file
stringlengths
21
79
dependencies
listlengths
1
16
definitions
listlengths
1
625
theorem_idx
int64
0
574
theorem
stringlengths
3
121
theorem_loc
listlengths
2
2
tactic_idx
int64
0
155
tactic_len
int64
1
156
tactic
stringlengths
3
5.76k
state_before
stringlengths
7
13.6k
state_after
stringlengths
7
13.6k
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
37
Ordinal.opow_log_le_self
[ [ 319, 88 ], [ 327, 39 ] ]
4
11
· rwa [one_opow, one_le_iff_ne_zero]
case inr.inr x : Ordinal.{u_1} hx : x ≠ 0 b0 : 1 ≠ 0 ⊢ 1 ^ log 1 x ≤ x
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
37
Ordinal.opow_log_le_self
[ [ 319, 88 ], [ 327, 39 ] ]
5
11
rw [zero_opow']
case inl x : Ordinal.{u_1} hx : x ≠ 0 ⊢ 0 ^ log 0 x ≤ x
case inl x : Ordinal.{u_1} hx : x ≠ 0 ⊢ 1 - log 0 x ≤ x
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
37
Ordinal.opow_log_le_self
[ [ 319, 88 ], [ 327, 39 ] ]
6
11
exact (sub_le_self _ _).trans (one_le_iff_ne_zero.2 hx)
case inl x : Ordinal.{u_1} hx : x ≠ 0 ⊢ 1 - log 0 x ≤ x
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
37
Ordinal.opow_log_le_self
[ [ 319, 88 ], [ 327, 39 ] ]
7
11
refine le_of_not_lt fun h => (lt_succ (log b x)).not_le ?_
case inr.inl b x : Ordinal.{u_1} hx : x ≠ 0 b0 : b ≠ 0 hb : 1 < b ⊢ b ^ log b x ≤ x
case inr.inl b x : Ordinal.{u_1} hx : x ≠ 0 b0 : b ≠ 0 hb : 1 < b h : x < b ^ log b x ⊢ succ (log b x) ≤ log b x
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
37
Ordinal.opow_log_le_self
[ [ 319, 88 ], [ 327, 39 ] ]
8
11
have := @csInf_le' _ _ { o | x < b ^ o } _ h
case inr.inl b x : Ordinal.{u_1} hx : x ≠ 0 b0 : b ≠ 0 hb : 1 < b h : x < b ^ log b x ⊢ succ (log b x) ≤ log b x
case inr.inl b x : Ordinal.{u_1} hx : x ≠ 0 b0 : b ≠ 0 hb : 1 < b h : x < b ^ log b x this : sInf {o | x < b ^ o} ≤ log b x ⊢ succ (log b x) ≤ log b x
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
37
Ordinal.opow_log_le_self
[ [ 319, 88 ], [ 327, 39 ] ]
9
11
rwa [← succ_log_def hb hx] at this
case inr.inl b x : Ordinal.{u_1} hx : x ≠ 0 b0 : b ≠ 0 hb : 1 < b h : x < b ^ log b x this : sInf {o | x < b ^ o} ≤ log b x ⊢ succ (log b x) ≤ log b x
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
37
Ordinal.opow_log_le_self
[ [ 319, 88 ], [ 327, 39 ] ]
10
11
rwa [one_opow, one_le_iff_ne_zero]
case inr.inr x : Ordinal.{u_1} hx : x ≠ 0 b0 : 1 ≠ 0 ⊢ 1 ^ log 1 x ≤ x
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
40
Ordinal.log_pos
[ [ 343, 90 ], [ 344, 71 ] ]
0
1
rwa [← succ_le_iff, succ_zero, ← opow_le_iff_le_log hb ho, opow_one]
b o : Ordinal.{u_1} hb : 1 < b ho : o ≠ 0 hbo : b ≤ o ⊢ 0 < log b o
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
41
Ordinal.log_eq_zero
[ [ 347, 68 ], [ 354, 92 ] ]
0
12
rcases eq_or_ne o 0 with (rfl | ho)
b o : Ordinal.{u_1} hbo : o < b ⊢ log b o = 0
case inl b : Ordinal.{u_1} hbo : 0 < b ⊢ log b 0 = 0 case inr b o : Ordinal.{u_1} hbo : o < b ho : o ≠ 0 ⊢ log b o = 0
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
41
Ordinal.log_eq_zero
[ [ 347, 68 ], [ 354, 92 ] ]
1
12
· exact log_zero_right b
case inl b : Ordinal.{u_1} hbo : 0 < b ⊢ log b 0 = 0 case inr b o : Ordinal.{u_1} hbo : o < b ho : o ≠ 0 ⊢ log b o = 0
case inr b o : Ordinal.{u_1} hbo : o < b ho : o ≠ 0 ⊢ log b o = 0
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
41
Ordinal.log_eq_zero
[ [ 347, 68 ], [ 354, 92 ] ]
2
12
rcases le_or_lt b 1 with hb | hb
case inr b o : Ordinal.{u_1} hbo : o < b ho : o ≠ 0 ⊢ log b o = 0
case inr.inl b o : Ordinal.{u_1} hbo : o < b ho : o ≠ 0 hb : b ≤ 1 ⊢ log b o = 0 case inr.inr b o : Ordinal.{u_1} hbo : o < b ho : o ≠ 0 hb : 1 < b ⊢ log b o = 0
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
41
Ordinal.log_eq_zero
[ [ 347, 68 ], [ 354, 92 ] ]
3
12
· rcases le_one_iff.1 hb with (rfl | rfl) · exact log_zero_left o · exact log_one_left o
case inr.inl b o : Ordinal.{u_1} hbo : o < b ho : o ≠ 0 hb : b ≤ 1 ⊢ log b o = 0 case inr.inr b o : Ordinal.{u_1} hbo : o < b ho : o ≠ 0 hb : 1 < b ⊢ log b o = 0
case inr.inr b o : Ordinal.{u_1} hbo : o < b ho : o ≠ 0 hb : 1 < b ⊢ log b o = 0
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
41
Ordinal.log_eq_zero
[ [ 347, 68 ], [ 354, 92 ] ]
4
12
· rwa [← Ordinal.le_zero, ← lt_succ_iff, succ_zero, ← lt_opow_iff_log_lt hb ho, opow_one]
case inr.inr b o : Ordinal.{u_1} hbo : o < b ho : o ≠ 0 hb : 1 < b ⊢ log b o = 0
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
41
Ordinal.log_eq_zero
[ [ 347, 68 ], [ 354, 92 ] ]
5
12
exact log_zero_right b
case inl b : Ordinal.{u_1} hbo : 0 < b ⊢ log b 0 = 0
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
41
Ordinal.log_eq_zero
[ [ 347, 68 ], [ 354, 92 ] ]
6
12
rcases le_one_iff.1 hb with (rfl | rfl)
case inr.inl b o : Ordinal.{u_1} hbo : o < b ho : o ≠ 0 hb : b ≤ 1 ⊢ log b o = 0
case inr.inl.inl o : Ordinal.{u_1} ho : o ≠ 0 hbo : o < 0 hb : 0 ≤ 1 ⊢ log 0 o = 0 case inr.inl.inr o : Ordinal.{u_1} ho : o ≠ 0 hbo : o < 1 hb : 1 ≤ 1 ⊢ log 1 o = 0
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
41
Ordinal.log_eq_zero
[ [ 347, 68 ], [ 354, 92 ] ]
7
12
· exact log_zero_left o
case inr.inl.inl o : Ordinal.{u_1} ho : o ≠ 0 hbo : o < 0 hb : 0 ≤ 1 ⊢ log 0 o = 0 case inr.inl.inr o : Ordinal.{u_1} ho : o ≠ 0 hbo : o < 1 hb : 1 ≤ 1 ⊢ log 1 o = 0
case inr.inl.inr o : Ordinal.{u_1} ho : o ≠ 0 hbo : o < 1 hb : 1 ≤ 1 ⊢ log 1 o = 0
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
41
Ordinal.log_eq_zero
[ [ 347, 68 ], [ 354, 92 ] ]
8
12
· exact log_one_left o
case inr.inl.inr o : Ordinal.{u_1} ho : o ≠ 0 hbo : o < 1 hb : 1 ≤ 1 ⊢ log 1 o = 0
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
41
Ordinal.log_eq_zero
[ [ 347, 68 ], [ 354, 92 ] ]
9
12
exact log_zero_left o
case inr.inl.inl o : Ordinal.{u_1} ho : o ≠ 0 hbo : o < 0 hb : 0 ≤ 1 ⊢ log 0 o = 0
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
41
Ordinal.log_eq_zero
[ [ 347, 68 ], [ 354, 92 ] ]
10
12
exact log_one_left o
case inr.inl.inr o : Ordinal.{u_1} ho : o ≠ 0 hbo : o < 1 hb : 1 ≤ 1 ⊢ log 1 o = 0
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
41
Ordinal.log_eq_zero
[ [ 347, 68 ], [ 354, 92 ] ]
11
12
rwa [← Ordinal.le_zero, ← lt_succ_iff, succ_zero, ← lt_opow_iff_log_lt hb ho, opow_one]
case inr.inr b o : Ordinal.{u_1} hbo : o < b ho : o ≠ 0 hb : 1 < b ⊢ log b o = 0
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
45
Ordinal.mod_opow_log_lt_self
[ [ 379, 98 ], [ 382, 75 ] ]
0
5
rcases eq_or_ne b 0 with (rfl | hb)
b o : Ordinal.{u_1} ho : o ≠ 0 ⊢ o % b ^ log b o < o
case inl o : Ordinal.{u_1} ho : o ≠ 0 ⊢ o % 0 ^ log 0 o < o case inr b o : Ordinal.{u_1} ho : o ≠ 0 hb : b ≠ 0 ⊢ o % b ^ log b o < o
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
45
Ordinal.mod_opow_log_lt_self
[ [ 379, 98 ], [ 382, 75 ] ]
1
5
· simpa using Ordinal.pos_iff_ne_zero.2 ho
case inl o : Ordinal.{u_1} ho : o ≠ 0 ⊢ o % 0 ^ log 0 o < o case inr b o : Ordinal.{u_1} ho : o ≠ 0 hb : b ≠ 0 ⊢ o % b ^ log b o < o
case inr b o : Ordinal.{u_1} ho : o ≠ 0 hb : b ≠ 0 ⊢ o % b ^ log b o < o
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
45
Ordinal.mod_opow_log_lt_self
[ [ 379, 98 ], [ 382, 75 ] ]
2
5
· exact (mod_lt _ <| opow_ne_zero _ hb).trans_le (opow_log_le_self _ ho)
case inr b o : Ordinal.{u_1} ho : o ≠ 0 hb : b ≠ 0 ⊢ o % b ^ log b o < o
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
45
Ordinal.mod_opow_log_lt_self
[ [ 379, 98 ], [ 382, 75 ] ]
3
5
simpa using Ordinal.pos_iff_ne_zero.2 ho
case inl o : Ordinal.{u_1} ho : o ≠ 0 ⊢ o % 0 ^ log 0 o < o
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
45
Ordinal.mod_opow_log_lt_self
[ [ 379, 98 ], [ 382, 75 ] ]
4
5
exact (mod_lt _ <| opow_ne_zero _ hb).trans_le (opow_log_le_self _ ho)
case inr b o : Ordinal.{u_1} ho : o ≠ 0 hb : b ≠ 0 ⊢ o % b ^ log b o < o
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
46
Ordinal.log_mod_opow_log_lt_log_self
[ [ 386, 44 ], [ 394, 44 ] ]
0
10
rcases eq_or_ne (o % (b ^ log b o)) 0 with h | h
b o : Ordinal.{u_1} hb : 1 < b ho : o ≠ 0 hbo : b ≤ o ⊢ log b (o % b ^ log b o) < log b o
case inl b o : Ordinal.{u_1} hb : 1 < b ho : o ≠ 0 hbo : b ≤ o h : o % b ^ log b o = 0 ⊢ log b (o % b ^ log b o) < log b o case inr b o : Ordinal.{u_1} hb : 1 < b ho : o ≠ 0 hbo : b ≤ o h : o % b ^ log b o ≠ 0 ⊢ log b (o % b ^ log b o) < log b o
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
46
Ordinal.log_mod_opow_log_lt_log_self
[ [ 386, 44 ], [ 394, 44 ] ]
1
10
· rw [h, log_zero_right] apply log_pos hb ho hbo
case inl b o : Ordinal.{u_1} hb : 1 < b ho : o ≠ 0 hbo : b ≤ o h : o % b ^ log b o = 0 ⊢ log b (o % b ^ log b o) < log b o case inr b o : Ordinal.{u_1} hb : 1 < b ho : o ≠ 0 hbo : b ≤ o h : o % b ^ log b o ≠ 0 ⊢ log b (o % b ^ log b o) < log b o
case inr b o : Ordinal.{u_1} hb : 1 < b ho : o ≠ 0 hbo : b ≤ o h : o % b ^ log b o ≠ 0 ⊢ log b (o % b ^ log b o) < log b o
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
46
Ordinal.log_mod_opow_log_lt_log_self
[ [ 386, 44 ], [ 394, 44 ] ]
2
10
· rw [← succ_le_iff, succ_log_def hb h] apply csInf_le' apply mod_lt rw [← Ordinal.pos_iff_ne_zero] exact opow_pos _ (zero_lt_one.trans hb)
case inr b o : Ordinal.{u_1} hb : 1 < b ho : o ≠ 0 hbo : b ≤ o h : o % b ^ log b o ≠ 0 ⊢ log b (o % b ^ log b o) < log b o
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
46
Ordinal.log_mod_opow_log_lt_log_self
[ [ 386, 44 ], [ 394, 44 ] ]
3
10
rw [h, log_zero_right]
case inl b o : Ordinal.{u_1} hb : 1 < b ho : o ≠ 0 hbo : b ≤ o h : o % b ^ log b o = 0 ⊢ log b (o % b ^ log b o) < log b o
case inl b o : Ordinal.{u_1} hb : 1 < b ho : o ≠ 0 hbo : b ≤ o h : o % b ^ log b o = 0 ⊢ 0 < log b o
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
46
Ordinal.log_mod_opow_log_lt_log_self
[ [ 386, 44 ], [ 394, 44 ] ]
4
10
apply log_pos hb ho hbo
case inl b o : Ordinal.{u_1} hb : 1 < b ho : o ≠ 0 hbo : b ≤ o h : o % b ^ log b o = 0 ⊢ 0 < log b o
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
46
Ordinal.log_mod_opow_log_lt_log_self
[ [ 386, 44 ], [ 394, 44 ] ]
5
10
rw [← succ_le_iff, succ_log_def hb h]
case inr b o : Ordinal.{u_1} hb : 1 < b ho : o ≠ 0 hbo : b ≤ o h : o % b ^ log b o ≠ 0 ⊢ log b (o % b ^ log b o) < log b o
case inr b o : Ordinal.{u_1} hb : 1 < b ho : o ≠ 0 hbo : b ≤ o h : o % b ^ log b o ≠ 0 ⊢ sInf {o_1 | o % b ^ log b o < b ^ o_1} ≤ log b o
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
46
Ordinal.log_mod_opow_log_lt_log_self
[ [ 386, 44 ], [ 394, 44 ] ]
6
10
apply csInf_le'
case inr b o : Ordinal.{u_1} hb : 1 < b ho : o ≠ 0 hbo : b ≤ o h : o % b ^ log b o ≠ 0 ⊢ sInf {o_1 | o % b ^ log b o < b ^ o_1} ≤ log b o
case inr.h b o : Ordinal.{u_1} hb : 1 < b ho : o ≠ 0 hbo : b ≤ o h : o % b ^ log b o ≠ 0 ⊢ log b o ∈ {o_1 | o % b ^ log b o < b ^ o_1}
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
46
Ordinal.log_mod_opow_log_lt_log_self
[ [ 386, 44 ], [ 394, 44 ] ]
7
10
apply mod_lt
case inr.h b o : Ordinal.{u_1} hb : 1 < b ho : o ≠ 0 hbo : b ≤ o h : o % b ^ log b o ≠ 0 ⊢ log b o ∈ {o_1 | o % b ^ log b o < b ^ o_1}
case inr.h.h b o : Ordinal.{u_1} hb : 1 < b ho : o ≠ 0 hbo : b ≤ o h : o % b ^ log b o ≠ 0 ⊢ b ^ log b o ≠ 0
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
46
Ordinal.log_mod_opow_log_lt_log_self
[ [ 386, 44 ], [ 394, 44 ] ]
8
10
rw [← Ordinal.pos_iff_ne_zero]
case inr.h.h b o : Ordinal.{u_1} hb : 1 < b ho : o ≠ 0 hbo : b ≤ o h : o % b ^ log b o ≠ 0 ⊢ b ^ log b o ≠ 0
case inr.h.h b o : Ordinal.{u_1} hb : 1 < b ho : o ≠ 0 hbo : b ≤ o h : o % b ^ log b o ≠ 0 ⊢ 0 < b ^ log b o
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
46
Ordinal.log_mod_opow_log_lt_log_self
[ [ 386, 44 ], [ 394, 44 ] ]
9
10
exact opow_pos _ (zero_lt_one.trans hb)
case inr.h.h b o : Ordinal.{u_1} hb : 1 < b ho : o ≠ 0 hbo : b ≤ o h : o % b ^ log b o ≠ 0 ⊢ 0 < b ^ log b o
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
48
Ordinal.opow_mul_add_lt_opow_mul_succ
[ [ 404, 39 ], [ 404, 77 ] ]
0
1
rwa [mul_succ, add_lt_add_iff_left]
b u w v : Ordinal.{u_1} hw : w < b ^ u ⊢ b ^ u * v + w < b ^ u * succ v
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
49
Ordinal.opow_mul_add_lt_opow_succ
[ [ 408, 35 ], [ 411, 22 ] ]
0
2
convert (opow_mul_add_lt_opow_mul_succ v hw).trans_le (mul_le_mul_left' (succ_le_of_lt hvb) _) using 1
b u v w : Ordinal.{u_1} hvb : v < b hw : w < b ^ u ⊢ b ^ u * v + w < b ^ succ u
case h.e'_4 b u v w : Ordinal.{u_1} hvb : v < b hw : w < b ^ u ⊢ b ^ succ u = b ^ u * b
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
49
Ordinal.opow_mul_add_lt_opow_succ
[ [ 408, 35 ], [ 411, 22 ] ]
1
2
exact opow_succ b u
case h.e'_4 b u v w : Ordinal.{u_1} hvb : v < b hw : w < b ^ u ⊢ b ^ succ u = b ^ u * b
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
50
Ordinal.log_opow_mul_add
[ [ 415, 53 ], [ 423, 62 ] ]
0
10
have hne' := (opow_mul_add_pos (zero_lt_one.trans hb).ne' u hv w).ne'
b u v w : Ordinal.{u_1} hb : 1 < b hv : v ≠ 0 hvb : v < b hw : w < b ^ u ⊢ log b (b ^ u * v + w) = u
b u v w : Ordinal.{u_1} hb : 1 < b hv : v ≠ 0 hvb : v < b hw : w < b ^ u hne' : b ^ u * v + w ≠ 0 ⊢ log b (b ^ u * v + w) = u
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
50
Ordinal.log_opow_mul_add
[ [ 415, 53 ], [ 423, 62 ] ]
1
10
by_contra! hne
b u v w : Ordinal.{u_1} hb : 1 < b hv : v ≠ 0 hvb : v < b hw : w < b ^ u hne' : b ^ u * v + w ≠ 0 ⊢ log b (b ^ u * v + w) = u
b u v w : Ordinal.{u_1} hb : 1 < b hv : v ≠ 0 hvb : v < b hw : w < b ^ u hne' : b ^ u * v + w ≠ 0 hne : log b (b ^ u * v + w) ≠ u ⊢ False
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
50
Ordinal.log_opow_mul_add
[ [ 415, 53 ], [ 423, 62 ] ]
2
10
cases' lt_or_gt_of_ne hne with h h
b u v w : Ordinal.{u_1} hb : 1 < b hv : v ≠ 0 hvb : v < b hw : w < b ^ u hne' : b ^ u * v + w ≠ 0 hne : log b (b ^ u * v + w) ≠ u ⊢ False
case inl b u v w : Ordinal.{u_1} hb : 1 < b hv : v ≠ 0 hvb : v < b hw : w < b ^ u hne' : b ^ u * v + w ≠ 0 hne : log b (b ^ u * v + w) ≠ u h : log b (b ^ u * v + w) < u ⊢ False case inr b u v w : Ordinal.{u_1} hb : 1 < b hv : v ≠ 0 hvb : v < b hw : w < b ^ u hne' : b ^ u * v + w ≠ 0 hne : log b (b ^ u * v + w) ≠ u h : log b (b ^ u * v + w) > u ⊢ False
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
50
Ordinal.log_opow_mul_add
[ [ 415, 53 ], [ 423, 62 ] ]
3
10
· rw [← lt_opow_iff_log_lt hb hne'] at h exact h.not_le ((le_mul_left _ (Ordinal.pos_iff_ne_zero.2 hv)).trans (le_add_right _ _))
case inl b u v w : Ordinal.{u_1} hb : 1 < b hv : v ≠ 0 hvb : v < b hw : w < b ^ u hne' : b ^ u * v + w ≠ 0 hne : log b (b ^ u * v + w) ≠ u h : log b (b ^ u * v + w) < u ⊢ False case inr b u v w : Ordinal.{u_1} hb : 1 < b hv : v ≠ 0 hvb : v < b hw : w < b ^ u hne' : b ^ u * v + w ≠ 0 hne : log b (b ^ u * v + w) ≠ u h : log b (b ^ u * v + w) > u ⊢ False
case inr b u v w : Ordinal.{u_1} hb : 1 < b hv : v ≠ 0 hvb : v < b hw : w < b ^ u hne' : b ^ u * v + w ≠ 0 hne : log b (b ^ u * v + w) ≠ u h : log b (b ^ u * v + w) > u ⊢ False
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
50
Ordinal.log_opow_mul_add
[ [ 415, 53 ], [ 423, 62 ] ]
4
10
· conv at h => change u < log b (b ^ u * v + w) rw [← succ_le_iff, ← opow_le_iff_le_log hb hne'] at h exact (not_lt_of_le h) (opow_mul_add_lt_opow_succ hvb hw)
case inr b u v w : Ordinal.{u_1} hb : 1 < b hv : v ≠ 0 hvb : v < b hw : w < b ^ u hne' : b ^ u * v + w ≠ 0 hne : log b (b ^ u * v + w) ≠ u h : log b (b ^ u * v + w) > u ⊢ False
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
50
Ordinal.log_opow_mul_add
[ [ 415, 53 ], [ 423, 62 ] ]
5
10
rw [← lt_opow_iff_log_lt hb hne'] at h
case inl b u v w : Ordinal.{u_1} hb : 1 < b hv : v ≠ 0 hvb : v < b hw : w < b ^ u hne' : b ^ u * v + w ≠ 0 hne : log b (b ^ u * v + w) ≠ u h : log b (b ^ u * v + w) < u ⊢ False
case inl b u v w : Ordinal.{u_1} hb : 1 < b hv : v ≠ 0 hvb : v < b hw : w < b ^ u hne' : b ^ u * v + w ≠ 0 hne : log b (b ^ u * v + w) ≠ u h : b ^ u * v + w < b ^ u ⊢ False
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
50
Ordinal.log_opow_mul_add
[ [ 415, 53 ], [ 423, 62 ] ]
6
10
exact h.not_le ((le_mul_left _ (Ordinal.pos_iff_ne_zero.2 hv)).trans (le_add_right _ _))
case inl b u v w : Ordinal.{u_1} hb : 1 < b hv : v ≠ 0 hvb : v < b hw : w < b ^ u hne' : b ^ u * v + w ≠ 0 hne : log b (b ^ u * v + w) ≠ u h : b ^ u * v + w < b ^ u ⊢ False
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
50
Ordinal.log_opow_mul_add
[ [ 415, 53 ], [ 423, 62 ] ]
7
10
conv at h => change u < log b (b ^ u * v + w)
case inr b u v w : Ordinal.{u_1} hb : 1 < b hv : v ≠ 0 hvb : v < b hw : w < b ^ u hne' : b ^ u * v + w ≠ 0 hne : log b (b ^ u * v + w) ≠ u h : log b (b ^ u * v + w) > u ⊢ False
case inr b u v w : Ordinal.{u_1} hb : 1 < b hv : v ≠ 0 hvb : v < b hw : w < b ^ u hne' : b ^ u * v + w ≠ 0 hne : log b (b ^ u * v + w) ≠ u h : u < log b (b ^ u * v + w) ⊢ False
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
50
Ordinal.log_opow_mul_add
[ [ 415, 53 ], [ 423, 62 ] ]
8
10
rw [← succ_le_iff, ← opow_le_iff_le_log hb hne'] at h
case inr b u v w : Ordinal.{u_1} hb : 1 < b hv : v ≠ 0 hvb : v < b hw : w < b ^ u hne' : b ^ u * v + w ≠ 0 hne : log b (b ^ u * v + w) ≠ u h : u < log b (b ^ u * v + w) ⊢ False
case inr b u v w : Ordinal.{u_1} hb : 1 < b hv : v ≠ 0 hvb : v < b hw : w < b ^ u hne' : b ^ u * v + w ≠ 0 hne : log b (b ^ u * v + w) ≠ u h : b ^ succ u ≤ b ^ u * v + w ⊢ False
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
50
Ordinal.log_opow_mul_add
[ [ 415, 53 ], [ 423, 62 ] ]
9
10
exact (not_lt_of_le h) (opow_mul_add_lt_opow_succ hvb hw)
case inr b u v w : Ordinal.{u_1} hb : 1 < b hv : v ≠ 0 hvb : v < b hw : w < b ^ u hne' : b ^ u * v + w ≠ 0 hne : log b (b ^ u * v + w) ≠ u h : b ^ succ u ≤ b ^ u * v + w ⊢ False
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
51
Ordinal.log_opow
[ [ 426, 82 ], [ 429, 25 ] ]
0
2
convert log_opow_mul_add hb zero_ne_one.symm hb (opow_pos x (zero_lt_one.trans hb)) using 1
b : Ordinal.{u_1} hb : 1 < b x : Ordinal.{u_1} ⊢ log b (b ^ x) = x
case h.e'_2 b : Ordinal.{u_1} hb : 1 < b x : Ordinal.{u_1} ⊢ log b (b ^ x) = log b (b ^ x * 1 + 0)
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
51
Ordinal.log_opow
[ [ 426, 82 ], [ 429, 25 ] ]
1
2
rw [add_zero, mul_one]
case h.e'_2 b : Ordinal.{u_1} hb : 1 < b x : Ordinal.{u_1} ⊢ log b (b ^ x) = log b (b ^ x * 1 + 0)
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
52
Ordinal.div_opow_log_pos
[ [ 432, 94 ], [ 436, 32 ] ]
0
6
rcases eq_zero_or_pos b with (rfl | hb)
b o : Ordinal.{u_1} ho : o ≠ 0 ⊢ 0 < o / b ^ log b o
case inl o : Ordinal.{u_1} ho : o ≠ 0 ⊢ 0 < o / 0 ^ log 0 o case inr b o : Ordinal.{u_1} ho : o ≠ 0 hb : 0 < b ⊢ 0 < o / b ^ log b o
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
52
Ordinal.div_opow_log_pos
[ [ 432, 94 ], [ 436, 32 ] ]
1
6
· simpa using Ordinal.pos_iff_ne_zero.2 ho
case inl o : Ordinal.{u_1} ho : o ≠ 0 ⊢ 0 < o / 0 ^ log 0 o case inr b o : Ordinal.{u_1} ho : o ≠ 0 hb : 0 < b ⊢ 0 < o / b ^ log b o
case inr b o : Ordinal.{u_1} ho : o ≠ 0 hb : 0 < b ⊢ 0 < o / b ^ log b o
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
52
Ordinal.div_opow_log_pos
[ [ 432, 94 ], [ 436, 32 ] ]
2
6
· rw [div_pos (opow_ne_zero _ hb.ne')] exact opow_log_le_self b ho
case inr b o : Ordinal.{u_1} ho : o ≠ 0 hb : 0 < b ⊢ 0 < o / b ^ log b o
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
52
Ordinal.div_opow_log_pos
[ [ 432, 94 ], [ 436, 32 ] ]
3
6
simpa using Ordinal.pos_iff_ne_zero.2 ho
case inl o : Ordinal.{u_1} ho : o ≠ 0 ⊢ 0 < o / 0 ^ log 0 o
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
52
Ordinal.div_opow_log_pos
[ [ 432, 94 ], [ 436, 32 ] ]
4
6
rw [div_pos (opow_ne_zero _ hb.ne')]
case inr b o : Ordinal.{u_1} ho : o ≠ 0 hb : 0 < b ⊢ 0 < o / b ^ log b o
case inr b o : Ordinal.{u_1} ho : o ≠ 0 hb : 0 < b ⊢ b ^ log b o ≤ o
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
52
Ordinal.div_opow_log_pos
[ [ 432, 94 ], [ 436, 32 ] ]
5
6
exact opow_log_le_self b ho
case inr b o : Ordinal.{u_1} ho : o ≠ 0 hb : 0 < b ⊢ b ^ log b o ≤ o
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
53
Ordinal.div_opow_log_lt
[ [ 439, 93 ], [ 441, 35 ] ]
0
2
rw [div_lt (opow_pos _ (zero_lt_one.trans hb)).ne', ← opow_succ]
b o : Ordinal.{u_1} hb : 1 < b ⊢ o / b ^ log b o < b
b o : Ordinal.{u_1} hb : 1 < b ⊢ o < b ^ succ (log b o)
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
53
Ordinal.div_opow_log_lt
[ [ 439, 93 ], [ 441, 35 ] ]
1
2
exact lt_opow_succ_log_self hb o
b o : Ordinal.{u_1} hb : 1 < b ⊢ o < b ^ succ (log b o)
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
54
Ordinal.add_log_le_log_mul
[ [ 445, 42 ], [ 450, 59 ] ]
0
5
by_cases hb : 1 < b
x y b : Ordinal.{u_1} hx : x ≠ 0 hy : y ≠ 0 ⊢ log b x + log b y ≤ log b (x * y)
case pos x y b : Ordinal.{u_1} hx : x ≠ 0 hy : y ≠ 0 hb : 1 < b ⊢ log b x + log b y ≤ log b (x * y) case neg x y b : Ordinal.{u_1} hx : x ≠ 0 hy : y ≠ 0 hb : ¬1 < b ⊢ log b x + log b y ≤ log b (x * y)
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
54
Ordinal.add_log_le_log_mul
[ [ 445, 42 ], [ 450, 59 ] ]
1
5
· rw [← opow_le_iff_le_log hb (mul_ne_zero hx hy), opow_add] exact mul_le_mul' (opow_log_le_self b hx) (opow_log_le_self b hy)
case pos x y b : Ordinal.{u_1} hx : x ≠ 0 hy : y ≠ 0 hb : 1 < b ⊢ log b x + log b y ≤ log b (x * y) case neg x y b : Ordinal.{u_1} hx : x ≠ 0 hy : y ≠ 0 hb : ¬1 < b ⊢ log b x + log b y ≤ log b (x * y)
case neg x y b : Ordinal.{u_1} hx : x ≠ 0 hy : y ≠ 0 hb : ¬1 < b ⊢ log b x + log b y ≤ log b (x * y)
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
54
Ordinal.add_log_le_log_mul
[ [ 445, 42 ], [ 450, 59 ] ]
2
5
simp only [log_of_not_one_lt_left hb, zero_add, le_refl]
case neg x y b : Ordinal.{u_1} hx : x ≠ 0 hy : y ≠ 0 hb : ¬1 < b ⊢ log b x + log b y ≤ log b (x * y)
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
54
Ordinal.add_log_le_log_mul
[ [ 445, 42 ], [ 450, 59 ] ]
3
5
rw [← opow_le_iff_le_log hb (mul_ne_zero hx hy), opow_add]
case pos x y b : Ordinal.{u_1} hx : x ≠ 0 hy : y ≠ 0 hb : 1 < b ⊢ log b x + log b y ≤ log b (x * y)
case pos x y b : Ordinal.{u_1} hx : x ≠ 0 hy : y ≠ 0 hb : 1 < b ⊢ b ^ log b x * b ^ log b y ≤ x * y
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
54
Ordinal.add_log_le_log_mul
[ [ 445, 42 ], [ 450, 59 ] ]
4
5
exact mul_le_mul' (opow_log_le_self b hx) (opow_log_le_self b hy)
case pos x y b : Ordinal.{u_1} hx : x ≠ 0 hy : y ≠ 0 hb : 1 < b ⊢ b ^ log b x * b ^ log b y ≤ x * y
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
56
Ordinal.sup_opow_nat
[ [ 465, 99 ], [ 471, 34 ] ]
0
9
rcases lt_or_eq_of_le (one_le_iff_pos.2 ho) with (ho₁ | rfl)
o : Ordinal.{u_1} ho : 0 < o ⊢ (sup fun n => o ^ ↑n) = o ^ ω
case inl o : Ordinal.{u_1} ho : 0 < o ho₁ : 1 < o ⊢ (sup fun n => o ^ ↑n) = o ^ ω case inr ho : 0 < 1 ⊢ (sup fun n => 1 ^ ↑n) = 1 ^ ω
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
56
Ordinal.sup_opow_nat
[ [ 465, 99 ], [ 471, 34 ] ]
1
9
· exact (opow_isNormal ho₁).apply_omega
case inl o : Ordinal.{u_1} ho : 0 < o ho₁ : 1 < o ⊢ (sup fun n => o ^ ↑n) = o ^ ω case inr ho : 0 < 1 ⊢ (sup fun n => 1 ^ ↑n) = 1 ^ ω
case inr ho : 0 < 1 ⊢ (sup fun n => 1 ^ ↑n) = 1 ^ ω
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
56
Ordinal.sup_opow_nat
[ [ 465, 99 ], [ 471, 34 ] ]
2
9
· rw [one_opow] refine le_antisymm (sup_le fun n => by rw [one_opow]) ?_ convert le_sup (fun n : ℕ => 1 ^ (n : Ordinal)) 0 rw [Nat.cast_zero, opow_zero]
case inr ho : 0 < 1 ⊢ (sup fun n => 1 ^ ↑n) = 1 ^ ω
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
56
Ordinal.sup_opow_nat
[ [ 465, 99 ], [ 471, 34 ] ]
3
9
exact (opow_isNormal ho₁).apply_omega
case inl o : Ordinal.{u_1} ho : 0 < o ho₁ : 1 < o ⊢ (sup fun n => o ^ ↑n) = o ^ ω
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
56
Ordinal.sup_opow_nat
[ [ 465, 99 ], [ 471, 34 ] ]
4
9
rw [one_opow]
case inr ho : 0 < 1 ⊢ (sup fun n => 1 ^ ↑n) = 1 ^ ω
case inr ho : 0 < 1 ⊢ (sup fun n => 1 ^ ↑n) = 1
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
56
Ordinal.sup_opow_nat
[ [ 465, 99 ], [ 471, 34 ] ]
5
9
refine le_antisymm (sup_le fun n => by rw [one_opow]) ?_
case inr ho : 0 < 1 ⊢ (sup fun n => 1 ^ ↑n) = 1
case inr ho : 0 < 1 ⊢ 1 ≤ sup fun n => 1 ^ ↑n
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
56
Ordinal.sup_opow_nat
[ [ 465, 99 ], [ 471, 34 ] ]
6
9
convert le_sup (fun n : ℕ => 1 ^ (n : Ordinal)) 0
case inr ho : 0 < 1 ⊢ 1 ≤ sup fun n => 1 ^ ↑n
case h.e'_3 ho : 0 < 1 ⊢ 1 = 1 ^ ↑0
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
56
Ordinal.sup_opow_nat
[ [ 465, 99 ], [ 471, 34 ] ]
7
9
rw [Nat.cast_zero, opow_zero]
case h.e'_3 ho : 0 < 1 ⊢ 1 = 1 ^ ↑0
no goals
Mathlib/SetTheory/Ordinal/Exponential.lean
[ [ "Mathlib.SetTheory.Ordinal.Arithmetic", "Mathlib/SetTheory/Ordinal/Arithmetic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "instance pow : Pow Ordinal Ordinal :=\n ⟨fun a b => if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b⟩", "end": [ 31, 101 ], "full_name": "Ordinal.pow", "kind": "commanddeclaration", "start": [ 29, 1 ] }, { "code": "theorem opow_def (a b : Ordinal) :\n a ^ b = if a = 0 then 1 - b else limitRecOn b 1 (fun _ IH => IH * a) fun b _ => bsup.{u, u} b", "end": [ 38, 6 ], "full_name": "Ordinal.opow_def", "kind": "commanddeclaration", "start": [ 36, 1 ] }, { "code": "theorem zero_opow' (a : Ordinal) : 0 ^ a = 1 - a", "end": [ 42, 85 ], "full_name": "Ordinal.zero_opow'", "kind": "commanddeclaration", "start": [ 42, 1 ] }, { "code": "@[simp]\ntheorem zero_opow {a : Ordinal} (a0 : a ≠ 0) : (0 : Ordinal) ^ a = 0", "end": [ 47, 67 ], "full_name": "Ordinal.zero_opow", "kind": "commanddeclaration", "start": [ 45, 1 ] }, { "code": "@[simp]\ntheorem opow_zero (a : Ordinal) : a ^ (0 : Ordinal) = 1", "end": [ 54, 52 ], "full_name": "Ordinal.opow_zero", "kind": "commanddeclaration", "start": [ 50, 1 ] }, { "code": "@[simp]\ntheorem opow_succ (a b : Ordinal) : a ^ succ b = a ^ b * a", "end": [ 60, 58 ], "full_name": "Ordinal.opow_succ", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "theorem opow_limit {a b : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b = bsup.{u, u} b fun c _ => a ^ c", "end": [ 65, 67 ], "full_name": "Ordinal.opow_limit", "kind": "commanddeclaration", "start": [ 63, 1 ] }, { "code": "theorem opow_le_of_limit {a b c : Ordinal} (a0 : a ≠ 0) (h : IsLimit b) :\n a ^ b ≤ c ↔ ∀ b' < b, a ^ b' ≤ c", "end": [ 69, 77 ], "full_name": "Ordinal.opow_le_of_limit", "kind": "commanddeclaration", "start": [ 68, 1 ] }, { "code": "theorem lt_opow_of_limit {a b c : Ordinal} (b0 : b ≠ 0) (h : IsLimit c) :\n a < b ^ c ↔ ∃ c' < c, a < b ^ c'", "end": [ 74, 98 ], "full_name": "Ordinal.lt_opow_of_limit", "kind": "commanddeclaration", "start": [ 72, 1 ] }, { "code": "@[simp]\ntheorem opow_one (a : Ordinal) : a ^ (1 : Ordinal) = a", "end": [ 79, 62 ], "full_name": "Ordinal.opow_one", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "@[simp]\ntheorem one_opow (a : Ordinal) : (1 : Ordinal) ^ a = 1", "end": [ 91, 94 ], "full_name": "Ordinal.one_opow", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "theorem opow_pos {a : Ordinal} (b : Ordinal) (a0 : 0 < a) : 0 < a ^ b", "end": [ 102, 79 ], "full_name": "Ordinal.opow_pos", "kind": "commanddeclaration", "start": [ 94, 1 ] }, { "code": "theorem opow_ne_zero {a : Ordinal} (b : Ordinal) (a0 : a ≠ 0) : a ^ b ≠ 0", "end": [ 106, 74 ], "full_name": "Ordinal.opow_ne_zero", "kind": "commanddeclaration", "start": [ 105, 1 ] }, { "code": "theorem opow_isNormal {a : Ordinal} (h : 1 < a) : IsNormal (a ^ ·)", "end": [ 112, 51 ], "full_name": "Ordinal.opow_isNormal", "kind": "commanddeclaration", "start": [ 109, 1 ] }, { "code": "theorem opow_lt_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b < a ^ c ↔ b < c", "end": [ 116, 28 ], "full_name": "Ordinal.opow_lt_opow_iff_right", "kind": "commanddeclaration", "start": [ 115, 1 ] }, { "code": "theorem opow_le_opow_iff_right {a b c : Ordinal} (a1 : 1 < a) : a ^ b ≤ a ^ c ↔ b ≤ c", "end": [ 120, 28 ], "full_name": "Ordinal.opow_le_opow_iff_right", "kind": "commanddeclaration", "start": [ 119, 1 ] }, { "code": "theorem opow_right_inj {a b c : Ordinal} (a1 : 1 < a) : a ^ b = a ^ c ↔ b = c", "end": [ 124, 25 ], "full_name": "Ordinal.opow_right_inj", "kind": "commanddeclaration", "start": [ 123, 1 ] }, { "code": "theorem opow_isLimit {a b : Ordinal} (a1 : 1 < a) : IsLimit b → IsLimit (a ^ b)", "end": [ 128, 29 ], "full_name": "Ordinal.opow_isLimit", "kind": "commanddeclaration", "start": [ 127, 1 ] }, { "code": "theorem opow_isLimit_left {a b : Ordinal} (l : IsLimit a) (hb : b ≠ 0) : IsLimit (a ^ b)", "end": [ 136, 35 ], "full_name": "Ordinal.opow_isLimit_left", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem opow_le_opow_right {a b c : Ordinal} (h₁ : 0 < a) (h₂ : b ≤ c) : a ^ b ≤ a ^ c", "end": [ 144, 34 ], "full_name": "Ordinal.opow_le_opow_right", "kind": "commanddeclaration", "start": [ 139, 1 ] }, { "code": "theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c ≤ b ^ c", "end": [ 162, 96 ], "full_name": "Ordinal.opow_le_opow_left", "kind": "commanddeclaration", "start": [ 147, 1 ] }, { "code": "theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b", "end": [ 173, 50 ], "full_name": "Ordinal.left_le_opow", "kind": "commanddeclaration", "start": [ 165, 1 ] }, { "code": "theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b", "end": [ 177, 31 ], "full_name": "Ordinal.right_le_opow", "kind": "commanddeclaration", "start": [ 176, 1 ] }, { "code": "theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c", "end": [ 184, 81 ], "full_name": "Ordinal.opow_lt_opow_left_of_succ", "kind": "commanddeclaration", "start": [ 180, 1 ] }, { "code": "theorem opow_add (a b c : Ordinal) : a ^ (b + c) = a ^ b * a ^ c", "end": [ 208, 18 ], "full_name": "Ordinal.opow_add", "kind": "commanddeclaration", "start": [ 187, 1 ] }, { "code": "theorem opow_one_add (a b : Ordinal) : a ^ (1 + b) = a * a ^ b", "end": [ 211, 93 ], "full_name": "Ordinal.opow_one_add", "kind": "commanddeclaration", "start": [ 211, 1 ] }, { "code": "theorem opow_dvd_opow (a : Ordinal) {b c : Ordinal} (h : b ≤ c) : a ^ b ∣ a ^ c", "end": [ 215, 68 ], "full_name": "Ordinal.opow_dvd_opow", "kind": "commanddeclaration", "start": [ 214, 1 ] }, { "code": "theorem opow_dvd_opow_iff {a b c : Ordinal} (a1 : 1 < a) : a ^ b ∣ a ^ c ↔ b ≤ c", "end": [ 223, 21 ], "full_name": "Ordinal.opow_dvd_opow_iff", "kind": "commanddeclaration", "start": [ 218, 1 ] }, { "code": "theorem opow_mul (a b c : Ordinal) : a ^ (b * c) = (a ^ b) ^ c", "end": [ 248, 56 ], "full_name": "Ordinal.opow_mul", "kind": "commanddeclaration", "start": [ 226, 1 ] }, { "code": "@[pp_nodot]\ndef log (b : Ordinal) (x : Ordinal) : Ordinal :=\n if _h : 1 < b then pred (sInf { o | x < b ^ o }) else 0", "end": [ 258, 58 ], "full_name": "Ordinal.log", "kind": "commanddeclaration", "start": [ 254, 1 ] }, { "code": "theorem log_nonempty {b x : Ordinal} (h : 1 < b) : { o : Ordinal | x < b ^ o }.Nonempty", "end": [ 263, 41 ], "full_name": "Ordinal.log_nonempty", "kind": "commanddeclaration", "start": [ 261, 1 ] }, { "code": "theorem log_def {b : Ordinal} (h : 1 < b) (x : Ordinal) :\n log b x = pred (sInf { o | x < b ^ o })", "end": [ 267, 77 ], "full_name": "Ordinal.log_def", "kind": "commanddeclaration", "start": [ 266, 1 ] }, { "code": "theorem log_of_not_one_lt_left {b : Ordinal} (h : ¬1 < b) (x : Ordinal) : log b x = 0", "end": [ 271, 29 ], "full_name": "Ordinal.log_of_not_one_lt_left", "kind": "commanddeclaration", "start": [ 270, 1 ] }, { "code": "theorem log_of_left_le_one {b : Ordinal} (h : b ≤ 1) : ∀ x, log b x = 0", "end": [ 275, 34 ], "full_name": "Ordinal.log_of_left_le_one", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "@[simp]\ntheorem log_zero_left : ∀ b, log 0 b = 0", "end": [ 280, 33 ], "full_name": "Ordinal.log_zero_left", "kind": "commanddeclaration", "start": [ 278, 1 ] }, { "code": "@[simp]\ntheorem log_zero_right (b : Ordinal) : log b 0 = 0", "end": [ 291, 48 ], "full_name": "Ordinal.log_zero_right", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "@[simp]\ntheorem log_one_left : ∀ b, log 1 b = 0", "end": [ 296, 28 ], "full_name": "Ordinal.log_one_left", "kind": "commanddeclaration", "start": [ 294, 1 ] }, { "code": "theorem succ_log_def {b x : Ordinal} (hb : 1 < b) (hx : x ≠ 0) :\n succ (log b x) = sInf { o : Ordinal | x < b ^ o }", "end": [ 308, 76 ], "full_name": "Ordinal.succ_log_def", "kind": "commanddeclaration", "start": [ 299, 1 ] }, { "code": "theorem lt_opow_succ_log_self {b : Ordinal} (hb : 1 < b) (x : Ordinal) :\n x < b ^ succ (log b x)", "end": [ 316, 38 ], "full_name": "Ordinal.lt_opow_succ_log_self", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem opow_log_le_self (b : Ordinal) {x : Ordinal} (hx : x ≠ 0) : b ^ log b x ≤ x", "end": [ 327, 39 ], "full_name": "Ordinal.opow_log_le_self", "kind": "commanddeclaration", "start": [ 319, 1 ] }, { "code": "theorem opow_le_iff_le_log {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : b ^ c ≤ x ↔ c ≤ log b x", "end": [ 336, 78 ], "full_name": "Ordinal.opow_le_iff_le_log", "kind": "commanddeclaration", "start": [ 330, 1 ] }, { "code": "theorem lt_opow_iff_log_lt {b x c : Ordinal} (hb : 1 < b) (hx : x ≠ 0) : x < b ^ c ↔ log b x < c", "end": [ 340, 52 ], "full_name": "Ordinal.lt_opow_iff_log_lt", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem log_pos {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) : 0 < log b o", "end": [ 344, 71 ], "full_name": "Ordinal.log_pos", "kind": "commanddeclaration", "start": [ 343, 1 ] }, { "code": "theorem log_eq_zero {b o : Ordinal} (hbo : o < b) : log b o = 0", "end": [ 354, 92 ], "full_name": "Ordinal.log_eq_zero", "kind": "commanddeclaration", "start": [ 347, 1 ] }, { "code": "@[mono]\ntheorem log_mono_right (b : Ordinal) {x y : Ordinal} (xy : x ≤ y) : log b x ≤ log b y", "end": [ 364, 67 ], "full_name": "Ordinal.log_mono_right", "kind": "commanddeclaration", "start": [ 357, 1 ] }, { "code": "theorem log_le_self (b x : Ordinal) : log b x ≤ x", "end": [ 371, 67 ], "full_name": "Ordinal.log_le_self", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "@[simp]\ntheorem log_one_right (b : Ordinal) : log b 1 = 0", "end": [ 376, 69 ], "full_name": "Ordinal.log_one_right", "kind": "commanddeclaration", "start": [ 374, 1 ] }, { "code": "theorem mod_opow_log_lt_self (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : o % (b ^ log b o) < o", "end": [ 382, 75 ], "full_name": "Ordinal.mod_opow_log_lt_self", "kind": "commanddeclaration", "start": [ 379, 1 ] }, { "code": "theorem log_mod_opow_log_lt_log_self {b o : Ordinal} (hb : 1 < b) (ho : o ≠ 0) (hbo : b ≤ o) :\n log b (o % (b ^ log b o)) < log b o", "end": [ 394, 44 ], "full_name": "Ordinal.log_mod_opow_log_lt_log_self", "kind": "commanddeclaration", "start": [ 385, 1 ] }, { "code": "theorem opow_mul_add_pos {b v : Ordinal} (hb : b ≠ 0) (u : Ordinal) (hv : v ≠ 0) (w : Ordinal) :\n 0 < b ^ u * v + w", "end": [ 400, 78 ], "full_name": "Ordinal.opow_mul_add_pos", "kind": "commanddeclaration", "start": [ 397, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_mul_succ {b u w : Ordinal} (v : Ordinal) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ u * succ v", "end": [ 404, 77 ], "full_name": "Ordinal.opow_mul_add_lt_opow_mul_succ", "kind": "commanddeclaration", "start": [ 403, 1 ] }, { "code": "theorem opow_mul_add_lt_opow_succ {b u v w : Ordinal} (hvb : v < b) (hw : w < b ^ u) :\n b ^ u * v + w < b ^ succ u", "end": [ 411, 22 ], "full_name": "Ordinal.opow_mul_add_lt_opow_succ", "kind": "commanddeclaration", "start": [ 407, 1 ] }, { "code": "theorem log_opow_mul_add {b u v w : Ordinal} (hb : 1 < b) (hv : v ≠ 0) (hvb : v < b)\n (hw : w < b ^ u) : log b (b ^ u * v + w) = u", "end": [ 423, 62 ], "full_name": "Ordinal.log_opow_mul_add", "kind": "commanddeclaration", "start": [ 414, 1 ] }, { "code": "theorem log_opow {b : Ordinal} (hb : 1 < b) (x : Ordinal) : log b (b ^ x) = x", "end": [ 429, 25 ], "full_name": "Ordinal.log_opow", "kind": "commanddeclaration", "start": [ 426, 1 ] }, { "code": "theorem div_opow_log_pos (b : Ordinal) {o : Ordinal} (ho : o ≠ 0) : 0 < o / (b ^ log b o)", "end": [ 436, 32 ], "full_name": "Ordinal.div_opow_log_pos", "kind": "commanddeclaration", "start": [ 432, 1 ] }, { "code": "theorem div_opow_log_lt {b : Ordinal} (o : Ordinal) (hb : 1 < b) : o / (b ^ log b o) < b", "end": [ 441, 35 ], "full_name": "Ordinal.div_opow_log_lt", "kind": "commanddeclaration", "start": [ 439, 1 ] }, { "code": "theorem add_log_le_log_mul {x y : Ordinal} (b : Ordinal) (hx : x ≠ 0) (hy : y ≠ 0) :\n log b x + log b y ≤ log b (x * y)", "end": [ 450, 59 ], "full_name": "Ordinal.add_log_le_log_mul", "kind": "commanddeclaration", "start": [ 444, 1 ] }, { "code": "@[simp, norm_cast]\ntheorem natCast_opow (m : ℕ) : ∀ n : ℕ, ↑(m ^ n : ℕ) = (m : Ordinal) ^ (n : Ordinal)", "end": [ 459, 92 ], "full_name": "Ordinal.natCast_opow", "kind": "commanddeclaration", "start": [ 455, 1 ] }, { "code": "theorem sup_opow_nat {o : Ordinal} (ho : 0 < o) : (sup fun n : ℕ => o ^ (n : Ordinal)) = o ^ ω", "end": [ 471, 34 ], "full_name": "Ordinal.sup_opow_nat", "kind": "commanddeclaration", "start": [ 465, 1 ] } ]
56
Ordinal.sup_opow_nat
[ [ 465, 99 ], [ 471, 34 ] ]
8
9
rw [one_opow]
ho : 0 < 1 n : ℕ ⊢ 1 ^ ↑n ≤ 1
no goals
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
0
Ordinal.principal_iff_principal_swap
[ [ 53, 56 ], [ 54, 51 ] ]
0
1
constructor <;> exact fun h a b ha hb => h hb ha
op : Ordinal.{u_1} → Ordinal.{u_1} → Ordinal.{u_1} o : Ordinal.{u_1} ⊢ Principal op o ↔ Principal (Function.swap op) o
no goals
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
2
Ordinal.principal_one_iff
[ [ 62, 95 ], [ 66, 39 ] ]
0
6
refine ⟨fun h => ?_, fun h a b ha hb => ?_⟩
op : Ordinal.{u_1} → Ordinal.{u_1} → Ordinal.{u_1} ⊢ Principal op 1 ↔ op 0 0 = 0
case refine_1 op : Ordinal.{u_1} → Ordinal.{u_1} → Ordinal.{u_1} h : Principal op 1 ⊢ op 0 0 = 0 case refine_2 op : Ordinal.{u_1} → Ordinal.{u_1} → Ordinal.{u_1} h : op 0 0 = 0 a b : Ordinal.{u_1} ha : a < 1 hb : b < 1 ⊢ op a b < 1
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
2
Ordinal.principal_one_iff
[ [ 62, 95 ], [ 66, 39 ] ]
1
6
· rw [← lt_one_iff_zero] exact h zero_lt_one zero_lt_one
case refine_1 op : Ordinal.{u_1} → Ordinal.{u_1} → Ordinal.{u_1} h : Principal op 1 ⊢ op 0 0 = 0 case refine_2 op : Ordinal.{u_1} → Ordinal.{u_1} → Ordinal.{u_1} h : op 0 0 = 0 a b : Ordinal.{u_1} ha : a < 1 hb : b < 1 ⊢ op a b < 1
case refine_2 op : Ordinal.{u_1} → Ordinal.{u_1} → Ordinal.{u_1} h : op 0 0 = 0 a b : Ordinal.{u_1} ha : a < 1 hb : b < 1 ⊢ op a b < 1
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
2
Ordinal.principal_one_iff
[ [ 62, 95 ], [ 66, 39 ] ]
2
6
· rwa [lt_one_iff_zero, ha, hb] at *
case refine_2 op : Ordinal.{u_1} → Ordinal.{u_1} → Ordinal.{u_1} h : op 0 0 = 0 a b : Ordinal.{u_1} ha : a < 1 hb : b < 1 ⊢ op a b < 1
no goals
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
2
Ordinal.principal_one_iff
[ [ 62, 95 ], [ 66, 39 ] ]
3
6
rw [← lt_one_iff_zero]
case refine_1 op : Ordinal.{u_1} → Ordinal.{u_1} → Ordinal.{u_1} h : Principal op 1 ⊢ op 0 0 = 0
case refine_1 op : Ordinal.{u_1} → Ordinal.{u_1} → Ordinal.{u_1} h : Principal op 1 ⊢ op 0 0 < 1
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
2
Ordinal.principal_one_iff
[ [ 62, 95 ], [ 66, 39 ] ]
4
6
exact h zero_lt_one zero_lt_one
case refine_1 op : Ordinal.{u_1} → Ordinal.{u_1} → Ordinal.{u_1} h : Principal op 1 ⊢ op 0 0 < 1
no goals
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
2
Ordinal.principal_one_iff
[ [ 62, 95 ], [ 66, 39 ] ]
5
6
rwa [lt_one_iff_zero, ha, hb] at *
case refine_2 op : Ordinal.{u_1} → Ordinal.{u_1} → Ordinal.{u_1} h : op 0 0 = 0 a b : Ordinal.{u_1} ha : a < 1 hb : b < 1 ⊢ op a b < 1
no goals
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
3
Ordinal.Principal.iterate_lt
[ [ 70, 57 ], [ 74, 20 ] ]
0
6
induction' n with n hn
op : Ordinal.{u_1} → Ordinal.{u_1} → Ordinal.{u_1} a o : Ordinal.{u_1} hao : a < o ho : Principal op o n : ℕ ⊢ (op a)^[n] a < o
case zero op : Ordinal.{u_1} → Ordinal.{u_1} → Ordinal.{u_1} a o : Ordinal.{u_1} hao : a < o ho : Principal op o ⊢ (op a)^[0] a < o case succ op : Ordinal.{u_1} → Ordinal.{u_1} → Ordinal.{u_1} a o : Ordinal.{u_1} hao : a < o ho : Principal op o n : ℕ hn : (op a)^[n] a < o ⊢ (op a)^[n + 1] a < o
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
3
Ordinal.Principal.iterate_lt
[ [ 70, 57 ], [ 74, 20 ] ]
1
6
· rwa [Function.iterate_zero]
case zero op : Ordinal.{u_1} → Ordinal.{u_1} → Ordinal.{u_1} a o : Ordinal.{u_1} hao : a < o ho : Principal op o ⊢ (op a)^[0] a < o case succ op : Ordinal.{u_1} → Ordinal.{u_1} → Ordinal.{u_1} a o : Ordinal.{u_1} hao : a < o ho : Principal op o n : ℕ hn : (op a)^[n] a < o ⊢ (op a)^[n + 1] a < o
case succ op : Ordinal.{u_1} → Ordinal.{u_1} → Ordinal.{u_1} a o : Ordinal.{u_1} hao : a < o ho : Principal op o n : ℕ hn : (op a)^[n] a < o ⊢ (op a)^[n + 1] a < o
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
3
Ordinal.Principal.iterate_lt
[ [ 70, 57 ], [ 74, 20 ] ]
2
6
· rw [Function.iterate_succ'] exact ho hao hn
case succ op : Ordinal.{u_1} → Ordinal.{u_1} → Ordinal.{u_1} a o : Ordinal.{u_1} hao : a < o ho : Principal op o n : ℕ hn : (op a)^[n] a < o ⊢ (op a)^[n + 1] a < o
no goals
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
3
Ordinal.Principal.iterate_lt
[ [ 70, 57 ], [ 74, 20 ] ]
3
6
rwa [Function.iterate_zero]
case zero op : Ordinal.{u_1} → Ordinal.{u_1} → Ordinal.{u_1} a o : Ordinal.{u_1} hao : a < o ho : Principal op o ⊢ (op a)^[0] a < o
no goals
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
3
Ordinal.Principal.iterate_lt
[ [ 70, 57 ], [ 74, 20 ] ]
4
6
rw [Function.iterate_succ']
case succ op : Ordinal.{u_1} → Ordinal.{u_1} → Ordinal.{u_1} a o : Ordinal.{u_1} hao : a < o ho : Principal op o n : ℕ hn : (op a)^[n] a < o ⊢ (op a)^[n + 1] a < o
case succ op : Ordinal.{u_1} → Ordinal.{u_1} → Ordinal.{u_1} a o : Ordinal.{u_1} hao : a < o ho : Principal op o n : ℕ hn : (op a)^[n] a < o ⊢ (op a ∘ (op a)^[n]) a < o
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
3
Ordinal.Principal.iterate_lt
[ [ 70, 57 ], [ 74, 20 ] ]
5
6
exact ho hao hn
case succ op : Ordinal.{u_1} → Ordinal.{u_1} → Ordinal.{u_1} a o : Ordinal.{u_1} hao : a < o ho : Principal op o n : ℕ hn : (op a)^[n] a < o ⊢ (op a ∘ (op a)^[n]) a < o
no goals
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
4
Ordinal.op_eq_self_of_principal
[ [ 78, 83 ], [ 81, 37 ] ]
0
3
refine le_antisymm ?_ (H.self_le _)
op : Ordinal.{u} → Ordinal.{u} → Ordinal.{u} a o : Ordinal.{u} hao : a < o H : IsNormal (op a) ho : Principal op o ho' : o.IsLimit ⊢ op a o = o
op : Ordinal.{u} → Ordinal.{u} → Ordinal.{u} a o : Ordinal.{u} hao : a < o H : IsNormal (op a) ho : Principal op o ho' : o.IsLimit ⊢ op a o ≤ o
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
4
Ordinal.op_eq_self_of_principal
[ [ 78, 83 ], [ 81, 37 ] ]
1
3
rw [← IsNormal.bsup_eq.{u, u} H ho', bsup_le_iff]
op : Ordinal.{u} → Ordinal.{u} → Ordinal.{u} a o : Ordinal.{u} hao : a < o H : IsNormal (op a) ho : Principal op o ho' : o.IsLimit ⊢ op a o ≤ o
op : Ordinal.{u} → Ordinal.{u} → Ordinal.{u} a o : Ordinal.{u} hao : a < o H : IsNormal (op a) ho : Principal op o ho' : o.IsLimit ⊢ ∀ i < o, op a i ≤ o
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
4
Ordinal.op_eq_self_of_principal
[ [ 78, 83 ], [ 81, 37 ] ]
2
3
exact fun b hbo => (ho hao hbo).le
op : Ordinal.{u} → Ordinal.{u} → Ordinal.{u} a o : Ordinal.{u} hao : a < o H : IsNormal (op a) ho : Principal op o ho' : o.IsLimit ⊢ ∀ i < o, op a i ≤ o
no goals
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
9
Ordinal.principal_add_of_le_one
[ [ 125, 85 ], [ 128, 28 ] ]
0
5
rcases le_one_iff.1 ho with (rfl | rfl)
o : Ordinal.{u_1} ho : o ≤ 1 ⊢ Principal (fun x x_1 => x + x_1) o
case inl ho : 0 ≤ 1 ⊢ Principal (fun x x_1 => x + x_1) 0 case inr ho : 1 ≤ 1 ⊢ Principal (fun x x_1 => x + x_1) 1
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
9
Ordinal.principal_add_of_le_one
[ [ 125, 85 ], [ 128, 28 ] ]
1
5
· exact principal_zero
case inl ho : 0 ≤ 1 ⊢ Principal (fun x x_1 => x + x_1) 0 case inr ho : 1 ≤ 1 ⊢ Principal (fun x x_1 => x + x_1) 1
case inr ho : 1 ≤ 1 ⊢ Principal (fun x x_1 => x + x_1) 1
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
9
Ordinal.principal_add_of_le_one
[ [ 125, 85 ], [ 128, 28 ] ]
2
5
· exact principal_add_one
case inr ho : 1 ≤ 1 ⊢ Principal (fun x x_1 => x + x_1) 1
no goals
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
9
Ordinal.principal_add_of_le_one
[ [ 125, 85 ], [ 128, 28 ] ]
3
5
exact principal_zero
case inl ho : 0 ≤ 1 ⊢ Principal (fun x x_1 => x + x_1) 0
no goals
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
9
Ordinal.principal_add_of_le_one
[ [ 125, 85 ], [ 128, 28 ] ]
4
5
exact principal_add_one
case inr ho : 1 ≤ 1 ⊢ Principal (fun x x_1 => x + x_1) 1
no goals
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
10
Ordinal.principal_add_isLimit
[ [ 132, 18 ], [ 140, 71 ] ]
0
12
refine ⟨fun ho₀ => ?_, fun a hao => ?_⟩
o : Ordinal.{u_1} ho₁ : 1 < o ho : Principal (fun x x_1 => x + x_1) o ⊢ o.IsLimit
case refine_1 o : Ordinal.{u_1} ho₁ : 1 < o ho : Principal (fun x x_1 => x + x_1) o ho₀ : o = 0 ⊢ False case refine_2 o : Ordinal.{u_1} ho₁ : 1 < o ho : Principal (fun x x_1 => x + x_1) o a : Ordinal.{u_1} hao : a < o ⊢ succ a < o
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
10
Ordinal.principal_add_isLimit
[ [ 132, 18 ], [ 140, 71 ] ]
1
12
· rw [ho₀] at ho₁ exact not_lt_of_gt zero_lt_one ho₁
case refine_1 o : Ordinal.{u_1} ho₁ : 1 < o ho : Principal (fun x x_1 => x + x_1) o ho₀ : o = 0 ⊢ False case refine_2 o : Ordinal.{u_1} ho₁ : 1 < o ho : Principal (fun x x_1 => x + x_1) o a : Ordinal.{u_1} hao : a < o ⊢ succ a < o
case refine_2 o : Ordinal.{u_1} ho₁ : 1 < o ho : Principal (fun x x_1 => x + x_1) o a : Ordinal.{u_1} hao : a < o ⊢ succ a < o
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
10
Ordinal.principal_add_isLimit
[ [ 132, 18 ], [ 140, 71 ] ]
2
12
· rcases eq_or_ne a 0 with ha | ha · rw [ha, succ_zero] exact ho₁ · refine lt_of_le_of_lt ?_ (ho hao hao) rwa [← add_one_eq_succ, add_le_add_iff_left, one_le_iff_ne_zero]
case refine_2 o : Ordinal.{u_1} ho₁ : 1 < o ho : Principal (fun x x_1 => x + x_1) o a : Ordinal.{u_1} hao : a < o ⊢ succ a < o
no goals
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
10
Ordinal.principal_add_isLimit
[ [ 132, 18 ], [ 140, 71 ] ]
3
12
rw [ho₀] at ho₁
case refine_1 o : Ordinal.{u_1} ho₁ : 1 < o ho : Principal (fun x x_1 => x + x_1) o ho₀ : o = 0 ⊢ False
case refine_1 o : Ordinal.{u_1} ho₁ : 1 < 0 ho : Principal (fun x x_1 => x + x_1) o ho₀ : o = 0 ⊢ False
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
10
Ordinal.principal_add_isLimit
[ [ 132, 18 ], [ 140, 71 ] ]
4
12
exact not_lt_of_gt zero_lt_one ho₁
case refine_1 o : Ordinal.{u_1} ho₁ : 1 < 0 ho : Principal (fun x x_1 => x + x_1) o ho₀ : o = 0 ⊢ False
no goals
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
10
Ordinal.principal_add_isLimit
[ [ 132, 18 ], [ 140, 71 ] ]
5
12
rcases eq_or_ne a 0 with ha | ha
case refine_2 o : Ordinal.{u_1} ho₁ : 1 < o ho : Principal (fun x x_1 => x + x_1) o a : Ordinal.{u_1} hao : a < o ⊢ succ a < o
case refine_2.inl o : Ordinal.{u_1} ho₁ : 1 < o ho : Principal (fun x x_1 => x + x_1) o a : Ordinal.{u_1} hao : a < o ha : a = 0 ⊢ succ a < o case refine_2.inr o : Ordinal.{u_1} ho₁ : 1 < o ho : Principal (fun x x_1 => x + x_1) o a : Ordinal.{u_1} hao : a < o ha : a ≠ 0 ⊢ succ a < o
Mathlib/SetTheory/Ordinal/Principal.lean
[ [ "Mathlib.SetTheory.Ordinal.FixedPoint", "Mathlib/SetTheory/Ordinal/FixedPoint.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def Principal (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) : Prop :=\n ∀ ⦃a b⦄, a < o → b < o → op a b < o", "end": [ 49, 38 ], "full_name": "Ordinal.Principal", "kind": "commanddeclaration", "start": [ 43, 1 ] }, { "code": "theorem principal_iff_principal_swap {op : Ordinal → Ordinal → Ordinal} {o : Ordinal} :\n Principal op o ↔ Principal (Function.swap op) o", "end": [ 54, 51 ], "full_name": "Ordinal.principal_iff_principal_swap", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "theorem principal_zero {op : Ordinal → Ordinal → Ordinal} : Principal op 0", "end": [ 58, 33 ], "full_name": "Ordinal.principal_zero", "kind": "commanddeclaration", "start": [ 57, 1 ] }, { "code": "@[simp]\ntheorem principal_one_iff {op : Ordinal → Ordinal → Ordinal} : Principal op 1 ↔ op 0 0 = 0", "end": [ 66, 39 ], "full_name": "Ordinal.principal_one_iff", "kind": "commanddeclaration", "start": [ 61, 1 ] }, { "code": "theorem Principal.iterate_lt {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) (n : ℕ) : (op a)^[n] a < o", "end": [ 74, 20 ], "full_name": "Ordinal.Principal.iterate_lt", "kind": "commanddeclaration", "start": [ 69, 1 ] }, { "code": "theorem op_eq_self_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal.{u}} (hao : a < o)\n (H : IsNormal (op a)) (ho : Principal op o) (ho' : IsLimit o) : op a o = o", "end": [ 81, 37 ], "full_name": "Ordinal.op_eq_self_of_principal", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "theorem nfp_le_of_principal {op : Ordinal → Ordinal → Ordinal} {a o : Ordinal} (hao : a < o)\n (ho : Principal op o) : nfp (op a) a ≤ o", "end": [ 86, 43 ], "full_name": "Ordinal.nfp_le_of_principal", "kind": "commanddeclaration", "start": [ 84, 1 ] }, { "code": "theorem principal_nfp_blsub₂ (op : Ordinal → Ordinal → Ordinal) (o : Ordinal) :\n Principal op (nfp (fun o' => blsub₂.{u, u, u} o' o' (@fun a _ b _ => op a b)) o)", "end": [ 110, 68 ], "full_name": "Ordinal.principal_nfp_blsub₂", "kind": "commanddeclaration", "start": [ 96, 1 ] }, { "code": "theorem unbounded_principal (op : Ordinal → Ordinal → Ordinal) :\n Set.Unbounded (· < ·) { o | Principal op o }", "end": [ 115, 54 ], "full_name": "Ordinal.unbounded_principal", "kind": "commanddeclaration", "start": [ 113, 1 ] }, { "code": "theorem principal_add_one : Principal (· + ·) 1", "end": [ 122, 36 ], "full_name": "Ordinal.principal_add_one", "kind": "commanddeclaration", "start": [ 121, 1 ] }, { "code": "theorem principal_add_of_le_one {o : Ordinal} (ho : o ≤ 1) : Principal (· + ·) o", "end": [ 128, 28 ], "full_name": "Ordinal.principal_add_of_le_one", "kind": "commanddeclaration", "start": [ 125, 1 ] }, { "code": "theorem principal_add_isLimit {o : Ordinal} (ho₁ : 1 < o) (ho : Principal (· + ·) o) :\n o.IsLimit", "end": [ 140, 71 ], "full_name": "Ordinal.principal_add_isLimit", "kind": "commanddeclaration", "start": [ 131, 1 ] }, { "code": "theorem principal_add_iff_add_left_eq_self {o : Ordinal} :\n Principal (· + ·) o ↔ ∀ a < o, a + o = o", "end": [ 153, 42 ], "full_name": "Ordinal.principal_add_iff_add_left_eq_self", "kind": "commanddeclaration", "start": [ 143, 1 ] }, { "code": "theorem exists_lt_add_of_not_principal_add {a} (ha : ¬Principal (· + ·) a) :\n ∃ b c, b < a ∧ c < a ∧ b + c = a", "end": [ 164, 20 ], "full_name": "Ordinal.exists_lt_add_of_not_principal_add", "kind": "commanddeclaration", "start": [ 156, 1 ] }, { "code": "theorem principal_add_iff_add_lt_ne_self {a} :\n Principal (· + ·) a ↔ ∀ ⦃b c⦄, b < a → c < a → b + c ≠ a", "end": [ 172, 28 ], "full_name": "Ordinal.principal_add_iff_add_lt_ne_self", "kind": "commanddeclaration", "start": [ 167, 1 ] }, { "code": "theorem add_omega {a : Ordinal} (h : a < omega) : a + omega = omega", "end": [ 179, 68 ], "full_name": "Ordinal.add_omega", "kind": "commanddeclaration", "start": [ 175, 1 ] }, { "code": "theorem principal_add_omega : Principal (· + ·) omega", "end": [ 183, 58 ], "full_name": "Ordinal.principal_add_omega", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "theorem add_omega_opow {a b : Ordinal} (h : a < (omega^b)) : a + (omega^b) = (omega^b)", "end": [ 201, 72 ], "full_name": "Ordinal.add_omega_opow", "kind": "commanddeclaration", "start": [ 186, 1 ] }, { "code": "theorem principal_add_omega_opow (o : Ordinal) : Principal (· + ·) (omega^o)", "end": [ 205, 63 ], "full_name": "Ordinal.principal_add_omega_opow", "kind": "commanddeclaration", "start": [ 204, 1 ] }, { "code": "theorem principal_add_iff_zero_or_omega_opow {o : Ordinal} :\n Principal (· + ·) o ↔ o = 0 ∨ ∃ a : Ordinal, o = (omega^a)", "end": [ 230, 64 ], "full_name": "Ordinal.principal_add_iff_zero_or_omega_opow", "kind": "commanddeclaration", "start": [ 208, 1 ] }, { "code": "theorem opow_principal_add_of_principal_add {a} (ha : Principal (· + ·) a) (b : Ordinal) :\n Principal (· + ·) (a^b)", "end": [ 241, 37 ], "full_name": "Ordinal.opow_principal_add_of_principal_add", "kind": "commanddeclaration", "start": [ 233, 1 ] }, { "code": "theorem add_absorp {a b c : Ordinal} (h₁ : a < (omega^b)) (h₂ : (omega^b) ≤ c) : a + c = c", "end": [ 245, 73 ], "full_name": "Ordinal.add_absorp", "kind": "commanddeclaration", "start": [ 244, 1 ] }, { "code": "theorem mul_principal_add_is_principal_add (a : Ordinal.{u}) {b : Ordinal.{u}} (hb₁ : b ≠ 1)\n (hb : Principal (· + ·) b) : Principal (· + ·) (a * b)", "end": [ 263, 36 ], "full_name": "Ordinal.mul_principal_add_is_principal_add", "kind": "commanddeclaration", "start": [ 248, 1 ] }, { "code": "theorem principal_mul_one : Principal (· * ·) 1", "end": [ 271, 19 ], "full_name": "Ordinal.principal_mul_one", "kind": "commanddeclaration", "start": [ 269, 1 ] }, { "code": "theorem principal_mul_two : Principal (· * ·) 2", "end": [ 279, 25 ], "full_name": "Ordinal.principal_mul_two", "kind": "commanddeclaration", "start": [ 274, 1 ] }, { "code": "theorem principal_mul_of_le_two {o : Ordinal} (ho : o ≤ 2) : Principal (· * ·) o", "end": [ 290, 28 ], "full_name": "Ordinal.principal_mul_of_le_two", "kind": "commanddeclaration", "start": [ 282, 1 ] }, { "code": "theorem principal_add_of_principal_mul {o : Ordinal} (ho : Principal (· * ·) o) (ho₂ : o ≠ 2) :\n Principal (· + ·) o", "end": [ 302, 58 ], "full_name": "Ordinal.principal_add_of_principal_mul", "kind": "commanddeclaration", "start": [ 293, 1 ] }, { "code": "theorem principal_mul_isLimit {o : Ordinal.{u}} (ho₂ : 2 < o) (ho : Principal (· * ·) o) :\n o.IsLimit", "end": [ 308, 55 ], "full_name": "Ordinal.principal_mul_isLimit", "kind": "commanddeclaration", "start": [ 305, 1 ] }, { "code": "theorem principal_mul_iff_mul_left_eq {o : Ordinal} :\n Principal (· * ·) o ↔ ∀ a, 0 < a → a < o → a * o = o", "end": [ 325, 43 ], "full_name": "Ordinal.principal_mul_iff_mul_left_eq", "kind": "commanddeclaration", "start": [ 311, 1 ] }, { "code": "theorem principal_mul_omega : Principal (· * ·) omega", "end": [ 332, 23 ], "full_name": "Ordinal.principal_mul_omega", "kind": "commanddeclaration", "start": [ 328, 1 ] }, { "code": "theorem mul_omega {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : a * omega = omega", "end": [ 336, 62 ], "full_name": "Ordinal.mul_omega", "kind": "commanddeclaration", "start": [ 335, 1 ] }, { "code": "theorem mul_lt_omega_opow {a b c : Ordinal} (c0 : 0 < c) (ha : a < (omega^c)) (hb : b < omega) :\n a * b < (omega^c)", "end": [ 351, 19 ], "full_name": "Ordinal.mul_lt_omega_opow", "kind": "commanddeclaration", "start": [ 339, 1 ] }, { "code": "theorem mul_omega_opow_opow {a b : Ordinal} (a0 : 0 < a) (h : a < (omega^omega^b)) :\n a * (omega^omega^b) = (omega^omega^b)", "end": [ 364, 37 ], "full_name": "Ordinal.mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 354, 1 ] }, { "code": "theorem principal_mul_omega_opow_opow (o : Ordinal) : Principal (· * ·) (omega^omega^o)", "end": [ 368, 63 ], "full_name": "Ordinal.principal_mul_omega_opow_opow", "kind": "commanddeclaration", "start": [ 367, 1 ] }, { "code": "theorem principal_add_of_principal_mul_opow {o b : Ordinal} (hb : 1 < b)\n (ho : Principal (· * ·) (b^o)) : Principal (· + ·) o", "end": [ 374, 71 ], "full_name": "Ordinal.principal_add_of_principal_mul_opow", "kind": "commanddeclaration", "start": [ 371, 1 ] }, { "code": "theorem principal_mul_iff_le_two_or_omega_opow_opow {o : Ordinal} :\n Principal (· * ·) o ↔ o ≤ 2 ∨ ∃ a : Ordinal, o = (omega^omega^a)", "end": [ 393, 44 ], "full_name": "Ordinal.principal_mul_iff_le_two_or_omega_opow_opow", "kind": "commanddeclaration", "start": [ 377, 1 ] }, { "code": "theorem mul_omega_dvd {a : Ordinal} (a0 : 0 < a) (ha : a < omega) : ∀ {b}, omega ∣ b → a * b = b", "end": [ 397, 56 ], "full_name": "Ordinal.mul_omega_dvd", "kind": "commanddeclaration", "start": [ 396, 1 ] }, { "code": "theorem mul_eq_opow_log_succ {a b : Ordinal.{u}} (ha : a ≠ 0) (hb : Principal (· * ·) b)\n (hb₂ : 2 < b) : a * b = (b^succ (log b a))", "end": [ 414, 54 ], "full_name": "Ordinal.mul_eq_opow_log_succ", "kind": "commanddeclaration", "start": [ 400, 1 ] }, { "code": "theorem principal_opow_omega : Principal (·^·) omega", "end": [ 424, 23 ], "full_name": "Ordinal.principal_opow_omega", "kind": "commanddeclaration", "start": [ 420, 1 ] }, { "code": "theorem opow_omega {a : Ordinal} (a1 : 1 < a) (h : a < omega) : (a^omega) = omega", "end": [ 431, 25 ], "full_name": "Ordinal.opow_omega", "kind": "commanddeclaration", "start": [ 427, 1 ] } ]
10
Ordinal.principal_add_isLimit
[ [ 132, 18 ], [ 140, 71 ] ]
6
12
· rw [ha, succ_zero] exact ho₁
case refine_2.inl o : Ordinal.{u_1} ho₁ : 1 < o ho : Principal (fun x x_1 => x + x_1) o a : Ordinal.{u_1} hao : a < o ha : a = 0 ⊢ succ a < o case refine_2.inr o : Ordinal.{u_1} ho₁ : 1 < o ho : Principal (fun x x_1 => x + x_1) o a : Ordinal.{u_1} hao : a < o ha : a ≠ 0 ⊢ succ a < o
case refine_2.inr o : Ordinal.{u_1} ho₁ : 1 < o ho : Principal (fun x x_1 => x + x_1) o a : Ordinal.{u_1} hao : a < o ha : a ≠ 0 ⊢ succ a < o