal.{u_1} h : a = 0 ⊢ a ^ 0 = 1 case neg a : Ordinal.{u_1} h : ¬a = 0 ⊢ a ^ 0 = 1
case neg a : Ordinal.{u_1} h : ¬a = 0 ⊢ a ^ 0 = 1
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
3
Ordinal.opow_zero
[ [ 51, 60 ], [ 54, 52 ] ]
2
5
· simp only [opow_def, if_neg h, limitRecOn_zero]
case neg a : Ordinal.{u_1} h : ¬a = 0 ⊢ a ^ 0 = 1
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
3
Ordinal.opow_zero
[ [ 51, 60 ], [ 54, 52 ] ]
3
5
simp only [opow_def, if_pos h, sub_zero]
case pos a : Ordinal.{u_1} h : a = 0 ⊢ a ^ 0 = 1
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
3
Ordinal.opow_zero
[ [ 51, 60 ], [ 54, 52 ] ]
4
5
simp only [opow_def, if_neg h, limitRecOn_zero]
case neg a : Ordinal.{u_1} h : ¬a = 0 ⊢ a ^ 0 = 1
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
5
Ordinal.opow_limit
[ [ 64, 47 ], [ 65, 67 ] ]
0
2
simp only [opow_def, if_neg a0]
a b : Ordinal.{u} a0 : a ≠ 0 h : b.IsLimit ⊢ a ^ b = b.bsup fun c x => a ^ c
a b : Ordinal.{u} a0 : a ≠ 0 h : b.IsLimit ⊢ (b.limitRecOn 1 (fun x IH => IH * a) fun b x => b.bsup) = b.bsup fun c x => c.limitRecOn 1 (fun x IH => IH * a) fun b x => b.bsup
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
5
Ordinal.opow_limit
[ [ 64, 47 ], [ 65, 67 ] ]
1
2
rw [limitRecOn_limit _ _ _ _ h]
a b : Ordinal.{u} a0 : a ≠ 0 h : b.IsLimit ⊢ (b.limitRecOn 1 (fun x IH => IH * a) fun b x => b.bsup) = b.bsup fun c x => c.limitRecOn 1 (fun x IH => IH * a) fun b x => b.bsup
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
6
Ordinal.opow_le_of_limit
[ [ 69, 41 ], [ 69, 77 ] ]
0
1
rw [opow_limit a0 h, bsup_le_iff]
a b c : Ordinal.{u_1} a0 : a ≠ 0 h : b.IsLimit ⊢ a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
7
Ordinal.lt_opow_of_limit
[ [ 73, 41 ], [ 74, 98 ] ]
0
2
rw [← not_iff_not, not_exists]
a b c : Ordinal.{u_1} b0 : b ≠ 0 h : c.IsLimit ⊢ a < b ^ c ↔ ∃ c' < c, a < b ^ c'
a b c : Ordinal.{u_1} b0 : b ≠ 0 h : c.IsLimit ⊢ ¬a < b ^ c ↔ ∀ (x : Ordinal.{u_1}), ¬(x < c ∧ a < b ^ x)
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
7
Ordinal.lt_opow_of_limit
[ [ 73, 41 ], [ 74, 98 ] ]
1
2
simp only [not_lt, opow_le_of_limit b0 h, exists_prop, not_and]
a b c : Ordinal.{u_1} b0 : b ≠ 0 h : c.IsLimit ⊢ ¬a < b ^ c ↔ ∀ (x : Ordinal.{u_1}), ¬(x < c ∧ a < b ^ x)
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
8
Ordinal.opow_one
[ [ 78, 59 ], [ 79, 62 ] ]
0
2
rw [← succ_zero, opow_succ]
a : Ordinal.{u_1} ⊢ a ^ 1 = a
a : Ordinal.{u_1} ⊢ a ^ 0 * a = a
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
8
Ordinal.opow_one
[ [ 78, 59 ], [ 79, 62 ] ]
1
2
simp only [opow_zero, one_mul]
a : Ordinal.{u_1} ⊢ a ^ 0 * a = a
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
9
Ordinal.one_opow
[ [ 83, 59 ], [ 91, 94 ] ]
0
8
induction a using limitRecOn with | H₁ => simp only [opow_zero] | H₂ _ ih => simp only [opow_succ, ih, mul_one] | H₃ b l IH => refine eq_of_forall_ge_iff fun c => ?_ rw [opow_le_of_limit Ordinal.one_ne_zero l] exact ⟨fun H => by simpa only [opow_zero] using H 0 l.pos, fun H b' h => by rwa [IH _ h]⟩
a : Ordinal.{u_1} ⊢ 1 ^ a = 1
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
9
Ordinal.one_opow
[ [ 83, 59 ], [ 91, 94 ] ]
1
8
simp only [opow_zero]
case H₁ ⊢ 1 ^ 0 = 1
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
9
Ordinal.one_opow
[ [ 83, 59 ], [ 91, 94 ] ]
2
8
simp only [opow_succ, ih, mul_one]
case H₂ o✝ : Ordinal.{u_1} ih : 1 ^ o✝ = 1 ⊢ 1 ^ succ o✝ = 1
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
9
Ordinal.one_opow
[ [ 83, 59 ], [ 91, 94 ] ]
3
8
refine eq_of_forall_ge_iff fun c => ?_
case H₃ b : Ordinal.{u_1} l : b.IsLimit IH : ∀ o' < b, 1 ^ o' = 1 ⊢ 1 ^ b = 1
case H₃ b : Ordinal.{u_1} l : b.IsLimit IH : ∀ o' < b, 1 ^ o' = 1 c : Ordinal.{u_1} ⊢ 1 ^ b ≤ c ↔ 1 ≤ c
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
9
Ordinal.one_opow
[ [ 83, 59 ], [ 91, 94 ] ]
4
8
rw [opow_le_of_limit Ordinal.one_ne_zero l]
case H₃ b : Ordinal.{u_1} l : b.IsLimit IH : ∀ o' < b, 1 ^ o' = 1 c : Ordinal.{u_1} ⊢ 1 ^ b ≤ c ↔ 1 ≤ c
case H₃ b : Ordinal.{u_1} l : b.IsLimit IH : ∀ o' < b, 1 ^ o' = 1 c : Ordinal.{u_1} ⊢ (∀ b' < b, 1 ^ b' ≤ c) ↔ 1 ≤ c
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
9
Ordinal.one_opow
[ [ 83, 59 ], [ 91, 94 ] ]
5
8
exact ⟨fun H => by simpa only [opow_zero] using H 0 l.pos, fun H b' h => by rwa [IH _ h]⟩
case H₃ b : Ordinal.{u_1} l : b.IsLimit IH : ∀ o' < b, 1 ^ o' = 1 c : Ordinal.{u_1} ⊢ (∀ b' < b, 1 ^ b' ≤ c) ↔ 1 ≤ c
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
9
Ordinal.one_opow
[ [ 83, 59 ], [ 91, 94 ] ]
6
8
simpa only [opow_zero] using H 0 l.pos
b : Ordinal.{u_1} l : b.IsLimit IH : ∀ o' < b, 1 ^ o' = 1 c : Ordinal.{u_1} H : ∀ b' < b, 1 ^ b' ≤ c ⊢ 1 ≤ c
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
9
Ordinal.one_opow
[ [ 83, 59 ], [ 91, 94 ] ]
7
8
rwa [IH _ h]
b : Ordinal.{u_1} l : b.IsLimit IH : ∀ o' < b, 1 ^ o' = 1 c : Ordinal.{u_1} H : 1 ≤ c b' : Ordinal.{u_1} h : b' < b ⊢ 1 ^ b' ≤ c
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
10
Ordinal.opow_pos
[ [ 94, 74 ], [ 102, 79 ] ]
0
7
have h0 : 0 < a ^ (0 : Ordinal) := by simp only [opow_zero, zero_lt_one]
a b : Ordinal.{u_1} a0 : 0 < a ⊢ 0 < a ^ b
a b : Ordinal.{u_1} a0 : 0 < a h0 : 0 < a ^ 0 ⊢ 0 < a ^ b
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
10
Ordinal.opow_pos
[ [ 94, 74 ], [ 102, 79 ] ]
1
7
induction b using limitRecOn with | H₁ => exact h0 | H₂ b IH => rw [opow_succ] exact mul_pos IH a0 | H₃ b l _ => exact (lt_opow_of_limit (Ordinal.pos_iff_ne_zero.1 a0) l).2 ⟨0, l.pos, h0⟩
a b : Ordinal.{u_1} a0 : 0 < a h0 : 0 < a ^ 0 ⊢ 0 < a ^ b
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
10
Ordinal.opow_pos
[ [ 94, 74 ], [ 102, 79 ] ]
2
7
simp only [opow_zero, zero_lt_one]
a b : Ordinal.{u_1} a0 : 0 < a ⊢ 0 < a ^ 0
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
10
Ordinal.opow_pos
[ [ 94, 74 ], [ 102, 79 ] ]
3
7
exact h0
case H₁ a : Ordinal.{u_1} a0 : 0 < a h0 : 0 < a ^ 0 ⊢ 0 < a ^ 0
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
10
Ordinal.opow_pos
[ [ 94, 74 ], [ 102, 79 ] ]
4
7
rw [opow_succ]
case H₂ a : Ordinal.{u_1} a0 : 0 < a h0 : 0 < a ^ 0 b : Ordinal.{u_1} IH : 0 < a ^ b ⊢ 0 < a ^ succ b
case H₂ a : Ordinal.{u_1} a0 : 0 < a h0 : 0 < a ^ 0 b : Ordinal.{u_1} IH : 0 < a ^ b ⊢ 0 < a ^ b * a
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
10
Ordinal.opow_pos
[ [ 94, 74 ], [ 102, 79 ] ]
5
7
exact mul_pos IH a0
case H₂ a : Ordinal.{u_1} a0 : 0 < a h0 : 0 < a ^ 0 b : Ordinal.{u_1} IH : 0 < a ^ b ⊢ 0 < a ^ b * a
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
10
Ordinal.opow_pos
[ [ 94, 74 ], [ 102, 79 ] ]
6
7
exact (lt_opow_of_limit (Ordinal.pos_iff_ne_zero.1 a0) l).2 ⟨0, l.pos, h0⟩
case H₃ a : Ordinal.{u_1} a0 : 0 < a h0 : 0 < a ^ 0 b : Ordinal.{u_1} l : b.IsLimit a✝ : ∀ o' < b, 0 < a ^ o' ⊢ 0 < a ^ b
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
17
Ordinal.opow_isLimit_left
[ [ 131, 93 ], [ 136, 35 ] ]
0
8
rcases zero_or_succ_or_limit b with (e | ⟨b, rfl⟩ | l')
a b : Ordinal.{u_1} l : a.IsLimit hb : b ≠ 0 ⊢ (a ^ b).IsLimit
case inl a b : Ordinal.{u_1} l : a.IsLimit hb : b ≠ 0 e : b = 0 ⊢ (a ^ b).IsLimit case inr.inl.intro a : Ordinal.{u_1} l : a.IsLimit b : Ordinal.{u_1} hb : succ b ≠ 0 ⊢ (a ^ succ b).IsLimit case inr.inr a b : Ordinal.{u_1} l : a.IsLimit hb : b ≠ 0 l' : b.IsLimit ⊢ (a ^ b).IsLimit
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
17
Ordinal.opow_isLimit_left
[ [ 131, 93 ], [ 136, 35 ] ]
1
8
· exact absurd e hb
case inl a b : Ordinal.{u_1} l : a.IsLimit hb : b ≠ 0 e : b = 0 ⊢ (a ^ b).IsLimit case inr.inl.intro a : Ordinal.{u_1} l : a.IsLimit b : Ordinal.{u_1} hb : succ b ≠ 0 ⊢ (a ^ succ b).IsLimit case inr.inr a b : Ordinal.{u_1} l : a.IsLimit hb : b ≠ 0 l' : b.IsLimit ⊢ (a ^ b).IsLimit
case inr.inl.intro a : Ordinal.{u_1} l : a.IsLimit b : Ordinal.{u_1} hb : succ b ≠ 0 ⊢ (a ^ succ b).IsLimit case inr.inr a b : Ordinal.{u_1} l : a.IsLimit hb : b ≠ 0 l' : b.IsLimit ⊢ (a ^ b).IsLimit