file
stringlengths 21
79
| dependencies
sequencelengths 1
16
| definitions
listlengths 1
625
| theorem_idx
int64 0
574
| theorem
stringlengths 3
121
| theorem_loc
sequencelengths 2
2
| tactic_idx
int64 0
155
| tactic_len
int64 1
156
| tactic
stringlengths 3
5.76k
| state_before
stringlengths 7
13.6k
| state_after
stringlengths 7
13.6k
|
---|---|---|---|---|---|---|---|---|---|---|
.lake/packages/batteries/Batteries/Data/List/Lemmas.lean | [
[
"Batteries.Tactic.Alias",
".lake/packages/batteries/Batteries/Tactic/Alias.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
],
[
"Batteries.Control.ForInStep.Lemmas",
".lake/packages/batteries/Batteries/Control/ForInStep/Lemmas.lean"
],
[
"Batteries.Tactic.Init",
".lake/packages/batteries/Batteries/Tactic/Init.lean"
],
[
"Batteries.Data.List.Basic",
".lake/packages/batteries/Batteries/Data/List/Basic.lean"
]
] | [
{
"code": "@[simp] theorem mem_toArray {a : α} {l : List α} : a ∈ l.toArray ↔ a ∈ l",
"end": [
18,
23
],
"full_name": "List.mem_toArray",
"kind": "commanddeclaration",
"start": [
17,
1
]
},
{
"code": "@[simp]\ntheorem drop_one : ∀ l : List α, drop 1 l = tail l",
"end": [
24,
23
],
"full_name": "List.drop_one",
"kind": "commanddeclaration",
"start": [
22,
1
]
},
{
"code": "theorem zipWith_distrib_tail : (zipWith f l l').tail = zipWith f l.tail l'.tail",
"end": [
29,
47
],
"full_name": "List.zipWith_distrib_tail",
"kind": "commanddeclaration",
"start": [
28,
1
]
},
{
"code": "theorem subset_def {l₁ l₂ : List α} : l₁ ⊆ l₂ ↔ ∀ {a : α}, a ∈ l₁ → a ∈ l₂",
"end": [
33,
83
],
"full_name": "List.subset_def",
"kind": "commanddeclaration",
"start": [
33,
1
]
},
{
"code": "@[simp] theorem nil_subset (l : List α) : [] ⊆ l",
"end": [
35,
58
],
"full_name": "List.nil_subset",
"kind": "commanddeclaration",
"start": [
35,
1
]
},
{
"code": "@[simp] theorem Subset.refl (l : List α) : l ⊆ l",
"end": [
37,
65
],
"full_name": "List.Subset.refl",
"kind": "commanddeclaration",
"start": [
37,
1
]
},
{
"code": "theorem Subset.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ ⊆ l₂) (h₂ : l₂ ⊆ l₃) : l₁ ⊆ l₃",
"end": [
40,
23
],
"full_name": "List.Subset.trans",
"kind": "commanddeclaration",
"start": [
39,
1
]
},
{
"code": "@[simp] theorem subset_cons (a : α) (l : List α) : l ⊆ a :: l",
"end": [
48,
85
],
"full_name": "List.subset_cons",
"kind": "commanddeclaration",
"start": [
48,
1
]
},
{
"code": "theorem subset_of_cons_subset {a : α} {l₁ l₂ : List α} : a :: l₁ ⊆ l₂ → l₁ ⊆ l₂",
"end": [
51,
39
],
"full_name": "List.subset_of_cons_subset",
"kind": "commanddeclaration",
"start": [
50,
1
]
},
{
"code": "theorem subset_cons_of_subset (a : α) {l₁ l₂ : List α} : l₁ ⊆ l₂ → l₁ ⊆ a :: l₂",
"end": [
54,
29
],
"full_name": "List.subset_cons_of_subset",
"kind": "commanddeclaration",
"start": [
53,
1
]
},
{
"code": "theorem cons_subset_cons {l₁ l₂ : List α} (a : α) (s : l₁ ⊆ l₂) : a :: l₁ ⊆ a :: l₂",
"end": [
57,
62
],
"full_name": "List.cons_subset_cons",
"kind": "commanddeclaration",
"start": [
56,
1
]
},
{
"code": "@[simp] theorem subset_append_left (l₁ l₂ : List α) : l₁ ⊆ l₁ ++ l₂",
"end": [
59,
98
],
"full_name": "List.subset_append_left",
"kind": "commanddeclaration",
"start": [
59,
1
]
},
{
"code": "@[simp] theorem subset_append_right (l₁ l₂ : List α) : l₂ ⊆ l₁ ++ l₂",
"end": [
61,
100
],
"full_name": "List.subset_append_right",
"kind": "commanddeclaration",
"start": [
61,
1
]
},
{
"code": "theorem subset_append_of_subset_left (l₂ : List α) : l ⊆ l₁ → l ⊆ l₁ ++ l₂",
"end": [
64,
50
],
"full_name": "List.subset_append_of_subset_left",
"kind": "commanddeclaration",
"start": [
63,
1
]
},
{
"code": "theorem subset_append_of_subset_right (l₁ : List α) : l ⊆ l₂ → l ⊆ l₁ ++ l₂",
"end": [
67,
51
],
"full_name": "List.subset_append_of_subset_right",
"kind": "commanddeclaration",
"start": [
66,
1
]
},
{
"code": "@[simp] theorem cons_subset : a :: l ⊆ m ↔ a ∈ m ∧ l ⊆ m",
"end": [
70,
66
],
"full_name": "List.cons_subset",
"kind": "commanddeclaration",
"start": [
69,
1
]
},
{
"code": "@[simp] theorem append_subset {l₁ l₂ l : List α} :\n l₁ ++ l₂ ⊆ l ↔ l₁ ⊆ l ∧ l₂ ⊆ l",
"end": [
73,
79
],
"full_name": "List.append_subset",
"kind": "commanddeclaration",
"start": [
72,
1
]
},
{
"code": "theorem subset_nil {l : List α} : l ⊆ [] ↔ l = []",
"end": [
76,
99
],
"full_name": "List.subset_nil",
"kind": "commanddeclaration",
"start": [
75,
1
]
},
{
"code": "theorem map_subset {l₁ l₂ : List α} (f : α → β) (H : l₁ ⊆ l₂) : map f l₁ ⊆ map f l₂",
"end": [
79,
72
],
"full_name": "List.map_subset",
"kind": "commanddeclaration",
"start": [
78,
1
]
},
{
"code": "@[simp] theorem nil_sublist : ∀ l : List α, [] <+ l",
"end": [
85,
37
],
"full_name": "List.nil_sublist",
"kind": "commanddeclaration",
"start": [
83,
1
]
},
{
"code": "@[simp] theorem Sublist.refl : ∀ l : List α, l <+ l",
"end": [
89,
39
],
"full_name": "List.Sublist.refl",
"kind": "commanddeclaration",
"start": [
87,
1
]
},
{
"code": "theorem Sublist.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ <+ l₂) (h₂ : l₂ <+ l₃) : l₁ <+ l₃",
"end": [
100,
53
],
"full_name": "List.Sublist.trans",
"kind": "commanddeclaration",
"start": [
91,
1
]
},
{
"code": "@[simp] theorem sublist_cons (a : α) (l : List α) : l <+ a :: l",
"end": [
104,
91
],
"full_name": "List.sublist_cons",
"kind": "commanddeclaration",
"start": [
104,
1
]
},
{
"code": "theorem sublist_of_cons_sublist : a :: l₁ <+ l₂ → l₁ <+ l₂",
"end": [
107,
28
],
"full_name": "List.sublist_of_cons_sublist",
"kind": "commanddeclaration",
"start": [
106,
1
]
},
{
"code": "@[simp] theorem sublist_append_left : ∀ l₁ l₂ : List α, l₁ <+ l₁ ++ l₂",
"end": [
111,
55
],
"full_name": "List.sublist_append_left",
"kind": "commanddeclaration",
"start": [
109,
1
]
},
{
"code": "@[simp] theorem sublist_append_right : ∀ l₁ l₂ : List α, l₂ <+ l₁ ++ l₂",
"end": [
115,
55
],
"full_name": "List.sublist_append_right",
"kind": "commanddeclaration",
"start": [
113,
1
]
},
{
"code": "theorem sublist_append_of_sublist_left (s : l <+ l₁) : l <+ l₁ ++ l₂",
"end": [
118,
36
],
"full_name": "List.sublist_append_of_sublist_left",
"kind": "commanddeclaration",
"start": [
117,
1
]
},
{
"code": "theorem sublist_append_of_sublist_right (s : l <+ l₂) : l <+ l₁ ++ l₂",
"end": [
121,
37
],
"full_name": "List.sublist_append_of_sublist_right",
"kind": "commanddeclaration",
"start": [
120,
1
]
},
{
"code": "@[simp]\ntheorem cons_sublist_cons : a :: l₁ <+ a :: l₂ ↔ l₁ <+ l₂",
"end": [
125,
77
],
"full_name": "List.cons_sublist_cons",
"kind": "commanddeclaration",
"start": [
123,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_left : ∀ l, l ++ l₁ <+ l ++ l₂ ↔ l₁ <+ l₂",
"end": [
129,
69
],
"full_name": "List.append_sublist_append_left",
"kind": "commanddeclaration",
"start": [
127,
1
]
},
{
"code": "theorem Sublist.append_left : l₁ <+ l₂ → ∀ l, l ++ l₁ <+ l ++ l₂",
"end": [
132,
50
],
"full_name": "List.Sublist.append_left",
"kind": "commanddeclaration",
"start": [
131,
1
]
},
{
"code": "theorem Sublist.append_right : l₁ <+ l₂ → ∀ l, l₁ ++ l <+ l₂ ++ l",
"end": [
137,
48
],
"full_name": "List.Sublist.append_right",
"kind": "commanddeclaration",
"start": [
134,
1
]
},
{
"code": "theorem sublist_or_mem_of_sublist (h : l <+ l₁ ++ a :: l₂) : l <+ l₁ ++ l₂ ∨ a ∈ l",
"end": [
147,
65
],
"full_name": "List.sublist_or_mem_of_sublist",
"kind": "commanddeclaration",
"start": [
139,
1
]
},
{
"code": "theorem Sublist.reverse : l₁ <+ l₂ → l₁.reverse <+ l₂.reverse",
"end": [
152,
85
],
"full_name": "List.Sublist.reverse",
"kind": "commanddeclaration",
"start": [
149,
1
]
},
{
"code": "@[simp] theorem reverse_sublist : l₁.reverse <+ l₂.reverse ↔ l₁ <+ l₂",
"end": [
155,
82
],
"full_name": "List.reverse_sublist",
"kind": "commanddeclaration",
"start": [
154,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_right (l) : l₁ ++ l <+ l₂ ++ l ↔ l₁ <+ l₂",
"end": [
162,
30
],
"full_name": "List.append_sublist_append_right",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "theorem Sublist.append (hl : l₁ <+ l₂) (hr : r₁ <+ r₂) : l₁ ++ r₁ <+ l₂ ++ r₂",
"end": [
165,
66
],
"full_name": "List.Sublist.append",
"kind": "commanddeclaration",
"start": [
164,
1
]
},
{
"code": "theorem Sublist.subset : l₁ <+ l₂ → l₁ ⊆ l₂",
"end": [
171,
53
],
"full_name": "List.Sublist.subset",
"kind": "commanddeclaration",
"start": [
167,
1
]
},
{
"code": "theorem Sublist.length_le : l₁ <+ l₂ → length l₁ ≤ length l₂",
"end": [
185,
45
],
"full_name": "List.Sublist.length_le",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "@[simp] theorem sublist_nil {l : List α} : l <+ [] ↔ l = []",
"end": [
188,
64
],
"full_name": "List.sublist_nil",
"kind": "commanddeclaration",
"start": [
187,
1
]
},
{
"code": "theorem Sublist.eq_of_length : l₁ <+ l₂ → length l₁ = length l₂ → l₁ = l₂",
"end": [
193,
57
],
"full_name": "List.Sublist.eq_of_length",
"kind": "commanddeclaration",
"start": [
190,
1
]
},
{
"code": "theorem Sublist.eq_of_length_le (s : l₁ <+ l₂) (h : length l₂ ≤ length l₁) : l₁ = l₂",
"end": [
196,
50
],
"full_name": "List.Sublist.eq_of_length_le",
"kind": "commanddeclaration",
"start": [
195,
1
]
},
{
"code": "@[simp] theorem singleton_sublist {a : α} {l} : [a] <+ l ↔ a ∈ l",
"end": [
201,
66
],
"full_name": "List.singleton_sublist",
"kind": "commanddeclaration",
"start": [
198,
1
]
},
{
"code": "@[simp] theorem replicate_sublist_replicate {m n} (a : α) :\n replicate m a <+ replicate n a ↔ m ≤ n",
"end": [
209,
48
],
"full_name": "List.replicate_sublist_replicate",
"kind": "commanddeclaration",
"start": [
203,
1
]
},
{
"code": "theorem isSublist_iff_sublist [BEq α] [LawfulBEq α] {l₁ l₂ : List α} :\n l₁.isSublist l₂ ↔ l₁ <+ l₂",
"end": [
228,
24
],
"full_name": "List.isSublist_iff_sublist",
"kind": "commanddeclaration",
"start": [
211,
1
]
},
{
"code": "theorem tail_eq_tailD (l) : @tail α l = tailD l []",
"end": [
235,
73
],
"full_name": "List.tail_eq_tailD",
"kind": "commanddeclaration",
"start": [
235,
1
]
},
{
"code": "theorem tail_eq_tail? (l) : @tail α l = (tail? l).getD []",
"end": [
237,
85
],
"full_name": "List.tail_eq_tail?",
"kind": "commanddeclaration",
"start": [
237,
1
]
},
{
"code": "@[simp] theorem next?_nil : @next? α [] = none",
"end": [
241,
54
],
"full_name": "List.next?_nil",
"kind": "commanddeclaration",
"start": [
241,
1
]
},
{
"code": "@[simp] theorem next?_cons (a l) : @next? α (a :: l) = some (a, l)",
"end": [
242,
74
],
"full_name": "List.next?_cons",
"kind": "commanddeclaration",
"start": [
242,
1
]
},
{
"code": "theorem getElem_eq_iff {l : List α} {n : Nat} {h : n < l.length} : l[n] = x ↔ l[n]? = some x",
"end": [
248,
40
],
"full_name": "List.getElem_eq_iff",
"kind": "commanddeclaration",
"start": [
246,
1
]
},
{
"code": "@[deprecated getElem_eq_iff (since := \"2024-06-12\")]\ntheorem get_eq_iff : List.get l n = x ↔ l.get? n.1 = some x",
"end": [
252,
7
],
"full_name": "List.get_eq_iff",
"kind": "commanddeclaration",
"start": [
250,
1
]
},
{
"code": "theorem getElem?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs[i]? = xs[j]?) : i = j",
"end": [
273,
39
],
"full_name": "List.getElem?_inj",
"kind": "commanddeclaration",
"start": [
254,
1
]
},
{
"code": "@[deprecated getElem?_inj (since := \"2024-06-12\")]\ntheorem get?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs.get? i = xs.get? j) : i = j",
"end": [
279,
11
],
"full_name": "List.get?_inj",
"kind": "commanddeclaration",
"start": [
275,
1
]
},
{
"code": "theorem tail_drop (l : List α) (n : Nat) : (l.drop n).tail = l.drop (n + 1)",
"end": [
289,
16
],
"full_name": "List.tail_drop",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "@[simp] theorem modifyNth_nil (f : α → α) (n) : [].modifyNth f n = []",
"end": [
293,
92
],
"full_name": "List.modifyNth_nil",
"kind": "commanddeclaration",
"start": [
293,
1
]
},
{
"code": "@[simp] theorem modifyNth_zero_cons (f : α → α) (a : α) (l : List α) :\n (a :: l).modifyNth f 0 = f a :: l",
"end": [
296,
45
],
"full_name": "List.modifyNth_zero_cons",
"kind": "commanddeclaration",
"start": [
295,
1
]
},
{
"code": "@[simp] theorem modifyNth_succ_cons (f : α → α) (a : α) (l : List α) (n) :\n (a :: l).modifyNth f (n + 1) = a :: l.modifyNth f n",
"end": [
299,
66
],
"full_name": "List.modifyNth_succ_cons",
"kind": "commanddeclaration",
"start": [
298,
1
]
},
{
"code": "theorem modifyNthTail_id : ∀ n (l : List α), l.modifyNthTail id n = l",
"end": [
304,
60
],
"full_name": "List.modifyNthTail_id",
"kind": "commanddeclaration",
"start": [
301,
1
]
},
{
"code": "theorem eraseIdx_eq_modifyNthTail : ∀ n (l : List α), eraseIdx l n = modifyNthTail tail n l",
"end": [
309,
69
],
"full_name": "List.eraseIdx_eq_modifyNthTail",
"kind": "commanddeclaration",
"start": [
306,
1
]
},
{
"code": "theorem getElem?_modifyNth (f : α → α) :\n ∀ n (l : List α) m, (modifyNth f n l)[m]? = (fun a => if n = m then f a else a) <$> l[m]?",
"end": [
322,
79
],
"full_name": "List.getElem?_modifyNth",
"kind": "commanddeclaration",
"start": [
313,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth (since := \"2024-06-12\")]\ntheorem get?_modifyNth (f : α → α) (n) (l : List α) (m) :\n (modifyNth f n l).get? m = (fun a => if n = m then f a else a) <$> l.get? m",
"end": [
327,
28
],
"full_name": "List.get?_modifyNth",
"kind": "commanddeclaration",
"start": [
324,
1
]
},
{
"code": "theorem modifyNthTail_length (f : List α → List α) (H : ∀ l, length (f l) = length l) :\n ∀ n l, length (modifyNthTail f n l) = length l",
"end": [
333,
65
],
"full_name": "List.modifyNthTail_length",
"kind": "commanddeclaration",
"start": [
329,
1
]
},
{
"code": "theorem modifyNthTail_add (f : List α → List α) (n) (l₁ l₂ : List α) :\n modifyNthTail f (l₁.length + n) (l₁ ++ l₂) = l₁ ++ modifyNthTail f n l₂",
"end": [
337,
42
],
"full_name": "List.modifyNthTail_add",
"kind": "commanddeclaration",
"start": [
335,
1
]
},
{
"code": "theorem exists_of_modifyNthTail (f : List α → List α) {n} {l : List α} (h : n ≤ l.length) :\n ∃ l₁ l₂, l = l₁ ++ l₂ ∧ l₁.length = n ∧ modifyNthTail f n l = l₁ ++ f l₂",
"end": [
343,
58
],
"full_name": "List.exists_of_modifyNthTail",
"kind": "commanddeclaration",
"start": [
339,
1
]
},
{
"code": "@[simp] theorem modify_get?_length (f : α → α) : ∀ n l, length (modifyNth f n l) = length l",
"end": [
346,
53
],
"full_name": "List.modify_get?_length",
"kind": "commanddeclaration",
"start": [
345,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l)[n]? = f <$> l[n]?",
"end": [
350,
41
],
"full_name": "List.getElem?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_eq (since := \"2024-06-12\")]\ntheorem get?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l).get? n = f <$> l.get? n",
"end": [
355,
31
],
"full_name": "List.get?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
352,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l)[n]? = l[n]?",
"end": [
359,
52
],
"full_name": "List.getElem?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
357,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_ne (since := \"2024-06-12\")]\ntheorem get?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l).get? n = l.get? n",
"end": [
364,
11
],
"full_name": "List.get?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
361,
1
]
},
{
"code": "theorem exists_of_modifyNth (f : α → α) {n} {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ modifyNth f n l = l₁ ++ f a :: l₂",
"end": [
370,
74
],
"full_name": "List.exists_of_modifyNth",
"kind": "commanddeclaration",
"start": [
366,
1
]
},
{
"code": "theorem modifyNthTail_eq_take_drop (f : List α → List α) (H : f [] = []) :\n ∀ n l, modifyNthTail f n l = take n l ++ f (drop n l)",
"end": [
376,
76
],
"full_name": "List.modifyNthTail_eq_take_drop",
"kind": "commanddeclaration",
"start": [
372,
1
]
},
{
"code": "theorem modifyNth_eq_take_drop (f : α → α) :\n ∀ n l, modifyNth f n l = take n l ++ modifyHead f (drop n l)",
"end": [
380,
35
],
"full_name": "List.modifyNth_eq_take_drop",
"kind": "commanddeclaration",
"start": [
378,
1
]
},
{
"code": "theorem modifyNth_eq_take_cons_drop (f : α → α) {n l} (h) :\n modifyNth f n l = take n l ++ f l[n] :: drop (n + 1) l",
"end": [
384,
59
],
"full_name": "List.modifyNth_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
382,
1
]
},
{
"code": "theorem set_eq_modifyNth (a : α) : ∀ n (l : List α), set l n a = modifyNth (fun _ => a) n l",
"end": [
391,
62
],
"full_name": "List.set_eq_modifyNth",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "theorem set_eq_take_cons_drop (a : α) {n l} (h : n < length l) :\n set l n a = take n l ++ a :: drop (n + 1) l",
"end": [
395,
57
],
"full_name": "List.set_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
393,
1
]
},
{
"code": "theorem modifyNth_eq_set_get? (f : α → α) :\n ∀ n (l : List α), l.modifyNth f n = ((fun a => l.set n (f a)) <$> l.get? n).getD l",
"end": [
402,
92
],
"full_name": "List.modifyNth_eq_set_get?",
"kind": "commanddeclaration",
"start": [
397,
1
]
},
{
"code": "theorem modifyNth_eq_set_get (f : α → α) {n} {l : List α} (h) :\n l.modifyNth f n = l.set n (f (l.get ⟨n, h⟩))",
"end": [
406,
49
],
"full_name": "List.modifyNth_eq_set_get",
"kind": "commanddeclaration",
"start": [
404,
1
]
},
{
"code": "theorem exists_of_set {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
410,
55
],
"full_name": "List.exists_of_set",
"kind": "commanddeclaration",
"start": [
408,
1
]
},
{
"code": "theorem exists_of_set' {l : List α} (h : n < l.length) :\n ∃ l₁ l₂, l = l₁ ++ l[n] :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
414,
94
],
"full_name": "List.exists_of_set'",
"kind": "commanddeclaration",
"start": [
412,
1
]
},
{
"code": "@[simp]\ntheorem getElem?_set_eq' (a : α) (n) (l : List α) : (set l n a)[n]? = (fun _ => a) <$> l[n]?",
"end": [
418,
54
],
"full_name": "List.getElem?_set_eq'",
"kind": "commanddeclaration",
"start": [
416,
1
]
},
{
"code": "@[deprecated getElem?_set_eq' (since := \"2024-06-12\")]\ntheorem get?_set_eq (a : α) (n) (l : List α) : (set l n a).get? n = (fun _ => a) <$> l.get? n",
"end": [
422,
7
],
"full_name": "List.get?_set_eq",
"kind": "commanddeclaration",
"start": [
420,
1
]
},
{
"code": "theorem getElem?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a)[n]? = some a",
"end": [
425,
85
],
"full_name": "List.getElem?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
424,
1
]
},
{
"code": "@[deprecated getElem?_set_eq_of_lt (since := \"2024-06-12\")]\ntheorem get?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a).get? n = some a",
"end": [
430,
70
],
"full_name": "List.get?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
427,
1
]
},
{
"code": "@[deprecated getElem?_set_ne (since := \"2024-06-12\")]\ntheorem get?_set_ne (a : α) {m n} (l : List α) (h : m ≠ n) : (set l m a).get? n = l.get? n",
"end": [
434,
11
],
"full_name": "List.get?_set_ne",
"kind": "commanddeclaration",
"start": [
432,
1
]
},
{
"code": "theorem getElem?_set' (a : α) {m n} (l : List α) :\n (set l m a)[n]? = if m = n then (fun _ => a) <$> l[n]? else l[n]?",
"end": [
438,
30
],
"full_name": "List.getElem?_set'",
"kind": "commanddeclaration",
"start": [
436,
1
]
},
{
"code": "@[deprecated getElem?_set (since := \"2024-06-12\")]\ntheorem get?_set (a : α) {m n} (l : List α) :\n (set l m a).get? n = if m = n then (fun _ => a) <$> l.get? n else l.get? n",
"end": [
443,
23
],
"full_name": "List.get?_set",
"kind": "commanddeclaration",
"start": [
440,
1
]
},
{
"code": "theorem get?_set_of_lt (a : α) {m n} (l : List α) (h : n < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
447,
46
],
"full_name": "List.get?_set_of_lt",
"kind": "commanddeclaration",
"start": [
445,
1
]
},
{
"code": "theorem get?_set_of_lt' (a : α) {m n} (l : List α) (h : m < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
451,
80
],
"full_name": "List.get?_set_of_lt'",
"kind": "commanddeclaration",
"start": [
449,
1
]
},
{
"code": "theorem drop_set_of_lt (a : α) {n m : Nat} (l : List α) (h : n < m) :\n (l.set n a).drop m = l.drop m",
"end": [
455,
94
],
"full_name": "List.drop_set_of_lt",
"kind": "commanddeclaration",
"start": [
453,
1
]
},
{
"code": "theorem take_set_of_lt (a : α) {n m : Nat} (l : List α) (h : m < n) :\n (l.set n a).take m = l.take m",
"end": [
463,
10
],
"full_name": "List.take_set_of_lt",
"kind": "commanddeclaration",
"start": [
457,
1
]
},
{
"code": "theorem length_eraseIdx : ∀ {l i}, i < length l → length (@eraseIdx α l i) = length l - 1",
"end": [
473,
92
],
"full_name": "List.length_eraseIdx",
"kind": "commanddeclaration",
"start": [
467,
1
]
},
{
"code": "@[simp] theorem length_tail (l : List α) : length (tail l) = length l - 1",
"end": [
479,
96
],
"full_name": "List.length_tail",
"kind": "commanddeclaration",
"start": [
479,
1
]
},
{
"code": "@[simp] theorem eraseP_nil : [].eraseP p = []",
"end": [
483,
53
],
"full_name": "List.eraseP_nil",
"kind": "commanddeclaration",
"start": [
483,
1
]
},
{
"code": "theorem eraseP_cons (a : α) (l : List α) :\n (a :: l).eraseP p = bif p a then l else a :: l.eraseP p",
"end": [
486,
67
],
"full_name": "List.eraseP_cons",
"kind": "commanddeclaration",
"start": [
485,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_pos {l : List α} (p) (h : p a) : (a :: l).eraseP p = l",
"end": [
489,
24
],
"full_name": "List.eraseP_cons_of_pos",
"kind": "commanddeclaration",
"start": [
488,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_neg {l : List α} (p) (h : ¬p a) :\n (a :: l).eraseP p = a :: l.eraseP p",
"end": [
492,
68
],
"full_name": "List.eraseP_cons_of_neg",
"kind": "commanddeclaration",
"start": [
491,
1
]
},
{
"code": "theorem eraseP_of_forall_not {l : List α} (h : ∀ a, a ∈ l → ¬p a) : l.eraseP p = l",
"end": [
497,
69
],
"full_name": "List.eraseP_of_forall_not",
"kind": "commanddeclaration",
"start": [
494,
1
]
},
{
"code": "theorem exists_of_eraseP : ∀ {l : List α} {a} (al : a ∈ l) (pa : p a),\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
510,
57
],
"full_name": "List.exists_of_eraseP",
"kind": "commanddeclaration",
"start": [
499,
1
]
},
{
"code": "theorem exists_or_eq_self_of_eraseP (p) (l : List α) :\n l.eraseP p = l ∨\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
519,
46
],
"full_name": "List.exists_or_eq_self_of_eraseP",
"kind": "commanddeclaration",
"start": [
512,
1
]
},
{
"code": "@[simp] theorem length_eraseP_of_mem (al : a ∈ l) (pa : p a) :\n length (l.eraseP p) = Nat.pred (length l)",
"end": [
524,
41
],
"full_name": "List.length_eraseP_of_mem",
"kind": "commanddeclaration",
"start": [
521,
1
]
},
{
"code": "theorem eraseP_append_left {a : α} (pa : p a) :\n ∀ {l₁ : List α} l₂, a ∈ l₁ → (l₁++l₂).eraseP p = l₁.eraseP p ++ l₂",
"end": [
531,
28
],
"full_name": "List.eraseP_append_left",
"kind": "commanddeclaration",
"start": [
526,
1
]
},
{
"code": "theorem eraseP_append_right :\n ∀ {l₁ : List α} l₂, (∀ b ∈ l₁, ¬p b) → eraseP p (l₁++l₂) = l₁ ++ l₂.eraseP p",
"end": [
537,
82
],
"full_name": "List.eraseP_append_right",
"kind": "commanddeclaration",
"start": [
533,
1
]
},
{
"code": "theorem eraseP_sublist (l : List α) : l.eraseP p <+ l",
"end": [
542,
56
],
"full_name": "List.eraseP_sublist",
"kind": "commanddeclaration",
"start": [
539,
1
]
},
{
"code": "theorem eraseP_subset (l : List α) : l.eraseP p ⊆ l",
"end": [
544,
81
],
"full_name": "List.eraseP_subset",
"kind": "commanddeclaration",
"start": [
544,
1
]
},
{
"code": "protected theorem Sublist.eraseP : l₁ <+ l₂ → l₁.eraseP p <+ l₂.eraseP p",
"end": [
553,
25
],
"full_name": "List.Sublist.eraseP",
"kind": "commanddeclaration",
"start": [
546,
1
]
},
{
"code": "theorem mem_of_mem_eraseP {l : List α} : a ∈ l.eraseP p → a ∈ l",
"end": [
555,
87
],
"full_name": "List.mem_of_mem_eraseP",
"kind": "commanddeclaration",
"start": [
555,
1
]
},
{
"code": "@[simp] theorem mem_eraseP_of_neg {l : List α} (pa : ¬p a) : a ∈ l.eraseP p ↔ a ∈ l",
"end": [
564,
33
],
"full_name": "List.mem_eraseP_of_neg",
"kind": "commanddeclaration",
"start": [
557,
1
]
},
{
"code": "theorem eraseP_map (f : β → α) : ∀ (l : List β), (map f l).eraseP p = map f (l.eraseP (p ∘ f))",
"end": [
568,
85
],
"full_name": "List.eraseP_map",
"kind": "commanddeclaration",
"start": [
566,
1
]
},
{
"code": "@[simp] theorem extractP_eq_find?_eraseP\n (l : List α) : extractP p l = (find? p l, eraseP p l)",
"end": [
578,
21
],
"full_name": "List.extractP_eq_find?_eraseP",
"kind": "commanddeclaration",
"start": [
570,
1
]
},
{
"code": "theorem erase_eq_eraseP' (a : α) (l : List α) : l.erase a = l.eraseP (· == a)",
"end": [
590,
46
],
"full_name": "List.erase_eq_eraseP'",
"kind": "commanddeclaration",
"start": [
585,
1
]
},
{
"code": "theorem erase_eq_eraseP [LawfulBEq α] (a : α) : ∀ l : List α, l.erase a = l.eraseP (a == ·)",
"end": [
595,
77
],
"full_name": "List.erase_eq_eraseP",
"kind": "commanddeclaration",
"start": [
592,
1
]
},
{
"code": "theorem exists_erase_eq [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n ∃ l₁ l₂, a ∉ l₁ ∧ l = l₁ ++ a :: l₂ ∧ l.erase a = l₁ ++ l₂",
"end": [
600,
99
],
"full_name": "List.exists_erase_eq",
"kind": "commanddeclaration",
"start": [
597,
1
]
},
{
"code": "@[simp] theorem length_erase_of_mem [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n length (l.erase a) = Nat.pred (length l)",
"end": [
604,
74
],
"full_name": "List.length_erase_of_mem",
"kind": "commanddeclaration",
"start": [
602,
1
]
},
{
"code": "theorem erase_append_left [LawfulBEq α] {l₁ : List α} (l₂) (h : a ∈ l₁) :\n (l₁ ++ l₂).erase a = l₁.erase a ++ l₂",
"end": [
608,
77
],
"full_name": "List.erase_append_left",
"kind": "commanddeclaration",
"start": [
606,
1
]
},
{
"code": "theorem erase_append_right [LawfulBEq α] {a : α} {l₁ : List α} (l₂ : List α) (h : a ∉ l₁) :\n (l₁ ++ l₂).erase a = (l₁ ++ l₂.erase a)",
"end": [
613,
55
],
"full_name": "List.erase_append_right",
"kind": "commanddeclaration",
"start": [
610,
1
]
},
{
"code": "theorem erase_sublist (a : α) (l : List α) : l.erase a <+ l",
"end": [
616,
42
],
"full_name": "List.erase_sublist",
"kind": "commanddeclaration",
"start": [
615,
1
]
},
{
"code": "theorem erase_subset (a : α) (l : List α) : l.erase a ⊆ l",
"end": [
618,
88
],
"full_name": "List.erase_subset",
"kind": "commanddeclaration",
"start": [
618,
1
]
},
{
"code": "theorem Sublist.erase (a : α) {l₁ l₂ : List α} (h : l₁ <+ l₂) : l₁.erase a <+ l₂.erase a",
"end": [
621,
47
],
"full_name": "List.Sublist.erase",
"kind": "commanddeclaration",
"start": [
620,
1
]
},
{
"code": "theorem mem_of_mem_erase {a b : α} {l : List α} (h : a ∈ l.erase b) : a ∈ l",
"end": [
624,
98
],
"full_name": "List.mem_of_mem_erase",
"kind": "commanddeclaration",
"start": [
624,
1
]
},
{
"code": "@[simp] theorem mem_erase_of_ne [LawfulBEq α] {a b : α} {l : List α} (ab : a ≠ b) :\n a ∈ l.erase b ↔ a ∈ l",
"end": [
628,
65
],
"full_name": "List.mem_erase_of_ne",
"kind": "commanddeclaration",
"start": [
626,
1
]
},
{
"code": "theorem erase_comm [LawfulBEq α] (a b : α) (l : List α) :\n (l.erase a).erase b = (l.erase b).erase a",
"end": [
644,
49
],
"full_name": "List.erase_comm",
"kind": "commanddeclaration",
"start": [
630,
1
]
},
{
"code": "@[simp] theorem filter_sublist {p : α → Bool} : ∀ (l : List α), filter p l <+ l",
"end": [
652,
93
],
"full_name": "List.filter_sublist",
"kind": "commanddeclaration",
"start": [
650,
1
]
},
{
"code": "protected theorem Sublist.filterMap (f : α → Option β) (s : l₁ <+ l₂) :\n filterMap f l₁ <+ filterMap f l₂",
"end": [
658,
76
],
"full_name": "List.Sublist.filterMap",
"kind": "commanddeclaration",
"start": [
656,
1
]
},
{
"code": "theorem Sublist.filter (p : α → Bool) {l₁ l₂} (s : l₁ <+ l₂) : filter p l₁ <+ filter p l₂",
"end": [
661,
48
],
"full_name": "List.Sublist.filter",
"kind": "commanddeclaration",
"start": [
660,
1
]
},
{
"code": "@[simp] theorem findIdx_nil {α : Type _} (p : α → Bool) : [].findIdx p = 0",
"end": [
665,
82
],
"full_name": "List.findIdx_nil",
"kind": "commanddeclaration",
"start": [
665,
1
]
},
{
"code": "theorem findIdx_cons (p : α → Bool) (b : α) (l : List α) :\n (b :: l).findIdx p = bif p b then 0 else (l.findIdx p) + 1",
"end": [
680,
43
],
"full_name": "List.findIdx_cons",
"kind": "commanddeclaration",
"start": [
667,
1
]
},
{
"code": "theorem findIdx_of_get?_eq_some {xs : List α} (w : xs.get? (xs.findIdx p) = some y) : p y",
"end": [
685,
65
],
"full_name": "List.findIdx_of_get?_eq_some",
"kind": "commanddeclaration",
"start": [
682,
1
]
},
{
"code": "theorem findIdx_get {xs : List α} {w : xs.findIdx p < xs.length} :\n p (xs.get ⟨xs.findIdx p, w⟩)",
"end": [
689,
45
],
"full_name": "List.findIdx_get",
"kind": "commanddeclaration",
"start": [
687,
1
]
},
{
"code": "theorem findIdx_lt_length_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.findIdx p < xs.length",
"end": [
703,
24
],
"full_name": "List.findIdx_lt_length_of_exists",
"kind": "commanddeclaration",
"start": [
691,
1
]
},
{
"code": "theorem findIdx_get?_eq_get_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.get? (xs.findIdx p) = some (xs.get ⟨xs.findIdx p, xs.findIdx_lt_length_of_exists h⟩)",
"end": [
707,
46
],
"full_name": "List.findIdx_get?_eq_get_of_exists",
"kind": "commanddeclaration",
"start": [
705,
1
]
},
{
"code": "@[simp] theorem findIdx?_nil : ([] : List α).findIdx? p i = none",
"end": [
711,
72
],
"full_name": "List.findIdx?_nil",
"kind": "commanddeclaration",
"start": [
711,
1
]
},
{
"code": "@[simp] theorem findIdx?_cons :\n (x :: xs).findIdx? p i = if p x then some i else findIdx? p xs (i + 1)",
"end": [
714,
82
],
"full_name": "List.findIdx?_cons",
"kind": "commanddeclaration",
"start": [
713,
1
]
},
{
"code": "@[simp] theorem findIdx?_succ :\n (xs : List α).findIdx? p (i+1) = (xs.findIdx? p i).map fun i => i + 1",
"end": [
719,
37
],
"full_name": "List.findIdx?_succ",
"kind": "commanddeclaration",
"start": [
716,
1
]
},
{
"code": "theorem findIdx?_eq_some_iff (xs : List α) (p : α → Bool) :\n xs.findIdx? p = some i ↔ (xs.take (i + 1)).map p = replicate i false ++ [true]",
"end": [
727,
52
],
"full_name": "List.findIdx?_eq_some_iff",
"kind": "commanddeclaration",
"start": [
721,
1
]
},
{
"code": "theorem findIdx?_of_eq_some {xs : List α} {p : α → Bool} (w : xs.findIdx? p = some i) :\n match xs.get? i with | some a => p a | none => false",
"end": [
735,
40
],
"full_name": "List.findIdx?_of_eq_some",
"kind": "commanddeclaration",
"start": [
729,
1
]
},
{
"code": "theorem findIdx?_of_eq_none {xs : List α} {p : α → Bool} (w : xs.findIdx? p = none) :\n ∀ i, match xs.get? i with | some a => ¬ p a | none => true",
"end": [
750,
30
],
"full_name": "List.findIdx?_of_eq_none",
"kind": "commanddeclaration",
"start": [
737,
1
]
},
{
"code": "@[simp] theorem findIdx?_append :\n (xs ++ ys : List α).findIdx? p =\n (xs.findIdx? p <|> (ys.findIdx? p).map fun i => i + xs.length)",
"end": [
756,
78
],
"full_name": "List.findIdx?_append",
"kind": "commanddeclaration",
"start": [
752,
1
]
},
{
"code": "@[simp] theorem findIdx?_replicate :\n (replicate n a).findIdx? p = if 0 < n ∧ p a then some 0 else none",
"end": [
764,
23
],
"full_name": "List.findIdx?_replicate",
"kind": "commanddeclaration",
"start": [
758,
1
]
},
{
"code": "theorem Pairwise.sublist : l₁ <+ l₂ → l₂.Pairwise R → l₁.Pairwise R",
"end": [
771,
80
],
"full_name": "List.Pairwise.sublist",
"kind": "commanddeclaration",
"start": [
768,
1
]
},
{
"code": "theorem pairwise_map {l : List α} :\n (l.map f).Pairwise R ↔ l.Pairwise fun a b => R (f a) (f b)",
"end": [
777,
58
],
"full_name": "List.pairwise_map",
"kind": "commanddeclaration",
"start": [
773,
1
]
},
{
"code": "theorem pairwise_append {l₁ l₂ : List α} :\n (l₁ ++ l₂).Pairwise R ↔ l₁.Pairwise R ∧ l₂.Pairwise R ∧ ∀ a ∈ l₁, ∀ b ∈ l₂, R a b",
"end": [
781,
74
],
"full_name": "List.pairwise_append",
"kind": "commanddeclaration",
"start": [
779,
1
]
},
{
"code": "theorem pairwise_reverse {l : List α} :\n l.reverse.Pairwise R ↔ l.Pairwise (fun a b => R b a)",
"end": [
785,
54
],
"full_name": "List.pairwise_reverse",
"kind": "commanddeclaration",
"start": [
783,
1
]
},
{
"code": "theorem Pairwise.imp {α R S} (H : ∀ {a b}, R a b → S a b) :\n ∀ {l : List α}, l.Pairwise R → l.Pairwise S",
"end": [
790,
50
],
"full_name": "List.Pairwise.imp",
"kind": "commanddeclaration",
"start": [
787,
1
]
},
{
"code": "theorem replaceF_nil : [].replaceF p = []",
"end": [
794,
49
],
"full_name": "List.replaceF_nil",
"kind": "commanddeclaration",
"start": [
794,
1
]
},
{
"code": "theorem replaceF_cons (a : α) (l : List α) :\n (a :: l).replaceF p = match p a with\n | none => a :: replaceF p l\n | some a' => a' :: l",
"end": [
799,
34
],
"full_name": "List.replaceF_cons",
"kind": "commanddeclaration",
"start": [
796,
1
]
},
{
"code": "theorem replaceF_cons_of_some {l : List α} (p) (h : p a = some a') :\n (a :: l).replaceF p = a' :: l",
"end": [
803,
26
],
"full_name": "List.replaceF_cons_of_some",
"kind": "commanddeclaration",
"start": [
801,
1
]
},
{
"code": "theorem replaceF_cons_of_none {l : List α} (p) (h : p a = none) :\n (a :: l).replaceF p = a :: l.replaceF p",
"end": [
806,
74
],
"full_name": "List.replaceF_cons_of_none",
"kind": "commanddeclaration",
"start": [
805,
1
]
},
{
"code": "theorem replaceF_of_forall_none {l : List α} (h : ∀ a, a ∈ l → p a = none) : l.replaceF p = l",
"end": [
811,
69
],
"full_name": "List.replaceF_of_forall_none",
"kind": "commanddeclaration",
"start": [
808,
1
]
},
{
"code": "theorem exists_of_replaceF : ∀ {l : List α} {a a'} (al : a ∈ l) (pa : p a = some a'),\n ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
825,
57
],
"full_name": "List.exists_of_replaceF",
"kind": "commanddeclaration",
"start": [
813,
1
]
},
{
"code": "theorem exists_or_eq_self_of_replaceF (p) (l : List α) :\n l.replaceF p = l ∨ ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
835,
62
],
"full_name": "List.exists_or_eq_self_of_replaceF",
"kind": "commanddeclaration",
"start": [
827,
1
]
},
{
"code": "@[simp] theorem length_replaceF : length (replaceF f l) = length l",
"end": [
838,
54
],
"full_name": "List.length_replaceF",
"kind": "commanddeclaration",
"start": [
837,
1
]
},
{
"code": "theorem disjoint_symm (d : Disjoint l₁ l₂) : Disjoint l₂ l₁",
"end": [
842,
86
],
"full_name": "List.disjoint_symm",
"kind": "commanddeclaration",
"start": [
842,
1
]
},
{
"code": "theorem disjoint_comm : Disjoint l₁ l₂ ↔ Disjoint l₂ l₁",
"end": [
844,
90
],
"full_name": "List.disjoint_comm",
"kind": "commanddeclaration",
"start": [
844,
1
]
},
{
"code": "theorem disjoint_left : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₁ → a ∉ l₂",
"end": [
846,
86
],
"full_name": "List.disjoint_left",
"kind": "commanddeclaration",
"start": [
846,
1
]
},
{
"code": "theorem disjoint_right : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₂ → a ∉ l₁",
"end": [
848,
82
],
"full_name": "List.disjoint_right",
"kind": "commanddeclaration",
"start": [
848,
1
]
},
{
"code": "theorem disjoint_iff_ne : Disjoint l₁ l₂ ↔ ∀ a ∈ l₁, ∀ b ∈ l₂, a ≠ b",
"end": [
851,
83
],
"full_name": "List.disjoint_iff_ne",
"kind": "commanddeclaration",
"start": [
850,
1
]
},
{
"code": "theorem disjoint_of_subset_left (ss : l₁ ⊆ l) (d : Disjoint l l₂) : Disjoint l₁ l₂",
"end": [
854,
22
],
"full_name": "List.disjoint_of_subset_left",
"kind": "commanddeclaration",
"start": [
853,
1
]
},
{
"code": "theorem disjoint_of_subset_right (ss : l₂ ⊆ l) (d : Disjoint l₁ l) : Disjoint l₁ l₂",
"end": [
857,
28
],
"full_name": "List.disjoint_of_subset_right",
"kind": "commanddeclaration",
"start": [
856,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_left {l₁ l₂} : Disjoint (a :: l₁) l₂ → Disjoint l₁ l₂",
"end": [
860,
42
],
"full_name": "List.disjoint_of_disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
859,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_right {l₁ l₂} : Disjoint l₁ (a :: l₂) → Disjoint l₁ l₂",
"end": [
863,
43
],
"full_name": "List.disjoint_of_disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
862,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_left (l : List α) : Disjoint [] l",
"end": [
865,
96
],
"full_name": "List.disjoint_nil_left",
"kind": "commanddeclaration",
"start": [
865,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_right (l : List α) : Disjoint l []",
"end": [
868,
48
],
"full_name": "List.disjoint_nil_right",
"kind": "commanddeclaration",
"start": [
867,
1
]
},
{
"code": "@[simp 1100] theorem singleton_disjoint : Disjoint [a] l ↔ a ∉ l",
"end": [
870,
87
],
"full_name": "List.singleton_disjoint",
"kind": "commanddeclaration",
"start": [
870,
1
]
},
{
"code": "@[simp 1100] theorem disjoint_singleton : Disjoint l [a] ↔ a ∉ l",
"end": [
873,
41
],
"full_name": "List.disjoint_singleton",
"kind": "commanddeclaration",
"start": [
872,
1
]
},
{
"code": "@[simp] theorem disjoint_append_left : Disjoint (l₁ ++ l₂) l ↔ Disjoint l₁ l ∧ Disjoint l₂ l",
"end": [
876,
38
],
"full_name": "List.disjoint_append_left",
"kind": "commanddeclaration",
"start": [
875,
1
]
},
{
"code": "@[simp] theorem disjoint_append_right : Disjoint l (l₁ ++ l₂) ↔ Disjoint l l₁ ∧ Disjoint l l₂",
"end": [
879,
76
],
"full_name": "List.disjoint_append_right",
"kind": "commanddeclaration",
"start": [
878,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_left : Disjoint (a::l₁) l₂ ↔ (a ∉ l₂) ∧ Disjoint l₁ l₂",
"end": [
882,
75
],
"full_name": "List.disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
881,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_right : Disjoint l₁ (a :: l₂) ↔ (a ∉ l₁) ∧ Disjoint l₁ l₂",
"end": [
885,
74
],
"full_name": "List.disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
884,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_left (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₁ l",
"end": [
888,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_left",
"kind": "commanddeclaration",
"start": [
887,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_right (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₂ l",
"end": [
891,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_right",
"kind": "commanddeclaration",
"start": [
890,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_left (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₁",
"end": [
894,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_left",
"kind": "commanddeclaration",
"start": [
893,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_right (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₂",
"end": [
897,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_right",
"kind": "commanddeclaration",
"start": [
896,
1
]
},
{
"code": "theorem foldl_hom (f : α₁ → α₂) (g₁ : α₁ → β → α₁) (g₂ : α₂ → β → α₂) (l : List β) (init : α₁)\n (H : ∀ x y, g₂ (f x) y = f (g₁ x y)) : l.foldl g₂ (f init) = f (l.foldl g₁ init)",
"end": [
903,
48
],
"full_name": "List.foldl_hom",
"kind": "commanddeclaration",
"start": [
901,
1
]
},
{
"code": "theorem foldr_hom (f : β₁ → β₂) (g₁ : α → β₁ → β₁) (g₂ : α → β₂ → β₂) (l : List α) (init : β₁)\n (H : ∀ x y, g₂ x (f y) = f (g₁ x y)) : l.foldr g₂ (f init) = f (l.foldr g₁ init)",
"end": [
907,
30
],
"full_name": "List.foldr_hom",
"kind": "commanddeclaration",
"start": [
905,
1
]
},
{
"code": "theorem union_def [BEq α] (l₁ l₂ : List α) : l₁ ∪ l₂ = foldr .insert l₂ l₁",
"end": [
915,
83
],
"full_name": "List.union_def",
"kind": "commanddeclaration",
"start": [
915,
1
]
},
{
"code": "@[simp] theorem nil_union (l : List α) : nil ∪ l = l",
"end": [
917,
88
],
"full_name": "List.nil_union",
"kind": "commanddeclaration",
"start": [
917,
1
]
},
{
"code": "@[simp] theorem cons_union (a : α) (l₁ l₂ : List α) :\n (a :: l₁) ∪ l₂ = (l₁ ∪ l₂).insert a",
"end": [
920,
75
],
"full_name": "List.cons_union",
"kind": "commanddeclaration",
"start": [
919,
1
]
},
{
"code": "@[simp] theorem mem_union_iff [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∪ l₂ ↔ x ∈ l₁ ∨ x ∈ l₂",
"end": [
923,
76
],
"full_name": "List.mem_union_iff",
"kind": "commanddeclaration",
"start": [
922,
1
]
},
{
"code": "theorem inter_def [BEq α] (l₁ l₂ : List α) : l₁ ∩ l₂ = filter (elem · l₂) l₁",
"end": [
929,
85
],
"full_name": "List.inter_def",
"kind": "commanddeclaration",
"start": [
929,
1
]
},
{
"code": "@[simp] theorem mem_inter_iff [BEq α] [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∩ l₂ ↔ x ∈ l₁ ∧ x ∈ l₂",
"end": [
933,
49
],
"full_name": "List.mem_inter_iff",
"kind": "commanddeclaration",
"start": [
931,
1
]
},
{
"code": "@[simp]\ntheorem pair_mem_product {xs : List α} {ys : List β} {x : α} {y : β} :\n (x, y) ∈ product xs ys ↔ x ∈ xs ∧ y ∈ ys",
"end": [
942,
47
],
"full_name": "List.pair_mem_product",
"kind": "commanddeclaration",
"start": [
937,
1
]
},
{
"code": "@[simp]\ntheorem leftpad_length (n : Nat) (a : α) (l : List α) :\n (leftpad n a l).length = max n l.length",
"end": [
951,
75
],
"full_name": "List.leftpad_length",
"kind": "commanddeclaration",
"start": [
946,
1
]
},
{
"code": "theorem leftpad_prefix (n : Nat) (a : α) (l : List α) :\n replicate (n - length l) a <+: leftpad n a l",
"end": [
956,
27
],
"full_name": "List.leftpad_prefix",
"kind": "commanddeclaration",
"start": [
953,
1
]
},
{
"code": "theorem leftpad_suffix (n : Nat) (a : α) (l : List α) : l <:+ (leftpad n a l)",
"end": [
960,
54
],
"full_name": "List.leftpad_suffix",
"kind": "commanddeclaration",
"start": [
958,
1
]
},
{
"code": "@[simp] theorem forIn_eq_forIn [Monad m] : @List.forIn α β m _ = forIn",
"end": [
965,
78
],
"full_name": "List.forIn_eq_forIn",
"kind": "commanddeclaration",
"start": [
965,
1
]
},
{
"code": "theorem forIn_eq_bindList [Monad m] [LawfulMonad m]\n (f : α → β → m (ForInStep β)) (l : List α) (init : β) :\n forIn l init f = ForInStep.run <$> (ForInStep.yield init).bindList f l",
"end": [
971,
30
],
"full_name": "List.forIn_eq_bindList",
"kind": "commanddeclaration",
"start": [
967,
1
]
},
{
"code": "@[simp] theorem forM_append [Monad m] [LawfulMonad m] (l₁ l₂ : List α) (f : α → m PUnit) :\n (l₁ ++ l₂).forM f = (do l₁.forM f; l₂.forM f)",
"end": [
974,
82
],
"full_name": "List.forM_append",
"kind": "commanddeclaration",
"start": [
973,
1
]
},
{
"code": "@[simp] theorem diff_nil (l : List α) : l.diff [] = l",
"end": [
982,
61
],
"full_name": "List.diff_nil",
"kind": "commanddeclaration",
"start": [
982,
1
]
},
{
"code": "@[simp] theorem diff_cons (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.erase a).diff l₂",
"end": [
985,
41
],
"full_name": "List.diff_cons",
"kind": "commanddeclaration",
"start": [
984,
1
]
},
{
"code": "theorem diff_cons_right (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.diff l₂).erase a",
"end": [
988,
71
],
"full_name": "List.diff_cons_right",
"kind": "commanddeclaration",
"start": [
987,
1
]
},
{
"code": "theorem diff_erase (l₁ l₂ : List α) (a : α) : (l₁.diff l₂).erase a = (l₁.erase a).diff l₂",
"end": [
991,
36
],
"full_name": "List.diff_erase",
"kind": "commanddeclaration",
"start": [
990,
1
]
},
{
"code": "@[simp] theorem nil_diff (l : List α) : [].diff l = []",
"end": [
994,
45
],
"full_name": "List.nil_diff",
"kind": "commanddeclaration",
"start": [
993,
1
]
},
{
"code": "theorem cons_diff (a : α) (l₁ l₂ : List α) :\n (a :: l₁).diff l₂ = if a ∈ l₂ then l₁.diff (l₂.erase a) else a :: l₁.diff l₂",
"end": [
1005,
14
],
"full_name": "List.cons_diff",
"kind": "commanddeclaration",
"start": [
996,
1
]
},
{
"code": "theorem cons_diff_of_mem {a : α} {l₂ : List α} (h : a ∈ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = l₁.diff (l₂.erase a)",
"end": [
1008,
76
],
"full_name": "List.cons_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1007,
1
]
},
{
"code": "theorem cons_diff_of_not_mem {a : α} {l₂ : List α} (h : a ∉ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = a :: l₁.diff l₂",
"end": [
1011,
71
],
"full_name": "List.cons_diff_of_not_mem",
"kind": "commanddeclaration",
"start": [
1010,
1
]
},
{
"code": "theorem diff_eq_foldl : ∀ l₁ l₂ : List α, l₁.diff l₂ = foldl List.erase l₁ l₂",
"end": [
1015,
65
],
"full_name": "List.diff_eq_foldl",
"kind": "commanddeclaration",
"start": [
1013,
1
]
},
{
"code": "@[simp] theorem diff_append (l₁ l₂ l₃ : List α) : l₁.diff (l₂ ++ l₃) = (l₁.diff l₂).diff l₃",
"end": [
1018,
42
],
"full_name": "List.diff_append",
"kind": "commanddeclaration",
"start": [
1017,
1
]
},
{
"code": "theorem diff_sublist : ∀ l₁ l₂ : List α, l₁.diff l₂ <+ l₁",
"end": [
1026,
34
],
"full_name": "List.diff_sublist",
"kind": "commanddeclaration",
"start": [
1020,
1
]
},
{
"code": "theorem diff_subset (l₁ l₂ : List α) : l₁.diff l₂ ⊆ l₁",
"end": [
1028,
83
],
"full_name": "List.diff_subset",
"kind": "commanddeclaration",
"start": [
1028,
1
]
},
{
"code": "theorem mem_diff_of_mem {a : α} : ∀ {l₁ l₂ : List α}, a ∈ l₁ → a ∉ l₂ → a ∈ l₁.diff l₂",
"end": [
1034,
94
],
"full_name": "List.mem_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1030,
1
]
},
{
"code": "theorem Sublist.diff_right : ∀ {l₁ l₂ l₃ : List α}, l₁ <+ l₂ → l₁.diff l₃ <+ l₂.diff l₃",
"end": [
1038,
75
],
"full_name": "List.Sublist.diff_right",
"kind": "commanddeclaration",
"start": [
1036,
1
]
},
{
"code": "theorem Sublist.erase_diff_erase_sublist {a : α} :\n ∀ {l₁ l₂ : List α}, l₁ <+ l₂ → (l₂.erase a).diff (l₁.erase a) <+ l₂.diff l₁",
"end": [
1048,
71
],
"full_name": "List.Sublist.erase_diff_erase_sublist",
"kind": "commanddeclaration",
"start": [
1040,
1
]
},
{
"code": "@[simp] theorem prefix_append (l₁ l₂ : List α) : l₁ <+: l₁ ++ l₂",
"end": [
1054,
78
],
"full_name": "List.prefix_append",
"kind": "commanddeclaration",
"start": [
1054,
1
]
},
{
"code": "@[simp] theorem suffix_append (l₁ l₂ : List α) : l₂ <:+ l₁ ++ l₂",
"end": [
1056,
78
],
"full_name": "List.suffix_append",
"kind": "commanddeclaration",
"start": [
1056,
1
]
},
{
"code": "theorem infix_append (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ l₂ ++ l₃",
"end": [
1058,
83
],
"full_name": "List.infix_append",
"kind": "commanddeclaration",
"start": [
1058,
1
]
},
{
"code": "@[simp] theorem infix_append' (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ (l₂ ++ l₃)",
"end": [
1061,
47
],
"full_name": "List.infix_append'",
"kind": "commanddeclaration",
"start": [
1060,
1
]
},
{
"code": "theorem IsPrefix.isInfix : l₁ <+: l₂ → l₁ <:+: l₂",
"end": [
1063,
78
],
"full_name": "List.IsPrefix.isInfix",
"kind": "commanddeclaration",
"start": [
1063,
1
]
},
{
"code": "theorem IsSuffix.isInfix : l₁ <:+ l₂ → l₁ <:+: l₂",
"end": [
1065,
98
],
"full_name": "List.IsSuffix.isInfix",
"kind": "commanddeclaration",
"start": [
1065,
1
]
},
{
"code": "theorem nil_prefix (l : List α) : [] <+: l",
"end": [
1067,
55
],
"full_name": "List.nil_prefix",
"kind": "commanddeclaration",
"start": [
1067,
1
]
},
{
"code": "theorem nil_suffix (l : List α) : [] <:+ l",
"end": [
1069,
64
],
"full_name": "List.nil_suffix",
"kind": "commanddeclaration",
"start": [
1069,
1
]
},
{
"code": "theorem nil_infix (l : List α) : [] <:+: l",
"end": [
1071,
69
],
"full_name": "List.nil_infix",
"kind": "commanddeclaration",
"start": [
1071,
1
]
},
{
"code": "theorem prefix_refl (l : List α) : l <+: l",
"end": [
1073,
65
],
"full_name": "List.prefix_refl",
"kind": "commanddeclaration",
"start": [
1073,
1
]
},
{
"code": "theorem suffix_refl (l : List α) : l <:+ l",
"end": [
1075,
56
],
"full_name": "List.suffix_refl",
"kind": "commanddeclaration",
"start": [
1075,
1
]
},
{
"code": "theorem infix_refl (l : List α) : l <:+: l",
"end": [
1077,
70
],
"full_name": "List.infix_refl",
"kind": "commanddeclaration",
"start": [
1077,
1
]
},
{
"code": "@[simp] theorem suffix_cons (a : α) : ∀ l, l <:+ a :: l",
"end": [
1079,
77
],
"full_name": "List.suffix_cons",
"kind": "commanddeclaration",
"start": [
1079,
1
]
},
{
"code": "theorem infix_cons : l₁ <:+: l₂ → l₁ <:+: a :: l₂",
"end": [
1081,
95
],
"full_name": "List.infix_cons",
"kind": "commanddeclaration",
"start": [
1081,
1
]
},
{
"code": "theorem infix_concat : l₁ <:+: l₂ → l₁ <:+: concat l₂ a",
"end": [
1084,
67
],
"full_name": "List.infix_concat",
"kind": "commanddeclaration",
"start": [
1083,
1
]
},
{
"code": "theorem IsPrefix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₂ → l₂ <+: l₃ → l₁ <+: l₃",
"end": [
1087,
75
],
"full_name": "List.IsPrefix.trans",
"kind": "commanddeclaration",
"start": [
1086,
1
]
},
{
"code": "theorem IsSuffix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+ l₂ → l₂ <:+ l₃ → l₁ <:+ l₃",
"end": [
1090,
68
],
"full_name": "List.IsSuffix.trans",
"kind": "commanddeclaration",
"start": [
1089,
1
]
},
{
"code": "theorem IsInfix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+: l₂ → l₂ <:+: l₃ → l₁ <:+: l₃",
"end": [
1093,
95
],
"full_name": "List.IsInfix.trans",
"kind": "commanddeclaration",
"start": [
1092,
1
]
},
{
"code": "protected theorem IsInfix.sublist : l₁ <:+: l₂ → l₁ <+ l₂",
"end": [
1096,
78
],
"full_name": "List.IsInfix.sublist",
"kind": "commanddeclaration",
"start": [
1095,
1
]
},
{
"code": "protected theorem IsInfix.subset (hl : l₁ <:+: l₂) : l₁ ⊆ l₂",
"end": [
1099,
20
],
"full_name": "List.IsInfix.subset",
"kind": "commanddeclaration",
"start": [
1098,
1
]
},
{
"code": "protected theorem IsPrefix.sublist (h : l₁ <+: l₂) : l₁ <+ l₂",
"end": [
1102,
20
],
"full_name": "List.IsPrefix.sublist",
"kind": "commanddeclaration",
"start": [
1101,
1
]
},
{
"code": "protected theorem IsPrefix.subset (hl : l₁ <+: l₂) : l₁ ⊆ l₂",
"end": [
1105,
20
],
"full_name": "List.IsPrefix.subset",
"kind": "commanddeclaration",
"start": [
1104,
1
]
},
{
"code": "protected theorem IsSuffix.sublist (h : l₁ <:+ l₂) : l₁ <+ l₂",
"end": [
1108,
20
],
"full_name": "List.IsSuffix.sublist",
"kind": "commanddeclaration",
"start": [
1107,
1
]
},
{
"code": "protected theorem IsSuffix.subset (hl : l₁ <:+ l₂) : l₁ ⊆ l₂",
"end": [
1111,
20
],
"full_name": "List.IsSuffix.subset",
"kind": "commanddeclaration",
"start": [
1110,
1
]
},
{
"code": "@[simp] theorem reverse_suffix : reverse l₁ <:+ reverse l₂ ↔ l₁ <+: l₂",
"end": [
1115,
59
],
"full_name": "List.reverse_suffix",
"kind": "commanddeclaration",
"start": [
1113,
1
]
},
{
"code": "@[simp] theorem reverse_prefix : reverse l₁ <+: reverse l₂ ↔ l₁ <:+ l₂",
"end": [
1118,
53
],
"full_name": "List.reverse_prefix",
"kind": "commanddeclaration",
"start": [
1117,
1
]
},
{
"code": "@[simp] theorem reverse_infix : reverse l₁ <:+: reverse l₂ ↔ l₁ <:+: l₂",
"end": [
1124,
61
],
"full_name": "List.reverse_infix",
"kind": "commanddeclaration",
"start": [
1120,
1
]
},
{
"code": "theorem IsInfix.length_le (h : l₁ <:+: l₂) : l₁.length ≤ l₂.length",
"end": [
1127,
22
],
"full_name": "List.IsInfix.length_le",
"kind": "commanddeclaration",
"start": [
1126,
1
]
},
{
"code": "theorem IsPrefix.length_le (h : l₁ <+: l₂) : l₁.length ≤ l₂.length",
"end": [
1130,
22
],
"full_name": "List.IsPrefix.length_le",
"kind": "commanddeclaration",
"start": [
1129,
1
]
},
{
"code": "theorem IsSuffix.length_le (h : l₁ <:+ l₂) : l₁.length ≤ l₂.length",
"end": [
1133,
22
],
"full_name": "List.IsSuffix.length_le",
"kind": "commanddeclaration",
"start": [
1132,
1
]
},
{
"code": "@[simp] theorem infix_nil : l <:+: [] ↔ l = []",
"end": [
1135,
98
],
"full_name": "List.infix_nil",
"kind": "commanddeclaration",
"start": [
1135,
1
]
},
{
"code": "@[simp] theorem prefix_nil : l <+: [] ↔ l = []",
"end": [
1137,
99
],
"full_name": "List.prefix_nil",
"kind": "commanddeclaration",
"start": [
1137,
1
]
},
{
"code": "@[simp] theorem suffix_nil : l <:+ [] ↔ l = []",
"end": [
1139,
99
],
"full_name": "List.suffix_nil",
"kind": "commanddeclaration",
"start": [
1139,
1
]
},
{
"code": "theorem infix_iff_prefix_suffix (l₁ l₂ : List α) : l₁ <:+: l₂ ↔ ∃ t, l₁ <+: t ∧ t <:+ l₂",
"end": [
1143,
60
],
"full_name": "List.infix_iff_prefix_suffix",
"kind": "commanddeclaration",
"start": [
1141,
1
]
},
{
"code": "theorem IsInfix.eq_of_length (h : l₁ <:+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1146,
25
],
"full_name": "List.IsInfix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1145,
1
]
},
{
"code": "theorem IsPrefix.eq_of_length (h : l₁ <+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1149,
25
],
"full_name": "List.IsPrefix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1148,
1
]
},
{
"code": "theorem IsSuffix.eq_of_length (h : l₁ <:+ l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1152,
25
],
"full_name": "List.IsSuffix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1151,
1
]
},
{
"code": "theorem prefix_of_prefix_length_le :\n ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₃ → l₂ <+: l₃ → length l₁ ≤ length l₂ → l₁ <+: l₂",
"end": [
1160,
20
],
"full_name": "List.prefix_of_prefix_length_le",
"kind": "commanddeclaration",
"start": [
1154,
1
]
},
{
"code": "theorem prefix_or_prefix_of_prefix (h₁ : l₁ <+: l₃) (h₂ : l₂ <+: l₃) : l₁ <+: l₂ ∨ l₂ <+: l₁",
"end": [
1164,
39
],
"full_name": "List.prefix_or_prefix_of_prefix",
"kind": "commanddeclaration",
"start": [
1162,
1
]
},
{
"code": "theorem suffix_of_suffix_length_le\n (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) (ll : length l₁ ≤ length l₂) : l₁ <:+ l₂",
"end": [
1169,
90
],
"full_name": "List.suffix_of_suffix_length_le",
"kind": "commanddeclaration",
"start": [
1166,
1
]
},
{
"code": "theorem suffix_or_suffix_of_suffix (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) : l₁ <:+ l₂ ∨ l₂ <:+ l₁",
"end": [
1173,
21
],
"full_name": "List.suffix_or_suffix_of_suffix",
"kind": "commanddeclaration",
"start": [
1171,
1
]
},
{
"code": "theorem suffix_cons_iff : l₁ <:+ a :: l₂ ↔ l₁ = a :: l₂ ∨ l₁ <:+ l₂",
"end": [
1184,
41
],
"full_name": "List.suffix_cons_iff",
"kind": "commanddeclaration",
"start": [
1175,
1
]
},
{
"code": "theorem infix_cons_iff : l₁ <:+: a :: l₂ ↔ l₁ <+: a :: l₂ ∨ l₁ <:+: l₂",
"end": [
1195,
27
],
"full_name": "List.infix_cons_iff",
"kind": "commanddeclaration",
"start": [
1186,
1
]
},
{
"code": "theorem infix_of_mem_join : ∀ {L : List (List α)}, l ∈ L → l <:+: join L",
"end": [
1202,
78
],
"full_name": "List.infix_of_mem_join",
"kind": "commanddeclaration",
"start": [
1197,
1
]
},
{
"code": "theorem prefix_append_right_inj (l) : l ++ l₁ <+: l ++ l₂ ↔ l₁ <+: l₂",
"end": [
1205,
63
],
"full_name": "List.prefix_append_right_inj",
"kind": "commanddeclaration",
"start": [
1204,
1
]
},
{
"code": "@[simp]\ntheorem prefix_cons_inj (a) : a :: l₁ <+: a :: l₂ ↔ l₁ <+: l₂",
"end": [
1209,
30
],
"full_name": "List.prefix_cons_inj",
"kind": "commanddeclaration",
"start": [
1207,
1
]
},
{
"code": "theorem take_prefix (n) (l : List α) : take n l <+: l",
"end": [
1212,
28
],
"full_name": "List.take_prefix",
"kind": "commanddeclaration",
"start": [
1211,
1
]
},
{
"code": "theorem drop_suffix (n) (l : List α) : drop n l <:+ l",
"end": [
1215,
28
],
"full_name": "List.drop_suffix",
"kind": "commanddeclaration",
"start": [
1214,
1
]
},
{
"code": "theorem take_sublist (n) (l : List α) : take n l <+ l",
"end": [
1218,
28
],
"full_name": "List.take_sublist",
"kind": "commanddeclaration",
"start": [
1217,
1
]
},
{
"code": "theorem drop_sublist (n) (l : List α) : drop n l <+ l",
"end": [
1221,
28
],
"full_name": "List.drop_sublist",
"kind": "commanddeclaration",
"start": [
1220,
1
]
},
{
"code": "theorem take_subset (n) (l : List α) : take n l ⊆ l",
"end": [
1224,
28
],
"full_name": "List.take_subset",
"kind": "commanddeclaration",
"start": [
1223,
1
]
},
{
"code": "theorem drop_subset (n) (l : List α) : drop n l ⊆ l",
"end": [
1227,
28
],
"full_name": "List.drop_subset",
"kind": "commanddeclaration",
"start": [
1226,
1
]
},
{
"code": "theorem mem_of_mem_take {l : List α} (h : a ∈ l.take n) : a ∈ l",
"end": [
1230,
20
],
"full_name": "List.mem_of_mem_take",
"kind": "commanddeclaration",
"start": [
1229,
1
]
},
{
"code": "theorem IsPrefix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <+: l₂) :\n l₁.filter p <+: l₂.filter p",
"end": [
1235,
42
],
"full_name": "List.IsPrefix.filter",
"kind": "commanddeclaration",
"start": [
1232,
1
]
},
{
"code": "theorem IsSuffix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+ l₂) :\n l₁.filter p <:+ l₂.filter p",
"end": [
1240,
42
],
"full_name": "List.IsSuffix.filter",
"kind": "commanddeclaration",
"start": [
1237,
1
]
},
{
"code": "theorem IsInfix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+: l₂) :\n l₁.filter p <:+: l₂.filter p",
"end": [
1245,
58
],
"full_name": "List.IsInfix.filter",
"kind": "commanddeclaration",
"start": [
1242,
1
]
},
{
"code": "theorem mem_of_mem_drop {n} {l : List α} (h : a ∈ l.drop n) : a ∈ l",
"end": [
1249,
89
],
"full_name": "List.mem_of_mem_drop",
"kind": "commanddeclaration",
"start": [
1249,
1
]
},
{
"code": "theorem disjoint_take_drop : ∀ {l : List α}, l.Nodup → m ≤ n → Disjoint (l.take m) (l.drop n)",
"end": [
1259,
61
],
"full_name": "List.disjoint_take_drop",
"kind": "commanddeclaration",
"start": [
1251,
1
]
},
{
"code": "@[simp]\ntheorem chain_cons {a b : α} {l : List α} : Chain R a (b :: l) ↔ R a b ∧ Chain R b l",
"end": [
1268,
27
],
"full_name": "List.chain_cons",
"kind": "commanddeclaration",
"start": [
1265,
1
]
},
{
"code": "theorem rel_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : R a b",
"end": [
1271,
21
],
"full_name": "List.rel_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1270,
1
]
},
{
"code": "theorem chain_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : Chain R b l",
"end": [
1274,
21
],
"full_name": "List.chain_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1273,
1
]
},
{
"code": "theorem Chain.imp' {R S : α → α → Prop} (HRS : ∀ ⦃a b⦄, R a b → S a b) {a b : α}\n (Hab : ∀ ⦃c⦄, R a c → S b c) {l : List α} (p : Chain R a l) : Chain S b l",
"end": [
1283,
24
],
"full_name": "List.Chain.imp'",
"kind": "commanddeclaration",
"start": [
1276,
1
]
},
{
"code": "theorem Chain.imp {R S : α → α → Prop} (H : ∀ a b, R a b → S a b) {a : α} {l : List α}\n (p : Chain R a l) : Chain S a l",
"end": [
1287,
17
],
"full_name": "List.Chain.imp",
"kind": "commanddeclaration",
"start": [
1285,
1
]
},
{
"code": "protected theorem Pairwise.chain (p : Pairwise R (a :: l)) : Chain R a l",
"end": [
1295,
36
],
"full_name": "List.Pairwise.chain",
"kind": "commanddeclaration",
"start": [
1289,
1
]
},
{
"code": "theorem range'_succ (s n step) : range' s (n + 1) step = s :: range' (s + step) n step",
"end": [
1300,
44
],
"full_name": "List.range'_succ",
"kind": "commanddeclaration",
"start": [
1299,
1
]
},
{
"code": "@[simp] theorem length_range' (s step) : ∀ n : Nat, length (range' s n step) = n",
"end": [
1304,
49
],
"full_name": "List.length_range'",
"kind": "commanddeclaration",
"start": [
1302,
1
]
},
{
"code": "@[simp] theorem range'_eq_nil : range' s n step = [] ↔ n = 0",
"end": [
1307,
39
],
"full_name": "List.range'_eq_nil",
"kind": "commanddeclaration",
"start": [
1306,
1
]
},
{
"code": "theorem mem_range' : ∀{n}, m ∈ range' s n step ↔ ∃ i < n, m = s + step * i",
"end": [
1314,
71
],
"full_name": "List.mem_range'",
"kind": "commanddeclaration",
"start": [
1309,
1
]
},
{
"code": "@[simp] theorem mem_range'_1 : m ∈ range' s n ↔ s ≤ m ∧ m < s + n",
"end": [
1319,
93
],
"full_name": "List.mem_range'_1",
"kind": "commanddeclaration",
"start": [
1316,
1
]
},
{
"code": "@[simp]\ntheorem map_add_range' (a) : ∀ s n step, map (a + ·) (range' s n step) = range' (a + s) n step",
"end": [
1324,
90
],
"full_name": "List.map_add_range'",
"kind": "commanddeclaration",
"start": [
1321,
1
]
},
{
"code": "theorem map_sub_range' (a s n : Nat) (h : a ≤ s) :\n map (· - a) (range' s n step) = range' (s - a) n step",
"end": [
1330,
42
],
"full_name": "List.map_sub_range'",
"kind": "commanddeclaration",
"start": [
1326,
1
]
},
{
"code": "theorem chain_succ_range' : ∀ s n step : Nat,\n Chain (fun a b => b = a + step) s (range' (s + step) n step)",
"end": [
1335,
69
],
"full_name": "List.chain_succ_range'",
"kind": "commanddeclaration",
"start": [
1332,
1
]
},
{
"code": "theorem chain_lt_range' (s n : Nat) {step} (h : 0 < step) :\n Chain (· < ·) s (range' (s + step) n step)",
"end": [
1339,
83
],
"full_name": "List.chain_lt_range'",
"kind": "commanddeclaration",
"start": [
1337,
1
]
},
{
"code": "theorem range'_append : ∀ s m n step : Nat,\n range' s m step ++ range' (s + step * m) n step = range' s (n + m) step",
"end": [
1346,
46
],
"full_name": "List.range'_append",
"kind": "commanddeclaration",
"start": [
1341,
1
]
},
{
"code": "@[simp] theorem range'_append_1 (s m n : Nat) :\n range' s m ++ range' (s + m) n = range' s (n + m)",
"end": [
1349,
94
],
"full_name": "List.range'_append_1",
"kind": "commanddeclaration",
"start": [
1348,
1
]
},
{
"code": "theorem range'_sublist_right {s m n : Nat} : range' s m step <+ range' s n step ↔ m ≤ n",
"end": [
1353,
88
],
"full_name": "List.range'_sublist_right",
"kind": "commanddeclaration",
"start": [
1351,
1
]
},
{
"code": "theorem range'_subset_right {s m n : Nat} (step0 : 0 < step) :\n range' s m step ⊆ range' s n step ↔ m ≤ n",
"end": [
1359,
82
],
"full_name": "List.range'_subset_right",
"kind": "commanddeclaration",
"start": [
1355,
1
]
},
{
"code": "theorem range'_subset_right_1 {s m n : Nat} : range' s m ⊆ range' s n ↔ m ≤ n",
"end": [
1362,
34
],
"full_name": "List.range'_subset_right_1",
"kind": "commanddeclaration",
"start": [
1361,
1
]
},
{
"code": "theorem getElem?_range' (s step) :\n ∀ {m n : Nat}, m < n → (range' s n step)[m]? = some (s + step * m)",
"end": [
1370,
55
],
"full_name": "List.getElem?_range'",
"kind": "commanddeclaration",
"start": [
1364,
1
]
},
{
"code": "@[simp] theorem getElem_range' {n m step} (i) (H : i < (range' n m step).length) :\n (range' n m step)[i] = n + step * i",
"end": [
1374,
70
],
"full_name": "List.getElem_range'",
"kind": "commanddeclaration",
"start": [
1372,
1
]
},
{
"code": "@[deprecated getElem?_range' (since := \"2024-06-12\")]\ntheorem get?_range' (s step) {m n : Nat} (h : m < n) :\n get? (range' s n step) m = some (s + step * m)",
"end": [
1379,
11
],
"full_name": "List.get?_range'",
"kind": "commanddeclaration",
"start": [
1376,
1
]
},
{
"code": "@[deprecated getElem_range' (since := \"2024-06-12\")]\ntheorem get_range' {n m step} (i) (H : i < (range' n m step).length) :\n get (range' n m step) ⟨i, H⟩ = n + step * i",
"end": [
1384,
7
],
"full_name": "List.get_range'",
"kind": "commanddeclaration",
"start": [
1381,
1
]
},
{
"code": "theorem range'_concat (s n : Nat) : range' s (n + 1) step = range' s n step ++ [s + step * n]",
"end": [
1387,
63
],
"full_name": "List.range'_concat",
"kind": "commanddeclaration",
"start": [
1386,
1
]
},
{
"code": "theorem range'_1_concat (s n : Nat) : range' s (n + 1) = range' s n ++ [s + n]",
"end": [
1390,
23
],
"full_name": "List.range'_1_concat",
"kind": "commanddeclaration",
"start": [
1389,
1
]
},
{
"code": "theorem range_loop_range' : ∀ s n : Nat, range.loop s (range' s n) = range' 0 (n + s)",
"end": [
1394,
101
],
"full_name": "List.range_loop_range'",
"kind": "commanddeclaration",
"start": [
1392,
1
]
},
{
"code": "theorem range_eq_range' (n : Nat) : range n = range' 0 n",
"end": [
1397,
56
],
"full_name": "List.range_eq_range'",
"kind": "commanddeclaration",
"start": [
1396,
1
]
},
{
"code": "theorem range_succ_eq_map (n : Nat) : range (n + 1) = 0 :: map succ (range n)",
"end": [
1401,
30
],
"full_name": "List.range_succ_eq_map",
"kind": "commanddeclaration",
"start": [
1399,
1
]
},
{
"code": "theorem range'_eq_map_range (s n : Nat) : range' s n = map (s + ·) (range n)",
"end": [
1404,
44
],
"full_name": "List.range'_eq_map_range",
"kind": "commanddeclaration",
"start": [
1403,
1
]
},
{
"code": "@[simp] theorem length_range (n : Nat) : length (range n) = n",
"end": [
1407,
45
],
"full_name": "List.length_range",
"kind": "commanddeclaration",
"start": [
1406,
1
]
},
{
"code": "@[simp] theorem range_eq_nil {n : Nat} : range n = [] ↔ n = 0",
"end": [
1410,
38
],
"full_name": "List.range_eq_nil",
"kind": "commanddeclaration",
"start": [
1409,
1
]
},
{
"code": "@[simp]\ntheorem range_sublist {m n : Nat} : range m <+ range n ↔ m ≤ n",
"end": [
1414,
52
],
"full_name": "List.range_sublist",
"kind": "commanddeclaration",
"start": [
1412,
1
]
},
{
"code": "@[simp]\ntheorem range_subset {m n : Nat} : range m ⊆ range n ↔ m ≤ n",
"end": [
1418,
65
],
"full_name": "List.range_subset",
"kind": "commanddeclaration",
"start": [
1416,
1
]
},
{
"code": "@[simp]\ntheorem mem_range {m n : Nat} : m ∈ range n ↔ m < n",
"end": [
1422,
81
],
"full_name": "List.mem_range",
"kind": "commanddeclaration",
"start": [
1420,
1
]
},
{
"code": "theorem not_mem_range_self {n : Nat} : n ∉ range n",
"end": [
1424,
62
],
"full_name": "List.not_mem_range_self",
"kind": "commanddeclaration",
"start": [
1424,
1
]
},
{
"code": "theorem self_mem_range_succ (n : Nat) : n ∈ range (n + 1)",
"end": [
1426,
69
],
"full_name": "List.self_mem_range_succ",
"kind": "commanddeclaration",
"start": [
1426,
1
]
},
{
"code": "theorem getElem?_range {m n : Nat} (h : m < n) : (range n)[m]? = some m",
"end": [
1429,
48
],
"full_name": "List.getElem?_range",
"kind": "commanddeclaration",
"start": [
1428,
1
]
},
{
"code": "@[simp] theorem getElem_range {n : Nat} (m) (h : m < (range n).length) : (range n)[m] = m",
"end": [
1432,
25
],
"full_name": "List.getElem_range",
"kind": "commanddeclaration",
"start": [
1431,
1
]
},
{
"code": "@[deprecated getElem?_range (since := \"2024-06-12\")]\ntheorem get?_range {m n : Nat} (h : m < n) : get? (range n) m = some m",
"end": [
1436,
27
],
"full_name": "List.get?_range",
"kind": "commanddeclaration",
"start": [
1434,
1
]
},
{
"code": "@[deprecated getElem_range (since := \"2024-06-12\")]\ntheorem get_range {n} (i) (H : i < (range n).length) : get (range n) ⟨i, H⟩ = i",
"end": [
1440,
7
],
"full_name": "List.get_range",
"kind": "commanddeclaration",
"start": [
1438,
1
]
},
{
"code": "theorem range_succ (n : Nat) : range (succ n) = range n ++ [n]",
"end": [
1443,
61
],
"full_name": "List.range_succ",
"kind": "commanddeclaration",
"start": [
1442,
1
]
},
{
"code": "theorem range_add (a b : Nat) : range (a + b) = range a ++ (range b).map (a + ·)",
"end": [
1447,
75
],
"full_name": "List.range_add",
"kind": "commanddeclaration",
"start": [
1445,
1
]
},
{
"code": "theorem iota_eq_reverse_range' : ∀ n : Nat, iota n = reverse (range' 1 n)",
"end": [
1451,
99
],
"full_name": "List.iota_eq_reverse_range'",
"kind": "commanddeclaration",
"start": [
1449,
1
]
},
{
"code": "@[simp] theorem length_iota (n : Nat) : length (iota n) = n",
"end": [
1453,
96
],
"full_name": "List.length_iota",
"kind": "commanddeclaration",
"start": [
1453,
1
]
},
{
"code": "@[simp]\ntheorem mem_iota {m n : Nat} : m ∈ iota n ↔ 1 ≤ m ∧ m ≤ n",
"end": [
1457,
59
],
"full_name": "List.mem_iota",
"kind": "commanddeclaration",
"start": [
1455,
1
]
},
{
"code": "theorem reverse_range' : ∀ s n : Nat, reverse (range' s n) = map (s + n - 1 - ·) (range n)",
"end": [
1464,
59
],
"full_name": "List.reverse_range'",
"kind": "commanddeclaration",
"start": [
1459,
1
]
},
{
"code": "@[simp] theorem enumFrom_map_fst (n) :\n ∀ (l : List α), map Prod.fst (enumFrom n l) = range' n l.length",
"end": [
1472,
55
],
"full_name": "List.enumFrom_map_fst",
"kind": "commanddeclaration",
"start": [
1469,
1
]
},
{
"code": "@[simp] theorem enum_map_fst (l : List α) : map Prod.fst (enum l) = range l.length",
"end": [
1475,
54
],
"full_name": "List.enum_map_fst",
"kind": "commanddeclaration",
"start": [
1474,
1
]
},
{
"code": "theorem foldrIdx_start :\n (xs : List α).foldrIdx f i s = (xs : List α).foldrIdx (fun i => f (i + s)) i",
"end": [
1487,
43
],
"full_name": "List.foldrIdx_start",
"kind": "commanddeclaration",
"start": [
1479,
1
]
},
{
"code": "@[simp] theorem foldrIdx_cons :\n (x :: xs : List α).foldrIdx f i s = f s x (foldrIdx f i xs (s + 1))",
"end": [
1490,
79
],
"full_name": "List.foldrIdx_cons",
"kind": "commanddeclaration",
"start": [
1489,
1
]
},
{
"code": "theorem findIdxs_cons_aux (p : α → Bool) :\n foldrIdx (fun i a is => if p a = true then (i + 1) :: is else is) [] xs s =\n map (· + 1) (foldrIdx (fun i a is => if p a = true then i :: is else is) [] xs s)",
"end": [
1499,
24
],
"full_name": "List.findIdxs_cons_aux",
"kind": "commanddeclaration",
"start": [
1492,
1
]
},
{
"code": "theorem findIdxs_cons :\n (x :: xs : List α).findIdxs p =\n bif p x then 0 :: (xs.findIdxs p).map (· + 1) else (xs.findIdxs p).map (· + 1)",
"end": [
1508,
28
],
"full_name": "List.findIdxs_cons",
"kind": "commanddeclaration",
"start": [
1501,
1
]
},
{
"code": "@[simp] theorem indexesOf_nil [BEq α] : ([] : List α).indexesOf x = []",
"end": [
1510,
78
],
"full_name": "List.indexesOf_nil",
"kind": "commanddeclaration",
"start": [
1510,
1
]
},
{
"code": "theorem indexesOf_cons [BEq α] : (x :: xs : List α).indexesOf y =\n bif x == y then 0 :: (xs.indexesOf y).map (· + 1) else (xs.indexesOf y).map (· + 1)",
"end": [
1514,
34
],
"full_name": "List.indexesOf_cons",
"kind": "commanddeclaration",
"start": [
1512,
1
]
},
{
"code": "@[simp] theorem indexOf_nil [BEq α] : ([] : List α).indexOf x = 0",
"end": [
1516,
73
],
"full_name": "List.indexOf_nil",
"kind": "commanddeclaration",
"start": [
1516,
1
]
},
{
"code": "theorem indexOf_cons [BEq α] :\n (x :: xs : List α).indexOf y = bif x == y then 0 else xs.indexOf y + 1",
"end": [
1521,
22
],
"full_name": "List.indexOf_cons",
"kind": "commanddeclaration",
"start": [
1518,
1
]
},
{
"code": "theorem indexOf_mem_indexesOf [BEq α] [LawfulBEq α] {xs : List α} (m : x ∈ xs) :\n xs.indexOf x ∈ xs.indexesOf x",
"end": [
1535,
14
],
"full_name": "List.indexOf_mem_indexesOf",
"kind": "commanddeclaration",
"start": [
1523,
1
]
},
{
"code": "theorem merge_loop_nil_left (s : α → α → Bool) (r t) :\n merge.loop s [] r t = reverseAux t r",
"end": [
1539,
18
],
"full_name": "List.merge_loop_nil_left",
"kind": "commanddeclaration",
"start": [
1537,
1
]
},
{
"code": "theorem merge_loop_nil_right (s : α → α → Bool) (l t) :\n merge.loop s l [] t = reverseAux t l",
"end": [
1543,
52
],
"full_name": "List.merge_loop_nil_right",
"kind": "commanddeclaration",
"start": [
1541,
1
]
},
{
"code": "theorem merge_loop (s : α → α → Bool) (l r t) :\n merge.loop s l r t = reverseAux t (merge s l r)",
"end": [
1567,
64
],
"full_name": "List.merge_loop",
"kind": "commanddeclaration",
"start": [
1545,
1
]
},
{
"code": "@[simp] theorem merge_nil (s : α → α → Bool) (l) : merge s l [] = l",
"end": [
1569,
95
],
"full_name": "List.merge_nil",
"kind": "commanddeclaration",
"start": [
1569,
1
]
},
{
"code": "@[simp] theorem nil_merge (s : α → α → Bool) (r) : merge s [] r = r",
"end": [
1571,
94
],
"full_name": "List.nil_merge",
"kind": "commanddeclaration",
"start": [
1571,
1
]
},
{
"code": "theorem cons_merge_cons (s : α → α → Bool) (a b l r) :\n merge s (a::l) (b::r) = if s a b then a :: merge s l (b::r) else b :: merge s (a::l) r",
"end": [
1575,
87
],
"full_name": "List.cons_merge_cons",
"kind": "commanddeclaration",
"start": [
1573,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_pos (s : α → α → Bool) (l r) (h : s a b) :\n merge s (a::l) (b::r) = a :: merge s l (b::r)",
"end": [
1579,
33
],
"full_name": "List.cons_merge_cons_pos",
"kind": "commanddeclaration",
"start": [
1577,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_neg (s : α → α → Bool) (l r) (h : ¬ s a b) :\n merge s (a::l) (b::r) = b :: merge s (a::l) r",
"end": [
1583,
33
],
"full_name": "List.cons_merge_cons_neg",
"kind": "commanddeclaration",
"start": [
1581,
1
]
},
{
"code": "@[simp] theorem length_merge (s : α → α → Bool) (l r) :\n (merge s l r).length = l.length + r.length",
"end": [
1594,
43
],
"full_name": "List.length_merge",
"kind": "commanddeclaration",
"start": [
1585,
1
]
},
{
"code": "@[simp]\ntheorem mem_merge {s : α → α → Bool} : x ∈ merge s l r ↔ x ∈ l ∨ x ∈ r",
"end": [
1605,
68
],
"full_name": "List.mem_merge",
"kind": "commanddeclaration",
"start": [
1596,
1
]
},
{
"code": "theorem mem_merge_left (s : α → α → Bool) (h : x ∈ l) : x ∈ merge s l r",
"end": [
1608,
24
],
"full_name": "List.mem_merge_left",
"kind": "commanddeclaration",
"start": [
1607,
1
]
},
{
"code": "theorem mem_merge_right (s : α → α → Bool) (h : x ∈ r) : x ∈ merge s l r",
"end": [
1611,
24
],
"full_name": "List.mem_merge_right",
"kind": "commanddeclaration",
"start": [
1610,
1
]
}
] | 326 | List.length_merge | [
[
1586,
51
],
[
1594,
43
]
] | 4 | 9 | split | α : Type u_1
s : α → α → Bool
l✝ r✝ : List α
a : α
l : List α
b : α
r : List α
⊢ (if s a b = true then a :: merge s l (b :: r) else b :: merge s (a :: l) r).length = (a :: l).length + (b :: r).length | case isTrue
α : Type u_1
s : α → α → Bool
l✝ r✝ : List α
a : α
l : List α
b : α
r : List α
h✝ : s a b = true
⊢ (a :: merge s l (b :: r)).length = (a :: l).length + (b :: r).length
case isFalse
α : Type u_1
s : α → α → Bool
l✝ r✝ : List α
a : α
l : List α
b : α
r : List α
h✝ : ¬s a b = true
⊢ (b :: merge s (a :: l) r).length = (a :: l).length + (b :: r).length |
.lake/packages/batteries/Batteries/Data/List/Lemmas.lean | [
[
"Batteries.Tactic.Alias",
".lake/packages/batteries/Batteries/Tactic/Alias.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
],
[
"Batteries.Control.ForInStep.Lemmas",
".lake/packages/batteries/Batteries/Control/ForInStep/Lemmas.lean"
],
[
"Batteries.Tactic.Init",
".lake/packages/batteries/Batteries/Tactic/Init.lean"
],
[
"Batteries.Data.List.Basic",
".lake/packages/batteries/Batteries/Data/List/Basic.lean"
]
] | [
{
"code": "@[simp] theorem mem_toArray {a : α} {l : List α} : a ∈ l.toArray ↔ a ∈ l",
"end": [
18,
23
],
"full_name": "List.mem_toArray",
"kind": "commanddeclaration",
"start": [
17,
1
]
},
{
"code": "@[simp]\ntheorem drop_one : ∀ l : List α, drop 1 l = tail l",
"end": [
24,
23
],
"full_name": "List.drop_one",
"kind": "commanddeclaration",
"start": [
22,
1
]
},
{
"code": "theorem zipWith_distrib_tail : (zipWith f l l').tail = zipWith f l.tail l'.tail",
"end": [
29,
47
],
"full_name": "List.zipWith_distrib_tail",
"kind": "commanddeclaration",
"start": [
28,
1
]
},
{
"code": "theorem subset_def {l₁ l₂ : List α} : l₁ ⊆ l₂ ↔ ∀ {a : α}, a ∈ l₁ → a ∈ l₂",
"end": [
33,
83
],
"full_name": "List.subset_def",
"kind": "commanddeclaration",
"start": [
33,
1
]
},
{
"code": "@[simp] theorem nil_subset (l : List α) : [] ⊆ l",
"end": [
35,
58
],
"full_name": "List.nil_subset",
"kind": "commanddeclaration",
"start": [
35,
1
]
},
{
"code": "@[simp] theorem Subset.refl (l : List α) : l ⊆ l",
"end": [
37,
65
],
"full_name": "List.Subset.refl",
"kind": "commanddeclaration",
"start": [
37,
1
]
},
{
"code": "theorem Subset.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ ⊆ l₂) (h₂ : l₂ ⊆ l₃) : l₁ ⊆ l₃",
"end": [
40,
23
],
"full_name": "List.Subset.trans",
"kind": "commanddeclaration",
"start": [
39,
1
]
},
{
"code": "@[simp] theorem subset_cons (a : α) (l : List α) : l ⊆ a :: l",
"end": [
48,
85
],
"full_name": "List.subset_cons",
"kind": "commanddeclaration",
"start": [
48,
1
]
},
{
"code": "theorem subset_of_cons_subset {a : α} {l₁ l₂ : List α} : a :: l₁ ⊆ l₂ → l₁ ⊆ l₂",
"end": [
51,
39
],
"full_name": "List.subset_of_cons_subset",
"kind": "commanddeclaration",
"start": [
50,
1
]
},
{
"code": "theorem subset_cons_of_subset (a : α) {l₁ l₂ : List α} : l₁ ⊆ l₂ → l₁ ⊆ a :: l₂",
"end": [
54,
29
],
"full_name": "List.subset_cons_of_subset",
"kind": "commanddeclaration",
"start": [
53,
1
]
},
{
"code": "theorem cons_subset_cons {l₁ l₂ : List α} (a : α) (s : l₁ ⊆ l₂) : a :: l₁ ⊆ a :: l₂",
"end": [
57,
62
],
"full_name": "List.cons_subset_cons",
"kind": "commanddeclaration",
"start": [
56,
1
]
},
{
"code": "@[simp] theorem subset_append_left (l₁ l₂ : List α) : l₁ ⊆ l₁ ++ l₂",
"end": [
59,
98
],
"full_name": "List.subset_append_left",
"kind": "commanddeclaration",
"start": [
59,
1
]
},
{
"code": "@[simp] theorem subset_append_right (l₁ l₂ : List α) : l₂ ⊆ l₁ ++ l₂",
"end": [
61,
100
],
"full_name": "List.subset_append_right",
"kind": "commanddeclaration",
"start": [
61,
1
]
},
{
"code": "theorem subset_append_of_subset_left (l₂ : List α) : l ⊆ l₁ → l ⊆ l₁ ++ l₂",
"end": [
64,
50
],
"full_name": "List.subset_append_of_subset_left",
"kind": "commanddeclaration",
"start": [
63,
1
]
},
{
"code": "theorem subset_append_of_subset_right (l₁ : List α) : l ⊆ l₂ → l ⊆ l₁ ++ l₂",
"end": [
67,
51
],
"full_name": "List.subset_append_of_subset_right",
"kind": "commanddeclaration",
"start": [
66,
1
]
},
{
"code": "@[simp] theorem cons_subset : a :: l ⊆ m ↔ a ∈ m ∧ l ⊆ m",
"end": [
70,
66
],
"full_name": "List.cons_subset",
"kind": "commanddeclaration",
"start": [
69,
1
]
},
{
"code": "@[simp] theorem append_subset {l₁ l₂ l : List α} :\n l₁ ++ l₂ ⊆ l ↔ l₁ ⊆ l ∧ l₂ ⊆ l",
"end": [
73,
79
],
"full_name": "List.append_subset",
"kind": "commanddeclaration",
"start": [
72,
1
]
},
{
"code": "theorem subset_nil {l : List α} : l ⊆ [] ↔ l = []",
"end": [
76,
99
],
"full_name": "List.subset_nil",
"kind": "commanddeclaration",
"start": [
75,
1
]
},
{
"code": "theorem map_subset {l₁ l₂ : List α} (f : α → β) (H : l₁ ⊆ l₂) : map f l₁ ⊆ map f l₂",
"end": [
79,
72
],
"full_name": "List.map_subset",
"kind": "commanddeclaration",
"start": [
78,
1
]
},
{
"code": "@[simp] theorem nil_sublist : ∀ l : List α, [] <+ l",
"end": [
85,
37
],
"full_name": "List.nil_sublist",
"kind": "commanddeclaration",
"start": [
83,
1
]
},
{
"code": "@[simp] theorem Sublist.refl : ∀ l : List α, l <+ l",
"end": [
89,
39
],
"full_name": "List.Sublist.refl",
"kind": "commanddeclaration",
"start": [
87,
1
]
},
{
"code": "theorem Sublist.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ <+ l₂) (h₂ : l₂ <+ l₃) : l₁ <+ l₃",
"end": [
100,
53
],
"full_name": "List.Sublist.trans",
"kind": "commanddeclaration",
"start": [
91,
1
]
},
{
"code": "@[simp] theorem sublist_cons (a : α) (l : List α) : l <+ a :: l",
"end": [
104,
91
],
"full_name": "List.sublist_cons",
"kind": "commanddeclaration",
"start": [
104,
1
]
},
{
"code": "theorem sublist_of_cons_sublist : a :: l₁ <+ l₂ → l₁ <+ l₂",
"end": [
107,
28
],
"full_name": "List.sublist_of_cons_sublist",
"kind": "commanddeclaration",
"start": [
106,
1
]
},
{
"code": "@[simp] theorem sublist_append_left : ∀ l₁ l₂ : List α, l₁ <+ l₁ ++ l₂",
"end": [
111,
55
],
"full_name": "List.sublist_append_left",
"kind": "commanddeclaration",
"start": [
109,
1
]
},
{
"code": "@[simp] theorem sublist_append_right : ∀ l₁ l₂ : List α, l₂ <+ l₁ ++ l₂",
"end": [
115,
55
],
"full_name": "List.sublist_append_right",
"kind": "commanddeclaration",
"start": [
113,
1
]
},
{
"code": "theorem sublist_append_of_sublist_left (s : l <+ l₁) : l <+ l₁ ++ l₂",
"end": [
118,
36
],
"full_name": "List.sublist_append_of_sublist_left",
"kind": "commanddeclaration",
"start": [
117,
1
]
},
{
"code": "theorem sublist_append_of_sublist_right (s : l <+ l₂) : l <+ l₁ ++ l₂",
"end": [
121,
37
],
"full_name": "List.sublist_append_of_sublist_right",
"kind": "commanddeclaration",
"start": [
120,
1
]
},
{
"code": "@[simp]\ntheorem cons_sublist_cons : a :: l₁ <+ a :: l₂ ↔ l₁ <+ l₂",
"end": [
125,
77
],
"full_name": "List.cons_sublist_cons",
"kind": "commanddeclaration",
"start": [
123,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_left : ∀ l, l ++ l₁ <+ l ++ l₂ ↔ l₁ <+ l₂",
"end": [
129,
69
],
"full_name": "List.append_sublist_append_left",
"kind": "commanddeclaration",
"start": [
127,
1
]
},
{
"code": "theorem Sublist.append_left : l₁ <+ l₂ → ∀ l, l ++ l₁ <+ l ++ l₂",
"end": [
132,
50
],
"full_name": "List.Sublist.append_left",
"kind": "commanddeclaration",
"start": [
131,
1
]
},
{
"code": "theorem Sublist.append_right : l₁ <+ l₂ → ∀ l, l₁ ++ l <+ l₂ ++ l",
"end": [
137,
48
],
"full_name": "List.Sublist.append_right",
"kind": "commanddeclaration",
"start": [
134,
1
]
},
{
"code": "theorem sublist_or_mem_of_sublist (h : l <+ l₁ ++ a :: l₂) : l <+ l₁ ++ l₂ ∨ a ∈ l",
"end": [
147,
65
],
"full_name": "List.sublist_or_mem_of_sublist",
"kind": "commanddeclaration",
"start": [
139,
1
]
},
{
"code": "theorem Sublist.reverse : l₁ <+ l₂ → l₁.reverse <+ l₂.reverse",
"end": [
152,
85
],
"full_name": "List.Sublist.reverse",
"kind": "commanddeclaration",
"start": [
149,
1
]
},
{
"code": "@[simp] theorem reverse_sublist : l₁.reverse <+ l₂.reverse ↔ l₁ <+ l₂",
"end": [
155,
82
],
"full_name": "List.reverse_sublist",
"kind": "commanddeclaration",
"start": [
154,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_right (l) : l₁ ++ l <+ l₂ ++ l ↔ l₁ <+ l₂",
"end": [
162,
30
],
"full_name": "List.append_sublist_append_right",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "theorem Sublist.append (hl : l₁ <+ l₂) (hr : r₁ <+ r₂) : l₁ ++ r₁ <+ l₂ ++ r₂",
"end": [
165,
66
],
"full_name": "List.Sublist.append",
"kind": "commanddeclaration",
"start": [
164,
1
]
},
{
"code": "theorem Sublist.subset : l₁ <+ l₂ → l₁ ⊆ l₂",
"end": [
171,
53
],
"full_name": "List.Sublist.subset",
"kind": "commanddeclaration",
"start": [
167,
1
]
},
{
"code": "theorem Sublist.length_le : l₁ <+ l₂ → length l₁ ≤ length l₂",
"end": [
185,
45
],
"full_name": "List.Sublist.length_le",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "@[simp] theorem sublist_nil {l : List α} : l <+ [] ↔ l = []",
"end": [
188,
64
],
"full_name": "List.sublist_nil",
"kind": "commanddeclaration",
"start": [
187,
1
]
},
{
"code": "theorem Sublist.eq_of_length : l₁ <+ l₂ → length l₁ = length l₂ → l₁ = l₂",
"end": [
193,
57
],
"full_name": "List.Sublist.eq_of_length",
"kind": "commanddeclaration",
"start": [
190,
1
]
},
{
"code": "theorem Sublist.eq_of_length_le (s : l₁ <+ l₂) (h : length l₂ ≤ length l₁) : l₁ = l₂",
"end": [
196,
50
],
"full_name": "List.Sublist.eq_of_length_le",
"kind": "commanddeclaration",
"start": [
195,
1
]
},
{
"code": "@[simp] theorem singleton_sublist {a : α} {l} : [a] <+ l ↔ a ∈ l",
"end": [
201,
66
],
"full_name": "List.singleton_sublist",
"kind": "commanddeclaration",
"start": [
198,
1
]
},
{
"code": "@[simp] theorem replicate_sublist_replicate {m n} (a : α) :\n replicate m a <+ replicate n a ↔ m ≤ n",
"end": [
209,
48
],
"full_name": "List.replicate_sublist_replicate",
"kind": "commanddeclaration",
"start": [
203,
1
]
},
{
"code": "theorem isSublist_iff_sublist [BEq α] [LawfulBEq α] {l₁ l₂ : List α} :\n l₁.isSublist l₂ ↔ l₁ <+ l₂",
"end": [
228,
24
],
"full_name": "List.isSublist_iff_sublist",
"kind": "commanddeclaration",
"start": [
211,
1
]
},
{
"code": "theorem tail_eq_tailD (l) : @tail α l = tailD l []",
"end": [
235,
73
],
"full_name": "List.tail_eq_tailD",
"kind": "commanddeclaration",
"start": [
235,
1
]
},
{
"code": "theorem tail_eq_tail? (l) : @tail α l = (tail? l).getD []",
"end": [
237,
85
],
"full_name": "List.tail_eq_tail?",
"kind": "commanddeclaration",
"start": [
237,
1
]
},
{
"code": "@[simp] theorem next?_nil : @next? α [] = none",
"end": [
241,
54
],
"full_name": "List.next?_nil",
"kind": "commanddeclaration",
"start": [
241,
1
]
},
{
"code": "@[simp] theorem next?_cons (a l) : @next? α (a :: l) = some (a, l)",
"end": [
242,
74
],
"full_name": "List.next?_cons",
"kind": "commanddeclaration",
"start": [
242,
1
]
},
{
"code": "theorem getElem_eq_iff {l : List α} {n : Nat} {h : n < l.length} : l[n] = x ↔ l[n]? = some x",
"end": [
248,
40
],
"full_name": "List.getElem_eq_iff",
"kind": "commanddeclaration",
"start": [
246,
1
]
},
{
"code": "@[deprecated getElem_eq_iff (since := \"2024-06-12\")]\ntheorem get_eq_iff : List.get l n = x ↔ l.get? n.1 = some x",
"end": [
252,
7
],
"full_name": "List.get_eq_iff",
"kind": "commanddeclaration",
"start": [
250,
1
]
},
{
"code": "theorem getElem?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs[i]? = xs[j]?) : i = j",
"end": [
273,
39
],
"full_name": "List.getElem?_inj",
"kind": "commanddeclaration",
"start": [
254,
1
]
},
{
"code": "@[deprecated getElem?_inj (since := \"2024-06-12\")]\ntheorem get?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs.get? i = xs.get? j) : i = j",
"end": [
279,
11
],
"full_name": "List.get?_inj",
"kind": "commanddeclaration",
"start": [
275,
1
]
},
{
"code": "theorem tail_drop (l : List α) (n : Nat) : (l.drop n).tail = l.drop (n + 1)",
"end": [
289,
16
],
"full_name": "List.tail_drop",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "@[simp] theorem modifyNth_nil (f : α → α) (n) : [].modifyNth f n = []",
"end": [
293,
92
],
"full_name": "List.modifyNth_nil",
"kind": "commanddeclaration",
"start": [
293,
1
]
},
{
"code": "@[simp] theorem modifyNth_zero_cons (f : α → α) (a : α) (l : List α) :\n (a :: l).modifyNth f 0 = f a :: l",
"end": [
296,
45
],
"full_name": "List.modifyNth_zero_cons",
"kind": "commanddeclaration",
"start": [
295,
1
]
},
{
"code": "@[simp] theorem modifyNth_succ_cons (f : α → α) (a : α) (l : List α) (n) :\n (a :: l).modifyNth f (n + 1) = a :: l.modifyNth f n",
"end": [
299,
66
],
"full_name": "List.modifyNth_succ_cons",
"kind": "commanddeclaration",
"start": [
298,
1
]
},
{
"code": "theorem modifyNthTail_id : ∀ n (l : List α), l.modifyNthTail id n = l",
"end": [
304,
60
],
"full_name": "List.modifyNthTail_id",
"kind": "commanddeclaration",
"start": [
301,
1
]
},
{
"code": "theorem eraseIdx_eq_modifyNthTail : ∀ n (l : List α), eraseIdx l n = modifyNthTail tail n l",
"end": [
309,
69
],
"full_name": "List.eraseIdx_eq_modifyNthTail",
"kind": "commanddeclaration",
"start": [
306,
1
]
},
{
"code": "theorem getElem?_modifyNth (f : α → α) :\n ∀ n (l : List α) m, (modifyNth f n l)[m]? = (fun a => if n = m then f a else a) <$> l[m]?",
"end": [
322,
79
],
"full_name": "List.getElem?_modifyNth",
"kind": "commanddeclaration",
"start": [
313,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth (since := \"2024-06-12\")]\ntheorem get?_modifyNth (f : α → α) (n) (l : List α) (m) :\n (modifyNth f n l).get? m = (fun a => if n = m then f a else a) <$> l.get? m",
"end": [
327,
28
],
"full_name": "List.get?_modifyNth",
"kind": "commanddeclaration",
"start": [
324,
1
]
},
{
"code": "theorem modifyNthTail_length (f : List α → List α) (H : ∀ l, length (f l) = length l) :\n ∀ n l, length (modifyNthTail f n l) = length l",
"end": [
333,
65
],
"full_name": "List.modifyNthTail_length",
"kind": "commanddeclaration",
"start": [
329,
1
]
},
{
"code": "theorem modifyNthTail_add (f : List α → List α) (n) (l₁ l₂ : List α) :\n modifyNthTail f (l₁.length + n) (l₁ ++ l₂) = l₁ ++ modifyNthTail f n l₂",
"end": [
337,
42
],
"full_name": "List.modifyNthTail_add",
"kind": "commanddeclaration",
"start": [
335,
1
]
},
{
"code": "theorem exists_of_modifyNthTail (f : List α → List α) {n} {l : List α} (h : n ≤ l.length) :\n ∃ l₁ l₂, l = l₁ ++ l₂ ∧ l₁.length = n ∧ modifyNthTail f n l = l₁ ++ f l₂",
"end": [
343,
58
],
"full_name": "List.exists_of_modifyNthTail",
"kind": "commanddeclaration",
"start": [
339,
1
]
},
{
"code": "@[simp] theorem modify_get?_length (f : α → α) : ∀ n l, length (modifyNth f n l) = length l",
"end": [
346,
53
],
"full_name": "List.modify_get?_length",
"kind": "commanddeclaration",
"start": [
345,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l)[n]? = f <$> l[n]?",
"end": [
350,
41
],
"full_name": "List.getElem?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_eq (since := \"2024-06-12\")]\ntheorem get?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l).get? n = f <$> l.get? n",
"end": [
355,
31
],
"full_name": "List.get?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
352,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l)[n]? = l[n]?",
"end": [
359,
52
],
"full_name": "List.getElem?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
357,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_ne (since := \"2024-06-12\")]\ntheorem get?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l).get? n = l.get? n",
"end": [
364,
11
],
"full_name": "List.get?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
361,
1
]
},
{
"code": "theorem exists_of_modifyNth (f : α → α) {n} {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ modifyNth f n l = l₁ ++ f a :: l₂",
"end": [
370,
74
],
"full_name": "List.exists_of_modifyNth",
"kind": "commanddeclaration",
"start": [
366,
1
]
},
{
"code": "theorem modifyNthTail_eq_take_drop (f : List α → List α) (H : f [] = []) :\n ∀ n l, modifyNthTail f n l = take n l ++ f (drop n l)",
"end": [
376,
76
],
"full_name": "List.modifyNthTail_eq_take_drop",
"kind": "commanddeclaration",
"start": [
372,
1
]
},
{
"code": "theorem modifyNth_eq_take_drop (f : α → α) :\n ∀ n l, modifyNth f n l = take n l ++ modifyHead f (drop n l)",
"end": [
380,
35
],
"full_name": "List.modifyNth_eq_take_drop",
"kind": "commanddeclaration",
"start": [
378,
1
]
},
{
"code": "theorem modifyNth_eq_take_cons_drop (f : α → α) {n l} (h) :\n modifyNth f n l = take n l ++ f l[n] :: drop (n + 1) l",
"end": [
384,
59
],
"full_name": "List.modifyNth_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
382,
1
]
},
{
"code": "theorem set_eq_modifyNth (a : α) : ∀ n (l : List α), set l n a = modifyNth (fun _ => a) n l",
"end": [
391,
62
],
"full_name": "List.set_eq_modifyNth",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "theorem set_eq_take_cons_drop (a : α) {n l} (h : n < length l) :\n set l n a = take n l ++ a :: drop (n + 1) l",
"end": [
395,
57
],
"full_name": "List.set_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
393,
1
]
},
{
"code": "theorem modifyNth_eq_set_get? (f : α → α) :\n ∀ n (l : List α), l.modifyNth f n = ((fun a => l.set n (f a)) <$> l.get? n).getD l",
"end": [
402,
92
],
"full_name": "List.modifyNth_eq_set_get?",
"kind": "commanddeclaration",
"start": [
397,
1
]
},
{
"code": "theorem modifyNth_eq_set_get (f : α → α) {n} {l : List α} (h) :\n l.modifyNth f n = l.set n (f (l.get ⟨n, h⟩))",
"end": [
406,
49
],
"full_name": "List.modifyNth_eq_set_get",
"kind": "commanddeclaration",
"start": [
404,
1
]
},
{
"code": "theorem exists_of_set {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
410,
55
],
"full_name": "List.exists_of_set",
"kind": "commanddeclaration",
"start": [
408,
1
]
},
{
"code": "theorem exists_of_set' {l : List α} (h : n < l.length) :\n ∃ l₁ l₂, l = l₁ ++ l[n] :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
414,
94
],
"full_name": "List.exists_of_set'",
"kind": "commanddeclaration",
"start": [
412,
1
]
},
{
"code": "@[simp]\ntheorem getElem?_set_eq' (a : α) (n) (l : List α) : (set l n a)[n]? = (fun _ => a) <$> l[n]?",
"end": [
418,
54
],
"full_name": "List.getElem?_set_eq'",
"kind": "commanddeclaration",
"start": [
416,
1
]
},
{
"code": "@[deprecated getElem?_set_eq' (since := \"2024-06-12\")]\ntheorem get?_set_eq (a : α) (n) (l : List α) : (set l n a).get? n = (fun _ => a) <$> l.get? n",
"end": [
422,
7
],
"full_name": "List.get?_set_eq",
"kind": "commanddeclaration",
"start": [
420,
1
]
},
{
"code": "theorem getElem?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a)[n]? = some a",
"end": [
425,
85
],
"full_name": "List.getElem?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
424,
1
]
},
{
"code": "@[deprecated getElem?_set_eq_of_lt (since := \"2024-06-12\")]\ntheorem get?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a).get? n = some a",
"end": [
430,
70
],
"full_name": "List.get?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
427,
1
]
},
{
"code": "@[deprecated getElem?_set_ne (since := \"2024-06-12\")]\ntheorem get?_set_ne (a : α) {m n} (l : List α) (h : m ≠ n) : (set l m a).get? n = l.get? n",
"end": [
434,
11
],
"full_name": "List.get?_set_ne",
"kind": "commanddeclaration",
"start": [
432,
1
]
},
{
"code": "theorem getElem?_set' (a : α) {m n} (l : List α) :\n (set l m a)[n]? = if m = n then (fun _ => a) <$> l[n]? else l[n]?",
"end": [
438,
30
],
"full_name": "List.getElem?_set'",
"kind": "commanddeclaration",
"start": [
436,
1
]
},
{
"code": "@[deprecated getElem?_set (since := \"2024-06-12\")]\ntheorem get?_set (a : α) {m n} (l : List α) :\n (set l m a).get? n = if m = n then (fun _ => a) <$> l.get? n else l.get? n",
"end": [
443,
23
],
"full_name": "List.get?_set",
"kind": "commanddeclaration",
"start": [
440,
1
]
},
{
"code": "theorem get?_set_of_lt (a : α) {m n} (l : List α) (h : n < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
447,
46
],
"full_name": "List.get?_set_of_lt",
"kind": "commanddeclaration",
"start": [
445,
1
]
},
{
"code": "theorem get?_set_of_lt' (a : α) {m n} (l : List α) (h : m < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
451,
80
],
"full_name": "List.get?_set_of_lt'",
"kind": "commanddeclaration",
"start": [
449,
1
]
},
{
"code": "theorem drop_set_of_lt (a : α) {n m : Nat} (l : List α) (h : n < m) :\n (l.set n a).drop m = l.drop m",
"end": [
455,
94
],
"full_name": "List.drop_set_of_lt",
"kind": "commanddeclaration",
"start": [
453,
1
]
},
{
"code": "theorem take_set_of_lt (a : α) {n m : Nat} (l : List α) (h : m < n) :\n (l.set n a).take m = l.take m",
"end": [
463,
10
],
"full_name": "List.take_set_of_lt",
"kind": "commanddeclaration",
"start": [
457,
1
]
},
{
"code": "theorem length_eraseIdx : ∀ {l i}, i < length l → length (@eraseIdx α l i) = length l - 1",
"end": [
473,
92
],
"full_name": "List.length_eraseIdx",
"kind": "commanddeclaration",
"start": [
467,
1
]
},
{
"code": "@[simp] theorem length_tail (l : List α) : length (tail l) = length l - 1",
"end": [
479,
96
],
"full_name": "List.length_tail",
"kind": "commanddeclaration",
"start": [
479,
1
]
},
{
"code": "@[simp] theorem eraseP_nil : [].eraseP p = []",
"end": [
483,
53
],
"full_name": "List.eraseP_nil",
"kind": "commanddeclaration",
"start": [
483,
1
]
},
{
"code": "theorem eraseP_cons (a : α) (l : List α) :\n (a :: l).eraseP p = bif p a then l else a :: l.eraseP p",
"end": [
486,
67
],
"full_name": "List.eraseP_cons",
"kind": "commanddeclaration",
"start": [
485,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_pos {l : List α} (p) (h : p a) : (a :: l).eraseP p = l",
"end": [
489,
24
],
"full_name": "List.eraseP_cons_of_pos",
"kind": "commanddeclaration",
"start": [
488,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_neg {l : List α} (p) (h : ¬p a) :\n (a :: l).eraseP p = a :: l.eraseP p",
"end": [
492,
68
],
"full_name": "List.eraseP_cons_of_neg",
"kind": "commanddeclaration",
"start": [
491,
1
]
},
{
"code": "theorem eraseP_of_forall_not {l : List α} (h : ∀ a, a ∈ l → ¬p a) : l.eraseP p = l",
"end": [
497,
69
],
"full_name": "List.eraseP_of_forall_not",
"kind": "commanddeclaration",
"start": [
494,
1
]
},
{
"code": "theorem exists_of_eraseP : ∀ {l : List α} {a} (al : a ∈ l) (pa : p a),\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
510,
57
],
"full_name": "List.exists_of_eraseP",
"kind": "commanddeclaration",
"start": [
499,
1
]
},
{
"code": "theorem exists_or_eq_self_of_eraseP (p) (l : List α) :\n l.eraseP p = l ∨\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
519,
46
],
"full_name": "List.exists_or_eq_self_of_eraseP",
"kind": "commanddeclaration",
"start": [
512,
1
]
},
{
"code": "@[simp] theorem length_eraseP_of_mem (al : a ∈ l) (pa : p a) :\n length (l.eraseP p) = Nat.pred (length l)",
"end": [
524,
41
],
"full_name": "List.length_eraseP_of_mem",
"kind": "commanddeclaration",
"start": [
521,
1
]
},
{
"code": "theorem eraseP_append_left {a : α} (pa : p a) :\n ∀ {l₁ : List α} l₂, a ∈ l₁ → (l₁++l₂).eraseP p = l₁.eraseP p ++ l₂",
"end": [
531,
28
],
"full_name": "List.eraseP_append_left",
"kind": "commanddeclaration",
"start": [
526,
1
]
},
{
"code": "theorem eraseP_append_right :\n ∀ {l₁ : List α} l₂, (∀ b ∈ l₁, ¬p b) → eraseP p (l₁++l₂) = l₁ ++ l₂.eraseP p",
"end": [
537,
82
],
"full_name": "List.eraseP_append_right",
"kind": "commanddeclaration",
"start": [
533,
1
]
},
{
"code": "theorem eraseP_sublist (l : List α) : l.eraseP p <+ l",
"end": [
542,
56
],
"full_name": "List.eraseP_sublist",
"kind": "commanddeclaration",
"start": [
539,
1
]
},
{
"code": "theorem eraseP_subset (l : List α) : l.eraseP p ⊆ l",
"end": [
544,
81
],
"full_name": "List.eraseP_subset",
"kind": "commanddeclaration",
"start": [
544,
1
]
},
{
"code": "protected theorem Sublist.eraseP : l₁ <+ l₂ → l₁.eraseP p <+ l₂.eraseP p",
"end": [
553,
25
],
"full_name": "List.Sublist.eraseP",
"kind": "commanddeclaration",
"start": [
546,
1
]
},
{
"code": "theorem mem_of_mem_eraseP {l : List α} : a ∈ l.eraseP p → a ∈ l",
"end": [
555,
87
],
"full_name": "List.mem_of_mem_eraseP",
"kind": "commanddeclaration",
"start": [
555,
1
]
},
{
"code": "@[simp] theorem mem_eraseP_of_neg {l : List α} (pa : ¬p a) : a ∈ l.eraseP p ↔ a ∈ l",
"end": [
564,
33
],
"full_name": "List.mem_eraseP_of_neg",
"kind": "commanddeclaration",
"start": [
557,
1
]
},
{
"code": "theorem eraseP_map (f : β → α) : ∀ (l : List β), (map f l).eraseP p = map f (l.eraseP (p ∘ f))",
"end": [
568,
85
],
"full_name": "List.eraseP_map",
"kind": "commanddeclaration",
"start": [
566,
1
]
},
{
"code": "@[simp] theorem extractP_eq_find?_eraseP\n (l : List α) : extractP p l = (find? p l, eraseP p l)",
"end": [
578,
21
],
"full_name": "List.extractP_eq_find?_eraseP",
"kind": "commanddeclaration",
"start": [
570,
1
]
},
{
"code": "theorem erase_eq_eraseP' (a : α) (l : List α) : l.erase a = l.eraseP (· == a)",
"end": [
590,
46
],
"full_name": "List.erase_eq_eraseP'",
"kind": "commanddeclaration",
"start": [
585,
1
]
},
{
"code": "theorem erase_eq_eraseP [LawfulBEq α] (a : α) : ∀ l : List α, l.erase a = l.eraseP (a == ·)",
"end": [
595,
77
],
"full_name": "List.erase_eq_eraseP",
"kind": "commanddeclaration",
"start": [
592,
1
]
},
{
"code": "theorem exists_erase_eq [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n ∃ l₁ l₂, a ∉ l₁ ∧ l = l₁ ++ a :: l₂ ∧ l.erase a = l₁ ++ l₂",
"end": [
600,
99
],
"full_name": "List.exists_erase_eq",
"kind": "commanddeclaration",
"start": [
597,
1
]
},
{
"code": "@[simp] theorem length_erase_of_mem [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n length (l.erase a) = Nat.pred (length l)",
"end": [
604,
74
],
"full_name": "List.length_erase_of_mem",
"kind": "commanddeclaration",
"start": [
602,
1
]
},
{
"code": "theorem erase_append_left [LawfulBEq α] {l₁ : List α} (l₂) (h : a ∈ l₁) :\n (l₁ ++ l₂).erase a = l₁.erase a ++ l₂",
"end": [
608,
77
],
"full_name": "List.erase_append_left",
"kind": "commanddeclaration",
"start": [
606,
1
]
},
{
"code": "theorem erase_append_right [LawfulBEq α] {a : α} {l₁ : List α} (l₂ : List α) (h : a ∉ l₁) :\n (l₁ ++ l₂).erase a = (l₁ ++ l₂.erase a)",
"end": [
613,
55
],
"full_name": "List.erase_append_right",
"kind": "commanddeclaration",
"start": [
610,
1
]
},
{
"code": "theorem erase_sublist (a : α) (l : List α) : l.erase a <+ l",
"end": [
616,
42
],
"full_name": "List.erase_sublist",
"kind": "commanddeclaration",
"start": [
615,
1
]
},
{
"code": "theorem erase_subset (a : α) (l : List α) : l.erase a ⊆ l",
"end": [
618,
88
],
"full_name": "List.erase_subset",
"kind": "commanddeclaration",
"start": [
618,
1
]
},
{
"code": "theorem Sublist.erase (a : α) {l₁ l₂ : List α} (h : l₁ <+ l₂) : l₁.erase a <+ l₂.erase a",
"end": [
621,
47
],
"full_name": "List.Sublist.erase",
"kind": "commanddeclaration",
"start": [
620,
1
]
},
{
"code": "theorem mem_of_mem_erase {a b : α} {l : List α} (h : a ∈ l.erase b) : a ∈ l",
"end": [
624,
98
],
"full_name": "List.mem_of_mem_erase",
"kind": "commanddeclaration",
"start": [
624,
1
]
},
{
"code": "@[simp] theorem mem_erase_of_ne [LawfulBEq α] {a b : α} {l : List α} (ab : a ≠ b) :\n a ∈ l.erase b ↔ a ∈ l",
"end": [
628,
65
],
"full_name": "List.mem_erase_of_ne",
"kind": "commanddeclaration",
"start": [
626,
1
]
},
{
"code": "theorem erase_comm [LawfulBEq α] (a b : α) (l : List α) :\n (l.erase a).erase b = (l.erase b).erase a",
"end": [
644,
49
],
"full_name": "List.erase_comm",
"kind": "commanddeclaration",
"start": [
630,
1
]
},
{
"code": "@[simp] theorem filter_sublist {p : α → Bool} : ∀ (l : List α), filter p l <+ l",
"end": [
652,
93
],
"full_name": "List.filter_sublist",
"kind": "commanddeclaration",
"start": [
650,
1
]
},
{
"code": "protected theorem Sublist.filterMap (f : α → Option β) (s : l₁ <+ l₂) :\n filterMap f l₁ <+ filterMap f l₂",
"end": [
658,
76
],
"full_name": "List.Sublist.filterMap",
"kind": "commanddeclaration",
"start": [
656,
1
]
},
{
"code": "theorem Sublist.filter (p : α → Bool) {l₁ l₂} (s : l₁ <+ l₂) : filter p l₁ <+ filter p l₂",
"end": [
661,
48
],
"full_name": "List.Sublist.filter",
"kind": "commanddeclaration",
"start": [
660,
1
]
},
{
"code": "@[simp] theorem findIdx_nil {α : Type _} (p : α → Bool) : [].findIdx p = 0",
"end": [
665,
82
],
"full_name": "List.findIdx_nil",
"kind": "commanddeclaration",
"start": [
665,
1
]
},
{
"code": "theorem findIdx_cons (p : α → Bool) (b : α) (l : List α) :\n (b :: l).findIdx p = bif p b then 0 else (l.findIdx p) + 1",
"end": [
680,
43
],
"full_name": "List.findIdx_cons",
"kind": "commanddeclaration",
"start": [
667,
1
]
},
{
"code": "theorem findIdx_of_get?_eq_some {xs : List α} (w : xs.get? (xs.findIdx p) = some y) : p y",
"end": [
685,
65
],
"full_name": "List.findIdx_of_get?_eq_some",
"kind": "commanddeclaration",
"start": [
682,
1
]
},
{
"code": "theorem findIdx_get {xs : List α} {w : xs.findIdx p < xs.length} :\n p (xs.get ⟨xs.findIdx p, w⟩)",
"end": [
689,
45
],
"full_name": "List.findIdx_get",
"kind": "commanddeclaration",
"start": [
687,
1
]
},
{
"code": "theorem findIdx_lt_length_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.findIdx p < xs.length",
"end": [
703,
24
],
"full_name": "List.findIdx_lt_length_of_exists",
"kind": "commanddeclaration",
"start": [
691,
1
]
},
{
"code": "theorem findIdx_get?_eq_get_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.get? (xs.findIdx p) = some (xs.get ⟨xs.findIdx p, xs.findIdx_lt_length_of_exists h⟩)",
"end": [
707,
46
],
"full_name": "List.findIdx_get?_eq_get_of_exists",
"kind": "commanddeclaration",
"start": [
705,
1
]
},
{
"code": "@[simp] theorem findIdx?_nil : ([] : List α).findIdx? p i = none",
"end": [
711,
72
],
"full_name": "List.findIdx?_nil",
"kind": "commanddeclaration",
"start": [
711,
1
]
},
{
"code": "@[simp] theorem findIdx?_cons :\n (x :: xs).findIdx? p i = if p x then some i else findIdx? p xs (i + 1)",
"end": [
714,
82
],
"full_name": "List.findIdx?_cons",
"kind": "commanddeclaration",
"start": [
713,
1
]
},
{
"code": "@[simp] theorem findIdx?_succ :\n (xs : List α).findIdx? p (i+1) = (xs.findIdx? p i).map fun i => i + 1",
"end": [
719,
37
],
"full_name": "List.findIdx?_succ",
"kind": "commanddeclaration",
"start": [
716,
1
]
},
{
"code": "theorem findIdx?_eq_some_iff (xs : List α) (p : α → Bool) :\n xs.findIdx? p = some i ↔ (xs.take (i + 1)).map p = replicate i false ++ [true]",
"end": [
727,
52
],
"full_name": "List.findIdx?_eq_some_iff",
"kind": "commanddeclaration",
"start": [
721,
1
]
},
{
"code": "theorem findIdx?_of_eq_some {xs : List α} {p : α → Bool} (w : xs.findIdx? p = some i) :\n match xs.get? i with | some a => p a | none => false",
"end": [
735,
40
],
"full_name": "List.findIdx?_of_eq_some",
"kind": "commanddeclaration",
"start": [
729,
1
]
},
{
"code": "theorem findIdx?_of_eq_none {xs : List α} {p : α → Bool} (w : xs.findIdx? p = none) :\n ∀ i, match xs.get? i with | some a => ¬ p a | none => true",
"end": [
750,
30
],
"full_name": "List.findIdx?_of_eq_none",
"kind": "commanddeclaration",
"start": [
737,
1
]
},
{
"code": "@[simp] theorem findIdx?_append :\n (xs ++ ys : List α).findIdx? p =\n (xs.findIdx? p <|> (ys.findIdx? p).map fun i => i + xs.length)",
"end": [
756,
78
],
"full_name": "List.findIdx?_append",
"kind": "commanddeclaration",
"start": [
752,
1
]
},
{
"code": "@[simp] theorem findIdx?_replicate :\n (replicate n a).findIdx? p = if 0 < n ∧ p a then some 0 else none",
"end": [
764,
23
],
"full_name": "List.findIdx?_replicate",
"kind": "commanddeclaration",
"start": [
758,
1
]
},
{
"code": "theorem Pairwise.sublist : l₁ <+ l₂ → l₂.Pairwise R → l₁.Pairwise R",
"end": [
771,
80
],
"full_name": "List.Pairwise.sublist",
"kind": "commanddeclaration",
"start": [
768,
1
]
},
{
"code": "theorem pairwise_map {l : List α} :\n (l.map f).Pairwise R ↔ l.Pairwise fun a b => R (f a) (f b)",
"end": [
777,
58
],
"full_name": "List.pairwise_map",
"kind": "commanddeclaration",
"start": [
773,
1
]
},
{
"code": "theorem pairwise_append {l₁ l₂ : List α} :\n (l₁ ++ l₂).Pairwise R ↔ l₁.Pairwise R ∧ l₂.Pairwise R ∧ ∀ a ∈ l₁, ∀ b ∈ l₂, R a b",
"end": [
781,
74
],
"full_name": "List.pairwise_append",
"kind": "commanddeclaration",
"start": [
779,
1
]
},
{
"code": "theorem pairwise_reverse {l : List α} :\n l.reverse.Pairwise R ↔ l.Pairwise (fun a b => R b a)",
"end": [
785,
54
],
"full_name": "List.pairwise_reverse",
"kind": "commanddeclaration",
"start": [
783,
1
]
},
{
"code": "theorem Pairwise.imp {α R S} (H : ∀ {a b}, R a b → S a b) :\n ∀ {l : List α}, l.Pairwise R → l.Pairwise S",
"end": [
790,
50
],
"full_name": "List.Pairwise.imp",
"kind": "commanddeclaration",
"start": [
787,
1
]
},
{
"code": "theorem replaceF_nil : [].replaceF p = []",
"end": [
794,
49
],
"full_name": "List.replaceF_nil",
"kind": "commanddeclaration",
"start": [
794,
1
]
},
{
"code": "theorem replaceF_cons (a : α) (l : List α) :\n (a :: l).replaceF p = match p a with\n | none => a :: replaceF p l\n | some a' => a' :: l",
"end": [
799,
34
],
"full_name": "List.replaceF_cons",
"kind": "commanddeclaration",
"start": [
796,
1
]
},
{
"code": "theorem replaceF_cons_of_some {l : List α} (p) (h : p a = some a') :\n (a :: l).replaceF p = a' :: l",
"end": [
803,
26
],
"full_name": "List.replaceF_cons_of_some",
"kind": "commanddeclaration",
"start": [
801,
1
]
},
{
"code": "theorem replaceF_cons_of_none {l : List α} (p) (h : p a = none) :\n (a :: l).replaceF p = a :: l.replaceF p",
"end": [
806,
74
],
"full_name": "List.replaceF_cons_of_none",
"kind": "commanddeclaration",
"start": [
805,
1
]
},
{
"code": "theorem replaceF_of_forall_none {l : List α} (h : ∀ a, a ∈ l → p a = none) : l.replaceF p = l",
"end": [
811,
69
],
"full_name": "List.replaceF_of_forall_none",
"kind": "commanddeclaration",
"start": [
808,
1
]
},
{
"code": "theorem exists_of_replaceF : ∀ {l : List α} {a a'} (al : a ∈ l) (pa : p a = some a'),\n ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
825,
57
],
"full_name": "List.exists_of_replaceF",
"kind": "commanddeclaration",
"start": [
813,
1
]
},
{
"code": "theorem exists_or_eq_self_of_replaceF (p) (l : List α) :\n l.replaceF p = l ∨ ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
835,
62
],
"full_name": "List.exists_or_eq_self_of_replaceF",
"kind": "commanddeclaration",
"start": [
827,
1
]
},
{
"code": "@[simp] theorem length_replaceF : length (replaceF f l) = length l",
"end": [
838,
54
],
"full_name": "List.length_replaceF",
"kind": "commanddeclaration",
"start": [
837,
1
]
},
{
"code": "theorem disjoint_symm (d : Disjoint l₁ l₂) : Disjoint l₂ l₁",
"end": [
842,
86
],
"full_name": "List.disjoint_symm",
"kind": "commanddeclaration",
"start": [
842,
1
]
},
{
"code": "theorem disjoint_comm : Disjoint l₁ l₂ ↔ Disjoint l₂ l₁",
"end": [
844,
90
],
"full_name": "List.disjoint_comm",
"kind": "commanddeclaration",
"start": [
844,
1
]
},
{
"code": "theorem disjoint_left : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₁ → a ∉ l₂",
"end": [
846,
86
],
"full_name": "List.disjoint_left",
"kind": "commanddeclaration",
"start": [
846,
1
]
},
{
"code": "theorem disjoint_right : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₂ → a ∉ l₁",
"end": [
848,
82
],
"full_name": "List.disjoint_right",
"kind": "commanddeclaration",
"start": [
848,
1
]
},
{
"code": "theorem disjoint_iff_ne : Disjoint l₁ l₂ ↔ ∀ a ∈ l₁, ∀ b ∈ l₂, a ≠ b",
"end": [
851,
83
],
"full_name": "List.disjoint_iff_ne",
"kind": "commanddeclaration",
"start": [
850,
1
]
},
{
"code": "theorem disjoint_of_subset_left (ss : l₁ ⊆ l) (d : Disjoint l l₂) : Disjoint l₁ l₂",
"end": [
854,
22
],
"full_name": "List.disjoint_of_subset_left",
"kind": "commanddeclaration",
"start": [
853,
1
]
},
{
"code": "theorem disjoint_of_subset_right (ss : l₂ ⊆ l) (d : Disjoint l₁ l) : Disjoint l₁ l₂",
"end": [
857,
28
],
"full_name": "List.disjoint_of_subset_right",
"kind": "commanddeclaration",
"start": [
856,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_left {l₁ l₂} : Disjoint (a :: l₁) l₂ → Disjoint l₁ l₂",
"end": [
860,
42
],
"full_name": "List.disjoint_of_disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
859,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_right {l₁ l₂} : Disjoint l₁ (a :: l₂) → Disjoint l₁ l₂",
"end": [
863,
43
],
"full_name": "List.disjoint_of_disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
862,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_left (l : List α) : Disjoint [] l",
"end": [
865,
96
],
"full_name": "List.disjoint_nil_left",
"kind": "commanddeclaration",
"start": [
865,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_right (l : List α) : Disjoint l []",
"end": [
868,
48
],
"full_name": "List.disjoint_nil_right",
"kind": "commanddeclaration",
"start": [
867,
1
]
},
{
"code": "@[simp 1100] theorem singleton_disjoint : Disjoint [a] l ↔ a ∉ l",
"end": [
870,
87
],
"full_name": "List.singleton_disjoint",
"kind": "commanddeclaration",
"start": [
870,
1
]
},
{
"code": "@[simp 1100] theorem disjoint_singleton : Disjoint l [a] ↔ a ∉ l",
"end": [
873,
41
],
"full_name": "List.disjoint_singleton",
"kind": "commanddeclaration",
"start": [
872,
1
]
},
{
"code": "@[simp] theorem disjoint_append_left : Disjoint (l₁ ++ l₂) l ↔ Disjoint l₁ l ∧ Disjoint l₂ l",
"end": [
876,
38
],
"full_name": "List.disjoint_append_left",
"kind": "commanddeclaration",
"start": [
875,
1
]
},
{
"code": "@[simp] theorem disjoint_append_right : Disjoint l (l₁ ++ l₂) ↔ Disjoint l l₁ ∧ Disjoint l l₂",
"end": [
879,
76
],
"full_name": "List.disjoint_append_right",
"kind": "commanddeclaration",
"start": [
878,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_left : Disjoint (a::l₁) l₂ ↔ (a ∉ l₂) ∧ Disjoint l₁ l₂",
"end": [
882,
75
],
"full_name": "List.disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
881,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_right : Disjoint l₁ (a :: l₂) ↔ (a ∉ l₁) ∧ Disjoint l₁ l₂",
"end": [
885,
74
],
"full_name": "List.disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
884,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_left (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₁ l",
"end": [
888,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_left",
"kind": "commanddeclaration",
"start": [
887,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_right (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₂ l",
"end": [
891,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_right",
"kind": "commanddeclaration",
"start": [
890,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_left (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₁",
"end": [
894,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_left",
"kind": "commanddeclaration",
"start": [
893,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_right (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₂",
"end": [
897,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_right",
"kind": "commanddeclaration",
"start": [
896,
1
]
},
{
"code": "theorem foldl_hom (f : α₁ → α₂) (g₁ : α₁ → β → α₁) (g₂ : α₂ → β → α₂) (l : List β) (init : α₁)\n (H : ∀ x y, g₂ (f x) y = f (g₁ x y)) : l.foldl g₂ (f init) = f (l.foldl g₁ init)",
"end": [
903,
48
],
"full_name": "List.foldl_hom",
"kind": "commanddeclaration",
"start": [
901,
1
]
},
{
"code": "theorem foldr_hom (f : β₁ → β₂) (g₁ : α → β₁ → β₁) (g₂ : α → β₂ → β₂) (l : List α) (init : β₁)\n (H : ∀ x y, g₂ x (f y) = f (g₁ x y)) : l.foldr g₂ (f init) = f (l.foldr g₁ init)",
"end": [
907,
30
],
"full_name": "List.foldr_hom",
"kind": "commanddeclaration",
"start": [
905,
1
]
},
{
"code": "theorem union_def [BEq α] (l₁ l₂ : List α) : l₁ ∪ l₂ = foldr .insert l₂ l₁",
"end": [
915,
83
],
"full_name": "List.union_def",
"kind": "commanddeclaration",
"start": [
915,
1
]
},
{
"code": "@[simp] theorem nil_union (l : List α) : nil ∪ l = l",
"end": [
917,
88
],
"full_name": "List.nil_union",
"kind": "commanddeclaration",
"start": [
917,
1
]
},
{
"code": "@[simp] theorem cons_union (a : α) (l₁ l₂ : List α) :\n (a :: l₁) ∪ l₂ = (l₁ ∪ l₂).insert a",
"end": [
920,
75
],
"full_name": "List.cons_union",
"kind": "commanddeclaration",
"start": [
919,
1
]
},
{
"code": "@[simp] theorem mem_union_iff [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∪ l₂ ↔ x ∈ l₁ ∨ x ∈ l₂",
"end": [
923,
76
],
"full_name": "List.mem_union_iff",
"kind": "commanddeclaration",
"start": [
922,
1
]
},
{
"code": "theorem inter_def [BEq α] (l₁ l₂ : List α) : l₁ ∩ l₂ = filter (elem · l₂) l₁",
"end": [
929,
85
],
"full_name": "List.inter_def",
"kind": "commanddeclaration",
"start": [
929,
1
]
},
{
"code": "@[simp] theorem mem_inter_iff [BEq α] [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∩ l₂ ↔ x ∈ l₁ ∧ x ∈ l₂",
"end": [
933,
49
],
"full_name": "List.mem_inter_iff",
"kind": "commanddeclaration",
"start": [
931,
1
]
},
{
"code": "@[simp]\ntheorem pair_mem_product {xs : List α} {ys : List β} {x : α} {y : β} :\n (x, y) ∈ product xs ys ↔ x ∈ xs ∧ y ∈ ys",
"end": [
942,
47
],
"full_name": "List.pair_mem_product",
"kind": "commanddeclaration",
"start": [
937,
1
]
},
{
"code": "@[simp]\ntheorem leftpad_length (n : Nat) (a : α) (l : List α) :\n (leftpad n a l).length = max n l.length",
"end": [
951,
75
],
"full_name": "List.leftpad_length",
"kind": "commanddeclaration",
"start": [
946,
1
]
},
{
"code": "theorem leftpad_prefix (n : Nat) (a : α) (l : List α) :\n replicate (n - length l) a <+: leftpad n a l",
"end": [
956,
27
],
"full_name": "List.leftpad_prefix",
"kind": "commanddeclaration",
"start": [
953,
1
]
},
{
"code": "theorem leftpad_suffix (n : Nat) (a : α) (l : List α) : l <:+ (leftpad n a l)",
"end": [
960,
54
],
"full_name": "List.leftpad_suffix",
"kind": "commanddeclaration",
"start": [
958,
1
]
},
{
"code": "@[simp] theorem forIn_eq_forIn [Monad m] : @List.forIn α β m _ = forIn",
"end": [
965,
78
],
"full_name": "List.forIn_eq_forIn",
"kind": "commanddeclaration",
"start": [
965,
1
]
},
{
"code": "theorem forIn_eq_bindList [Monad m] [LawfulMonad m]\n (f : α → β → m (ForInStep β)) (l : List α) (init : β) :\n forIn l init f = ForInStep.run <$> (ForInStep.yield init).bindList f l",
"end": [
971,
30
],
"full_name": "List.forIn_eq_bindList",
"kind": "commanddeclaration",
"start": [
967,
1
]
},
{
"code": "@[simp] theorem forM_append [Monad m] [LawfulMonad m] (l₁ l₂ : List α) (f : α → m PUnit) :\n (l₁ ++ l₂).forM f = (do l₁.forM f; l₂.forM f)",
"end": [
974,
82
],
"full_name": "List.forM_append",
"kind": "commanddeclaration",
"start": [
973,
1
]
},
{
"code": "@[simp] theorem diff_nil (l : List α) : l.diff [] = l",
"end": [
982,
61
],
"full_name": "List.diff_nil",
"kind": "commanddeclaration",
"start": [
982,
1
]
},
{
"code": "@[simp] theorem diff_cons (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.erase a).diff l₂",
"end": [
985,
41
],
"full_name": "List.diff_cons",
"kind": "commanddeclaration",
"start": [
984,
1
]
},
{
"code": "theorem diff_cons_right (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.diff l₂).erase a",
"end": [
988,
71
],
"full_name": "List.diff_cons_right",
"kind": "commanddeclaration",
"start": [
987,
1
]
},
{
"code": "theorem diff_erase (l₁ l₂ : List α) (a : α) : (l₁.diff l₂).erase a = (l₁.erase a).diff l₂",
"end": [
991,
36
],
"full_name": "List.diff_erase",
"kind": "commanddeclaration",
"start": [
990,
1
]
},
{
"code": "@[simp] theorem nil_diff (l : List α) : [].diff l = []",
"end": [
994,
45
],
"full_name": "List.nil_diff",
"kind": "commanddeclaration",
"start": [
993,
1
]
},
{
"code": "theorem cons_diff (a : α) (l₁ l₂ : List α) :\n (a :: l₁).diff l₂ = if a ∈ l₂ then l₁.diff (l₂.erase a) else a :: l₁.diff l₂",
"end": [
1005,
14
],
"full_name": "List.cons_diff",
"kind": "commanddeclaration",
"start": [
996,
1
]
},
{
"code": "theorem cons_diff_of_mem {a : α} {l₂ : List α} (h : a ∈ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = l₁.diff (l₂.erase a)",
"end": [
1008,
76
],
"full_name": "List.cons_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1007,
1
]
},
{
"code": "theorem cons_diff_of_not_mem {a : α} {l₂ : List α} (h : a ∉ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = a :: l₁.diff l₂",
"end": [
1011,
71
],
"full_name": "List.cons_diff_of_not_mem",
"kind": "commanddeclaration",
"start": [
1010,
1
]
},
{
"code": "theorem diff_eq_foldl : ∀ l₁ l₂ : List α, l₁.diff l₂ = foldl List.erase l₁ l₂",
"end": [
1015,
65
],
"full_name": "List.diff_eq_foldl",
"kind": "commanddeclaration",
"start": [
1013,
1
]
},
{
"code": "@[simp] theorem diff_append (l₁ l₂ l₃ : List α) : l₁.diff (l₂ ++ l₃) = (l₁.diff l₂).diff l₃",
"end": [
1018,
42
],
"full_name": "List.diff_append",
"kind": "commanddeclaration",
"start": [
1017,
1
]
},
{
"code": "theorem diff_sublist : ∀ l₁ l₂ : List α, l₁.diff l₂ <+ l₁",
"end": [
1026,
34
],
"full_name": "List.diff_sublist",
"kind": "commanddeclaration",
"start": [
1020,
1
]
},
{
"code": "theorem diff_subset (l₁ l₂ : List α) : l₁.diff l₂ ⊆ l₁",
"end": [
1028,
83
],
"full_name": "List.diff_subset",
"kind": "commanddeclaration",
"start": [
1028,
1
]
},
{
"code": "theorem mem_diff_of_mem {a : α} : ∀ {l₁ l₂ : List α}, a ∈ l₁ → a ∉ l₂ → a ∈ l₁.diff l₂",
"end": [
1034,
94
],
"full_name": "List.mem_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1030,
1
]
},
{
"code": "theorem Sublist.diff_right : ∀ {l₁ l₂ l₃ : List α}, l₁ <+ l₂ → l₁.diff l₃ <+ l₂.diff l₃",
"end": [
1038,
75
],
"full_name": "List.Sublist.diff_right",
"kind": "commanddeclaration",
"start": [
1036,
1
]
},
{
"code": "theorem Sublist.erase_diff_erase_sublist {a : α} :\n ∀ {l₁ l₂ : List α}, l₁ <+ l₂ → (l₂.erase a).diff (l₁.erase a) <+ l₂.diff l₁",
"end": [
1048,
71
],
"full_name": "List.Sublist.erase_diff_erase_sublist",
"kind": "commanddeclaration",
"start": [
1040,
1
]
},
{
"code": "@[simp] theorem prefix_append (l₁ l₂ : List α) : l₁ <+: l₁ ++ l₂",
"end": [
1054,
78
],
"full_name": "List.prefix_append",
"kind": "commanddeclaration",
"start": [
1054,
1
]
},
{
"code": "@[simp] theorem suffix_append (l₁ l₂ : List α) : l₂ <:+ l₁ ++ l₂",
"end": [
1056,
78
],
"full_name": "List.suffix_append",
"kind": "commanddeclaration",
"start": [
1056,
1
]
},
{
"code": "theorem infix_append (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ l₂ ++ l₃",
"end": [
1058,
83
],
"full_name": "List.infix_append",
"kind": "commanddeclaration",
"start": [
1058,
1
]
},
{
"code": "@[simp] theorem infix_append' (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ (l₂ ++ l₃)",
"end": [
1061,
47
],
"full_name": "List.infix_append'",
"kind": "commanddeclaration",
"start": [
1060,
1
]
},
{
"code": "theorem IsPrefix.isInfix : l₁ <+: l₂ → l₁ <:+: l₂",
"end": [
1063,
78
],
"full_name": "List.IsPrefix.isInfix",
"kind": "commanddeclaration",
"start": [
1063,
1
]
},
{
"code": "theorem IsSuffix.isInfix : l₁ <:+ l₂ → l₁ <:+: l₂",
"end": [
1065,
98
],
"full_name": "List.IsSuffix.isInfix",
"kind": "commanddeclaration",
"start": [
1065,
1
]
},
{
"code": "theorem nil_prefix (l : List α) : [] <+: l",
"end": [
1067,
55
],
"full_name": "List.nil_prefix",
"kind": "commanddeclaration",
"start": [
1067,
1
]
},
{
"code": "theorem nil_suffix (l : List α) : [] <:+ l",
"end": [
1069,
64
],
"full_name": "List.nil_suffix",
"kind": "commanddeclaration",
"start": [
1069,
1
]
},
{
"code": "theorem nil_infix (l : List α) : [] <:+: l",
"end": [
1071,
69
],
"full_name": "List.nil_infix",
"kind": "commanddeclaration",
"start": [
1071,
1
]
},
{
"code": "theorem prefix_refl (l : List α) : l <+: l",
"end": [
1073,
65
],
"full_name": "List.prefix_refl",
"kind": "commanddeclaration",
"start": [
1073,
1
]
},
{
"code": "theorem suffix_refl (l : List α) : l <:+ l",
"end": [
1075,
56
],
"full_name": "List.suffix_refl",
"kind": "commanddeclaration",
"start": [
1075,
1
]
},
{
"code": "theorem infix_refl (l : List α) : l <:+: l",
"end": [
1077,
70
],
"full_name": "List.infix_refl",
"kind": "commanddeclaration",
"start": [
1077,
1
]
},
{
"code": "@[simp] theorem suffix_cons (a : α) : ∀ l, l <:+ a :: l",
"end": [
1079,
77
],
"full_name": "List.suffix_cons",
"kind": "commanddeclaration",
"start": [
1079,
1
]
},
{
"code": "theorem infix_cons : l₁ <:+: l₂ → l₁ <:+: a :: l₂",
"end": [
1081,
95
],
"full_name": "List.infix_cons",
"kind": "commanddeclaration",
"start": [
1081,
1
]
},
{
"code": "theorem infix_concat : l₁ <:+: l₂ → l₁ <:+: concat l₂ a",
"end": [
1084,
67
],
"full_name": "List.infix_concat",
"kind": "commanddeclaration",
"start": [
1083,
1
]
},
{
"code": "theorem IsPrefix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₂ → l₂ <+: l₃ → l₁ <+: l₃",
"end": [
1087,
75
],
"full_name": "List.IsPrefix.trans",
"kind": "commanddeclaration",
"start": [
1086,
1
]
},
{
"code": "theorem IsSuffix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+ l₂ → l₂ <:+ l₃ → l₁ <:+ l₃",
"end": [
1090,
68
],
"full_name": "List.IsSuffix.trans",
"kind": "commanddeclaration",
"start": [
1089,
1
]
},
{
"code": "theorem IsInfix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+: l₂ → l₂ <:+: l₃ → l₁ <:+: l₃",
"end": [
1093,
95
],
"full_name": "List.IsInfix.trans",
"kind": "commanddeclaration",
"start": [
1092,
1
]
},
{
"code": "protected theorem IsInfix.sublist : l₁ <:+: l₂ → l₁ <+ l₂",
"end": [
1096,
78
],
"full_name": "List.IsInfix.sublist",
"kind": "commanddeclaration",
"start": [
1095,
1
]
},
{
"code": "protected theorem IsInfix.subset (hl : l₁ <:+: l₂) : l₁ ⊆ l₂",
"end": [
1099,
20
],
"full_name": "List.IsInfix.subset",
"kind": "commanddeclaration",
"start": [
1098,
1
]
},
{
"code": "protected theorem IsPrefix.sublist (h : l₁ <+: l₂) : l₁ <+ l₂",
"end": [
1102,
20
],
"full_name": "List.IsPrefix.sublist",
"kind": "commanddeclaration",
"start": [
1101,
1
]
},
{
"code": "protected theorem IsPrefix.subset (hl : l₁ <+: l₂) : l₁ ⊆ l₂",
"end": [
1105,
20
],
"full_name": "List.IsPrefix.subset",
"kind": "commanddeclaration",
"start": [
1104,
1
]
},
{
"code": "protected theorem IsSuffix.sublist (h : l₁ <:+ l₂) : l₁ <+ l₂",
"end": [
1108,
20
],
"full_name": "List.IsSuffix.sublist",
"kind": "commanddeclaration",
"start": [
1107,
1
]
},
{
"code": "protected theorem IsSuffix.subset (hl : l₁ <:+ l₂) : l₁ ⊆ l₂",
"end": [
1111,
20
],
"full_name": "List.IsSuffix.subset",
"kind": "commanddeclaration",
"start": [
1110,
1
]
},
{
"code": "@[simp] theorem reverse_suffix : reverse l₁ <:+ reverse l₂ ↔ l₁ <+: l₂",
"end": [
1115,
59
],
"full_name": "List.reverse_suffix",
"kind": "commanddeclaration",
"start": [
1113,
1
]
},
{
"code": "@[simp] theorem reverse_prefix : reverse l₁ <+: reverse l₂ ↔ l₁ <:+ l₂",
"end": [
1118,
53
],
"full_name": "List.reverse_prefix",
"kind": "commanddeclaration",
"start": [
1117,
1
]
},
{
"code": "@[simp] theorem reverse_infix : reverse l₁ <:+: reverse l₂ ↔ l₁ <:+: l₂",
"end": [
1124,
61
],
"full_name": "List.reverse_infix",
"kind": "commanddeclaration",
"start": [
1120,
1
]
},
{
"code": "theorem IsInfix.length_le (h : l₁ <:+: l₂) : l₁.length ≤ l₂.length",
"end": [
1127,
22
],
"full_name": "List.IsInfix.length_le",
"kind": "commanddeclaration",
"start": [
1126,
1
]
},
{
"code": "theorem IsPrefix.length_le (h : l₁ <+: l₂) : l₁.length ≤ l₂.length",
"end": [
1130,
22
],
"full_name": "List.IsPrefix.length_le",
"kind": "commanddeclaration",
"start": [
1129,
1
]
},
{
"code": "theorem IsSuffix.length_le (h : l₁ <:+ l₂) : l₁.length ≤ l₂.length",
"end": [
1133,
22
],
"full_name": "List.IsSuffix.length_le",
"kind": "commanddeclaration",
"start": [
1132,
1
]
},
{
"code": "@[simp] theorem infix_nil : l <:+: [] ↔ l = []",
"end": [
1135,
98
],
"full_name": "List.infix_nil",
"kind": "commanddeclaration",
"start": [
1135,
1
]
},
{
"code": "@[simp] theorem prefix_nil : l <+: [] ↔ l = []",
"end": [
1137,
99
],
"full_name": "List.prefix_nil",
"kind": "commanddeclaration",
"start": [
1137,
1
]
},
{
"code": "@[simp] theorem suffix_nil : l <:+ [] ↔ l = []",
"end": [
1139,
99
],
"full_name": "List.suffix_nil",
"kind": "commanddeclaration",
"start": [
1139,
1
]
},
{
"code": "theorem infix_iff_prefix_suffix (l₁ l₂ : List α) : l₁ <:+: l₂ ↔ ∃ t, l₁ <+: t ∧ t <:+ l₂",
"end": [
1143,
60
],
"full_name": "List.infix_iff_prefix_suffix",
"kind": "commanddeclaration",
"start": [
1141,
1
]
},
{
"code": "theorem IsInfix.eq_of_length (h : l₁ <:+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1146,
25
],
"full_name": "List.IsInfix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1145,
1
]
},
{
"code": "theorem IsPrefix.eq_of_length (h : l₁ <+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1149,
25
],
"full_name": "List.IsPrefix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1148,
1
]
},
{
"code": "theorem IsSuffix.eq_of_length (h : l₁ <:+ l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1152,
25
],
"full_name": "List.IsSuffix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1151,
1
]
},
{
"code": "theorem prefix_of_prefix_length_le :\n ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₃ → l₂ <+: l₃ → length l₁ ≤ length l₂ → l₁ <+: l₂",
"end": [
1160,
20
],
"full_name": "List.prefix_of_prefix_length_le",
"kind": "commanddeclaration",
"start": [
1154,
1
]
},
{
"code": "theorem prefix_or_prefix_of_prefix (h₁ : l₁ <+: l₃) (h₂ : l₂ <+: l₃) : l₁ <+: l₂ ∨ l₂ <+: l₁",
"end": [
1164,
39
],
"full_name": "List.prefix_or_prefix_of_prefix",
"kind": "commanddeclaration",
"start": [
1162,
1
]
},
{
"code": "theorem suffix_of_suffix_length_le\n (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) (ll : length l₁ ≤ length l₂) : l₁ <:+ l₂",
"end": [
1169,
90
],
"full_name": "List.suffix_of_suffix_length_le",
"kind": "commanddeclaration",
"start": [
1166,
1
]
},
{
"code": "theorem suffix_or_suffix_of_suffix (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) : l₁ <:+ l₂ ∨ l₂ <:+ l₁",
"end": [
1173,
21
],
"full_name": "List.suffix_or_suffix_of_suffix",
"kind": "commanddeclaration",
"start": [
1171,
1
]
},
{
"code": "theorem suffix_cons_iff : l₁ <:+ a :: l₂ ↔ l₁ = a :: l₂ ∨ l₁ <:+ l₂",
"end": [
1184,
41
],
"full_name": "List.suffix_cons_iff",
"kind": "commanddeclaration",
"start": [
1175,
1
]
},
{
"code": "theorem infix_cons_iff : l₁ <:+: a :: l₂ ↔ l₁ <+: a :: l₂ ∨ l₁ <:+: l₂",
"end": [
1195,
27
],
"full_name": "List.infix_cons_iff",
"kind": "commanddeclaration",
"start": [
1186,
1
]
},
{
"code": "theorem infix_of_mem_join : ∀ {L : List (List α)}, l ∈ L → l <:+: join L",
"end": [
1202,
78
],
"full_name": "List.infix_of_mem_join",
"kind": "commanddeclaration",
"start": [
1197,
1
]
},
{
"code": "theorem prefix_append_right_inj (l) : l ++ l₁ <+: l ++ l₂ ↔ l₁ <+: l₂",
"end": [
1205,
63
],
"full_name": "List.prefix_append_right_inj",
"kind": "commanddeclaration",
"start": [
1204,
1
]
},
{
"code": "@[simp]\ntheorem prefix_cons_inj (a) : a :: l₁ <+: a :: l₂ ↔ l₁ <+: l₂",
"end": [
1209,
30
],
"full_name": "List.prefix_cons_inj",
"kind": "commanddeclaration",
"start": [
1207,
1
]
},
{
"code": "theorem take_prefix (n) (l : List α) : take n l <+: l",
"end": [
1212,
28
],
"full_name": "List.take_prefix",
"kind": "commanddeclaration",
"start": [
1211,
1
]
},
{
"code": "theorem drop_suffix (n) (l : List α) : drop n l <:+ l",
"end": [
1215,
28
],
"full_name": "List.drop_suffix",
"kind": "commanddeclaration",
"start": [
1214,
1
]
},
{
"code": "theorem take_sublist (n) (l : List α) : take n l <+ l",
"end": [
1218,
28
],
"full_name": "List.take_sublist",
"kind": "commanddeclaration",
"start": [
1217,
1
]
},
{
"code": "theorem drop_sublist (n) (l : List α) : drop n l <+ l",
"end": [
1221,
28
],
"full_name": "List.drop_sublist",
"kind": "commanddeclaration",
"start": [
1220,
1
]
},
{
"code": "theorem take_subset (n) (l : List α) : take n l ⊆ l",
"end": [
1224,
28
],
"full_name": "List.take_subset",
"kind": "commanddeclaration",
"start": [
1223,
1
]
},
{
"code": "theorem drop_subset (n) (l : List α) : drop n l ⊆ l",
"end": [
1227,
28
],
"full_name": "List.drop_subset",
"kind": "commanddeclaration",
"start": [
1226,
1
]
},
{
"code": "theorem mem_of_mem_take {l : List α} (h : a ∈ l.take n) : a ∈ l",
"end": [
1230,
20
],
"full_name": "List.mem_of_mem_take",
"kind": "commanddeclaration",
"start": [
1229,
1
]
},
{
"code": "theorem IsPrefix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <+: l₂) :\n l₁.filter p <+: l₂.filter p",
"end": [
1235,
42
],
"full_name": "List.IsPrefix.filter",
"kind": "commanddeclaration",
"start": [
1232,
1
]
},
{
"code": "theorem IsSuffix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+ l₂) :\n l₁.filter p <:+ l₂.filter p",
"end": [
1240,
42
],
"full_name": "List.IsSuffix.filter",
"kind": "commanddeclaration",
"start": [
1237,
1
]
},
{
"code": "theorem IsInfix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+: l₂) :\n l₁.filter p <:+: l₂.filter p",
"end": [
1245,
58
],
"full_name": "List.IsInfix.filter",
"kind": "commanddeclaration",
"start": [
1242,
1
]
},
{
"code": "theorem mem_of_mem_drop {n} {l : List α} (h : a ∈ l.drop n) : a ∈ l",
"end": [
1249,
89
],
"full_name": "List.mem_of_mem_drop",
"kind": "commanddeclaration",
"start": [
1249,
1
]
},
{
"code": "theorem disjoint_take_drop : ∀ {l : List α}, l.Nodup → m ≤ n → Disjoint (l.take m) (l.drop n)",
"end": [
1259,
61
],
"full_name": "List.disjoint_take_drop",
"kind": "commanddeclaration",
"start": [
1251,
1
]
},
{
"code": "@[simp]\ntheorem chain_cons {a b : α} {l : List α} : Chain R a (b :: l) ↔ R a b ∧ Chain R b l",
"end": [
1268,
27
],
"full_name": "List.chain_cons",
"kind": "commanddeclaration",
"start": [
1265,
1
]
},
{
"code": "theorem rel_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : R a b",
"end": [
1271,
21
],
"full_name": "List.rel_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1270,
1
]
},
{
"code": "theorem chain_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : Chain R b l",
"end": [
1274,
21
],
"full_name": "List.chain_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1273,
1
]
},
{
"code": "theorem Chain.imp' {R S : α → α → Prop} (HRS : ∀ ⦃a b⦄, R a b → S a b) {a b : α}\n (Hab : ∀ ⦃c⦄, R a c → S b c) {l : List α} (p : Chain R a l) : Chain S b l",
"end": [
1283,
24
],
"full_name": "List.Chain.imp'",
"kind": "commanddeclaration",
"start": [
1276,
1
]
},
{
"code": "theorem Chain.imp {R S : α → α → Prop} (H : ∀ a b, R a b → S a b) {a : α} {l : List α}\n (p : Chain R a l) : Chain S a l",
"end": [
1287,
17
],
"full_name": "List.Chain.imp",
"kind": "commanddeclaration",
"start": [
1285,
1
]
},
{
"code": "protected theorem Pairwise.chain (p : Pairwise R (a :: l)) : Chain R a l",
"end": [
1295,
36
],
"full_name": "List.Pairwise.chain",
"kind": "commanddeclaration",
"start": [
1289,
1
]
},
{
"code": "theorem range'_succ (s n step) : range' s (n + 1) step = s :: range' (s + step) n step",
"end": [
1300,
44
],
"full_name": "List.range'_succ",
"kind": "commanddeclaration",
"start": [
1299,
1
]
},
{
"code": "@[simp] theorem length_range' (s step) : ∀ n : Nat, length (range' s n step) = n",
"end": [
1304,
49
],
"full_name": "List.length_range'",
"kind": "commanddeclaration",
"start": [
1302,
1
]
},
{
"code": "@[simp] theorem range'_eq_nil : range' s n step = [] ↔ n = 0",
"end": [
1307,
39
],
"full_name": "List.range'_eq_nil",
"kind": "commanddeclaration",
"start": [
1306,
1
]
},
{
"code": "theorem mem_range' : ∀{n}, m ∈ range' s n step ↔ ∃ i < n, m = s + step * i",
"end": [
1314,
71
],
"full_name": "List.mem_range'",
"kind": "commanddeclaration",
"start": [
1309,
1
]
},
{
"code": "@[simp] theorem mem_range'_1 : m ∈ range' s n ↔ s ≤ m ∧ m < s + n",
"end": [
1319,
93
],
"full_name": "List.mem_range'_1",
"kind": "commanddeclaration",
"start": [
1316,
1
]
},
{
"code": "@[simp]\ntheorem map_add_range' (a) : ∀ s n step, map (a + ·) (range' s n step) = range' (a + s) n step",
"end": [
1324,
90
],
"full_name": "List.map_add_range'",
"kind": "commanddeclaration",
"start": [
1321,
1
]
},
{
"code": "theorem map_sub_range' (a s n : Nat) (h : a ≤ s) :\n map (· - a) (range' s n step) = range' (s - a) n step",
"end": [
1330,
42
],
"full_name": "List.map_sub_range'",
"kind": "commanddeclaration",
"start": [
1326,
1
]
},
{
"code": "theorem chain_succ_range' : ∀ s n step : Nat,\n Chain (fun a b => b = a + step) s (range' (s + step) n step)",
"end": [
1335,
69
],
"full_name": "List.chain_succ_range'",
"kind": "commanddeclaration",
"start": [
1332,
1
]
},
{
"code": "theorem chain_lt_range' (s n : Nat) {step} (h : 0 < step) :\n Chain (· < ·) s (range' (s + step) n step)",
"end": [
1339,
83
],
"full_name": "List.chain_lt_range'",
"kind": "commanddeclaration",
"start": [
1337,
1
]
},
{
"code": "theorem range'_append : ∀ s m n step : Nat,\n range' s m step ++ range' (s + step * m) n step = range' s (n + m) step",
"end": [
1346,
46
],
"full_name": "List.range'_append",
"kind": "commanddeclaration",
"start": [
1341,
1
]
},
{
"code": "@[simp] theorem range'_append_1 (s m n : Nat) :\n range' s m ++ range' (s + m) n = range' s (n + m)",
"end": [
1349,
94
],
"full_name": "List.range'_append_1",
"kind": "commanddeclaration",
"start": [
1348,
1
]
},
{
"code": "theorem range'_sublist_right {s m n : Nat} : range' s m step <+ range' s n step ↔ m ≤ n",
"end": [
1353,
88
],
"full_name": "List.range'_sublist_right",
"kind": "commanddeclaration",
"start": [
1351,
1
]
},
{
"code": "theorem range'_subset_right {s m n : Nat} (step0 : 0 < step) :\n range' s m step ⊆ range' s n step ↔ m ≤ n",
"end": [
1359,
82
],
"full_name": "List.range'_subset_right",
"kind": "commanddeclaration",
"start": [
1355,
1
]
},
{
"code": "theorem range'_subset_right_1 {s m n : Nat} : range' s m ⊆ range' s n ↔ m ≤ n",
"end": [
1362,
34
],
"full_name": "List.range'_subset_right_1",
"kind": "commanddeclaration",
"start": [
1361,
1
]
},
{
"code": "theorem getElem?_range' (s step) :\n ∀ {m n : Nat}, m < n → (range' s n step)[m]? = some (s + step * m)",
"end": [
1370,
55
],
"full_name": "List.getElem?_range'",
"kind": "commanddeclaration",
"start": [
1364,
1
]
},
{
"code": "@[simp] theorem getElem_range' {n m step} (i) (H : i < (range' n m step).length) :\n (range' n m step)[i] = n + step * i",
"end": [
1374,
70
],
"full_name": "List.getElem_range'",
"kind": "commanddeclaration",
"start": [
1372,
1
]
},
{
"code": "@[deprecated getElem?_range' (since := \"2024-06-12\")]\ntheorem get?_range' (s step) {m n : Nat} (h : m < n) :\n get? (range' s n step) m = some (s + step * m)",
"end": [
1379,
11
],
"full_name": "List.get?_range'",
"kind": "commanddeclaration",
"start": [
1376,
1
]
},
{
"code": "@[deprecated getElem_range' (since := \"2024-06-12\")]\ntheorem get_range' {n m step} (i) (H : i < (range' n m step).length) :\n get (range' n m step) ⟨i, H⟩ = n + step * i",
"end": [
1384,
7
],
"full_name": "List.get_range'",
"kind": "commanddeclaration",
"start": [
1381,
1
]
},
{
"code": "theorem range'_concat (s n : Nat) : range' s (n + 1) step = range' s n step ++ [s + step * n]",
"end": [
1387,
63
],
"full_name": "List.range'_concat",
"kind": "commanddeclaration",
"start": [
1386,
1
]
},
{
"code": "theorem range'_1_concat (s n : Nat) : range' s (n + 1) = range' s n ++ [s + n]",
"end": [
1390,
23
],
"full_name": "List.range'_1_concat",
"kind": "commanddeclaration",
"start": [
1389,
1
]
},
{
"code": "theorem range_loop_range' : ∀ s n : Nat, range.loop s (range' s n) = range' 0 (n + s)",
"end": [
1394,
101
],
"full_name": "List.range_loop_range'",
"kind": "commanddeclaration",
"start": [
1392,
1
]
},
{
"code": "theorem range_eq_range' (n : Nat) : range n = range' 0 n",
"end": [
1397,
56
],
"full_name": "List.range_eq_range'",
"kind": "commanddeclaration",
"start": [
1396,
1
]
},
{
"code": "theorem range_succ_eq_map (n : Nat) : range (n + 1) = 0 :: map succ (range n)",
"end": [
1401,
30
],
"full_name": "List.range_succ_eq_map",
"kind": "commanddeclaration",
"start": [
1399,
1
]
},
{
"code": "theorem range'_eq_map_range (s n : Nat) : range' s n = map (s + ·) (range n)",
"end": [
1404,
44
],
"full_name": "List.range'_eq_map_range",
"kind": "commanddeclaration",
"start": [
1403,
1
]
},
{
"code": "@[simp] theorem length_range (n : Nat) : length (range n) = n",
"end": [
1407,
45
],
"full_name": "List.length_range",
"kind": "commanddeclaration",
"start": [
1406,
1
]
},
{
"code": "@[simp] theorem range_eq_nil {n : Nat} : range n = [] ↔ n = 0",
"end": [
1410,
38
],
"full_name": "List.range_eq_nil",
"kind": "commanddeclaration",
"start": [
1409,
1
]
},
{
"code": "@[simp]\ntheorem range_sublist {m n : Nat} : range m <+ range n ↔ m ≤ n",
"end": [
1414,
52
],
"full_name": "List.range_sublist",
"kind": "commanddeclaration",
"start": [
1412,
1
]
},
{
"code": "@[simp]\ntheorem range_subset {m n : Nat} : range m ⊆ range n ↔ m ≤ n",
"end": [
1418,
65
],
"full_name": "List.range_subset",
"kind": "commanddeclaration",
"start": [
1416,
1
]
},
{
"code": "@[simp]\ntheorem mem_range {m n : Nat} : m ∈ range n ↔ m < n",
"end": [
1422,
81
],
"full_name": "List.mem_range",
"kind": "commanddeclaration",
"start": [
1420,
1
]
},
{
"code": "theorem not_mem_range_self {n : Nat} : n ∉ range n",
"end": [
1424,
62
],
"full_name": "List.not_mem_range_self",
"kind": "commanddeclaration",
"start": [
1424,
1
]
},
{
"code": "theorem self_mem_range_succ (n : Nat) : n ∈ range (n + 1)",
"end": [
1426,
69
],
"full_name": "List.self_mem_range_succ",
"kind": "commanddeclaration",
"start": [
1426,
1
]
},
{
"code": "theorem getElem?_range {m n : Nat} (h : m < n) : (range n)[m]? = some m",
"end": [
1429,
48
],
"full_name": "List.getElem?_range",
"kind": "commanddeclaration",
"start": [
1428,
1
]
},
{
"code": "@[simp] theorem getElem_range {n : Nat} (m) (h : m < (range n).length) : (range n)[m] = m",
"end": [
1432,
25
],
"full_name": "List.getElem_range",
"kind": "commanddeclaration",
"start": [
1431,
1
]
},
{
"code": "@[deprecated getElem?_range (since := \"2024-06-12\")]\ntheorem get?_range {m n : Nat} (h : m < n) : get? (range n) m = some m",
"end": [
1436,
27
],
"full_name": "List.get?_range",
"kind": "commanddeclaration",
"start": [
1434,
1
]
},
{
"code": "@[deprecated getElem_range (since := \"2024-06-12\")]\ntheorem get_range {n} (i) (H : i < (range n).length) : get (range n) ⟨i, H⟩ = i",
"end": [
1440,
7
],
"full_name": "List.get_range",
"kind": "commanddeclaration",
"start": [
1438,
1
]
},
{
"code": "theorem range_succ (n : Nat) : range (succ n) = range n ++ [n]",
"end": [
1443,
61
],
"full_name": "List.range_succ",
"kind": "commanddeclaration",
"start": [
1442,
1
]
},
{
"code": "theorem range_add (a b : Nat) : range (a + b) = range a ++ (range b).map (a + ·)",
"end": [
1447,
75
],
"full_name": "List.range_add",
"kind": "commanddeclaration",
"start": [
1445,
1
]
},
{
"code": "theorem iota_eq_reverse_range' : ∀ n : Nat, iota n = reverse (range' 1 n)",
"end": [
1451,
99
],
"full_name": "List.iota_eq_reverse_range'",
"kind": "commanddeclaration",
"start": [
1449,
1
]
},
{
"code": "@[simp] theorem length_iota (n : Nat) : length (iota n) = n",
"end": [
1453,
96
],
"full_name": "List.length_iota",
"kind": "commanddeclaration",
"start": [
1453,
1
]
},
{
"code": "@[simp]\ntheorem mem_iota {m n : Nat} : m ∈ iota n ↔ 1 ≤ m ∧ m ≤ n",
"end": [
1457,
59
],
"full_name": "List.mem_iota",
"kind": "commanddeclaration",
"start": [
1455,
1
]
},
{
"code": "theorem reverse_range' : ∀ s n : Nat, reverse (range' s n) = map (s + n - 1 - ·) (range n)",
"end": [
1464,
59
],
"full_name": "List.reverse_range'",
"kind": "commanddeclaration",
"start": [
1459,
1
]
},
{
"code": "@[simp] theorem enumFrom_map_fst (n) :\n ∀ (l : List α), map Prod.fst (enumFrom n l) = range' n l.length",
"end": [
1472,
55
],
"full_name": "List.enumFrom_map_fst",
"kind": "commanddeclaration",
"start": [
1469,
1
]
},
{
"code": "@[simp] theorem enum_map_fst (l : List α) : map Prod.fst (enum l) = range l.length",
"end": [
1475,
54
],
"full_name": "List.enum_map_fst",
"kind": "commanddeclaration",
"start": [
1474,
1
]
},
{
"code": "theorem foldrIdx_start :\n (xs : List α).foldrIdx f i s = (xs : List α).foldrIdx (fun i => f (i + s)) i",
"end": [
1487,
43
],
"full_name": "List.foldrIdx_start",
"kind": "commanddeclaration",
"start": [
1479,
1
]
},
{
"code": "@[simp] theorem foldrIdx_cons :\n (x :: xs : List α).foldrIdx f i s = f s x (foldrIdx f i xs (s + 1))",
"end": [
1490,
79
],
"full_name": "List.foldrIdx_cons",
"kind": "commanddeclaration",
"start": [
1489,
1
]
},
{
"code": "theorem findIdxs_cons_aux (p : α → Bool) :\n foldrIdx (fun i a is => if p a = true then (i + 1) :: is else is) [] xs s =\n map (· + 1) (foldrIdx (fun i a is => if p a = true then i :: is else is) [] xs s)",
"end": [
1499,
24
],
"full_name": "List.findIdxs_cons_aux",
"kind": "commanddeclaration",
"start": [
1492,
1
]
},
{
"code": "theorem findIdxs_cons :\n (x :: xs : List α).findIdxs p =\n bif p x then 0 :: (xs.findIdxs p).map (· + 1) else (xs.findIdxs p).map (· + 1)",
"end": [
1508,
28
],
"full_name": "List.findIdxs_cons",
"kind": "commanddeclaration",
"start": [
1501,
1
]
},
{
"code": "@[simp] theorem indexesOf_nil [BEq α] : ([] : List α).indexesOf x = []",
"end": [
1510,
78
],
"full_name": "List.indexesOf_nil",
"kind": "commanddeclaration",
"start": [
1510,
1
]
},
{
"code": "theorem indexesOf_cons [BEq α] : (x :: xs : List α).indexesOf y =\n bif x == y then 0 :: (xs.indexesOf y).map (· + 1) else (xs.indexesOf y).map (· + 1)",
"end": [
1514,
34
],
"full_name": "List.indexesOf_cons",
"kind": "commanddeclaration",
"start": [
1512,
1
]
},
{
"code": "@[simp] theorem indexOf_nil [BEq α] : ([] : List α).indexOf x = 0",
"end": [
1516,
73
],
"full_name": "List.indexOf_nil",
"kind": "commanddeclaration",
"start": [
1516,
1
]
},
{
"code": "theorem indexOf_cons [BEq α] :\n (x :: xs : List α).indexOf y = bif x == y then 0 else xs.indexOf y + 1",
"end": [
1521,
22
],
"full_name": "List.indexOf_cons",
"kind": "commanddeclaration",
"start": [
1518,
1
]
},
{
"code": "theorem indexOf_mem_indexesOf [BEq α] [LawfulBEq α] {xs : List α} (m : x ∈ xs) :\n xs.indexOf x ∈ xs.indexesOf x",
"end": [
1535,
14
],
"full_name": "List.indexOf_mem_indexesOf",
"kind": "commanddeclaration",
"start": [
1523,
1
]
},
{
"code": "theorem merge_loop_nil_left (s : α → α → Bool) (r t) :\n merge.loop s [] r t = reverseAux t r",
"end": [
1539,
18
],
"full_name": "List.merge_loop_nil_left",
"kind": "commanddeclaration",
"start": [
1537,
1
]
},
{
"code": "theorem merge_loop_nil_right (s : α → α → Bool) (l t) :\n merge.loop s l [] t = reverseAux t l",
"end": [
1543,
52
],
"full_name": "List.merge_loop_nil_right",
"kind": "commanddeclaration",
"start": [
1541,
1
]
},
{
"code": "theorem merge_loop (s : α → α → Bool) (l r t) :\n merge.loop s l r t = reverseAux t (merge s l r)",
"end": [
1567,
64
],
"full_name": "List.merge_loop",
"kind": "commanddeclaration",
"start": [
1545,
1
]
},
{
"code": "@[simp] theorem merge_nil (s : α → α → Bool) (l) : merge s l [] = l",
"end": [
1569,
95
],
"full_name": "List.merge_nil",
"kind": "commanddeclaration",
"start": [
1569,
1
]
},
{
"code": "@[simp] theorem nil_merge (s : α → α → Bool) (r) : merge s [] r = r",
"end": [
1571,
94
],
"full_name": "List.nil_merge",
"kind": "commanddeclaration",
"start": [
1571,
1
]
},
{
"code": "theorem cons_merge_cons (s : α → α → Bool) (a b l r) :\n merge s (a::l) (b::r) = if s a b then a :: merge s l (b::r) else b :: merge s (a::l) r",
"end": [
1575,
87
],
"full_name": "List.cons_merge_cons",
"kind": "commanddeclaration",
"start": [
1573,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_pos (s : α → α → Bool) (l r) (h : s a b) :\n merge s (a::l) (b::r) = a :: merge s l (b::r)",
"end": [
1579,
33
],
"full_name": "List.cons_merge_cons_pos",
"kind": "commanddeclaration",
"start": [
1577,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_neg (s : α → α → Bool) (l r) (h : ¬ s a b) :\n merge s (a::l) (b::r) = b :: merge s (a::l) r",
"end": [
1583,
33
],
"full_name": "List.cons_merge_cons_neg",
"kind": "commanddeclaration",
"start": [
1581,
1
]
},
{
"code": "@[simp] theorem length_merge (s : α → α → Bool) (l r) :\n (merge s l r).length = l.length + r.length",
"end": [
1594,
43
],
"full_name": "List.length_merge",
"kind": "commanddeclaration",
"start": [
1585,
1
]
},
{
"code": "@[simp]\ntheorem mem_merge {s : α → α → Bool} : x ∈ merge s l r ↔ x ∈ l ∨ x ∈ r",
"end": [
1605,
68
],
"full_name": "List.mem_merge",
"kind": "commanddeclaration",
"start": [
1596,
1
]
},
{
"code": "theorem mem_merge_left (s : α → α → Bool) (h : x ∈ l) : x ∈ merge s l r",
"end": [
1608,
24
],
"full_name": "List.mem_merge_left",
"kind": "commanddeclaration",
"start": [
1607,
1
]
},
{
"code": "theorem mem_merge_right (s : α → α → Bool) (h : x ∈ r) : x ∈ merge s l r",
"end": [
1611,
24
],
"full_name": "List.mem_merge_right",
"kind": "commanddeclaration",
"start": [
1610,
1
]
}
] | 326 | List.length_merge | [
[
1586,
51
],
[
1594,
43
]
] | 5 | 9 | · simp_arith [length_merge s l (b::r)] | case isTrue
α : Type u_1
s : α → α → Bool
l✝ r✝ : List α
a : α
l : List α
b : α
r : List α
h✝ : s a b = true
⊢ (a :: merge s l (b :: r)).length = (a :: l).length + (b :: r).length
case isFalse
α : Type u_1
s : α → α → Bool
l✝ r✝ : List α
a : α
l : List α
b : α
r : List α
h✝ : ¬s a b = true
⊢ (b :: merge s (a :: l) r).length = (a :: l).length + (b :: r).length | case isFalse
α : Type u_1
s : α → α → Bool
l✝ r✝ : List α
a : α
l : List α
b : α
r : List α
h✝ : ¬s a b = true
⊢ (b :: merge s (a :: l) r).length = (a :: l).length + (b :: r).length |
.lake/packages/batteries/Batteries/Data/List/Lemmas.lean | [
[
"Batteries.Tactic.Alias",
".lake/packages/batteries/Batteries/Tactic/Alias.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
],
[
"Batteries.Control.ForInStep.Lemmas",
".lake/packages/batteries/Batteries/Control/ForInStep/Lemmas.lean"
],
[
"Batteries.Tactic.Init",
".lake/packages/batteries/Batteries/Tactic/Init.lean"
],
[
"Batteries.Data.List.Basic",
".lake/packages/batteries/Batteries/Data/List/Basic.lean"
]
] | [
{
"code": "@[simp] theorem mem_toArray {a : α} {l : List α} : a ∈ l.toArray ↔ a ∈ l",
"end": [
18,
23
],
"full_name": "List.mem_toArray",
"kind": "commanddeclaration",
"start": [
17,
1
]
},
{
"code": "@[simp]\ntheorem drop_one : ∀ l : List α, drop 1 l = tail l",
"end": [
24,
23
],
"full_name": "List.drop_one",
"kind": "commanddeclaration",
"start": [
22,
1
]
},
{
"code": "theorem zipWith_distrib_tail : (zipWith f l l').tail = zipWith f l.tail l'.tail",
"end": [
29,
47
],
"full_name": "List.zipWith_distrib_tail",
"kind": "commanddeclaration",
"start": [
28,
1
]
},
{
"code": "theorem subset_def {l₁ l₂ : List α} : l₁ ⊆ l₂ ↔ ∀ {a : α}, a ∈ l₁ → a ∈ l₂",
"end": [
33,
83
],
"full_name": "List.subset_def",
"kind": "commanddeclaration",
"start": [
33,
1
]
},
{
"code": "@[simp] theorem nil_subset (l : List α) : [] ⊆ l",
"end": [
35,
58
],
"full_name": "List.nil_subset",
"kind": "commanddeclaration",
"start": [
35,
1
]
},
{
"code": "@[simp] theorem Subset.refl (l : List α) : l ⊆ l",
"end": [
37,
65
],
"full_name": "List.Subset.refl",
"kind": "commanddeclaration",
"start": [
37,
1
]
},
{
"code": "theorem Subset.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ ⊆ l₂) (h₂ : l₂ ⊆ l₃) : l₁ ⊆ l₃",
"end": [
40,
23
],
"full_name": "List.Subset.trans",
"kind": "commanddeclaration",
"start": [
39,
1
]
},
{
"code": "@[simp] theorem subset_cons (a : α) (l : List α) : l ⊆ a :: l",
"end": [
48,
85
],
"full_name": "List.subset_cons",
"kind": "commanddeclaration",
"start": [
48,
1
]
},
{
"code": "theorem subset_of_cons_subset {a : α} {l₁ l₂ : List α} : a :: l₁ ⊆ l₂ → l₁ ⊆ l₂",
"end": [
51,
39
],
"full_name": "List.subset_of_cons_subset",
"kind": "commanddeclaration",
"start": [
50,
1
]
},
{
"code": "theorem subset_cons_of_subset (a : α) {l₁ l₂ : List α} : l₁ ⊆ l₂ → l₁ ⊆ a :: l₂",
"end": [
54,
29
],
"full_name": "List.subset_cons_of_subset",
"kind": "commanddeclaration",
"start": [
53,
1
]
},
{
"code": "theorem cons_subset_cons {l₁ l₂ : List α} (a : α) (s : l₁ ⊆ l₂) : a :: l₁ ⊆ a :: l₂",
"end": [
57,
62
],
"full_name": "List.cons_subset_cons",
"kind": "commanddeclaration",
"start": [
56,
1
]
},
{
"code": "@[simp] theorem subset_append_left (l₁ l₂ : List α) : l₁ ⊆ l₁ ++ l₂",
"end": [
59,
98
],
"full_name": "List.subset_append_left",
"kind": "commanddeclaration",
"start": [
59,
1
]
},
{
"code": "@[simp] theorem subset_append_right (l₁ l₂ : List α) : l₂ ⊆ l₁ ++ l₂",
"end": [
61,
100
],
"full_name": "List.subset_append_right",
"kind": "commanddeclaration",
"start": [
61,
1
]
},
{
"code": "theorem subset_append_of_subset_left (l₂ : List α) : l ⊆ l₁ → l ⊆ l₁ ++ l₂",
"end": [
64,
50
],
"full_name": "List.subset_append_of_subset_left",
"kind": "commanddeclaration",
"start": [
63,
1
]
},
{
"code": "theorem subset_append_of_subset_right (l₁ : List α) : l ⊆ l₂ → l ⊆ l₁ ++ l₂",
"end": [
67,
51
],
"full_name": "List.subset_append_of_subset_right",
"kind": "commanddeclaration",
"start": [
66,
1
]
},
{
"code": "@[simp] theorem cons_subset : a :: l ⊆ m ↔ a ∈ m ∧ l ⊆ m",
"end": [
70,
66
],
"full_name": "List.cons_subset",
"kind": "commanddeclaration",
"start": [
69,
1
]
},
{
"code": "@[simp] theorem append_subset {l₁ l₂ l : List α} :\n l₁ ++ l₂ ⊆ l ↔ l₁ ⊆ l ∧ l₂ ⊆ l",
"end": [
73,
79
],
"full_name": "List.append_subset",
"kind": "commanddeclaration",
"start": [
72,
1
]
},
{
"code": "theorem subset_nil {l : List α} : l ⊆ [] ↔ l = []",
"end": [
76,
99
],
"full_name": "List.subset_nil",
"kind": "commanddeclaration",
"start": [
75,
1
]
},
{
"code": "theorem map_subset {l₁ l₂ : List α} (f : α → β) (H : l₁ ⊆ l₂) : map f l₁ ⊆ map f l₂",
"end": [
79,
72
],
"full_name": "List.map_subset",
"kind": "commanddeclaration",
"start": [
78,
1
]
},
{
"code": "@[simp] theorem nil_sublist : ∀ l : List α, [] <+ l",
"end": [
85,
37
],
"full_name": "List.nil_sublist",
"kind": "commanddeclaration",
"start": [
83,
1
]
},
{
"code": "@[simp] theorem Sublist.refl : ∀ l : List α, l <+ l",
"end": [
89,
39
],
"full_name": "List.Sublist.refl",
"kind": "commanddeclaration",
"start": [
87,
1
]
},
{
"code": "theorem Sublist.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ <+ l₂) (h₂ : l₂ <+ l₃) : l₁ <+ l₃",
"end": [
100,
53
],
"full_name": "List.Sublist.trans",
"kind": "commanddeclaration",
"start": [
91,
1
]
},
{
"code": "@[simp] theorem sublist_cons (a : α) (l : List α) : l <+ a :: l",
"end": [
104,
91
],
"full_name": "List.sublist_cons",
"kind": "commanddeclaration",
"start": [
104,
1
]
},
{
"code": "theorem sublist_of_cons_sublist : a :: l₁ <+ l₂ → l₁ <+ l₂",
"end": [
107,
28
],
"full_name": "List.sublist_of_cons_sublist",
"kind": "commanddeclaration",
"start": [
106,
1
]
},
{
"code": "@[simp] theorem sublist_append_left : ∀ l₁ l₂ : List α, l₁ <+ l₁ ++ l₂",
"end": [
111,
55
],
"full_name": "List.sublist_append_left",
"kind": "commanddeclaration",
"start": [
109,
1
]
},
{
"code": "@[simp] theorem sublist_append_right : ∀ l₁ l₂ : List α, l₂ <+ l₁ ++ l₂",
"end": [
115,
55
],
"full_name": "List.sublist_append_right",
"kind": "commanddeclaration",
"start": [
113,
1
]
},
{
"code": "theorem sublist_append_of_sublist_left (s : l <+ l₁) : l <+ l₁ ++ l₂",
"end": [
118,
36
],
"full_name": "List.sublist_append_of_sublist_left",
"kind": "commanddeclaration",
"start": [
117,
1
]
},
{
"code": "theorem sublist_append_of_sublist_right (s : l <+ l₂) : l <+ l₁ ++ l₂",
"end": [
121,
37
],
"full_name": "List.sublist_append_of_sublist_right",
"kind": "commanddeclaration",
"start": [
120,
1
]
},
{
"code": "@[simp]\ntheorem cons_sublist_cons : a :: l₁ <+ a :: l₂ ↔ l₁ <+ l₂",
"end": [
125,
77
],
"full_name": "List.cons_sublist_cons",
"kind": "commanddeclaration",
"start": [
123,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_left : ∀ l, l ++ l₁ <+ l ++ l₂ ↔ l₁ <+ l₂",
"end": [
129,
69
],
"full_name": "List.append_sublist_append_left",
"kind": "commanddeclaration",
"start": [
127,
1
]
},
{
"code": "theorem Sublist.append_left : l₁ <+ l₂ → ∀ l, l ++ l₁ <+ l ++ l₂",
"end": [
132,
50
],
"full_name": "List.Sublist.append_left",
"kind": "commanddeclaration",
"start": [
131,
1
]
},
{
"code": "theorem Sublist.append_right : l₁ <+ l₂ → ∀ l, l₁ ++ l <+ l₂ ++ l",
"end": [
137,
48
],
"full_name": "List.Sublist.append_right",
"kind": "commanddeclaration",
"start": [
134,
1
]
},
{
"code": "theorem sublist_or_mem_of_sublist (h : l <+ l₁ ++ a :: l₂) : l <+ l₁ ++ l₂ ∨ a ∈ l",
"end": [
147,
65
],
"full_name": "List.sublist_or_mem_of_sublist",
"kind": "commanddeclaration",
"start": [
139,
1
]
},
{
"code": "theorem Sublist.reverse : l₁ <+ l₂ → l₁.reverse <+ l₂.reverse",
"end": [
152,
85
],
"full_name": "List.Sublist.reverse",
"kind": "commanddeclaration",
"start": [
149,
1
]
},
{
"code": "@[simp] theorem reverse_sublist : l₁.reverse <+ l₂.reverse ↔ l₁ <+ l₂",
"end": [
155,
82
],
"full_name": "List.reverse_sublist",
"kind": "commanddeclaration",
"start": [
154,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_right (l) : l₁ ++ l <+ l₂ ++ l ↔ l₁ <+ l₂",
"end": [
162,
30
],
"full_name": "List.append_sublist_append_right",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "theorem Sublist.append (hl : l₁ <+ l₂) (hr : r₁ <+ r₂) : l₁ ++ r₁ <+ l₂ ++ r₂",
"end": [
165,
66
],
"full_name": "List.Sublist.append",
"kind": "commanddeclaration",
"start": [
164,
1
]
},
{
"code": "theorem Sublist.subset : l₁ <+ l₂ → l₁ ⊆ l₂",
"end": [
171,
53
],
"full_name": "List.Sublist.subset",
"kind": "commanddeclaration",
"start": [
167,
1
]
},
{
"code": "theorem Sublist.length_le : l₁ <+ l₂ → length l₁ ≤ length l₂",
"end": [
185,
45
],
"full_name": "List.Sublist.length_le",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "@[simp] theorem sublist_nil {l : List α} : l <+ [] ↔ l = []",
"end": [
188,
64
],
"full_name": "List.sublist_nil",
"kind": "commanddeclaration",
"start": [
187,
1
]
},
{
"code": "theorem Sublist.eq_of_length : l₁ <+ l₂ → length l₁ = length l₂ → l₁ = l₂",
"end": [
193,
57
],
"full_name": "List.Sublist.eq_of_length",
"kind": "commanddeclaration",
"start": [
190,
1
]
},
{
"code": "theorem Sublist.eq_of_length_le (s : l₁ <+ l₂) (h : length l₂ ≤ length l₁) : l₁ = l₂",
"end": [
196,
50
],
"full_name": "List.Sublist.eq_of_length_le",
"kind": "commanddeclaration",
"start": [
195,
1
]
},
{
"code": "@[simp] theorem singleton_sublist {a : α} {l} : [a] <+ l ↔ a ∈ l",
"end": [
201,
66
],
"full_name": "List.singleton_sublist",
"kind": "commanddeclaration",
"start": [
198,
1
]
},
{
"code": "@[simp] theorem replicate_sublist_replicate {m n} (a : α) :\n replicate m a <+ replicate n a ↔ m ≤ n",
"end": [
209,
48
],
"full_name": "List.replicate_sublist_replicate",
"kind": "commanddeclaration",
"start": [
203,
1
]
},
{
"code": "theorem isSublist_iff_sublist [BEq α] [LawfulBEq α] {l₁ l₂ : List α} :\n l₁.isSublist l₂ ↔ l₁ <+ l₂",
"end": [
228,
24
],
"full_name": "List.isSublist_iff_sublist",
"kind": "commanddeclaration",
"start": [
211,
1
]
},
{
"code": "theorem tail_eq_tailD (l) : @tail α l = tailD l []",
"end": [
235,
73
],
"full_name": "List.tail_eq_tailD",
"kind": "commanddeclaration",
"start": [
235,
1
]
},
{
"code": "theorem tail_eq_tail? (l) : @tail α l = (tail? l).getD []",
"end": [
237,
85
],
"full_name": "List.tail_eq_tail?",
"kind": "commanddeclaration",
"start": [
237,
1
]
},
{
"code": "@[simp] theorem next?_nil : @next? α [] = none",
"end": [
241,
54
],
"full_name": "List.next?_nil",
"kind": "commanddeclaration",
"start": [
241,
1
]
},
{
"code": "@[simp] theorem next?_cons (a l) : @next? α (a :: l) = some (a, l)",
"end": [
242,
74
],
"full_name": "List.next?_cons",
"kind": "commanddeclaration",
"start": [
242,
1
]
},
{
"code": "theorem getElem_eq_iff {l : List α} {n : Nat} {h : n < l.length} : l[n] = x ↔ l[n]? = some x",
"end": [
248,
40
],
"full_name": "List.getElem_eq_iff",
"kind": "commanddeclaration",
"start": [
246,
1
]
},
{
"code": "@[deprecated getElem_eq_iff (since := \"2024-06-12\")]\ntheorem get_eq_iff : List.get l n = x ↔ l.get? n.1 = some x",
"end": [
252,
7
],
"full_name": "List.get_eq_iff",
"kind": "commanddeclaration",
"start": [
250,
1
]
},
{
"code": "theorem getElem?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs[i]? = xs[j]?) : i = j",
"end": [
273,
39
],
"full_name": "List.getElem?_inj",
"kind": "commanddeclaration",
"start": [
254,
1
]
},
{
"code": "@[deprecated getElem?_inj (since := \"2024-06-12\")]\ntheorem get?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs.get? i = xs.get? j) : i = j",
"end": [
279,
11
],
"full_name": "List.get?_inj",
"kind": "commanddeclaration",
"start": [
275,
1
]
},
{
"code": "theorem tail_drop (l : List α) (n : Nat) : (l.drop n).tail = l.drop (n + 1)",
"end": [
289,
16
],
"full_name": "List.tail_drop",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "@[simp] theorem modifyNth_nil (f : α → α) (n) : [].modifyNth f n = []",
"end": [
293,
92
],
"full_name": "List.modifyNth_nil",
"kind": "commanddeclaration",
"start": [
293,
1
]
},
{
"code": "@[simp] theorem modifyNth_zero_cons (f : α → α) (a : α) (l : List α) :\n (a :: l).modifyNth f 0 = f a :: l",
"end": [
296,
45
],
"full_name": "List.modifyNth_zero_cons",
"kind": "commanddeclaration",
"start": [
295,
1
]
},
{
"code": "@[simp] theorem modifyNth_succ_cons (f : α → α) (a : α) (l : List α) (n) :\n (a :: l).modifyNth f (n + 1) = a :: l.modifyNth f n",
"end": [
299,
66
],
"full_name": "List.modifyNth_succ_cons",
"kind": "commanddeclaration",
"start": [
298,
1
]
},
{
"code": "theorem modifyNthTail_id : ∀ n (l : List α), l.modifyNthTail id n = l",
"end": [
304,
60
],
"full_name": "List.modifyNthTail_id",
"kind": "commanddeclaration",
"start": [
301,
1
]
},
{
"code": "theorem eraseIdx_eq_modifyNthTail : ∀ n (l : List α), eraseIdx l n = modifyNthTail tail n l",
"end": [
309,
69
],
"full_name": "List.eraseIdx_eq_modifyNthTail",
"kind": "commanddeclaration",
"start": [
306,
1
]
},
{
"code": "theorem getElem?_modifyNth (f : α → α) :\n ∀ n (l : List α) m, (modifyNth f n l)[m]? = (fun a => if n = m then f a else a) <$> l[m]?",
"end": [
322,
79
],
"full_name": "List.getElem?_modifyNth",
"kind": "commanddeclaration",
"start": [
313,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth (since := \"2024-06-12\")]\ntheorem get?_modifyNth (f : α → α) (n) (l : List α) (m) :\n (modifyNth f n l).get? m = (fun a => if n = m then f a else a) <$> l.get? m",
"end": [
327,
28
],
"full_name": "List.get?_modifyNth",
"kind": "commanddeclaration",
"start": [
324,
1
]
},
{
"code": "theorem modifyNthTail_length (f : List α → List α) (H : ∀ l, length (f l) = length l) :\n ∀ n l, length (modifyNthTail f n l) = length l",
"end": [
333,
65
],
"full_name": "List.modifyNthTail_length",
"kind": "commanddeclaration",
"start": [
329,
1
]
},
{
"code": "theorem modifyNthTail_add (f : List α → List α) (n) (l₁ l₂ : List α) :\n modifyNthTail f (l₁.length + n) (l₁ ++ l₂) = l₁ ++ modifyNthTail f n l₂",
"end": [
337,
42
],
"full_name": "List.modifyNthTail_add",
"kind": "commanddeclaration",
"start": [
335,
1
]
},
{
"code": "theorem exists_of_modifyNthTail (f : List α → List α) {n} {l : List α} (h : n ≤ l.length) :\n ∃ l₁ l₂, l = l₁ ++ l₂ ∧ l₁.length = n ∧ modifyNthTail f n l = l₁ ++ f l₂",
"end": [
343,
58
],
"full_name": "List.exists_of_modifyNthTail",
"kind": "commanddeclaration",
"start": [
339,
1
]
},
{
"code": "@[simp] theorem modify_get?_length (f : α → α) : ∀ n l, length (modifyNth f n l) = length l",
"end": [
346,
53
],
"full_name": "List.modify_get?_length",
"kind": "commanddeclaration",
"start": [
345,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l)[n]? = f <$> l[n]?",
"end": [
350,
41
],
"full_name": "List.getElem?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_eq (since := \"2024-06-12\")]\ntheorem get?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l).get? n = f <$> l.get? n",
"end": [
355,
31
],
"full_name": "List.get?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
352,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l)[n]? = l[n]?",
"end": [
359,
52
],
"full_name": "List.getElem?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
357,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_ne (since := \"2024-06-12\")]\ntheorem get?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l).get? n = l.get? n",
"end": [
364,
11
],
"full_name": "List.get?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
361,
1
]
},
{
"code": "theorem exists_of_modifyNth (f : α → α) {n} {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ modifyNth f n l = l₁ ++ f a :: l₂",
"end": [
370,
74
],
"full_name": "List.exists_of_modifyNth",
"kind": "commanddeclaration",
"start": [
366,
1
]
},
{
"code": "theorem modifyNthTail_eq_take_drop (f : List α → List α) (H : f [] = []) :\n ∀ n l, modifyNthTail f n l = take n l ++ f (drop n l)",
"end": [
376,
76
],
"full_name": "List.modifyNthTail_eq_take_drop",
"kind": "commanddeclaration",
"start": [
372,
1
]
},
{
"code": "theorem modifyNth_eq_take_drop (f : α → α) :\n ∀ n l, modifyNth f n l = take n l ++ modifyHead f (drop n l)",
"end": [
380,
35
],
"full_name": "List.modifyNth_eq_take_drop",
"kind": "commanddeclaration",
"start": [
378,
1
]
},
{
"code": "theorem modifyNth_eq_take_cons_drop (f : α → α) {n l} (h) :\n modifyNth f n l = take n l ++ f l[n] :: drop (n + 1) l",
"end": [
384,
59
],
"full_name": "List.modifyNth_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
382,
1
]
},
{
"code": "theorem set_eq_modifyNth (a : α) : ∀ n (l : List α), set l n a = modifyNth (fun _ => a) n l",
"end": [
391,
62
],
"full_name": "List.set_eq_modifyNth",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "theorem set_eq_take_cons_drop (a : α) {n l} (h : n < length l) :\n set l n a = take n l ++ a :: drop (n + 1) l",
"end": [
395,
57
],
"full_name": "List.set_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
393,
1
]
},
{
"code": "theorem modifyNth_eq_set_get? (f : α → α) :\n ∀ n (l : List α), l.modifyNth f n = ((fun a => l.set n (f a)) <$> l.get? n).getD l",
"end": [
402,
92
],
"full_name": "List.modifyNth_eq_set_get?",
"kind": "commanddeclaration",
"start": [
397,
1
]
},
{
"code": "theorem modifyNth_eq_set_get (f : α → α) {n} {l : List α} (h) :\n l.modifyNth f n = l.set n (f (l.get ⟨n, h⟩))",
"end": [
406,
49
],
"full_name": "List.modifyNth_eq_set_get",
"kind": "commanddeclaration",
"start": [
404,
1
]
},
{
"code": "theorem exists_of_set {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
410,
55
],
"full_name": "List.exists_of_set",
"kind": "commanddeclaration",
"start": [
408,
1
]
},
{
"code": "theorem exists_of_set' {l : List α} (h : n < l.length) :\n ∃ l₁ l₂, l = l₁ ++ l[n] :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
414,
94
],
"full_name": "List.exists_of_set'",
"kind": "commanddeclaration",
"start": [
412,
1
]
},
{
"code": "@[simp]\ntheorem getElem?_set_eq' (a : α) (n) (l : List α) : (set l n a)[n]? = (fun _ => a) <$> l[n]?",
"end": [
418,
54
],
"full_name": "List.getElem?_set_eq'",
"kind": "commanddeclaration",
"start": [
416,
1
]
},
{
"code": "@[deprecated getElem?_set_eq' (since := \"2024-06-12\")]\ntheorem get?_set_eq (a : α) (n) (l : List α) : (set l n a).get? n = (fun _ => a) <$> l.get? n",
"end": [
422,
7
],
"full_name": "List.get?_set_eq",
"kind": "commanddeclaration",
"start": [
420,
1
]
},
{
"code": "theorem getElem?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a)[n]? = some a",
"end": [
425,
85
],
"full_name": "List.getElem?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
424,
1
]
},
{
"code": "@[deprecated getElem?_set_eq_of_lt (since := \"2024-06-12\")]\ntheorem get?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a).get? n = some a",
"end": [
430,
70
],
"full_name": "List.get?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
427,
1
]
},
{
"code": "@[deprecated getElem?_set_ne (since := \"2024-06-12\")]\ntheorem get?_set_ne (a : α) {m n} (l : List α) (h : m ≠ n) : (set l m a).get? n = l.get? n",
"end": [
434,
11
],
"full_name": "List.get?_set_ne",
"kind": "commanddeclaration",
"start": [
432,
1
]
},
{
"code": "theorem getElem?_set' (a : α) {m n} (l : List α) :\n (set l m a)[n]? = if m = n then (fun _ => a) <$> l[n]? else l[n]?",
"end": [
438,
30
],
"full_name": "List.getElem?_set'",
"kind": "commanddeclaration",
"start": [
436,
1
]
},
{
"code": "@[deprecated getElem?_set (since := \"2024-06-12\")]\ntheorem get?_set (a : α) {m n} (l : List α) :\n (set l m a).get? n = if m = n then (fun _ => a) <$> l.get? n else l.get? n",
"end": [
443,
23
],
"full_name": "List.get?_set",
"kind": "commanddeclaration",
"start": [
440,
1
]
},
{
"code": "theorem get?_set_of_lt (a : α) {m n} (l : List α) (h : n < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
447,
46
],
"full_name": "List.get?_set_of_lt",
"kind": "commanddeclaration",
"start": [
445,
1
]
},
{
"code": "theorem get?_set_of_lt' (a : α) {m n} (l : List α) (h : m < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
451,
80
],
"full_name": "List.get?_set_of_lt'",
"kind": "commanddeclaration",
"start": [
449,
1
]
},
{
"code": "theorem drop_set_of_lt (a : α) {n m : Nat} (l : List α) (h : n < m) :\n (l.set n a).drop m = l.drop m",
"end": [
455,
94
],
"full_name": "List.drop_set_of_lt",
"kind": "commanddeclaration",
"start": [
453,
1
]
},
{
"code": "theorem take_set_of_lt (a : α) {n m : Nat} (l : List α) (h : m < n) :\n (l.set n a).take m = l.take m",
"end": [
463,
10
],
"full_name": "List.take_set_of_lt",
"kind": "commanddeclaration",
"start": [
457,
1
]
},
{
"code": "theorem length_eraseIdx : ∀ {l i}, i < length l → length (@eraseIdx α l i) = length l - 1",
"end": [
473,
92
],
"full_name": "List.length_eraseIdx",
"kind": "commanddeclaration",
"start": [
467,
1
]
},
{
"code": "@[simp] theorem length_tail (l : List α) : length (tail l) = length l - 1",
"end": [
479,
96
],
"full_name": "List.length_tail",
"kind": "commanddeclaration",
"start": [
479,
1
]
},
{
"code": "@[simp] theorem eraseP_nil : [].eraseP p = []",
"end": [
483,
53
],
"full_name": "List.eraseP_nil",
"kind": "commanddeclaration",
"start": [
483,
1
]
},
{
"code": "theorem eraseP_cons (a : α) (l : List α) :\n (a :: l).eraseP p = bif p a then l else a :: l.eraseP p",
"end": [
486,
67
],
"full_name": "List.eraseP_cons",
"kind": "commanddeclaration",
"start": [
485,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_pos {l : List α} (p) (h : p a) : (a :: l).eraseP p = l",
"end": [
489,
24
],
"full_name": "List.eraseP_cons_of_pos",
"kind": "commanddeclaration",
"start": [
488,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_neg {l : List α} (p) (h : ¬p a) :\n (a :: l).eraseP p = a :: l.eraseP p",
"end": [
492,
68
],
"full_name": "List.eraseP_cons_of_neg",
"kind": "commanddeclaration",
"start": [
491,
1
]
},
{
"code": "theorem eraseP_of_forall_not {l : List α} (h : ∀ a, a ∈ l → ¬p a) : l.eraseP p = l",
"end": [
497,
69
],
"full_name": "List.eraseP_of_forall_not",
"kind": "commanddeclaration",
"start": [
494,
1
]
},
{
"code": "theorem exists_of_eraseP : ∀ {l : List α} {a} (al : a ∈ l) (pa : p a),\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
510,
57
],
"full_name": "List.exists_of_eraseP",
"kind": "commanddeclaration",
"start": [
499,
1
]
},
{
"code": "theorem exists_or_eq_self_of_eraseP (p) (l : List α) :\n l.eraseP p = l ∨\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
519,
46
],
"full_name": "List.exists_or_eq_self_of_eraseP",
"kind": "commanddeclaration",
"start": [
512,
1
]
},
{
"code": "@[simp] theorem length_eraseP_of_mem (al : a ∈ l) (pa : p a) :\n length (l.eraseP p) = Nat.pred (length l)",
"end": [
524,
41
],
"full_name": "List.length_eraseP_of_mem",
"kind": "commanddeclaration",
"start": [
521,
1
]
},
{
"code": "theorem eraseP_append_left {a : α} (pa : p a) :\n ∀ {l₁ : List α} l₂, a ∈ l₁ → (l₁++l₂).eraseP p = l₁.eraseP p ++ l₂",
"end": [
531,
28
],
"full_name": "List.eraseP_append_left",
"kind": "commanddeclaration",
"start": [
526,
1
]
},
{
"code": "theorem eraseP_append_right :\n ∀ {l₁ : List α} l₂, (∀ b ∈ l₁, ¬p b) → eraseP p (l₁++l₂) = l₁ ++ l₂.eraseP p",
"end": [
537,
82
],
"full_name": "List.eraseP_append_right",
"kind": "commanddeclaration",
"start": [
533,
1
]
},
{
"code": "theorem eraseP_sublist (l : List α) : l.eraseP p <+ l",
"end": [
542,
56
],
"full_name": "List.eraseP_sublist",
"kind": "commanddeclaration",
"start": [
539,
1
]
},
{
"code": "theorem eraseP_subset (l : List α) : l.eraseP p ⊆ l",
"end": [
544,
81
],
"full_name": "List.eraseP_subset",
"kind": "commanddeclaration",
"start": [
544,
1
]
},
{
"code": "protected theorem Sublist.eraseP : l₁ <+ l₂ → l₁.eraseP p <+ l₂.eraseP p",
"end": [
553,
25
],
"full_name": "List.Sublist.eraseP",
"kind": "commanddeclaration",
"start": [
546,
1
]
},
{
"code": "theorem mem_of_mem_eraseP {l : List α} : a ∈ l.eraseP p → a ∈ l",
"end": [
555,
87
],
"full_name": "List.mem_of_mem_eraseP",
"kind": "commanddeclaration",
"start": [
555,
1
]
},
{
"code": "@[simp] theorem mem_eraseP_of_neg {l : List α} (pa : ¬p a) : a ∈ l.eraseP p ↔ a ∈ l",
"end": [
564,
33
],
"full_name": "List.mem_eraseP_of_neg",
"kind": "commanddeclaration",
"start": [
557,
1
]
},
{
"code": "theorem eraseP_map (f : β → α) : ∀ (l : List β), (map f l).eraseP p = map f (l.eraseP (p ∘ f))",
"end": [
568,
85
],
"full_name": "List.eraseP_map",
"kind": "commanddeclaration",
"start": [
566,
1
]
},
{
"code": "@[simp] theorem extractP_eq_find?_eraseP\n (l : List α) : extractP p l = (find? p l, eraseP p l)",
"end": [
578,
21
],
"full_name": "List.extractP_eq_find?_eraseP",
"kind": "commanddeclaration",
"start": [
570,
1
]
},
{
"code": "theorem erase_eq_eraseP' (a : α) (l : List α) : l.erase a = l.eraseP (· == a)",
"end": [
590,
46
],
"full_name": "List.erase_eq_eraseP'",
"kind": "commanddeclaration",
"start": [
585,
1
]
},
{
"code": "theorem erase_eq_eraseP [LawfulBEq α] (a : α) : ∀ l : List α, l.erase a = l.eraseP (a == ·)",
"end": [
595,
77
],
"full_name": "List.erase_eq_eraseP",
"kind": "commanddeclaration",
"start": [
592,
1
]
},
{
"code": "theorem exists_erase_eq [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n ∃ l₁ l₂, a ∉ l₁ ∧ l = l₁ ++ a :: l₂ ∧ l.erase a = l₁ ++ l₂",
"end": [
600,
99
],
"full_name": "List.exists_erase_eq",
"kind": "commanddeclaration",
"start": [
597,
1
]
},
{
"code": "@[simp] theorem length_erase_of_mem [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n length (l.erase a) = Nat.pred (length l)",
"end": [
604,
74
],
"full_name": "List.length_erase_of_mem",
"kind": "commanddeclaration",
"start": [
602,
1
]
},
{
"code": "theorem erase_append_left [LawfulBEq α] {l₁ : List α} (l₂) (h : a ∈ l₁) :\n (l₁ ++ l₂).erase a = l₁.erase a ++ l₂",
"end": [
608,
77
],
"full_name": "List.erase_append_left",
"kind": "commanddeclaration",
"start": [
606,
1
]
},
{
"code": "theorem erase_append_right [LawfulBEq α] {a : α} {l₁ : List α} (l₂ : List α) (h : a ∉ l₁) :\n (l₁ ++ l₂).erase a = (l₁ ++ l₂.erase a)",
"end": [
613,
55
],
"full_name": "List.erase_append_right",
"kind": "commanddeclaration",
"start": [
610,
1
]
},
{
"code": "theorem erase_sublist (a : α) (l : List α) : l.erase a <+ l",
"end": [
616,
42
],
"full_name": "List.erase_sublist",
"kind": "commanddeclaration",
"start": [
615,
1
]
},
{
"code": "theorem erase_subset (a : α) (l : List α) : l.erase a ⊆ l",
"end": [
618,
88
],
"full_name": "List.erase_subset",
"kind": "commanddeclaration",
"start": [
618,
1
]
},
{
"code": "theorem Sublist.erase (a : α) {l₁ l₂ : List α} (h : l₁ <+ l₂) : l₁.erase a <+ l₂.erase a",
"end": [
621,
47
],
"full_name": "List.Sublist.erase",
"kind": "commanddeclaration",
"start": [
620,
1
]
},
{
"code": "theorem mem_of_mem_erase {a b : α} {l : List α} (h : a ∈ l.erase b) : a ∈ l",
"end": [
624,
98
],
"full_name": "List.mem_of_mem_erase",
"kind": "commanddeclaration",
"start": [
624,
1
]
},
{
"code": "@[simp] theorem mem_erase_of_ne [LawfulBEq α] {a b : α} {l : List α} (ab : a ≠ b) :\n a ∈ l.erase b ↔ a ∈ l",
"end": [
628,
65
],
"full_name": "List.mem_erase_of_ne",
"kind": "commanddeclaration",
"start": [
626,
1
]
},
{
"code": "theorem erase_comm [LawfulBEq α] (a b : α) (l : List α) :\n (l.erase a).erase b = (l.erase b).erase a",
"end": [
644,
49
],
"full_name": "List.erase_comm",
"kind": "commanddeclaration",
"start": [
630,
1
]
},
{
"code": "@[simp] theorem filter_sublist {p : α → Bool} : ∀ (l : List α), filter p l <+ l",
"end": [
652,
93
],
"full_name": "List.filter_sublist",
"kind": "commanddeclaration",
"start": [
650,
1
]
},
{
"code": "protected theorem Sublist.filterMap (f : α → Option β) (s : l₁ <+ l₂) :\n filterMap f l₁ <+ filterMap f l₂",
"end": [
658,
76
],
"full_name": "List.Sublist.filterMap",
"kind": "commanddeclaration",
"start": [
656,
1
]
},
{
"code": "theorem Sublist.filter (p : α → Bool) {l₁ l₂} (s : l₁ <+ l₂) : filter p l₁ <+ filter p l₂",
"end": [
661,
48
],
"full_name": "List.Sublist.filter",
"kind": "commanddeclaration",
"start": [
660,
1
]
},
{
"code": "@[simp] theorem findIdx_nil {α : Type _} (p : α → Bool) : [].findIdx p = 0",
"end": [
665,
82
],
"full_name": "List.findIdx_nil",
"kind": "commanddeclaration",
"start": [
665,
1
]
},
{
"code": "theorem findIdx_cons (p : α → Bool) (b : α) (l : List α) :\n (b :: l).findIdx p = bif p b then 0 else (l.findIdx p) + 1",
"end": [
680,
43
],
"full_name": "List.findIdx_cons",
"kind": "commanddeclaration",
"start": [
667,
1
]
},
{
"code": "theorem findIdx_of_get?_eq_some {xs : List α} (w : xs.get? (xs.findIdx p) = some y) : p y",
"end": [
685,
65
],
"full_name": "List.findIdx_of_get?_eq_some",
"kind": "commanddeclaration",
"start": [
682,
1
]
},
{
"code": "theorem findIdx_get {xs : List α} {w : xs.findIdx p < xs.length} :\n p (xs.get ⟨xs.findIdx p, w⟩)",
"end": [
689,
45
],
"full_name": "List.findIdx_get",
"kind": "commanddeclaration",
"start": [
687,
1
]
},
{
"code": "theorem findIdx_lt_length_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.findIdx p < xs.length",
"end": [
703,
24
],
"full_name": "List.findIdx_lt_length_of_exists",
"kind": "commanddeclaration",
"start": [
691,
1
]
},
{
"code": "theorem findIdx_get?_eq_get_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.get? (xs.findIdx p) = some (xs.get ⟨xs.findIdx p, xs.findIdx_lt_length_of_exists h⟩)",
"end": [
707,
46
],
"full_name": "List.findIdx_get?_eq_get_of_exists",
"kind": "commanddeclaration",
"start": [
705,
1
]
},
{
"code": "@[simp] theorem findIdx?_nil : ([] : List α).findIdx? p i = none",
"end": [
711,
72
],
"full_name": "List.findIdx?_nil",
"kind": "commanddeclaration",
"start": [
711,
1
]
},
{
"code": "@[simp] theorem findIdx?_cons :\n (x :: xs).findIdx? p i = if p x then some i else findIdx? p xs (i + 1)",
"end": [
714,
82
],
"full_name": "List.findIdx?_cons",
"kind": "commanddeclaration",
"start": [
713,
1
]
},
{
"code": "@[simp] theorem findIdx?_succ :\n (xs : List α).findIdx? p (i+1) = (xs.findIdx? p i).map fun i => i + 1",
"end": [
719,
37
],
"full_name": "List.findIdx?_succ",
"kind": "commanddeclaration",
"start": [
716,
1
]
},
{
"code": "theorem findIdx?_eq_some_iff (xs : List α) (p : α → Bool) :\n xs.findIdx? p = some i ↔ (xs.take (i + 1)).map p = replicate i false ++ [true]",
"end": [
727,
52
],
"full_name": "List.findIdx?_eq_some_iff",
"kind": "commanddeclaration",
"start": [
721,
1
]
},
{
"code": "theorem findIdx?_of_eq_some {xs : List α} {p : α → Bool} (w : xs.findIdx? p = some i) :\n match xs.get? i with | some a => p a | none => false",
"end": [
735,
40
],
"full_name": "List.findIdx?_of_eq_some",
"kind": "commanddeclaration",
"start": [
729,
1
]
},
{
"code": "theorem findIdx?_of_eq_none {xs : List α} {p : α → Bool} (w : xs.findIdx? p = none) :\n ∀ i, match xs.get? i with | some a => ¬ p a | none => true",
"end": [
750,
30
],
"full_name": "List.findIdx?_of_eq_none",
"kind": "commanddeclaration",
"start": [
737,
1
]
},
{
"code": "@[simp] theorem findIdx?_append :\n (xs ++ ys : List α).findIdx? p =\n (xs.findIdx? p <|> (ys.findIdx? p).map fun i => i + xs.length)",
"end": [
756,
78
],
"full_name": "List.findIdx?_append",
"kind": "commanddeclaration",
"start": [
752,
1
]
},
{
"code": "@[simp] theorem findIdx?_replicate :\n (replicate n a).findIdx? p = if 0 < n ∧ p a then some 0 else none",
"end": [
764,
23
],
"full_name": "List.findIdx?_replicate",
"kind": "commanddeclaration",
"start": [
758,
1
]
},
{
"code": "theorem Pairwise.sublist : l₁ <+ l₂ → l₂.Pairwise R → l₁.Pairwise R",
"end": [
771,
80
],
"full_name": "List.Pairwise.sublist",
"kind": "commanddeclaration",
"start": [
768,
1
]
},
{
"code": "theorem pairwise_map {l : List α} :\n (l.map f).Pairwise R ↔ l.Pairwise fun a b => R (f a) (f b)",
"end": [
777,
58
],
"full_name": "List.pairwise_map",
"kind": "commanddeclaration",
"start": [
773,
1
]
},
{
"code": "theorem pairwise_append {l₁ l₂ : List α} :\n (l₁ ++ l₂).Pairwise R ↔ l₁.Pairwise R ∧ l₂.Pairwise R ∧ ∀ a ∈ l₁, ∀ b ∈ l₂, R a b",
"end": [
781,
74
],
"full_name": "List.pairwise_append",
"kind": "commanddeclaration",
"start": [
779,
1
]
},
{
"code": "theorem pairwise_reverse {l : List α} :\n l.reverse.Pairwise R ↔ l.Pairwise (fun a b => R b a)",
"end": [
785,
54
],
"full_name": "List.pairwise_reverse",
"kind": "commanddeclaration",
"start": [
783,
1
]
},
{
"code": "theorem Pairwise.imp {α R S} (H : ∀ {a b}, R a b → S a b) :\n ∀ {l : List α}, l.Pairwise R → l.Pairwise S",
"end": [
790,
50
],
"full_name": "List.Pairwise.imp",
"kind": "commanddeclaration",
"start": [
787,
1
]
},
{
"code": "theorem replaceF_nil : [].replaceF p = []",
"end": [
794,
49
],
"full_name": "List.replaceF_nil",
"kind": "commanddeclaration",
"start": [
794,
1
]
},
{
"code": "theorem replaceF_cons (a : α) (l : List α) :\n (a :: l).replaceF p = match p a with\n | none => a :: replaceF p l\n | some a' => a' :: l",
"end": [
799,
34
],
"full_name": "List.replaceF_cons",
"kind": "commanddeclaration",
"start": [
796,
1
]
},
{
"code": "theorem replaceF_cons_of_some {l : List α} (p) (h : p a = some a') :\n (a :: l).replaceF p = a' :: l",
"end": [
803,
26
],
"full_name": "List.replaceF_cons_of_some",
"kind": "commanddeclaration",
"start": [
801,
1
]
},
{
"code": "theorem replaceF_cons_of_none {l : List α} (p) (h : p a = none) :\n (a :: l).replaceF p = a :: l.replaceF p",
"end": [
806,
74
],
"full_name": "List.replaceF_cons_of_none",
"kind": "commanddeclaration",
"start": [
805,
1
]
},
{
"code": "theorem replaceF_of_forall_none {l : List α} (h : ∀ a, a ∈ l → p a = none) : l.replaceF p = l",
"end": [
811,
69
],
"full_name": "List.replaceF_of_forall_none",
"kind": "commanddeclaration",
"start": [
808,
1
]
},
{
"code": "theorem exists_of_replaceF : ∀ {l : List α} {a a'} (al : a ∈ l) (pa : p a = some a'),\n ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
825,
57
],
"full_name": "List.exists_of_replaceF",
"kind": "commanddeclaration",
"start": [
813,
1
]
},
{
"code": "theorem exists_or_eq_self_of_replaceF (p) (l : List α) :\n l.replaceF p = l ∨ ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
835,
62
],
"full_name": "List.exists_or_eq_self_of_replaceF",
"kind": "commanddeclaration",
"start": [
827,
1
]
},
{
"code": "@[simp] theorem length_replaceF : length (replaceF f l) = length l",
"end": [
838,
54
],
"full_name": "List.length_replaceF",
"kind": "commanddeclaration",
"start": [
837,
1
]
},
{
"code": "theorem disjoint_symm (d : Disjoint l₁ l₂) : Disjoint l₂ l₁",
"end": [
842,
86
],
"full_name": "List.disjoint_symm",
"kind": "commanddeclaration",
"start": [
842,
1
]
},
{
"code": "theorem disjoint_comm : Disjoint l₁ l₂ ↔ Disjoint l₂ l₁",
"end": [
844,
90
],
"full_name": "List.disjoint_comm",
"kind": "commanddeclaration",
"start": [
844,
1
]
},
{
"code": "theorem disjoint_left : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₁ → a ∉ l₂",
"end": [
846,
86
],
"full_name": "List.disjoint_left",
"kind": "commanddeclaration",
"start": [
846,
1
]
},
{
"code": "theorem disjoint_right : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₂ → a ∉ l₁",
"end": [
848,
82
],
"full_name": "List.disjoint_right",
"kind": "commanddeclaration",
"start": [
848,
1
]
},
{
"code": "theorem disjoint_iff_ne : Disjoint l₁ l₂ ↔ ∀ a ∈ l₁, ∀ b ∈ l₂, a ≠ b",
"end": [
851,
83
],
"full_name": "List.disjoint_iff_ne",
"kind": "commanddeclaration",
"start": [
850,
1
]
},
{
"code": "theorem disjoint_of_subset_left (ss : l₁ ⊆ l) (d : Disjoint l l₂) : Disjoint l₁ l₂",
"end": [
854,
22
],
"full_name": "List.disjoint_of_subset_left",
"kind": "commanddeclaration",
"start": [
853,
1
]
},
{
"code": "theorem disjoint_of_subset_right (ss : l₂ ⊆ l) (d : Disjoint l₁ l) : Disjoint l₁ l₂",
"end": [
857,
28
],
"full_name": "List.disjoint_of_subset_right",
"kind": "commanddeclaration",
"start": [
856,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_left {l₁ l₂} : Disjoint (a :: l₁) l₂ → Disjoint l₁ l₂",
"end": [
860,
42
],
"full_name": "List.disjoint_of_disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
859,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_right {l₁ l₂} : Disjoint l₁ (a :: l₂) → Disjoint l₁ l₂",
"end": [
863,
43
],
"full_name": "List.disjoint_of_disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
862,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_left (l : List α) : Disjoint [] l",
"end": [
865,
96
],
"full_name": "List.disjoint_nil_left",
"kind": "commanddeclaration",
"start": [
865,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_right (l : List α) : Disjoint l []",
"end": [
868,
48
],
"full_name": "List.disjoint_nil_right",
"kind": "commanddeclaration",
"start": [
867,
1
]
},
{
"code": "@[simp 1100] theorem singleton_disjoint : Disjoint [a] l ↔ a ∉ l",
"end": [
870,
87
],
"full_name": "List.singleton_disjoint",
"kind": "commanddeclaration",
"start": [
870,
1
]
},
{
"code": "@[simp 1100] theorem disjoint_singleton : Disjoint l [a] ↔ a ∉ l",
"end": [
873,
41
],
"full_name": "List.disjoint_singleton",
"kind": "commanddeclaration",
"start": [
872,
1
]
},
{
"code": "@[simp] theorem disjoint_append_left : Disjoint (l₁ ++ l₂) l ↔ Disjoint l₁ l ∧ Disjoint l₂ l",
"end": [
876,
38
],
"full_name": "List.disjoint_append_left",
"kind": "commanddeclaration",
"start": [
875,
1
]
},
{
"code": "@[simp] theorem disjoint_append_right : Disjoint l (l₁ ++ l₂) ↔ Disjoint l l₁ ∧ Disjoint l l₂",
"end": [
879,
76
],
"full_name": "List.disjoint_append_right",
"kind": "commanddeclaration",
"start": [
878,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_left : Disjoint (a::l₁) l₂ ↔ (a ∉ l₂) ∧ Disjoint l₁ l₂",
"end": [
882,
75
],
"full_name": "List.disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
881,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_right : Disjoint l₁ (a :: l₂) ↔ (a ∉ l₁) ∧ Disjoint l₁ l₂",
"end": [
885,
74
],
"full_name": "List.disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
884,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_left (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₁ l",
"end": [
888,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_left",
"kind": "commanddeclaration",
"start": [
887,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_right (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₂ l",
"end": [
891,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_right",
"kind": "commanddeclaration",
"start": [
890,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_left (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₁",
"end": [
894,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_left",
"kind": "commanddeclaration",
"start": [
893,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_right (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₂",
"end": [
897,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_right",
"kind": "commanddeclaration",
"start": [
896,
1
]
},
{
"code": "theorem foldl_hom (f : α₁ → α₂) (g₁ : α₁ → β → α₁) (g₂ : α₂ → β → α₂) (l : List β) (init : α₁)\n (H : ∀ x y, g₂ (f x) y = f (g₁ x y)) : l.foldl g₂ (f init) = f (l.foldl g₁ init)",
"end": [
903,
48
],
"full_name": "List.foldl_hom",
"kind": "commanddeclaration",
"start": [
901,
1
]
},
{
"code": "theorem foldr_hom (f : β₁ → β₂) (g₁ : α → β₁ → β₁) (g₂ : α → β₂ → β₂) (l : List α) (init : β₁)\n (H : ∀ x y, g₂ x (f y) = f (g₁ x y)) : l.foldr g₂ (f init) = f (l.foldr g₁ init)",
"end": [
907,
30
],
"full_name": "List.foldr_hom",
"kind": "commanddeclaration",
"start": [
905,
1
]
},
{
"code": "theorem union_def [BEq α] (l₁ l₂ : List α) : l₁ ∪ l₂ = foldr .insert l₂ l₁",
"end": [
915,
83
],
"full_name": "List.union_def",
"kind": "commanddeclaration",
"start": [
915,
1
]
},
{
"code": "@[simp] theorem nil_union (l : List α) : nil ∪ l = l",
"end": [
917,
88
],
"full_name": "List.nil_union",
"kind": "commanddeclaration",
"start": [
917,
1
]
},
{
"code": "@[simp] theorem cons_union (a : α) (l₁ l₂ : List α) :\n (a :: l₁) ∪ l₂ = (l₁ ∪ l₂).insert a",
"end": [
920,
75
],
"full_name": "List.cons_union",
"kind": "commanddeclaration",
"start": [
919,
1
]
},
{
"code": "@[simp] theorem mem_union_iff [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∪ l₂ ↔ x ∈ l₁ ∨ x ∈ l₂",
"end": [
923,
76
],
"full_name": "List.mem_union_iff",
"kind": "commanddeclaration",
"start": [
922,
1
]
},
{
"code": "theorem inter_def [BEq α] (l₁ l₂ : List α) : l₁ ∩ l₂ = filter (elem · l₂) l₁",
"end": [
929,
85
],
"full_name": "List.inter_def",
"kind": "commanddeclaration",
"start": [
929,
1
]
},
{
"code": "@[simp] theorem mem_inter_iff [BEq α] [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∩ l₂ ↔ x ∈ l₁ ∧ x ∈ l₂",
"end": [
933,
49
],
"full_name": "List.mem_inter_iff",
"kind": "commanddeclaration",
"start": [
931,
1
]
},
{
"code": "@[simp]\ntheorem pair_mem_product {xs : List α} {ys : List β} {x : α} {y : β} :\n (x, y) ∈ product xs ys ↔ x ∈ xs ∧ y ∈ ys",
"end": [
942,
47
],
"full_name": "List.pair_mem_product",
"kind": "commanddeclaration",
"start": [
937,
1
]
},
{
"code": "@[simp]\ntheorem leftpad_length (n : Nat) (a : α) (l : List α) :\n (leftpad n a l).length = max n l.length",
"end": [
951,
75
],
"full_name": "List.leftpad_length",
"kind": "commanddeclaration",
"start": [
946,
1
]
},
{
"code": "theorem leftpad_prefix (n : Nat) (a : α) (l : List α) :\n replicate (n - length l) a <+: leftpad n a l",
"end": [
956,
27
],
"full_name": "List.leftpad_prefix",
"kind": "commanddeclaration",
"start": [
953,
1
]
},
{
"code": "theorem leftpad_suffix (n : Nat) (a : α) (l : List α) : l <:+ (leftpad n a l)",
"end": [
960,
54
],
"full_name": "List.leftpad_suffix",
"kind": "commanddeclaration",
"start": [
958,
1
]
},
{
"code": "@[simp] theorem forIn_eq_forIn [Monad m] : @List.forIn α β m _ = forIn",
"end": [
965,
78
],
"full_name": "List.forIn_eq_forIn",
"kind": "commanddeclaration",
"start": [
965,
1
]
},
{
"code": "theorem forIn_eq_bindList [Monad m] [LawfulMonad m]\n (f : α → β → m (ForInStep β)) (l : List α) (init : β) :\n forIn l init f = ForInStep.run <$> (ForInStep.yield init).bindList f l",
"end": [
971,
30
],
"full_name": "List.forIn_eq_bindList",
"kind": "commanddeclaration",
"start": [
967,
1
]
},
{
"code": "@[simp] theorem forM_append [Monad m] [LawfulMonad m] (l₁ l₂ : List α) (f : α → m PUnit) :\n (l₁ ++ l₂).forM f = (do l₁.forM f; l₂.forM f)",
"end": [
974,
82
],
"full_name": "List.forM_append",
"kind": "commanddeclaration",
"start": [
973,
1
]
},
{
"code": "@[simp] theorem diff_nil (l : List α) : l.diff [] = l",
"end": [
982,
61
],
"full_name": "List.diff_nil",
"kind": "commanddeclaration",
"start": [
982,
1
]
},
{
"code": "@[simp] theorem diff_cons (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.erase a).diff l₂",
"end": [
985,
41
],
"full_name": "List.diff_cons",
"kind": "commanddeclaration",
"start": [
984,
1
]
},
{
"code": "theorem diff_cons_right (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.diff l₂).erase a",
"end": [
988,
71
],
"full_name": "List.diff_cons_right",
"kind": "commanddeclaration",
"start": [
987,
1
]
},
{
"code": "theorem diff_erase (l₁ l₂ : List α) (a : α) : (l₁.diff l₂).erase a = (l₁.erase a).diff l₂",
"end": [
991,
36
],
"full_name": "List.diff_erase",
"kind": "commanddeclaration",
"start": [
990,
1
]
},
{
"code": "@[simp] theorem nil_diff (l : List α) : [].diff l = []",
"end": [
994,
45
],
"full_name": "List.nil_diff",
"kind": "commanddeclaration",
"start": [
993,
1
]
},
{
"code": "theorem cons_diff (a : α) (l₁ l₂ : List α) :\n (a :: l₁).diff l₂ = if a ∈ l₂ then l₁.diff (l₂.erase a) else a :: l₁.diff l₂",
"end": [
1005,
14
],
"full_name": "List.cons_diff",
"kind": "commanddeclaration",
"start": [
996,
1
]
},
{
"code": "theorem cons_diff_of_mem {a : α} {l₂ : List α} (h : a ∈ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = l₁.diff (l₂.erase a)",
"end": [
1008,
76
],
"full_name": "List.cons_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1007,
1
]
},
{
"code": "theorem cons_diff_of_not_mem {a : α} {l₂ : List α} (h : a ∉ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = a :: l₁.diff l₂",
"end": [
1011,
71
],
"full_name": "List.cons_diff_of_not_mem",
"kind": "commanddeclaration",
"start": [
1010,
1
]
},
{
"code": "theorem diff_eq_foldl : ∀ l₁ l₂ : List α, l₁.diff l₂ = foldl List.erase l₁ l₂",
"end": [
1015,
65
],
"full_name": "List.diff_eq_foldl",
"kind": "commanddeclaration",
"start": [
1013,
1
]
},
{
"code": "@[simp] theorem diff_append (l₁ l₂ l₃ : List α) : l₁.diff (l₂ ++ l₃) = (l₁.diff l₂).diff l₃",
"end": [
1018,
42
],
"full_name": "List.diff_append",
"kind": "commanddeclaration",
"start": [
1017,
1
]
},
{
"code": "theorem diff_sublist : ∀ l₁ l₂ : List α, l₁.diff l₂ <+ l₁",
"end": [
1026,
34
],
"full_name": "List.diff_sublist",
"kind": "commanddeclaration",
"start": [
1020,
1
]
},
{
"code": "theorem diff_subset (l₁ l₂ : List α) : l₁.diff l₂ ⊆ l₁",
"end": [
1028,
83
],
"full_name": "List.diff_subset",
"kind": "commanddeclaration",
"start": [
1028,
1
]
},
{
"code": "theorem mem_diff_of_mem {a : α} : ∀ {l₁ l₂ : List α}, a ∈ l₁ → a ∉ l₂ → a ∈ l₁.diff l₂",
"end": [
1034,
94
],
"full_name": "List.mem_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1030,
1
]
},
{
"code": "theorem Sublist.diff_right : ∀ {l₁ l₂ l₃ : List α}, l₁ <+ l₂ → l₁.diff l₃ <+ l₂.diff l₃",
"end": [
1038,
75
],
"full_name": "List.Sublist.diff_right",
"kind": "commanddeclaration",
"start": [
1036,
1
]
},
{
"code": "theorem Sublist.erase_diff_erase_sublist {a : α} :\n ∀ {l₁ l₂ : List α}, l₁ <+ l₂ → (l₂.erase a).diff (l₁.erase a) <+ l₂.diff l₁",
"end": [
1048,
71
],
"full_name": "List.Sublist.erase_diff_erase_sublist",
"kind": "commanddeclaration",
"start": [
1040,
1
]
},
{
"code": "@[simp] theorem prefix_append (l₁ l₂ : List α) : l₁ <+: l₁ ++ l₂",
"end": [
1054,
78
],
"full_name": "List.prefix_append",
"kind": "commanddeclaration",
"start": [
1054,
1
]
},
{
"code": "@[simp] theorem suffix_append (l₁ l₂ : List α) : l₂ <:+ l₁ ++ l₂",
"end": [
1056,
78
],
"full_name": "List.suffix_append",
"kind": "commanddeclaration",
"start": [
1056,
1
]
},
{
"code": "theorem infix_append (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ l₂ ++ l₃",
"end": [
1058,
83
],
"full_name": "List.infix_append",
"kind": "commanddeclaration",
"start": [
1058,
1
]
},
{
"code": "@[simp] theorem infix_append' (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ (l₂ ++ l₃)",
"end": [
1061,
47
],
"full_name": "List.infix_append'",
"kind": "commanddeclaration",
"start": [
1060,
1
]
},
{
"code": "theorem IsPrefix.isInfix : l₁ <+: l₂ → l₁ <:+: l₂",
"end": [
1063,
78
],
"full_name": "List.IsPrefix.isInfix",
"kind": "commanddeclaration",
"start": [
1063,
1
]
},
{
"code": "theorem IsSuffix.isInfix : l₁ <:+ l₂ → l₁ <:+: l₂",
"end": [
1065,
98
],
"full_name": "List.IsSuffix.isInfix",
"kind": "commanddeclaration",
"start": [
1065,
1
]
},
{
"code": "theorem nil_prefix (l : List α) : [] <+: l",
"end": [
1067,
55
],
"full_name": "List.nil_prefix",
"kind": "commanddeclaration",
"start": [
1067,
1
]
},
{
"code": "theorem nil_suffix (l : List α) : [] <:+ l",
"end": [
1069,
64
],
"full_name": "List.nil_suffix",
"kind": "commanddeclaration",
"start": [
1069,
1
]
},
{
"code": "theorem nil_infix (l : List α) : [] <:+: l",
"end": [
1071,
69
],
"full_name": "List.nil_infix",
"kind": "commanddeclaration",
"start": [
1071,
1
]
},
{
"code": "theorem prefix_refl (l : List α) : l <+: l",
"end": [
1073,
65
],
"full_name": "List.prefix_refl",
"kind": "commanddeclaration",
"start": [
1073,
1
]
},
{
"code": "theorem suffix_refl (l : List α) : l <:+ l",
"end": [
1075,
56
],
"full_name": "List.suffix_refl",
"kind": "commanddeclaration",
"start": [
1075,
1
]
},
{
"code": "theorem infix_refl (l : List α) : l <:+: l",
"end": [
1077,
70
],
"full_name": "List.infix_refl",
"kind": "commanddeclaration",
"start": [
1077,
1
]
},
{
"code": "@[simp] theorem suffix_cons (a : α) : ∀ l, l <:+ a :: l",
"end": [
1079,
77
],
"full_name": "List.suffix_cons",
"kind": "commanddeclaration",
"start": [
1079,
1
]
},
{
"code": "theorem infix_cons : l₁ <:+: l₂ → l₁ <:+: a :: l₂",
"end": [
1081,
95
],
"full_name": "List.infix_cons",
"kind": "commanddeclaration",
"start": [
1081,
1
]
},
{
"code": "theorem infix_concat : l₁ <:+: l₂ → l₁ <:+: concat l₂ a",
"end": [
1084,
67
],
"full_name": "List.infix_concat",
"kind": "commanddeclaration",
"start": [
1083,
1
]
},
{
"code": "theorem IsPrefix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₂ → l₂ <+: l₃ → l₁ <+: l₃",
"end": [
1087,
75
],
"full_name": "List.IsPrefix.trans",
"kind": "commanddeclaration",
"start": [
1086,
1
]
},
{
"code": "theorem IsSuffix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+ l₂ → l₂ <:+ l₃ → l₁ <:+ l₃",
"end": [
1090,
68
],
"full_name": "List.IsSuffix.trans",
"kind": "commanddeclaration",
"start": [
1089,
1
]
},
{
"code": "theorem IsInfix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+: l₂ → l₂ <:+: l₃ → l₁ <:+: l₃",
"end": [
1093,
95
],
"full_name": "List.IsInfix.trans",
"kind": "commanddeclaration",
"start": [
1092,
1
]
},
{
"code": "protected theorem IsInfix.sublist : l₁ <:+: l₂ → l₁ <+ l₂",
"end": [
1096,
78
],
"full_name": "List.IsInfix.sublist",
"kind": "commanddeclaration",
"start": [
1095,
1
]
},
{
"code": "protected theorem IsInfix.subset (hl : l₁ <:+: l₂) : l₁ ⊆ l₂",
"end": [
1099,
20
],
"full_name": "List.IsInfix.subset",
"kind": "commanddeclaration",
"start": [
1098,
1
]
},
{
"code": "protected theorem IsPrefix.sublist (h : l₁ <+: l₂) : l₁ <+ l₂",
"end": [
1102,
20
],
"full_name": "List.IsPrefix.sublist",
"kind": "commanddeclaration",
"start": [
1101,
1
]
},
{
"code": "protected theorem IsPrefix.subset (hl : l₁ <+: l₂) : l₁ ⊆ l₂",
"end": [
1105,
20
],
"full_name": "List.IsPrefix.subset",
"kind": "commanddeclaration",
"start": [
1104,
1
]
},
{
"code": "protected theorem IsSuffix.sublist (h : l₁ <:+ l₂) : l₁ <+ l₂",
"end": [
1108,
20
],
"full_name": "List.IsSuffix.sublist",
"kind": "commanddeclaration",
"start": [
1107,
1
]
},
{
"code": "protected theorem IsSuffix.subset (hl : l₁ <:+ l₂) : l₁ ⊆ l₂",
"end": [
1111,
20
],
"full_name": "List.IsSuffix.subset",
"kind": "commanddeclaration",
"start": [
1110,
1
]
},
{
"code": "@[simp] theorem reverse_suffix : reverse l₁ <:+ reverse l₂ ↔ l₁ <+: l₂",
"end": [
1115,
59
],
"full_name": "List.reverse_suffix",
"kind": "commanddeclaration",
"start": [
1113,
1
]
},
{
"code": "@[simp] theorem reverse_prefix : reverse l₁ <+: reverse l₂ ↔ l₁ <:+ l₂",
"end": [
1118,
53
],
"full_name": "List.reverse_prefix",
"kind": "commanddeclaration",
"start": [
1117,
1
]
},
{
"code": "@[simp] theorem reverse_infix : reverse l₁ <:+: reverse l₂ ↔ l₁ <:+: l₂",
"end": [
1124,
61
],
"full_name": "List.reverse_infix",
"kind": "commanddeclaration",
"start": [
1120,
1
]
},
{
"code": "theorem IsInfix.length_le (h : l₁ <:+: l₂) : l₁.length ≤ l₂.length",
"end": [
1127,
22
],
"full_name": "List.IsInfix.length_le",
"kind": "commanddeclaration",
"start": [
1126,
1
]
},
{
"code": "theorem IsPrefix.length_le (h : l₁ <+: l₂) : l₁.length ≤ l₂.length",
"end": [
1130,
22
],
"full_name": "List.IsPrefix.length_le",
"kind": "commanddeclaration",
"start": [
1129,
1
]
},
{
"code": "theorem IsSuffix.length_le (h : l₁ <:+ l₂) : l₁.length ≤ l₂.length",
"end": [
1133,
22
],
"full_name": "List.IsSuffix.length_le",
"kind": "commanddeclaration",
"start": [
1132,
1
]
},
{
"code": "@[simp] theorem infix_nil : l <:+: [] ↔ l = []",
"end": [
1135,
98
],
"full_name": "List.infix_nil",
"kind": "commanddeclaration",
"start": [
1135,
1
]
},
{
"code": "@[simp] theorem prefix_nil : l <+: [] ↔ l = []",
"end": [
1137,
99
],
"full_name": "List.prefix_nil",
"kind": "commanddeclaration",
"start": [
1137,
1
]
},
{
"code": "@[simp] theorem suffix_nil : l <:+ [] ↔ l = []",
"end": [
1139,
99
],
"full_name": "List.suffix_nil",
"kind": "commanddeclaration",
"start": [
1139,
1
]
},
{
"code": "theorem infix_iff_prefix_suffix (l₁ l₂ : List α) : l₁ <:+: l₂ ↔ ∃ t, l₁ <+: t ∧ t <:+ l₂",
"end": [
1143,
60
],
"full_name": "List.infix_iff_prefix_suffix",
"kind": "commanddeclaration",
"start": [
1141,
1
]
},
{
"code": "theorem IsInfix.eq_of_length (h : l₁ <:+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1146,
25
],
"full_name": "List.IsInfix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1145,
1
]
},
{
"code": "theorem IsPrefix.eq_of_length (h : l₁ <+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1149,
25
],
"full_name": "List.IsPrefix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1148,
1
]
},
{
"code": "theorem IsSuffix.eq_of_length (h : l₁ <:+ l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1152,
25
],
"full_name": "List.IsSuffix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1151,
1
]
},
{
"code": "theorem prefix_of_prefix_length_le :\n ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₃ → l₂ <+: l₃ → length l₁ ≤ length l₂ → l₁ <+: l₂",
"end": [
1160,
20
],
"full_name": "List.prefix_of_prefix_length_le",
"kind": "commanddeclaration",
"start": [
1154,
1
]
},
{
"code": "theorem prefix_or_prefix_of_prefix (h₁ : l₁ <+: l₃) (h₂ : l₂ <+: l₃) : l₁ <+: l₂ ∨ l₂ <+: l₁",
"end": [
1164,
39
],
"full_name": "List.prefix_or_prefix_of_prefix",
"kind": "commanddeclaration",
"start": [
1162,
1
]
},
{
"code": "theorem suffix_of_suffix_length_le\n (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) (ll : length l₁ ≤ length l₂) : l₁ <:+ l₂",
"end": [
1169,
90
],
"full_name": "List.suffix_of_suffix_length_le",
"kind": "commanddeclaration",
"start": [
1166,
1
]
},
{
"code": "theorem suffix_or_suffix_of_suffix (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) : l₁ <:+ l₂ ∨ l₂ <:+ l₁",
"end": [
1173,
21
],
"full_name": "List.suffix_or_suffix_of_suffix",
"kind": "commanddeclaration",
"start": [
1171,
1
]
},
{
"code": "theorem suffix_cons_iff : l₁ <:+ a :: l₂ ↔ l₁ = a :: l₂ ∨ l₁ <:+ l₂",
"end": [
1184,
41
],
"full_name": "List.suffix_cons_iff",
"kind": "commanddeclaration",
"start": [
1175,
1
]
},
{
"code": "theorem infix_cons_iff : l₁ <:+: a :: l₂ ↔ l₁ <+: a :: l₂ ∨ l₁ <:+: l₂",
"end": [
1195,
27
],
"full_name": "List.infix_cons_iff",
"kind": "commanddeclaration",
"start": [
1186,
1
]
},
{
"code": "theorem infix_of_mem_join : ∀ {L : List (List α)}, l ∈ L → l <:+: join L",
"end": [
1202,
78
],
"full_name": "List.infix_of_mem_join",
"kind": "commanddeclaration",
"start": [
1197,
1
]
},
{
"code": "theorem prefix_append_right_inj (l) : l ++ l₁ <+: l ++ l₂ ↔ l₁ <+: l₂",
"end": [
1205,
63
],
"full_name": "List.prefix_append_right_inj",
"kind": "commanddeclaration",
"start": [
1204,
1
]
},
{
"code": "@[simp]\ntheorem prefix_cons_inj (a) : a :: l₁ <+: a :: l₂ ↔ l₁ <+: l₂",
"end": [
1209,
30
],
"full_name": "List.prefix_cons_inj",
"kind": "commanddeclaration",
"start": [
1207,
1
]
},
{
"code": "theorem take_prefix (n) (l : List α) : take n l <+: l",
"end": [
1212,
28
],
"full_name": "List.take_prefix",
"kind": "commanddeclaration",
"start": [
1211,
1
]
},
{
"code": "theorem drop_suffix (n) (l : List α) : drop n l <:+ l",
"end": [
1215,
28
],
"full_name": "List.drop_suffix",
"kind": "commanddeclaration",
"start": [
1214,
1
]
},
{
"code": "theorem take_sublist (n) (l : List α) : take n l <+ l",
"end": [
1218,
28
],
"full_name": "List.take_sublist",
"kind": "commanddeclaration",
"start": [
1217,
1
]
},
{
"code": "theorem drop_sublist (n) (l : List α) : drop n l <+ l",
"end": [
1221,
28
],
"full_name": "List.drop_sublist",
"kind": "commanddeclaration",
"start": [
1220,
1
]
},
{
"code": "theorem take_subset (n) (l : List α) : take n l ⊆ l",
"end": [
1224,
28
],
"full_name": "List.take_subset",
"kind": "commanddeclaration",
"start": [
1223,
1
]
},
{
"code": "theorem drop_subset (n) (l : List α) : drop n l ⊆ l",
"end": [
1227,
28
],
"full_name": "List.drop_subset",
"kind": "commanddeclaration",
"start": [
1226,
1
]
},
{
"code": "theorem mem_of_mem_take {l : List α} (h : a ∈ l.take n) : a ∈ l",
"end": [
1230,
20
],
"full_name": "List.mem_of_mem_take",
"kind": "commanddeclaration",
"start": [
1229,
1
]
},
{
"code": "theorem IsPrefix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <+: l₂) :\n l₁.filter p <+: l₂.filter p",
"end": [
1235,
42
],
"full_name": "List.IsPrefix.filter",
"kind": "commanddeclaration",
"start": [
1232,
1
]
},
{
"code": "theorem IsSuffix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+ l₂) :\n l₁.filter p <:+ l₂.filter p",
"end": [
1240,
42
],
"full_name": "List.IsSuffix.filter",
"kind": "commanddeclaration",
"start": [
1237,
1
]
},
{
"code": "theorem IsInfix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+: l₂) :\n l₁.filter p <:+: l₂.filter p",
"end": [
1245,
58
],
"full_name": "List.IsInfix.filter",
"kind": "commanddeclaration",
"start": [
1242,
1
]
},
{
"code": "theorem mem_of_mem_drop {n} {l : List α} (h : a ∈ l.drop n) : a ∈ l",
"end": [
1249,
89
],
"full_name": "List.mem_of_mem_drop",
"kind": "commanddeclaration",
"start": [
1249,
1
]
},
{
"code": "theorem disjoint_take_drop : ∀ {l : List α}, l.Nodup → m ≤ n → Disjoint (l.take m) (l.drop n)",
"end": [
1259,
61
],
"full_name": "List.disjoint_take_drop",
"kind": "commanddeclaration",
"start": [
1251,
1
]
},
{
"code": "@[simp]\ntheorem chain_cons {a b : α} {l : List α} : Chain R a (b :: l) ↔ R a b ∧ Chain R b l",
"end": [
1268,
27
],
"full_name": "List.chain_cons",
"kind": "commanddeclaration",
"start": [
1265,
1
]
},
{
"code": "theorem rel_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : R a b",
"end": [
1271,
21
],
"full_name": "List.rel_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1270,
1
]
},
{
"code": "theorem chain_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : Chain R b l",
"end": [
1274,
21
],
"full_name": "List.chain_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1273,
1
]
},
{
"code": "theorem Chain.imp' {R S : α → α → Prop} (HRS : ∀ ⦃a b⦄, R a b → S a b) {a b : α}\n (Hab : ∀ ⦃c⦄, R a c → S b c) {l : List α} (p : Chain R a l) : Chain S b l",
"end": [
1283,
24
],
"full_name": "List.Chain.imp'",
"kind": "commanddeclaration",
"start": [
1276,
1
]
},
{
"code": "theorem Chain.imp {R S : α → α → Prop} (H : ∀ a b, R a b → S a b) {a : α} {l : List α}\n (p : Chain R a l) : Chain S a l",
"end": [
1287,
17
],
"full_name": "List.Chain.imp",
"kind": "commanddeclaration",
"start": [
1285,
1
]
},
{
"code": "protected theorem Pairwise.chain (p : Pairwise R (a :: l)) : Chain R a l",
"end": [
1295,
36
],
"full_name": "List.Pairwise.chain",
"kind": "commanddeclaration",
"start": [
1289,
1
]
},
{
"code": "theorem range'_succ (s n step) : range' s (n + 1) step = s :: range' (s + step) n step",
"end": [
1300,
44
],
"full_name": "List.range'_succ",
"kind": "commanddeclaration",
"start": [
1299,
1
]
},
{
"code": "@[simp] theorem length_range' (s step) : ∀ n : Nat, length (range' s n step) = n",
"end": [
1304,
49
],
"full_name": "List.length_range'",
"kind": "commanddeclaration",
"start": [
1302,
1
]
},
{
"code": "@[simp] theorem range'_eq_nil : range' s n step = [] ↔ n = 0",
"end": [
1307,
39
],
"full_name": "List.range'_eq_nil",
"kind": "commanddeclaration",
"start": [
1306,
1
]
},
{
"code": "theorem mem_range' : ∀{n}, m ∈ range' s n step ↔ ∃ i < n, m = s + step * i",
"end": [
1314,
71
],
"full_name": "List.mem_range'",
"kind": "commanddeclaration",
"start": [
1309,
1
]
},
{
"code": "@[simp] theorem mem_range'_1 : m ∈ range' s n ↔ s ≤ m ∧ m < s + n",
"end": [
1319,
93
],
"full_name": "List.mem_range'_1",
"kind": "commanddeclaration",
"start": [
1316,
1
]
},
{
"code": "@[simp]\ntheorem map_add_range' (a) : ∀ s n step, map (a + ·) (range' s n step) = range' (a + s) n step",
"end": [
1324,
90
],
"full_name": "List.map_add_range'",
"kind": "commanddeclaration",
"start": [
1321,
1
]
},
{
"code": "theorem map_sub_range' (a s n : Nat) (h : a ≤ s) :\n map (· - a) (range' s n step) = range' (s - a) n step",
"end": [
1330,
42
],
"full_name": "List.map_sub_range'",
"kind": "commanddeclaration",
"start": [
1326,
1
]
},
{
"code": "theorem chain_succ_range' : ∀ s n step : Nat,\n Chain (fun a b => b = a + step) s (range' (s + step) n step)",
"end": [
1335,
69
],
"full_name": "List.chain_succ_range'",
"kind": "commanddeclaration",
"start": [
1332,
1
]
},
{
"code": "theorem chain_lt_range' (s n : Nat) {step} (h : 0 < step) :\n Chain (· < ·) s (range' (s + step) n step)",
"end": [
1339,
83
],
"full_name": "List.chain_lt_range'",
"kind": "commanddeclaration",
"start": [
1337,
1
]
},
{
"code": "theorem range'_append : ∀ s m n step : Nat,\n range' s m step ++ range' (s + step * m) n step = range' s (n + m) step",
"end": [
1346,
46
],
"full_name": "List.range'_append",
"kind": "commanddeclaration",
"start": [
1341,
1
]
},
{
"code": "@[simp] theorem range'_append_1 (s m n : Nat) :\n range' s m ++ range' (s + m) n = range' s (n + m)",
"end": [
1349,
94
],
"full_name": "List.range'_append_1",
"kind": "commanddeclaration",
"start": [
1348,
1
]
},
{
"code": "theorem range'_sublist_right {s m n : Nat} : range' s m step <+ range' s n step ↔ m ≤ n",
"end": [
1353,
88
],
"full_name": "List.range'_sublist_right",
"kind": "commanddeclaration",
"start": [
1351,
1
]
},
{
"code": "theorem range'_subset_right {s m n : Nat} (step0 : 0 < step) :\n range' s m step ⊆ range' s n step ↔ m ≤ n",
"end": [
1359,
82
],
"full_name": "List.range'_subset_right",
"kind": "commanddeclaration",
"start": [
1355,
1
]
},
{
"code": "theorem range'_subset_right_1 {s m n : Nat} : range' s m ⊆ range' s n ↔ m ≤ n",
"end": [
1362,
34
],
"full_name": "List.range'_subset_right_1",
"kind": "commanddeclaration",
"start": [
1361,
1
]
},
{
"code": "theorem getElem?_range' (s step) :\n ∀ {m n : Nat}, m < n → (range' s n step)[m]? = some (s + step * m)",
"end": [
1370,
55
],
"full_name": "List.getElem?_range'",
"kind": "commanddeclaration",
"start": [
1364,
1
]
},
{
"code": "@[simp] theorem getElem_range' {n m step} (i) (H : i < (range' n m step).length) :\n (range' n m step)[i] = n + step * i",
"end": [
1374,
70
],
"full_name": "List.getElem_range'",
"kind": "commanddeclaration",
"start": [
1372,
1
]
},
{
"code": "@[deprecated getElem?_range' (since := \"2024-06-12\")]\ntheorem get?_range' (s step) {m n : Nat} (h : m < n) :\n get? (range' s n step) m = some (s + step * m)",
"end": [
1379,
11
],
"full_name": "List.get?_range'",
"kind": "commanddeclaration",
"start": [
1376,
1
]
},
{
"code": "@[deprecated getElem_range' (since := \"2024-06-12\")]\ntheorem get_range' {n m step} (i) (H : i < (range' n m step).length) :\n get (range' n m step) ⟨i, H⟩ = n + step * i",
"end": [
1384,
7
],
"full_name": "List.get_range'",
"kind": "commanddeclaration",
"start": [
1381,
1
]
},
{
"code": "theorem range'_concat (s n : Nat) : range' s (n + 1) step = range' s n step ++ [s + step * n]",
"end": [
1387,
63
],
"full_name": "List.range'_concat",
"kind": "commanddeclaration",
"start": [
1386,
1
]
},
{
"code": "theorem range'_1_concat (s n : Nat) : range' s (n + 1) = range' s n ++ [s + n]",
"end": [
1390,
23
],
"full_name": "List.range'_1_concat",
"kind": "commanddeclaration",
"start": [
1389,
1
]
},
{
"code": "theorem range_loop_range' : ∀ s n : Nat, range.loop s (range' s n) = range' 0 (n + s)",
"end": [
1394,
101
],
"full_name": "List.range_loop_range'",
"kind": "commanddeclaration",
"start": [
1392,
1
]
},
{
"code": "theorem range_eq_range' (n : Nat) : range n = range' 0 n",
"end": [
1397,
56
],
"full_name": "List.range_eq_range'",
"kind": "commanddeclaration",
"start": [
1396,
1
]
},
{
"code": "theorem range_succ_eq_map (n : Nat) : range (n + 1) = 0 :: map succ (range n)",
"end": [
1401,
30
],
"full_name": "List.range_succ_eq_map",
"kind": "commanddeclaration",
"start": [
1399,
1
]
},
{
"code": "theorem range'_eq_map_range (s n : Nat) : range' s n = map (s + ·) (range n)",
"end": [
1404,
44
],
"full_name": "List.range'_eq_map_range",
"kind": "commanddeclaration",
"start": [
1403,
1
]
},
{
"code": "@[simp] theorem length_range (n : Nat) : length (range n) = n",
"end": [
1407,
45
],
"full_name": "List.length_range",
"kind": "commanddeclaration",
"start": [
1406,
1
]
},
{
"code": "@[simp] theorem range_eq_nil {n : Nat} : range n = [] ↔ n = 0",
"end": [
1410,
38
],
"full_name": "List.range_eq_nil",
"kind": "commanddeclaration",
"start": [
1409,
1
]
},
{
"code": "@[simp]\ntheorem range_sublist {m n : Nat} : range m <+ range n ↔ m ≤ n",
"end": [
1414,
52
],
"full_name": "List.range_sublist",
"kind": "commanddeclaration",
"start": [
1412,
1
]
},
{
"code": "@[simp]\ntheorem range_subset {m n : Nat} : range m ⊆ range n ↔ m ≤ n",
"end": [
1418,
65
],
"full_name": "List.range_subset",
"kind": "commanddeclaration",
"start": [
1416,
1
]
},
{
"code": "@[simp]\ntheorem mem_range {m n : Nat} : m ∈ range n ↔ m < n",
"end": [
1422,
81
],
"full_name": "List.mem_range",
"kind": "commanddeclaration",
"start": [
1420,
1
]
},
{
"code": "theorem not_mem_range_self {n : Nat} : n ∉ range n",
"end": [
1424,
62
],
"full_name": "List.not_mem_range_self",
"kind": "commanddeclaration",
"start": [
1424,
1
]
},
{
"code": "theorem self_mem_range_succ (n : Nat) : n ∈ range (n + 1)",
"end": [
1426,
69
],
"full_name": "List.self_mem_range_succ",
"kind": "commanddeclaration",
"start": [
1426,
1
]
},
{
"code": "theorem getElem?_range {m n : Nat} (h : m < n) : (range n)[m]? = some m",
"end": [
1429,
48
],
"full_name": "List.getElem?_range",
"kind": "commanddeclaration",
"start": [
1428,
1
]
},
{
"code": "@[simp] theorem getElem_range {n : Nat} (m) (h : m < (range n).length) : (range n)[m] = m",
"end": [
1432,
25
],
"full_name": "List.getElem_range",
"kind": "commanddeclaration",
"start": [
1431,
1
]
},
{
"code": "@[deprecated getElem?_range (since := \"2024-06-12\")]\ntheorem get?_range {m n : Nat} (h : m < n) : get? (range n) m = some m",
"end": [
1436,
27
],
"full_name": "List.get?_range",
"kind": "commanddeclaration",
"start": [
1434,
1
]
},
{
"code": "@[deprecated getElem_range (since := \"2024-06-12\")]\ntheorem get_range {n} (i) (H : i < (range n).length) : get (range n) ⟨i, H⟩ = i",
"end": [
1440,
7
],
"full_name": "List.get_range",
"kind": "commanddeclaration",
"start": [
1438,
1
]
},
{
"code": "theorem range_succ (n : Nat) : range (succ n) = range n ++ [n]",
"end": [
1443,
61
],
"full_name": "List.range_succ",
"kind": "commanddeclaration",
"start": [
1442,
1
]
},
{
"code": "theorem range_add (a b : Nat) : range (a + b) = range a ++ (range b).map (a + ·)",
"end": [
1447,
75
],
"full_name": "List.range_add",
"kind": "commanddeclaration",
"start": [
1445,
1
]
},
{
"code": "theorem iota_eq_reverse_range' : ∀ n : Nat, iota n = reverse (range' 1 n)",
"end": [
1451,
99
],
"full_name": "List.iota_eq_reverse_range'",
"kind": "commanddeclaration",
"start": [
1449,
1
]
},
{
"code": "@[simp] theorem length_iota (n : Nat) : length (iota n) = n",
"end": [
1453,
96
],
"full_name": "List.length_iota",
"kind": "commanddeclaration",
"start": [
1453,
1
]
},
{
"code": "@[simp]\ntheorem mem_iota {m n : Nat} : m ∈ iota n ↔ 1 ≤ m ∧ m ≤ n",
"end": [
1457,
59
],
"full_name": "List.mem_iota",
"kind": "commanddeclaration",
"start": [
1455,
1
]
},
{
"code": "theorem reverse_range' : ∀ s n : Nat, reverse (range' s n) = map (s + n - 1 - ·) (range n)",
"end": [
1464,
59
],
"full_name": "List.reverse_range'",
"kind": "commanddeclaration",
"start": [
1459,
1
]
},
{
"code": "@[simp] theorem enumFrom_map_fst (n) :\n ∀ (l : List α), map Prod.fst (enumFrom n l) = range' n l.length",
"end": [
1472,
55
],
"full_name": "List.enumFrom_map_fst",
"kind": "commanddeclaration",
"start": [
1469,
1
]
},
{
"code": "@[simp] theorem enum_map_fst (l : List α) : map Prod.fst (enum l) = range l.length",
"end": [
1475,
54
],
"full_name": "List.enum_map_fst",
"kind": "commanddeclaration",
"start": [
1474,
1
]
},
{
"code": "theorem foldrIdx_start :\n (xs : List α).foldrIdx f i s = (xs : List α).foldrIdx (fun i => f (i + s)) i",
"end": [
1487,
43
],
"full_name": "List.foldrIdx_start",
"kind": "commanddeclaration",
"start": [
1479,
1
]
},
{
"code": "@[simp] theorem foldrIdx_cons :\n (x :: xs : List α).foldrIdx f i s = f s x (foldrIdx f i xs (s + 1))",
"end": [
1490,
79
],
"full_name": "List.foldrIdx_cons",
"kind": "commanddeclaration",
"start": [
1489,
1
]
},
{
"code": "theorem findIdxs_cons_aux (p : α → Bool) :\n foldrIdx (fun i a is => if p a = true then (i + 1) :: is else is) [] xs s =\n map (· + 1) (foldrIdx (fun i a is => if p a = true then i :: is else is) [] xs s)",
"end": [
1499,
24
],
"full_name": "List.findIdxs_cons_aux",
"kind": "commanddeclaration",
"start": [
1492,
1
]
},
{
"code": "theorem findIdxs_cons :\n (x :: xs : List α).findIdxs p =\n bif p x then 0 :: (xs.findIdxs p).map (· + 1) else (xs.findIdxs p).map (· + 1)",
"end": [
1508,
28
],
"full_name": "List.findIdxs_cons",
"kind": "commanddeclaration",
"start": [
1501,
1
]
},
{
"code": "@[simp] theorem indexesOf_nil [BEq α] : ([] : List α).indexesOf x = []",
"end": [
1510,
78
],
"full_name": "List.indexesOf_nil",
"kind": "commanddeclaration",
"start": [
1510,
1
]
},
{
"code": "theorem indexesOf_cons [BEq α] : (x :: xs : List α).indexesOf y =\n bif x == y then 0 :: (xs.indexesOf y).map (· + 1) else (xs.indexesOf y).map (· + 1)",
"end": [
1514,
34
],
"full_name": "List.indexesOf_cons",
"kind": "commanddeclaration",
"start": [
1512,
1
]
},
{
"code": "@[simp] theorem indexOf_nil [BEq α] : ([] : List α).indexOf x = 0",
"end": [
1516,
73
],
"full_name": "List.indexOf_nil",
"kind": "commanddeclaration",
"start": [
1516,
1
]
},
{
"code": "theorem indexOf_cons [BEq α] :\n (x :: xs : List α).indexOf y = bif x == y then 0 else xs.indexOf y + 1",
"end": [
1521,
22
],
"full_name": "List.indexOf_cons",
"kind": "commanddeclaration",
"start": [
1518,
1
]
},
{
"code": "theorem indexOf_mem_indexesOf [BEq α] [LawfulBEq α] {xs : List α} (m : x ∈ xs) :\n xs.indexOf x ∈ xs.indexesOf x",
"end": [
1535,
14
],
"full_name": "List.indexOf_mem_indexesOf",
"kind": "commanddeclaration",
"start": [
1523,
1
]
},
{
"code": "theorem merge_loop_nil_left (s : α → α → Bool) (r t) :\n merge.loop s [] r t = reverseAux t r",
"end": [
1539,
18
],
"full_name": "List.merge_loop_nil_left",
"kind": "commanddeclaration",
"start": [
1537,
1
]
},
{
"code": "theorem merge_loop_nil_right (s : α → α → Bool) (l t) :\n merge.loop s l [] t = reverseAux t l",
"end": [
1543,
52
],
"full_name": "List.merge_loop_nil_right",
"kind": "commanddeclaration",
"start": [
1541,
1
]
},
{
"code": "theorem merge_loop (s : α → α → Bool) (l r t) :\n merge.loop s l r t = reverseAux t (merge s l r)",
"end": [
1567,
64
],
"full_name": "List.merge_loop",
"kind": "commanddeclaration",
"start": [
1545,
1
]
},
{
"code": "@[simp] theorem merge_nil (s : α → α → Bool) (l) : merge s l [] = l",
"end": [
1569,
95
],
"full_name": "List.merge_nil",
"kind": "commanddeclaration",
"start": [
1569,
1
]
},
{
"code": "@[simp] theorem nil_merge (s : α → α → Bool) (r) : merge s [] r = r",
"end": [
1571,
94
],
"full_name": "List.nil_merge",
"kind": "commanddeclaration",
"start": [
1571,
1
]
},
{
"code": "theorem cons_merge_cons (s : α → α → Bool) (a b l r) :\n merge s (a::l) (b::r) = if s a b then a :: merge s l (b::r) else b :: merge s (a::l) r",
"end": [
1575,
87
],
"full_name": "List.cons_merge_cons",
"kind": "commanddeclaration",
"start": [
1573,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_pos (s : α → α → Bool) (l r) (h : s a b) :\n merge s (a::l) (b::r) = a :: merge s l (b::r)",
"end": [
1579,
33
],
"full_name": "List.cons_merge_cons_pos",
"kind": "commanddeclaration",
"start": [
1577,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_neg (s : α → α → Bool) (l r) (h : ¬ s a b) :\n merge s (a::l) (b::r) = b :: merge s (a::l) r",
"end": [
1583,
33
],
"full_name": "List.cons_merge_cons_neg",
"kind": "commanddeclaration",
"start": [
1581,
1
]
},
{
"code": "@[simp] theorem length_merge (s : α → α → Bool) (l r) :\n (merge s l r).length = l.length + r.length",
"end": [
1594,
43
],
"full_name": "List.length_merge",
"kind": "commanddeclaration",
"start": [
1585,
1
]
},
{
"code": "@[simp]\ntheorem mem_merge {s : α → α → Bool} : x ∈ merge s l r ↔ x ∈ l ∨ x ∈ r",
"end": [
1605,
68
],
"full_name": "List.mem_merge",
"kind": "commanddeclaration",
"start": [
1596,
1
]
},
{
"code": "theorem mem_merge_left (s : α → α → Bool) (h : x ∈ l) : x ∈ merge s l r",
"end": [
1608,
24
],
"full_name": "List.mem_merge_left",
"kind": "commanddeclaration",
"start": [
1607,
1
]
},
{
"code": "theorem mem_merge_right (s : α → α → Bool) (h : x ∈ r) : x ∈ merge s l r",
"end": [
1611,
24
],
"full_name": "List.mem_merge_right",
"kind": "commanddeclaration",
"start": [
1610,
1
]
}
] | 326 | List.length_merge | [
[
1586,
51
],
[
1594,
43
]
] | 6 | 9 | · simp_arith [length_merge s (a::l) r] | case isFalse
α : Type u_1
s : α → α → Bool
l✝ r✝ : List α
a : α
l : List α
b : α
r : List α
h✝ : ¬s a b = true
⊢ (b :: merge s (a :: l) r).length = (a :: l).length + (b :: r).length | no goals |
.lake/packages/batteries/Batteries/Data/List/Lemmas.lean | [
[
"Batteries.Tactic.Alias",
".lake/packages/batteries/Batteries/Tactic/Alias.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
],
[
"Batteries.Control.ForInStep.Lemmas",
".lake/packages/batteries/Batteries/Control/ForInStep/Lemmas.lean"
],
[
"Batteries.Tactic.Init",
".lake/packages/batteries/Batteries/Tactic/Init.lean"
],
[
"Batteries.Data.List.Basic",
".lake/packages/batteries/Batteries/Data/List/Basic.lean"
]
] | [
{
"code": "@[simp] theorem mem_toArray {a : α} {l : List α} : a ∈ l.toArray ↔ a ∈ l",
"end": [
18,
23
],
"full_name": "List.mem_toArray",
"kind": "commanddeclaration",
"start": [
17,
1
]
},
{
"code": "@[simp]\ntheorem drop_one : ∀ l : List α, drop 1 l = tail l",
"end": [
24,
23
],
"full_name": "List.drop_one",
"kind": "commanddeclaration",
"start": [
22,
1
]
},
{
"code": "theorem zipWith_distrib_tail : (zipWith f l l').tail = zipWith f l.tail l'.tail",
"end": [
29,
47
],
"full_name": "List.zipWith_distrib_tail",
"kind": "commanddeclaration",
"start": [
28,
1
]
},
{
"code": "theorem subset_def {l₁ l₂ : List α} : l₁ ⊆ l₂ ↔ ∀ {a : α}, a ∈ l₁ → a ∈ l₂",
"end": [
33,
83
],
"full_name": "List.subset_def",
"kind": "commanddeclaration",
"start": [
33,
1
]
},
{
"code": "@[simp] theorem nil_subset (l : List α) : [] ⊆ l",
"end": [
35,
58
],
"full_name": "List.nil_subset",
"kind": "commanddeclaration",
"start": [
35,
1
]
},
{
"code": "@[simp] theorem Subset.refl (l : List α) : l ⊆ l",
"end": [
37,
65
],
"full_name": "List.Subset.refl",
"kind": "commanddeclaration",
"start": [
37,
1
]
},
{
"code": "theorem Subset.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ ⊆ l₂) (h₂ : l₂ ⊆ l₃) : l₁ ⊆ l₃",
"end": [
40,
23
],
"full_name": "List.Subset.trans",
"kind": "commanddeclaration",
"start": [
39,
1
]
},
{
"code": "@[simp] theorem subset_cons (a : α) (l : List α) : l ⊆ a :: l",
"end": [
48,
85
],
"full_name": "List.subset_cons",
"kind": "commanddeclaration",
"start": [
48,
1
]
},
{
"code": "theorem subset_of_cons_subset {a : α} {l₁ l₂ : List α} : a :: l₁ ⊆ l₂ → l₁ ⊆ l₂",
"end": [
51,
39
],
"full_name": "List.subset_of_cons_subset",
"kind": "commanddeclaration",
"start": [
50,
1
]
},
{
"code": "theorem subset_cons_of_subset (a : α) {l₁ l₂ : List α} : l₁ ⊆ l₂ → l₁ ⊆ a :: l₂",
"end": [
54,
29
],
"full_name": "List.subset_cons_of_subset",
"kind": "commanddeclaration",
"start": [
53,
1
]
},
{
"code": "theorem cons_subset_cons {l₁ l₂ : List α} (a : α) (s : l₁ ⊆ l₂) : a :: l₁ ⊆ a :: l₂",
"end": [
57,
62
],
"full_name": "List.cons_subset_cons",
"kind": "commanddeclaration",
"start": [
56,
1
]
},
{
"code": "@[simp] theorem subset_append_left (l₁ l₂ : List α) : l₁ ⊆ l₁ ++ l₂",
"end": [
59,
98
],
"full_name": "List.subset_append_left",
"kind": "commanddeclaration",
"start": [
59,
1
]
},
{
"code": "@[simp] theorem subset_append_right (l₁ l₂ : List α) : l₂ ⊆ l₁ ++ l₂",
"end": [
61,
100
],
"full_name": "List.subset_append_right",
"kind": "commanddeclaration",
"start": [
61,
1
]
},
{
"code": "theorem subset_append_of_subset_left (l₂ : List α) : l ⊆ l₁ → l ⊆ l₁ ++ l₂",
"end": [
64,
50
],
"full_name": "List.subset_append_of_subset_left",
"kind": "commanddeclaration",
"start": [
63,
1
]
},
{
"code": "theorem subset_append_of_subset_right (l₁ : List α) : l ⊆ l₂ → l ⊆ l₁ ++ l₂",
"end": [
67,
51
],
"full_name": "List.subset_append_of_subset_right",
"kind": "commanddeclaration",
"start": [
66,
1
]
},
{
"code": "@[simp] theorem cons_subset : a :: l ⊆ m ↔ a ∈ m ∧ l ⊆ m",
"end": [
70,
66
],
"full_name": "List.cons_subset",
"kind": "commanddeclaration",
"start": [
69,
1
]
},
{
"code": "@[simp] theorem append_subset {l₁ l₂ l : List α} :\n l₁ ++ l₂ ⊆ l ↔ l₁ ⊆ l ∧ l₂ ⊆ l",
"end": [
73,
79
],
"full_name": "List.append_subset",
"kind": "commanddeclaration",
"start": [
72,
1
]
},
{
"code": "theorem subset_nil {l : List α} : l ⊆ [] ↔ l = []",
"end": [
76,
99
],
"full_name": "List.subset_nil",
"kind": "commanddeclaration",
"start": [
75,
1
]
},
{
"code": "theorem map_subset {l₁ l₂ : List α} (f : α → β) (H : l₁ ⊆ l₂) : map f l₁ ⊆ map f l₂",
"end": [
79,
72
],
"full_name": "List.map_subset",
"kind": "commanddeclaration",
"start": [
78,
1
]
},
{
"code": "@[simp] theorem nil_sublist : ∀ l : List α, [] <+ l",
"end": [
85,
37
],
"full_name": "List.nil_sublist",
"kind": "commanddeclaration",
"start": [
83,
1
]
},
{
"code": "@[simp] theorem Sublist.refl : ∀ l : List α, l <+ l",
"end": [
89,
39
],
"full_name": "List.Sublist.refl",
"kind": "commanddeclaration",
"start": [
87,
1
]
},
{
"code": "theorem Sublist.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ <+ l₂) (h₂ : l₂ <+ l₃) : l₁ <+ l₃",
"end": [
100,
53
],
"full_name": "List.Sublist.trans",
"kind": "commanddeclaration",
"start": [
91,
1
]
},
{
"code": "@[simp] theorem sublist_cons (a : α) (l : List α) : l <+ a :: l",
"end": [
104,
91
],
"full_name": "List.sublist_cons",
"kind": "commanddeclaration",
"start": [
104,
1
]
},
{
"code": "theorem sublist_of_cons_sublist : a :: l₁ <+ l₂ → l₁ <+ l₂",
"end": [
107,
28
],
"full_name": "List.sublist_of_cons_sublist",
"kind": "commanddeclaration",
"start": [
106,
1
]
},
{
"code": "@[simp] theorem sublist_append_left : ∀ l₁ l₂ : List α, l₁ <+ l₁ ++ l₂",
"end": [
111,
55
],
"full_name": "List.sublist_append_left",
"kind": "commanddeclaration",
"start": [
109,
1
]
},
{
"code": "@[simp] theorem sublist_append_right : ∀ l₁ l₂ : List α, l₂ <+ l₁ ++ l₂",
"end": [
115,
55
],
"full_name": "List.sublist_append_right",
"kind": "commanddeclaration",
"start": [
113,
1
]
},
{
"code": "theorem sublist_append_of_sublist_left (s : l <+ l₁) : l <+ l₁ ++ l₂",
"end": [
118,
36
],
"full_name": "List.sublist_append_of_sublist_left",
"kind": "commanddeclaration",
"start": [
117,
1
]
},
{
"code": "theorem sublist_append_of_sublist_right (s : l <+ l₂) : l <+ l₁ ++ l₂",
"end": [
121,
37
],
"full_name": "List.sublist_append_of_sublist_right",
"kind": "commanddeclaration",
"start": [
120,
1
]
},
{
"code": "@[simp]\ntheorem cons_sublist_cons : a :: l₁ <+ a :: l₂ ↔ l₁ <+ l₂",
"end": [
125,
77
],
"full_name": "List.cons_sublist_cons",
"kind": "commanddeclaration",
"start": [
123,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_left : ∀ l, l ++ l₁ <+ l ++ l₂ ↔ l₁ <+ l₂",
"end": [
129,
69
],
"full_name": "List.append_sublist_append_left",
"kind": "commanddeclaration",
"start": [
127,
1
]
},
{
"code": "theorem Sublist.append_left : l₁ <+ l₂ → ∀ l, l ++ l₁ <+ l ++ l₂",
"end": [
132,
50
],
"full_name": "List.Sublist.append_left",
"kind": "commanddeclaration",
"start": [
131,
1
]
},
{
"code": "theorem Sublist.append_right : l₁ <+ l₂ → ∀ l, l₁ ++ l <+ l₂ ++ l",
"end": [
137,
48
],
"full_name": "List.Sublist.append_right",
"kind": "commanddeclaration",
"start": [
134,
1
]
},
{
"code": "theorem sublist_or_mem_of_sublist (h : l <+ l₁ ++ a :: l₂) : l <+ l₁ ++ l₂ ∨ a ∈ l",
"end": [
147,
65
],
"full_name": "List.sublist_or_mem_of_sublist",
"kind": "commanddeclaration",
"start": [
139,
1
]
},
{
"code": "theorem Sublist.reverse : l₁ <+ l₂ → l₁.reverse <+ l₂.reverse",
"end": [
152,
85
],
"full_name": "List.Sublist.reverse",
"kind": "commanddeclaration",
"start": [
149,
1
]
},
{
"code": "@[simp] theorem reverse_sublist : l₁.reverse <+ l₂.reverse ↔ l₁ <+ l₂",
"end": [
155,
82
],
"full_name": "List.reverse_sublist",
"kind": "commanddeclaration",
"start": [
154,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_right (l) : l₁ ++ l <+ l₂ ++ l ↔ l₁ <+ l₂",
"end": [
162,
30
],
"full_name": "List.append_sublist_append_right",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "theorem Sublist.append (hl : l₁ <+ l₂) (hr : r₁ <+ r₂) : l₁ ++ r₁ <+ l₂ ++ r₂",
"end": [
165,
66
],
"full_name": "List.Sublist.append",
"kind": "commanddeclaration",
"start": [
164,
1
]
},
{
"code": "theorem Sublist.subset : l₁ <+ l₂ → l₁ ⊆ l₂",
"end": [
171,
53
],
"full_name": "List.Sublist.subset",
"kind": "commanddeclaration",
"start": [
167,
1
]
},
{
"code": "theorem Sublist.length_le : l₁ <+ l₂ → length l₁ ≤ length l₂",
"end": [
185,
45
],
"full_name": "List.Sublist.length_le",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "@[simp] theorem sublist_nil {l : List α} : l <+ [] ↔ l = []",
"end": [
188,
64
],
"full_name": "List.sublist_nil",
"kind": "commanddeclaration",
"start": [
187,
1
]
},
{
"code": "theorem Sublist.eq_of_length : l₁ <+ l₂ → length l₁ = length l₂ → l₁ = l₂",
"end": [
193,
57
],
"full_name": "List.Sublist.eq_of_length",
"kind": "commanddeclaration",
"start": [
190,
1
]
},
{
"code": "theorem Sublist.eq_of_length_le (s : l₁ <+ l₂) (h : length l₂ ≤ length l₁) : l₁ = l₂",
"end": [
196,
50
],
"full_name": "List.Sublist.eq_of_length_le",
"kind": "commanddeclaration",
"start": [
195,
1
]
},
{
"code": "@[simp] theorem singleton_sublist {a : α} {l} : [a] <+ l ↔ a ∈ l",
"end": [
201,
66
],
"full_name": "List.singleton_sublist",
"kind": "commanddeclaration",
"start": [
198,
1
]
},
{
"code": "@[simp] theorem replicate_sublist_replicate {m n} (a : α) :\n replicate m a <+ replicate n a ↔ m ≤ n",
"end": [
209,
48
],
"full_name": "List.replicate_sublist_replicate",
"kind": "commanddeclaration",
"start": [
203,
1
]
},
{
"code": "theorem isSublist_iff_sublist [BEq α] [LawfulBEq α] {l₁ l₂ : List α} :\n l₁.isSublist l₂ ↔ l₁ <+ l₂",
"end": [
228,
24
],
"full_name": "List.isSublist_iff_sublist",
"kind": "commanddeclaration",
"start": [
211,
1
]
},
{
"code": "theorem tail_eq_tailD (l) : @tail α l = tailD l []",
"end": [
235,
73
],
"full_name": "List.tail_eq_tailD",
"kind": "commanddeclaration",
"start": [
235,
1
]
},
{
"code": "theorem tail_eq_tail? (l) : @tail α l = (tail? l).getD []",
"end": [
237,
85
],
"full_name": "List.tail_eq_tail?",
"kind": "commanddeclaration",
"start": [
237,
1
]
},
{
"code": "@[simp] theorem next?_nil : @next? α [] = none",
"end": [
241,
54
],
"full_name": "List.next?_nil",
"kind": "commanddeclaration",
"start": [
241,
1
]
},
{
"code": "@[simp] theorem next?_cons (a l) : @next? α (a :: l) = some (a, l)",
"end": [
242,
74
],
"full_name": "List.next?_cons",
"kind": "commanddeclaration",
"start": [
242,
1
]
},
{
"code": "theorem getElem_eq_iff {l : List α} {n : Nat} {h : n < l.length} : l[n] = x ↔ l[n]? = some x",
"end": [
248,
40
],
"full_name": "List.getElem_eq_iff",
"kind": "commanddeclaration",
"start": [
246,
1
]
},
{
"code": "@[deprecated getElem_eq_iff (since := \"2024-06-12\")]\ntheorem get_eq_iff : List.get l n = x ↔ l.get? n.1 = some x",
"end": [
252,
7
],
"full_name": "List.get_eq_iff",
"kind": "commanddeclaration",
"start": [
250,
1
]
},
{
"code": "theorem getElem?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs[i]? = xs[j]?) : i = j",
"end": [
273,
39
],
"full_name": "List.getElem?_inj",
"kind": "commanddeclaration",
"start": [
254,
1
]
},
{
"code": "@[deprecated getElem?_inj (since := \"2024-06-12\")]\ntheorem get?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs.get? i = xs.get? j) : i = j",
"end": [
279,
11
],
"full_name": "List.get?_inj",
"kind": "commanddeclaration",
"start": [
275,
1
]
},
{
"code": "theorem tail_drop (l : List α) (n : Nat) : (l.drop n).tail = l.drop (n + 1)",
"end": [
289,
16
],
"full_name": "List.tail_drop",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "@[simp] theorem modifyNth_nil (f : α → α) (n) : [].modifyNth f n = []",
"end": [
293,
92
],
"full_name": "List.modifyNth_nil",
"kind": "commanddeclaration",
"start": [
293,
1
]
},
{
"code": "@[simp] theorem modifyNth_zero_cons (f : α → α) (a : α) (l : List α) :\n (a :: l).modifyNth f 0 = f a :: l",
"end": [
296,
45
],
"full_name": "List.modifyNth_zero_cons",
"kind": "commanddeclaration",
"start": [
295,
1
]
},
{
"code": "@[simp] theorem modifyNth_succ_cons (f : α → α) (a : α) (l : List α) (n) :\n (a :: l).modifyNth f (n + 1) = a :: l.modifyNth f n",
"end": [
299,
66
],
"full_name": "List.modifyNth_succ_cons",
"kind": "commanddeclaration",
"start": [
298,
1
]
},
{
"code": "theorem modifyNthTail_id : ∀ n (l : List α), l.modifyNthTail id n = l",
"end": [
304,
60
],
"full_name": "List.modifyNthTail_id",
"kind": "commanddeclaration",
"start": [
301,
1
]
},
{
"code": "theorem eraseIdx_eq_modifyNthTail : ∀ n (l : List α), eraseIdx l n = modifyNthTail tail n l",
"end": [
309,
69
],
"full_name": "List.eraseIdx_eq_modifyNthTail",
"kind": "commanddeclaration",
"start": [
306,
1
]
},
{
"code": "theorem getElem?_modifyNth (f : α → α) :\n ∀ n (l : List α) m, (modifyNth f n l)[m]? = (fun a => if n = m then f a else a) <$> l[m]?",
"end": [
322,
79
],
"full_name": "List.getElem?_modifyNth",
"kind": "commanddeclaration",
"start": [
313,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth (since := \"2024-06-12\")]\ntheorem get?_modifyNth (f : α → α) (n) (l : List α) (m) :\n (modifyNth f n l).get? m = (fun a => if n = m then f a else a) <$> l.get? m",
"end": [
327,
28
],
"full_name": "List.get?_modifyNth",
"kind": "commanddeclaration",
"start": [
324,
1
]
},
{
"code": "theorem modifyNthTail_length (f : List α → List α) (H : ∀ l, length (f l) = length l) :\n ∀ n l, length (modifyNthTail f n l) = length l",
"end": [
333,
65
],
"full_name": "List.modifyNthTail_length",
"kind": "commanddeclaration",
"start": [
329,
1
]
},
{
"code": "theorem modifyNthTail_add (f : List α → List α) (n) (l₁ l₂ : List α) :\n modifyNthTail f (l₁.length + n) (l₁ ++ l₂) = l₁ ++ modifyNthTail f n l₂",
"end": [
337,
42
],
"full_name": "List.modifyNthTail_add",
"kind": "commanddeclaration",
"start": [
335,
1
]
},
{
"code": "theorem exists_of_modifyNthTail (f : List α → List α) {n} {l : List α} (h : n ≤ l.length) :\n ∃ l₁ l₂, l = l₁ ++ l₂ ∧ l₁.length = n ∧ modifyNthTail f n l = l₁ ++ f l₂",
"end": [
343,
58
],
"full_name": "List.exists_of_modifyNthTail",
"kind": "commanddeclaration",
"start": [
339,
1
]
},
{
"code": "@[simp] theorem modify_get?_length (f : α → α) : ∀ n l, length (modifyNth f n l) = length l",
"end": [
346,
53
],
"full_name": "List.modify_get?_length",
"kind": "commanddeclaration",
"start": [
345,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l)[n]? = f <$> l[n]?",
"end": [
350,
41
],
"full_name": "List.getElem?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_eq (since := \"2024-06-12\")]\ntheorem get?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l).get? n = f <$> l.get? n",
"end": [
355,
31
],
"full_name": "List.get?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
352,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l)[n]? = l[n]?",
"end": [
359,
52
],
"full_name": "List.getElem?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
357,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_ne (since := \"2024-06-12\")]\ntheorem get?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l).get? n = l.get? n",
"end": [
364,
11
],
"full_name": "List.get?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
361,
1
]
},
{
"code": "theorem exists_of_modifyNth (f : α → α) {n} {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ modifyNth f n l = l₁ ++ f a :: l₂",
"end": [
370,
74
],
"full_name": "List.exists_of_modifyNth",
"kind": "commanddeclaration",
"start": [
366,
1
]
},
{
"code": "theorem modifyNthTail_eq_take_drop (f : List α → List α) (H : f [] = []) :\n ∀ n l, modifyNthTail f n l = take n l ++ f (drop n l)",
"end": [
376,
76
],
"full_name": "List.modifyNthTail_eq_take_drop",
"kind": "commanddeclaration",
"start": [
372,
1
]
},
{
"code": "theorem modifyNth_eq_take_drop (f : α → α) :\n ∀ n l, modifyNth f n l = take n l ++ modifyHead f (drop n l)",
"end": [
380,
35
],
"full_name": "List.modifyNth_eq_take_drop",
"kind": "commanddeclaration",
"start": [
378,
1
]
},
{
"code": "theorem modifyNth_eq_take_cons_drop (f : α → α) {n l} (h) :\n modifyNth f n l = take n l ++ f l[n] :: drop (n + 1) l",
"end": [
384,
59
],
"full_name": "List.modifyNth_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
382,
1
]
},
{
"code": "theorem set_eq_modifyNth (a : α) : ∀ n (l : List α), set l n a = modifyNth (fun _ => a) n l",
"end": [
391,
62
],
"full_name": "List.set_eq_modifyNth",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "theorem set_eq_take_cons_drop (a : α) {n l} (h : n < length l) :\n set l n a = take n l ++ a :: drop (n + 1) l",
"end": [
395,
57
],
"full_name": "List.set_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
393,
1
]
},
{
"code": "theorem modifyNth_eq_set_get? (f : α → α) :\n ∀ n (l : List α), l.modifyNth f n = ((fun a => l.set n (f a)) <$> l.get? n).getD l",
"end": [
402,
92
],
"full_name": "List.modifyNth_eq_set_get?",
"kind": "commanddeclaration",
"start": [
397,
1
]
},
{
"code": "theorem modifyNth_eq_set_get (f : α → α) {n} {l : List α} (h) :\n l.modifyNth f n = l.set n (f (l.get ⟨n, h⟩))",
"end": [
406,
49
],
"full_name": "List.modifyNth_eq_set_get",
"kind": "commanddeclaration",
"start": [
404,
1
]
},
{
"code": "theorem exists_of_set {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
410,
55
],
"full_name": "List.exists_of_set",
"kind": "commanddeclaration",
"start": [
408,
1
]
},
{
"code": "theorem exists_of_set' {l : List α} (h : n < l.length) :\n ∃ l₁ l₂, l = l₁ ++ l[n] :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
414,
94
],
"full_name": "List.exists_of_set'",
"kind": "commanddeclaration",
"start": [
412,
1
]
},
{
"code": "@[simp]\ntheorem getElem?_set_eq' (a : α) (n) (l : List α) : (set l n a)[n]? = (fun _ => a) <$> l[n]?",
"end": [
418,
54
],
"full_name": "List.getElem?_set_eq'",
"kind": "commanddeclaration",
"start": [
416,
1
]
},
{
"code": "@[deprecated getElem?_set_eq' (since := \"2024-06-12\")]\ntheorem get?_set_eq (a : α) (n) (l : List α) : (set l n a).get? n = (fun _ => a) <$> l.get? n",
"end": [
422,
7
],
"full_name": "List.get?_set_eq",
"kind": "commanddeclaration",
"start": [
420,
1
]
},
{
"code": "theorem getElem?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a)[n]? = some a",
"end": [
425,
85
],
"full_name": "List.getElem?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
424,
1
]
},
{
"code": "@[deprecated getElem?_set_eq_of_lt (since := \"2024-06-12\")]\ntheorem get?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a).get? n = some a",
"end": [
430,
70
],
"full_name": "List.get?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
427,
1
]
},
{
"code": "@[deprecated getElem?_set_ne (since := \"2024-06-12\")]\ntheorem get?_set_ne (a : α) {m n} (l : List α) (h : m ≠ n) : (set l m a).get? n = l.get? n",
"end": [
434,
11
],
"full_name": "List.get?_set_ne",
"kind": "commanddeclaration",
"start": [
432,
1
]
},
{
"code": "theorem getElem?_set' (a : α) {m n} (l : List α) :\n (set l m a)[n]? = if m = n then (fun _ => a) <$> l[n]? else l[n]?",
"end": [
438,
30
],
"full_name": "List.getElem?_set'",
"kind": "commanddeclaration",
"start": [
436,
1
]
},
{
"code": "@[deprecated getElem?_set (since := \"2024-06-12\")]\ntheorem get?_set (a : α) {m n} (l : List α) :\n (set l m a).get? n = if m = n then (fun _ => a) <$> l.get? n else l.get? n",
"end": [
443,
23
],
"full_name": "List.get?_set",
"kind": "commanddeclaration",
"start": [
440,
1
]
},
{
"code": "theorem get?_set_of_lt (a : α) {m n} (l : List α) (h : n < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
447,
46
],
"full_name": "List.get?_set_of_lt",
"kind": "commanddeclaration",
"start": [
445,
1
]
},
{
"code": "theorem get?_set_of_lt' (a : α) {m n} (l : List α) (h : m < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
451,
80
],
"full_name": "List.get?_set_of_lt'",
"kind": "commanddeclaration",
"start": [
449,
1
]
},
{
"code": "theorem drop_set_of_lt (a : α) {n m : Nat} (l : List α) (h : n < m) :\n (l.set n a).drop m = l.drop m",
"end": [
455,
94
],
"full_name": "List.drop_set_of_lt",
"kind": "commanddeclaration",
"start": [
453,
1
]
},
{
"code": "theorem take_set_of_lt (a : α) {n m : Nat} (l : List α) (h : m < n) :\n (l.set n a).take m = l.take m",
"end": [
463,
10
],
"full_name": "List.take_set_of_lt",
"kind": "commanddeclaration",
"start": [
457,
1
]
},
{
"code": "theorem length_eraseIdx : ∀ {l i}, i < length l → length (@eraseIdx α l i) = length l - 1",
"end": [
473,
92
],
"full_name": "List.length_eraseIdx",
"kind": "commanddeclaration",
"start": [
467,
1
]
},
{
"code": "@[simp] theorem length_tail (l : List α) : length (tail l) = length l - 1",
"end": [
479,
96
],
"full_name": "List.length_tail",
"kind": "commanddeclaration",
"start": [
479,
1
]
},
{
"code": "@[simp] theorem eraseP_nil : [].eraseP p = []",
"end": [
483,
53
],
"full_name": "List.eraseP_nil",
"kind": "commanddeclaration",
"start": [
483,
1
]
},
{
"code": "theorem eraseP_cons (a : α) (l : List α) :\n (a :: l).eraseP p = bif p a then l else a :: l.eraseP p",
"end": [
486,
67
],
"full_name": "List.eraseP_cons",
"kind": "commanddeclaration",
"start": [
485,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_pos {l : List α} (p) (h : p a) : (a :: l).eraseP p = l",
"end": [
489,
24
],
"full_name": "List.eraseP_cons_of_pos",
"kind": "commanddeclaration",
"start": [
488,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_neg {l : List α} (p) (h : ¬p a) :\n (a :: l).eraseP p = a :: l.eraseP p",
"end": [
492,
68
],
"full_name": "List.eraseP_cons_of_neg",
"kind": "commanddeclaration",
"start": [
491,
1
]
},
{
"code": "theorem eraseP_of_forall_not {l : List α} (h : ∀ a, a ∈ l → ¬p a) : l.eraseP p = l",
"end": [
497,
69
],
"full_name": "List.eraseP_of_forall_not",
"kind": "commanddeclaration",
"start": [
494,
1
]
},
{
"code": "theorem exists_of_eraseP : ∀ {l : List α} {a} (al : a ∈ l) (pa : p a),\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
510,
57
],
"full_name": "List.exists_of_eraseP",
"kind": "commanddeclaration",
"start": [
499,
1
]
},
{
"code": "theorem exists_or_eq_self_of_eraseP (p) (l : List α) :\n l.eraseP p = l ∨\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
519,
46
],
"full_name": "List.exists_or_eq_self_of_eraseP",
"kind": "commanddeclaration",
"start": [
512,
1
]
},
{
"code": "@[simp] theorem length_eraseP_of_mem (al : a ∈ l) (pa : p a) :\n length (l.eraseP p) = Nat.pred (length l)",
"end": [
524,
41
],
"full_name": "List.length_eraseP_of_mem",
"kind": "commanddeclaration",
"start": [
521,
1
]
},
{
"code": "theorem eraseP_append_left {a : α} (pa : p a) :\n ∀ {l₁ : List α} l₂, a ∈ l₁ → (l₁++l₂).eraseP p = l₁.eraseP p ++ l₂",
"end": [
531,
28
],
"full_name": "List.eraseP_append_left",
"kind": "commanddeclaration",
"start": [
526,
1
]
},
{
"code": "theorem eraseP_append_right :\n ∀ {l₁ : List α} l₂, (∀ b ∈ l₁, ¬p b) → eraseP p (l₁++l₂) = l₁ ++ l₂.eraseP p",
"end": [
537,
82
],
"full_name": "List.eraseP_append_right",
"kind": "commanddeclaration",
"start": [
533,
1
]
},
{
"code": "theorem eraseP_sublist (l : List α) : l.eraseP p <+ l",
"end": [
542,
56
],
"full_name": "List.eraseP_sublist",
"kind": "commanddeclaration",
"start": [
539,
1
]
},
{
"code": "theorem eraseP_subset (l : List α) : l.eraseP p ⊆ l",
"end": [
544,
81
],
"full_name": "List.eraseP_subset",
"kind": "commanddeclaration",
"start": [
544,
1
]
},
{
"code": "protected theorem Sublist.eraseP : l₁ <+ l₂ → l₁.eraseP p <+ l₂.eraseP p",
"end": [
553,
25
],
"full_name": "List.Sublist.eraseP",
"kind": "commanddeclaration",
"start": [
546,
1
]
},
{
"code": "theorem mem_of_mem_eraseP {l : List α} : a ∈ l.eraseP p → a ∈ l",
"end": [
555,
87
],
"full_name": "List.mem_of_mem_eraseP",
"kind": "commanddeclaration",
"start": [
555,
1
]
},
{
"code": "@[simp] theorem mem_eraseP_of_neg {l : List α} (pa : ¬p a) : a ∈ l.eraseP p ↔ a ∈ l",
"end": [
564,
33
],
"full_name": "List.mem_eraseP_of_neg",
"kind": "commanddeclaration",
"start": [
557,
1
]
},
{
"code": "theorem eraseP_map (f : β → α) : ∀ (l : List β), (map f l).eraseP p = map f (l.eraseP (p ∘ f))",
"end": [
568,
85
],
"full_name": "List.eraseP_map",
"kind": "commanddeclaration",
"start": [
566,
1
]
},
{
"code": "@[simp] theorem extractP_eq_find?_eraseP\n (l : List α) : extractP p l = (find? p l, eraseP p l)",
"end": [
578,
21
],
"full_name": "List.extractP_eq_find?_eraseP",
"kind": "commanddeclaration",
"start": [
570,
1
]
},
{
"code": "theorem erase_eq_eraseP' (a : α) (l : List α) : l.erase a = l.eraseP (· == a)",
"end": [
590,
46
],
"full_name": "List.erase_eq_eraseP'",
"kind": "commanddeclaration",
"start": [
585,
1
]
},
{
"code": "theorem erase_eq_eraseP [LawfulBEq α] (a : α) : ∀ l : List α, l.erase a = l.eraseP (a == ·)",
"end": [
595,
77
],
"full_name": "List.erase_eq_eraseP",
"kind": "commanddeclaration",
"start": [
592,
1
]
},
{
"code": "theorem exists_erase_eq [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n ∃ l₁ l₂, a ∉ l₁ ∧ l = l₁ ++ a :: l₂ ∧ l.erase a = l₁ ++ l₂",
"end": [
600,
99
],
"full_name": "List.exists_erase_eq",
"kind": "commanddeclaration",
"start": [
597,
1
]
},
{
"code": "@[simp] theorem length_erase_of_mem [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n length (l.erase a) = Nat.pred (length l)",
"end": [
604,
74
],
"full_name": "List.length_erase_of_mem",
"kind": "commanddeclaration",
"start": [
602,
1
]
},
{
"code": "theorem erase_append_left [LawfulBEq α] {l₁ : List α} (l₂) (h : a ∈ l₁) :\n (l₁ ++ l₂).erase a = l₁.erase a ++ l₂",
"end": [
608,
77
],
"full_name": "List.erase_append_left",
"kind": "commanddeclaration",
"start": [
606,
1
]
},
{
"code": "theorem erase_append_right [LawfulBEq α] {a : α} {l₁ : List α} (l₂ : List α) (h : a ∉ l₁) :\n (l₁ ++ l₂).erase a = (l₁ ++ l₂.erase a)",
"end": [
613,
55
],
"full_name": "List.erase_append_right",
"kind": "commanddeclaration",
"start": [
610,
1
]
},
{
"code": "theorem erase_sublist (a : α) (l : List α) : l.erase a <+ l",
"end": [
616,
42
],
"full_name": "List.erase_sublist",
"kind": "commanddeclaration",
"start": [
615,
1
]
},
{
"code": "theorem erase_subset (a : α) (l : List α) : l.erase a ⊆ l",
"end": [
618,
88
],
"full_name": "List.erase_subset",
"kind": "commanddeclaration",
"start": [
618,
1
]
},
{
"code": "theorem Sublist.erase (a : α) {l₁ l₂ : List α} (h : l₁ <+ l₂) : l₁.erase a <+ l₂.erase a",
"end": [
621,
47
],
"full_name": "List.Sublist.erase",
"kind": "commanddeclaration",
"start": [
620,
1
]
},
{
"code": "theorem mem_of_mem_erase {a b : α} {l : List α} (h : a ∈ l.erase b) : a ∈ l",
"end": [
624,
98
],
"full_name": "List.mem_of_mem_erase",
"kind": "commanddeclaration",
"start": [
624,
1
]
},
{
"code": "@[simp] theorem mem_erase_of_ne [LawfulBEq α] {a b : α} {l : List α} (ab : a ≠ b) :\n a ∈ l.erase b ↔ a ∈ l",
"end": [
628,
65
],
"full_name": "List.mem_erase_of_ne",
"kind": "commanddeclaration",
"start": [
626,
1
]
},
{
"code": "theorem erase_comm [LawfulBEq α] (a b : α) (l : List α) :\n (l.erase a).erase b = (l.erase b).erase a",
"end": [
644,
49
],
"full_name": "List.erase_comm",
"kind": "commanddeclaration",
"start": [
630,
1
]
},
{
"code": "@[simp] theorem filter_sublist {p : α → Bool} : ∀ (l : List α), filter p l <+ l",
"end": [
652,
93
],
"full_name": "List.filter_sublist",
"kind": "commanddeclaration",
"start": [
650,
1
]
},
{
"code": "protected theorem Sublist.filterMap (f : α → Option β) (s : l₁ <+ l₂) :\n filterMap f l₁ <+ filterMap f l₂",
"end": [
658,
76
],
"full_name": "List.Sublist.filterMap",
"kind": "commanddeclaration",
"start": [
656,
1
]
},
{
"code": "theorem Sublist.filter (p : α → Bool) {l₁ l₂} (s : l₁ <+ l₂) : filter p l₁ <+ filter p l₂",
"end": [
661,
48
],
"full_name": "List.Sublist.filter",
"kind": "commanddeclaration",
"start": [
660,
1
]
},
{
"code": "@[simp] theorem findIdx_nil {α : Type _} (p : α → Bool) : [].findIdx p = 0",
"end": [
665,
82
],
"full_name": "List.findIdx_nil",
"kind": "commanddeclaration",
"start": [
665,
1
]
},
{
"code": "theorem findIdx_cons (p : α → Bool) (b : α) (l : List α) :\n (b :: l).findIdx p = bif p b then 0 else (l.findIdx p) + 1",
"end": [
680,
43
],
"full_name": "List.findIdx_cons",
"kind": "commanddeclaration",
"start": [
667,
1
]
},
{
"code": "theorem findIdx_of_get?_eq_some {xs : List α} (w : xs.get? (xs.findIdx p) = some y) : p y",
"end": [
685,
65
],
"full_name": "List.findIdx_of_get?_eq_some",
"kind": "commanddeclaration",
"start": [
682,
1
]
},
{
"code": "theorem findIdx_get {xs : List α} {w : xs.findIdx p < xs.length} :\n p (xs.get ⟨xs.findIdx p, w⟩)",
"end": [
689,
45
],
"full_name": "List.findIdx_get",
"kind": "commanddeclaration",
"start": [
687,
1
]
},
{
"code": "theorem findIdx_lt_length_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.findIdx p < xs.length",
"end": [
703,
24
],
"full_name": "List.findIdx_lt_length_of_exists",
"kind": "commanddeclaration",
"start": [
691,
1
]
},
{
"code": "theorem findIdx_get?_eq_get_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.get? (xs.findIdx p) = some (xs.get ⟨xs.findIdx p, xs.findIdx_lt_length_of_exists h⟩)",
"end": [
707,
46
],
"full_name": "List.findIdx_get?_eq_get_of_exists",
"kind": "commanddeclaration",
"start": [
705,
1
]
},
{
"code": "@[simp] theorem findIdx?_nil : ([] : List α).findIdx? p i = none",
"end": [
711,
72
],
"full_name": "List.findIdx?_nil",
"kind": "commanddeclaration",
"start": [
711,
1
]
},
{
"code": "@[simp] theorem findIdx?_cons :\n (x :: xs).findIdx? p i = if p x then some i else findIdx? p xs (i + 1)",
"end": [
714,
82
],
"full_name": "List.findIdx?_cons",
"kind": "commanddeclaration",
"start": [
713,
1
]
},
{
"code": "@[simp] theorem findIdx?_succ :\n (xs : List α).findIdx? p (i+1) = (xs.findIdx? p i).map fun i => i + 1",
"end": [
719,
37
],
"full_name": "List.findIdx?_succ",
"kind": "commanddeclaration",
"start": [
716,
1
]
},
{
"code": "theorem findIdx?_eq_some_iff (xs : List α) (p : α → Bool) :\n xs.findIdx? p = some i ↔ (xs.take (i + 1)).map p = replicate i false ++ [true]",
"end": [
727,
52
],
"full_name": "List.findIdx?_eq_some_iff",
"kind": "commanddeclaration",
"start": [
721,
1
]
},
{
"code": "theorem findIdx?_of_eq_some {xs : List α} {p : α → Bool} (w : xs.findIdx? p = some i) :\n match xs.get? i with | some a => p a | none => false",
"end": [
735,
40
],
"full_name": "List.findIdx?_of_eq_some",
"kind": "commanddeclaration",
"start": [
729,
1
]
},
{
"code": "theorem findIdx?_of_eq_none {xs : List α} {p : α → Bool} (w : xs.findIdx? p = none) :\n ∀ i, match xs.get? i with | some a => ¬ p a | none => true",
"end": [
750,
30
],
"full_name": "List.findIdx?_of_eq_none",
"kind": "commanddeclaration",
"start": [
737,
1
]
},
{
"code": "@[simp] theorem findIdx?_append :\n (xs ++ ys : List α).findIdx? p =\n (xs.findIdx? p <|> (ys.findIdx? p).map fun i => i + xs.length)",
"end": [
756,
78
],
"full_name": "List.findIdx?_append",
"kind": "commanddeclaration",
"start": [
752,
1
]
},
{
"code": "@[simp] theorem findIdx?_replicate :\n (replicate n a).findIdx? p = if 0 < n ∧ p a then some 0 else none",
"end": [
764,
23
],
"full_name": "List.findIdx?_replicate",
"kind": "commanddeclaration",
"start": [
758,
1
]
},
{
"code": "theorem Pairwise.sublist : l₁ <+ l₂ → l₂.Pairwise R → l₁.Pairwise R",
"end": [
771,
80
],
"full_name": "List.Pairwise.sublist",
"kind": "commanddeclaration",
"start": [
768,
1
]
},
{
"code": "theorem pairwise_map {l : List α} :\n (l.map f).Pairwise R ↔ l.Pairwise fun a b => R (f a) (f b)",
"end": [
777,
58
],
"full_name": "List.pairwise_map",
"kind": "commanddeclaration",
"start": [
773,
1
]
},
{
"code": "theorem pairwise_append {l₁ l₂ : List α} :\n (l₁ ++ l₂).Pairwise R ↔ l₁.Pairwise R ∧ l₂.Pairwise R ∧ ∀ a ∈ l₁, ∀ b ∈ l₂, R a b",
"end": [
781,
74
],
"full_name": "List.pairwise_append",
"kind": "commanddeclaration",
"start": [
779,
1
]
},
{
"code": "theorem pairwise_reverse {l : List α} :\n l.reverse.Pairwise R ↔ l.Pairwise (fun a b => R b a)",
"end": [
785,
54
],
"full_name": "List.pairwise_reverse",
"kind": "commanddeclaration",
"start": [
783,
1
]
},
{
"code": "theorem Pairwise.imp {α R S} (H : ∀ {a b}, R a b → S a b) :\n ∀ {l : List α}, l.Pairwise R → l.Pairwise S",
"end": [
790,
50
],
"full_name": "List.Pairwise.imp",
"kind": "commanddeclaration",
"start": [
787,
1
]
},
{
"code": "theorem replaceF_nil : [].replaceF p = []",
"end": [
794,
49
],
"full_name": "List.replaceF_nil",
"kind": "commanddeclaration",
"start": [
794,
1
]
},
{
"code": "theorem replaceF_cons (a : α) (l : List α) :\n (a :: l).replaceF p = match p a with\n | none => a :: replaceF p l\n | some a' => a' :: l",
"end": [
799,
34
],
"full_name": "List.replaceF_cons",
"kind": "commanddeclaration",
"start": [
796,
1
]
},
{
"code": "theorem replaceF_cons_of_some {l : List α} (p) (h : p a = some a') :\n (a :: l).replaceF p = a' :: l",
"end": [
803,
26
],
"full_name": "List.replaceF_cons_of_some",
"kind": "commanddeclaration",
"start": [
801,
1
]
},
{
"code": "theorem replaceF_cons_of_none {l : List α} (p) (h : p a = none) :\n (a :: l).replaceF p = a :: l.replaceF p",
"end": [
806,
74
],
"full_name": "List.replaceF_cons_of_none",
"kind": "commanddeclaration",
"start": [
805,
1
]
},
{
"code": "theorem replaceF_of_forall_none {l : List α} (h : ∀ a, a ∈ l → p a = none) : l.replaceF p = l",
"end": [
811,
69
],
"full_name": "List.replaceF_of_forall_none",
"kind": "commanddeclaration",
"start": [
808,
1
]
},
{
"code": "theorem exists_of_replaceF : ∀ {l : List α} {a a'} (al : a ∈ l) (pa : p a = some a'),\n ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
825,
57
],
"full_name": "List.exists_of_replaceF",
"kind": "commanddeclaration",
"start": [
813,
1
]
},
{
"code": "theorem exists_or_eq_self_of_replaceF (p) (l : List α) :\n l.replaceF p = l ∨ ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
835,
62
],
"full_name": "List.exists_or_eq_self_of_replaceF",
"kind": "commanddeclaration",
"start": [
827,
1
]
},
{
"code": "@[simp] theorem length_replaceF : length (replaceF f l) = length l",
"end": [
838,
54
],
"full_name": "List.length_replaceF",
"kind": "commanddeclaration",
"start": [
837,
1
]
},
{
"code": "theorem disjoint_symm (d : Disjoint l₁ l₂) : Disjoint l₂ l₁",
"end": [
842,
86
],
"full_name": "List.disjoint_symm",
"kind": "commanddeclaration",
"start": [
842,
1
]
},
{
"code": "theorem disjoint_comm : Disjoint l₁ l₂ ↔ Disjoint l₂ l₁",
"end": [
844,
90
],
"full_name": "List.disjoint_comm",
"kind": "commanddeclaration",
"start": [
844,
1
]
},
{
"code": "theorem disjoint_left : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₁ → a ∉ l₂",
"end": [
846,
86
],
"full_name": "List.disjoint_left",
"kind": "commanddeclaration",
"start": [
846,
1
]
},
{
"code": "theorem disjoint_right : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₂ → a ∉ l₁",
"end": [
848,
82
],
"full_name": "List.disjoint_right",
"kind": "commanddeclaration",
"start": [
848,
1
]
},
{
"code": "theorem disjoint_iff_ne : Disjoint l₁ l₂ ↔ ∀ a ∈ l₁, ∀ b ∈ l₂, a ≠ b",
"end": [
851,
83
],
"full_name": "List.disjoint_iff_ne",
"kind": "commanddeclaration",
"start": [
850,
1
]
},
{
"code": "theorem disjoint_of_subset_left (ss : l₁ ⊆ l) (d : Disjoint l l₂) : Disjoint l₁ l₂",
"end": [
854,
22
],
"full_name": "List.disjoint_of_subset_left",
"kind": "commanddeclaration",
"start": [
853,
1
]
},
{
"code": "theorem disjoint_of_subset_right (ss : l₂ ⊆ l) (d : Disjoint l₁ l) : Disjoint l₁ l₂",
"end": [
857,
28
],
"full_name": "List.disjoint_of_subset_right",
"kind": "commanddeclaration",
"start": [
856,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_left {l₁ l₂} : Disjoint (a :: l₁) l₂ → Disjoint l₁ l₂",
"end": [
860,
42
],
"full_name": "List.disjoint_of_disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
859,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_right {l₁ l₂} : Disjoint l₁ (a :: l₂) → Disjoint l₁ l₂",
"end": [
863,
43
],
"full_name": "List.disjoint_of_disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
862,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_left (l : List α) : Disjoint [] l",
"end": [
865,
96
],
"full_name": "List.disjoint_nil_left",
"kind": "commanddeclaration",
"start": [
865,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_right (l : List α) : Disjoint l []",
"end": [
868,
48
],
"full_name": "List.disjoint_nil_right",
"kind": "commanddeclaration",
"start": [
867,
1
]
},
{
"code": "@[simp 1100] theorem singleton_disjoint : Disjoint [a] l ↔ a ∉ l",
"end": [
870,
87
],
"full_name": "List.singleton_disjoint",
"kind": "commanddeclaration",
"start": [
870,
1
]
},
{
"code": "@[simp 1100] theorem disjoint_singleton : Disjoint l [a] ↔ a ∉ l",
"end": [
873,
41
],
"full_name": "List.disjoint_singleton",
"kind": "commanddeclaration",
"start": [
872,
1
]
},
{
"code": "@[simp] theorem disjoint_append_left : Disjoint (l₁ ++ l₂) l ↔ Disjoint l₁ l ∧ Disjoint l₂ l",
"end": [
876,
38
],
"full_name": "List.disjoint_append_left",
"kind": "commanddeclaration",
"start": [
875,
1
]
},
{
"code": "@[simp] theorem disjoint_append_right : Disjoint l (l₁ ++ l₂) ↔ Disjoint l l₁ ∧ Disjoint l l₂",
"end": [
879,
76
],
"full_name": "List.disjoint_append_right",
"kind": "commanddeclaration",
"start": [
878,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_left : Disjoint (a::l₁) l₂ ↔ (a ∉ l₂) ∧ Disjoint l₁ l₂",
"end": [
882,
75
],
"full_name": "List.disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
881,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_right : Disjoint l₁ (a :: l₂) ↔ (a ∉ l₁) ∧ Disjoint l₁ l₂",
"end": [
885,
74
],
"full_name": "List.disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
884,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_left (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₁ l",
"end": [
888,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_left",
"kind": "commanddeclaration",
"start": [
887,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_right (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₂ l",
"end": [
891,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_right",
"kind": "commanddeclaration",
"start": [
890,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_left (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₁",
"end": [
894,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_left",
"kind": "commanddeclaration",
"start": [
893,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_right (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₂",
"end": [
897,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_right",
"kind": "commanddeclaration",
"start": [
896,
1
]
},
{
"code": "theorem foldl_hom (f : α₁ → α₂) (g₁ : α₁ → β → α₁) (g₂ : α₂ → β → α₂) (l : List β) (init : α₁)\n (H : ∀ x y, g₂ (f x) y = f (g₁ x y)) : l.foldl g₂ (f init) = f (l.foldl g₁ init)",
"end": [
903,
48
],
"full_name": "List.foldl_hom",
"kind": "commanddeclaration",
"start": [
901,
1
]
},
{
"code": "theorem foldr_hom (f : β₁ → β₂) (g₁ : α → β₁ → β₁) (g₂ : α → β₂ → β₂) (l : List α) (init : β₁)\n (H : ∀ x y, g₂ x (f y) = f (g₁ x y)) : l.foldr g₂ (f init) = f (l.foldr g₁ init)",
"end": [
907,
30
],
"full_name": "List.foldr_hom",
"kind": "commanddeclaration",
"start": [
905,
1
]
},
{
"code": "theorem union_def [BEq α] (l₁ l₂ : List α) : l₁ ∪ l₂ = foldr .insert l₂ l₁",
"end": [
915,
83
],
"full_name": "List.union_def",
"kind": "commanddeclaration",
"start": [
915,
1
]
},
{
"code": "@[simp] theorem nil_union (l : List α) : nil ∪ l = l",
"end": [
917,
88
],
"full_name": "List.nil_union",
"kind": "commanddeclaration",
"start": [
917,
1
]
},
{
"code": "@[simp] theorem cons_union (a : α) (l₁ l₂ : List α) :\n (a :: l₁) ∪ l₂ = (l₁ ∪ l₂).insert a",
"end": [
920,
75
],
"full_name": "List.cons_union",
"kind": "commanddeclaration",
"start": [
919,
1
]
},
{
"code": "@[simp] theorem mem_union_iff [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∪ l₂ ↔ x ∈ l₁ ∨ x ∈ l₂",
"end": [
923,
76
],
"full_name": "List.mem_union_iff",
"kind": "commanddeclaration",
"start": [
922,
1
]
},
{
"code": "theorem inter_def [BEq α] (l₁ l₂ : List α) : l₁ ∩ l₂ = filter (elem · l₂) l₁",
"end": [
929,
85
],
"full_name": "List.inter_def",
"kind": "commanddeclaration",
"start": [
929,
1
]
},
{
"code": "@[simp] theorem mem_inter_iff [BEq α] [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∩ l₂ ↔ x ∈ l₁ ∧ x ∈ l₂",
"end": [
933,
49
],
"full_name": "List.mem_inter_iff",
"kind": "commanddeclaration",
"start": [
931,
1
]
},
{
"code": "@[simp]\ntheorem pair_mem_product {xs : List α} {ys : List β} {x : α} {y : β} :\n (x, y) ∈ product xs ys ↔ x ∈ xs ∧ y ∈ ys",
"end": [
942,
47
],
"full_name": "List.pair_mem_product",
"kind": "commanddeclaration",
"start": [
937,
1
]
},
{
"code": "@[simp]\ntheorem leftpad_length (n : Nat) (a : α) (l : List α) :\n (leftpad n a l).length = max n l.length",
"end": [
951,
75
],
"full_name": "List.leftpad_length",
"kind": "commanddeclaration",
"start": [
946,
1
]
},
{
"code": "theorem leftpad_prefix (n : Nat) (a : α) (l : List α) :\n replicate (n - length l) a <+: leftpad n a l",
"end": [
956,
27
],
"full_name": "List.leftpad_prefix",
"kind": "commanddeclaration",
"start": [
953,
1
]
},
{
"code": "theorem leftpad_suffix (n : Nat) (a : α) (l : List α) : l <:+ (leftpad n a l)",
"end": [
960,
54
],
"full_name": "List.leftpad_suffix",
"kind": "commanddeclaration",
"start": [
958,
1
]
},
{
"code": "@[simp] theorem forIn_eq_forIn [Monad m] : @List.forIn α β m _ = forIn",
"end": [
965,
78
],
"full_name": "List.forIn_eq_forIn",
"kind": "commanddeclaration",
"start": [
965,
1
]
},
{
"code": "theorem forIn_eq_bindList [Monad m] [LawfulMonad m]\n (f : α → β → m (ForInStep β)) (l : List α) (init : β) :\n forIn l init f = ForInStep.run <$> (ForInStep.yield init).bindList f l",
"end": [
971,
30
],
"full_name": "List.forIn_eq_bindList",
"kind": "commanddeclaration",
"start": [
967,
1
]
},
{
"code": "@[simp] theorem forM_append [Monad m] [LawfulMonad m] (l₁ l₂ : List α) (f : α → m PUnit) :\n (l₁ ++ l₂).forM f = (do l₁.forM f; l₂.forM f)",
"end": [
974,
82
],
"full_name": "List.forM_append",
"kind": "commanddeclaration",
"start": [
973,
1
]
},
{
"code": "@[simp] theorem diff_nil (l : List α) : l.diff [] = l",
"end": [
982,
61
],
"full_name": "List.diff_nil",
"kind": "commanddeclaration",
"start": [
982,
1
]
},
{
"code": "@[simp] theorem diff_cons (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.erase a).diff l₂",
"end": [
985,
41
],
"full_name": "List.diff_cons",
"kind": "commanddeclaration",
"start": [
984,
1
]
},
{
"code": "theorem diff_cons_right (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.diff l₂).erase a",
"end": [
988,
71
],
"full_name": "List.diff_cons_right",
"kind": "commanddeclaration",
"start": [
987,
1
]
},
{
"code": "theorem diff_erase (l₁ l₂ : List α) (a : α) : (l₁.diff l₂).erase a = (l₁.erase a).diff l₂",
"end": [
991,
36
],
"full_name": "List.diff_erase",
"kind": "commanddeclaration",
"start": [
990,
1
]
},
{
"code": "@[simp] theorem nil_diff (l : List α) : [].diff l = []",
"end": [
994,
45
],
"full_name": "List.nil_diff",
"kind": "commanddeclaration",
"start": [
993,
1
]
},
{
"code": "theorem cons_diff (a : α) (l₁ l₂ : List α) :\n (a :: l₁).diff l₂ = if a ∈ l₂ then l₁.diff (l₂.erase a) else a :: l₁.diff l₂",
"end": [
1005,
14
],
"full_name": "List.cons_diff",
"kind": "commanddeclaration",
"start": [
996,
1
]
},
{
"code": "theorem cons_diff_of_mem {a : α} {l₂ : List α} (h : a ∈ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = l₁.diff (l₂.erase a)",
"end": [
1008,
76
],
"full_name": "List.cons_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1007,
1
]
},
{
"code": "theorem cons_diff_of_not_mem {a : α} {l₂ : List α} (h : a ∉ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = a :: l₁.diff l₂",
"end": [
1011,
71
],
"full_name": "List.cons_diff_of_not_mem",
"kind": "commanddeclaration",
"start": [
1010,
1
]
},
{
"code": "theorem diff_eq_foldl : ∀ l₁ l₂ : List α, l₁.diff l₂ = foldl List.erase l₁ l₂",
"end": [
1015,
65
],
"full_name": "List.diff_eq_foldl",
"kind": "commanddeclaration",
"start": [
1013,
1
]
},
{
"code": "@[simp] theorem diff_append (l₁ l₂ l₃ : List α) : l₁.diff (l₂ ++ l₃) = (l₁.diff l₂).diff l₃",
"end": [
1018,
42
],
"full_name": "List.diff_append",
"kind": "commanddeclaration",
"start": [
1017,
1
]
},
{
"code": "theorem diff_sublist : ∀ l₁ l₂ : List α, l₁.diff l₂ <+ l₁",
"end": [
1026,
34
],
"full_name": "List.diff_sublist",
"kind": "commanddeclaration",
"start": [
1020,
1
]
},
{
"code": "theorem diff_subset (l₁ l₂ : List α) : l₁.diff l₂ ⊆ l₁",
"end": [
1028,
83
],
"full_name": "List.diff_subset",
"kind": "commanddeclaration",
"start": [
1028,
1
]
},
{
"code": "theorem mem_diff_of_mem {a : α} : ∀ {l₁ l₂ : List α}, a ∈ l₁ → a ∉ l₂ → a ∈ l₁.diff l₂",
"end": [
1034,
94
],
"full_name": "List.mem_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1030,
1
]
},
{
"code": "theorem Sublist.diff_right : ∀ {l₁ l₂ l₃ : List α}, l₁ <+ l₂ → l₁.diff l₃ <+ l₂.diff l₃",
"end": [
1038,
75
],
"full_name": "List.Sublist.diff_right",
"kind": "commanddeclaration",
"start": [
1036,
1
]
},
{
"code": "theorem Sublist.erase_diff_erase_sublist {a : α} :\n ∀ {l₁ l₂ : List α}, l₁ <+ l₂ → (l₂.erase a).diff (l₁.erase a) <+ l₂.diff l₁",
"end": [
1048,
71
],
"full_name": "List.Sublist.erase_diff_erase_sublist",
"kind": "commanddeclaration",
"start": [
1040,
1
]
},
{
"code": "@[simp] theorem prefix_append (l₁ l₂ : List α) : l₁ <+: l₁ ++ l₂",
"end": [
1054,
78
],
"full_name": "List.prefix_append",
"kind": "commanddeclaration",
"start": [
1054,
1
]
},
{
"code": "@[simp] theorem suffix_append (l₁ l₂ : List α) : l₂ <:+ l₁ ++ l₂",
"end": [
1056,
78
],
"full_name": "List.suffix_append",
"kind": "commanddeclaration",
"start": [
1056,
1
]
},
{
"code": "theorem infix_append (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ l₂ ++ l₃",
"end": [
1058,
83
],
"full_name": "List.infix_append",
"kind": "commanddeclaration",
"start": [
1058,
1
]
},
{
"code": "@[simp] theorem infix_append' (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ (l₂ ++ l₃)",
"end": [
1061,
47
],
"full_name": "List.infix_append'",
"kind": "commanddeclaration",
"start": [
1060,
1
]
},
{
"code": "theorem IsPrefix.isInfix : l₁ <+: l₂ → l₁ <:+: l₂",
"end": [
1063,
78
],
"full_name": "List.IsPrefix.isInfix",
"kind": "commanddeclaration",
"start": [
1063,
1
]
},
{
"code": "theorem IsSuffix.isInfix : l₁ <:+ l₂ → l₁ <:+: l₂",
"end": [
1065,
98
],
"full_name": "List.IsSuffix.isInfix",
"kind": "commanddeclaration",
"start": [
1065,
1
]
},
{
"code": "theorem nil_prefix (l : List α) : [] <+: l",
"end": [
1067,
55
],
"full_name": "List.nil_prefix",
"kind": "commanddeclaration",
"start": [
1067,
1
]
},
{
"code": "theorem nil_suffix (l : List α) : [] <:+ l",
"end": [
1069,
64
],
"full_name": "List.nil_suffix",
"kind": "commanddeclaration",
"start": [
1069,
1
]
},
{
"code": "theorem nil_infix (l : List α) : [] <:+: l",
"end": [
1071,
69
],
"full_name": "List.nil_infix",
"kind": "commanddeclaration",
"start": [
1071,
1
]
},
{
"code": "theorem prefix_refl (l : List α) : l <+: l",
"end": [
1073,
65
],
"full_name": "List.prefix_refl",
"kind": "commanddeclaration",
"start": [
1073,
1
]
},
{
"code": "theorem suffix_refl (l : List α) : l <:+ l",
"end": [
1075,
56
],
"full_name": "List.suffix_refl",
"kind": "commanddeclaration",
"start": [
1075,
1
]
},
{
"code": "theorem infix_refl (l : List α) : l <:+: l",
"end": [
1077,
70
],
"full_name": "List.infix_refl",
"kind": "commanddeclaration",
"start": [
1077,
1
]
},
{
"code": "@[simp] theorem suffix_cons (a : α) : ∀ l, l <:+ a :: l",
"end": [
1079,
77
],
"full_name": "List.suffix_cons",
"kind": "commanddeclaration",
"start": [
1079,
1
]
},
{
"code": "theorem infix_cons : l₁ <:+: l₂ → l₁ <:+: a :: l₂",
"end": [
1081,
95
],
"full_name": "List.infix_cons",
"kind": "commanddeclaration",
"start": [
1081,
1
]
},
{
"code": "theorem infix_concat : l₁ <:+: l₂ → l₁ <:+: concat l₂ a",
"end": [
1084,
67
],
"full_name": "List.infix_concat",
"kind": "commanddeclaration",
"start": [
1083,
1
]
},
{
"code": "theorem IsPrefix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₂ → l₂ <+: l₃ → l₁ <+: l₃",
"end": [
1087,
75
],
"full_name": "List.IsPrefix.trans",
"kind": "commanddeclaration",
"start": [
1086,
1
]
},
{
"code": "theorem IsSuffix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+ l₂ → l₂ <:+ l₃ → l₁ <:+ l₃",
"end": [
1090,
68
],
"full_name": "List.IsSuffix.trans",
"kind": "commanddeclaration",
"start": [
1089,
1
]
},
{
"code": "theorem IsInfix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+: l₂ → l₂ <:+: l₃ → l₁ <:+: l₃",
"end": [
1093,
95
],
"full_name": "List.IsInfix.trans",
"kind": "commanddeclaration",
"start": [
1092,
1
]
},
{
"code": "protected theorem IsInfix.sublist : l₁ <:+: l₂ → l₁ <+ l₂",
"end": [
1096,
78
],
"full_name": "List.IsInfix.sublist",
"kind": "commanddeclaration",
"start": [
1095,
1
]
},
{
"code": "protected theorem IsInfix.subset (hl : l₁ <:+: l₂) : l₁ ⊆ l₂",
"end": [
1099,
20
],
"full_name": "List.IsInfix.subset",
"kind": "commanddeclaration",
"start": [
1098,
1
]
},
{
"code": "protected theorem IsPrefix.sublist (h : l₁ <+: l₂) : l₁ <+ l₂",
"end": [
1102,
20
],
"full_name": "List.IsPrefix.sublist",
"kind": "commanddeclaration",
"start": [
1101,
1
]
},
{
"code": "protected theorem IsPrefix.subset (hl : l₁ <+: l₂) : l₁ ⊆ l₂",
"end": [
1105,
20
],
"full_name": "List.IsPrefix.subset",
"kind": "commanddeclaration",
"start": [
1104,
1
]
},
{
"code": "protected theorem IsSuffix.sublist (h : l₁ <:+ l₂) : l₁ <+ l₂",
"end": [
1108,
20
],
"full_name": "List.IsSuffix.sublist",
"kind": "commanddeclaration",
"start": [
1107,
1
]
},
{
"code": "protected theorem IsSuffix.subset (hl : l₁ <:+ l₂) : l₁ ⊆ l₂",
"end": [
1111,
20
],
"full_name": "List.IsSuffix.subset",
"kind": "commanddeclaration",
"start": [
1110,
1
]
},
{
"code": "@[simp] theorem reverse_suffix : reverse l₁ <:+ reverse l₂ ↔ l₁ <+: l₂",
"end": [
1115,
59
],
"full_name": "List.reverse_suffix",
"kind": "commanddeclaration",
"start": [
1113,
1
]
},
{
"code": "@[simp] theorem reverse_prefix : reverse l₁ <+: reverse l₂ ↔ l₁ <:+ l₂",
"end": [
1118,
53
],
"full_name": "List.reverse_prefix",
"kind": "commanddeclaration",
"start": [
1117,
1
]
},
{
"code": "@[simp] theorem reverse_infix : reverse l₁ <:+: reverse l₂ ↔ l₁ <:+: l₂",
"end": [
1124,
61
],
"full_name": "List.reverse_infix",
"kind": "commanddeclaration",
"start": [
1120,
1
]
},
{
"code": "theorem IsInfix.length_le (h : l₁ <:+: l₂) : l₁.length ≤ l₂.length",
"end": [
1127,
22
],
"full_name": "List.IsInfix.length_le",
"kind": "commanddeclaration",
"start": [
1126,
1
]
},
{
"code": "theorem IsPrefix.length_le (h : l₁ <+: l₂) : l₁.length ≤ l₂.length",
"end": [
1130,
22
],
"full_name": "List.IsPrefix.length_le",
"kind": "commanddeclaration",
"start": [
1129,
1
]
},
{
"code": "theorem IsSuffix.length_le (h : l₁ <:+ l₂) : l₁.length ≤ l₂.length",
"end": [
1133,
22
],
"full_name": "List.IsSuffix.length_le",
"kind": "commanddeclaration",
"start": [
1132,
1
]
},
{
"code": "@[simp] theorem infix_nil : l <:+: [] ↔ l = []",
"end": [
1135,
98
],
"full_name": "List.infix_nil",
"kind": "commanddeclaration",
"start": [
1135,
1
]
},
{
"code": "@[simp] theorem prefix_nil : l <+: [] ↔ l = []",
"end": [
1137,
99
],
"full_name": "List.prefix_nil",
"kind": "commanddeclaration",
"start": [
1137,
1
]
},
{
"code": "@[simp] theorem suffix_nil : l <:+ [] ↔ l = []",
"end": [
1139,
99
],
"full_name": "List.suffix_nil",
"kind": "commanddeclaration",
"start": [
1139,
1
]
},
{
"code": "theorem infix_iff_prefix_suffix (l₁ l₂ : List α) : l₁ <:+: l₂ ↔ ∃ t, l₁ <+: t ∧ t <:+ l₂",
"end": [
1143,
60
],
"full_name": "List.infix_iff_prefix_suffix",
"kind": "commanddeclaration",
"start": [
1141,
1
]
},
{
"code": "theorem IsInfix.eq_of_length (h : l₁ <:+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1146,
25
],
"full_name": "List.IsInfix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1145,
1
]
},
{
"code": "theorem IsPrefix.eq_of_length (h : l₁ <+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1149,
25
],
"full_name": "List.IsPrefix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1148,
1
]
},
{
"code": "theorem IsSuffix.eq_of_length (h : l₁ <:+ l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1152,
25
],
"full_name": "List.IsSuffix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1151,
1
]
},
{
"code": "theorem prefix_of_prefix_length_le :\n ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₃ → l₂ <+: l₃ → length l₁ ≤ length l₂ → l₁ <+: l₂",
"end": [
1160,
20
],
"full_name": "List.prefix_of_prefix_length_le",
"kind": "commanddeclaration",
"start": [
1154,
1
]
},
{
"code": "theorem prefix_or_prefix_of_prefix (h₁ : l₁ <+: l₃) (h₂ : l₂ <+: l₃) : l₁ <+: l₂ ∨ l₂ <+: l₁",
"end": [
1164,
39
],
"full_name": "List.prefix_or_prefix_of_prefix",
"kind": "commanddeclaration",
"start": [
1162,
1
]
},
{
"code": "theorem suffix_of_suffix_length_le\n (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) (ll : length l₁ ≤ length l₂) : l₁ <:+ l₂",
"end": [
1169,
90
],
"full_name": "List.suffix_of_suffix_length_le",
"kind": "commanddeclaration",
"start": [
1166,
1
]
},
{
"code": "theorem suffix_or_suffix_of_suffix (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) : l₁ <:+ l₂ ∨ l₂ <:+ l₁",
"end": [
1173,
21
],
"full_name": "List.suffix_or_suffix_of_suffix",
"kind": "commanddeclaration",
"start": [
1171,
1
]
},
{
"code": "theorem suffix_cons_iff : l₁ <:+ a :: l₂ ↔ l₁ = a :: l₂ ∨ l₁ <:+ l₂",
"end": [
1184,
41
],
"full_name": "List.suffix_cons_iff",
"kind": "commanddeclaration",
"start": [
1175,
1
]
},
{
"code": "theorem infix_cons_iff : l₁ <:+: a :: l₂ ↔ l₁ <+: a :: l₂ ∨ l₁ <:+: l₂",
"end": [
1195,
27
],
"full_name": "List.infix_cons_iff",
"kind": "commanddeclaration",
"start": [
1186,
1
]
},
{
"code": "theorem infix_of_mem_join : ∀ {L : List (List α)}, l ∈ L → l <:+: join L",
"end": [
1202,
78
],
"full_name": "List.infix_of_mem_join",
"kind": "commanddeclaration",
"start": [
1197,
1
]
},
{
"code": "theorem prefix_append_right_inj (l) : l ++ l₁ <+: l ++ l₂ ↔ l₁ <+: l₂",
"end": [
1205,
63
],
"full_name": "List.prefix_append_right_inj",
"kind": "commanddeclaration",
"start": [
1204,
1
]
},
{
"code": "@[simp]\ntheorem prefix_cons_inj (a) : a :: l₁ <+: a :: l₂ ↔ l₁ <+: l₂",
"end": [
1209,
30
],
"full_name": "List.prefix_cons_inj",
"kind": "commanddeclaration",
"start": [
1207,
1
]
},
{
"code": "theorem take_prefix (n) (l : List α) : take n l <+: l",
"end": [
1212,
28
],
"full_name": "List.take_prefix",
"kind": "commanddeclaration",
"start": [
1211,
1
]
},
{
"code": "theorem drop_suffix (n) (l : List α) : drop n l <:+ l",
"end": [
1215,
28
],
"full_name": "List.drop_suffix",
"kind": "commanddeclaration",
"start": [
1214,
1
]
},
{
"code": "theorem take_sublist (n) (l : List α) : take n l <+ l",
"end": [
1218,
28
],
"full_name": "List.take_sublist",
"kind": "commanddeclaration",
"start": [
1217,
1
]
},
{
"code": "theorem drop_sublist (n) (l : List α) : drop n l <+ l",
"end": [
1221,
28
],
"full_name": "List.drop_sublist",
"kind": "commanddeclaration",
"start": [
1220,
1
]
},
{
"code": "theorem take_subset (n) (l : List α) : take n l ⊆ l",
"end": [
1224,
28
],
"full_name": "List.take_subset",
"kind": "commanddeclaration",
"start": [
1223,
1
]
},
{
"code": "theorem drop_subset (n) (l : List α) : drop n l ⊆ l",
"end": [
1227,
28
],
"full_name": "List.drop_subset",
"kind": "commanddeclaration",
"start": [
1226,
1
]
},
{
"code": "theorem mem_of_mem_take {l : List α} (h : a ∈ l.take n) : a ∈ l",
"end": [
1230,
20
],
"full_name": "List.mem_of_mem_take",
"kind": "commanddeclaration",
"start": [
1229,
1
]
},
{
"code": "theorem IsPrefix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <+: l₂) :\n l₁.filter p <+: l₂.filter p",
"end": [
1235,
42
],
"full_name": "List.IsPrefix.filter",
"kind": "commanddeclaration",
"start": [
1232,
1
]
},
{
"code": "theorem IsSuffix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+ l₂) :\n l₁.filter p <:+ l₂.filter p",
"end": [
1240,
42
],
"full_name": "List.IsSuffix.filter",
"kind": "commanddeclaration",
"start": [
1237,
1
]
},
{
"code": "theorem IsInfix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+: l₂) :\n l₁.filter p <:+: l₂.filter p",
"end": [
1245,
58
],
"full_name": "List.IsInfix.filter",
"kind": "commanddeclaration",
"start": [
1242,
1
]
},
{
"code": "theorem mem_of_mem_drop {n} {l : List α} (h : a ∈ l.drop n) : a ∈ l",
"end": [
1249,
89
],
"full_name": "List.mem_of_mem_drop",
"kind": "commanddeclaration",
"start": [
1249,
1
]
},
{
"code": "theorem disjoint_take_drop : ∀ {l : List α}, l.Nodup → m ≤ n → Disjoint (l.take m) (l.drop n)",
"end": [
1259,
61
],
"full_name": "List.disjoint_take_drop",
"kind": "commanddeclaration",
"start": [
1251,
1
]
},
{
"code": "@[simp]\ntheorem chain_cons {a b : α} {l : List α} : Chain R a (b :: l) ↔ R a b ∧ Chain R b l",
"end": [
1268,
27
],
"full_name": "List.chain_cons",
"kind": "commanddeclaration",
"start": [
1265,
1
]
},
{
"code": "theorem rel_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : R a b",
"end": [
1271,
21
],
"full_name": "List.rel_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1270,
1
]
},
{
"code": "theorem chain_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : Chain R b l",
"end": [
1274,
21
],
"full_name": "List.chain_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1273,
1
]
},
{
"code": "theorem Chain.imp' {R S : α → α → Prop} (HRS : ∀ ⦃a b⦄, R a b → S a b) {a b : α}\n (Hab : ∀ ⦃c⦄, R a c → S b c) {l : List α} (p : Chain R a l) : Chain S b l",
"end": [
1283,
24
],
"full_name": "List.Chain.imp'",
"kind": "commanddeclaration",
"start": [
1276,
1
]
},
{
"code": "theorem Chain.imp {R S : α → α → Prop} (H : ∀ a b, R a b → S a b) {a : α} {l : List α}\n (p : Chain R a l) : Chain S a l",
"end": [
1287,
17
],
"full_name": "List.Chain.imp",
"kind": "commanddeclaration",
"start": [
1285,
1
]
},
{
"code": "protected theorem Pairwise.chain (p : Pairwise R (a :: l)) : Chain R a l",
"end": [
1295,
36
],
"full_name": "List.Pairwise.chain",
"kind": "commanddeclaration",
"start": [
1289,
1
]
},
{
"code": "theorem range'_succ (s n step) : range' s (n + 1) step = s :: range' (s + step) n step",
"end": [
1300,
44
],
"full_name": "List.range'_succ",
"kind": "commanddeclaration",
"start": [
1299,
1
]
},
{
"code": "@[simp] theorem length_range' (s step) : ∀ n : Nat, length (range' s n step) = n",
"end": [
1304,
49
],
"full_name": "List.length_range'",
"kind": "commanddeclaration",
"start": [
1302,
1
]
},
{
"code": "@[simp] theorem range'_eq_nil : range' s n step = [] ↔ n = 0",
"end": [
1307,
39
],
"full_name": "List.range'_eq_nil",
"kind": "commanddeclaration",
"start": [
1306,
1
]
},
{
"code": "theorem mem_range' : ∀{n}, m ∈ range' s n step ↔ ∃ i < n, m = s + step * i",
"end": [
1314,
71
],
"full_name": "List.mem_range'",
"kind": "commanddeclaration",
"start": [
1309,
1
]
},
{
"code": "@[simp] theorem mem_range'_1 : m ∈ range' s n ↔ s ≤ m ∧ m < s + n",
"end": [
1319,
93
],
"full_name": "List.mem_range'_1",
"kind": "commanddeclaration",
"start": [
1316,
1
]
},
{
"code": "@[simp]\ntheorem map_add_range' (a) : ∀ s n step, map (a + ·) (range' s n step) = range' (a + s) n step",
"end": [
1324,
90
],
"full_name": "List.map_add_range'",
"kind": "commanddeclaration",
"start": [
1321,
1
]
},
{
"code": "theorem map_sub_range' (a s n : Nat) (h : a ≤ s) :\n map (· - a) (range' s n step) = range' (s - a) n step",
"end": [
1330,
42
],
"full_name": "List.map_sub_range'",
"kind": "commanddeclaration",
"start": [
1326,
1
]
},
{
"code": "theorem chain_succ_range' : ∀ s n step : Nat,\n Chain (fun a b => b = a + step) s (range' (s + step) n step)",
"end": [
1335,
69
],
"full_name": "List.chain_succ_range'",
"kind": "commanddeclaration",
"start": [
1332,
1
]
},
{
"code": "theorem chain_lt_range' (s n : Nat) {step} (h : 0 < step) :\n Chain (· < ·) s (range' (s + step) n step)",
"end": [
1339,
83
],
"full_name": "List.chain_lt_range'",
"kind": "commanddeclaration",
"start": [
1337,
1
]
},
{
"code": "theorem range'_append : ∀ s m n step : Nat,\n range' s m step ++ range' (s + step * m) n step = range' s (n + m) step",
"end": [
1346,
46
],
"full_name": "List.range'_append",
"kind": "commanddeclaration",
"start": [
1341,
1
]
},
{
"code": "@[simp] theorem range'_append_1 (s m n : Nat) :\n range' s m ++ range' (s + m) n = range' s (n + m)",
"end": [
1349,
94
],
"full_name": "List.range'_append_1",
"kind": "commanddeclaration",
"start": [
1348,
1
]
},
{
"code": "theorem range'_sublist_right {s m n : Nat} : range' s m step <+ range' s n step ↔ m ≤ n",
"end": [
1353,
88
],
"full_name": "List.range'_sublist_right",
"kind": "commanddeclaration",
"start": [
1351,
1
]
},
{
"code": "theorem range'_subset_right {s m n : Nat} (step0 : 0 < step) :\n range' s m step ⊆ range' s n step ↔ m ≤ n",
"end": [
1359,
82
],
"full_name": "List.range'_subset_right",
"kind": "commanddeclaration",
"start": [
1355,
1
]
},
{
"code": "theorem range'_subset_right_1 {s m n : Nat} : range' s m ⊆ range' s n ↔ m ≤ n",
"end": [
1362,
34
],
"full_name": "List.range'_subset_right_1",
"kind": "commanddeclaration",
"start": [
1361,
1
]
},
{
"code": "theorem getElem?_range' (s step) :\n ∀ {m n : Nat}, m < n → (range' s n step)[m]? = some (s + step * m)",
"end": [
1370,
55
],
"full_name": "List.getElem?_range'",
"kind": "commanddeclaration",
"start": [
1364,
1
]
},
{
"code": "@[simp] theorem getElem_range' {n m step} (i) (H : i < (range' n m step).length) :\n (range' n m step)[i] = n + step * i",
"end": [
1374,
70
],
"full_name": "List.getElem_range'",
"kind": "commanddeclaration",
"start": [
1372,
1
]
},
{
"code": "@[deprecated getElem?_range' (since := \"2024-06-12\")]\ntheorem get?_range' (s step) {m n : Nat} (h : m < n) :\n get? (range' s n step) m = some (s + step * m)",
"end": [
1379,
11
],
"full_name": "List.get?_range'",
"kind": "commanddeclaration",
"start": [
1376,
1
]
},
{
"code": "@[deprecated getElem_range' (since := \"2024-06-12\")]\ntheorem get_range' {n m step} (i) (H : i < (range' n m step).length) :\n get (range' n m step) ⟨i, H⟩ = n + step * i",
"end": [
1384,
7
],
"full_name": "List.get_range'",
"kind": "commanddeclaration",
"start": [
1381,
1
]
},
{
"code": "theorem range'_concat (s n : Nat) : range' s (n + 1) step = range' s n step ++ [s + step * n]",
"end": [
1387,
63
],
"full_name": "List.range'_concat",
"kind": "commanddeclaration",
"start": [
1386,
1
]
},
{
"code": "theorem range'_1_concat (s n : Nat) : range' s (n + 1) = range' s n ++ [s + n]",
"end": [
1390,
23
],
"full_name": "List.range'_1_concat",
"kind": "commanddeclaration",
"start": [
1389,
1
]
},
{
"code": "theorem range_loop_range' : ∀ s n : Nat, range.loop s (range' s n) = range' 0 (n + s)",
"end": [
1394,
101
],
"full_name": "List.range_loop_range'",
"kind": "commanddeclaration",
"start": [
1392,
1
]
},
{
"code": "theorem range_eq_range' (n : Nat) : range n = range' 0 n",
"end": [
1397,
56
],
"full_name": "List.range_eq_range'",
"kind": "commanddeclaration",
"start": [
1396,
1
]
},
{
"code": "theorem range_succ_eq_map (n : Nat) : range (n + 1) = 0 :: map succ (range n)",
"end": [
1401,
30
],
"full_name": "List.range_succ_eq_map",
"kind": "commanddeclaration",
"start": [
1399,
1
]
},
{
"code": "theorem range'_eq_map_range (s n : Nat) : range' s n = map (s + ·) (range n)",
"end": [
1404,
44
],
"full_name": "List.range'_eq_map_range",
"kind": "commanddeclaration",
"start": [
1403,
1
]
},
{
"code": "@[simp] theorem length_range (n : Nat) : length (range n) = n",
"end": [
1407,
45
],
"full_name": "List.length_range",
"kind": "commanddeclaration",
"start": [
1406,
1
]
},
{
"code": "@[simp] theorem range_eq_nil {n : Nat} : range n = [] ↔ n = 0",
"end": [
1410,
38
],
"full_name": "List.range_eq_nil",
"kind": "commanddeclaration",
"start": [
1409,
1
]
},
{
"code": "@[simp]\ntheorem range_sublist {m n : Nat} : range m <+ range n ↔ m ≤ n",
"end": [
1414,
52
],
"full_name": "List.range_sublist",
"kind": "commanddeclaration",
"start": [
1412,
1
]
},
{
"code": "@[simp]\ntheorem range_subset {m n : Nat} : range m ⊆ range n ↔ m ≤ n",
"end": [
1418,
65
],
"full_name": "List.range_subset",
"kind": "commanddeclaration",
"start": [
1416,
1
]
},
{
"code": "@[simp]\ntheorem mem_range {m n : Nat} : m ∈ range n ↔ m < n",
"end": [
1422,
81
],
"full_name": "List.mem_range",
"kind": "commanddeclaration",
"start": [
1420,
1
]
},
{
"code": "theorem not_mem_range_self {n : Nat} : n ∉ range n",
"end": [
1424,
62
],
"full_name": "List.not_mem_range_self",
"kind": "commanddeclaration",
"start": [
1424,
1
]
},
{
"code": "theorem self_mem_range_succ (n : Nat) : n ∈ range (n + 1)",
"end": [
1426,
69
],
"full_name": "List.self_mem_range_succ",
"kind": "commanddeclaration",
"start": [
1426,
1
]
},
{
"code": "theorem getElem?_range {m n : Nat} (h : m < n) : (range n)[m]? = some m",
"end": [
1429,
48
],
"full_name": "List.getElem?_range",
"kind": "commanddeclaration",
"start": [
1428,
1
]
},
{
"code": "@[simp] theorem getElem_range {n : Nat} (m) (h : m < (range n).length) : (range n)[m] = m",
"end": [
1432,
25
],
"full_name": "List.getElem_range",
"kind": "commanddeclaration",
"start": [
1431,
1
]
},
{
"code": "@[deprecated getElem?_range (since := \"2024-06-12\")]\ntheorem get?_range {m n : Nat} (h : m < n) : get? (range n) m = some m",
"end": [
1436,
27
],
"full_name": "List.get?_range",
"kind": "commanddeclaration",
"start": [
1434,
1
]
},
{
"code": "@[deprecated getElem_range (since := \"2024-06-12\")]\ntheorem get_range {n} (i) (H : i < (range n).length) : get (range n) ⟨i, H⟩ = i",
"end": [
1440,
7
],
"full_name": "List.get_range",
"kind": "commanddeclaration",
"start": [
1438,
1
]
},
{
"code": "theorem range_succ (n : Nat) : range (succ n) = range n ++ [n]",
"end": [
1443,
61
],
"full_name": "List.range_succ",
"kind": "commanddeclaration",
"start": [
1442,
1
]
},
{
"code": "theorem range_add (a b : Nat) : range (a + b) = range a ++ (range b).map (a + ·)",
"end": [
1447,
75
],
"full_name": "List.range_add",
"kind": "commanddeclaration",
"start": [
1445,
1
]
},
{
"code": "theorem iota_eq_reverse_range' : ∀ n : Nat, iota n = reverse (range' 1 n)",
"end": [
1451,
99
],
"full_name": "List.iota_eq_reverse_range'",
"kind": "commanddeclaration",
"start": [
1449,
1
]
},
{
"code": "@[simp] theorem length_iota (n : Nat) : length (iota n) = n",
"end": [
1453,
96
],
"full_name": "List.length_iota",
"kind": "commanddeclaration",
"start": [
1453,
1
]
},
{
"code": "@[simp]\ntheorem mem_iota {m n : Nat} : m ∈ iota n ↔ 1 ≤ m ∧ m ≤ n",
"end": [
1457,
59
],
"full_name": "List.mem_iota",
"kind": "commanddeclaration",
"start": [
1455,
1
]
},
{
"code": "theorem reverse_range' : ∀ s n : Nat, reverse (range' s n) = map (s + n - 1 - ·) (range n)",
"end": [
1464,
59
],
"full_name": "List.reverse_range'",
"kind": "commanddeclaration",
"start": [
1459,
1
]
},
{
"code": "@[simp] theorem enumFrom_map_fst (n) :\n ∀ (l : List α), map Prod.fst (enumFrom n l) = range' n l.length",
"end": [
1472,
55
],
"full_name": "List.enumFrom_map_fst",
"kind": "commanddeclaration",
"start": [
1469,
1
]
},
{
"code": "@[simp] theorem enum_map_fst (l : List α) : map Prod.fst (enum l) = range l.length",
"end": [
1475,
54
],
"full_name": "List.enum_map_fst",
"kind": "commanddeclaration",
"start": [
1474,
1
]
},
{
"code": "theorem foldrIdx_start :\n (xs : List α).foldrIdx f i s = (xs : List α).foldrIdx (fun i => f (i + s)) i",
"end": [
1487,
43
],
"full_name": "List.foldrIdx_start",
"kind": "commanddeclaration",
"start": [
1479,
1
]
},
{
"code": "@[simp] theorem foldrIdx_cons :\n (x :: xs : List α).foldrIdx f i s = f s x (foldrIdx f i xs (s + 1))",
"end": [
1490,
79
],
"full_name": "List.foldrIdx_cons",
"kind": "commanddeclaration",
"start": [
1489,
1
]
},
{
"code": "theorem findIdxs_cons_aux (p : α → Bool) :\n foldrIdx (fun i a is => if p a = true then (i + 1) :: is else is) [] xs s =\n map (· + 1) (foldrIdx (fun i a is => if p a = true then i :: is else is) [] xs s)",
"end": [
1499,
24
],
"full_name": "List.findIdxs_cons_aux",
"kind": "commanddeclaration",
"start": [
1492,
1
]
},
{
"code": "theorem findIdxs_cons :\n (x :: xs : List α).findIdxs p =\n bif p x then 0 :: (xs.findIdxs p).map (· + 1) else (xs.findIdxs p).map (· + 1)",
"end": [
1508,
28
],
"full_name": "List.findIdxs_cons",
"kind": "commanddeclaration",
"start": [
1501,
1
]
},
{
"code": "@[simp] theorem indexesOf_nil [BEq α] : ([] : List α).indexesOf x = []",
"end": [
1510,
78
],
"full_name": "List.indexesOf_nil",
"kind": "commanddeclaration",
"start": [
1510,
1
]
},
{
"code": "theorem indexesOf_cons [BEq α] : (x :: xs : List α).indexesOf y =\n bif x == y then 0 :: (xs.indexesOf y).map (· + 1) else (xs.indexesOf y).map (· + 1)",
"end": [
1514,
34
],
"full_name": "List.indexesOf_cons",
"kind": "commanddeclaration",
"start": [
1512,
1
]
},
{
"code": "@[simp] theorem indexOf_nil [BEq α] : ([] : List α).indexOf x = 0",
"end": [
1516,
73
],
"full_name": "List.indexOf_nil",
"kind": "commanddeclaration",
"start": [
1516,
1
]
},
{
"code": "theorem indexOf_cons [BEq α] :\n (x :: xs : List α).indexOf y = bif x == y then 0 else xs.indexOf y + 1",
"end": [
1521,
22
],
"full_name": "List.indexOf_cons",
"kind": "commanddeclaration",
"start": [
1518,
1
]
},
{
"code": "theorem indexOf_mem_indexesOf [BEq α] [LawfulBEq α] {xs : List α} (m : x ∈ xs) :\n xs.indexOf x ∈ xs.indexesOf x",
"end": [
1535,
14
],
"full_name": "List.indexOf_mem_indexesOf",
"kind": "commanddeclaration",
"start": [
1523,
1
]
},
{
"code": "theorem merge_loop_nil_left (s : α → α → Bool) (r t) :\n merge.loop s [] r t = reverseAux t r",
"end": [
1539,
18
],
"full_name": "List.merge_loop_nil_left",
"kind": "commanddeclaration",
"start": [
1537,
1
]
},
{
"code": "theorem merge_loop_nil_right (s : α → α → Bool) (l t) :\n merge.loop s l [] t = reverseAux t l",
"end": [
1543,
52
],
"full_name": "List.merge_loop_nil_right",
"kind": "commanddeclaration",
"start": [
1541,
1
]
},
{
"code": "theorem merge_loop (s : α → α → Bool) (l r t) :\n merge.loop s l r t = reverseAux t (merge s l r)",
"end": [
1567,
64
],
"full_name": "List.merge_loop",
"kind": "commanddeclaration",
"start": [
1545,
1
]
},
{
"code": "@[simp] theorem merge_nil (s : α → α → Bool) (l) : merge s l [] = l",
"end": [
1569,
95
],
"full_name": "List.merge_nil",
"kind": "commanddeclaration",
"start": [
1569,
1
]
},
{
"code": "@[simp] theorem nil_merge (s : α → α → Bool) (r) : merge s [] r = r",
"end": [
1571,
94
],
"full_name": "List.nil_merge",
"kind": "commanddeclaration",
"start": [
1571,
1
]
},
{
"code": "theorem cons_merge_cons (s : α → α → Bool) (a b l r) :\n merge s (a::l) (b::r) = if s a b then a :: merge s l (b::r) else b :: merge s (a::l) r",
"end": [
1575,
87
],
"full_name": "List.cons_merge_cons",
"kind": "commanddeclaration",
"start": [
1573,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_pos (s : α → α → Bool) (l r) (h : s a b) :\n merge s (a::l) (b::r) = a :: merge s l (b::r)",
"end": [
1579,
33
],
"full_name": "List.cons_merge_cons_pos",
"kind": "commanddeclaration",
"start": [
1577,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_neg (s : α → α → Bool) (l r) (h : ¬ s a b) :\n merge s (a::l) (b::r) = b :: merge s (a::l) r",
"end": [
1583,
33
],
"full_name": "List.cons_merge_cons_neg",
"kind": "commanddeclaration",
"start": [
1581,
1
]
},
{
"code": "@[simp] theorem length_merge (s : α → α → Bool) (l r) :\n (merge s l r).length = l.length + r.length",
"end": [
1594,
43
],
"full_name": "List.length_merge",
"kind": "commanddeclaration",
"start": [
1585,
1
]
},
{
"code": "@[simp]\ntheorem mem_merge {s : α → α → Bool} : x ∈ merge s l r ↔ x ∈ l ∨ x ∈ r",
"end": [
1605,
68
],
"full_name": "List.mem_merge",
"kind": "commanddeclaration",
"start": [
1596,
1
]
},
{
"code": "theorem mem_merge_left (s : α → α → Bool) (h : x ∈ l) : x ∈ merge s l r",
"end": [
1608,
24
],
"full_name": "List.mem_merge_left",
"kind": "commanddeclaration",
"start": [
1607,
1
]
},
{
"code": "theorem mem_merge_right (s : α → α → Bool) (h : x ∈ r) : x ∈ merge s l r",
"end": [
1611,
24
],
"full_name": "List.mem_merge_right",
"kind": "commanddeclaration",
"start": [
1610,
1
]
}
] | 326 | List.length_merge | [
[
1586,
51
],
[
1594,
43
]
] | 7 | 9 | simp_arith [length_merge s l (b::r)] | case isTrue
α : Type u_1
s : α → α → Bool
l✝ r✝ : List α
a : α
l : List α
b : α
r : List α
h✝ : s a b = true
⊢ (a :: merge s l (b :: r)).length = (a :: l).length + (b :: r).length | no goals |
.lake/packages/batteries/Batteries/Data/List/Lemmas.lean | [
[
"Batteries.Tactic.Alias",
".lake/packages/batteries/Batteries/Tactic/Alias.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
],
[
"Batteries.Control.ForInStep.Lemmas",
".lake/packages/batteries/Batteries/Control/ForInStep/Lemmas.lean"
],
[
"Batteries.Tactic.Init",
".lake/packages/batteries/Batteries/Tactic/Init.lean"
],
[
"Batteries.Data.List.Basic",
".lake/packages/batteries/Batteries/Data/List/Basic.lean"
]
] | [
{
"code": "@[simp] theorem mem_toArray {a : α} {l : List α} : a ∈ l.toArray ↔ a ∈ l",
"end": [
18,
23
],
"full_name": "List.mem_toArray",
"kind": "commanddeclaration",
"start": [
17,
1
]
},
{
"code": "@[simp]\ntheorem drop_one : ∀ l : List α, drop 1 l = tail l",
"end": [
24,
23
],
"full_name": "List.drop_one",
"kind": "commanddeclaration",
"start": [
22,
1
]
},
{
"code": "theorem zipWith_distrib_tail : (zipWith f l l').tail = zipWith f l.tail l'.tail",
"end": [
29,
47
],
"full_name": "List.zipWith_distrib_tail",
"kind": "commanddeclaration",
"start": [
28,
1
]
},
{
"code": "theorem subset_def {l₁ l₂ : List α} : l₁ ⊆ l₂ ↔ ∀ {a : α}, a ∈ l₁ → a ∈ l₂",
"end": [
33,
83
],
"full_name": "List.subset_def",
"kind": "commanddeclaration",
"start": [
33,
1
]
},
{
"code": "@[simp] theorem nil_subset (l : List α) : [] ⊆ l",
"end": [
35,
58
],
"full_name": "List.nil_subset",
"kind": "commanddeclaration",
"start": [
35,
1
]
},
{
"code": "@[simp] theorem Subset.refl (l : List α) : l ⊆ l",
"end": [
37,
65
],
"full_name": "List.Subset.refl",
"kind": "commanddeclaration",
"start": [
37,
1
]
},
{
"code": "theorem Subset.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ ⊆ l₂) (h₂ : l₂ ⊆ l₃) : l₁ ⊆ l₃",
"end": [
40,
23
],
"full_name": "List.Subset.trans",
"kind": "commanddeclaration",
"start": [
39,
1
]
},
{
"code": "@[simp] theorem subset_cons (a : α) (l : List α) : l ⊆ a :: l",
"end": [
48,
85
],
"full_name": "List.subset_cons",
"kind": "commanddeclaration",
"start": [
48,
1
]
},
{
"code": "theorem subset_of_cons_subset {a : α} {l₁ l₂ : List α} : a :: l₁ ⊆ l₂ → l₁ ⊆ l₂",
"end": [
51,
39
],
"full_name": "List.subset_of_cons_subset",
"kind": "commanddeclaration",
"start": [
50,
1
]
},
{
"code": "theorem subset_cons_of_subset (a : α) {l₁ l₂ : List α} : l₁ ⊆ l₂ → l₁ ⊆ a :: l₂",
"end": [
54,
29
],
"full_name": "List.subset_cons_of_subset",
"kind": "commanddeclaration",
"start": [
53,
1
]
},
{
"code": "theorem cons_subset_cons {l₁ l₂ : List α} (a : α) (s : l₁ ⊆ l₂) : a :: l₁ ⊆ a :: l₂",
"end": [
57,
62
],
"full_name": "List.cons_subset_cons",
"kind": "commanddeclaration",
"start": [
56,
1
]
},
{
"code": "@[simp] theorem subset_append_left (l₁ l₂ : List α) : l₁ ⊆ l₁ ++ l₂",
"end": [
59,
98
],
"full_name": "List.subset_append_left",
"kind": "commanddeclaration",
"start": [
59,
1
]
},
{
"code": "@[simp] theorem subset_append_right (l₁ l₂ : List α) : l₂ ⊆ l₁ ++ l₂",
"end": [
61,
100
],
"full_name": "List.subset_append_right",
"kind": "commanddeclaration",
"start": [
61,
1
]
},
{
"code": "theorem subset_append_of_subset_left (l₂ : List α) : l ⊆ l₁ → l ⊆ l₁ ++ l₂",
"end": [
64,
50
],
"full_name": "List.subset_append_of_subset_left",
"kind": "commanddeclaration",
"start": [
63,
1
]
},
{
"code": "theorem subset_append_of_subset_right (l₁ : List α) : l ⊆ l₂ → l ⊆ l₁ ++ l₂",
"end": [
67,
51
],
"full_name": "List.subset_append_of_subset_right",
"kind": "commanddeclaration",
"start": [
66,
1
]
},
{
"code": "@[simp] theorem cons_subset : a :: l ⊆ m ↔ a ∈ m ∧ l ⊆ m",
"end": [
70,
66
],
"full_name": "List.cons_subset",
"kind": "commanddeclaration",
"start": [
69,
1
]
},
{
"code": "@[simp] theorem append_subset {l₁ l₂ l : List α} :\n l₁ ++ l₂ ⊆ l ↔ l₁ ⊆ l ∧ l₂ ⊆ l",
"end": [
73,
79
],
"full_name": "List.append_subset",
"kind": "commanddeclaration",
"start": [
72,
1
]
},
{
"code": "theorem subset_nil {l : List α} : l ⊆ [] ↔ l = []",
"end": [
76,
99
],
"full_name": "List.subset_nil",
"kind": "commanddeclaration",
"start": [
75,
1
]
},
{
"code": "theorem map_subset {l₁ l₂ : List α} (f : α → β) (H : l₁ ⊆ l₂) : map f l₁ ⊆ map f l₂",
"end": [
79,
72
],
"full_name": "List.map_subset",
"kind": "commanddeclaration",
"start": [
78,
1
]
},
{
"code": "@[simp] theorem nil_sublist : ∀ l : List α, [] <+ l",
"end": [
85,
37
],
"full_name": "List.nil_sublist",
"kind": "commanddeclaration",
"start": [
83,
1
]
},
{
"code": "@[simp] theorem Sublist.refl : ∀ l : List α, l <+ l",
"end": [
89,
39
],
"full_name": "List.Sublist.refl",
"kind": "commanddeclaration",
"start": [
87,
1
]
},
{
"code": "theorem Sublist.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ <+ l₂) (h₂ : l₂ <+ l₃) : l₁ <+ l₃",
"end": [
100,
53
],
"full_name": "List.Sublist.trans",
"kind": "commanddeclaration",
"start": [
91,
1
]
},
{
"code": "@[simp] theorem sublist_cons (a : α) (l : List α) : l <+ a :: l",
"end": [
104,
91
],
"full_name": "List.sublist_cons",
"kind": "commanddeclaration",
"start": [
104,
1
]
},
{
"code": "theorem sublist_of_cons_sublist : a :: l₁ <+ l₂ → l₁ <+ l₂",
"end": [
107,
28
],
"full_name": "List.sublist_of_cons_sublist",
"kind": "commanddeclaration",
"start": [
106,
1
]
},
{
"code": "@[simp] theorem sublist_append_left : ∀ l₁ l₂ : List α, l₁ <+ l₁ ++ l₂",
"end": [
111,
55
],
"full_name": "List.sublist_append_left",
"kind": "commanddeclaration",
"start": [
109,
1
]
},
{
"code": "@[simp] theorem sublist_append_right : ∀ l₁ l₂ : List α, l₂ <+ l₁ ++ l₂",
"end": [
115,
55
],
"full_name": "List.sublist_append_right",
"kind": "commanddeclaration",
"start": [
113,
1
]
},
{
"code": "theorem sublist_append_of_sublist_left (s : l <+ l₁) : l <+ l₁ ++ l₂",
"end": [
118,
36
],
"full_name": "List.sublist_append_of_sublist_left",
"kind": "commanddeclaration",
"start": [
117,
1
]
},
{
"code": "theorem sublist_append_of_sublist_right (s : l <+ l₂) : l <+ l₁ ++ l₂",
"end": [
121,
37
],
"full_name": "List.sublist_append_of_sublist_right",
"kind": "commanddeclaration",
"start": [
120,
1
]
},
{
"code": "@[simp]\ntheorem cons_sublist_cons : a :: l₁ <+ a :: l₂ ↔ l₁ <+ l₂",
"end": [
125,
77
],
"full_name": "List.cons_sublist_cons",
"kind": "commanddeclaration",
"start": [
123,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_left : ∀ l, l ++ l₁ <+ l ++ l₂ ↔ l₁ <+ l₂",
"end": [
129,
69
],
"full_name": "List.append_sublist_append_left",
"kind": "commanddeclaration",
"start": [
127,
1
]
},
{
"code": "theorem Sublist.append_left : l₁ <+ l₂ → ∀ l, l ++ l₁ <+ l ++ l₂",
"end": [
132,
50
],
"full_name": "List.Sublist.append_left",
"kind": "commanddeclaration",
"start": [
131,
1
]
},
{
"code": "theorem Sublist.append_right : l₁ <+ l₂ → ∀ l, l₁ ++ l <+ l₂ ++ l",
"end": [
137,
48
],
"full_name": "List.Sublist.append_right",
"kind": "commanddeclaration",
"start": [
134,
1
]
},
{
"code": "theorem sublist_or_mem_of_sublist (h : l <+ l₁ ++ a :: l₂) : l <+ l₁ ++ l₂ ∨ a ∈ l",
"end": [
147,
65
],
"full_name": "List.sublist_or_mem_of_sublist",
"kind": "commanddeclaration",
"start": [
139,
1
]
},
{
"code": "theorem Sublist.reverse : l₁ <+ l₂ → l₁.reverse <+ l₂.reverse",
"end": [
152,
85
],
"full_name": "List.Sublist.reverse",
"kind": "commanddeclaration",
"start": [
149,
1
]
},
{
"code": "@[simp] theorem reverse_sublist : l₁.reverse <+ l₂.reverse ↔ l₁ <+ l₂",
"end": [
155,
82
],
"full_name": "List.reverse_sublist",
"kind": "commanddeclaration",
"start": [
154,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_right (l) : l₁ ++ l <+ l₂ ++ l ↔ l₁ <+ l₂",
"end": [
162,
30
],
"full_name": "List.append_sublist_append_right",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "theorem Sublist.append (hl : l₁ <+ l₂) (hr : r₁ <+ r₂) : l₁ ++ r₁ <+ l₂ ++ r₂",
"end": [
165,
66
],
"full_name": "List.Sublist.append",
"kind": "commanddeclaration",
"start": [
164,
1
]
},
{
"code": "theorem Sublist.subset : l₁ <+ l₂ → l₁ ⊆ l₂",
"end": [
171,
53
],
"full_name": "List.Sublist.subset",
"kind": "commanddeclaration",
"start": [
167,
1
]
},
{
"code": "theorem Sublist.length_le : l₁ <+ l₂ → length l₁ ≤ length l₂",
"end": [
185,
45
],
"full_name": "List.Sublist.length_le",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "@[simp] theorem sublist_nil {l : List α} : l <+ [] ↔ l = []",
"end": [
188,
64
],
"full_name": "List.sublist_nil",
"kind": "commanddeclaration",
"start": [
187,
1
]
},
{
"code": "theorem Sublist.eq_of_length : l₁ <+ l₂ → length l₁ = length l₂ → l₁ = l₂",
"end": [
193,
57
],
"full_name": "List.Sublist.eq_of_length",
"kind": "commanddeclaration",
"start": [
190,
1
]
},
{
"code": "theorem Sublist.eq_of_length_le (s : l₁ <+ l₂) (h : length l₂ ≤ length l₁) : l₁ = l₂",
"end": [
196,
50
],
"full_name": "List.Sublist.eq_of_length_le",
"kind": "commanddeclaration",
"start": [
195,
1
]
},
{
"code": "@[simp] theorem singleton_sublist {a : α} {l} : [a] <+ l ↔ a ∈ l",
"end": [
201,
66
],
"full_name": "List.singleton_sublist",
"kind": "commanddeclaration",
"start": [
198,
1
]
},
{
"code": "@[simp] theorem replicate_sublist_replicate {m n} (a : α) :\n replicate m a <+ replicate n a ↔ m ≤ n",
"end": [
209,
48
],
"full_name": "List.replicate_sublist_replicate",
"kind": "commanddeclaration",
"start": [
203,
1
]
},
{
"code": "theorem isSublist_iff_sublist [BEq α] [LawfulBEq α] {l₁ l₂ : List α} :\n l₁.isSublist l₂ ↔ l₁ <+ l₂",
"end": [
228,
24
],
"full_name": "List.isSublist_iff_sublist",
"kind": "commanddeclaration",
"start": [
211,
1
]
},
{
"code": "theorem tail_eq_tailD (l) : @tail α l = tailD l []",
"end": [
235,
73
],
"full_name": "List.tail_eq_tailD",
"kind": "commanddeclaration",
"start": [
235,
1
]
},
{
"code": "theorem tail_eq_tail? (l) : @tail α l = (tail? l).getD []",
"end": [
237,
85
],
"full_name": "List.tail_eq_tail?",
"kind": "commanddeclaration",
"start": [
237,
1
]
},
{
"code": "@[simp] theorem next?_nil : @next? α [] = none",
"end": [
241,
54
],
"full_name": "List.next?_nil",
"kind": "commanddeclaration",
"start": [
241,
1
]
},
{
"code": "@[simp] theorem next?_cons (a l) : @next? α (a :: l) = some (a, l)",
"end": [
242,
74
],
"full_name": "List.next?_cons",
"kind": "commanddeclaration",
"start": [
242,
1
]
},
{
"code": "theorem getElem_eq_iff {l : List α} {n : Nat} {h : n < l.length} : l[n] = x ↔ l[n]? = some x",
"end": [
248,
40
],
"full_name": "List.getElem_eq_iff",
"kind": "commanddeclaration",
"start": [
246,
1
]
},
{
"code": "@[deprecated getElem_eq_iff (since := \"2024-06-12\")]\ntheorem get_eq_iff : List.get l n = x ↔ l.get? n.1 = some x",
"end": [
252,
7
],
"full_name": "List.get_eq_iff",
"kind": "commanddeclaration",
"start": [
250,
1
]
},
{
"code": "theorem getElem?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs[i]? = xs[j]?) : i = j",
"end": [
273,
39
],
"full_name": "List.getElem?_inj",
"kind": "commanddeclaration",
"start": [
254,
1
]
},
{
"code": "@[deprecated getElem?_inj (since := \"2024-06-12\")]\ntheorem get?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs.get? i = xs.get? j) : i = j",
"end": [
279,
11
],
"full_name": "List.get?_inj",
"kind": "commanddeclaration",
"start": [
275,
1
]
},
{
"code": "theorem tail_drop (l : List α) (n : Nat) : (l.drop n).tail = l.drop (n + 1)",
"end": [
289,
16
],
"full_name": "List.tail_drop",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "@[simp] theorem modifyNth_nil (f : α → α) (n) : [].modifyNth f n = []",
"end": [
293,
92
],
"full_name": "List.modifyNth_nil",
"kind": "commanddeclaration",
"start": [
293,
1
]
},
{
"code": "@[simp] theorem modifyNth_zero_cons (f : α → α) (a : α) (l : List α) :\n (a :: l).modifyNth f 0 = f a :: l",
"end": [
296,
45
],
"full_name": "List.modifyNth_zero_cons",
"kind": "commanddeclaration",
"start": [
295,
1
]
},
{
"code": "@[simp] theorem modifyNth_succ_cons (f : α → α) (a : α) (l : List α) (n) :\n (a :: l).modifyNth f (n + 1) = a :: l.modifyNth f n",
"end": [
299,
66
],
"full_name": "List.modifyNth_succ_cons",
"kind": "commanddeclaration",
"start": [
298,
1
]
},
{
"code": "theorem modifyNthTail_id : ∀ n (l : List α), l.modifyNthTail id n = l",
"end": [
304,
60
],
"full_name": "List.modifyNthTail_id",
"kind": "commanddeclaration",
"start": [
301,
1
]
},
{
"code": "theorem eraseIdx_eq_modifyNthTail : ∀ n (l : List α), eraseIdx l n = modifyNthTail tail n l",
"end": [
309,
69
],
"full_name": "List.eraseIdx_eq_modifyNthTail",
"kind": "commanddeclaration",
"start": [
306,
1
]
},
{
"code": "theorem getElem?_modifyNth (f : α → α) :\n ∀ n (l : List α) m, (modifyNth f n l)[m]? = (fun a => if n = m then f a else a) <$> l[m]?",
"end": [
322,
79
],
"full_name": "List.getElem?_modifyNth",
"kind": "commanddeclaration",
"start": [
313,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth (since := \"2024-06-12\")]\ntheorem get?_modifyNth (f : α → α) (n) (l : List α) (m) :\n (modifyNth f n l).get? m = (fun a => if n = m then f a else a) <$> l.get? m",
"end": [
327,
28
],
"full_name": "List.get?_modifyNth",
"kind": "commanddeclaration",
"start": [
324,
1
]
},
{
"code": "theorem modifyNthTail_length (f : List α → List α) (H : ∀ l, length (f l) = length l) :\n ∀ n l, length (modifyNthTail f n l) = length l",
"end": [
333,
65
],
"full_name": "List.modifyNthTail_length",
"kind": "commanddeclaration",
"start": [
329,
1
]
},
{
"code": "theorem modifyNthTail_add (f : List α → List α) (n) (l₁ l₂ : List α) :\n modifyNthTail f (l₁.length + n) (l₁ ++ l₂) = l₁ ++ modifyNthTail f n l₂",
"end": [
337,
42
],
"full_name": "List.modifyNthTail_add",
"kind": "commanddeclaration",
"start": [
335,
1
]
},
{
"code": "theorem exists_of_modifyNthTail (f : List α → List α) {n} {l : List α} (h : n ≤ l.length) :\n ∃ l₁ l₂, l = l₁ ++ l₂ ∧ l₁.length = n ∧ modifyNthTail f n l = l₁ ++ f l₂",
"end": [
343,
58
],
"full_name": "List.exists_of_modifyNthTail",
"kind": "commanddeclaration",
"start": [
339,
1
]
},
{
"code": "@[simp] theorem modify_get?_length (f : α → α) : ∀ n l, length (modifyNth f n l) = length l",
"end": [
346,
53
],
"full_name": "List.modify_get?_length",
"kind": "commanddeclaration",
"start": [
345,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l)[n]? = f <$> l[n]?",
"end": [
350,
41
],
"full_name": "List.getElem?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_eq (since := \"2024-06-12\")]\ntheorem get?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l).get? n = f <$> l.get? n",
"end": [
355,
31
],
"full_name": "List.get?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
352,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l)[n]? = l[n]?",
"end": [
359,
52
],
"full_name": "List.getElem?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
357,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_ne (since := \"2024-06-12\")]\ntheorem get?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l).get? n = l.get? n",
"end": [
364,
11
],
"full_name": "List.get?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
361,
1
]
},
{
"code": "theorem exists_of_modifyNth (f : α → α) {n} {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ modifyNth f n l = l₁ ++ f a :: l₂",
"end": [
370,
74
],
"full_name": "List.exists_of_modifyNth",
"kind": "commanddeclaration",
"start": [
366,
1
]
},
{
"code": "theorem modifyNthTail_eq_take_drop (f : List α → List α) (H : f [] = []) :\n ∀ n l, modifyNthTail f n l = take n l ++ f (drop n l)",
"end": [
376,
76
],
"full_name": "List.modifyNthTail_eq_take_drop",
"kind": "commanddeclaration",
"start": [
372,
1
]
},
{
"code": "theorem modifyNth_eq_take_drop (f : α → α) :\n ∀ n l, modifyNth f n l = take n l ++ modifyHead f (drop n l)",
"end": [
380,
35
],
"full_name": "List.modifyNth_eq_take_drop",
"kind": "commanddeclaration",
"start": [
378,
1
]
},
{
"code": "theorem modifyNth_eq_take_cons_drop (f : α → α) {n l} (h) :\n modifyNth f n l = take n l ++ f l[n] :: drop (n + 1) l",
"end": [
384,
59
],
"full_name": "List.modifyNth_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
382,
1
]
},
{
"code": "theorem set_eq_modifyNth (a : α) : ∀ n (l : List α), set l n a = modifyNth (fun _ => a) n l",
"end": [
391,
62
],
"full_name": "List.set_eq_modifyNth",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "theorem set_eq_take_cons_drop (a : α) {n l} (h : n < length l) :\n set l n a = take n l ++ a :: drop (n + 1) l",
"end": [
395,
57
],
"full_name": "List.set_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
393,
1
]
},
{
"code": "theorem modifyNth_eq_set_get? (f : α → α) :\n ∀ n (l : List α), l.modifyNth f n = ((fun a => l.set n (f a)) <$> l.get? n).getD l",
"end": [
402,
92
],
"full_name": "List.modifyNth_eq_set_get?",
"kind": "commanddeclaration",
"start": [
397,
1
]
},
{
"code": "theorem modifyNth_eq_set_get (f : α → α) {n} {l : List α} (h) :\n l.modifyNth f n = l.set n (f (l.get ⟨n, h⟩))",
"end": [
406,
49
],
"full_name": "List.modifyNth_eq_set_get",
"kind": "commanddeclaration",
"start": [
404,
1
]
},
{
"code": "theorem exists_of_set {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
410,
55
],
"full_name": "List.exists_of_set",
"kind": "commanddeclaration",
"start": [
408,
1
]
},
{
"code": "theorem exists_of_set' {l : List α} (h : n < l.length) :\n ∃ l₁ l₂, l = l₁ ++ l[n] :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
414,
94
],
"full_name": "List.exists_of_set'",
"kind": "commanddeclaration",
"start": [
412,
1
]
},
{
"code": "@[simp]\ntheorem getElem?_set_eq' (a : α) (n) (l : List α) : (set l n a)[n]? = (fun _ => a) <$> l[n]?",
"end": [
418,
54
],
"full_name": "List.getElem?_set_eq'",
"kind": "commanddeclaration",
"start": [
416,
1
]
},
{
"code": "@[deprecated getElem?_set_eq' (since := \"2024-06-12\")]\ntheorem get?_set_eq (a : α) (n) (l : List α) : (set l n a).get? n = (fun _ => a) <$> l.get? n",
"end": [
422,
7
],
"full_name": "List.get?_set_eq",
"kind": "commanddeclaration",
"start": [
420,
1
]
},
{
"code": "theorem getElem?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a)[n]? = some a",
"end": [
425,
85
],
"full_name": "List.getElem?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
424,
1
]
},
{
"code": "@[deprecated getElem?_set_eq_of_lt (since := \"2024-06-12\")]\ntheorem get?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a).get? n = some a",
"end": [
430,
70
],
"full_name": "List.get?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
427,
1
]
},
{
"code": "@[deprecated getElem?_set_ne (since := \"2024-06-12\")]\ntheorem get?_set_ne (a : α) {m n} (l : List α) (h : m ≠ n) : (set l m a).get? n = l.get? n",
"end": [
434,
11
],
"full_name": "List.get?_set_ne",
"kind": "commanddeclaration",
"start": [
432,
1
]
},
{
"code": "theorem getElem?_set' (a : α) {m n} (l : List α) :\n (set l m a)[n]? = if m = n then (fun _ => a) <$> l[n]? else l[n]?",
"end": [
438,
30
],
"full_name": "List.getElem?_set'",
"kind": "commanddeclaration",
"start": [
436,
1
]
},
{
"code": "@[deprecated getElem?_set (since := \"2024-06-12\")]\ntheorem get?_set (a : α) {m n} (l : List α) :\n (set l m a).get? n = if m = n then (fun _ => a) <$> l.get? n else l.get? n",
"end": [
443,
23
],
"full_name": "List.get?_set",
"kind": "commanddeclaration",
"start": [
440,
1
]
},
{
"code": "theorem get?_set_of_lt (a : α) {m n} (l : List α) (h : n < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
447,
46
],
"full_name": "List.get?_set_of_lt",
"kind": "commanddeclaration",
"start": [
445,
1
]
},
{
"code": "theorem get?_set_of_lt' (a : α) {m n} (l : List α) (h : m < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
451,
80
],
"full_name": "List.get?_set_of_lt'",
"kind": "commanddeclaration",
"start": [
449,
1
]
},
{
"code": "theorem drop_set_of_lt (a : α) {n m : Nat} (l : List α) (h : n < m) :\n (l.set n a).drop m = l.drop m",
"end": [
455,
94
],
"full_name": "List.drop_set_of_lt",
"kind": "commanddeclaration",
"start": [
453,
1
]
},
{
"code": "theorem take_set_of_lt (a : α) {n m : Nat} (l : List α) (h : m < n) :\n (l.set n a).take m = l.take m",
"end": [
463,
10
],
"full_name": "List.take_set_of_lt",
"kind": "commanddeclaration",
"start": [
457,
1
]
},
{
"code": "theorem length_eraseIdx : ∀ {l i}, i < length l → length (@eraseIdx α l i) = length l - 1",
"end": [
473,
92
],
"full_name": "List.length_eraseIdx",
"kind": "commanddeclaration",
"start": [
467,
1
]
},
{
"code": "@[simp] theorem length_tail (l : List α) : length (tail l) = length l - 1",
"end": [
479,
96
],
"full_name": "List.length_tail",
"kind": "commanddeclaration",
"start": [
479,
1
]
},
{
"code": "@[simp] theorem eraseP_nil : [].eraseP p = []",
"end": [
483,
53
],
"full_name": "List.eraseP_nil",
"kind": "commanddeclaration",
"start": [
483,
1
]
},
{
"code": "theorem eraseP_cons (a : α) (l : List α) :\n (a :: l).eraseP p = bif p a then l else a :: l.eraseP p",
"end": [
486,
67
],
"full_name": "List.eraseP_cons",
"kind": "commanddeclaration",
"start": [
485,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_pos {l : List α} (p) (h : p a) : (a :: l).eraseP p = l",
"end": [
489,
24
],
"full_name": "List.eraseP_cons_of_pos",
"kind": "commanddeclaration",
"start": [
488,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_neg {l : List α} (p) (h : ¬p a) :\n (a :: l).eraseP p = a :: l.eraseP p",
"end": [
492,
68
],
"full_name": "List.eraseP_cons_of_neg",
"kind": "commanddeclaration",
"start": [
491,
1
]
},
{
"code": "theorem eraseP_of_forall_not {l : List α} (h : ∀ a, a ∈ l → ¬p a) : l.eraseP p = l",
"end": [
497,
69
],
"full_name": "List.eraseP_of_forall_not",
"kind": "commanddeclaration",
"start": [
494,
1
]
},
{
"code": "theorem exists_of_eraseP : ∀ {l : List α} {a} (al : a ∈ l) (pa : p a),\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
510,
57
],
"full_name": "List.exists_of_eraseP",
"kind": "commanddeclaration",
"start": [
499,
1
]
},
{
"code": "theorem exists_or_eq_self_of_eraseP (p) (l : List α) :\n l.eraseP p = l ∨\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
519,
46
],
"full_name": "List.exists_or_eq_self_of_eraseP",
"kind": "commanddeclaration",
"start": [
512,
1
]
},
{
"code": "@[simp] theorem length_eraseP_of_mem (al : a ∈ l) (pa : p a) :\n length (l.eraseP p) = Nat.pred (length l)",
"end": [
524,
41
],
"full_name": "List.length_eraseP_of_mem",
"kind": "commanddeclaration",
"start": [
521,
1
]
},
{
"code": "theorem eraseP_append_left {a : α} (pa : p a) :\n ∀ {l₁ : List α} l₂, a ∈ l₁ → (l₁++l₂).eraseP p = l₁.eraseP p ++ l₂",
"end": [
531,
28
],
"full_name": "List.eraseP_append_left",
"kind": "commanddeclaration",
"start": [
526,
1
]
},
{
"code": "theorem eraseP_append_right :\n ∀ {l₁ : List α} l₂, (∀ b ∈ l₁, ¬p b) → eraseP p (l₁++l₂) = l₁ ++ l₂.eraseP p",
"end": [
537,
82
],
"full_name": "List.eraseP_append_right",
"kind": "commanddeclaration",
"start": [
533,
1
]
},
{
"code": "theorem eraseP_sublist (l : List α) : l.eraseP p <+ l",
"end": [
542,
56
],
"full_name": "List.eraseP_sublist",
"kind": "commanddeclaration",
"start": [
539,
1
]
},
{
"code": "theorem eraseP_subset (l : List α) : l.eraseP p ⊆ l",
"end": [
544,
81
],
"full_name": "List.eraseP_subset",
"kind": "commanddeclaration",
"start": [
544,
1
]
},
{
"code": "protected theorem Sublist.eraseP : l₁ <+ l₂ → l₁.eraseP p <+ l₂.eraseP p",
"end": [
553,
25
],
"full_name": "List.Sublist.eraseP",
"kind": "commanddeclaration",
"start": [
546,
1
]
},
{
"code": "theorem mem_of_mem_eraseP {l : List α} : a ∈ l.eraseP p → a ∈ l",
"end": [
555,
87
],
"full_name": "List.mem_of_mem_eraseP",
"kind": "commanddeclaration",
"start": [
555,
1
]
},
{
"code": "@[simp] theorem mem_eraseP_of_neg {l : List α} (pa : ¬p a) : a ∈ l.eraseP p ↔ a ∈ l",
"end": [
564,
33
],
"full_name": "List.mem_eraseP_of_neg",
"kind": "commanddeclaration",
"start": [
557,
1
]
},
{
"code": "theorem eraseP_map (f : β → α) : ∀ (l : List β), (map f l).eraseP p = map f (l.eraseP (p ∘ f))",
"end": [
568,
85
],
"full_name": "List.eraseP_map",
"kind": "commanddeclaration",
"start": [
566,
1
]
},
{
"code": "@[simp] theorem extractP_eq_find?_eraseP\n (l : List α) : extractP p l = (find? p l, eraseP p l)",
"end": [
578,
21
],
"full_name": "List.extractP_eq_find?_eraseP",
"kind": "commanddeclaration",
"start": [
570,
1
]
},
{
"code": "theorem erase_eq_eraseP' (a : α) (l : List α) : l.erase a = l.eraseP (· == a)",
"end": [
590,
46
],
"full_name": "List.erase_eq_eraseP'",
"kind": "commanddeclaration",
"start": [
585,
1
]
},
{
"code": "theorem erase_eq_eraseP [LawfulBEq α] (a : α) : ∀ l : List α, l.erase a = l.eraseP (a == ·)",
"end": [
595,
77
],
"full_name": "List.erase_eq_eraseP",
"kind": "commanddeclaration",
"start": [
592,
1
]
},
{
"code": "theorem exists_erase_eq [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n ∃ l₁ l₂, a ∉ l₁ ∧ l = l₁ ++ a :: l₂ ∧ l.erase a = l₁ ++ l₂",
"end": [
600,
99
],
"full_name": "List.exists_erase_eq",
"kind": "commanddeclaration",
"start": [
597,
1
]
},
{
"code": "@[simp] theorem length_erase_of_mem [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n length (l.erase a) = Nat.pred (length l)",
"end": [
604,
74
],
"full_name": "List.length_erase_of_mem",
"kind": "commanddeclaration",
"start": [
602,
1
]
},
{
"code": "theorem erase_append_left [LawfulBEq α] {l₁ : List α} (l₂) (h : a ∈ l₁) :\n (l₁ ++ l₂).erase a = l₁.erase a ++ l₂",
"end": [
608,
77
],
"full_name": "List.erase_append_left",
"kind": "commanddeclaration",
"start": [
606,
1
]
},
{
"code": "theorem erase_append_right [LawfulBEq α] {a : α} {l₁ : List α} (l₂ : List α) (h : a ∉ l₁) :\n (l₁ ++ l₂).erase a = (l₁ ++ l₂.erase a)",
"end": [
613,
55
],
"full_name": "List.erase_append_right",
"kind": "commanddeclaration",
"start": [
610,
1
]
},
{
"code": "theorem erase_sublist (a : α) (l : List α) : l.erase a <+ l",
"end": [
616,
42
],
"full_name": "List.erase_sublist",
"kind": "commanddeclaration",
"start": [
615,
1
]
},
{
"code": "theorem erase_subset (a : α) (l : List α) : l.erase a ⊆ l",
"end": [
618,
88
],
"full_name": "List.erase_subset",
"kind": "commanddeclaration",
"start": [
618,
1
]
},
{
"code": "theorem Sublist.erase (a : α) {l₁ l₂ : List α} (h : l₁ <+ l₂) : l₁.erase a <+ l₂.erase a",
"end": [
621,
47
],
"full_name": "List.Sublist.erase",
"kind": "commanddeclaration",
"start": [
620,
1
]
},
{
"code": "theorem mem_of_mem_erase {a b : α} {l : List α} (h : a ∈ l.erase b) : a ∈ l",
"end": [
624,
98
],
"full_name": "List.mem_of_mem_erase",
"kind": "commanddeclaration",
"start": [
624,
1
]
},
{
"code": "@[simp] theorem mem_erase_of_ne [LawfulBEq α] {a b : α} {l : List α} (ab : a ≠ b) :\n a ∈ l.erase b ↔ a ∈ l",
"end": [
628,
65
],
"full_name": "List.mem_erase_of_ne",
"kind": "commanddeclaration",
"start": [
626,
1
]
},
{
"code": "theorem erase_comm [LawfulBEq α] (a b : α) (l : List α) :\n (l.erase a).erase b = (l.erase b).erase a",
"end": [
644,
49
],
"full_name": "List.erase_comm",
"kind": "commanddeclaration",
"start": [
630,
1
]
},
{
"code": "@[simp] theorem filter_sublist {p : α → Bool} : ∀ (l : List α), filter p l <+ l",
"end": [
652,
93
],
"full_name": "List.filter_sublist",
"kind": "commanddeclaration",
"start": [
650,
1
]
},
{
"code": "protected theorem Sublist.filterMap (f : α → Option β) (s : l₁ <+ l₂) :\n filterMap f l₁ <+ filterMap f l₂",
"end": [
658,
76
],
"full_name": "List.Sublist.filterMap",
"kind": "commanddeclaration",
"start": [
656,
1
]
},
{
"code": "theorem Sublist.filter (p : α → Bool) {l₁ l₂} (s : l₁ <+ l₂) : filter p l₁ <+ filter p l₂",
"end": [
661,
48
],
"full_name": "List.Sublist.filter",
"kind": "commanddeclaration",
"start": [
660,
1
]
},
{
"code": "@[simp] theorem findIdx_nil {α : Type _} (p : α → Bool) : [].findIdx p = 0",
"end": [
665,
82
],
"full_name": "List.findIdx_nil",
"kind": "commanddeclaration",
"start": [
665,
1
]
},
{
"code": "theorem findIdx_cons (p : α → Bool) (b : α) (l : List α) :\n (b :: l).findIdx p = bif p b then 0 else (l.findIdx p) + 1",
"end": [
680,
43
],
"full_name": "List.findIdx_cons",
"kind": "commanddeclaration",
"start": [
667,
1
]
},
{
"code": "theorem findIdx_of_get?_eq_some {xs : List α} (w : xs.get? (xs.findIdx p) = some y) : p y",
"end": [
685,
65
],
"full_name": "List.findIdx_of_get?_eq_some",
"kind": "commanddeclaration",
"start": [
682,
1
]
},
{
"code": "theorem findIdx_get {xs : List α} {w : xs.findIdx p < xs.length} :\n p (xs.get ⟨xs.findIdx p, w⟩)",
"end": [
689,
45
],
"full_name": "List.findIdx_get",
"kind": "commanddeclaration",
"start": [
687,
1
]
},
{
"code": "theorem findIdx_lt_length_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.findIdx p < xs.length",
"end": [
703,
24
],
"full_name": "List.findIdx_lt_length_of_exists",
"kind": "commanddeclaration",
"start": [
691,
1
]
},
{
"code": "theorem findIdx_get?_eq_get_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.get? (xs.findIdx p) = some (xs.get ⟨xs.findIdx p, xs.findIdx_lt_length_of_exists h⟩)",
"end": [
707,
46
],
"full_name": "List.findIdx_get?_eq_get_of_exists",
"kind": "commanddeclaration",
"start": [
705,
1
]
},
{
"code": "@[simp] theorem findIdx?_nil : ([] : List α).findIdx? p i = none",
"end": [
711,
72
],
"full_name": "List.findIdx?_nil",
"kind": "commanddeclaration",
"start": [
711,
1
]
},
{
"code": "@[simp] theorem findIdx?_cons :\n (x :: xs).findIdx? p i = if p x then some i else findIdx? p xs (i + 1)",
"end": [
714,
82
],
"full_name": "List.findIdx?_cons",
"kind": "commanddeclaration",
"start": [
713,
1
]
},
{
"code": "@[simp] theorem findIdx?_succ :\n (xs : List α).findIdx? p (i+1) = (xs.findIdx? p i).map fun i => i + 1",
"end": [
719,
37
],
"full_name": "List.findIdx?_succ",
"kind": "commanddeclaration",
"start": [
716,
1
]
},
{
"code": "theorem findIdx?_eq_some_iff (xs : List α) (p : α → Bool) :\n xs.findIdx? p = some i ↔ (xs.take (i + 1)).map p = replicate i false ++ [true]",
"end": [
727,
52
],
"full_name": "List.findIdx?_eq_some_iff",
"kind": "commanddeclaration",
"start": [
721,
1
]
},
{
"code": "theorem findIdx?_of_eq_some {xs : List α} {p : α → Bool} (w : xs.findIdx? p = some i) :\n match xs.get? i with | some a => p a | none => false",
"end": [
735,
40
],
"full_name": "List.findIdx?_of_eq_some",
"kind": "commanddeclaration",
"start": [
729,
1
]
},
{
"code": "theorem findIdx?_of_eq_none {xs : List α} {p : α → Bool} (w : xs.findIdx? p = none) :\n ∀ i, match xs.get? i with | some a => ¬ p a | none => true",
"end": [
750,
30
],
"full_name": "List.findIdx?_of_eq_none",
"kind": "commanddeclaration",
"start": [
737,
1
]
},
{
"code": "@[simp] theorem findIdx?_append :\n (xs ++ ys : List α).findIdx? p =\n (xs.findIdx? p <|> (ys.findIdx? p).map fun i => i + xs.length)",
"end": [
756,
78
],
"full_name": "List.findIdx?_append",
"kind": "commanddeclaration",
"start": [
752,
1
]
},
{
"code": "@[simp] theorem findIdx?_replicate :\n (replicate n a).findIdx? p = if 0 < n ∧ p a then some 0 else none",
"end": [
764,
23
],
"full_name": "List.findIdx?_replicate",
"kind": "commanddeclaration",
"start": [
758,
1
]
},
{
"code": "theorem Pairwise.sublist : l₁ <+ l₂ → l₂.Pairwise R → l₁.Pairwise R",
"end": [
771,
80
],
"full_name": "List.Pairwise.sublist",
"kind": "commanddeclaration",
"start": [
768,
1
]
},
{
"code": "theorem pairwise_map {l : List α} :\n (l.map f).Pairwise R ↔ l.Pairwise fun a b => R (f a) (f b)",
"end": [
777,
58
],
"full_name": "List.pairwise_map",
"kind": "commanddeclaration",
"start": [
773,
1
]
},
{
"code": "theorem pairwise_append {l₁ l₂ : List α} :\n (l₁ ++ l₂).Pairwise R ↔ l₁.Pairwise R ∧ l₂.Pairwise R ∧ ∀ a ∈ l₁, ∀ b ∈ l₂, R a b",
"end": [
781,
74
],
"full_name": "List.pairwise_append",
"kind": "commanddeclaration",
"start": [
779,
1
]
},
{
"code": "theorem pairwise_reverse {l : List α} :\n l.reverse.Pairwise R ↔ l.Pairwise (fun a b => R b a)",
"end": [
785,
54
],
"full_name": "List.pairwise_reverse",
"kind": "commanddeclaration",
"start": [
783,
1
]
},
{
"code": "theorem Pairwise.imp {α R S} (H : ∀ {a b}, R a b → S a b) :\n ∀ {l : List α}, l.Pairwise R → l.Pairwise S",
"end": [
790,
50
],
"full_name": "List.Pairwise.imp",
"kind": "commanddeclaration",
"start": [
787,
1
]
},
{
"code": "theorem replaceF_nil : [].replaceF p = []",
"end": [
794,
49
],
"full_name": "List.replaceF_nil",
"kind": "commanddeclaration",
"start": [
794,
1
]
},
{
"code": "theorem replaceF_cons (a : α) (l : List α) :\n (a :: l).replaceF p = match p a with\n | none => a :: replaceF p l\n | some a' => a' :: l",
"end": [
799,
34
],
"full_name": "List.replaceF_cons",
"kind": "commanddeclaration",
"start": [
796,
1
]
},
{
"code": "theorem replaceF_cons_of_some {l : List α} (p) (h : p a = some a') :\n (a :: l).replaceF p = a' :: l",
"end": [
803,
26
],
"full_name": "List.replaceF_cons_of_some",
"kind": "commanddeclaration",
"start": [
801,
1
]
},
{
"code": "theorem replaceF_cons_of_none {l : List α} (p) (h : p a = none) :\n (a :: l).replaceF p = a :: l.replaceF p",
"end": [
806,
74
],
"full_name": "List.replaceF_cons_of_none",
"kind": "commanddeclaration",
"start": [
805,
1
]
},
{
"code": "theorem replaceF_of_forall_none {l : List α} (h : ∀ a, a ∈ l → p a = none) : l.replaceF p = l",
"end": [
811,
69
],
"full_name": "List.replaceF_of_forall_none",
"kind": "commanddeclaration",
"start": [
808,
1
]
},
{
"code": "theorem exists_of_replaceF : ∀ {l : List α} {a a'} (al : a ∈ l) (pa : p a = some a'),\n ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
825,
57
],
"full_name": "List.exists_of_replaceF",
"kind": "commanddeclaration",
"start": [
813,
1
]
},
{
"code": "theorem exists_or_eq_self_of_replaceF (p) (l : List α) :\n l.replaceF p = l ∨ ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
835,
62
],
"full_name": "List.exists_or_eq_self_of_replaceF",
"kind": "commanddeclaration",
"start": [
827,
1
]
},
{
"code": "@[simp] theorem length_replaceF : length (replaceF f l) = length l",
"end": [
838,
54
],
"full_name": "List.length_replaceF",
"kind": "commanddeclaration",
"start": [
837,
1
]
},
{
"code": "theorem disjoint_symm (d : Disjoint l₁ l₂) : Disjoint l₂ l₁",
"end": [
842,
86
],
"full_name": "List.disjoint_symm",
"kind": "commanddeclaration",
"start": [
842,
1
]
},
{
"code": "theorem disjoint_comm : Disjoint l₁ l₂ ↔ Disjoint l₂ l₁",
"end": [
844,
90
],
"full_name": "List.disjoint_comm",
"kind": "commanddeclaration",
"start": [
844,
1
]
},
{
"code": "theorem disjoint_left : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₁ → a ∉ l₂",
"end": [
846,
86
],
"full_name": "List.disjoint_left",
"kind": "commanddeclaration",
"start": [
846,
1
]
},
{
"code": "theorem disjoint_right : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₂ → a ∉ l₁",
"end": [
848,
82
],
"full_name": "List.disjoint_right",
"kind": "commanddeclaration",
"start": [
848,
1
]
},
{
"code": "theorem disjoint_iff_ne : Disjoint l₁ l₂ ↔ ∀ a ∈ l₁, ∀ b ∈ l₂, a ≠ b",
"end": [
851,
83
],
"full_name": "List.disjoint_iff_ne",
"kind": "commanddeclaration",
"start": [
850,
1
]
},
{
"code": "theorem disjoint_of_subset_left (ss : l₁ ⊆ l) (d : Disjoint l l₂) : Disjoint l₁ l₂",
"end": [
854,
22
],
"full_name": "List.disjoint_of_subset_left",
"kind": "commanddeclaration",
"start": [
853,
1
]
},
{
"code": "theorem disjoint_of_subset_right (ss : l₂ ⊆ l) (d : Disjoint l₁ l) : Disjoint l₁ l₂",
"end": [
857,
28
],
"full_name": "List.disjoint_of_subset_right",
"kind": "commanddeclaration",
"start": [
856,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_left {l₁ l₂} : Disjoint (a :: l₁) l₂ → Disjoint l₁ l₂",
"end": [
860,
42
],
"full_name": "List.disjoint_of_disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
859,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_right {l₁ l₂} : Disjoint l₁ (a :: l₂) → Disjoint l₁ l₂",
"end": [
863,
43
],
"full_name": "List.disjoint_of_disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
862,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_left (l : List α) : Disjoint [] l",
"end": [
865,
96
],
"full_name": "List.disjoint_nil_left",
"kind": "commanddeclaration",
"start": [
865,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_right (l : List α) : Disjoint l []",
"end": [
868,
48
],
"full_name": "List.disjoint_nil_right",
"kind": "commanddeclaration",
"start": [
867,
1
]
},
{
"code": "@[simp 1100] theorem singleton_disjoint : Disjoint [a] l ↔ a ∉ l",
"end": [
870,
87
],
"full_name": "List.singleton_disjoint",
"kind": "commanddeclaration",
"start": [
870,
1
]
},
{
"code": "@[simp 1100] theorem disjoint_singleton : Disjoint l [a] ↔ a ∉ l",
"end": [
873,
41
],
"full_name": "List.disjoint_singleton",
"kind": "commanddeclaration",
"start": [
872,
1
]
},
{
"code": "@[simp] theorem disjoint_append_left : Disjoint (l₁ ++ l₂) l ↔ Disjoint l₁ l ∧ Disjoint l₂ l",
"end": [
876,
38
],
"full_name": "List.disjoint_append_left",
"kind": "commanddeclaration",
"start": [
875,
1
]
},
{
"code": "@[simp] theorem disjoint_append_right : Disjoint l (l₁ ++ l₂) ↔ Disjoint l l₁ ∧ Disjoint l l₂",
"end": [
879,
76
],
"full_name": "List.disjoint_append_right",
"kind": "commanddeclaration",
"start": [
878,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_left : Disjoint (a::l₁) l₂ ↔ (a ∉ l₂) ∧ Disjoint l₁ l₂",
"end": [
882,
75
],
"full_name": "List.disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
881,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_right : Disjoint l₁ (a :: l₂) ↔ (a ∉ l₁) ∧ Disjoint l₁ l₂",
"end": [
885,
74
],
"full_name": "List.disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
884,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_left (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₁ l",
"end": [
888,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_left",
"kind": "commanddeclaration",
"start": [
887,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_right (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₂ l",
"end": [
891,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_right",
"kind": "commanddeclaration",
"start": [
890,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_left (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₁",
"end": [
894,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_left",
"kind": "commanddeclaration",
"start": [
893,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_right (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₂",
"end": [
897,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_right",
"kind": "commanddeclaration",
"start": [
896,
1
]
},
{
"code": "theorem foldl_hom (f : α₁ → α₂) (g₁ : α₁ → β → α₁) (g₂ : α₂ → β → α₂) (l : List β) (init : α₁)\n (H : ∀ x y, g₂ (f x) y = f (g₁ x y)) : l.foldl g₂ (f init) = f (l.foldl g₁ init)",
"end": [
903,
48
],
"full_name": "List.foldl_hom",
"kind": "commanddeclaration",
"start": [
901,
1
]
},
{
"code": "theorem foldr_hom (f : β₁ → β₂) (g₁ : α → β₁ → β₁) (g₂ : α → β₂ → β₂) (l : List α) (init : β₁)\n (H : ∀ x y, g₂ x (f y) = f (g₁ x y)) : l.foldr g₂ (f init) = f (l.foldr g₁ init)",
"end": [
907,
30
],
"full_name": "List.foldr_hom",
"kind": "commanddeclaration",
"start": [
905,
1
]
},
{
"code": "theorem union_def [BEq α] (l₁ l₂ : List α) : l₁ ∪ l₂ = foldr .insert l₂ l₁",
"end": [
915,
83
],
"full_name": "List.union_def",
"kind": "commanddeclaration",
"start": [
915,
1
]
},
{
"code": "@[simp] theorem nil_union (l : List α) : nil ∪ l = l",
"end": [
917,
88
],
"full_name": "List.nil_union",
"kind": "commanddeclaration",
"start": [
917,
1
]
},
{
"code": "@[simp] theorem cons_union (a : α) (l₁ l₂ : List α) :\n (a :: l₁) ∪ l₂ = (l₁ ∪ l₂).insert a",
"end": [
920,
75
],
"full_name": "List.cons_union",
"kind": "commanddeclaration",
"start": [
919,
1
]
},
{
"code": "@[simp] theorem mem_union_iff [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∪ l₂ ↔ x ∈ l₁ ∨ x ∈ l₂",
"end": [
923,
76
],
"full_name": "List.mem_union_iff",
"kind": "commanddeclaration",
"start": [
922,
1
]
},
{
"code": "theorem inter_def [BEq α] (l₁ l₂ : List α) : l₁ ∩ l₂ = filter (elem · l₂) l₁",
"end": [
929,
85
],
"full_name": "List.inter_def",
"kind": "commanddeclaration",
"start": [
929,
1
]
},
{
"code": "@[simp] theorem mem_inter_iff [BEq α] [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∩ l₂ ↔ x ∈ l₁ ∧ x ∈ l₂",
"end": [
933,
49
],
"full_name": "List.mem_inter_iff",
"kind": "commanddeclaration",
"start": [
931,
1
]
},
{
"code": "@[simp]\ntheorem pair_mem_product {xs : List α} {ys : List β} {x : α} {y : β} :\n (x, y) ∈ product xs ys ↔ x ∈ xs ∧ y ∈ ys",
"end": [
942,
47
],
"full_name": "List.pair_mem_product",
"kind": "commanddeclaration",
"start": [
937,
1
]
},
{
"code": "@[simp]\ntheorem leftpad_length (n : Nat) (a : α) (l : List α) :\n (leftpad n a l).length = max n l.length",
"end": [
951,
75
],
"full_name": "List.leftpad_length",
"kind": "commanddeclaration",
"start": [
946,
1
]
},
{
"code": "theorem leftpad_prefix (n : Nat) (a : α) (l : List α) :\n replicate (n - length l) a <+: leftpad n a l",
"end": [
956,
27
],
"full_name": "List.leftpad_prefix",
"kind": "commanddeclaration",
"start": [
953,
1
]
},
{
"code": "theorem leftpad_suffix (n : Nat) (a : α) (l : List α) : l <:+ (leftpad n a l)",
"end": [
960,
54
],
"full_name": "List.leftpad_suffix",
"kind": "commanddeclaration",
"start": [
958,
1
]
},
{
"code": "@[simp] theorem forIn_eq_forIn [Monad m] : @List.forIn α β m _ = forIn",
"end": [
965,
78
],
"full_name": "List.forIn_eq_forIn",
"kind": "commanddeclaration",
"start": [
965,
1
]
},
{
"code": "theorem forIn_eq_bindList [Monad m] [LawfulMonad m]\n (f : α → β → m (ForInStep β)) (l : List α) (init : β) :\n forIn l init f = ForInStep.run <$> (ForInStep.yield init).bindList f l",
"end": [
971,
30
],
"full_name": "List.forIn_eq_bindList",
"kind": "commanddeclaration",
"start": [
967,
1
]
},
{
"code": "@[simp] theorem forM_append [Monad m] [LawfulMonad m] (l₁ l₂ : List α) (f : α → m PUnit) :\n (l₁ ++ l₂).forM f = (do l₁.forM f; l₂.forM f)",
"end": [
974,
82
],
"full_name": "List.forM_append",
"kind": "commanddeclaration",
"start": [
973,
1
]
},
{
"code": "@[simp] theorem diff_nil (l : List α) : l.diff [] = l",
"end": [
982,
61
],
"full_name": "List.diff_nil",
"kind": "commanddeclaration",
"start": [
982,
1
]
},
{
"code": "@[simp] theorem diff_cons (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.erase a).diff l₂",
"end": [
985,
41
],
"full_name": "List.diff_cons",
"kind": "commanddeclaration",
"start": [
984,
1
]
},
{
"code": "theorem diff_cons_right (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.diff l₂).erase a",
"end": [
988,
71
],
"full_name": "List.diff_cons_right",
"kind": "commanddeclaration",
"start": [
987,
1
]
},
{
"code": "theorem diff_erase (l₁ l₂ : List α) (a : α) : (l₁.diff l₂).erase a = (l₁.erase a).diff l₂",
"end": [
991,
36
],
"full_name": "List.diff_erase",
"kind": "commanddeclaration",
"start": [
990,
1
]
},
{
"code": "@[simp] theorem nil_diff (l : List α) : [].diff l = []",
"end": [
994,
45
],
"full_name": "List.nil_diff",
"kind": "commanddeclaration",
"start": [
993,
1
]
},
{
"code": "theorem cons_diff (a : α) (l₁ l₂ : List α) :\n (a :: l₁).diff l₂ = if a ∈ l₂ then l₁.diff (l₂.erase a) else a :: l₁.diff l₂",
"end": [
1005,
14
],
"full_name": "List.cons_diff",
"kind": "commanddeclaration",
"start": [
996,
1
]
},
{
"code": "theorem cons_diff_of_mem {a : α} {l₂ : List α} (h : a ∈ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = l₁.diff (l₂.erase a)",
"end": [
1008,
76
],
"full_name": "List.cons_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1007,
1
]
},
{
"code": "theorem cons_diff_of_not_mem {a : α} {l₂ : List α} (h : a ∉ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = a :: l₁.diff l₂",
"end": [
1011,
71
],
"full_name": "List.cons_diff_of_not_mem",
"kind": "commanddeclaration",
"start": [
1010,
1
]
},
{
"code": "theorem diff_eq_foldl : ∀ l₁ l₂ : List α, l₁.diff l₂ = foldl List.erase l₁ l₂",
"end": [
1015,
65
],
"full_name": "List.diff_eq_foldl",
"kind": "commanddeclaration",
"start": [
1013,
1
]
},
{
"code": "@[simp] theorem diff_append (l₁ l₂ l₃ : List α) : l₁.diff (l₂ ++ l₃) = (l₁.diff l₂).diff l₃",
"end": [
1018,
42
],
"full_name": "List.diff_append",
"kind": "commanddeclaration",
"start": [
1017,
1
]
},
{
"code": "theorem diff_sublist : ∀ l₁ l₂ : List α, l₁.diff l₂ <+ l₁",
"end": [
1026,
34
],
"full_name": "List.diff_sublist",
"kind": "commanddeclaration",
"start": [
1020,
1
]
},
{
"code": "theorem diff_subset (l₁ l₂ : List α) : l₁.diff l₂ ⊆ l₁",
"end": [
1028,
83
],
"full_name": "List.diff_subset",
"kind": "commanddeclaration",
"start": [
1028,
1
]
},
{
"code": "theorem mem_diff_of_mem {a : α} : ∀ {l₁ l₂ : List α}, a ∈ l₁ → a ∉ l₂ → a ∈ l₁.diff l₂",
"end": [
1034,
94
],
"full_name": "List.mem_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1030,
1
]
},
{
"code": "theorem Sublist.diff_right : ∀ {l₁ l₂ l₃ : List α}, l₁ <+ l₂ → l₁.diff l₃ <+ l₂.diff l₃",
"end": [
1038,
75
],
"full_name": "List.Sublist.diff_right",
"kind": "commanddeclaration",
"start": [
1036,
1
]
},
{
"code": "theorem Sublist.erase_diff_erase_sublist {a : α} :\n ∀ {l₁ l₂ : List α}, l₁ <+ l₂ → (l₂.erase a).diff (l₁.erase a) <+ l₂.diff l₁",
"end": [
1048,
71
],
"full_name": "List.Sublist.erase_diff_erase_sublist",
"kind": "commanddeclaration",
"start": [
1040,
1
]
},
{
"code": "@[simp] theorem prefix_append (l₁ l₂ : List α) : l₁ <+: l₁ ++ l₂",
"end": [
1054,
78
],
"full_name": "List.prefix_append",
"kind": "commanddeclaration",
"start": [
1054,
1
]
},
{
"code": "@[simp] theorem suffix_append (l₁ l₂ : List α) : l₂ <:+ l₁ ++ l₂",
"end": [
1056,
78
],
"full_name": "List.suffix_append",
"kind": "commanddeclaration",
"start": [
1056,
1
]
},
{
"code": "theorem infix_append (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ l₂ ++ l₃",
"end": [
1058,
83
],
"full_name": "List.infix_append",
"kind": "commanddeclaration",
"start": [
1058,
1
]
},
{
"code": "@[simp] theorem infix_append' (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ (l₂ ++ l₃)",
"end": [
1061,
47
],
"full_name": "List.infix_append'",
"kind": "commanddeclaration",
"start": [
1060,
1
]
},
{
"code": "theorem IsPrefix.isInfix : l₁ <+: l₂ → l₁ <:+: l₂",
"end": [
1063,
78
],
"full_name": "List.IsPrefix.isInfix",
"kind": "commanddeclaration",
"start": [
1063,
1
]
},
{
"code": "theorem IsSuffix.isInfix : l₁ <:+ l₂ → l₁ <:+: l₂",
"end": [
1065,
98
],
"full_name": "List.IsSuffix.isInfix",
"kind": "commanddeclaration",
"start": [
1065,
1
]
},
{
"code": "theorem nil_prefix (l : List α) : [] <+: l",
"end": [
1067,
55
],
"full_name": "List.nil_prefix",
"kind": "commanddeclaration",
"start": [
1067,
1
]
},
{
"code": "theorem nil_suffix (l : List α) : [] <:+ l",
"end": [
1069,
64
],
"full_name": "List.nil_suffix",
"kind": "commanddeclaration",
"start": [
1069,
1
]
},
{
"code": "theorem nil_infix (l : List α) : [] <:+: l",
"end": [
1071,
69
],
"full_name": "List.nil_infix",
"kind": "commanddeclaration",
"start": [
1071,
1
]
},
{
"code": "theorem prefix_refl (l : List α) : l <+: l",
"end": [
1073,
65
],
"full_name": "List.prefix_refl",
"kind": "commanddeclaration",
"start": [
1073,
1
]
},
{
"code": "theorem suffix_refl (l : List α) : l <:+ l",
"end": [
1075,
56
],
"full_name": "List.suffix_refl",
"kind": "commanddeclaration",
"start": [
1075,
1
]
},
{
"code": "theorem infix_refl (l : List α) : l <:+: l",
"end": [
1077,
70
],
"full_name": "List.infix_refl",
"kind": "commanddeclaration",
"start": [
1077,
1
]
},
{
"code": "@[simp] theorem suffix_cons (a : α) : ∀ l, l <:+ a :: l",
"end": [
1079,
77
],
"full_name": "List.suffix_cons",
"kind": "commanddeclaration",
"start": [
1079,
1
]
},
{
"code": "theorem infix_cons : l₁ <:+: l₂ → l₁ <:+: a :: l₂",
"end": [
1081,
95
],
"full_name": "List.infix_cons",
"kind": "commanddeclaration",
"start": [
1081,
1
]
},
{
"code": "theorem infix_concat : l₁ <:+: l₂ → l₁ <:+: concat l₂ a",
"end": [
1084,
67
],
"full_name": "List.infix_concat",
"kind": "commanddeclaration",
"start": [
1083,
1
]
},
{
"code": "theorem IsPrefix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₂ → l₂ <+: l₃ → l₁ <+: l₃",
"end": [
1087,
75
],
"full_name": "List.IsPrefix.trans",
"kind": "commanddeclaration",
"start": [
1086,
1
]
},
{
"code": "theorem IsSuffix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+ l₂ → l₂ <:+ l₃ → l₁ <:+ l₃",
"end": [
1090,
68
],
"full_name": "List.IsSuffix.trans",
"kind": "commanddeclaration",
"start": [
1089,
1
]
},
{
"code": "theorem IsInfix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+: l₂ → l₂ <:+: l₃ → l₁ <:+: l₃",
"end": [
1093,
95
],
"full_name": "List.IsInfix.trans",
"kind": "commanddeclaration",
"start": [
1092,
1
]
},
{
"code": "protected theorem IsInfix.sublist : l₁ <:+: l₂ → l₁ <+ l₂",
"end": [
1096,
78
],
"full_name": "List.IsInfix.sublist",
"kind": "commanddeclaration",
"start": [
1095,
1
]
},
{
"code": "protected theorem IsInfix.subset (hl : l₁ <:+: l₂) : l₁ ⊆ l₂",
"end": [
1099,
20
],
"full_name": "List.IsInfix.subset",
"kind": "commanddeclaration",
"start": [
1098,
1
]
},
{
"code": "protected theorem IsPrefix.sublist (h : l₁ <+: l₂) : l₁ <+ l₂",
"end": [
1102,
20
],
"full_name": "List.IsPrefix.sublist",
"kind": "commanddeclaration",
"start": [
1101,
1
]
},
{
"code": "protected theorem IsPrefix.subset (hl : l₁ <+: l₂) : l₁ ⊆ l₂",
"end": [
1105,
20
],
"full_name": "List.IsPrefix.subset",
"kind": "commanddeclaration",
"start": [
1104,
1
]
},
{
"code": "protected theorem IsSuffix.sublist (h : l₁ <:+ l₂) : l₁ <+ l₂",
"end": [
1108,
20
],
"full_name": "List.IsSuffix.sublist",
"kind": "commanddeclaration",
"start": [
1107,
1
]
},
{
"code": "protected theorem IsSuffix.subset (hl : l₁ <:+ l₂) : l₁ ⊆ l₂",
"end": [
1111,
20
],
"full_name": "List.IsSuffix.subset",
"kind": "commanddeclaration",
"start": [
1110,
1
]
},
{
"code": "@[simp] theorem reverse_suffix : reverse l₁ <:+ reverse l₂ ↔ l₁ <+: l₂",
"end": [
1115,
59
],
"full_name": "List.reverse_suffix",
"kind": "commanddeclaration",
"start": [
1113,
1
]
},
{
"code": "@[simp] theorem reverse_prefix : reverse l₁ <+: reverse l₂ ↔ l₁ <:+ l₂",
"end": [
1118,
53
],
"full_name": "List.reverse_prefix",
"kind": "commanddeclaration",
"start": [
1117,
1
]
},
{
"code": "@[simp] theorem reverse_infix : reverse l₁ <:+: reverse l₂ ↔ l₁ <:+: l₂",
"end": [
1124,
61
],
"full_name": "List.reverse_infix",
"kind": "commanddeclaration",
"start": [
1120,
1
]
},
{
"code": "theorem IsInfix.length_le (h : l₁ <:+: l₂) : l₁.length ≤ l₂.length",
"end": [
1127,
22
],
"full_name": "List.IsInfix.length_le",
"kind": "commanddeclaration",
"start": [
1126,
1
]
},
{
"code": "theorem IsPrefix.length_le (h : l₁ <+: l₂) : l₁.length ≤ l₂.length",
"end": [
1130,
22
],
"full_name": "List.IsPrefix.length_le",
"kind": "commanddeclaration",
"start": [
1129,
1
]
},
{
"code": "theorem IsSuffix.length_le (h : l₁ <:+ l₂) : l₁.length ≤ l₂.length",
"end": [
1133,
22
],
"full_name": "List.IsSuffix.length_le",
"kind": "commanddeclaration",
"start": [
1132,
1
]
},
{
"code": "@[simp] theorem infix_nil : l <:+: [] ↔ l = []",
"end": [
1135,
98
],
"full_name": "List.infix_nil",
"kind": "commanddeclaration",
"start": [
1135,
1
]
},
{
"code": "@[simp] theorem prefix_nil : l <+: [] ↔ l = []",
"end": [
1137,
99
],
"full_name": "List.prefix_nil",
"kind": "commanddeclaration",
"start": [
1137,
1
]
},
{
"code": "@[simp] theorem suffix_nil : l <:+ [] ↔ l = []",
"end": [
1139,
99
],
"full_name": "List.suffix_nil",
"kind": "commanddeclaration",
"start": [
1139,
1
]
},
{
"code": "theorem infix_iff_prefix_suffix (l₁ l₂ : List α) : l₁ <:+: l₂ ↔ ∃ t, l₁ <+: t ∧ t <:+ l₂",
"end": [
1143,
60
],
"full_name": "List.infix_iff_prefix_suffix",
"kind": "commanddeclaration",
"start": [
1141,
1
]
},
{
"code": "theorem IsInfix.eq_of_length (h : l₁ <:+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1146,
25
],
"full_name": "List.IsInfix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1145,
1
]
},
{
"code": "theorem IsPrefix.eq_of_length (h : l₁ <+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1149,
25
],
"full_name": "List.IsPrefix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1148,
1
]
},
{
"code": "theorem IsSuffix.eq_of_length (h : l₁ <:+ l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1152,
25
],
"full_name": "List.IsSuffix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1151,
1
]
},
{
"code": "theorem prefix_of_prefix_length_le :\n ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₃ → l₂ <+: l₃ → length l₁ ≤ length l₂ → l₁ <+: l₂",
"end": [
1160,
20
],
"full_name": "List.prefix_of_prefix_length_le",
"kind": "commanddeclaration",
"start": [
1154,
1
]
},
{
"code": "theorem prefix_or_prefix_of_prefix (h₁ : l₁ <+: l₃) (h₂ : l₂ <+: l₃) : l₁ <+: l₂ ∨ l₂ <+: l₁",
"end": [
1164,
39
],
"full_name": "List.prefix_or_prefix_of_prefix",
"kind": "commanddeclaration",
"start": [
1162,
1
]
},
{
"code": "theorem suffix_of_suffix_length_le\n (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) (ll : length l₁ ≤ length l₂) : l₁ <:+ l₂",
"end": [
1169,
90
],
"full_name": "List.suffix_of_suffix_length_le",
"kind": "commanddeclaration",
"start": [
1166,
1
]
},
{
"code": "theorem suffix_or_suffix_of_suffix (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) : l₁ <:+ l₂ ∨ l₂ <:+ l₁",
"end": [
1173,
21
],
"full_name": "List.suffix_or_suffix_of_suffix",
"kind": "commanddeclaration",
"start": [
1171,
1
]
},
{
"code": "theorem suffix_cons_iff : l₁ <:+ a :: l₂ ↔ l₁ = a :: l₂ ∨ l₁ <:+ l₂",
"end": [
1184,
41
],
"full_name": "List.suffix_cons_iff",
"kind": "commanddeclaration",
"start": [
1175,
1
]
},
{
"code": "theorem infix_cons_iff : l₁ <:+: a :: l₂ ↔ l₁ <+: a :: l₂ ∨ l₁ <:+: l₂",
"end": [
1195,
27
],
"full_name": "List.infix_cons_iff",
"kind": "commanddeclaration",
"start": [
1186,
1
]
},
{
"code": "theorem infix_of_mem_join : ∀ {L : List (List α)}, l ∈ L → l <:+: join L",
"end": [
1202,
78
],
"full_name": "List.infix_of_mem_join",
"kind": "commanddeclaration",
"start": [
1197,
1
]
},
{
"code": "theorem prefix_append_right_inj (l) : l ++ l₁ <+: l ++ l₂ ↔ l₁ <+: l₂",
"end": [
1205,
63
],
"full_name": "List.prefix_append_right_inj",
"kind": "commanddeclaration",
"start": [
1204,
1
]
},
{
"code": "@[simp]\ntheorem prefix_cons_inj (a) : a :: l₁ <+: a :: l₂ ↔ l₁ <+: l₂",
"end": [
1209,
30
],
"full_name": "List.prefix_cons_inj",
"kind": "commanddeclaration",
"start": [
1207,
1
]
},
{
"code": "theorem take_prefix (n) (l : List α) : take n l <+: l",
"end": [
1212,
28
],
"full_name": "List.take_prefix",
"kind": "commanddeclaration",
"start": [
1211,
1
]
},
{
"code": "theorem drop_suffix (n) (l : List α) : drop n l <:+ l",
"end": [
1215,
28
],
"full_name": "List.drop_suffix",
"kind": "commanddeclaration",
"start": [
1214,
1
]
},
{
"code": "theorem take_sublist (n) (l : List α) : take n l <+ l",
"end": [
1218,
28
],
"full_name": "List.take_sublist",
"kind": "commanddeclaration",
"start": [
1217,
1
]
},
{
"code": "theorem drop_sublist (n) (l : List α) : drop n l <+ l",
"end": [
1221,
28
],
"full_name": "List.drop_sublist",
"kind": "commanddeclaration",
"start": [
1220,
1
]
},
{
"code": "theorem take_subset (n) (l : List α) : take n l ⊆ l",
"end": [
1224,
28
],
"full_name": "List.take_subset",
"kind": "commanddeclaration",
"start": [
1223,
1
]
},
{
"code": "theorem drop_subset (n) (l : List α) : drop n l ⊆ l",
"end": [
1227,
28
],
"full_name": "List.drop_subset",
"kind": "commanddeclaration",
"start": [
1226,
1
]
},
{
"code": "theorem mem_of_mem_take {l : List α} (h : a ∈ l.take n) : a ∈ l",
"end": [
1230,
20
],
"full_name": "List.mem_of_mem_take",
"kind": "commanddeclaration",
"start": [
1229,
1
]
},
{
"code": "theorem IsPrefix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <+: l₂) :\n l₁.filter p <+: l₂.filter p",
"end": [
1235,
42
],
"full_name": "List.IsPrefix.filter",
"kind": "commanddeclaration",
"start": [
1232,
1
]
},
{
"code": "theorem IsSuffix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+ l₂) :\n l₁.filter p <:+ l₂.filter p",
"end": [
1240,
42
],
"full_name": "List.IsSuffix.filter",
"kind": "commanddeclaration",
"start": [
1237,
1
]
},
{
"code": "theorem IsInfix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+: l₂) :\n l₁.filter p <:+: l₂.filter p",
"end": [
1245,
58
],
"full_name": "List.IsInfix.filter",
"kind": "commanddeclaration",
"start": [
1242,
1
]
},
{
"code": "theorem mem_of_mem_drop {n} {l : List α} (h : a ∈ l.drop n) : a ∈ l",
"end": [
1249,
89
],
"full_name": "List.mem_of_mem_drop",
"kind": "commanddeclaration",
"start": [
1249,
1
]
},
{
"code": "theorem disjoint_take_drop : ∀ {l : List α}, l.Nodup → m ≤ n → Disjoint (l.take m) (l.drop n)",
"end": [
1259,
61
],
"full_name": "List.disjoint_take_drop",
"kind": "commanddeclaration",
"start": [
1251,
1
]
},
{
"code": "@[simp]\ntheorem chain_cons {a b : α} {l : List α} : Chain R a (b :: l) ↔ R a b ∧ Chain R b l",
"end": [
1268,
27
],
"full_name": "List.chain_cons",
"kind": "commanddeclaration",
"start": [
1265,
1
]
},
{
"code": "theorem rel_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : R a b",
"end": [
1271,
21
],
"full_name": "List.rel_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1270,
1
]
},
{
"code": "theorem chain_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : Chain R b l",
"end": [
1274,
21
],
"full_name": "List.chain_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1273,
1
]
},
{
"code": "theorem Chain.imp' {R S : α → α → Prop} (HRS : ∀ ⦃a b⦄, R a b → S a b) {a b : α}\n (Hab : ∀ ⦃c⦄, R a c → S b c) {l : List α} (p : Chain R a l) : Chain S b l",
"end": [
1283,
24
],
"full_name": "List.Chain.imp'",
"kind": "commanddeclaration",
"start": [
1276,
1
]
},
{
"code": "theorem Chain.imp {R S : α → α → Prop} (H : ∀ a b, R a b → S a b) {a : α} {l : List α}\n (p : Chain R a l) : Chain S a l",
"end": [
1287,
17
],
"full_name": "List.Chain.imp",
"kind": "commanddeclaration",
"start": [
1285,
1
]
},
{
"code": "protected theorem Pairwise.chain (p : Pairwise R (a :: l)) : Chain R a l",
"end": [
1295,
36
],
"full_name": "List.Pairwise.chain",
"kind": "commanddeclaration",
"start": [
1289,
1
]
},
{
"code": "theorem range'_succ (s n step) : range' s (n + 1) step = s :: range' (s + step) n step",
"end": [
1300,
44
],
"full_name": "List.range'_succ",
"kind": "commanddeclaration",
"start": [
1299,
1
]
},
{
"code": "@[simp] theorem length_range' (s step) : ∀ n : Nat, length (range' s n step) = n",
"end": [
1304,
49
],
"full_name": "List.length_range'",
"kind": "commanddeclaration",
"start": [
1302,
1
]
},
{
"code": "@[simp] theorem range'_eq_nil : range' s n step = [] ↔ n = 0",
"end": [
1307,
39
],
"full_name": "List.range'_eq_nil",
"kind": "commanddeclaration",
"start": [
1306,
1
]
},
{
"code": "theorem mem_range' : ∀{n}, m ∈ range' s n step ↔ ∃ i < n, m = s + step * i",
"end": [
1314,
71
],
"full_name": "List.mem_range'",
"kind": "commanddeclaration",
"start": [
1309,
1
]
},
{
"code": "@[simp] theorem mem_range'_1 : m ∈ range' s n ↔ s ≤ m ∧ m < s + n",
"end": [
1319,
93
],
"full_name": "List.mem_range'_1",
"kind": "commanddeclaration",
"start": [
1316,
1
]
},
{
"code": "@[simp]\ntheorem map_add_range' (a) : ∀ s n step, map (a + ·) (range' s n step) = range' (a + s) n step",
"end": [
1324,
90
],
"full_name": "List.map_add_range'",
"kind": "commanddeclaration",
"start": [
1321,
1
]
},
{
"code": "theorem map_sub_range' (a s n : Nat) (h : a ≤ s) :\n map (· - a) (range' s n step) = range' (s - a) n step",
"end": [
1330,
42
],
"full_name": "List.map_sub_range'",
"kind": "commanddeclaration",
"start": [
1326,
1
]
},
{
"code": "theorem chain_succ_range' : ∀ s n step : Nat,\n Chain (fun a b => b = a + step) s (range' (s + step) n step)",
"end": [
1335,
69
],
"full_name": "List.chain_succ_range'",
"kind": "commanddeclaration",
"start": [
1332,
1
]
},
{
"code": "theorem chain_lt_range' (s n : Nat) {step} (h : 0 < step) :\n Chain (· < ·) s (range' (s + step) n step)",
"end": [
1339,
83
],
"full_name": "List.chain_lt_range'",
"kind": "commanddeclaration",
"start": [
1337,
1
]
},
{
"code": "theorem range'_append : ∀ s m n step : Nat,\n range' s m step ++ range' (s + step * m) n step = range' s (n + m) step",
"end": [
1346,
46
],
"full_name": "List.range'_append",
"kind": "commanddeclaration",
"start": [
1341,
1
]
},
{
"code": "@[simp] theorem range'_append_1 (s m n : Nat) :\n range' s m ++ range' (s + m) n = range' s (n + m)",
"end": [
1349,
94
],
"full_name": "List.range'_append_1",
"kind": "commanddeclaration",
"start": [
1348,
1
]
},
{
"code": "theorem range'_sublist_right {s m n : Nat} : range' s m step <+ range' s n step ↔ m ≤ n",
"end": [
1353,
88
],
"full_name": "List.range'_sublist_right",
"kind": "commanddeclaration",
"start": [
1351,
1
]
},
{
"code": "theorem range'_subset_right {s m n : Nat} (step0 : 0 < step) :\n range' s m step ⊆ range' s n step ↔ m ≤ n",
"end": [
1359,
82
],
"full_name": "List.range'_subset_right",
"kind": "commanddeclaration",
"start": [
1355,
1
]
},
{
"code": "theorem range'_subset_right_1 {s m n : Nat} : range' s m ⊆ range' s n ↔ m ≤ n",
"end": [
1362,
34
],
"full_name": "List.range'_subset_right_1",
"kind": "commanddeclaration",
"start": [
1361,
1
]
},
{
"code": "theorem getElem?_range' (s step) :\n ∀ {m n : Nat}, m < n → (range' s n step)[m]? = some (s + step * m)",
"end": [
1370,
55
],
"full_name": "List.getElem?_range'",
"kind": "commanddeclaration",
"start": [
1364,
1
]
},
{
"code": "@[simp] theorem getElem_range' {n m step} (i) (H : i < (range' n m step).length) :\n (range' n m step)[i] = n + step * i",
"end": [
1374,
70
],
"full_name": "List.getElem_range'",
"kind": "commanddeclaration",
"start": [
1372,
1
]
},
{
"code": "@[deprecated getElem?_range' (since := \"2024-06-12\")]\ntheorem get?_range' (s step) {m n : Nat} (h : m < n) :\n get? (range' s n step) m = some (s + step * m)",
"end": [
1379,
11
],
"full_name": "List.get?_range'",
"kind": "commanddeclaration",
"start": [
1376,
1
]
},
{
"code": "@[deprecated getElem_range' (since := \"2024-06-12\")]\ntheorem get_range' {n m step} (i) (H : i < (range' n m step).length) :\n get (range' n m step) ⟨i, H⟩ = n + step * i",
"end": [
1384,
7
],
"full_name": "List.get_range'",
"kind": "commanddeclaration",
"start": [
1381,
1
]
},
{
"code": "theorem range'_concat (s n : Nat) : range' s (n + 1) step = range' s n step ++ [s + step * n]",
"end": [
1387,
63
],
"full_name": "List.range'_concat",
"kind": "commanddeclaration",
"start": [
1386,
1
]
},
{
"code": "theorem range'_1_concat (s n : Nat) : range' s (n + 1) = range' s n ++ [s + n]",
"end": [
1390,
23
],
"full_name": "List.range'_1_concat",
"kind": "commanddeclaration",
"start": [
1389,
1
]
},
{
"code": "theorem range_loop_range' : ∀ s n : Nat, range.loop s (range' s n) = range' 0 (n + s)",
"end": [
1394,
101
],
"full_name": "List.range_loop_range'",
"kind": "commanddeclaration",
"start": [
1392,
1
]
},
{
"code": "theorem range_eq_range' (n : Nat) : range n = range' 0 n",
"end": [
1397,
56
],
"full_name": "List.range_eq_range'",
"kind": "commanddeclaration",
"start": [
1396,
1
]
},
{
"code": "theorem range_succ_eq_map (n : Nat) : range (n + 1) = 0 :: map succ (range n)",
"end": [
1401,
30
],
"full_name": "List.range_succ_eq_map",
"kind": "commanddeclaration",
"start": [
1399,
1
]
},
{
"code": "theorem range'_eq_map_range (s n : Nat) : range' s n = map (s + ·) (range n)",
"end": [
1404,
44
],
"full_name": "List.range'_eq_map_range",
"kind": "commanddeclaration",
"start": [
1403,
1
]
},
{
"code": "@[simp] theorem length_range (n : Nat) : length (range n) = n",
"end": [
1407,
45
],
"full_name": "List.length_range",
"kind": "commanddeclaration",
"start": [
1406,
1
]
},
{
"code": "@[simp] theorem range_eq_nil {n : Nat} : range n = [] ↔ n = 0",
"end": [
1410,
38
],
"full_name": "List.range_eq_nil",
"kind": "commanddeclaration",
"start": [
1409,
1
]
},
{
"code": "@[simp]\ntheorem range_sublist {m n : Nat} : range m <+ range n ↔ m ≤ n",
"end": [
1414,
52
],
"full_name": "List.range_sublist",
"kind": "commanddeclaration",
"start": [
1412,
1
]
},
{
"code": "@[simp]\ntheorem range_subset {m n : Nat} : range m ⊆ range n ↔ m ≤ n",
"end": [
1418,
65
],
"full_name": "List.range_subset",
"kind": "commanddeclaration",
"start": [
1416,
1
]
},
{
"code": "@[simp]\ntheorem mem_range {m n : Nat} : m ∈ range n ↔ m < n",
"end": [
1422,
81
],
"full_name": "List.mem_range",
"kind": "commanddeclaration",
"start": [
1420,
1
]
},
{
"code": "theorem not_mem_range_self {n : Nat} : n ∉ range n",
"end": [
1424,
62
],
"full_name": "List.not_mem_range_self",
"kind": "commanddeclaration",
"start": [
1424,
1
]
},
{
"code": "theorem self_mem_range_succ (n : Nat) : n ∈ range (n + 1)",
"end": [
1426,
69
],
"full_name": "List.self_mem_range_succ",
"kind": "commanddeclaration",
"start": [
1426,
1
]
},
{
"code": "theorem getElem?_range {m n : Nat} (h : m < n) : (range n)[m]? = some m",
"end": [
1429,
48
],
"full_name": "List.getElem?_range",
"kind": "commanddeclaration",
"start": [
1428,
1
]
},
{
"code": "@[simp] theorem getElem_range {n : Nat} (m) (h : m < (range n).length) : (range n)[m] = m",
"end": [
1432,
25
],
"full_name": "List.getElem_range",
"kind": "commanddeclaration",
"start": [
1431,
1
]
},
{
"code": "@[deprecated getElem?_range (since := \"2024-06-12\")]\ntheorem get?_range {m n : Nat} (h : m < n) : get? (range n) m = some m",
"end": [
1436,
27
],
"full_name": "List.get?_range",
"kind": "commanddeclaration",
"start": [
1434,
1
]
},
{
"code": "@[deprecated getElem_range (since := \"2024-06-12\")]\ntheorem get_range {n} (i) (H : i < (range n).length) : get (range n) ⟨i, H⟩ = i",
"end": [
1440,
7
],
"full_name": "List.get_range",
"kind": "commanddeclaration",
"start": [
1438,
1
]
},
{
"code": "theorem range_succ (n : Nat) : range (succ n) = range n ++ [n]",
"end": [
1443,
61
],
"full_name": "List.range_succ",
"kind": "commanddeclaration",
"start": [
1442,
1
]
},
{
"code": "theorem range_add (a b : Nat) : range (a + b) = range a ++ (range b).map (a + ·)",
"end": [
1447,
75
],
"full_name": "List.range_add",
"kind": "commanddeclaration",
"start": [
1445,
1
]
},
{
"code": "theorem iota_eq_reverse_range' : ∀ n : Nat, iota n = reverse (range' 1 n)",
"end": [
1451,
99
],
"full_name": "List.iota_eq_reverse_range'",
"kind": "commanddeclaration",
"start": [
1449,
1
]
},
{
"code": "@[simp] theorem length_iota (n : Nat) : length (iota n) = n",
"end": [
1453,
96
],
"full_name": "List.length_iota",
"kind": "commanddeclaration",
"start": [
1453,
1
]
},
{
"code": "@[simp]\ntheorem mem_iota {m n : Nat} : m ∈ iota n ↔ 1 ≤ m ∧ m ≤ n",
"end": [
1457,
59
],
"full_name": "List.mem_iota",
"kind": "commanddeclaration",
"start": [
1455,
1
]
},
{
"code": "theorem reverse_range' : ∀ s n : Nat, reverse (range' s n) = map (s + n - 1 - ·) (range n)",
"end": [
1464,
59
],
"full_name": "List.reverse_range'",
"kind": "commanddeclaration",
"start": [
1459,
1
]
},
{
"code": "@[simp] theorem enumFrom_map_fst (n) :\n ∀ (l : List α), map Prod.fst (enumFrom n l) = range' n l.length",
"end": [
1472,
55
],
"full_name": "List.enumFrom_map_fst",
"kind": "commanddeclaration",
"start": [
1469,
1
]
},
{
"code": "@[simp] theorem enum_map_fst (l : List α) : map Prod.fst (enum l) = range l.length",
"end": [
1475,
54
],
"full_name": "List.enum_map_fst",
"kind": "commanddeclaration",
"start": [
1474,
1
]
},
{
"code": "theorem foldrIdx_start :\n (xs : List α).foldrIdx f i s = (xs : List α).foldrIdx (fun i => f (i + s)) i",
"end": [
1487,
43
],
"full_name": "List.foldrIdx_start",
"kind": "commanddeclaration",
"start": [
1479,
1
]
},
{
"code": "@[simp] theorem foldrIdx_cons :\n (x :: xs : List α).foldrIdx f i s = f s x (foldrIdx f i xs (s + 1))",
"end": [
1490,
79
],
"full_name": "List.foldrIdx_cons",
"kind": "commanddeclaration",
"start": [
1489,
1
]
},
{
"code": "theorem findIdxs_cons_aux (p : α → Bool) :\n foldrIdx (fun i a is => if p a = true then (i + 1) :: is else is) [] xs s =\n map (· + 1) (foldrIdx (fun i a is => if p a = true then i :: is else is) [] xs s)",
"end": [
1499,
24
],
"full_name": "List.findIdxs_cons_aux",
"kind": "commanddeclaration",
"start": [
1492,
1
]
},
{
"code": "theorem findIdxs_cons :\n (x :: xs : List α).findIdxs p =\n bif p x then 0 :: (xs.findIdxs p).map (· + 1) else (xs.findIdxs p).map (· + 1)",
"end": [
1508,
28
],
"full_name": "List.findIdxs_cons",
"kind": "commanddeclaration",
"start": [
1501,
1
]
},
{
"code": "@[simp] theorem indexesOf_nil [BEq α] : ([] : List α).indexesOf x = []",
"end": [
1510,
78
],
"full_name": "List.indexesOf_nil",
"kind": "commanddeclaration",
"start": [
1510,
1
]
},
{
"code": "theorem indexesOf_cons [BEq α] : (x :: xs : List α).indexesOf y =\n bif x == y then 0 :: (xs.indexesOf y).map (· + 1) else (xs.indexesOf y).map (· + 1)",
"end": [
1514,
34
],
"full_name": "List.indexesOf_cons",
"kind": "commanddeclaration",
"start": [
1512,
1
]
},
{
"code": "@[simp] theorem indexOf_nil [BEq α] : ([] : List α).indexOf x = 0",
"end": [
1516,
73
],
"full_name": "List.indexOf_nil",
"kind": "commanddeclaration",
"start": [
1516,
1
]
},
{
"code": "theorem indexOf_cons [BEq α] :\n (x :: xs : List α).indexOf y = bif x == y then 0 else xs.indexOf y + 1",
"end": [
1521,
22
],
"full_name": "List.indexOf_cons",
"kind": "commanddeclaration",
"start": [
1518,
1
]
},
{
"code": "theorem indexOf_mem_indexesOf [BEq α] [LawfulBEq α] {xs : List α} (m : x ∈ xs) :\n xs.indexOf x ∈ xs.indexesOf x",
"end": [
1535,
14
],
"full_name": "List.indexOf_mem_indexesOf",
"kind": "commanddeclaration",
"start": [
1523,
1
]
},
{
"code": "theorem merge_loop_nil_left (s : α → α → Bool) (r t) :\n merge.loop s [] r t = reverseAux t r",
"end": [
1539,
18
],
"full_name": "List.merge_loop_nil_left",
"kind": "commanddeclaration",
"start": [
1537,
1
]
},
{
"code": "theorem merge_loop_nil_right (s : α → α → Bool) (l t) :\n merge.loop s l [] t = reverseAux t l",
"end": [
1543,
52
],
"full_name": "List.merge_loop_nil_right",
"kind": "commanddeclaration",
"start": [
1541,
1
]
},
{
"code": "theorem merge_loop (s : α → α → Bool) (l r t) :\n merge.loop s l r t = reverseAux t (merge s l r)",
"end": [
1567,
64
],
"full_name": "List.merge_loop",
"kind": "commanddeclaration",
"start": [
1545,
1
]
},
{
"code": "@[simp] theorem merge_nil (s : α → α → Bool) (l) : merge s l [] = l",
"end": [
1569,
95
],
"full_name": "List.merge_nil",
"kind": "commanddeclaration",
"start": [
1569,
1
]
},
{
"code": "@[simp] theorem nil_merge (s : α → α → Bool) (r) : merge s [] r = r",
"end": [
1571,
94
],
"full_name": "List.nil_merge",
"kind": "commanddeclaration",
"start": [
1571,
1
]
},
{
"code": "theorem cons_merge_cons (s : α → α → Bool) (a b l r) :\n merge s (a::l) (b::r) = if s a b then a :: merge s l (b::r) else b :: merge s (a::l) r",
"end": [
1575,
87
],
"full_name": "List.cons_merge_cons",
"kind": "commanddeclaration",
"start": [
1573,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_pos (s : α → α → Bool) (l r) (h : s a b) :\n merge s (a::l) (b::r) = a :: merge s l (b::r)",
"end": [
1579,
33
],
"full_name": "List.cons_merge_cons_pos",
"kind": "commanddeclaration",
"start": [
1577,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_neg (s : α → α → Bool) (l r) (h : ¬ s a b) :\n merge s (a::l) (b::r) = b :: merge s (a::l) r",
"end": [
1583,
33
],
"full_name": "List.cons_merge_cons_neg",
"kind": "commanddeclaration",
"start": [
1581,
1
]
},
{
"code": "@[simp] theorem length_merge (s : α → α → Bool) (l r) :\n (merge s l r).length = l.length + r.length",
"end": [
1594,
43
],
"full_name": "List.length_merge",
"kind": "commanddeclaration",
"start": [
1585,
1
]
},
{
"code": "@[simp]\ntheorem mem_merge {s : α → α → Bool} : x ∈ merge s l r ↔ x ∈ l ∨ x ∈ r",
"end": [
1605,
68
],
"full_name": "List.mem_merge",
"kind": "commanddeclaration",
"start": [
1596,
1
]
},
{
"code": "theorem mem_merge_left (s : α → α → Bool) (h : x ∈ l) : x ∈ merge s l r",
"end": [
1608,
24
],
"full_name": "List.mem_merge_left",
"kind": "commanddeclaration",
"start": [
1607,
1
]
},
{
"code": "theorem mem_merge_right (s : α → α → Bool) (h : x ∈ r) : x ∈ merge s l r",
"end": [
1611,
24
],
"full_name": "List.mem_merge_right",
"kind": "commanddeclaration",
"start": [
1610,
1
]
}
] | 326 | List.length_merge | [
[
1586,
51
],
[
1594,
43
]
] | 8 | 9 | simp_arith [length_merge s (a::l) r] | case isFalse
α : Type u_1
s : α → α → Bool
l✝ r✝ : List α
a : α
l : List α
b : α
r : List α
h✝ : ¬s a b = true
⊢ (b :: merge s (a :: l) r).length = (a :: l).length + (b :: r).length | no goals |
.lake/packages/batteries/Batteries/Data/List/Lemmas.lean | [
[
"Batteries.Tactic.Alias",
".lake/packages/batteries/Batteries/Tactic/Alias.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
],
[
"Batteries.Control.ForInStep.Lemmas",
".lake/packages/batteries/Batteries/Control/ForInStep/Lemmas.lean"
],
[
"Batteries.Tactic.Init",
".lake/packages/batteries/Batteries/Tactic/Init.lean"
],
[
"Batteries.Data.List.Basic",
".lake/packages/batteries/Batteries/Data/List/Basic.lean"
]
] | [
{
"code": "@[simp] theorem mem_toArray {a : α} {l : List α} : a ∈ l.toArray ↔ a ∈ l",
"end": [
18,
23
],
"full_name": "List.mem_toArray",
"kind": "commanddeclaration",
"start": [
17,
1
]
},
{
"code": "@[simp]\ntheorem drop_one : ∀ l : List α, drop 1 l = tail l",
"end": [
24,
23
],
"full_name": "List.drop_one",
"kind": "commanddeclaration",
"start": [
22,
1
]
},
{
"code": "theorem zipWith_distrib_tail : (zipWith f l l').tail = zipWith f l.tail l'.tail",
"end": [
29,
47
],
"full_name": "List.zipWith_distrib_tail",
"kind": "commanddeclaration",
"start": [
28,
1
]
},
{
"code": "theorem subset_def {l₁ l₂ : List α} : l₁ ⊆ l₂ ↔ ∀ {a : α}, a ∈ l₁ → a ∈ l₂",
"end": [
33,
83
],
"full_name": "List.subset_def",
"kind": "commanddeclaration",
"start": [
33,
1
]
},
{
"code": "@[simp] theorem nil_subset (l : List α) : [] ⊆ l",
"end": [
35,
58
],
"full_name": "List.nil_subset",
"kind": "commanddeclaration",
"start": [
35,
1
]
},
{
"code": "@[simp] theorem Subset.refl (l : List α) : l ⊆ l",
"end": [
37,
65
],
"full_name": "List.Subset.refl",
"kind": "commanddeclaration",
"start": [
37,
1
]
},
{
"code": "theorem Subset.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ ⊆ l₂) (h₂ : l₂ ⊆ l₃) : l₁ ⊆ l₃",
"end": [
40,
23
],
"full_name": "List.Subset.trans",
"kind": "commanddeclaration",
"start": [
39,
1
]
},
{
"code": "@[simp] theorem subset_cons (a : α) (l : List α) : l ⊆ a :: l",
"end": [
48,
85
],
"full_name": "List.subset_cons",
"kind": "commanddeclaration",
"start": [
48,
1
]
},
{
"code": "theorem subset_of_cons_subset {a : α} {l₁ l₂ : List α} : a :: l₁ ⊆ l₂ → l₁ ⊆ l₂",
"end": [
51,
39
],
"full_name": "List.subset_of_cons_subset",
"kind": "commanddeclaration",
"start": [
50,
1
]
},
{
"code": "theorem subset_cons_of_subset (a : α) {l₁ l₂ : List α} : l₁ ⊆ l₂ → l₁ ⊆ a :: l₂",
"end": [
54,
29
],
"full_name": "List.subset_cons_of_subset",
"kind": "commanddeclaration",
"start": [
53,
1
]
},
{
"code": "theorem cons_subset_cons {l₁ l₂ : List α} (a : α) (s : l₁ ⊆ l₂) : a :: l₁ ⊆ a :: l₂",
"end": [
57,
62
],
"full_name": "List.cons_subset_cons",
"kind": "commanddeclaration",
"start": [
56,
1
]
},
{
"code": "@[simp] theorem subset_append_left (l₁ l₂ : List α) : l₁ ⊆ l₁ ++ l₂",
"end": [
59,
98
],
"full_name": "List.subset_append_left",
"kind": "commanddeclaration",
"start": [
59,
1
]
},
{
"code": "@[simp] theorem subset_append_right (l₁ l₂ : List α) : l₂ ⊆ l₁ ++ l₂",
"end": [
61,
100
],
"full_name": "List.subset_append_right",
"kind": "commanddeclaration",
"start": [
61,
1
]
},
{
"code": "theorem subset_append_of_subset_left (l₂ : List α) : l ⊆ l₁ → l ⊆ l₁ ++ l₂",
"end": [
64,
50
],
"full_name": "List.subset_append_of_subset_left",
"kind": "commanddeclaration",
"start": [
63,
1
]
},
{
"code": "theorem subset_append_of_subset_right (l₁ : List α) : l ⊆ l₂ → l ⊆ l₁ ++ l₂",
"end": [
67,
51
],
"full_name": "List.subset_append_of_subset_right",
"kind": "commanddeclaration",
"start": [
66,
1
]
},
{
"code": "@[simp] theorem cons_subset : a :: l ⊆ m ↔ a ∈ m ∧ l ⊆ m",
"end": [
70,
66
],
"full_name": "List.cons_subset",
"kind": "commanddeclaration",
"start": [
69,
1
]
},
{
"code": "@[simp] theorem append_subset {l₁ l₂ l : List α} :\n l₁ ++ l₂ ⊆ l ↔ l₁ ⊆ l ∧ l₂ ⊆ l",
"end": [
73,
79
],
"full_name": "List.append_subset",
"kind": "commanddeclaration",
"start": [
72,
1
]
},
{
"code": "theorem subset_nil {l : List α} : l ⊆ [] ↔ l = []",
"end": [
76,
99
],
"full_name": "List.subset_nil",
"kind": "commanddeclaration",
"start": [
75,
1
]
},
{
"code": "theorem map_subset {l₁ l₂ : List α} (f : α → β) (H : l₁ ⊆ l₂) : map f l₁ ⊆ map f l₂",
"end": [
79,
72
],
"full_name": "List.map_subset",
"kind": "commanddeclaration",
"start": [
78,
1
]
},
{
"code": "@[simp] theorem nil_sublist : ∀ l : List α, [] <+ l",
"end": [
85,
37
],
"full_name": "List.nil_sublist",
"kind": "commanddeclaration",
"start": [
83,
1
]
},
{
"code": "@[simp] theorem Sublist.refl : ∀ l : List α, l <+ l",
"end": [
89,
39
],
"full_name": "List.Sublist.refl",
"kind": "commanddeclaration",
"start": [
87,
1
]
},
{
"code": "theorem Sublist.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ <+ l₂) (h₂ : l₂ <+ l₃) : l₁ <+ l₃",
"end": [
100,
53
],
"full_name": "List.Sublist.trans",
"kind": "commanddeclaration",
"start": [
91,
1
]
},
{
"code": "@[simp] theorem sublist_cons (a : α) (l : List α) : l <+ a :: l",
"end": [
104,
91
],
"full_name": "List.sublist_cons",
"kind": "commanddeclaration",
"start": [
104,
1
]
},
{
"code": "theorem sublist_of_cons_sublist : a :: l₁ <+ l₂ → l₁ <+ l₂",
"end": [
107,
28
],
"full_name": "List.sublist_of_cons_sublist",
"kind": "commanddeclaration",
"start": [
106,
1
]
},
{
"code": "@[simp] theorem sublist_append_left : ∀ l₁ l₂ : List α, l₁ <+ l₁ ++ l₂",
"end": [
111,
55
],
"full_name": "List.sublist_append_left",
"kind": "commanddeclaration",
"start": [
109,
1
]
},
{
"code": "@[simp] theorem sublist_append_right : ∀ l₁ l₂ : List α, l₂ <+ l₁ ++ l₂",
"end": [
115,
55
],
"full_name": "List.sublist_append_right",
"kind": "commanddeclaration",
"start": [
113,
1
]
},
{
"code": "theorem sublist_append_of_sublist_left (s : l <+ l₁) : l <+ l₁ ++ l₂",
"end": [
118,
36
],
"full_name": "List.sublist_append_of_sublist_left",
"kind": "commanddeclaration",
"start": [
117,
1
]
},
{
"code": "theorem sublist_append_of_sublist_right (s : l <+ l₂) : l <+ l₁ ++ l₂",
"end": [
121,
37
],
"full_name": "List.sublist_append_of_sublist_right",
"kind": "commanddeclaration",
"start": [
120,
1
]
},
{
"code": "@[simp]\ntheorem cons_sublist_cons : a :: l₁ <+ a :: l₂ ↔ l₁ <+ l₂",
"end": [
125,
77
],
"full_name": "List.cons_sublist_cons",
"kind": "commanddeclaration",
"start": [
123,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_left : ∀ l, l ++ l₁ <+ l ++ l₂ ↔ l₁ <+ l₂",
"end": [
129,
69
],
"full_name": "List.append_sublist_append_left",
"kind": "commanddeclaration",
"start": [
127,
1
]
},
{
"code": "theorem Sublist.append_left : l₁ <+ l₂ → ∀ l, l ++ l₁ <+ l ++ l₂",
"end": [
132,
50
],
"full_name": "List.Sublist.append_left",
"kind": "commanddeclaration",
"start": [
131,
1
]
},
{
"code": "theorem Sublist.append_right : l₁ <+ l₂ → ∀ l, l₁ ++ l <+ l₂ ++ l",
"end": [
137,
48
],
"full_name": "List.Sublist.append_right",
"kind": "commanddeclaration",
"start": [
134,
1
]
},
{
"code": "theorem sublist_or_mem_of_sublist (h : l <+ l₁ ++ a :: l₂) : l <+ l₁ ++ l₂ ∨ a ∈ l",
"end": [
147,
65
],
"full_name": "List.sublist_or_mem_of_sublist",
"kind": "commanddeclaration",
"start": [
139,
1
]
},
{
"code": "theorem Sublist.reverse : l₁ <+ l₂ → l₁.reverse <+ l₂.reverse",
"end": [
152,
85
],
"full_name": "List.Sublist.reverse",
"kind": "commanddeclaration",
"start": [
149,
1
]
},
{
"code": "@[simp] theorem reverse_sublist : l₁.reverse <+ l₂.reverse ↔ l₁ <+ l₂",
"end": [
155,
82
],
"full_name": "List.reverse_sublist",
"kind": "commanddeclaration",
"start": [
154,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_right (l) : l₁ ++ l <+ l₂ ++ l ↔ l₁ <+ l₂",
"end": [
162,
30
],
"full_name": "List.append_sublist_append_right",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "theorem Sublist.append (hl : l₁ <+ l₂) (hr : r₁ <+ r₂) : l₁ ++ r₁ <+ l₂ ++ r₂",
"end": [
165,
66
],
"full_name": "List.Sublist.append",
"kind": "commanddeclaration",
"start": [
164,
1
]
},
{
"code": "theorem Sublist.subset : l₁ <+ l₂ → l₁ ⊆ l₂",
"end": [
171,
53
],
"full_name": "List.Sublist.subset",
"kind": "commanddeclaration",
"start": [
167,
1
]
},
{
"code": "theorem Sublist.length_le : l₁ <+ l₂ → length l₁ ≤ length l₂",
"end": [
185,
45
],
"full_name": "List.Sublist.length_le",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "@[simp] theorem sublist_nil {l : List α} : l <+ [] ↔ l = []",
"end": [
188,
64
],
"full_name": "List.sublist_nil",
"kind": "commanddeclaration",
"start": [
187,
1
]
},
{
"code": "theorem Sublist.eq_of_length : l₁ <+ l₂ → length l₁ = length l₂ → l₁ = l₂",
"end": [
193,
57
],
"full_name": "List.Sublist.eq_of_length",
"kind": "commanddeclaration",
"start": [
190,
1
]
},
{
"code": "theorem Sublist.eq_of_length_le (s : l₁ <+ l₂) (h : length l₂ ≤ length l₁) : l₁ = l₂",
"end": [
196,
50
],
"full_name": "List.Sublist.eq_of_length_le",
"kind": "commanddeclaration",
"start": [
195,
1
]
},
{
"code": "@[simp] theorem singleton_sublist {a : α} {l} : [a] <+ l ↔ a ∈ l",
"end": [
201,
66
],
"full_name": "List.singleton_sublist",
"kind": "commanddeclaration",
"start": [
198,
1
]
},
{
"code": "@[simp] theorem replicate_sublist_replicate {m n} (a : α) :\n replicate m a <+ replicate n a ↔ m ≤ n",
"end": [
209,
48
],
"full_name": "List.replicate_sublist_replicate",
"kind": "commanddeclaration",
"start": [
203,
1
]
},
{
"code": "theorem isSublist_iff_sublist [BEq α] [LawfulBEq α] {l₁ l₂ : List α} :\n l₁.isSublist l₂ ↔ l₁ <+ l₂",
"end": [
228,
24
],
"full_name": "List.isSublist_iff_sublist",
"kind": "commanddeclaration",
"start": [
211,
1
]
},
{
"code": "theorem tail_eq_tailD (l) : @tail α l = tailD l []",
"end": [
235,
73
],
"full_name": "List.tail_eq_tailD",
"kind": "commanddeclaration",
"start": [
235,
1
]
},
{
"code": "theorem tail_eq_tail? (l) : @tail α l = (tail? l).getD []",
"end": [
237,
85
],
"full_name": "List.tail_eq_tail?",
"kind": "commanddeclaration",
"start": [
237,
1
]
},
{
"code": "@[simp] theorem next?_nil : @next? α [] = none",
"end": [
241,
54
],
"full_name": "List.next?_nil",
"kind": "commanddeclaration",
"start": [
241,
1
]
},
{
"code": "@[simp] theorem next?_cons (a l) : @next? α (a :: l) = some (a, l)",
"end": [
242,
74
],
"full_name": "List.next?_cons",
"kind": "commanddeclaration",
"start": [
242,
1
]
},
{
"code": "theorem getElem_eq_iff {l : List α} {n : Nat} {h : n < l.length} : l[n] = x ↔ l[n]? = some x",
"end": [
248,
40
],
"full_name": "List.getElem_eq_iff",
"kind": "commanddeclaration",
"start": [
246,
1
]
},
{
"code": "@[deprecated getElem_eq_iff (since := \"2024-06-12\")]\ntheorem get_eq_iff : List.get l n = x ↔ l.get? n.1 = some x",
"end": [
252,
7
],
"full_name": "List.get_eq_iff",
"kind": "commanddeclaration",
"start": [
250,
1
]
},
{
"code": "theorem getElem?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs[i]? = xs[j]?) : i = j",
"end": [
273,
39
],
"full_name": "List.getElem?_inj",
"kind": "commanddeclaration",
"start": [
254,
1
]
},
{
"code": "@[deprecated getElem?_inj (since := \"2024-06-12\")]\ntheorem get?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs.get? i = xs.get? j) : i = j",
"end": [
279,
11
],
"full_name": "List.get?_inj",
"kind": "commanddeclaration",
"start": [
275,
1
]
},
{
"code": "theorem tail_drop (l : List α) (n : Nat) : (l.drop n).tail = l.drop (n + 1)",
"end": [
289,
16
],
"full_name": "List.tail_drop",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "@[simp] theorem modifyNth_nil (f : α → α) (n) : [].modifyNth f n = []",
"end": [
293,
92
],
"full_name": "List.modifyNth_nil",
"kind": "commanddeclaration",
"start": [
293,
1
]
},
{
"code": "@[simp] theorem modifyNth_zero_cons (f : α → α) (a : α) (l : List α) :\n (a :: l).modifyNth f 0 = f a :: l",
"end": [
296,
45
],
"full_name": "List.modifyNth_zero_cons",
"kind": "commanddeclaration",
"start": [
295,
1
]
},
{
"code": "@[simp] theorem modifyNth_succ_cons (f : α → α) (a : α) (l : List α) (n) :\n (a :: l).modifyNth f (n + 1) = a :: l.modifyNth f n",
"end": [
299,
66
],
"full_name": "List.modifyNth_succ_cons",
"kind": "commanddeclaration",
"start": [
298,
1
]
},
{
"code": "theorem modifyNthTail_id : ∀ n (l : List α), l.modifyNthTail id n = l",
"end": [
304,
60
],
"full_name": "List.modifyNthTail_id",
"kind": "commanddeclaration",
"start": [
301,
1
]
},
{
"code": "theorem eraseIdx_eq_modifyNthTail : ∀ n (l : List α), eraseIdx l n = modifyNthTail tail n l",
"end": [
309,
69
],
"full_name": "List.eraseIdx_eq_modifyNthTail",
"kind": "commanddeclaration",
"start": [
306,
1
]
},
{
"code": "theorem getElem?_modifyNth (f : α → α) :\n ∀ n (l : List α) m, (modifyNth f n l)[m]? = (fun a => if n = m then f a else a) <$> l[m]?",
"end": [
322,
79
],
"full_name": "List.getElem?_modifyNth",
"kind": "commanddeclaration",
"start": [
313,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth (since := \"2024-06-12\")]\ntheorem get?_modifyNth (f : α → α) (n) (l : List α) (m) :\n (modifyNth f n l).get? m = (fun a => if n = m then f a else a) <$> l.get? m",
"end": [
327,
28
],
"full_name": "List.get?_modifyNth",
"kind": "commanddeclaration",
"start": [
324,
1
]
},
{
"code": "theorem modifyNthTail_length (f : List α → List α) (H : ∀ l, length (f l) = length l) :\n ∀ n l, length (modifyNthTail f n l) = length l",
"end": [
333,
65
],
"full_name": "List.modifyNthTail_length",
"kind": "commanddeclaration",
"start": [
329,
1
]
},
{
"code": "theorem modifyNthTail_add (f : List α → List α) (n) (l₁ l₂ : List α) :\n modifyNthTail f (l₁.length + n) (l₁ ++ l₂) = l₁ ++ modifyNthTail f n l₂",
"end": [
337,
42
],
"full_name": "List.modifyNthTail_add",
"kind": "commanddeclaration",
"start": [
335,
1
]
},
{
"code": "theorem exists_of_modifyNthTail (f : List α → List α) {n} {l : List α} (h : n ≤ l.length) :\n ∃ l₁ l₂, l = l₁ ++ l₂ ∧ l₁.length = n ∧ modifyNthTail f n l = l₁ ++ f l₂",
"end": [
343,
58
],
"full_name": "List.exists_of_modifyNthTail",
"kind": "commanddeclaration",
"start": [
339,
1
]
},
{
"code": "@[simp] theorem modify_get?_length (f : α → α) : ∀ n l, length (modifyNth f n l) = length l",
"end": [
346,
53
],
"full_name": "List.modify_get?_length",
"kind": "commanddeclaration",
"start": [
345,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l)[n]? = f <$> l[n]?",
"end": [
350,
41
],
"full_name": "List.getElem?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_eq (since := \"2024-06-12\")]\ntheorem get?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l).get? n = f <$> l.get? n",
"end": [
355,
31
],
"full_name": "List.get?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
352,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l)[n]? = l[n]?",
"end": [
359,
52
],
"full_name": "List.getElem?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
357,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_ne (since := \"2024-06-12\")]\ntheorem get?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l).get? n = l.get? n",
"end": [
364,
11
],
"full_name": "List.get?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
361,
1
]
},
{
"code": "theorem exists_of_modifyNth (f : α → α) {n} {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ modifyNth f n l = l₁ ++ f a :: l₂",
"end": [
370,
74
],
"full_name": "List.exists_of_modifyNth",
"kind": "commanddeclaration",
"start": [
366,
1
]
},
{
"code": "theorem modifyNthTail_eq_take_drop (f : List α → List α) (H : f [] = []) :\n ∀ n l, modifyNthTail f n l = take n l ++ f (drop n l)",
"end": [
376,
76
],
"full_name": "List.modifyNthTail_eq_take_drop",
"kind": "commanddeclaration",
"start": [
372,
1
]
},
{
"code": "theorem modifyNth_eq_take_drop (f : α → α) :\n ∀ n l, modifyNth f n l = take n l ++ modifyHead f (drop n l)",
"end": [
380,
35
],
"full_name": "List.modifyNth_eq_take_drop",
"kind": "commanddeclaration",
"start": [
378,
1
]
},
{
"code": "theorem modifyNth_eq_take_cons_drop (f : α → α) {n l} (h) :\n modifyNth f n l = take n l ++ f l[n] :: drop (n + 1) l",
"end": [
384,
59
],
"full_name": "List.modifyNth_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
382,
1
]
},
{
"code": "theorem set_eq_modifyNth (a : α) : ∀ n (l : List α), set l n a = modifyNth (fun _ => a) n l",
"end": [
391,
62
],
"full_name": "List.set_eq_modifyNth",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "theorem set_eq_take_cons_drop (a : α) {n l} (h : n < length l) :\n set l n a = take n l ++ a :: drop (n + 1) l",
"end": [
395,
57
],
"full_name": "List.set_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
393,
1
]
},
{
"code": "theorem modifyNth_eq_set_get? (f : α → α) :\n ∀ n (l : List α), l.modifyNth f n = ((fun a => l.set n (f a)) <$> l.get? n).getD l",
"end": [
402,
92
],
"full_name": "List.modifyNth_eq_set_get?",
"kind": "commanddeclaration",
"start": [
397,
1
]
},
{
"code": "theorem modifyNth_eq_set_get (f : α → α) {n} {l : List α} (h) :\n l.modifyNth f n = l.set n (f (l.get ⟨n, h⟩))",
"end": [
406,
49
],
"full_name": "List.modifyNth_eq_set_get",
"kind": "commanddeclaration",
"start": [
404,
1
]
},
{
"code": "theorem exists_of_set {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
410,
55
],
"full_name": "List.exists_of_set",
"kind": "commanddeclaration",
"start": [
408,
1
]
},
{
"code": "theorem exists_of_set' {l : List α} (h : n < l.length) :\n ∃ l₁ l₂, l = l₁ ++ l[n] :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
414,
94
],
"full_name": "List.exists_of_set'",
"kind": "commanddeclaration",
"start": [
412,
1
]
},
{
"code": "@[simp]\ntheorem getElem?_set_eq' (a : α) (n) (l : List α) : (set l n a)[n]? = (fun _ => a) <$> l[n]?",
"end": [
418,
54
],
"full_name": "List.getElem?_set_eq'",
"kind": "commanddeclaration",
"start": [
416,
1
]
},
{
"code": "@[deprecated getElem?_set_eq' (since := \"2024-06-12\")]\ntheorem get?_set_eq (a : α) (n) (l : List α) : (set l n a).get? n = (fun _ => a) <$> l.get? n",
"end": [
422,
7
],
"full_name": "List.get?_set_eq",
"kind": "commanddeclaration",
"start": [
420,
1
]
},
{
"code": "theorem getElem?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a)[n]? = some a",
"end": [
425,
85
],
"full_name": "List.getElem?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
424,
1
]
},
{
"code": "@[deprecated getElem?_set_eq_of_lt (since := \"2024-06-12\")]\ntheorem get?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a).get? n = some a",
"end": [
430,
70
],
"full_name": "List.get?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
427,
1
]
},
{
"code": "@[deprecated getElem?_set_ne (since := \"2024-06-12\")]\ntheorem get?_set_ne (a : α) {m n} (l : List α) (h : m ≠ n) : (set l m a).get? n = l.get? n",
"end": [
434,
11
],
"full_name": "List.get?_set_ne",
"kind": "commanddeclaration",
"start": [
432,
1
]
},
{
"code": "theorem getElem?_set' (a : α) {m n} (l : List α) :\n (set l m a)[n]? = if m = n then (fun _ => a) <$> l[n]? else l[n]?",
"end": [
438,
30
],
"full_name": "List.getElem?_set'",
"kind": "commanddeclaration",
"start": [
436,
1
]
},
{
"code": "@[deprecated getElem?_set (since := \"2024-06-12\")]\ntheorem get?_set (a : α) {m n} (l : List α) :\n (set l m a).get? n = if m = n then (fun _ => a) <$> l.get? n else l.get? n",
"end": [
443,
23
],
"full_name": "List.get?_set",
"kind": "commanddeclaration",
"start": [
440,
1
]
},
{
"code": "theorem get?_set_of_lt (a : α) {m n} (l : List α) (h : n < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
447,
46
],
"full_name": "List.get?_set_of_lt",
"kind": "commanddeclaration",
"start": [
445,
1
]
},
{
"code": "theorem get?_set_of_lt' (a : α) {m n} (l : List α) (h : m < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
451,
80
],
"full_name": "List.get?_set_of_lt'",
"kind": "commanddeclaration",
"start": [
449,
1
]
},
{
"code": "theorem drop_set_of_lt (a : α) {n m : Nat} (l : List α) (h : n < m) :\n (l.set n a).drop m = l.drop m",
"end": [
455,
94
],
"full_name": "List.drop_set_of_lt",
"kind": "commanddeclaration",
"start": [
453,
1
]
},
{
"code": "theorem take_set_of_lt (a : α) {n m : Nat} (l : List α) (h : m < n) :\n (l.set n a).take m = l.take m",
"end": [
463,
10
],
"full_name": "List.take_set_of_lt",
"kind": "commanddeclaration",
"start": [
457,
1
]
},
{
"code": "theorem length_eraseIdx : ∀ {l i}, i < length l → length (@eraseIdx α l i) = length l - 1",
"end": [
473,
92
],
"full_name": "List.length_eraseIdx",
"kind": "commanddeclaration",
"start": [
467,
1
]
},
{
"code": "@[simp] theorem length_tail (l : List α) : length (tail l) = length l - 1",
"end": [
479,
96
],
"full_name": "List.length_tail",
"kind": "commanddeclaration",
"start": [
479,
1
]
},
{
"code": "@[simp] theorem eraseP_nil : [].eraseP p = []",
"end": [
483,
53
],
"full_name": "List.eraseP_nil",
"kind": "commanddeclaration",
"start": [
483,
1
]
},
{
"code": "theorem eraseP_cons (a : α) (l : List α) :\n (a :: l).eraseP p = bif p a then l else a :: l.eraseP p",
"end": [
486,
67
],
"full_name": "List.eraseP_cons",
"kind": "commanddeclaration",
"start": [
485,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_pos {l : List α} (p) (h : p a) : (a :: l).eraseP p = l",
"end": [
489,
24
],
"full_name": "List.eraseP_cons_of_pos",
"kind": "commanddeclaration",
"start": [
488,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_neg {l : List α} (p) (h : ¬p a) :\n (a :: l).eraseP p = a :: l.eraseP p",
"end": [
492,
68
],
"full_name": "List.eraseP_cons_of_neg",
"kind": "commanddeclaration",
"start": [
491,
1
]
},
{
"code": "theorem eraseP_of_forall_not {l : List α} (h : ∀ a, a ∈ l → ¬p a) : l.eraseP p = l",
"end": [
497,
69
],
"full_name": "List.eraseP_of_forall_not",
"kind": "commanddeclaration",
"start": [
494,
1
]
},
{
"code": "theorem exists_of_eraseP : ∀ {l : List α} {a} (al : a ∈ l) (pa : p a),\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
510,
57
],
"full_name": "List.exists_of_eraseP",
"kind": "commanddeclaration",
"start": [
499,
1
]
},
{
"code": "theorem exists_or_eq_self_of_eraseP (p) (l : List α) :\n l.eraseP p = l ∨\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
519,
46
],
"full_name": "List.exists_or_eq_self_of_eraseP",
"kind": "commanddeclaration",
"start": [
512,
1
]
},
{
"code": "@[simp] theorem length_eraseP_of_mem (al : a ∈ l) (pa : p a) :\n length (l.eraseP p) = Nat.pred (length l)",
"end": [
524,
41
],
"full_name": "List.length_eraseP_of_mem",
"kind": "commanddeclaration",
"start": [
521,
1
]
},
{
"code": "theorem eraseP_append_left {a : α} (pa : p a) :\n ∀ {l₁ : List α} l₂, a ∈ l₁ → (l₁++l₂).eraseP p = l₁.eraseP p ++ l₂",
"end": [
531,
28
],
"full_name": "List.eraseP_append_left",
"kind": "commanddeclaration",
"start": [
526,
1
]
},
{
"code": "theorem eraseP_append_right :\n ∀ {l₁ : List α} l₂, (∀ b ∈ l₁, ¬p b) → eraseP p (l₁++l₂) = l₁ ++ l₂.eraseP p",
"end": [
537,
82
],
"full_name": "List.eraseP_append_right",
"kind": "commanddeclaration",
"start": [
533,
1
]
},
{
"code": "theorem eraseP_sublist (l : List α) : l.eraseP p <+ l",
"end": [
542,
56
],
"full_name": "List.eraseP_sublist",
"kind": "commanddeclaration",
"start": [
539,
1
]
},
{
"code": "theorem eraseP_subset (l : List α) : l.eraseP p ⊆ l",
"end": [
544,
81
],
"full_name": "List.eraseP_subset",
"kind": "commanddeclaration",
"start": [
544,
1
]
},
{
"code": "protected theorem Sublist.eraseP : l₁ <+ l₂ → l₁.eraseP p <+ l₂.eraseP p",
"end": [
553,
25
],
"full_name": "List.Sublist.eraseP",
"kind": "commanddeclaration",
"start": [
546,
1
]
},
{
"code": "theorem mem_of_mem_eraseP {l : List α} : a ∈ l.eraseP p → a ∈ l",
"end": [
555,
87
],
"full_name": "List.mem_of_mem_eraseP",
"kind": "commanddeclaration",
"start": [
555,
1
]
},
{
"code": "@[simp] theorem mem_eraseP_of_neg {l : List α} (pa : ¬p a) : a ∈ l.eraseP p ↔ a ∈ l",
"end": [
564,
33
],
"full_name": "List.mem_eraseP_of_neg",
"kind": "commanddeclaration",
"start": [
557,
1
]
},
{
"code": "theorem eraseP_map (f : β → α) : ∀ (l : List β), (map f l).eraseP p = map f (l.eraseP (p ∘ f))",
"end": [
568,
85
],
"full_name": "List.eraseP_map",
"kind": "commanddeclaration",
"start": [
566,
1
]
},
{
"code": "@[simp] theorem extractP_eq_find?_eraseP\n (l : List α) : extractP p l = (find? p l, eraseP p l)",
"end": [
578,
21
],
"full_name": "List.extractP_eq_find?_eraseP",
"kind": "commanddeclaration",
"start": [
570,
1
]
},
{
"code": "theorem erase_eq_eraseP' (a : α) (l : List α) : l.erase a = l.eraseP (· == a)",
"end": [
590,
46
],
"full_name": "List.erase_eq_eraseP'",
"kind": "commanddeclaration",
"start": [
585,
1
]
},
{
"code": "theorem erase_eq_eraseP [LawfulBEq α] (a : α) : ∀ l : List α, l.erase a = l.eraseP (a == ·)",
"end": [
595,
77
],
"full_name": "List.erase_eq_eraseP",
"kind": "commanddeclaration",
"start": [
592,
1
]
},
{
"code": "theorem exists_erase_eq [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n ∃ l₁ l₂, a ∉ l₁ ∧ l = l₁ ++ a :: l₂ ∧ l.erase a = l₁ ++ l₂",
"end": [
600,
99
],
"full_name": "List.exists_erase_eq",
"kind": "commanddeclaration",
"start": [
597,
1
]
},
{
"code": "@[simp] theorem length_erase_of_mem [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n length (l.erase a) = Nat.pred (length l)",
"end": [
604,
74
],
"full_name": "List.length_erase_of_mem",
"kind": "commanddeclaration",
"start": [
602,
1
]
},
{
"code": "theorem erase_append_left [LawfulBEq α] {l₁ : List α} (l₂) (h : a ∈ l₁) :\n (l₁ ++ l₂).erase a = l₁.erase a ++ l₂",
"end": [
608,
77
],
"full_name": "List.erase_append_left",
"kind": "commanddeclaration",
"start": [
606,
1
]
},
{
"code": "theorem erase_append_right [LawfulBEq α] {a : α} {l₁ : List α} (l₂ : List α) (h : a ∉ l₁) :\n (l₁ ++ l₂).erase a = (l₁ ++ l₂.erase a)",
"end": [
613,
55
],
"full_name": "List.erase_append_right",
"kind": "commanddeclaration",
"start": [
610,
1
]
},
{
"code": "theorem erase_sublist (a : α) (l : List α) : l.erase a <+ l",
"end": [
616,
42
],
"full_name": "List.erase_sublist",
"kind": "commanddeclaration",
"start": [
615,
1
]
},
{
"code": "theorem erase_subset (a : α) (l : List α) : l.erase a ⊆ l",
"end": [
618,
88
],
"full_name": "List.erase_subset",
"kind": "commanddeclaration",
"start": [
618,
1
]
},
{
"code": "theorem Sublist.erase (a : α) {l₁ l₂ : List α} (h : l₁ <+ l₂) : l₁.erase a <+ l₂.erase a",
"end": [
621,
47
],
"full_name": "List.Sublist.erase",
"kind": "commanddeclaration",
"start": [
620,
1
]
},
{
"code": "theorem mem_of_mem_erase {a b : α} {l : List α} (h : a ∈ l.erase b) : a ∈ l",
"end": [
624,
98
],
"full_name": "List.mem_of_mem_erase",
"kind": "commanddeclaration",
"start": [
624,
1
]
},
{
"code": "@[simp] theorem mem_erase_of_ne [LawfulBEq α] {a b : α} {l : List α} (ab : a ≠ b) :\n a ∈ l.erase b ↔ a ∈ l",
"end": [
628,
65
],
"full_name": "List.mem_erase_of_ne",
"kind": "commanddeclaration",
"start": [
626,
1
]
},
{
"code": "theorem erase_comm [LawfulBEq α] (a b : α) (l : List α) :\n (l.erase a).erase b = (l.erase b).erase a",
"end": [
644,
49
],
"full_name": "List.erase_comm",
"kind": "commanddeclaration",
"start": [
630,
1
]
},
{
"code": "@[simp] theorem filter_sublist {p : α → Bool} : ∀ (l : List α), filter p l <+ l",
"end": [
652,
93
],
"full_name": "List.filter_sublist",
"kind": "commanddeclaration",
"start": [
650,
1
]
},
{
"code": "protected theorem Sublist.filterMap (f : α → Option β) (s : l₁ <+ l₂) :\n filterMap f l₁ <+ filterMap f l₂",
"end": [
658,
76
],
"full_name": "List.Sublist.filterMap",
"kind": "commanddeclaration",
"start": [
656,
1
]
},
{
"code": "theorem Sublist.filter (p : α → Bool) {l₁ l₂} (s : l₁ <+ l₂) : filter p l₁ <+ filter p l₂",
"end": [
661,
48
],
"full_name": "List.Sublist.filter",
"kind": "commanddeclaration",
"start": [
660,
1
]
},
{
"code": "@[simp] theorem findIdx_nil {α : Type _} (p : α → Bool) : [].findIdx p = 0",
"end": [
665,
82
],
"full_name": "List.findIdx_nil",
"kind": "commanddeclaration",
"start": [
665,
1
]
},
{
"code": "theorem findIdx_cons (p : α → Bool) (b : α) (l : List α) :\n (b :: l).findIdx p = bif p b then 0 else (l.findIdx p) + 1",
"end": [
680,
43
],
"full_name": "List.findIdx_cons",
"kind": "commanddeclaration",
"start": [
667,
1
]
},
{
"code": "theorem findIdx_of_get?_eq_some {xs : List α} (w : xs.get? (xs.findIdx p) = some y) : p y",
"end": [
685,
65
],
"full_name": "List.findIdx_of_get?_eq_some",
"kind": "commanddeclaration",
"start": [
682,
1
]
},
{
"code": "theorem findIdx_get {xs : List α} {w : xs.findIdx p < xs.length} :\n p (xs.get ⟨xs.findIdx p, w⟩)",
"end": [
689,
45
],
"full_name": "List.findIdx_get",
"kind": "commanddeclaration",
"start": [
687,
1
]
},
{
"code": "theorem findIdx_lt_length_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.findIdx p < xs.length",
"end": [
703,
24
],
"full_name": "List.findIdx_lt_length_of_exists",
"kind": "commanddeclaration",
"start": [
691,
1
]
},
{
"code": "theorem findIdx_get?_eq_get_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.get? (xs.findIdx p) = some (xs.get ⟨xs.findIdx p, xs.findIdx_lt_length_of_exists h⟩)",
"end": [
707,
46
],
"full_name": "List.findIdx_get?_eq_get_of_exists",
"kind": "commanddeclaration",
"start": [
705,
1
]
},
{
"code": "@[simp] theorem findIdx?_nil : ([] : List α).findIdx? p i = none",
"end": [
711,
72
],
"full_name": "List.findIdx?_nil",
"kind": "commanddeclaration",
"start": [
711,
1
]
},
{
"code": "@[simp] theorem findIdx?_cons :\n (x :: xs).findIdx? p i = if p x then some i else findIdx? p xs (i + 1)",
"end": [
714,
82
],
"full_name": "List.findIdx?_cons",
"kind": "commanddeclaration",
"start": [
713,
1
]
},
{
"code": "@[simp] theorem findIdx?_succ :\n (xs : List α).findIdx? p (i+1) = (xs.findIdx? p i).map fun i => i + 1",
"end": [
719,
37
],
"full_name": "List.findIdx?_succ",
"kind": "commanddeclaration",
"start": [
716,
1
]
},
{
"code": "theorem findIdx?_eq_some_iff (xs : List α) (p : α → Bool) :\n xs.findIdx? p = some i ↔ (xs.take (i + 1)).map p = replicate i false ++ [true]",
"end": [
727,
52
],
"full_name": "List.findIdx?_eq_some_iff",
"kind": "commanddeclaration",
"start": [
721,
1
]
},
{
"code": "theorem findIdx?_of_eq_some {xs : List α} {p : α → Bool} (w : xs.findIdx? p = some i) :\n match xs.get? i with | some a => p a | none => false",
"end": [
735,
40
],
"full_name": "List.findIdx?_of_eq_some",
"kind": "commanddeclaration",
"start": [
729,
1
]
},
{
"code": "theorem findIdx?_of_eq_none {xs : List α} {p : α → Bool} (w : xs.findIdx? p = none) :\n ∀ i, match xs.get? i with | some a => ¬ p a | none => true",
"end": [
750,
30
],
"full_name": "List.findIdx?_of_eq_none",
"kind": "commanddeclaration",
"start": [
737,
1
]
},
{
"code": "@[simp] theorem findIdx?_append :\n (xs ++ ys : List α).findIdx? p =\n (xs.findIdx? p <|> (ys.findIdx? p).map fun i => i + xs.length)",
"end": [
756,
78
],
"full_name": "List.findIdx?_append",
"kind": "commanddeclaration",
"start": [
752,
1
]
},
{
"code": "@[simp] theorem findIdx?_replicate :\n (replicate n a).findIdx? p = if 0 < n ∧ p a then some 0 else none",
"end": [
764,
23
],
"full_name": "List.findIdx?_replicate",
"kind": "commanddeclaration",
"start": [
758,
1
]
},
{
"code": "theorem Pairwise.sublist : l₁ <+ l₂ → l₂.Pairwise R → l₁.Pairwise R",
"end": [
771,
80
],
"full_name": "List.Pairwise.sublist",
"kind": "commanddeclaration",
"start": [
768,
1
]
},
{
"code": "theorem pairwise_map {l : List α} :\n (l.map f).Pairwise R ↔ l.Pairwise fun a b => R (f a) (f b)",
"end": [
777,
58
],
"full_name": "List.pairwise_map",
"kind": "commanddeclaration",
"start": [
773,
1
]
},
{
"code": "theorem pairwise_append {l₁ l₂ : List α} :\n (l₁ ++ l₂).Pairwise R ↔ l₁.Pairwise R ∧ l₂.Pairwise R ∧ ∀ a ∈ l₁, ∀ b ∈ l₂, R a b",
"end": [
781,
74
],
"full_name": "List.pairwise_append",
"kind": "commanddeclaration",
"start": [
779,
1
]
},
{
"code": "theorem pairwise_reverse {l : List α} :\n l.reverse.Pairwise R ↔ l.Pairwise (fun a b => R b a)",
"end": [
785,
54
],
"full_name": "List.pairwise_reverse",
"kind": "commanddeclaration",
"start": [
783,
1
]
},
{
"code": "theorem Pairwise.imp {α R S} (H : ∀ {a b}, R a b → S a b) :\n ∀ {l : List α}, l.Pairwise R → l.Pairwise S",
"end": [
790,
50
],
"full_name": "List.Pairwise.imp",
"kind": "commanddeclaration",
"start": [
787,
1
]
},
{
"code": "theorem replaceF_nil : [].replaceF p = []",
"end": [
794,
49
],
"full_name": "List.replaceF_nil",
"kind": "commanddeclaration",
"start": [
794,
1
]
},
{
"code": "theorem replaceF_cons (a : α) (l : List α) :\n (a :: l).replaceF p = match p a with\n | none => a :: replaceF p l\n | some a' => a' :: l",
"end": [
799,
34
],
"full_name": "List.replaceF_cons",
"kind": "commanddeclaration",
"start": [
796,
1
]
},
{
"code": "theorem replaceF_cons_of_some {l : List α} (p) (h : p a = some a') :\n (a :: l).replaceF p = a' :: l",
"end": [
803,
26
],
"full_name": "List.replaceF_cons_of_some",
"kind": "commanddeclaration",
"start": [
801,
1
]
},
{
"code": "theorem replaceF_cons_of_none {l : List α} (p) (h : p a = none) :\n (a :: l).replaceF p = a :: l.replaceF p",
"end": [
806,
74
],
"full_name": "List.replaceF_cons_of_none",
"kind": "commanddeclaration",
"start": [
805,
1
]
},
{
"code": "theorem replaceF_of_forall_none {l : List α} (h : ∀ a, a ∈ l → p a = none) : l.replaceF p = l",
"end": [
811,
69
],
"full_name": "List.replaceF_of_forall_none",
"kind": "commanddeclaration",
"start": [
808,
1
]
},
{
"code": "theorem exists_of_replaceF : ∀ {l : List α} {a a'} (al : a ∈ l) (pa : p a = some a'),\n ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
825,
57
],
"full_name": "List.exists_of_replaceF",
"kind": "commanddeclaration",
"start": [
813,
1
]
},
{
"code": "theorem exists_or_eq_self_of_replaceF (p) (l : List α) :\n l.replaceF p = l ∨ ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
835,
62
],
"full_name": "List.exists_or_eq_self_of_replaceF",
"kind": "commanddeclaration",
"start": [
827,
1
]
},
{
"code": "@[simp] theorem length_replaceF : length (replaceF f l) = length l",
"end": [
838,
54
],
"full_name": "List.length_replaceF",
"kind": "commanddeclaration",
"start": [
837,
1
]
},
{
"code": "theorem disjoint_symm (d : Disjoint l₁ l₂) : Disjoint l₂ l₁",
"end": [
842,
86
],
"full_name": "List.disjoint_symm",
"kind": "commanddeclaration",
"start": [
842,
1
]
},
{
"code": "theorem disjoint_comm : Disjoint l₁ l₂ ↔ Disjoint l₂ l₁",
"end": [
844,
90
],
"full_name": "List.disjoint_comm",
"kind": "commanddeclaration",
"start": [
844,
1
]
},
{
"code": "theorem disjoint_left : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₁ → a ∉ l₂",
"end": [
846,
86
],
"full_name": "List.disjoint_left",
"kind": "commanddeclaration",
"start": [
846,
1
]
},
{
"code": "theorem disjoint_right : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₂ → a ∉ l₁",
"end": [
848,
82
],
"full_name": "List.disjoint_right",
"kind": "commanddeclaration",
"start": [
848,
1
]
},
{
"code": "theorem disjoint_iff_ne : Disjoint l₁ l₂ ↔ ∀ a ∈ l₁, ∀ b ∈ l₂, a ≠ b",
"end": [
851,
83
],
"full_name": "List.disjoint_iff_ne",
"kind": "commanddeclaration",
"start": [
850,
1
]
},
{
"code": "theorem disjoint_of_subset_left (ss : l₁ ⊆ l) (d : Disjoint l l₂) : Disjoint l₁ l₂",
"end": [
854,
22
],
"full_name": "List.disjoint_of_subset_left",
"kind": "commanddeclaration",
"start": [
853,
1
]
},
{
"code": "theorem disjoint_of_subset_right (ss : l₂ ⊆ l) (d : Disjoint l₁ l) : Disjoint l₁ l₂",
"end": [
857,
28
],
"full_name": "List.disjoint_of_subset_right",
"kind": "commanddeclaration",
"start": [
856,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_left {l₁ l₂} : Disjoint (a :: l₁) l₂ → Disjoint l₁ l₂",
"end": [
860,
42
],
"full_name": "List.disjoint_of_disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
859,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_right {l₁ l₂} : Disjoint l₁ (a :: l₂) → Disjoint l₁ l₂",
"end": [
863,
43
],
"full_name": "List.disjoint_of_disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
862,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_left (l : List α) : Disjoint [] l",
"end": [
865,
96
],
"full_name": "List.disjoint_nil_left",
"kind": "commanddeclaration",
"start": [
865,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_right (l : List α) : Disjoint l []",
"end": [
868,
48
],
"full_name": "List.disjoint_nil_right",
"kind": "commanddeclaration",
"start": [
867,
1
]
},
{
"code": "@[simp 1100] theorem singleton_disjoint : Disjoint [a] l ↔ a ∉ l",
"end": [
870,
87
],
"full_name": "List.singleton_disjoint",
"kind": "commanddeclaration",
"start": [
870,
1
]
},
{
"code": "@[simp 1100] theorem disjoint_singleton : Disjoint l [a] ↔ a ∉ l",
"end": [
873,
41
],
"full_name": "List.disjoint_singleton",
"kind": "commanddeclaration",
"start": [
872,
1
]
},
{
"code": "@[simp] theorem disjoint_append_left : Disjoint (l₁ ++ l₂) l ↔ Disjoint l₁ l ∧ Disjoint l₂ l",
"end": [
876,
38
],
"full_name": "List.disjoint_append_left",
"kind": "commanddeclaration",
"start": [
875,
1
]
},
{
"code": "@[simp] theorem disjoint_append_right : Disjoint l (l₁ ++ l₂) ↔ Disjoint l l₁ ∧ Disjoint l l₂",
"end": [
879,
76
],
"full_name": "List.disjoint_append_right",
"kind": "commanddeclaration",
"start": [
878,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_left : Disjoint (a::l₁) l₂ ↔ (a ∉ l₂) ∧ Disjoint l₁ l₂",
"end": [
882,
75
],
"full_name": "List.disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
881,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_right : Disjoint l₁ (a :: l₂) ↔ (a ∉ l₁) ∧ Disjoint l₁ l₂",
"end": [
885,
74
],
"full_name": "List.disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
884,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_left (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₁ l",
"end": [
888,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_left",
"kind": "commanddeclaration",
"start": [
887,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_right (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₂ l",
"end": [
891,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_right",
"kind": "commanddeclaration",
"start": [
890,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_left (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₁",
"end": [
894,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_left",
"kind": "commanddeclaration",
"start": [
893,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_right (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₂",
"end": [
897,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_right",
"kind": "commanddeclaration",
"start": [
896,
1
]
},
{
"code": "theorem foldl_hom (f : α₁ → α₂) (g₁ : α₁ → β → α₁) (g₂ : α₂ → β → α₂) (l : List β) (init : α₁)\n (H : ∀ x y, g₂ (f x) y = f (g₁ x y)) : l.foldl g₂ (f init) = f (l.foldl g₁ init)",
"end": [
903,
48
],
"full_name": "List.foldl_hom",
"kind": "commanddeclaration",
"start": [
901,
1
]
},
{
"code": "theorem foldr_hom (f : β₁ → β₂) (g₁ : α → β₁ → β₁) (g₂ : α → β₂ → β₂) (l : List α) (init : β₁)\n (H : ∀ x y, g₂ x (f y) = f (g₁ x y)) : l.foldr g₂ (f init) = f (l.foldr g₁ init)",
"end": [
907,
30
],
"full_name": "List.foldr_hom",
"kind": "commanddeclaration",
"start": [
905,
1
]
},
{
"code": "theorem union_def [BEq α] (l₁ l₂ : List α) : l₁ ∪ l₂ = foldr .insert l₂ l₁",
"end": [
915,
83
],
"full_name": "List.union_def",
"kind": "commanddeclaration",
"start": [
915,
1
]
},
{
"code": "@[simp] theorem nil_union (l : List α) : nil ∪ l = l",
"end": [
917,
88
],
"full_name": "List.nil_union",
"kind": "commanddeclaration",
"start": [
917,
1
]
},
{
"code": "@[simp] theorem cons_union (a : α) (l₁ l₂ : List α) :\n (a :: l₁) ∪ l₂ = (l₁ ∪ l₂).insert a",
"end": [
920,
75
],
"full_name": "List.cons_union",
"kind": "commanddeclaration",
"start": [
919,
1
]
},
{
"code": "@[simp] theorem mem_union_iff [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∪ l₂ ↔ x ∈ l₁ ∨ x ∈ l₂",
"end": [
923,
76
],
"full_name": "List.mem_union_iff",
"kind": "commanddeclaration",
"start": [
922,
1
]
},
{
"code": "theorem inter_def [BEq α] (l₁ l₂ : List α) : l₁ ∩ l₂ = filter (elem · l₂) l₁",
"end": [
929,
85
],
"full_name": "List.inter_def",
"kind": "commanddeclaration",
"start": [
929,
1
]
},
{
"code": "@[simp] theorem mem_inter_iff [BEq α] [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∩ l₂ ↔ x ∈ l₁ ∧ x ∈ l₂",
"end": [
933,
49
],
"full_name": "List.mem_inter_iff",
"kind": "commanddeclaration",
"start": [
931,
1
]
},
{
"code": "@[simp]\ntheorem pair_mem_product {xs : List α} {ys : List β} {x : α} {y : β} :\n (x, y) ∈ product xs ys ↔ x ∈ xs ∧ y ∈ ys",
"end": [
942,
47
],
"full_name": "List.pair_mem_product",
"kind": "commanddeclaration",
"start": [
937,
1
]
},
{
"code": "@[simp]\ntheorem leftpad_length (n : Nat) (a : α) (l : List α) :\n (leftpad n a l).length = max n l.length",
"end": [
951,
75
],
"full_name": "List.leftpad_length",
"kind": "commanddeclaration",
"start": [
946,
1
]
},
{
"code": "theorem leftpad_prefix (n : Nat) (a : α) (l : List α) :\n replicate (n - length l) a <+: leftpad n a l",
"end": [
956,
27
],
"full_name": "List.leftpad_prefix",
"kind": "commanddeclaration",
"start": [
953,
1
]
},
{
"code": "theorem leftpad_suffix (n : Nat) (a : α) (l : List α) : l <:+ (leftpad n a l)",
"end": [
960,
54
],
"full_name": "List.leftpad_suffix",
"kind": "commanddeclaration",
"start": [
958,
1
]
},
{
"code": "@[simp] theorem forIn_eq_forIn [Monad m] : @List.forIn α β m _ = forIn",
"end": [
965,
78
],
"full_name": "List.forIn_eq_forIn",
"kind": "commanddeclaration",
"start": [
965,
1
]
},
{
"code": "theorem forIn_eq_bindList [Monad m] [LawfulMonad m]\n (f : α → β → m (ForInStep β)) (l : List α) (init : β) :\n forIn l init f = ForInStep.run <$> (ForInStep.yield init).bindList f l",
"end": [
971,
30
],
"full_name": "List.forIn_eq_bindList",
"kind": "commanddeclaration",
"start": [
967,
1
]
},
{
"code": "@[simp] theorem forM_append [Monad m] [LawfulMonad m] (l₁ l₂ : List α) (f : α → m PUnit) :\n (l₁ ++ l₂).forM f = (do l₁.forM f; l₂.forM f)",
"end": [
974,
82
],
"full_name": "List.forM_append",
"kind": "commanddeclaration",
"start": [
973,
1
]
},
{
"code": "@[simp] theorem diff_nil (l : List α) : l.diff [] = l",
"end": [
982,
61
],
"full_name": "List.diff_nil",
"kind": "commanddeclaration",
"start": [
982,
1
]
},
{
"code": "@[simp] theorem diff_cons (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.erase a).diff l₂",
"end": [
985,
41
],
"full_name": "List.diff_cons",
"kind": "commanddeclaration",
"start": [
984,
1
]
},
{
"code": "theorem diff_cons_right (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.diff l₂).erase a",
"end": [
988,
71
],
"full_name": "List.diff_cons_right",
"kind": "commanddeclaration",
"start": [
987,
1
]
},
{
"code": "theorem diff_erase (l₁ l₂ : List α) (a : α) : (l₁.diff l₂).erase a = (l₁.erase a).diff l₂",
"end": [
991,
36
],
"full_name": "List.diff_erase",
"kind": "commanddeclaration",
"start": [
990,
1
]
},
{
"code": "@[simp] theorem nil_diff (l : List α) : [].diff l = []",
"end": [
994,
45
],
"full_name": "List.nil_diff",
"kind": "commanddeclaration",
"start": [
993,
1
]
},
{
"code": "theorem cons_diff (a : α) (l₁ l₂ : List α) :\n (a :: l₁).diff l₂ = if a ∈ l₂ then l₁.diff (l₂.erase a) else a :: l₁.diff l₂",
"end": [
1005,
14
],
"full_name": "List.cons_diff",
"kind": "commanddeclaration",
"start": [
996,
1
]
},
{
"code": "theorem cons_diff_of_mem {a : α} {l₂ : List α} (h : a ∈ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = l₁.diff (l₂.erase a)",
"end": [
1008,
76
],
"full_name": "List.cons_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1007,
1
]
},
{
"code": "theorem cons_diff_of_not_mem {a : α} {l₂ : List α} (h : a ∉ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = a :: l₁.diff l₂",
"end": [
1011,
71
],
"full_name": "List.cons_diff_of_not_mem",
"kind": "commanddeclaration",
"start": [
1010,
1
]
},
{
"code": "theorem diff_eq_foldl : ∀ l₁ l₂ : List α, l₁.diff l₂ = foldl List.erase l₁ l₂",
"end": [
1015,
65
],
"full_name": "List.diff_eq_foldl",
"kind": "commanddeclaration",
"start": [
1013,
1
]
},
{
"code": "@[simp] theorem diff_append (l₁ l₂ l₃ : List α) : l₁.diff (l₂ ++ l₃) = (l₁.diff l₂).diff l₃",
"end": [
1018,
42
],
"full_name": "List.diff_append",
"kind": "commanddeclaration",
"start": [
1017,
1
]
},
{
"code": "theorem diff_sublist : ∀ l₁ l₂ : List α, l₁.diff l₂ <+ l₁",
"end": [
1026,
34
],
"full_name": "List.diff_sublist",
"kind": "commanddeclaration",
"start": [
1020,
1
]
},
{
"code": "theorem diff_subset (l₁ l₂ : List α) : l₁.diff l₂ ⊆ l₁",
"end": [
1028,
83
],
"full_name": "List.diff_subset",
"kind": "commanddeclaration",
"start": [
1028,
1
]
},
{
"code": "theorem mem_diff_of_mem {a : α} : ∀ {l₁ l₂ : List α}, a ∈ l₁ → a ∉ l₂ → a ∈ l₁.diff l₂",
"end": [
1034,
94
],
"full_name": "List.mem_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1030,
1
]
},
{
"code": "theorem Sublist.diff_right : ∀ {l₁ l₂ l₃ : List α}, l₁ <+ l₂ → l₁.diff l₃ <+ l₂.diff l₃",
"end": [
1038,
75
],
"full_name": "List.Sublist.diff_right",
"kind": "commanddeclaration",
"start": [
1036,
1
]
},
{
"code": "theorem Sublist.erase_diff_erase_sublist {a : α} :\n ∀ {l₁ l₂ : List α}, l₁ <+ l₂ → (l₂.erase a).diff (l₁.erase a) <+ l₂.diff l₁",
"end": [
1048,
71
],
"full_name": "List.Sublist.erase_diff_erase_sublist",
"kind": "commanddeclaration",
"start": [
1040,
1
]
},
{
"code": "@[simp] theorem prefix_append (l₁ l₂ : List α) : l₁ <+: l₁ ++ l₂",
"end": [
1054,
78
],
"full_name": "List.prefix_append",
"kind": "commanddeclaration",
"start": [
1054,
1
]
},
{
"code": "@[simp] theorem suffix_append (l₁ l₂ : List α) : l₂ <:+ l₁ ++ l₂",
"end": [
1056,
78
],
"full_name": "List.suffix_append",
"kind": "commanddeclaration",
"start": [
1056,
1
]
},
{
"code": "theorem infix_append (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ l₂ ++ l₃",
"end": [
1058,
83
],
"full_name": "List.infix_append",
"kind": "commanddeclaration",
"start": [
1058,
1
]
},
{
"code": "@[simp] theorem infix_append' (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ (l₂ ++ l₃)",
"end": [
1061,
47
],
"full_name": "List.infix_append'",
"kind": "commanddeclaration",
"start": [
1060,
1
]
},
{
"code": "theorem IsPrefix.isInfix : l₁ <+: l₂ → l₁ <:+: l₂",
"end": [
1063,
78
],
"full_name": "List.IsPrefix.isInfix",
"kind": "commanddeclaration",
"start": [
1063,
1
]
},
{
"code": "theorem IsSuffix.isInfix : l₁ <:+ l₂ → l₁ <:+: l₂",
"end": [
1065,
98
],
"full_name": "List.IsSuffix.isInfix",
"kind": "commanddeclaration",
"start": [
1065,
1
]
},
{
"code": "theorem nil_prefix (l : List α) : [] <+: l",
"end": [
1067,
55
],
"full_name": "List.nil_prefix",
"kind": "commanddeclaration",
"start": [
1067,
1
]
},
{
"code": "theorem nil_suffix (l : List α) : [] <:+ l",
"end": [
1069,
64
],
"full_name": "List.nil_suffix",
"kind": "commanddeclaration",
"start": [
1069,
1
]
},
{
"code": "theorem nil_infix (l : List α) : [] <:+: l",
"end": [
1071,
69
],
"full_name": "List.nil_infix",
"kind": "commanddeclaration",
"start": [
1071,
1
]
},
{
"code": "theorem prefix_refl (l : List α) : l <+: l",
"end": [
1073,
65
],
"full_name": "List.prefix_refl",
"kind": "commanddeclaration",
"start": [
1073,
1
]
},
{
"code": "theorem suffix_refl (l : List α) : l <:+ l",
"end": [
1075,
56
],
"full_name": "List.suffix_refl",
"kind": "commanddeclaration",
"start": [
1075,
1
]
},
{
"code": "theorem infix_refl (l : List α) : l <:+: l",
"end": [
1077,
70
],
"full_name": "List.infix_refl",
"kind": "commanddeclaration",
"start": [
1077,
1
]
},
{
"code": "@[simp] theorem suffix_cons (a : α) : ∀ l, l <:+ a :: l",
"end": [
1079,
77
],
"full_name": "List.suffix_cons",
"kind": "commanddeclaration",
"start": [
1079,
1
]
},
{
"code": "theorem infix_cons : l₁ <:+: l₂ → l₁ <:+: a :: l₂",
"end": [
1081,
95
],
"full_name": "List.infix_cons",
"kind": "commanddeclaration",
"start": [
1081,
1
]
},
{
"code": "theorem infix_concat : l₁ <:+: l₂ → l₁ <:+: concat l₂ a",
"end": [
1084,
67
],
"full_name": "List.infix_concat",
"kind": "commanddeclaration",
"start": [
1083,
1
]
},
{
"code": "theorem IsPrefix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₂ → l₂ <+: l₃ → l₁ <+: l₃",
"end": [
1087,
75
],
"full_name": "List.IsPrefix.trans",
"kind": "commanddeclaration",
"start": [
1086,
1
]
},
{
"code": "theorem IsSuffix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+ l₂ → l₂ <:+ l₃ → l₁ <:+ l₃",
"end": [
1090,
68
],
"full_name": "List.IsSuffix.trans",
"kind": "commanddeclaration",
"start": [
1089,
1
]
},
{
"code": "theorem IsInfix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+: l₂ → l₂ <:+: l₃ → l₁ <:+: l₃",
"end": [
1093,
95
],
"full_name": "List.IsInfix.trans",
"kind": "commanddeclaration",
"start": [
1092,
1
]
},
{
"code": "protected theorem IsInfix.sublist : l₁ <:+: l₂ → l₁ <+ l₂",
"end": [
1096,
78
],
"full_name": "List.IsInfix.sublist",
"kind": "commanddeclaration",
"start": [
1095,
1
]
},
{
"code": "protected theorem IsInfix.subset (hl : l₁ <:+: l₂) : l₁ ⊆ l₂",
"end": [
1099,
20
],
"full_name": "List.IsInfix.subset",
"kind": "commanddeclaration",
"start": [
1098,
1
]
},
{
"code": "protected theorem IsPrefix.sublist (h : l₁ <+: l₂) : l₁ <+ l₂",
"end": [
1102,
20
],
"full_name": "List.IsPrefix.sublist",
"kind": "commanddeclaration",
"start": [
1101,
1
]
},
{
"code": "protected theorem IsPrefix.subset (hl : l₁ <+: l₂) : l₁ ⊆ l₂",
"end": [
1105,
20
],
"full_name": "List.IsPrefix.subset",
"kind": "commanddeclaration",
"start": [
1104,
1
]
},
{
"code": "protected theorem IsSuffix.sublist (h : l₁ <:+ l₂) : l₁ <+ l₂",
"end": [
1108,
20
],
"full_name": "List.IsSuffix.sublist",
"kind": "commanddeclaration",
"start": [
1107,
1
]
},
{
"code": "protected theorem IsSuffix.subset (hl : l₁ <:+ l₂) : l₁ ⊆ l₂",
"end": [
1111,
20
],
"full_name": "List.IsSuffix.subset",
"kind": "commanddeclaration",
"start": [
1110,
1
]
},
{
"code": "@[simp] theorem reverse_suffix : reverse l₁ <:+ reverse l₂ ↔ l₁ <+: l₂",
"end": [
1115,
59
],
"full_name": "List.reverse_suffix",
"kind": "commanddeclaration",
"start": [
1113,
1
]
},
{
"code": "@[simp] theorem reverse_prefix : reverse l₁ <+: reverse l₂ ↔ l₁ <:+ l₂",
"end": [
1118,
53
],
"full_name": "List.reverse_prefix",
"kind": "commanddeclaration",
"start": [
1117,
1
]
},
{
"code": "@[simp] theorem reverse_infix : reverse l₁ <:+: reverse l₂ ↔ l₁ <:+: l₂",
"end": [
1124,
61
],
"full_name": "List.reverse_infix",
"kind": "commanddeclaration",
"start": [
1120,
1
]
},
{
"code": "theorem IsInfix.length_le (h : l₁ <:+: l₂) : l₁.length ≤ l₂.length",
"end": [
1127,
22
],
"full_name": "List.IsInfix.length_le",
"kind": "commanddeclaration",
"start": [
1126,
1
]
},
{
"code": "theorem IsPrefix.length_le (h : l₁ <+: l₂) : l₁.length ≤ l₂.length",
"end": [
1130,
22
],
"full_name": "List.IsPrefix.length_le",
"kind": "commanddeclaration",
"start": [
1129,
1
]
},
{
"code": "theorem IsSuffix.length_le (h : l₁ <:+ l₂) : l₁.length ≤ l₂.length",
"end": [
1133,
22
],
"full_name": "List.IsSuffix.length_le",
"kind": "commanddeclaration",
"start": [
1132,
1
]
},
{
"code": "@[simp] theorem infix_nil : l <:+: [] ↔ l = []",
"end": [
1135,
98
],
"full_name": "List.infix_nil",
"kind": "commanddeclaration",
"start": [
1135,
1
]
},
{
"code": "@[simp] theorem prefix_nil : l <+: [] ↔ l = []",
"end": [
1137,
99
],
"full_name": "List.prefix_nil",
"kind": "commanddeclaration",
"start": [
1137,
1
]
},
{
"code": "@[simp] theorem suffix_nil : l <:+ [] ↔ l = []",
"end": [
1139,
99
],
"full_name": "List.suffix_nil",
"kind": "commanddeclaration",
"start": [
1139,
1
]
},
{
"code": "theorem infix_iff_prefix_suffix (l₁ l₂ : List α) : l₁ <:+: l₂ ↔ ∃ t, l₁ <+: t ∧ t <:+ l₂",
"end": [
1143,
60
],
"full_name": "List.infix_iff_prefix_suffix",
"kind": "commanddeclaration",
"start": [
1141,
1
]
},
{
"code": "theorem IsInfix.eq_of_length (h : l₁ <:+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1146,
25
],
"full_name": "List.IsInfix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1145,
1
]
},
{
"code": "theorem IsPrefix.eq_of_length (h : l₁ <+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1149,
25
],
"full_name": "List.IsPrefix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1148,
1
]
},
{
"code": "theorem IsSuffix.eq_of_length (h : l₁ <:+ l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1152,
25
],
"full_name": "List.IsSuffix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1151,
1
]
},
{
"code": "theorem prefix_of_prefix_length_le :\n ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₃ → l₂ <+: l₃ → length l₁ ≤ length l₂ → l₁ <+: l₂",
"end": [
1160,
20
],
"full_name": "List.prefix_of_prefix_length_le",
"kind": "commanddeclaration",
"start": [
1154,
1
]
},
{
"code": "theorem prefix_or_prefix_of_prefix (h₁ : l₁ <+: l₃) (h₂ : l₂ <+: l₃) : l₁ <+: l₂ ∨ l₂ <+: l₁",
"end": [
1164,
39
],
"full_name": "List.prefix_or_prefix_of_prefix",
"kind": "commanddeclaration",
"start": [
1162,
1
]
},
{
"code": "theorem suffix_of_suffix_length_le\n (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) (ll : length l₁ ≤ length l₂) : l₁ <:+ l₂",
"end": [
1169,
90
],
"full_name": "List.suffix_of_suffix_length_le",
"kind": "commanddeclaration",
"start": [
1166,
1
]
},
{
"code": "theorem suffix_or_suffix_of_suffix (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) : l₁ <:+ l₂ ∨ l₂ <:+ l₁",
"end": [
1173,
21
],
"full_name": "List.suffix_or_suffix_of_suffix",
"kind": "commanddeclaration",
"start": [
1171,
1
]
},
{
"code": "theorem suffix_cons_iff : l₁ <:+ a :: l₂ ↔ l₁ = a :: l₂ ∨ l₁ <:+ l₂",
"end": [
1184,
41
],
"full_name": "List.suffix_cons_iff",
"kind": "commanddeclaration",
"start": [
1175,
1
]
},
{
"code": "theorem infix_cons_iff : l₁ <:+: a :: l₂ ↔ l₁ <+: a :: l₂ ∨ l₁ <:+: l₂",
"end": [
1195,
27
],
"full_name": "List.infix_cons_iff",
"kind": "commanddeclaration",
"start": [
1186,
1
]
},
{
"code": "theorem infix_of_mem_join : ∀ {L : List (List α)}, l ∈ L → l <:+: join L",
"end": [
1202,
78
],
"full_name": "List.infix_of_mem_join",
"kind": "commanddeclaration",
"start": [
1197,
1
]
},
{
"code": "theorem prefix_append_right_inj (l) : l ++ l₁ <+: l ++ l₂ ↔ l₁ <+: l₂",
"end": [
1205,
63
],
"full_name": "List.prefix_append_right_inj",
"kind": "commanddeclaration",
"start": [
1204,
1
]
},
{
"code": "@[simp]\ntheorem prefix_cons_inj (a) : a :: l₁ <+: a :: l₂ ↔ l₁ <+: l₂",
"end": [
1209,
30
],
"full_name": "List.prefix_cons_inj",
"kind": "commanddeclaration",
"start": [
1207,
1
]
},
{
"code": "theorem take_prefix (n) (l : List α) : take n l <+: l",
"end": [
1212,
28
],
"full_name": "List.take_prefix",
"kind": "commanddeclaration",
"start": [
1211,
1
]
},
{
"code": "theorem drop_suffix (n) (l : List α) : drop n l <:+ l",
"end": [
1215,
28
],
"full_name": "List.drop_suffix",
"kind": "commanddeclaration",
"start": [
1214,
1
]
},
{
"code": "theorem take_sublist (n) (l : List α) : take n l <+ l",
"end": [
1218,
28
],
"full_name": "List.take_sublist",
"kind": "commanddeclaration",
"start": [
1217,
1
]
},
{
"code": "theorem drop_sublist (n) (l : List α) : drop n l <+ l",
"end": [
1221,
28
],
"full_name": "List.drop_sublist",
"kind": "commanddeclaration",
"start": [
1220,
1
]
},
{
"code": "theorem take_subset (n) (l : List α) : take n l ⊆ l",
"end": [
1224,
28
],
"full_name": "List.take_subset",
"kind": "commanddeclaration",
"start": [
1223,
1
]
},
{
"code": "theorem drop_subset (n) (l : List α) : drop n l ⊆ l",
"end": [
1227,
28
],
"full_name": "List.drop_subset",
"kind": "commanddeclaration",
"start": [
1226,
1
]
},
{
"code": "theorem mem_of_mem_take {l : List α} (h : a ∈ l.take n) : a ∈ l",
"end": [
1230,
20
],
"full_name": "List.mem_of_mem_take",
"kind": "commanddeclaration",
"start": [
1229,
1
]
},
{
"code": "theorem IsPrefix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <+: l₂) :\n l₁.filter p <+: l₂.filter p",
"end": [
1235,
42
],
"full_name": "List.IsPrefix.filter",
"kind": "commanddeclaration",
"start": [
1232,
1
]
},
{
"code": "theorem IsSuffix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+ l₂) :\n l₁.filter p <:+ l₂.filter p",
"end": [
1240,
42
],
"full_name": "List.IsSuffix.filter",
"kind": "commanddeclaration",
"start": [
1237,
1
]
},
{
"code": "theorem IsInfix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+: l₂) :\n l₁.filter p <:+: l₂.filter p",
"end": [
1245,
58
],
"full_name": "List.IsInfix.filter",
"kind": "commanddeclaration",
"start": [
1242,
1
]
},
{
"code": "theorem mem_of_mem_drop {n} {l : List α} (h : a ∈ l.drop n) : a ∈ l",
"end": [
1249,
89
],
"full_name": "List.mem_of_mem_drop",
"kind": "commanddeclaration",
"start": [
1249,
1
]
},
{
"code": "theorem disjoint_take_drop : ∀ {l : List α}, l.Nodup → m ≤ n → Disjoint (l.take m) (l.drop n)",
"end": [
1259,
61
],
"full_name": "List.disjoint_take_drop",
"kind": "commanddeclaration",
"start": [
1251,
1
]
},
{
"code": "@[simp]\ntheorem chain_cons {a b : α} {l : List α} : Chain R a (b :: l) ↔ R a b ∧ Chain R b l",
"end": [
1268,
27
],
"full_name": "List.chain_cons",
"kind": "commanddeclaration",
"start": [
1265,
1
]
},
{
"code": "theorem rel_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : R a b",
"end": [
1271,
21
],
"full_name": "List.rel_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1270,
1
]
},
{
"code": "theorem chain_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : Chain R b l",
"end": [
1274,
21
],
"full_name": "List.chain_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1273,
1
]
},
{
"code": "theorem Chain.imp' {R S : α → α → Prop} (HRS : ∀ ⦃a b⦄, R a b → S a b) {a b : α}\n (Hab : ∀ ⦃c⦄, R a c → S b c) {l : List α} (p : Chain R a l) : Chain S b l",
"end": [
1283,
24
],
"full_name": "List.Chain.imp'",
"kind": "commanddeclaration",
"start": [
1276,
1
]
},
{
"code": "theorem Chain.imp {R S : α → α → Prop} (H : ∀ a b, R a b → S a b) {a : α} {l : List α}\n (p : Chain R a l) : Chain S a l",
"end": [
1287,
17
],
"full_name": "List.Chain.imp",
"kind": "commanddeclaration",
"start": [
1285,
1
]
},
{
"code": "protected theorem Pairwise.chain (p : Pairwise R (a :: l)) : Chain R a l",
"end": [
1295,
36
],
"full_name": "List.Pairwise.chain",
"kind": "commanddeclaration",
"start": [
1289,
1
]
},
{
"code": "theorem range'_succ (s n step) : range' s (n + 1) step = s :: range' (s + step) n step",
"end": [
1300,
44
],
"full_name": "List.range'_succ",
"kind": "commanddeclaration",
"start": [
1299,
1
]
},
{
"code": "@[simp] theorem length_range' (s step) : ∀ n : Nat, length (range' s n step) = n",
"end": [
1304,
49
],
"full_name": "List.length_range'",
"kind": "commanddeclaration",
"start": [
1302,
1
]
},
{
"code": "@[simp] theorem range'_eq_nil : range' s n step = [] ↔ n = 0",
"end": [
1307,
39
],
"full_name": "List.range'_eq_nil",
"kind": "commanddeclaration",
"start": [
1306,
1
]
},
{
"code": "theorem mem_range' : ∀{n}, m ∈ range' s n step ↔ ∃ i < n, m = s + step * i",
"end": [
1314,
71
],
"full_name": "List.mem_range'",
"kind": "commanddeclaration",
"start": [
1309,
1
]
},
{
"code": "@[simp] theorem mem_range'_1 : m ∈ range' s n ↔ s ≤ m ∧ m < s + n",
"end": [
1319,
93
],
"full_name": "List.mem_range'_1",
"kind": "commanddeclaration",
"start": [
1316,
1
]
},
{
"code": "@[simp]\ntheorem map_add_range' (a) : ∀ s n step, map (a + ·) (range' s n step) = range' (a + s) n step",
"end": [
1324,
90
],
"full_name": "List.map_add_range'",
"kind": "commanddeclaration",
"start": [
1321,
1
]
},
{
"code": "theorem map_sub_range' (a s n : Nat) (h : a ≤ s) :\n map (· - a) (range' s n step) = range' (s - a) n step",
"end": [
1330,
42
],
"full_name": "List.map_sub_range'",
"kind": "commanddeclaration",
"start": [
1326,
1
]
},
{
"code": "theorem chain_succ_range' : ∀ s n step : Nat,\n Chain (fun a b => b = a + step) s (range' (s + step) n step)",
"end": [
1335,
69
],
"full_name": "List.chain_succ_range'",
"kind": "commanddeclaration",
"start": [
1332,
1
]
},
{
"code": "theorem chain_lt_range' (s n : Nat) {step} (h : 0 < step) :\n Chain (· < ·) s (range' (s + step) n step)",
"end": [
1339,
83
],
"full_name": "List.chain_lt_range'",
"kind": "commanddeclaration",
"start": [
1337,
1
]
},
{
"code": "theorem range'_append : ∀ s m n step : Nat,\n range' s m step ++ range' (s + step * m) n step = range' s (n + m) step",
"end": [
1346,
46
],
"full_name": "List.range'_append",
"kind": "commanddeclaration",
"start": [
1341,
1
]
},
{
"code": "@[simp] theorem range'_append_1 (s m n : Nat) :\n range' s m ++ range' (s + m) n = range' s (n + m)",
"end": [
1349,
94
],
"full_name": "List.range'_append_1",
"kind": "commanddeclaration",
"start": [
1348,
1
]
},
{
"code": "theorem range'_sublist_right {s m n : Nat} : range' s m step <+ range' s n step ↔ m ≤ n",
"end": [
1353,
88
],
"full_name": "List.range'_sublist_right",
"kind": "commanddeclaration",
"start": [
1351,
1
]
},
{
"code": "theorem range'_subset_right {s m n : Nat} (step0 : 0 < step) :\n range' s m step ⊆ range' s n step ↔ m ≤ n",
"end": [
1359,
82
],
"full_name": "List.range'_subset_right",
"kind": "commanddeclaration",
"start": [
1355,
1
]
},
{
"code": "theorem range'_subset_right_1 {s m n : Nat} : range' s m ⊆ range' s n ↔ m ≤ n",
"end": [
1362,
34
],
"full_name": "List.range'_subset_right_1",
"kind": "commanddeclaration",
"start": [
1361,
1
]
},
{
"code": "theorem getElem?_range' (s step) :\n ∀ {m n : Nat}, m < n → (range' s n step)[m]? = some (s + step * m)",
"end": [
1370,
55
],
"full_name": "List.getElem?_range'",
"kind": "commanddeclaration",
"start": [
1364,
1
]
},
{
"code": "@[simp] theorem getElem_range' {n m step} (i) (H : i < (range' n m step).length) :\n (range' n m step)[i] = n + step * i",
"end": [
1374,
70
],
"full_name": "List.getElem_range'",
"kind": "commanddeclaration",
"start": [
1372,
1
]
},
{
"code": "@[deprecated getElem?_range' (since := \"2024-06-12\")]\ntheorem get?_range' (s step) {m n : Nat} (h : m < n) :\n get? (range' s n step) m = some (s + step * m)",
"end": [
1379,
11
],
"full_name": "List.get?_range'",
"kind": "commanddeclaration",
"start": [
1376,
1
]
},
{
"code": "@[deprecated getElem_range' (since := \"2024-06-12\")]\ntheorem get_range' {n m step} (i) (H : i < (range' n m step).length) :\n get (range' n m step) ⟨i, H⟩ = n + step * i",
"end": [
1384,
7
],
"full_name": "List.get_range'",
"kind": "commanddeclaration",
"start": [
1381,
1
]
},
{
"code": "theorem range'_concat (s n : Nat) : range' s (n + 1) step = range' s n step ++ [s + step * n]",
"end": [
1387,
63
],
"full_name": "List.range'_concat",
"kind": "commanddeclaration",
"start": [
1386,
1
]
},
{
"code": "theorem range'_1_concat (s n : Nat) : range' s (n + 1) = range' s n ++ [s + n]",
"end": [
1390,
23
],
"full_name": "List.range'_1_concat",
"kind": "commanddeclaration",
"start": [
1389,
1
]
},
{
"code": "theorem range_loop_range' : ∀ s n : Nat, range.loop s (range' s n) = range' 0 (n + s)",
"end": [
1394,
101
],
"full_name": "List.range_loop_range'",
"kind": "commanddeclaration",
"start": [
1392,
1
]
},
{
"code": "theorem range_eq_range' (n : Nat) : range n = range' 0 n",
"end": [
1397,
56
],
"full_name": "List.range_eq_range'",
"kind": "commanddeclaration",
"start": [
1396,
1
]
},
{
"code": "theorem range_succ_eq_map (n : Nat) : range (n + 1) = 0 :: map succ (range n)",
"end": [
1401,
30
],
"full_name": "List.range_succ_eq_map",
"kind": "commanddeclaration",
"start": [
1399,
1
]
},
{
"code": "theorem range'_eq_map_range (s n : Nat) : range' s n = map (s + ·) (range n)",
"end": [
1404,
44
],
"full_name": "List.range'_eq_map_range",
"kind": "commanddeclaration",
"start": [
1403,
1
]
},
{
"code": "@[simp] theorem length_range (n : Nat) : length (range n) = n",
"end": [
1407,
45
],
"full_name": "List.length_range",
"kind": "commanddeclaration",
"start": [
1406,
1
]
},
{
"code": "@[simp] theorem range_eq_nil {n : Nat} : range n = [] ↔ n = 0",
"end": [
1410,
38
],
"full_name": "List.range_eq_nil",
"kind": "commanddeclaration",
"start": [
1409,
1
]
},
{
"code": "@[simp]\ntheorem range_sublist {m n : Nat} : range m <+ range n ↔ m ≤ n",
"end": [
1414,
52
],
"full_name": "List.range_sublist",
"kind": "commanddeclaration",
"start": [
1412,
1
]
},
{
"code": "@[simp]\ntheorem range_subset {m n : Nat} : range m ⊆ range n ↔ m ≤ n",
"end": [
1418,
65
],
"full_name": "List.range_subset",
"kind": "commanddeclaration",
"start": [
1416,
1
]
},
{
"code": "@[simp]\ntheorem mem_range {m n : Nat} : m ∈ range n ↔ m < n",
"end": [
1422,
81
],
"full_name": "List.mem_range",
"kind": "commanddeclaration",
"start": [
1420,
1
]
},
{
"code": "theorem not_mem_range_self {n : Nat} : n ∉ range n",
"end": [
1424,
62
],
"full_name": "List.not_mem_range_self",
"kind": "commanddeclaration",
"start": [
1424,
1
]
},
{
"code": "theorem self_mem_range_succ (n : Nat) : n ∈ range (n + 1)",
"end": [
1426,
69
],
"full_name": "List.self_mem_range_succ",
"kind": "commanddeclaration",
"start": [
1426,
1
]
},
{
"code": "theorem getElem?_range {m n : Nat} (h : m < n) : (range n)[m]? = some m",
"end": [
1429,
48
],
"full_name": "List.getElem?_range",
"kind": "commanddeclaration",
"start": [
1428,
1
]
},
{
"code": "@[simp] theorem getElem_range {n : Nat} (m) (h : m < (range n).length) : (range n)[m] = m",
"end": [
1432,
25
],
"full_name": "List.getElem_range",
"kind": "commanddeclaration",
"start": [
1431,
1
]
},
{
"code": "@[deprecated getElem?_range (since := \"2024-06-12\")]\ntheorem get?_range {m n : Nat} (h : m < n) : get? (range n) m = some m",
"end": [
1436,
27
],
"full_name": "List.get?_range",
"kind": "commanddeclaration",
"start": [
1434,
1
]
},
{
"code": "@[deprecated getElem_range (since := \"2024-06-12\")]\ntheorem get_range {n} (i) (H : i < (range n).length) : get (range n) ⟨i, H⟩ = i",
"end": [
1440,
7
],
"full_name": "List.get_range",
"kind": "commanddeclaration",
"start": [
1438,
1
]
},
{
"code": "theorem range_succ (n : Nat) : range (succ n) = range n ++ [n]",
"end": [
1443,
61
],
"full_name": "List.range_succ",
"kind": "commanddeclaration",
"start": [
1442,
1
]
},
{
"code": "theorem range_add (a b : Nat) : range (a + b) = range a ++ (range b).map (a + ·)",
"end": [
1447,
75
],
"full_name": "List.range_add",
"kind": "commanddeclaration",
"start": [
1445,
1
]
},
{
"code": "theorem iota_eq_reverse_range' : ∀ n : Nat, iota n = reverse (range' 1 n)",
"end": [
1451,
99
],
"full_name": "List.iota_eq_reverse_range'",
"kind": "commanddeclaration",
"start": [
1449,
1
]
},
{
"code": "@[simp] theorem length_iota (n : Nat) : length (iota n) = n",
"end": [
1453,
96
],
"full_name": "List.length_iota",
"kind": "commanddeclaration",
"start": [
1453,
1
]
},
{
"code": "@[simp]\ntheorem mem_iota {m n : Nat} : m ∈ iota n ↔ 1 ≤ m ∧ m ≤ n",
"end": [
1457,
59
],
"full_name": "List.mem_iota",
"kind": "commanddeclaration",
"start": [
1455,
1
]
},
{
"code": "theorem reverse_range' : ∀ s n : Nat, reverse (range' s n) = map (s + n - 1 - ·) (range n)",
"end": [
1464,
59
],
"full_name": "List.reverse_range'",
"kind": "commanddeclaration",
"start": [
1459,
1
]
},
{
"code": "@[simp] theorem enumFrom_map_fst (n) :\n ∀ (l : List α), map Prod.fst (enumFrom n l) = range' n l.length",
"end": [
1472,
55
],
"full_name": "List.enumFrom_map_fst",
"kind": "commanddeclaration",
"start": [
1469,
1
]
},
{
"code": "@[simp] theorem enum_map_fst (l : List α) : map Prod.fst (enum l) = range l.length",
"end": [
1475,
54
],
"full_name": "List.enum_map_fst",
"kind": "commanddeclaration",
"start": [
1474,
1
]
},
{
"code": "theorem foldrIdx_start :\n (xs : List α).foldrIdx f i s = (xs : List α).foldrIdx (fun i => f (i + s)) i",
"end": [
1487,
43
],
"full_name": "List.foldrIdx_start",
"kind": "commanddeclaration",
"start": [
1479,
1
]
},
{
"code": "@[simp] theorem foldrIdx_cons :\n (x :: xs : List α).foldrIdx f i s = f s x (foldrIdx f i xs (s + 1))",
"end": [
1490,
79
],
"full_name": "List.foldrIdx_cons",
"kind": "commanddeclaration",
"start": [
1489,
1
]
},
{
"code": "theorem findIdxs_cons_aux (p : α → Bool) :\n foldrIdx (fun i a is => if p a = true then (i + 1) :: is else is) [] xs s =\n map (· + 1) (foldrIdx (fun i a is => if p a = true then i :: is else is) [] xs s)",
"end": [
1499,
24
],
"full_name": "List.findIdxs_cons_aux",
"kind": "commanddeclaration",
"start": [
1492,
1
]
},
{
"code": "theorem findIdxs_cons :\n (x :: xs : List α).findIdxs p =\n bif p x then 0 :: (xs.findIdxs p).map (· + 1) else (xs.findIdxs p).map (· + 1)",
"end": [
1508,
28
],
"full_name": "List.findIdxs_cons",
"kind": "commanddeclaration",
"start": [
1501,
1
]
},
{
"code": "@[simp] theorem indexesOf_nil [BEq α] : ([] : List α).indexesOf x = []",
"end": [
1510,
78
],
"full_name": "List.indexesOf_nil",
"kind": "commanddeclaration",
"start": [
1510,
1
]
},
{
"code": "theorem indexesOf_cons [BEq α] : (x :: xs : List α).indexesOf y =\n bif x == y then 0 :: (xs.indexesOf y).map (· + 1) else (xs.indexesOf y).map (· + 1)",
"end": [
1514,
34
],
"full_name": "List.indexesOf_cons",
"kind": "commanddeclaration",
"start": [
1512,
1
]
},
{
"code": "@[simp] theorem indexOf_nil [BEq α] : ([] : List α).indexOf x = 0",
"end": [
1516,
73
],
"full_name": "List.indexOf_nil",
"kind": "commanddeclaration",
"start": [
1516,
1
]
},
{
"code": "theorem indexOf_cons [BEq α] :\n (x :: xs : List α).indexOf y = bif x == y then 0 else xs.indexOf y + 1",
"end": [
1521,
22
],
"full_name": "List.indexOf_cons",
"kind": "commanddeclaration",
"start": [
1518,
1
]
},
{
"code": "theorem indexOf_mem_indexesOf [BEq α] [LawfulBEq α] {xs : List α} (m : x ∈ xs) :\n xs.indexOf x ∈ xs.indexesOf x",
"end": [
1535,
14
],
"full_name": "List.indexOf_mem_indexesOf",
"kind": "commanddeclaration",
"start": [
1523,
1
]
},
{
"code": "theorem merge_loop_nil_left (s : α → α → Bool) (r t) :\n merge.loop s [] r t = reverseAux t r",
"end": [
1539,
18
],
"full_name": "List.merge_loop_nil_left",
"kind": "commanddeclaration",
"start": [
1537,
1
]
},
{
"code": "theorem merge_loop_nil_right (s : α → α → Bool) (l t) :\n merge.loop s l [] t = reverseAux t l",
"end": [
1543,
52
],
"full_name": "List.merge_loop_nil_right",
"kind": "commanddeclaration",
"start": [
1541,
1
]
},
{
"code": "theorem merge_loop (s : α → α → Bool) (l r t) :\n merge.loop s l r t = reverseAux t (merge s l r)",
"end": [
1567,
64
],
"full_name": "List.merge_loop",
"kind": "commanddeclaration",
"start": [
1545,
1
]
},
{
"code": "@[simp] theorem merge_nil (s : α → α → Bool) (l) : merge s l [] = l",
"end": [
1569,
95
],
"full_name": "List.merge_nil",
"kind": "commanddeclaration",
"start": [
1569,
1
]
},
{
"code": "@[simp] theorem nil_merge (s : α → α → Bool) (r) : merge s [] r = r",
"end": [
1571,
94
],
"full_name": "List.nil_merge",
"kind": "commanddeclaration",
"start": [
1571,
1
]
},
{
"code": "theorem cons_merge_cons (s : α → α → Bool) (a b l r) :\n merge s (a::l) (b::r) = if s a b then a :: merge s l (b::r) else b :: merge s (a::l) r",
"end": [
1575,
87
],
"full_name": "List.cons_merge_cons",
"kind": "commanddeclaration",
"start": [
1573,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_pos (s : α → α → Bool) (l r) (h : s a b) :\n merge s (a::l) (b::r) = a :: merge s l (b::r)",
"end": [
1579,
33
],
"full_name": "List.cons_merge_cons_pos",
"kind": "commanddeclaration",
"start": [
1577,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_neg (s : α → α → Bool) (l r) (h : ¬ s a b) :\n merge s (a::l) (b::r) = b :: merge s (a::l) r",
"end": [
1583,
33
],
"full_name": "List.cons_merge_cons_neg",
"kind": "commanddeclaration",
"start": [
1581,
1
]
},
{
"code": "@[simp] theorem length_merge (s : α → α → Bool) (l r) :\n (merge s l r).length = l.length + r.length",
"end": [
1594,
43
],
"full_name": "List.length_merge",
"kind": "commanddeclaration",
"start": [
1585,
1
]
},
{
"code": "@[simp]\ntheorem mem_merge {s : α → α → Bool} : x ∈ merge s l r ↔ x ∈ l ∨ x ∈ r",
"end": [
1605,
68
],
"full_name": "List.mem_merge",
"kind": "commanddeclaration",
"start": [
1596,
1
]
},
{
"code": "theorem mem_merge_left (s : α → α → Bool) (h : x ∈ l) : x ∈ merge s l r",
"end": [
1608,
24
],
"full_name": "List.mem_merge_left",
"kind": "commanddeclaration",
"start": [
1607,
1
]
},
{
"code": "theorem mem_merge_right (s : α → α → Bool) (h : x ∈ r) : x ∈ merge s l r",
"end": [
1611,
24
],
"full_name": "List.mem_merge_right",
"kind": "commanddeclaration",
"start": [
1610,
1
]
}
] | 327 | List.mem_merge | [
[
1597,
75
],
[
1605,
68
]
] | 0 | 9 | match l, r with
| l, [] => simp
| [], l => simp
| a::l, b::r =>
rw [cons_merge_cons]
split
· simp [mem_merge (l := l) (r := b::r), or_assoc]
· simp [mem_merge (l := a::l) (r := r), or_assoc, or_left_comm] | α : Type u_1
x : α
l r : List α
s : α → α → Bool
⊢ x ∈ merge s l r ↔ x ∈ l ∨ x ∈ r | no goals |
.lake/packages/batteries/Batteries/Data/List/Lemmas.lean | [
[
"Batteries.Tactic.Alias",
".lake/packages/batteries/Batteries/Tactic/Alias.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
],
[
"Batteries.Control.ForInStep.Lemmas",
".lake/packages/batteries/Batteries/Control/ForInStep/Lemmas.lean"
],
[
"Batteries.Tactic.Init",
".lake/packages/batteries/Batteries/Tactic/Init.lean"
],
[
"Batteries.Data.List.Basic",
".lake/packages/batteries/Batteries/Data/List/Basic.lean"
]
] | [
{
"code": "@[simp] theorem mem_toArray {a : α} {l : List α} : a ∈ l.toArray ↔ a ∈ l",
"end": [
18,
23
],
"full_name": "List.mem_toArray",
"kind": "commanddeclaration",
"start": [
17,
1
]
},
{
"code": "@[simp]\ntheorem drop_one : ∀ l : List α, drop 1 l = tail l",
"end": [
24,
23
],
"full_name": "List.drop_one",
"kind": "commanddeclaration",
"start": [
22,
1
]
},
{
"code": "theorem zipWith_distrib_tail : (zipWith f l l').tail = zipWith f l.tail l'.tail",
"end": [
29,
47
],
"full_name": "List.zipWith_distrib_tail",
"kind": "commanddeclaration",
"start": [
28,
1
]
},
{
"code": "theorem subset_def {l₁ l₂ : List α} : l₁ ⊆ l₂ ↔ ∀ {a : α}, a ∈ l₁ → a ∈ l₂",
"end": [
33,
83
],
"full_name": "List.subset_def",
"kind": "commanddeclaration",
"start": [
33,
1
]
},
{
"code": "@[simp] theorem nil_subset (l : List α) : [] ⊆ l",
"end": [
35,
58
],
"full_name": "List.nil_subset",
"kind": "commanddeclaration",
"start": [
35,
1
]
},
{
"code": "@[simp] theorem Subset.refl (l : List α) : l ⊆ l",
"end": [
37,
65
],
"full_name": "List.Subset.refl",
"kind": "commanddeclaration",
"start": [
37,
1
]
},
{
"code": "theorem Subset.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ ⊆ l₂) (h₂ : l₂ ⊆ l₃) : l₁ ⊆ l₃",
"end": [
40,
23
],
"full_name": "List.Subset.trans",
"kind": "commanddeclaration",
"start": [
39,
1
]
},
{
"code": "@[simp] theorem subset_cons (a : α) (l : List α) : l ⊆ a :: l",
"end": [
48,
85
],
"full_name": "List.subset_cons",
"kind": "commanddeclaration",
"start": [
48,
1
]
},
{
"code": "theorem subset_of_cons_subset {a : α} {l₁ l₂ : List α} : a :: l₁ ⊆ l₂ → l₁ ⊆ l₂",
"end": [
51,
39
],
"full_name": "List.subset_of_cons_subset",
"kind": "commanddeclaration",
"start": [
50,
1
]
},
{
"code": "theorem subset_cons_of_subset (a : α) {l₁ l₂ : List α} : l₁ ⊆ l₂ → l₁ ⊆ a :: l₂",
"end": [
54,
29
],
"full_name": "List.subset_cons_of_subset",
"kind": "commanddeclaration",
"start": [
53,
1
]
},
{
"code": "theorem cons_subset_cons {l₁ l₂ : List α} (a : α) (s : l₁ ⊆ l₂) : a :: l₁ ⊆ a :: l₂",
"end": [
57,
62
],
"full_name": "List.cons_subset_cons",
"kind": "commanddeclaration",
"start": [
56,
1
]
},
{
"code": "@[simp] theorem subset_append_left (l₁ l₂ : List α) : l₁ ⊆ l₁ ++ l₂",
"end": [
59,
98
],
"full_name": "List.subset_append_left",
"kind": "commanddeclaration",
"start": [
59,
1
]
},
{
"code": "@[simp] theorem subset_append_right (l₁ l₂ : List α) : l₂ ⊆ l₁ ++ l₂",
"end": [
61,
100
],
"full_name": "List.subset_append_right",
"kind": "commanddeclaration",
"start": [
61,
1
]
},
{
"code": "theorem subset_append_of_subset_left (l₂ : List α) : l ⊆ l₁ → l ⊆ l₁ ++ l₂",
"end": [
64,
50
],
"full_name": "List.subset_append_of_subset_left",
"kind": "commanddeclaration",
"start": [
63,
1
]
},
{
"code": "theorem subset_append_of_subset_right (l₁ : List α) : l ⊆ l₂ → l ⊆ l₁ ++ l₂",
"end": [
67,
51
],
"full_name": "List.subset_append_of_subset_right",
"kind": "commanddeclaration",
"start": [
66,
1
]
},
{
"code": "@[simp] theorem cons_subset : a :: l ⊆ m ↔ a ∈ m ∧ l ⊆ m",
"end": [
70,
66
],
"full_name": "List.cons_subset",
"kind": "commanddeclaration",
"start": [
69,
1
]
},
{
"code": "@[simp] theorem append_subset {l₁ l₂ l : List α} :\n l₁ ++ l₂ ⊆ l ↔ l₁ ⊆ l ∧ l₂ ⊆ l",
"end": [
73,
79
],
"full_name": "List.append_subset",
"kind": "commanddeclaration",
"start": [
72,
1
]
},
{
"code": "theorem subset_nil {l : List α} : l ⊆ [] ↔ l = []",
"end": [
76,
99
],
"full_name": "List.subset_nil",
"kind": "commanddeclaration",
"start": [
75,
1
]
},
{
"code": "theorem map_subset {l₁ l₂ : List α} (f : α → β) (H : l₁ ⊆ l₂) : map f l₁ ⊆ map f l₂",
"end": [
79,
72
],
"full_name": "List.map_subset",
"kind": "commanddeclaration",
"start": [
78,
1
]
},
{
"code": "@[simp] theorem nil_sublist : ∀ l : List α, [] <+ l",
"end": [
85,
37
],
"full_name": "List.nil_sublist",
"kind": "commanddeclaration",
"start": [
83,
1
]
},
{
"code": "@[simp] theorem Sublist.refl : ∀ l : List α, l <+ l",
"end": [
89,
39
],
"full_name": "List.Sublist.refl",
"kind": "commanddeclaration",
"start": [
87,
1
]
},
{
"code": "theorem Sublist.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ <+ l₂) (h₂ : l₂ <+ l₃) : l₁ <+ l₃",
"end": [
100,
53
],
"full_name": "List.Sublist.trans",
"kind": "commanddeclaration",
"start": [
91,
1
]
},
{
"code": "@[simp] theorem sublist_cons (a : α) (l : List α) : l <+ a :: l",
"end": [
104,
91
],
"full_name": "List.sublist_cons",
"kind": "commanddeclaration",
"start": [
104,
1
]
},
{
"code": "theorem sublist_of_cons_sublist : a :: l₁ <+ l₂ → l₁ <+ l₂",
"end": [
107,
28
],
"full_name": "List.sublist_of_cons_sublist",
"kind": "commanddeclaration",
"start": [
106,
1
]
},
{
"code": "@[simp] theorem sublist_append_left : ∀ l₁ l₂ : List α, l₁ <+ l₁ ++ l₂",
"end": [
111,
55
],
"full_name": "List.sublist_append_left",
"kind": "commanddeclaration",
"start": [
109,
1
]
},
{
"code": "@[simp] theorem sublist_append_right : ∀ l₁ l₂ : List α, l₂ <+ l₁ ++ l₂",
"end": [
115,
55
],
"full_name": "List.sublist_append_right",
"kind": "commanddeclaration",
"start": [
113,
1
]
},
{
"code": "theorem sublist_append_of_sublist_left (s : l <+ l₁) : l <+ l₁ ++ l₂",
"end": [
118,
36
],
"full_name": "List.sublist_append_of_sublist_left",
"kind": "commanddeclaration",
"start": [
117,
1
]
},
{
"code": "theorem sublist_append_of_sublist_right (s : l <+ l₂) : l <+ l₁ ++ l₂",
"end": [
121,
37
],
"full_name": "List.sublist_append_of_sublist_right",
"kind": "commanddeclaration",
"start": [
120,
1
]
},
{
"code": "@[simp]\ntheorem cons_sublist_cons : a :: l₁ <+ a :: l₂ ↔ l₁ <+ l₂",
"end": [
125,
77
],
"full_name": "List.cons_sublist_cons",
"kind": "commanddeclaration",
"start": [
123,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_left : ∀ l, l ++ l₁ <+ l ++ l₂ ↔ l₁ <+ l₂",
"end": [
129,
69
],
"full_name": "List.append_sublist_append_left",
"kind": "commanddeclaration",
"start": [
127,
1
]
},
{
"code": "theorem Sublist.append_left : l₁ <+ l₂ → ∀ l, l ++ l₁ <+ l ++ l₂",
"end": [
132,
50
],
"full_name": "List.Sublist.append_left",
"kind": "commanddeclaration",
"start": [
131,
1
]
},
{
"code": "theorem Sublist.append_right : l₁ <+ l₂ → ∀ l, l₁ ++ l <+ l₂ ++ l",
"end": [
137,
48
],
"full_name": "List.Sublist.append_right",
"kind": "commanddeclaration",
"start": [
134,
1
]
},
{
"code": "theorem sublist_or_mem_of_sublist (h : l <+ l₁ ++ a :: l₂) : l <+ l₁ ++ l₂ ∨ a ∈ l",
"end": [
147,
65
],
"full_name": "List.sublist_or_mem_of_sublist",
"kind": "commanddeclaration",
"start": [
139,
1
]
},
{
"code": "theorem Sublist.reverse : l₁ <+ l₂ → l₁.reverse <+ l₂.reverse",
"end": [
152,
85
],
"full_name": "List.Sublist.reverse",
"kind": "commanddeclaration",
"start": [
149,
1
]
},
{
"code": "@[simp] theorem reverse_sublist : l₁.reverse <+ l₂.reverse ↔ l₁ <+ l₂",
"end": [
155,
82
],
"full_name": "List.reverse_sublist",
"kind": "commanddeclaration",
"start": [
154,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_right (l) : l₁ ++ l <+ l₂ ++ l ↔ l₁ <+ l₂",
"end": [
162,
30
],
"full_name": "List.append_sublist_append_right",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "theorem Sublist.append (hl : l₁ <+ l₂) (hr : r₁ <+ r₂) : l₁ ++ r₁ <+ l₂ ++ r₂",
"end": [
165,
66
],
"full_name": "List.Sublist.append",
"kind": "commanddeclaration",
"start": [
164,
1
]
},
{
"code": "theorem Sublist.subset : l₁ <+ l₂ → l₁ ⊆ l₂",
"end": [
171,
53
],
"full_name": "List.Sublist.subset",
"kind": "commanddeclaration",
"start": [
167,
1
]
},
{
"code": "theorem Sublist.length_le : l₁ <+ l₂ → length l₁ ≤ length l₂",
"end": [
185,
45
],
"full_name": "List.Sublist.length_le",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "@[simp] theorem sublist_nil {l : List α} : l <+ [] ↔ l = []",
"end": [
188,
64
],
"full_name": "List.sublist_nil",
"kind": "commanddeclaration",
"start": [
187,
1
]
},
{
"code": "theorem Sublist.eq_of_length : l₁ <+ l₂ → length l₁ = length l₂ → l₁ = l₂",
"end": [
193,
57
],
"full_name": "List.Sublist.eq_of_length",
"kind": "commanddeclaration",
"start": [
190,
1
]
},
{
"code": "theorem Sublist.eq_of_length_le (s : l₁ <+ l₂) (h : length l₂ ≤ length l₁) : l₁ = l₂",
"end": [
196,
50
],
"full_name": "List.Sublist.eq_of_length_le",
"kind": "commanddeclaration",
"start": [
195,
1
]
},
{
"code": "@[simp] theorem singleton_sublist {a : α} {l} : [a] <+ l ↔ a ∈ l",
"end": [
201,
66
],
"full_name": "List.singleton_sublist",
"kind": "commanddeclaration",
"start": [
198,
1
]
},
{
"code": "@[simp] theorem replicate_sublist_replicate {m n} (a : α) :\n replicate m a <+ replicate n a ↔ m ≤ n",
"end": [
209,
48
],
"full_name": "List.replicate_sublist_replicate",
"kind": "commanddeclaration",
"start": [
203,
1
]
},
{
"code": "theorem isSublist_iff_sublist [BEq α] [LawfulBEq α] {l₁ l₂ : List α} :\n l₁.isSublist l₂ ↔ l₁ <+ l₂",
"end": [
228,
24
],
"full_name": "List.isSublist_iff_sublist",
"kind": "commanddeclaration",
"start": [
211,
1
]
},
{
"code": "theorem tail_eq_tailD (l) : @tail α l = tailD l []",
"end": [
235,
73
],
"full_name": "List.tail_eq_tailD",
"kind": "commanddeclaration",
"start": [
235,
1
]
},
{
"code": "theorem tail_eq_tail? (l) : @tail α l = (tail? l).getD []",
"end": [
237,
85
],
"full_name": "List.tail_eq_tail?",
"kind": "commanddeclaration",
"start": [
237,
1
]
},
{
"code": "@[simp] theorem next?_nil : @next? α [] = none",
"end": [
241,
54
],
"full_name": "List.next?_nil",
"kind": "commanddeclaration",
"start": [
241,
1
]
},
{
"code": "@[simp] theorem next?_cons (a l) : @next? α (a :: l) = some (a, l)",
"end": [
242,
74
],
"full_name": "List.next?_cons",
"kind": "commanddeclaration",
"start": [
242,
1
]
},
{
"code": "theorem getElem_eq_iff {l : List α} {n : Nat} {h : n < l.length} : l[n] = x ↔ l[n]? = some x",
"end": [
248,
40
],
"full_name": "List.getElem_eq_iff",
"kind": "commanddeclaration",
"start": [
246,
1
]
},
{
"code": "@[deprecated getElem_eq_iff (since := \"2024-06-12\")]\ntheorem get_eq_iff : List.get l n = x ↔ l.get? n.1 = some x",
"end": [
252,
7
],
"full_name": "List.get_eq_iff",
"kind": "commanddeclaration",
"start": [
250,
1
]
},
{
"code": "theorem getElem?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs[i]? = xs[j]?) : i = j",
"end": [
273,
39
],
"full_name": "List.getElem?_inj",
"kind": "commanddeclaration",
"start": [
254,
1
]
},
{
"code": "@[deprecated getElem?_inj (since := \"2024-06-12\")]\ntheorem get?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs.get? i = xs.get? j) : i = j",
"end": [
279,
11
],
"full_name": "List.get?_inj",
"kind": "commanddeclaration",
"start": [
275,
1
]
},
{
"code": "theorem tail_drop (l : List α) (n : Nat) : (l.drop n).tail = l.drop (n + 1)",
"end": [
289,
16
],
"full_name": "List.tail_drop",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "@[simp] theorem modifyNth_nil (f : α → α) (n) : [].modifyNth f n = []",
"end": [
293,
92
],
"full_name": "List.modifyNth_nil",
"kind": "commanddeclaration",
"start": [
293,
1
]
},
{
"code": "@[simp] theorem modifyNth_zero_cons (f : α → α) (a : α) (l : List α) :\n (a :: l).modifyNth f 0 = f a :: l",
"end": [
296,
45
],
"full_name": "List.modifyNth_zero_cons",
"kind": "commanddeclaration",
"start": [
295,
1
]
},
{
"code": "@[simp] theorem modifyNth_succ_cons (f : α → α) (a : α) (l : List α) (n) :\n (a :: l).modifyNth f (n + 1) = a :: l.modifyNth f n",
"end": [
299,
66
],
"full_name": "List.modifyNth_succ_cons",
"kind": "commanddeclaration",
"start": [
298,
1
]
},
{
"code": "theorem modifyNthTail_id : ∀ n (l : List α), l.modifyNthTail id n = l",
"end": [
304,
60
],
"full_name": "List.modifyNthTail_id",
"kind": "commanddeclaration",
"start": [
301,
1
]
},
{
"code": "theorem eraseIdx_eq_modifyNthTail : ∀ n (l : List α), eraseIdx l n = modifyNthTail tail n l",
"end": [
309,
69
],
"full_name": "List.eraseIdx_eq_modifyNthTail",
"kind": "commanddeclaration",
"start": [
306,
1
]
},
{
"code": "theorem getElem?_modifyNth (f : α → α) :\n ∀ n (l : List α) m, (modifyNth f n l)[m]? = (fun a => if n = m then f a else a) <$> l[m]?",
"end": [
322,
79
],
"full_name": "List.getElem?_modifyNth",
"kind": "commanddeclaration",
"start": [
313,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth (since := \"2024-06-12\")]\ntheorem get?_modifyNth (f : α → α) (n) (l : List α) (m) :\n (modifyNth f n l).get? m = (fun a => if n = m then f a else a) <$> l.get? m",
"end": [
327,
28
],
"full_name": "List.get?_modifyNth",
"kind": "commanddeclaration",
"start": [
324,
1
]
},
{
"code": "theorem modifyNthTail_length (f : List α → List α) (H : ∀ l, length (f l) = length l) :\n ∀ n l, length (modifyNthTail f n l) = length l",
"end": [
333,
65
],
"full_name": "List.modifyNthTail_length",
"kind": "commanddeclaration",
"start": [
329,
1
]
},
{
"code": "theorem modifyNthTail_add (f : List α → List α) (n) (l₁ l₂ : List α) :\n modifyNthTail f (l₁.length + n) (l₁ ++ l₂) = l₁ ++ modifyNthTail f n l₂",
"end": [
337,
42
],
"full_name": "List.modifyNthTail_add",
"kind": "commanddeclaration",
"start": [
335,
1
]
},
{
"code": "theorem exists_of_modifyNthTail (f : List α → List α) {n} {l : List α} (h : n ≤ l.length) :\n ∃ l₁ l₂, l = l₁ ++ l₂ ∧ l₁.length = n ∧ modifyNthTail f n l = l₁ ++ f l₂",
"end": [
343,
58
],
"full_name": "List.exists_of_modifyNthTail",
"kind": "commanddeclaration",
"start": [
339,
1
]
},
{
"code": "@[simp] theorem modify_get?_length (f : α → α) : ∀ n l, length (modifyNth f n l) = length l",
"end": [
346,
53
],
"full_name": "List.modify_get?_length",
"kind": "commanddeclaration",
"start": [
345,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l)[n]? = f <$> l[n]?",
"end": [
350,
41
],
"full_name": "List.getElem?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_eq (since := \"2024-06-12\")]\ntheorem get?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l).get? n = f <$> l.get? n",
"end": [
355,
31
],
"full_name": "List.get?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
352,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l)[n]? = l[n]?",
"end": [
359,
52
],
"full_name": "List.getElem?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
357,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_ne (since := \"2024-06-12\")]\ntheorem get?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l).get? n = l.get? n",
"end": [
364,
11
],
"full_name": "List.get?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
361,
1
]
},
{
"code": "theorem exists_of_modifyNth (f : α → α) {n} {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ modifyNth f n l = l₁ ++ f a :: l₂",
"end": [
370,
74
],
"full_name": "List.exists_of_modifyNth",
"kind": "commanddeclaration",
"start": [
366,
1
]
},
{
"code": "theorem modifyNthTail_eq_take_drop (f : List α → List α) (H : f [] = []) :\n ∀ n l, modifyNthTail f n l = take n l ++ f (drop n l)",
"end": [
376,
76
],
"full_name": "List.modifyNthTail_eq_take_drop",
"kind": "commanddeclaration",
"start": [
372,
1
]
},
{
"code": "theorem modifyNth_eq_take_drop (f : α → α) :\n ∀ n l, modifyNth f n l = take n l ++ modifyHead f (drop n l)",
"end": [
380,
35
],
"full_name": "List.modifyNth_eq_take_drop",
"kind": "commanddeclaration",
"start": [
378,
1
]
},
{
"code": "theorem modifyNth_eq_take_cons_drop (f : α → α) {n l} (h) :\n modifyNth f n l = take n l ++ f l[n] :: drop (n + 1) l",
"end": [
384,
59
],
"full_name": "List.modifyNth_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
382,
1
]
},
{
"code": "theorem set_eq_modifyNth (a : α) : ∀ n (l : List α), set l n a = modifyNth (fun _ => a) n l",
"end": [
391,
62
],
"full_name": "List.set_eq_modifyNth",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "theorem set_eq_take_cons_drop (a : α) {n l} (h : n < length l) :\n set l n a = take n l ++ a :: drop (n + 1) l",
"end": [
395,
57
],
"full_name": "List.set_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
393,
1
]
},
{
"code": "theorem modifyNth_eq_set_get? (f : α → α) :\n ∀ n (l : List α), l.modifyNth f n = ((fun a => l.set n (f a)) <$> l.get? n).getD l",
"end": [
402,
92
],
"full_name": "List.modifyNth_eq_set_get?",
"kind": "commanddeclaration",
"start": [
397,
1
]
},
{
"code": "theorem modifyNth_eq_set_get (f : α → α) {n} {l : List α} (h) :\n l.modifyNth f n = l.set n (f (l.get ⟨n, h⟩))",
"end": [
406,
49
],
"full_name": "List.modifyNth_eq_set_get",
"kind": "commanddeclaration",
"start": [
404,
1
]
},
{
"code": "theorem exists_of_set {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
410,
55
],
"full_name": "List.exists_of_set",
"kind": "commanddeclaration",
"start": [
408,
1
]
},
{
"code": "theorem exists_of_set' {l : List α} (h : n < l.length) :\n ∃ l₁ l₂, l = l₁ ++ l[n] :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
414,
94
],
"full_name": "List.exists_of_set'",
"kind": "commanddeclaration",
"start": [
412,
1
]
},
{
"code": "@[simp]\ntheorem getElem?_set_eq' (a : α) (n) (l : List α) : (set l n a)[n]? = (fun _ => a) <$> l[n]?",
"end": [
418,
54
],
"full_name": "List.getElem?_set_eq'",
"kind": "commanddeclaration",
"start": [
416,
1
]
},
{
"code": "@[deprecated getElem?_set_eq' (since := \"2024-06-12\")]\ntheorem get?_set_eq (a : α) (n) (l : List α) : (set l n a).get? n = (fun _ => a) <$> l.get? n",
"end": [
422,
7
],
"full_name": "List.get?_set_eq",
"kind": "commanddeclaration",
"start": [
420,
1
]
},
{
"code": "theorem getElem?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a)[n]? = some a",
"end": [
425,
85
],
"full_name": "List.getElem?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
424,
1
]
},
{
"code": "@[deprecated getElem?_set_eq_of_lt (since := \"2024-06-12\")]\ntheorem get?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a).get? n = some a",
"end": [
430,
70
],
"full_name": "List.get?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
427,
1
]
},
{
"code": "@[deprecated getElem?_set_ne (since := \"2024-06-12\")]\ntheorem get?_set_ne (a : α) {m n} (l : List α) (h : m ≠ n) : (set l m a).get? n = l.get? n",
"end": [
434,
11
],
"full_name": "List.get?_set_ne",
"kind": "commanddeclaration",
"start": [
432,
1
]
},
{
"code": "theorem getElem?_set' (a : α) {m n} (l : List α) :\n (set l m a)[n]? = if m = n then (fun _ => a) <$> l[n]? else l[n]?",
"end": [
438,
30
],
"full_name": "List.getElem?_set'",
"kind": "commanddeclaration",
"start": [
436,
1
]
},
{
"code": "@[deprecated getElem?_set (since := \"2024-06-12\")]\ntheorem get?_set (a : α) {m n} (l : List α) :\n (set l m a).get? n = if m = n then (fun _ => a) <$> l.get? n else l.get? n",
"end": [
443,
23
],
"full_name": "List.get?_set",
"kind": "commanddeclaration",
"start": [
440,
1
]
},
{
"code": "theorem get?_set_of_lt (a : α) {m n} (l : List α) (h : n < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
447,
46
],
"full_name": "List.get?_set_of_lt",
"kind": "commanddeclaration",
"start": [
445,
1
]
},
{
"code": "theorem get?_set_of_lt' (a : α) {m n} (l : List α) (h : m < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
451,
80
],
"full_name": "List.get?_set_of_lt'",
"kind": "commanddeclaration",
"start": [
449,
1
]
},
{
"code": "theorem drop_set_of_lt (a : α) {n m : Nat} (l : List α) (h : n < m) :\n (l.set n a).drop m = l.drop m",
"end": [
455,
94
],
"full_name": "List.drop_set_of_lt",
"kind": "commanddeclaration",
"start": [
453,
1
]
},
{
"code": "theorem take_set_of_lt (a : α) {n m : Nat} (l : List α) (h : m < n) :\n (l.set n a).take m = l.take m",
"end": [
463,
10
],
"full_name": "List.take_set_of_lt",
"kind": "commanddeclaration",
"start": [
457,
1
]
},
{
"code": "theorem length_eraseIdx : ∀ {l i}, i < length l → length (@eraseIdx α l i) = length l - 1",
"end": [
473,
92
],
"full_name": "List.length_eraseIdx",
"kind": "commanddeclaration",
"start": [
467,
1
]
},
{
"code": "@[simp] theorem length_tail (l : List α) : length (tail l) = length l - 1",
"end": [
479,
96
],
"full_name": "List.length_tail",
"kind": "commanddeclaration",
"start": [
479,
1
]
},
{
"code": "@[simp] theorem eraseP_nil : [].eraseP p = []",
"end": [
483,
53
],
"full_name": "List.eraseP_nil",
"kind": "commanddeclaration",
"start": [
483,
1
]
},
{
"code": "theorem eraseP_cons (a : α) (l : List α) :\n (a :: l).eraseP p = bif p a then l else a :: l.eraseP p",
"end": [
486,
67
],
"full_name": "List.eraseP_cons",
"kind": "commanddeclaration",
"start": [
485,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_pos {l : List α} (p) (h : p a) : (a :: l).eraseP p = l",
"end": [
489,
24
],
"full_name": "List.eraseP_cons_of_pos",
"kind": "commanddeclaration",
"start": [
488,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_neg {l : List α} (p) (h : ¬p a) :\n (a :: l).eraseP p = a :: l.eraseP p",
"end": [
492,
68
],
"full_name": "List.eraseP_cons_of_neg",
"kind": "commanddeclaration",
"start": [
491,
1
]
},
{
"code": "theorem eraseP_of_forall_not {l : List α} (h : ∀ a, a ∈ l → ¬p a) : l.eraseP p = l",
"end": [
497,
69
],
"full_name": "List.eraseP_of_forall_not",
"kind": "commanddeclaration",
"start": [
494,
1
]
},
{
"code": "theorem exists_of_eraseP : ∀ {l : List α} {a} (al : a ∈ l) (pa : p a),\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
510,
57
],
"full_name": "List.exists_of_eraseP",
"kind": "commanddeclaration",
"start": [
499,
1
]
},
{
"code": "theorem exists_or_eq_self_of_eraseP (p) (l : List α) :\n l.eraseP p = l ∨\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
519,
46
],
"full_name": "List.exists_or_eq_self_of_eraseP",
"kind": "commanddeclaration",
"start": [
512,
1
]
},
{
"code": "@[simp] theorem length_eraseP_of_mem (al : a ∈ l) (pa : p a) :\n length (l.eraseP p) = Nat.pred (length l)",
"end": [
524,
41
],
"full_name": "List.length_eraseP_of_mem",
"kind": "commanddeclaration",
"start": [
521,
1
]
},
{
"code": "theorem eraseP_append_left {a : α} (pa : p a) :\n ∀ {l₁ : List α} l₂, a ∈ l₁ → (l₁++l₂).eraseP p = l₁.eraseP p ++ l₂",
"end": [
531,
28
],
"full_name": "List.eraseP_append_left",
"kind": "commanddeclaration",
"start": [
526,
1
]
},
{
"code": "theorem eraseP_append_right :\n ∀ {l₁ : List α} l₂, (∀ b ∈ l₁, ¬p b) → eraseP p (l₁++l₂) = l₁ ++ l₂.eraseP p",
"end": [
537,
82
],
"full_name": "List.eraseP_append_right",
"kind": "commanddeclaration",
"start": [
533,
1
]
},
{
"code": "theorem eraseP_sublist (l : List α) : l.eraseP p <+ l",
"end": [
542,
56
],
"full_name": "List.eraseP_sublist",
"kind": "commanddeclaration",
"start": [
539,
1
]
},
{
"code": "theorem eraseP_subset (l : List α) : l.eraseP p ⊆ l",
"end": [
544,
81
],
"full_name": "List.eraseP_subset",
"kind": "commanddeclaration",
"start": [
544,
1
]
},
{
"code": "protected theorem Sublist.eraseP : l₁ <+ l₂ → l₁.eraseP p <+ l₂.eraseP p",
"end": [
553,
25
],
"full_name": "List.Sublist.eraseP",
"kind": "commanddeclaration",
"start": [
546,
1
]
},
{
"code": "theorem mem_of_mem_eraseP {l : List α} : a ∈ l.eraseP p → a ∈ l",
"end": [
555,
87
],
"full_name": "List.mem_of_mem_eraseP",
"kind": "commanddeclaration",
"start": [
555,
1
]
},
{
"code": "@[simp] theorem mem_eraseP_of_neg {l : List α} (pa : ¬p a) : a ∈ l.eraseP p ↔ a ∈ l",
"end": [
564,
33
],
"full_name": "List.mem_eraseP_of_neg",
"kind": "commanddeclaration",
"start": [
557,
1
]
},
{
"code": "theorem eraseP_map (f : β → α) : ∀ (l : List β), (map f l).eraseP p = map f (l.eraseP (p ∘ f))",
"end": [
568,
85
],
"full_name": "List.eraseP_map",
"kind": "commanddeclaration",
"start": [
566,
1
]
},
{
"code": "@[simp] theorem extractP_eq_find?_eraseP\n (l : List α) : extractP p l = (find? p l, eraseP p l)",
"end": [
578,
21
],
"full_name": "List.extractP_eq_find?_eraseP",
"kind": "commanddeclaration",
"start": [
570,
1
]
},
{
"code": "theorem erase_eq_eraseP' (a : α) (l : List α) : l.erase a = l.eraseP (· == a)",
"end": [
590,
46
],
"full_name": "List.erase_eq_eraseP'",
"kind": "commanddeclaration",
"start": [
585,
1
]
},
{
"code": "theorem erase_eq_eraseP [LawfulBEq α] (a : α) : ∀ l : List α, l.erase a = l.eraseP (a == ·)",
"end": [
595,
77
],
"full_name": "List.erase_eq_eraseP",
"kind": "commanddeclaration",
"start": [
592,
1
]
},
{
"code": "theorem exists_erase_eq [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n ∃ l₁ l₂, a ∉ l₁ ∧ l = l₁ ++ a :: l₂ ∧ l.erase a = l₁ ++ l₂",
"end": [
600,
99
],
"full_name": "List.exists_erase_eq",
"kind": "commanddeclaration",
"start": [
597,
1
]
},
{
"code": "@[simp] theorem length_erase_of_mem [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n length (l.erase a) = Nat.pred (length l)",
"end": [
604,
74
],
"full_name": "List.length_erase_of_mem",
"kind": "commanddeclaration",
"start": [
602,
1
]
},
{
"code": "theorem erase_append_left [LawfulBEq α] {l₁ : List α} (l₂) (h : a ∈ l₁) :\n (l₁ ++ l₂).erase a = l₁.erase a ++ l₂",
"end": [
608,
77
],
"full_name": "List.erase_append_left",
"kind": "commanddeclaration",
"start": [
606,
1
]
},
{
"code": "theorem erase_append_right [LawfulBEq α] {a : α} {l₁ : List α} (l₂ : List α) (h : a ∉ l₁) :\n (l₁ ++ l₂).erase a = (l₁ ++ l₂.erase a)",
"end": [
613,
55
],
"full_name": "List.erase_append_right",
"kind": "commanddeclaration",
"start": [
610,
1
]
},
{
"code": "theorem erase_sublist (a : α) (l : List α) : l.erase a <+ l",
"end": [
616,
42
],
"full_name": "List.erase_sublist",
"kind": "commanddeclaration",
"start": [
615,
1
]
},
{
"code": "theorem erase_subset (a : α) (l : List α) : l.erase a ⊆ l",
"end": [
618,
88
],
"full_name": "List.erase_subset",
"kind": "commanddeclaration",
"start": [
618,
1
]
},
{
"code": "theorem Sublist.erase (a : α) {l₁ l₂ : List α} (h : l₁ <+ l₂) : l₁.erase a <+ l₂.erase a",
"end": [
621,
47
],
"full_name": "List.Sublist.erase",
"kind": "commanddeclaration",
"start": [
620,
1
]
},
{
"code": "theorem mem_of_mem_erase {a b : α} {l : List α} (h : a ∈ l.erase b) : a ∈ l",
"end": [
624,
98
],
"full_name": "List.mem_of_mem_erase",
"kind": "commanddeclaration",
"start": [
624,
1
]
},
{
"code": "@[simp] theorem mem_erase_of_ne [LawfulBEq α] {a b : α} {l : List α} (ab : a ≠ b) :\n a ∈ l.erase b ↔ a ∈ l",
"end": [
628,
65
],
"full_name": "List.mem_erase_of_ne",
"kind": "commanddeclaration",
"start": [
626,
1
]
},
{
"code": "theorem erase_comm [LawfulBEq α] (a b : α) (l : List α) :\n (l.erase a).erase b = (l.erase b).erase a",
"end": [
644,
49
],
"full_name": "List.erase_comm",
"kind": "commanddeclaration",
"start": [
630,
1
]
},
{
"code": "@[simp] theorem filter_sublist {p : α → Bool} : ∀ (l : List α), filter p l <+ l",
"end": [
652,
93
],
"full_name": "List.filter_sublist",
"kind": "commanddeclaration",
"start": [
650,
1
]
},
{
"code": "protected theorem Sublist.filterMap (f : α → Option β) (s : l₁ <+ l₂) :\n filterMap f l₁ <+ filterMap f l₂",
"end": [
658,
76
],
"full_name": "List.Sublist.filterMap",
"kind": "commanddeclaration",
"start": [
656,
1
]
},
{
"code": "theorem Sublist.filter (p : α → Bool) {l₁ l₂} (s : l₁ <+ l₂) : filter p l₁ <+ filter p l₂",
"end": [
661,
48
],
"full_name": "List.Sublist.filter",
"kind": "commanddeclaration",
"start": [
660,
1
]
},
{
"code": "@[simp] theorem findIdx_nil {α : Type _} (p : α → Bool) : [].findIdx p = 0",
"end": [
665,
82
],
"full_name": "List.findIdx_nil",
"kind": "commanddeclaration",
"start": [
665,
1
]
},
{
"code": "theorem findIdx_cons (p : α → Bool) (b : α) (l : List α) :\n (b :: l).findIdx p = bif p b then 0 else (l.findIdx p) + 1",
"end": [
680,
43
],
"full_name": "List.findIdx_cons",
"kind": "commanddeclaration",
"start": [
667,
1
]
},
{
"code": "theorem findIdx_of_get?_eq_some {xs : List α} (w : xs.get? (xs.findIdx p) = some y) : p y",
"end": [
685,
65
],
"full_name": "List.findIdx_of_get?_eq_some",
"kind": "commanddeclaration",
"start": [
682,
1
]
},
{
"code": "theorem findIdx_get {xs : List α} {w : xs.findIdx p < xs.length} :\n p (xs.get ⟨xs.findIdx p, w⟩)",
"end": [
689,
45
],
"full_name": "List.findIdx_get",
"kind": "commanddeclaration",
"start": [
687,
1
]
},
{
"code": "theorem findIdx_lt_length_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.findIdx p < xs.length",
"end": [
703,
24
],
"full_name": "List.findIdx_lt_length_of_exists",
"kind": "commanddeclaration",
"start": [
691,
1
]
},
{
"code": "theorem findIdx_get?_eq_get_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.get? (xs.findIdx p) = some (xs.get ⟨xs.findIdx p, xs.findIdx_lt_length_of_exists h⟩)",
"end": [
707,
46
],
"full_name": "List.findIdx_get?_eq_get_of_exists",
"kind": "commanddeclaration",
"start": [
705,
1
]
},
{
"code": "@[simp] theorem findIdx?_nil : ([] : List α).findIdx? p i = none",
"end": [
711,
72
],
"full_name": "List.findIdx?_nil",
"kind": "commanddeclaration",
"start": [
711,
1
]
},
{
"code": "@[simp] theorem findIdx?_cons :\n (x :: xs).findIdx? p i = if p x then some i else findIdx? p xs (i + 1)",
"end": [
714,
82
],
"full_name": "List.findIdx?_cons",
"kind": "commanddeclaration",
"start": [
713,
1
]
},
{
"code": "@[simp] theorem findIdx?_succ :\n (xs : List α).findIdx? p (i+1) = (xs.findIdx? p i).map fun i => i + 1",
"end": [
719,
37
],
"full_name": "List.findIdx?_succ",
"kind": "commanddeclaration",
"start": [
716,
1
]
},
{
"code": "theorem findIdx?_eq_some_iff (xs : List α) (p : α → Bool) :\n xs.findIdx? p = some i ↔ (xs.take (i + 1)).map p = replicate i false ++ [true]",
"end": [
727,
52
],
"full_name": "List.findIdx?_eq_some_iff",
"kind": "commanddeclaration",
"start": [
721,
1
]
},
{
"code": "theorem findIdx?_of_eq_some {xs : List α} {p : α → Bool} (w : xs.findIdx? p = some i) :\n match xs.get? i with | some a => p a | none => false",
"end": [
735,
40
],
"full_name": "List.findIdx?_of_eq_some",
"kind": "commanddeclaration",
"start": [
729,
1
]
},
{
"code": "theorem findIdx?_of_eq_none {xs : List α} {p : α → Bool} (w : xs.findIdx? p = none) :\n ∀ i, match xs.get? i with | some a => ¬ p a | none => true",
"end": [
750,
30
],
"full_name": "List.findIdx?_of_eq_none",
"kind": "commanddeclaration",
"start": [
737,
1
]
},
{
"code": "@[simp] theorem findIdx?_append :\n (xs ++ ys : List α).findIdx? p =\n (xs.findIdx? p <|> (ys.findIdx? p).map fun i => i + xs.length)",
"end": [
756,
78
],
"full_name": "List.findIdx?_append",
"kind": "commanddeclaration",
"start": [
752,
1
]
},
{
"code": "@[simp] theorem findIdx?_replicate :\n (replicate n a).findIdx? p = if 0 < n ∧ p a then some 0 else none",
"end": [
764,
23
],
"full_name": "List.findIdx?_replicate",
"kind": "commanddeclaration",
"start": [
758,
1
]
},
{
"code": "theorem Pairwise.sublist : l₁ <+ l₂ → l₂.Pairwise R → l₁.Pairwise R",
"end": [
771,
80
],
"full_name": "List.Pairwise.sublist",
"kind": "commanddeclaration",
"start": [
768,
1
]
},
{
"code": "theorem pairwise_map {l : List α} :\n (l.map f).Pairwise R ↔ l.Pairwise fun a b => R (f a) (f b)",
"end": [
777,
58
],
"full_name": "List.pairwise_map",
"kind": "commanddeclaration",
"start": [
773,
1
]
},
{
"code": "theorem pairwise_append {l₁ l₂ : List α} :\n (l₁ ++ l₂).Pairwise R ↔ l₁.Pairwise R ∧ l₂.Pairwise R ∧ ∀ a ∈ l₁, ∀ b ∈ l₂, R a b",
"end": [
781,
74
],
"full_name": "List.pairwise_append",
"kind": "commanddeclaration",
"start": [
779,
1
]
},
{
"code": "theorem pairwise_reverse {l : List α} :\n l.reverse.Pairwise R ↔ l.Pairwise (fun a b => R b a)",
"end": [
785,
54
],
"full_name": "List.pairwise_reverse",
"kind": "commanddeclaration",
"start": [
783,
1
]
},
{
"code": "theorem Pairwise.imp {α R S} (H : ∀ {a b}, R a b → S a b) :\n ∀ {l : List α}, l.Pairwise R → l.Pairwise S",
"end": [
790,
50
],
"full_name": "List.Pairwise.imp",
"kind": "commanddeclaration",
"start": [
787,
1
]
},
{
"code": "theorem replaceF_nil : [].replaceF p = []",
"end": [
794,
49
],
"full_name": "List.replaceF_nil",
"kind": "commanddeclaration",
"start": [
794,
1
]
},
{
"code": "theorem replaceF_cons (a : α) (l : List α) :\n (a :: l).replaceF p = match p a with\n | none => a :: replaceF p l\n | some a' => a' :: l",
"end": [
799,
34
],
"full_name": "List.replaceF_cons",
"kind": "commanddeclaration",
"start": [
796,
1
]
},
{
"code": "theorem replaceF_cons_of_some {l : List α} (p) (h : p a = some a') :\n (a :: l).replaceF p = a' :: l",
"end": [
803,
26
],
"full_name": "List.replaceF_cons_of_some",
"kind": "commanddeclaration",
"start": [
801,
1
]
},
{
"code": "theorem replaceF_cons_of_none {l : List α} (p) (h : p a = none) :\n (a :: l).replaceF p = a :: l.replaceF p",
"end": [
806,
74
],
"full_name": "List.replaceF_cons_of_none",
"kind": "commanddeclaration",
"start": [
805,
1
]
},
{
"code": "theorem replaceF_of_forall_none {l : List α} (h : ∀ a, a ∈ l → p a = none) : l.replaceF p = l",
"end": [
811,
69
],
"full_name": "List.replaceF_of_forall_none",
"kind": "commanddeclaration",
"start": [
808,
1
]
},
{
"code": "theorem exists_of_replaceF : ∀ {l : List α} {a a'} (al : a ∈ l) (pa : p a = some a'),\n ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
825,
57
],
"full_name": "List.exists_of_replaceF",
"kind": "commanddeclaration",
"start": [
813,
1
]
},
{
"code": "theorem exists_or_eq_self_of_replaceF (p) (l : List α) :\n l.replaceF p = l ∨ ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
835,
62
],
"full_name": "List.exists_or_eq_self_of_replaceF",
"kind": "commanddeclaration",
"start": [
827,
1
]
},
{
"code": "@[simp] theorem length_replaceF : length (replaceF f l) = length l",
"end": [
838,
54
],
"full_name": "List.length_replaceF",
"kind": "commanddeclaration",
"start": [
837,
1
]
},
{
"code": "theorem disjoint_symm (d : Disjoint l₁ l₂) : Disjoint l₂ l₁",
"end": [
842,
86
],
"full_name": "List.disjoint_symm",
"kind": "commanddeclaration",
"start": [
842,
1
]
},
{
"code": "theorem disjoint_comm : Disjoint l₁ l₂ ↔ Disjoint l₂ l₁",
"end": [
844,
90
],
"full_name": "List.disjoint_comm",
"kind": "commanddeclaration",
"start": [
844,
1
]
},
{
"code": "theorem disjoint_left : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₁ → a ∉ l₂",
"end": [
846,
86
],
"full_name": "List.disjoint_left",
"kind": "commanddeclaration",
"start": [
846,
1
]
},
{
"code": "theorem disjoint_right : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₂ → a ∉ l₁",
"end": [
848,
82
],
"full_name": "List.disjoint_right",
"kind": "commanddeclaration",
"start": [
848,
1
]
},
{
"code": "theorem disjoint_iff_ne : Disjoint l₁ l₂ ↔ ∀ a ∈ l₁, ∀ b ∈ l₂, a ≠ b",
"end": [
851,
83
],
"full_name": "List.disjoint_iff_ne",
"kind": "commanddeclaration",
"start": [
850,
1
]
},
{
"code": "theorem disjoint_of_subset_left (ss : l₁ ⊆ l) (d : Disjoint l l₂) : Disjoint l₁ l₂",
"end": [
854,
22
],
"full_name": "List.disjoint_of_subset_left",
"kind": "commanddeclaration",
"start": [
853,
1
]
},
{
"code": "theorem disjoint_of_subset_right (ss : l₂ ⊆ l) (d : Disjoint l₁ l) : Disjoint l₁ l₂",
"end": [
857,
28
],
"full_name": "List.disjoint_of_subset_right",
"kind": "commanddeclaration",
"start": [
856,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_left {l₁ l₂} : Disjoint (a :: l₁) l₂ → Disjoint l₁ l₂",
"end": [
860,
42
],
"full_name": "List.disjoint_of_disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
859,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_right {l₁ l₂} : Disjoint l₁ (a :: l₂) → Disjoint l₁ l₂",
"end": [
863,
43
],
"full_name": "List.disjoint_of_disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
862,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_left (l : List α) : Disjoint [] l",
"end": [
865,
96
],
"full_name": "List.disjoint_nil_left",
"kind": "commanddeclaration",
"start": [
865,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_right (l : List α) : Disjoint l []",
"end": [
868,
48
],
"full_name": "List.disjoint_nil_right",
"kind": "commanddeclaration",
"start": [
867,
1
]
},
{
"code": "@[simp 1100] theorem singleton_disjoint : Disjoint [a] l ↔ a ∉ l",
"end": [
870,
87
],
"full_name": "List.singleton_disjoint",
"kind": "commanddeclaration",
"start": [
870,
1
]
},
{
"code": "@[simp 1100] theorem disjoint_singleton : Disjoint l [a] ↔ a ∉ l",
"end": [
873,
41
],
"full_name": "List.disjoint_singleton",
"kind": "commanddeclaration",
"start": [
872,
1
]
},
{
"code": "@[simp] theorem disjoint_append_left : Disjoint (l₁ ++ l₂) l ↔ Disjoint l₁ l ∧ Disjoint l₂ l",
"end": [
876,
38
],
"full_name": "List.disjoint_append_left",
"kind": "commanddeclaration",
"start": [
875,
1
]
},
{
"code": "@[simp] theorem disjoint_append_right : Disjoint l (l₁ ++ l₂) ↔ Disjoint l l₁ ∧ Disjoint l l₂",
"end": [
879,
76
],
"full_name": "List.disjoint_append_right",
"kind": "commanddeclaration",
"start": [
878,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_left : Disjoint (a::l₁) l₂ ↔ (a ∉ l₂) ∧ Disjoint l₁ l₂",
"end": [
882,
75
],
"full_name": "List.disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
881,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_right : Disjoint l₁ (a :: l₂) ↔ (a ∉ l₁) ∧ Disjoint l₁ l₂",
"end": [
885,
74
],
"full_name": "List.disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
884,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_left (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₁ l",
"end": [
888,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_left",
"kind": "commanddeclaration",
"start": [
887,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_right (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₂ l",
"end": [
891,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_right",
"kind": "commanddeclaration",
"start": [
890,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_left (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₁",
"end": [
894,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_left",
"kind": "commanddeclaration",
"start": [
893,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_right (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₂",
"end": [
897,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_right",
"kind": "commanddeclaration",
"start": [
896,
1
]
},
{
"code": "theorem foldl_hom (f : α₁ → α₂) (g₁ : α₁ → β → α₁) (g₂ : α₂ → β → α₂) (l : List β) (init : α₁)\n (H : ∀ x y, g₂ (f x) y = f (g₁ x y)) : l.foldl g₂ (f init) = f (l.foldl g₁ init)",
"end": [
903,
48
],
"full_name": "List.foldl_hom",
"kind": "commanddeclaration",
"start": [
901,
1
]
},
{
"code": "theorem foldr_hom (f : β₁ → β₂) (g₁ : α → β₁ → β₁) (g₂ : α → β₂ → β₂) (l : List α) (init : β₁)\n (H : ∀ x y, g₂ x (f y) = f (g₁ x y)) : l.foldr g₂ (f init) = f (l.foldr g₁ init)",
"end": [
907,
30
],
"full_name": "List.foldr_hom",
"kind": "commanddeclaration",
"start": [
905,
1
]
},
{
"code": "theorem union_def [BEq α] (l₁ l₂ : List α) : l₁ ∪ l₂ = foldr .insert l₂ l₁",
"end": [
915,
83
],
"full_name": "List.union_def",
"kind": "commanddeclaration",
"start": [
915,
1
]
},
{
"code": "@[simp] theorem nil_union (l : List α) : nil ∪ l = l",
"end": [
917,
88
],
"full_name": "List.nil_union",
"kind": "commanddeclaration",
"start": [
917,
1
]
},
{
"code": "@[simp] theorem cons_union (a : α) (l₁ l₂ : List α) :\n (a :: l₁) ∪ l₂ = (l₁ ∪ l₂).insert a",
"end": [
920,
75
],
"full_name": "List.cons_union",
"kind": "commanddeclaration",
"start": [
919,
1
]
},
{
"code": "@[simp] theorem mem_union_iff [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∪ l₂ ↔ x ∈ l₁ ∨ x ∈ l₂",
"end": [
923,
76
],
"full_name": "List.mem_union_iff",
"kind": "commanddeclaration",
"start": [
922,
1
]
},
{
"code": "theorem inter_def [BEq α] (l₁ l₂ : List α) : l₁ ∩ l₂ = filter (elem · l₂) l₁",
"end": [
929,
85
],
"full_name": "List.inter_def",
"kind": "commanddeclaration",
"start": [
929,
1
]
},
{
"code": "@[simp] theorem mem_inter_iff [BEq α] [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∩ l₂ ↔ x ∈ l₁ ∧ x ∈ l₂",
"end": [
933,
49
],
"full_name": "List.mem_inter_iff",
"kind": "commanddeclaration",
"start": [
931,
1
]
},
{
"code": "@[simp]\ntheorem pair_mem_product {xs : List α} {ys : List β} {x : α} {y : β} :\n (x, y) ∈ product xs ys ↔ x ∈ xs ∧ y ∈ ys",
"end": [
942,
47
],
"full_name": "List.pair_mem_product",
"kind": "commanddeclaration",
"start": [
937,
1
]
},
{
"code": "@[simp]\ntheorem leftpad_length (n : Nat) (a : α) (l : List α) :\n (leftpad n a l).length = max n l.length",
"end": [
951,
75
],
"full_name": "List.leftpad_length",
"kind": "commanddeclaration",
"start": [
946,
1
]
},
{
"code": "theorem leftpad_prefix (n : Nat) (a : α) (l : List α) :\n replicate (n - length l) a <+: leftpad n a l",
"end": [
956,
27
],
"full_name": "List.leftpad_prefix",
"kind": "commanddeclaration",
"start": [
953,
1
]
},
{
"code": "theorem leftpad_suffix (n : Nat) (a : α) (l : List α) : l <:+ (leftpad n a l)",
"end": [
960,
54
],
"full_name": "List.leftpad_suffix",
"kind": "commanddeclaration",
"start": [
958,
1
]
},
{
"code": "@[simp] theorem forIn_eq_forIn [Monad m] : @List.forIn α β m _ = forIn",
"end": [
965,
78
],
"full_name": "List.forIn_eq_forIn",
"kind": "commanddeclaration",
"start": [
965,
1
]
},
{
"code": "theorem forIn_eq_bindList [Monad m] [LawfulMonad m]\n (f : α → β → m (ForInStep β)) (l : List α) (init : β) :\n forIn l init f = ForInStep.run <$> (ForInStep.yield init).bindList f l",
"end": [
971,
30
],
"full_name": "List.forIn_eq_bindList",
"kind": "commanddeclaration",
"start": [
967,
1
]
},
{
"code": "@[simp] theorem forM_append [Monad m] [LawfulMonad m] (l₁ l₂ : List α) (f : α → m PUnit) :\n (l₁ ++ l₂).forM f = (do l₁.forM f; l₂.forM f)",
"end": [
974,
82
],
"full_name": "List.forM_append",
"kind": "commanddeclaration",
"start": [
973,
1
]
},
{
"code": "@[simp] theorem diff_nil (l : List α) : l.diff [] = l",
"end": [
982,
61
],
"full_name": "List.diff_nil",
"kind": "commanddeclaration",
"start": [
982,
1
]
},
{
"code": "@[simp] theorem diff_cons (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.erase a).diff l₂",
"end": [
985,
41
],
"full_name": "List.diff_cons",
"kind": "commanddeclaration",
"start": [
984,
1
]
},
{
"code": "theorem diff_cons_right (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.diff l₂).erase a",
"end": [
988,
71
],
"full_name": "List.diff_cons_right",
"kind": "commanddeclaration",
"start": [
987,
1
]
},
{
"code": "theorem diff_erase (l₁ l₂ : List α) (a : α) : (l₁.diff l₂).erase a = (l₁.erase a).diff l₂",
"end": [
991,
36
],
"full_name": "List.diff_erase",
"kind": "commanddeclaration",
"start": [
990,
1
]
},
{
"code": "@[simp] theorem nil_diff (l : List α) : [].diff l = []",
"end": [
994,
45
],
"full_name": "List.nil_diff",
"kind": "commanddeclaration",
"start": [
993,
1
]
},
{
"code": "theorem cons_diff (a : α) (l₁ l₂ : List α) :\n (a :: l₁).diff l₂ = if a ∈ l₂ then l₁.diff (l₂.erase a) else a :: l₁.diff l₂",
"end": [
1005,
14
],
"full_name": "List.cons_diff",
"kind": "commanddeclaration",
"start": [
996,
1
]
},
{
"code": "theorem cons_diff_of_mem {a : α} {l₂ : List α} (h : a ∈ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = l₁.diff (l₂.erase a)",
"end": [
1008,
76
],
"full_name": "List.cons_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1007,
1
]
},
{
"code": "theorem cons_diff_of_not_mem {a : α} {l₂ : List α} (h : a ∉ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = a :: l₁.diff l₂",
"end": [
1011,
71
],
"full_name": "List.cons_diff_of_not_mem",
"kind": "commanddeclaration",
"start": [
1010,
1
]
},
{
"code": "theorem diff_eq_foldl : ∀ l₁ l₂ : List α, l₁.diff l₂ = foldl List.erase l₁ l₂",
"end": [
1015,
65
],
"full_name": "List.diff_eq_foldl",
"kind": "commanddeclaration",
"start": [
1013,
1
]
},
{
"code": "@[simp] theorem diff_append (l₁ l₂ l₃ : List α) : l₁.diff (l₂ ++ l₃) = (l₁.diff l₂).diff l₃",
"end": [
1018,
42
],
"full_name": "List.diff_append",
"kind": "commanddeclaration",
"start": [
1017,
1
]
},
{
"code": "theorem diff_sublist : ∀ l₁ l₂ : List α, l₁.diff l₂ <+ l₁",
"end": [
1026,
34
],
"full_name": "List.diff_sublist",
"kind": "commanddeclaration",
"start": [
1020,
1
]
},
{
"code": "theorem diff_subset (l₁ l₂ : List α) : l₁.diff l₂ ⊆ l₁",
"end": [
1028,
83
],
"full_name": "List.diff_subset",
"kind": "commanddeclaration",
"start": [
1028,
1
]
},
{
"code": "theorem mem_diff_of_mem {a : α} : ∀ {l₁ l₂ : List α}, a ∈ l₁ → a ∉ l₂ → a ∈ l₁.diff l₂",
"end": [
1034,
94
],
"full_name": "List.mem_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1030,
1
]
},
{
"code": "theorem Sublist.diff_right : ∀ {l₁ l₂ l₃ : List α}, l₁ <+ l₂ → l₁.diff l₃ <+ l₂.diff l₃",
"end": [
1038,
75
],
"full_name": "List.Sublist.diff_right",
"kind": "commanddeclaration",
"start": [
1036,
1
]
},
{
"code": "theorem Sublist.erase_diff_erase_sublist {a : α} :\n ∀ {l₁ l₂ : List α}, l₁ <+ l₂ → (l₂.erase a).diff (l₁.erase a) <+ l₂.diff l₁",
"end": [
1048,
71
],
"full_name": "List.Sublist.erase_diff_erase_sublist",
"kind": "commanddeclaration",
"start": [
1040,
1
]
},
{
"code": "@[simp] theorem prefix_append (l₁ l₂ : List α) : l₁ <+: l₁ ++ l₂",
"end": [
1054,
78
],
"full_name": "List.prefix_append",
"kind": "commanddeclaration",
"start": [
1054,
1
]
},
{
"code": "@[simp] theorem suffix_append (l₁ l₂ : List α) : l₂ <:+ l₁ ++ l₂",
"end": [
1056,
78
],
"full_name": "List.suffix_append",
"kind": "commanddeclaration",
"start": [
1056,
1
]
},
{
"code": "theorem infix_append (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ l₂ ++ l₃",
"end": [
1058,
83
],
"full_name": "List.infix_append",
"kind": "commanddeclaration",
"start": [
1058,
1
]
},
{
"code": "@[simp] theorem infix_append' (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ (l₂ ++ l₃)",
"end": [
1061,
47
],
"full_name": "List.infix_append'",
"kind": "commanddeclaration",
"start": [
1060,
1
]
},
{
"code": "theorem IsPrefix.isInfix : l₁ <+: l₂ → l₁ <:+: l₂",
"end": [
1063,
78
],
"full_name": "List.IsPrefix.isInfix",
"kind": "commanddeclaration",
"start": [
1063,
1
]
},
{
"code": "theorem IsSuffix.isInfix : l₁ <:+ l₂ → l₁ <:+: l₂",
"end": [
1065,
98
],
"full_name": "List.IsSuffix.isInfix",
"kind": "commanddeclaration",
"start": [
1065,
1
]
},
{
"code": "theorem nil_prefix (l : List α) : [] <+: l",
"end": [
1067,
55
],
"full_name": "List.nil_prefix",
"kind": "commanddeclaration",
"start": [
1067,
1
]
},
{
"code": "theorem nil_suffix (l : List α) : [] <:+ l",
"end": [
1069,
64
],
"full_name": "List.nil_suffix",
"kind": "commanddeclaration",
"start": [
1069,
1
]
},
{
"code": "theorem nil_infix (l : List α) : [] <:+: l",
"end": [
1071,
69
],
"full_name": "List.nil_infix",
"kind": "commanddeclaration",
"start": [
1071,
1
]
},
{
"code": "theorem prefix_refl (l : List α) : l <+: l",
"end": [
1073,
65
],
"full_name": "List.prefix_refl",
"kind": "commanddeclaration",
"start": [
1073,
1
]
},
{
"code": "theorem suffix_refl (l : List α) : l <:+ l",
"end": [
1075,
56
],
"full_name": "List.suffix_refl",
"kind": "commanddeclaration",
"start": [
1075,
1
]
},
{
"code": "theorem infix_refl (l : List α) : l <:+: l",
"end": [
1077,
70
],
"full_name": "List.infix_refl",
"kind": "commanddeclaration",
"start": [
1077,
1
]
},
{
"code": "@[simp] theorem suffix_cons (a : α) : ∀ l, l <:+ a :: l",
"end": [
1079,
77
],
"full_name": "List.suffix_cons",
"kind": "commanddeclaration",
"start": [
1079,
1
]
},
{
"code": "theorem infix_cons : l₁ <:+: l₂ → l₁ <:+: a :: l₂",
"end": [
1081,
95
],
"full_name": "List.infix_cons",
"kind": "commanddeclaration",
"start": [
1081,
1
]
},
{
"code": "theorem infix_concat : l₁ <:+: l₂ → l₁ <:+: concat l₂ a",
"end": [
1084,
67
],
"full_name": "List.infix_concat",
"kind": "commanddeclaration",
"start": [
1083,
1
]
},
{
"code": "theorem IsPrefix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₂ → l₂ <+: l₃ → l₁ <+: l₃",
"end": [
1087,
75
],
"full_name": "List.IsPrefix.trans",
"kind": "commanddeclaration",
"start": [
1086,
1
]
},
{
"code": "theorem IsSuffix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+ l₂ → l₂ <:+ l₃ → l₁ <:+ l₃",
"end": [
1090,
68
],
"full_name": "List.IsSuffix.trans",
"kind": "commanddeclaration",
"start": [
1089,
1
]
},
{
"code": "theorem IsInfix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+: l₂ → l₂ <:+: l₃ → l₁ <:+: l₃",
"end": [
1093,
95
],
"full_name": "List.IsInfix.trans",
"kind": "commanddeclaration",
"start": [
1092,
1
]
},
{
"code": "protected theorem IsInfix.sublist : l₁ <:+: l₂ → l₁ <+ l₂",
"end": [
1096,
78
],
"full_name": "List.IsInfix.sublist",
"kind": "commanddeclaration",
"start": [
1095,
1
]
},
{
"code": "protected theorem IsInfix.subset (hl : l₁ <:+: l₂) : l₁ ⊆ l₂",
"end": [
1099,
20
],
"full_name": "List.IsInfix.subset",
"kind": "commanddeclaration",
"start": [
1098,
1
]
},
{
"code": "protected theorem IsPrefix.sublist (h : l₁ <+: l₂) : l₁ <+ l₂",
"end": [
1102,
20
],
"full_name": "List.IsPrefix.sublist",
"kind": "commanddeclaration",
"start": [
1101,
1
]
},
{
"code": "protected theorem IsPrefix.subset (hl : l₁ <+: l₂) : l₁ ⊆ l₂",
"end": [
1105,
20
],
"full_name": "List.IsPrefix.subset",
"kind": "commanddeclaration",
"start": [
1104,
1
]
},
{
"code": "protected theorem IsSuffix.sublist (h : l₁ <:+ l₂) : l₁ <+ l₂",
"end": [
1108,
20
],
"full_name": "List.IsSuffix.sublist",
"kind": "commanddeclaration",
"start": [
1107,
1
]
},
{
"code": "protected theorem IsSuffix.subset (hl : l₁ <:+ l₂) : l₁ ⊆ l₂",
"end": [
1111,
20
],
"full_name": "List.IsSuffix.subset",
"kind": "commanddeclaration",
"start": [
1110,
1
]
},
{
"code": "@[simp] theorem reverse_suffix : reverse l₁ <:+ reverse l₂ ↔ l₁ <+: l₂",
"end": [
1115,
59
],
"full_name": "List.reverse_suffix",
"kind": "commanddeclaration",
"start": [
1113,
1
]
},
{
"code": "@[simp] theorem reverse_prefix : reverse l₁ <+: reverse l₂ ↔ l₁ <:+ l₂",
"end": [
1118,
53
],
"full_name": "List.reverse_prefix",
"kind": "commanddeclaration",
"start": [
1117,
1
]
},
{
"code": "@[simp] theorem reverse_infix : reverse l₁ <:+: reverse l₂ ↔ l₁ <:+: l₂",
"end": [
1124,
61
],
"full_name": "List.reverse_infix",
"kind": "commanddeclaration",
"start": [
1120,
1
]
},
{
"code": "theorem IsInfix.length_le (h : l₁ <:+: l₂) : l₁.length ≤ l₂.length",
"end": [
1127,
22
],
"full_name": "List.IsInfix.length_le",
"kind": "commanddeclaration",
"start": [
1126,
1
]
},
{
"code": "theorem IsPrefix.length_le (h : l₁ <+: l₂) : l₁.length ≤ l₂.length",
"end": [
1130,
22
],
"full_name": "List.IsPrefix.length_le",
"kind": "commanddeclaration",
"start": [
1129,
1
]
},
{
"code": "theorem IsSuffix.length_le (h : l₁ <:+ l₂) : l₁.length ≤ l₂.length",
"end": [
1133,
22
],
"full_name": "List.IsSuffix.length_le",
"kind": "commanddeclaration",
"start": [
1132,
1
]
},
{
"code": "@[simp] theorem infix_nil : l <:+: [] ↔ l = []",
"end": [
1135,
98
],
"full_name": "List.infix_nil",
"kind": "commanddeclaration",
"start": [
1135,
1
]
},
{
"code": "@[simp] theorem prefix_nil : l <+: [] ↔ l = []",
"end": [
1137,
99
],
"full_name": "List.prefix_nil",
"kind": "commanddeclaration",
"start": [
1137,
1
]
},
{
"code": "@[simp] theorem suffix_nil : l <:+ [] ↔ l = []",
"end": [
1139,
99
],
"full_name": "List.suffix_nil",
"kind": "commanddeclaration",
"start": [
1139,
1
]
},
{
"code": "theorem infix_iff_prefix_suffix (l₁ l₂ : List α) : l₁ <:+: l₂ ↔ ∃ t, l₁ <+: t ∧ t <:+ l₂",
"end": [
1143,
60
],
"full_name": "List.infix_iff_prefix_suffix",
"kind": "commanddeclaration",
"start": [
1141,
1
]
},
{
"code": "theorem IsInfix.eq_of_length (h : l₁ <:+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1146,
25
],
"full_name": "List.IsInfix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1145,
1
]
},
{
"code": "theorem IsPrefix.eq_of_length (h : l₁ <+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1149,
25
],
"full_name": "List.IsPrefix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1148,
1
]
},
{
"code": "theorem IsSuffix.eq_of_length (h : l₁ <:+ l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1152,
25
],
"full_name": "List.IsSuffix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1151,
1
]
},
{
"code": "theorem prefix_of_prefix_length_le :\n ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₃ → l₂ <+: l₃ → length l₁ ≤ length l₂ → l₁ <+: l₂",
"end": [
1160,
20
],
"full_name": "List.prefix_of_prefix_length_le",
"kind": "commanddeclaration",
"start": [
1154,
1
]
},
{
"code": "theorem prefix_or_prefix_of_prefix (h₁ : l₁ <+: l₃) (h₂ : l₂ <+: l₃) : l₁ <+: l₂ ∨ l₂ <+: l₁",
"end": [
1164,
39
],
"full_name": "List.prefix_or_prefix_of_prefix",
"kind": "commanddeclaration",
"start": [
1162,
1
]
},
{
"code": "theorem suffix_of_suffix_length_le\n (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) (ll : length l₁ ≤ length l₂) : l₁ <:+ l₂",
"end": [
1169,
90
],
"full_name": "List.suffix_of_suffix_length_le",
"kind": "commanddeclaration",
"start": [
1166,
1
]
},
{
"code": "theorem suffix_or_suffix_of_suffix (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) : l₁ <:+ l₂ ∨ l₂ <:+ l₁",
"end": [
1173,
21
],
"full_name": "List.suffix_or_suffix_of_suffix",
"kind": "commanddeclaration",
"start": [
1171,
1
]
},
{
"code": "theorem suffix_cons_iff : l₁ <:+ a :: l₂ ↔ l₁ = a :: l₂ ∨ l₁ <:+ l₂",
"end": [
1184,
41
],
"full_name": "List.suffix_cons_iff",
"kind": "commanddeclaration",
"start": [
1175,
1
]
},
{
"code": "theorem infix_cons_iff : l₁ <:+: a :: l₂ ↔ l₁ <+: a :: l₂ ∨ l₁ <:+: l₂",
"end": [
1195,
27
],
"full_name": "List.infix_cons_iff",
"kind": "commanddeclaration",
"start": [
1186,
1
]
},
{
"code": "theorem infix_of_mem_join : ∀ {L : List (List α)}, l ∈ L → l <:+: join L",
"end": [
1202,
78
],
"full_name": "List.infix_of_mem_join",
"kind": "commanddeclaration",
"start": [
1197,
1
]
},
{
"code": "theorem prefix_append_right_inj (l) : l ++ l₁ <+: l ++ l₂ ↔ l₁ <+: l₂",
"end": [
1205,
63
],
"full_name": "List.prefix_append_right_inj",
"kind": "commanddeclaration",
"start": [
1204,
1
]
},
{
"code": "@[simp]\ntheorem prefix_cons_inj (a) : a :: l₁ <+: a :: l₂ ↔ l₁ <+: l₂",
"end": [
1209,
30
],
"full_name": "List.prefix_cons_inj",
"kind": "commanddeclaration",
"start": [
1207,
1
]
},
{
"code": "theorem take_prefix (n) (l : List α) : take n l <+: l",
"end": [
1212,
28
],
"full_name": "List.take_prefix",
"kind": "commanddeclaration",
"start": [
1211,
1
]
},
{
"code": "theorem drop_suffix (n) (l : List α) : drop n l <:+ l",
"end": [
1215,
28
],
"full_name": "List.drop_suffix",
"kind": "commanddeclaration",
"start": [
1214,
1
]
},
{
"code": "theorem take_sublist (n) (l : List α) : take n l <+ l",
"end": [
1218,
28
],
"full_name": "List.take_sublist",
"kind": "commanddeclaration",
"start": [
1217,
1
]
},
{
"code": "theorem drop_sublist (n) (l : List α) : drop n l <+ l",
"end": [
1221,
28
],
"full_name": "List.drop_sublist",
"kind": "commanddeclaration",
"start": [
1220,
1
]
},
{
"code": "theorem take_subset (n) (l : List α) : take n l ⊆ l",
"end": [
1224,
28
],
"full_name": "List.take_subset",
"kind": "commanddeclaration",
"start": [
1223,
1
]
},
{
"code": "theorem drop_subset (n) (l : List α) : drop n l ⊆ l",
"end": [
1227,
28
],
"full_name": "List.drop_subset",
"kind": "commanddeclaration",
"start": [
1226,
1
]
},
{
"code": "theorem mem_of_mem_take {l : List α} (h : a ∈ l.take n) : a ∈ l",
"end": [
1230,
20
],
"full_name": "List.mem_of_mem_take",
"kind": "commanddeclaration",
"start": [
1229,
1
]
},
{
"code": "theorem IsPrefix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <+: l₂) :\n l₁.filter p <+: l₂.filter p",
"end": [
1235,
42
],
"full_name": "List.IsPrefix.filter",
"kind": "commanddeclaration",
"start": [
1232,
1
]
},
{
"code": "theorem IsSuffix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+ l₂) :\n l₁.filter p <:+ l₂.filter p",
"end": [
1240,
42
],
"full_name": "List.IsSuffix.filter",
"kind": "commanddeclaration",
"start": [
1237,
1
]
},
{
"code": "theorem IsInfix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+: l₂) :\n l₁.filter p <:+: l₂.filter p",
"end": [
1245,
58
],
"full_name": "List.IsInfix.filter",
"kind": "commanddeclaration",
"start": [
1242,
1
]
},
{
"code": "theorem mem_of_mem_drop {n} {l : List α} (h : a ∈ l.drop n) : a ∈ l",
"end": [
1249,
89
],
"full_name": "List.mem_of_mem_drop",
"kind": "commanddeclaration",
"start": [
1249,
1
]
},
{
"code": "theorem disjoint_take_drop : ∀ {l : List α}, l.Nodup → m ≤ n → Disjoint (l.take m) (l.drop n)",
"end": [
1259,
61
],
"full_name": "List.disjoint_take_drop",
"kind": "commanddeclaration",
"start": [
1251,
1
]
},
{
"code": "@[simp]\ntheorem chain_cons {a b : α} {l : List α} : Chain R a (b :: l) ↔ R a b ∧ Chain R b l",
"end": [
1268,
27
],
"full_name": "List.chain_cons",
"kind": "commanddeclaration",
"start": [
1265,
1
]
},
{
"code": "theorem rel_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : R a b",
"end": [
1271,
21
],
"full_name": "List.rel_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1270,
1
]
},
{
"code": "theorem chain_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : Chain R b l",
"end": [
1274,
21
],
"full_name": "List.chain_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1273,
1
]
},
{
"code": "theorem Chain.imp' {R S : α → α → Prop} (HRS : ∀ ⦃a b⦄, R a b → S a b) {a b : α}\n (Hab : ∀ ⦃c⦄, R a c → S b c) {l : List α} (p : Chain R a l) : Chain S b l",
"end": [
1283,
24
],
"full_name": "List.Chain.imp'",
"kind": "commanddeclaration",
"start": [
1276,
1
]
},
{
"code": "theorem Chain.imp {R S : α → α → Prop} (H : ∀ a b, R a b → S a b) {a : α} {l : List α}\n (p : Chain R a l) : Chain S a l",
"end": [
1287,
17
],
"full_name": "List.Chain.imp",
"kind": "commanddeclaration",
"start": [
1285,
1
]
},
{
"code": "protected theorem Pairwise.chain (p : Pairwise R (a :: l)) : Chain R a l",
"end": [
1295,
36
],
"full_name": "List.Pairwise.chain",
"kind": "commanddeclaration",
"start": [
1289,
1
]
},
{
"code": "theorem range'_succ (s n step) : range' s (n + 1) step = s :: range' (s + step) n step",
"end": [
1300,
44
],
"full_name": "List.range'_succ",
"kind": "commanddeclaration",
"start": [
1299,
1
]
},
{
"code": "@[simp] theorem length_range' (s step) : ∀ n : Nat, length (range' s n step) = n",
"end": [
1304,
49
],
"full_name": "List.length_range'",
"kind": "commanddeclaration",
"start": [
1302,
1
]
},
{
"code": "@[simp] theorem range'_eq_nil : range' s n step = [] ↔ n = 0",
"end": [
1307,
39
],
"full_name": "List.range'_eq_nil",
"kind": "commanddeclaration",
"start": [
1306,
1
]
},
{
"code": "theorem mem_range' : ∀{n}, m ∈ range' s n step ↔ ∃ i < n, m = s + step * i",
"end": [
1314,
71
],
"full_name": "List.mem_range'",
"kind": "commanddeclaration",
"start": [
1309,
1
]
},
{
"code": "@[simp] theorem mem_range'_1 : m ∈ range' s n ↔ s ≤ m ∧ m < s + n",
"end": [
1319,
93
],
"full_name": "List.mem_range'_1",
"kind": "commanddeclaration",
"start": [
1316,
1
]
},
{
"code": "@[simp]\ntheorem map_add_range' (a) : ∀ s n step, map (a + ·) (range' s n step) = range' (a + s) n step",
"end": [
1324,
90
],
"full_name": "List.map_add_range'",
"kind": "commanddeclaration",
"start": [
1321,
1
]
},
{
"code": "theorem map_sub_range' (a s n : Nat) (h : a ≤ s) :\n map (· - a) (range' s n step) = range' (s - a) n step",
"end": [
1330,
42
],
"full_name": "List.map_sub_range'",
"kind": "commanddeclaration",
"start": [
1326,
1
]
},
{
"code": "theorem chain_succ_range' : ∀ s n step : Nat,\n Chain (fun a b => b = a + step) s (range' (s + step) n step)",
"end": [
1335,
69
],
"full_name": "List.chain_succ_range'",
"kind": "commanddeclaration",
"start": [
1332,
1
]
},
{
"code": "theorem chain_lt_range' (s n : Nat) {step} (h : 0 < step) :\n Chain (· < ·) s (range' (s + step) n step)",
"end": [
1339,
83
],
"full_name": "List.chain_lt_range'",
"kind": "commanddeclaration",
"start": [
1337,
1
]
},
{
"code": "theorem range'_append : ∀ s m n step : Nat,\n range' s m step ++ range' (s + step * m) n step = range' s (n + m) step",
"end": [
1346,
46
],
"full_name": "List.range'_append",
"kind": "commanddeclaration",
"start": [
1341,
1
]
},
{
"code": "@[simp] theorem range'_append_1 (s m n : Nat) :\n range' s m ++ range' (s + m) n = range' s (n + m)",
"end": [
1349,
94
],
"full_name": "List.range'_append_1",
"kind": "commanddeclaration",
"start": [
1348,
1
]
},
{
"code": "theorem range'_sublist_right {s m n : Nat} : range' s m step <+ range' s n step ↔ m ≤ n",
"end": [
1353,
88
],
"full_name": "List.range'_sublist_right",
"kind": "commanddeclaration",
"start": [
1351,
1
]
},
{
"code": "theorem range'_subset_right {s m n : Nat} (step0 : 0 < step) :\n range' s m step ⊆ range' s n step ↔ m ≤ n",
"end": [
1359,
82
],
"full_name": "List.range'_subset_right",
"kind": "commanddeclaration",
"start": [
1355,
1
]
},
{
"code": "theorem range'_subset_right_1 {s m n : Nat} : range' s m ⊆ range' s n ↔ m ≤ n",
"end": [
1362,
34
],
"full_name": "List.range'_subset_right_1",
"kind": "commanddeclaration",
"start": [
1361,
1
]
},
{
"code": "theorem getElem?_range' (s step) :\n ∀ {m n : Nat}, m < n → (range' s n step)[m]? = some (s + step * m)",
"end": [
1370,
55
],
"full_name": "List.getElem?_range'",
"kind": "commanddeclaration",
"start": [
1364,
1
]
},
{
"code": "@[simp] theorem getElem_range' {n m step} (i) (H : i < (range' n m step).length) :\n (range' n m step)[i] = n + step * i",
"end": [
1374,
70
],
"full_name": "List.getElem_range'",
"kind": "commanddeclaration",
"start": [
1372,
1
]
},
{
"code": "@[deprecated getElem?_range' (since := \"2024-06-12\")]\ntheorem get?_range' (s step) {m n : Nat} (h : m < n) :\n get? (range' s n step) m = some (s + step * m)",
"end": [
1379,
11
],
"full_name": "List.get?_range'",
"kind": "commanddeclaration",
"start": [
1376,
1
]
},
{
"code": "@[deprecated getElem_range' (since := \"2024-06-12\")]\ntheorem get_range' {n m step} (i) (H : i < (range' n m step).length) :\n get (range' n m step) ⟨i, H⟩ = n + step * i",
"end": [
1384,
7
],
"full_name": "List.get_range'",
"kind": "commanddeclaration",
"start": [
1381,
1
]
},
{
"code": "theorem range'_concat (s n : Nat) : range' s (n + 1) step = range' s n step ++ [s + step * n]",
"end": [
1387,
63
],
"full_name": "List.range'_concat",
"kind": "commanddeclaration",
"start": [
1386,
1
]
},
{
"code": "theorem range'_1_concat (s n : Nat) : range' s (n + 1) = range' s n ++ [s + n]",
"end": [
1390,
23
],
"full_name": "List.range'_1_concat",
"kind": "commanddeclaration",
"start": [
1389,
1
]
},
{
"code": "theorem range_loop_range' : ∀ s n : Nat, range.loop s (range' s n) = range' 0 (n + s)",
"end": [
1394,
101
],
"full_name": "List.range_loop_range'",
"kind": "commanddeclaration",
"start": [
1392,
1
]
},
{
"code": "theorem range_eq_range' (n : Nat) : range n = range' 0 n",
"end": [
1397,
56
],
"full_name": "List.range_eq_range'",
"kind": "commanddeclaration",
"start": [
1396,
1
]
},
{
"code": "theorem range_succ_eq_map (n : Nat) : range (n + 1) = 0 :: map succ (range n)",
"end": [
1401,
30
],
"full_name": "List.range_succ_eq_map",
"kind": "commanddeclaration",
"start": [
1399,
1
]
},
{
"code": "theorem range'_eq_map_range (s n : Nat) : range' s n = map (s + ·) (range n)",
"end": [
1404,
44
],
"full_name": "List.range'_eq_map_range",
"kind": "commanddeclaration",
"start": [
1403,
1
]
},
{
"code": "@[simp] theorem length_range (n : Nat) : length (range n) = n",
"end": [
1407,
45
],
"full_name": "List.length_range",
"kind": "commanddeclaration",
"start": [
1406,
1
]
},
{
"code": "@[simp] theorem range_eq_nil {n : Nat} : range n = [] ↔ n = 0",
"end": [
1410,
38
],
"full_name": "List.range_eq_nil",
"kind": "commanddeclaration",
"start": [
1409,
1
]
},
{
"code": "@[simp]\ntheorem range_sublist {m n : Nat} : range m <+ range n ↔ m ≤ n",
"end": [
1414,
52
],
"full_name": "List.range_sublist",
"kind": "commanddeclaration",
"start": [
1412,
1
]
},
{
"code": "@[simp]\ntheorem range_subset {m n : Nat} : range m ⊆ range n ↔ m ≤ n",
"end": [
1418,
65
],
"full_name": "List.range_subset",
"kind": "commanddeclaration",
"start": [
1416,
1
]
},
{
"code": "@[simp]\ntheorem mem_range {m n : Nat} : m ∈ range n ↔ m < n",
"end": [
1422,
81
],
"full_name": "List.mem_range",
"kind": "commanddeclaration",
"start": [
1420,
1
]
},
{
"code": "theorem not_mem_range_self {n : Nat} : n ∉ range n",
"end": [
1424,
62
],
"full_name": "List.not_mem_range_self",
"kind": "commanddeclaration",
"start": [
1424,
1
]
},
{
"code": "theorem self_mem_range_succ (n : Nat) : n ∈ range (n + 1)",
"end": [
1426,
69
],
"full_name": "List.self_mem_range_succ",
"kind": "commanddeclaration",
"start": [
1426,
1
]
},
{
"code": "theorem getElem?_range {m n : Nat} (h : m < n) : (range n)[m]? = some m",
"end": [
1429,
48
],
"full_name": "List.getElem?_range",
"kind": "commanddeclaration",
"start": [
1428,
1
]
},
{
"code": "@[simp] theorem getElem_range {n : Nat} (m) (h : m < (range n).length) : (range n)[m] = m",
"end": [
1432,
25
],
"full_name": "List.getElem_range",
"kind": "commanddeclaration",
"start": [
1431,
1
]
},
{
"code": "@[deprecated getElem?_range (since := \"2024-06-12\")]\ntheorem get?_range {m n : Nat} (h : m < n) : get? (range n) m = some m",
"end": [
1436,
27
],
"full_name": "List.get?_range",
"kind": "commanddeclaration",
"start": [
1434,
1
]
},
{
"code": "@[deprecated getElem_range (since := \"2024-06-12\")]\ntheorem get_range {n} (i) (H : i < (range n).length) : get (range n) ⟨i, H⟩ = i",
"end": [
1440,
7
],
"full_name": "List.get_range",
"kind": "commanddeclaration",
"start": [
1438,
1
]
},
{
"code": "theorem range_succ (n : Nat) : range (succ n) = range n ++ [n]",
"end": [
1443,
61
],
"full_name": "List.range_succ",
"kind": "commanddeclaration",
"start": [
1442,
1
]
},
{
"code": "theorem range_add (a b : Nat) : range (a + b) = range a ++ (range b).map (a + ·)",
"end": [
1447,
75
],
"full_name": "List.range_add",
"kind": "commanddeclaration",
"start": [
1445,
1
]
},
{
"code": "theorem iota_eq_reverse_range' : ∀ n : Nat, iota n = reverse (range' 1 n)",
"end": [
1451,
99
],
"full_name": "List.iota_eq_reverse_range'",
"kind": "commanddeclaration",
"start": [
1449,
1
]
},
{
"code": "@[simp] theorem length_iota (n : Nat) : length (iota n) = n",
"end": [
1453,
96
],
"full_name": "List.length_iota",
"kind": "commanddeclaration",
"start": [
1453,
1
]
},
{
"code": "@[simp]\ntheorem mem_iota {m n : Nat} : m ∈ iota n ↔ 1 ≤ m ∧ m ≤ n",
"end": [
1457,
59
],
"full_name": "List.mem_iota",
"kind": "commanddeclaration",
"start": [
1455,
1
]
},
{
"code": "theorem reverse_range' : ∀ s n : Nat, reverse (range' s n) = map (s + n - 1 - ·) (range n)",
"end": [
1464,
59
],
"full_name": "List.reverse_range'",
"kind": "commanddeclaration",
"start": [
1459,
1
]
},
{
"code": "@[simp] theorem enumFrom_map_fst (n) :\n ∀ (l : List α), map Prod.fst (enumFrom n l) = range' n l.length",
"end": [
1472,
55
],
"full_name": "List.enumFrom_map_fst",
"kind": "commanddeclaration",
"start": [
1469,
1
]
},
{
"code": "@[simp] theorem enum_map_fst (l : List α) : map Prod.fst (enum l) = range l.length",
"end": [
1475,
54
],
"full_name": "List.enum_map_fst",
"kind": "commanddeclaration",
"start": [
1474,
1
]
},
{
"code": "theorem foldrIdx_start :\n (xs : List α).foldrIdx f i s = (xs : List α).foldrIdx (fun i => f (i + s)) i",
"end": [
1487,
43
],
"full_name": "List.foldrIdx_start",
"kind": "commanddeclaration",
"start": [
1479,
1
]
},
{
"code": "@[simp] theorem foldrIdx_cons :\n (x :: xs : List α).foldrIdx f i s = f s x (foldrIdx f i xs (s + 1))",
"end": [
1490,
79
],
"full_name": "List.foldrIdx_cons",
"kind": "commanddeclaration",
"start": [
1489,
1
]
},
{
"code": "theorem findIdxs_cons_aux (p : α → Bool) :\n foldrIdx (fun i a is => if p a = true then (i + 1) :: is else is) [] xs s =\n map (· + 1) (foldrIdx (fun i a is => if p a = true then i :: is else is) [] xs s)",
"end": [
1499,
24
],
"full_name": "List.findIdxs_cons_aux",
"kind": "commanddeclaration",
"start": [
1492,
1
]
},
{
"code": "theorem findIdxs_cons :\n (x :: xs : List α).findIdxs p =\n bif p x then 0 :: (xs.findIdxs p).map (· + 1) else (xs.findIdxs p).map (· + 1)",
"end": [
1508,
28
],
"full_name": "List.findIdxs_cons",
"kind": "commanddeclaration",
"start": [
1501,
1
]
},
{
"code": "@[simp] theorem indexesOf_nil [BEq α] : ([] : List α).indexesOf x = []",
"end": [
1510,
78
],
"full_name": "List.indexesOf_nil",
"kind": "commanddeclaration",
"start": [
1510,
1
]
},
{
"code": "theorem indexesOf_cons [BEq α] : (x :: xs : List α).indexesOf y =\n bif x == y then 0 :: (xs.indexesOf y).map (· + 1) else (xs.indexesOf y).map (· + 1)",
"end": [
1514,
34
],
"full_name": "List.indexesOf_cons",
"kind": "commanddeclaration",
"start": [
1512,
1
]
},
{
"code": "@[simp] theorem indexOf_nil [BEq α] : ([] : List α).indexOf x = 0",
"end": [
1516,
73
],
"full_name": "List.indexOf_nil",
"kind": "commanddeclaration",
"start": [
1516,
1
]
},
{
"code": "theorem indexOf_cons [BEq α] :\n (x :: xs : List α).indexOf y = bif x == y then 0 else xs.indexOf y + 1",
"end": [
1521,
22
],
"full_name": "List.indexOf_cons",
"kind": "commanddeclaration",
"start": [
1518,
1
]
},
{
"code": "theorem indexOf_mem_indexesOf [BEq α] [LawfulBEq α] {xs : List α} (m : x ∈ xs) :\n xs.indexOf x ∈ xs.indexesOf x",
"end": [
1535,
14
],
"full_name": "List.indexOf_mem_indexesOf",
"kind": "commanddeclaration",
"start": [
1523,
1
]
},
{
"code": "theorem merge_loop_nil_left (s : α → α → Bool) (r t) :\n merge.loop s [] r t = reverseAux t r",
"end": [
1539,
18
],
"full_name": "List.merge_loop_nil_left",
"kind": "commanddeclaration",
"start": [
1537,
1
]
},
{
"code": "theorem merge_loop_nil_right (s : α → α → Bool) (l t) :\n merge.loop s l [] t = reverseAux t l",
"end": [
1543,
52
],
"full_name": "List.merge_loop_nil_right",
"kind": "commanddeclaration",
"start": [
1541,
1
]
},
{
"code": "theorem merge_loop (s : α → α → Bool) (l r t) :\n merge.loop s l r t = reverseAux t (merge s l r)",
"end": [
1567,
64
],
"full_name": "List.merge_loop",
"kind": "commanddeclaration",
"start": [
1545,
1
]
},
{
"code": "@[simp] theorem merge_nil (s : α → α → Bool) (l) : merge s l [] = l",
"end": [
1569,
95
],
"full_name": "List.merge_nil",
"kind": "commanddeclaration",
"start": [
1569,
1
]
},
{
"code": "@[simp] theorem nil_merge (s : α → α → Bool) (r) : merge s [] r = r",
"end": [
1571,
94
],
"full_name": "List.nil_merge",
"kind": "commanddeclaration",
"start": [
1571,
1
]
},
{
"code": "theorem cons_merge_cons (s : α → α → Bool) (a b l r) :\n merge s (a::l) (b::r) = if s a b then a :: merge s l (b::r) else b :: merge s (a::l) r",
"end": [
1575,
87
],
"full_name": "List.cons_merge_cons",
"kind": "commanddeclaration",
"start": [
1573,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_pos (s : α → α → Bool) (l r) (h : s a b) :\n merge s (a::l) (b::r) = a :: merge s l (b::r)",
"end": [
1579,
33
],
"full_name": "List.cons_merge_cons_pos",
"kind": "commanddeclaration",
"start": [
1577,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_neg (s : α → α → Bool) (l r) (h : ¬ s a b) :\n merge s (a::l) (b::r) = b :: merge s (a::l) r",
"end": [
1583,
33
],
"full_name": "List.cons_merge_cons_neg",
"kind": "commanddeclaration",
"start": [
1581,
1
]
},
{
"code": "@[simp] theorem length_merge (s : α → α → Bool) (l r) :\n (merge s l r).length = l.length + r.length",
"end": [
1594,
43
],
"full_name": "List.length_merge",
"kind": "commanddeclaration",
"start": [
1585,
1
]
},
{
"code": "@[simp]\ntheorem mem_merge {s : α → α → Bool} : x ∈ merge s l r ↔ x ∈ l ∨ x ∈ r",
"end": [
1605,
68
],
"full_name": "List.mem_merge",
"kind": "commanddeclaration",
"start": [
1596,
1
]
},
{
"code": "theorem mem_merge_left (s : α → α → Bool) (h : x ∈ l) : x ∈ merge s l r",
"end": [
1608,
24
],
"full_name": "List.mem_merge_left",
"kind": "commanddeclaration",
"start": [
1607,
1
]
},
{
"code": "theorem mem_merge_right (s : α → α → Bool) (h : x ∈ r) : x ∈ merge s l r",
"end": [
1611,
24
],
"full_name": "List.mem_merge_right",
"kind": "commanddeclaration",
"start": [
1610,
1
]
}
] | 327 | List.mem_merge | [
[
1597,
75
],
[
1605,
68
]
] | 1 | 9 | simp | α : Type u_1
x : α
l✝ r : List α
s : α → α → Bool
l : List α
⊢ x ∈ merge s l [] ↔ x ∈ l ∨ x ∈ [] | no goals |
.lake/packages/batteries/Batteries/Data/List/Lemmas.lean | [
[
"Batteries.Tactic.Alias",
".lake/packages/batteries/Batteries/Tactic/Alias.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
],
[
"Batteries.Control.ForInStep.Lemmas",
".lake/packages/batteries/Batteries/Control/ForInStep/Lemmas.lean"
],
[
"Batteries.Tactic.Init",
".lake/packages/batteries/Batteries/Tactic/Init.lean"
],
[
"Batteries.Data.List.Basic",
".lake/packages/batteries/Batteries/Data/List/Basic.lean"
]
] | [
{
"code": "@[simp] theorem mem_toArray {a : α} {l : List α} : a ∈ l.toArray ↔ a ∈ l",
"end": [
18,
23
],
"full_name": "List.mem_toArray",
"kind": "commanddeclaration",
"start": [
17,
1
]
},
{
"code": "@[simp]\ntheorem drop_one : ∀ l : List α, drop 1 l = tail l",
"end": [
24,
23
],
"full_name": "List.drop_one",
"kind": "commanddeclaration",
"start": [
22,
1
]
},
{
"code": "theorem zipWith_distrib_tail : (zipWith f l l').tail = zipWith f l.tail l'.tail",
"end": [
29,
47
],
"full_name": "List.zipWith_distrib_tail",
"kind": "commanddeclaration",
"start": [
28,
1
]
},
{
"code": "theorem subset_def {l₁ l₂ : List α} : l₁ ⊆ l₂ ↔ ∀ {a : α}, a ∈ l₁ → a ∈ l₂",
"end": [
33,
83
],
"full_name": "List.subset_def",
"kind": "commanddeclaration",
"start": [
33,
1
]
},
{
"code": "@[simp] theorem nil_subset (l : List α) : [] ⊆ l",
"end": [
35,
58
],
"full_name": "List.nil_subset",
"kind": "commanddeclaration",
"start": [
35,
1
]
},
{
"code": "@[simp] theorem Subset.refl (l : List α) : l ⊆ l",
"end": [
37,
65
],
"full_name": "List.Subset.refl",
"kind": "commanddeclaration",
"start": [
37,
1
]
},
{
"code": "theorem Subset.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ ⊆ l₂) (h₂ : l₂ ⊆ l₃) : l₁ ⊆ l₃",
"end": [
40,
23
],
"full_name": "List.Subset.trans",
"kind": "commanddeclaration",
"start": [
39,
1
]
},
{
"code": "@[simp] theorem subset_cons (a : α) (l : List α) : l ⊆ a :: l",
"end": [
48,
85
],
"full_name": "List.subset_cons",
"kind": "commanddeclaration",
"start": [
48,
1
]
},
{
"code": "theorem subset_of_cons_subset {a : α} {l₁ l₂ : List α} : a :: l₁ ⊆ l₂ → l₁ ⊆ l₂",
"end": [
51,
39
],
"full_name": "List.subset_of_cons_subset",
"kind": "commanddeclaration",
"start": [
50,
1
]
},
{
"code": "theorem subset_cons_of_subset (a : α) {l₁ l₂ : List α} : l₁ ⊆ l₂ → l₁ ⊆ a :: l₂",
"end": [
54,
29
],
"full_name": "List.subset_cons_of_subset",
"kind": "commanddeclaration",
"start": [
53,
1
]
},
{
"code": "theorem cons_subset_cons {l₁ l₂ : List α} (a : α) (s : l₁ ⊆ l₂) : a :: l₁ ⊆ a :: l₂",
"end": [
57,
62
],
"full_name": "List.cons_subset_cons",
"kind": "commanddeclaration",
"start": [
56,
1
]
},
{
"code": "@[simp] theorem subset_append_left (l₁ l₂ : List α) : l₁ ⊆ l₁ ++ l₂",
"end": [
59,
98
],
"full_name": "List.subset_append_left",
"kind": "commanddeclaration",
"start": [
59,
1
]
},
{
"code": "@[simp] theorem subset_append_right (l₁ l₂ : List α) : l₂ ⊆ l₁ ++ l₂",
"end": [
61,
100
],
"full_name": "List.subset_append_right",
"kind": "commanddeclaration",
"start": [
61,
1
]
},
{
"code": "theorem subset_append_of_subset_left (l₂ : List α) : l ⊆ l₁ → l ⊆ l₁ ++ l₂",
"end": [
64,
50
],
"full_name": "List.subset_append_of_subset_left",
"kind": "commanddeclaration",
"start": [
63,
1
]
},
{
"code": "theorem subset_append_of_subset_right (l₁ : List α) : l ⊆ l₂ → l ⊆ l₁ ++ l₂",
"end": [
67,
51
],
"full_name": "List.subset_append_of_subset_right",
"kind": "commanddeclaration",
"start": [
66,
1
]
},
{
"code": "@[simp] theorem cons_subset : a :: l ⊆ m ↔ a ∈ m ∧ l ⊆ m",
"end": [
70,
66
],
"full_name": "List.cons_subset",
"kind": "commanddeclaration",
"start": [
69,
1
]
},
{
"code": "@[simp] theorem append_subset {l₁ l₂ l : List α} :\n l₁ ++ l₂ ⊆ l ↔ l₁ ⊆ l ∧ l₂ ⊆ l",
"end": [
73,
79
],
"full_name": "List.append_subset",
"kind": "commanddeclaration",
"start": [
72,
1
]
},
{
"code": "theorem subset_nil {l : List α} : l ⊆ [] ↔ l = []",
"end": [
76,
99
],
"full_name": "List.subset_nil",
"kind": "commanddeclaration",
"start": [
75,
1
]
},
{
"code": "theorem map_subset {l₁ l₂ : List α} (f : α → β) (H : l₁ ⊆ l₂) : map f l₁ ⊆ map f l₂",
"end": [
79,
72
],
"full_name": "List.map_subset",
"kind": "commanddeclaration",
"start": [
78,
1
]
},
{
"code": "@[simp] theorem nil_sublist : ∀ l : List α, [] <+ l",
"end": [
85,
37
],
"full_name": "List.nil_sublist",
"kind": "commanddeclaration",
"start": [
83,
1
]
},
{
"code": "@[simp] theorem Sublist.refl : ∀ l : List α, l <+ l",
"end": [
89,
39
],
"full_name": "List.Sublist.refl",
"kind": "commanddeclaration",
"start": [
87,
1
]
},
{
"code": "theorem Sublist.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ <+ l₂) (h₂ : l₂ <+ l₃) : l₁ <+ l₃",
"end": [
100,
53
],
"full_name": "List.Sublist.trans",
"kind": "commanddeclaration",
"start": [
91,
1
]
},
{
"code": "@[simp] theorem sublist_cons (a : α) (l : List α) : l <+ a :: l",
"end": [
104,
91
],
"full_name": "List.sublist_cons",
"kind": "commanddeclaration",
"start": [
104,
1
]
},
{
"code": "theorem sublist_of_cons_sublist : a :: l₁ <+ l₂ → l₁ <+ l₂",
"end": [
107,
28
],
"full_name": "List.sublist_of_cons_sublist",
"kind": "commanddeclaration",
"start": [
106,
1
]
},
{
"code": "@[simp] theorem sublist_append_left : ∀ l₁ l₂ : List α, l₁ <+ l₁ ++ l₂",
"end": [
111,
55
],
"full_name": "List.sublist_append_left",
"kind": "commanddeclaration",
"start": [
109,
1
]
},
{
"code": "@[simp] theorem sublist_append_right : ∀ l₁ l₂ : List α, l₂ <+ l₁ ++ l₂",
"end": [
115,
55
],
"full_name": "List.sublist_append_right",
"kind": "commanddeclaration",
"start": [
113,
1
]
},
{
"code": "theorem sublist_append_of_sublist_left (s : l <+ l₁) : l <+ l₁ ++ l₂",
"end": [
118,
36
],
"full_name": "List.sublist_append_of_sublist_left",
"kind": "commanddeclaration",
"start": [
117,
1
]
},
{
"code": "theorem sublist_append_of_sublist_right (s : l <+ l₂) : l <+ l₁ ++ l₂",
"end": [
121,
37
],
"full_name": "List.sublist_append_of_sublist_right",
"kind": "commanddeclaration",
"start": [
120,
1
]
},
{
"code": "@[simp]\ntheorem cons_sublist_cons : a :: l₁ <+ a :: l₂ ↔ l₁ <+ l₂",
"end": [
125,
77
],
"full_name": "List.cons_sublist_cons",
"kind": "commanddeclaration",
"start": [
123,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_left : ∀ l, l ++ l₁ <+ l ++ l₂ ↔ l₁ <+ l₂",
"end": [
129,
69
],
"full_name": "List.append_sublist_append_left",
"kind": "commanddeclaration",
"start": [
127,
1
]
},
{
"code": "theorem Sublist.append_left : l₁ <+ l₂ → ∀ l, l ++ l₁ <+ l ++ l₂",
"end": [
132,
50
],
"full_name": "List.Sublist.append_left",
"kind": "commanddeclaration",
"start": [
131,
1
]
},
{
"code": "theorem Sublist.append_right : l₁ <+ l₂ → ∀ l, l₁ ++ l <+ l₂ ++ l",
"end": [
137,
48
],
"full_name": "List.Sublist.append_right",
"kind": "commanddeclaration",
"start": [
134,
1
]
},
{
"code": "theorem sublist_or_mem_of_sublist (h : l <+ l₁ ++ a :: l₂) : l <+ l₁ ++ l₂ ∨ a ∈ l",
"end": [
147,
65
],
"full_name": "List.sublist_or_mem_of_sublist",
"kind": "commanddeclaration",
"start": [
139,
1
]
},
{
"code": "theorem Sublist.reverse : l₁ <+ l₂ → l₁.reverse <+ l₂.reverse",
"end": [
152,
85
],
"full_name": "List.Sublist.reverse",
"kind": "commanddeclaration",
"start": [
149,
1
]
},
{
"code": "@[simp] theorem reverse_sublist : l₁.reverse <+ l₂.reverse ↔ l₁ <+ l₂",
"end": [
155,
82
],
"full_name": "List.reverse_sublist",
"kind": "commanddeclaration",
"start": [
154,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_right (l) : l₁ ++ l <+ l₂ ++ l ↔ l₁ <+ l₂",
"end": [
162,
30
],
"full_name": "List.append_sublist_append_right",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "theorem Sublist.append (hl : l₁ <+ l₂) (hr : r₁ <+ r₂) : l₁ ++ r₁ <+ l₂ ++ r₂",
"end": [
165,
66
],
"full_name": "List.Sublist.append",
"kind": "commanddeclaration",
"start": [
164,
1
]
},
{
"code": "theorem Sublist.subset : l₁ <+ l₂ → l₁ ⊆ l₂",
"end": [
171,
53
],
"full_name": "List.Sublist.subset",
"kind": "commanddeclaration",
"start": [
167,
1
]
},
{
"code": "theorem Sublist.length_le : l₁ <+ l₂ → length l₁ ≤ length l₂",
"end": [
185,
45
],
"full_name": "List.Sublist.length_le",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "@[simp] theorem sublist_nil {l : List α} : l <+ [] ↔ l = []",
"end": [
188,
64
],
"full_name": "List.sublist_nil",
"kind": "commanddeclaration",
"start": [
187,
1
]
},
{
"code": "theorem Sublist.eq_of_length : l₁ <+ l₂ → length l₁ = length l₂ → l₁ = l₂",
"end": [
193,
57
],
"full_name": "List.Sublist.eq_of_length",
"kind": "commanddeclaration",
"start": [
190,
1
]
},
{
"code": "theorem Sublist.eq_of_length_le (s : l₁ <+ l₂) (h : length l₂ ≤ length l₁) : l₁ = l₂",
"end": [
196,
50
],
"full_name": "List.Sublist.eq_of_length_le",
"kind": "commanddeclaration",
"start": [
195,
1
]
},
{
"code": "@[simp] theorem singleton_sublist {a : α} {l} : [a] <+ l ↔ a ∈ l",
"end": [
201,
66
],
"full_name": "List.singleton_sublist",
"kind": "commanddeclaration",
"start": [
198,
1
]
},
{
"code": "@[simp] theorem replicate_sublist_replicate {m n} (a : α) :\n replicate m a <+ replicate n a ↔ m ≤ n",
"end": [
209,
48
],
"full_name": "List.replicate_sublist_replicate",
"kind": "commanddeclaration",
"start": [
203,
1
]
},
{
"code": "theorem isSublist_iff_sublist [BEq α] [LawfulBEq α] {l₁ l₂ : List α} :\n l₁.isSublist l₂ ↔ l₁ <+ l₂",
"end": [
228,
24
],
"full_name": "List.isSublist_iff_sublist",
"kind": "commanddeclaration",
"start": [
211,
1
]
},
{
"code": "theorem tail_eq_tailD (l) : @tail α l = tailD l []",
"end": [
235,
73
],
"full_name": "List.tail_eq_tailD",
"kind": "commanddeclaration",
"start": [
235,
1
]
},
{
"code": "theorem tail_eq_tail? (l) : @tail α l = (tail? l).getD []",
"end": [
237,
85
],
"full_name": "List.tail_eq_tail?",
"kind": "commanddeclaration",
"start": [
237,
1
]
},
{
"code": "@[simp] theorem next?_nil : @next? α [] = none",
"end": [
241,
54
],
"full_name": "List.next?_nil",
"kind": "commanddeclaration",
"start": [
241,
1
]
},
{
"code": "@[simp] theorem next?_cons (a l) : @next? α (a :: l) = some (a, l)",
"end": [
242,
74
],
"full_name": "List.next?_cons",
"kind": "commanddeclaration",
"start": [
242,
1
]
},
{
"code": "theorem getElem_eq_iff {l : List α} {n : Nat} {h : n < l.length} : l[n] = x ↔ l[n]? = some x",
"end": [
248,
40
],
"full_name": "List.getElem_eq_iff",
"kind": "commanddeclaration",
"start": [
246,
1
]
},
{
"code": "@[deprecated getElem_eq_iff (since := \"2024-06-12\")]\ntheorem get_eq_iff : List.get l n = x ↔ l.get? n.1 = some x",
"end": [
252,
7
],
"full_name": "List.get_eq_iff",
"kind": "commanddeclaration",
"start": [
250,
1
]
},
{
"code": "theorem getElem?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs[i]? = xs[j]?) : i = j",
"end": [
273,
39
],
"full_name": "List.getElem?_inj",
"kind": "commanddeclaration",
"start": [
254,
1
]
},
{
"code": "@[deprecated getElem?_inj (since := \"2024-06-12\")]\ntheorem get?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs.get? i = xs.get? j) : i = j",
"end": [
279,
11
],
"full_name": "List.get?_inj",
"kind": "commanddeclaration",
"start": [
275,
1
]
},
{
"code": "theorem tail_drop (l : List α) (n : Nat) : (l.drop n).tail = l.drop (n + 1)",
"end": [
289,
16
],
"full_name": "List.tail_drop",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "@[simp] theorem modifyNth_nil (f : α → α) (n) : [].modifyNth f n = []",
"end": [
293,
92
],
"full_name": "List.modifyNth_nil",
"kind": "commanddeclaration",
"start": [
293,
1
]
},
{
"code": "@[simp] theorem modifyNth_zero_cons (f : α → α) (a : α) (l : List α) :\n (a :: l).modifyNth f 0 = f a :: l",
"end": [
296,
45
],
"full_name": "List.modifyNth_zero_cons",
"kind": "commanddeclaration",
"start": [
295,
1
]
},
{
"code": "@[simp] theorem modifyNth_succ_cons (f : α → α) (a : α) (l : List α) (n) :\n (a :: l).modifyNth f (n + 1) = a :: l.modifyNth f n",
"end": [
299,
66
],
"full_name": "List.modifyNth_succ_cons",
"kind": "commanddeclaration",
"start": [
298,
1
]
},
{
"code": "theorem modifyNthTail_id : ∀ n (l : List α), l.modifyNthTail id n = l",
"end": [
304,
60
],
"full_name": "List.modifyNthTail_id",
"kind": "commanddeclaration",
"start": [
301,
1
]
},
{
"code": "theorem eraseIdx_eq_modifyNthTail : ∀ n (l : List α), eraseIdx l n = modifyNthTail tail n l",
"end": [
309,
69
],
"full_name": "List.eraseIdx_eq_modifyNthTail",
"kind": "commanddeclaration",
"start": [
306,
1
]
},
{
"code": "theorem getElem?_modifyNth (f : α → α) :\n ∀ n (l : List α) m, (modifyNth f n l)[m]? = (fun a => if n = m then f a else a) <$> l[m]?",
"end": [
322,
79
],
"full_name": "List.getElem?_modifyNth",
"kind": "commanddeclaration",
"start": [
313,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth (since := \"2024-06-12\")]\ntheorem get?_modifyNth (f : α → α) (n) (l : List α) (m) :\n (modifyNth f n l).get? m = (fun a => if n = m then f a else a) <$> l.get? m",
"end": [
327,
28
],
"full_name": "List.get?_modifyNth",
"kind": "commanddeclaration",
"start": [
324,
1
]
},
{
"code": "theorem modifyNthTail_length (f : List α → List α) (H : ∀ l, length (f l) = length l) :\n ∀ n l, length (modifyNthTail f n l) = length l",
"end": [
333,
65
],
"full_name": "List.modifyNthTail_length",
"kind": "commanddeclaration",
"start": [
329,
1
]
},
{
"code": "theorem modifyNthTail_add (f : List α → List α) (n) (l₁ l₂ : List α) :\n modifyNthTail f (l₁.length + n) (l₁ ++ l₂) = l₁ ++ modifyNthTail f n l₂",
"end": [
337,
42
],
"full_name": "List.modifyNthTail_add",
"kind": "commanddeclaration",
"start": [
335,
1
]
},
{
"code": "theorem exists_of_modifyNthTail (f : List α → List α) {n} {l : List α} (h : n ≤ l.length) :\n ∃ l₁ l₂, l = l₁ ++ l₂ ∧ l₁.length = n ∧ modifyNthTail f n l = l₁ ++ f l₂",
"end": [
343,
58
],
"full_name": "List.exists_of_modifyNthTail",
"kind": "commanddeclaration",
"start": [
339,
1
]
},
{
"code": "@[simp] theorem modify_get?_length (f : α → α) : ∀ n l, length (modifyNth f n l) = length l",
"end": [
346,
53
],
"full_name": "List.modify_get?_length",
"kind": "commanddeclaration",
"start": [
345,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l)[n]? = f <$> l[n]?",
"end": [
350,
41
],
"full_name": "List.getElem?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_eq (since := \"2024-06-12\")]\ntheorem get?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l).get? n = f <$> l.get? n",
"end": [
355,
31
],
"full_name": "List.get?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
352,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l)[n]? = l[n]?",
"end": [
359,
52
],
"full_name": "List.getElem?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
357,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_ne (since := \"2024-06-12\")]\ntheorem get?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l).get? n = l.get? n",
"end": [
364,
11
],
"full_name": "List.get?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
361,
1
]
},
{
"code": "theorem exists_of_modifyNth (f : α → α) {n} {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ modifyNth f n l = l₁ ++ f a :: l₂",
"end": [
370,
74
],
"full_name": "List.exists_of_modifyNth",
"kind": "commanddeclaration",
"start": [
366,
1
]
},
{
"code": "theorem modifyNthTail_eq_take_drop (f : List α → List α) (H : f [] = []) :\n ∀ n l, modifyNthTail f n l = take n l ++ f (drop n l)",
"end": [
376,
76
],
"full_name": "List.modifyNthTail_eq_take_drop",
"kind": "commanddeclaration",
"start": [
372,
1
]
},
{
"code": "theorem modifyNth_eq_take_drop (f : α → α) :\n ∀ n l, modifyNth f n l = take n l ++ modifyHead f (drop n l)",
"end": [
380,
35
],
"full_name": "List.modifyNth_eq_take_drop",
"kind": "commanddeclaration",
"start": [
378,
1
]
},
{
"code": "theorem modifyNth_eq_take_cons_drop (f : α → α) {n l} (h) :\n modifyNth f n l = take n l ++ f l[n] :: drop (n + 1) l",
"end": [
384,
59
],
"full_name": "List.modifyNth_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
382,
1
]
},
{
"code": "theorem set_eq_modifyNth (a : α) : ∀ n (l : List α), set l n a = modifyNth (fun _ => a) n l",
"end": [
391,
62
],
"full_name": "List.set_eq_modifyNth",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "theorem set_eq_take_cons_drop (a : α) {n l} (h : n < length l) :\n set l n a = take n l ++ a :: drop (n + 1) l",
"end": [
395,
57
],
"full_name": "List.set_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
393,
1
]
},
{
"code": "theorem modifyNth_eq_set_get? (f : α → α) :\n ∀ n (l : List α), l.modifyNth f n = ((fun a => l.set n (f a)) <$> l.get? n).getD l",
"end": [
402,
92
],
"full_name": "List.modifyNth_eq_set_get?",
"kind": "commanddeclaration",
"start": [
397,
1
]
},
{
"code": "theorem modifyNth_eq_set_get (f : α → α) {n} {l : List α} (h) :\n l.modifyNth f n = l.set n (f (l.get ⟨n, h⟩))",
"end": [
406,
49
],
"full_name": "List.modifyNth_eq_set_get",
"kind": "commanddeclaration",
"start": [
404,
1
]
},
{
"code": "theorem exists_of_set {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
410,
55
],
"full_name": "List.exists_of_set",
"kind": "commanddeclaration",
"start": [
408,
1
]
},
{
"code": "theorem exists_of_set' {l : List α} (h : n < l.length) :\n ∃ l₁ l₂, l = l₁ ++ l[n] :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
414,
94
],
"full_name": "List.exists_of_set'",
"kind": "commanddeclaration",
"start": [
412,
1
]
},
{
"code": "@[simp]\ntheorem getElem?_set_eq' (a : α) (n) (l : List α) : (set l n a)[n]? = (fun _ => a) <$> l[n]?",
"end": [
418,
54
],
"full_name": "List.getElem?_set_eq'",
"kind": "commanddeclaration",
"start": [
416,
1
]
},
{
"code": "@[deprecated getElem?_set_eq' (since := \"2024-06-12\")]\ntheorem get?_set_eq (a : α) (n) (l : List α) : (set l n a).get? n = (fun _ => a) <$> l.get? n",
"end": [
422,
7
],
"full_name": "List.get?_set_eq",
"kind": "commanddeclaration",
"start": [
420,
1
]
},
{
"code": "theorem getElem?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a)[n]? = some a",
"end": [
425,
85
],
"full_name": "List.getElem?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
424,
1
]
},
{
"code": "@[deprecated getElem?_set_eq_of_lt (since := \"2024-06-12\")]\ntheorem get?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a).get? n = some a",
"end": [
430,
70
],
"full_name": "List.get?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
427,
1
]
},
{
"code": "@[deprecated getElem?_set_ne (since := \"2024-06-12\")]\ntheorem get?_set_ne (a : α) {m n} (l : List α) (h : m ≠ n) : (set l m a).get? n = l.get? n",
"end": [
434,
11
],
"full_name": "List.get?_set_ne",
"kind": "commanddeclaration",
"start": [
432,
1
]
},
{
"code": "theorem getElem?_set' (a : α) {m n} (l : List α) :\n (set l m a)[n]? = if m = n then (fun _ => a) <$> l[n]? else l[n]?",
"end": [
438,
30
],
"full_name": "List.getElem?_set'",
"kind": "commanddeclaration",
"start": [
436,
1
]
},
{
"code": "@[deprecated getElem?_set (since := \"2024-06-12\")]\ntheorem get?_set (a : α) {m n} (l : List α) :\n (set l m a).get? n = if m = n then (fun _ => a) <$> l.get? n else l.get? n",
"end": [
443,
23
],
"full_name": "List.get?_set",
"kind": "commanddeclaration",
"start": [
440,
1
]
},
{
"code": "theorem get?_set_of_lt (a : α) {m n} (l : List α) (h : n < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
447,
46
],
"full_name": "List.get?_set_of_lt",
"kind": "commanddeclaration",
"start": [
445,
1
]
},
{
"code": "theorem get?_set_of_lt' (a : α) {m n} (l : List α) (h : m < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
451,
80
],
"full_name": "List.get?_set_of_lt'",
"kind": "commanddeclaration",
"start": [
449,
1
]
},
{
"code": "theorem drop_set_of_lt (a : α) {n m : Nat} (l : List α) (h : n < m) :\n (l.set n a).drop m = l.drop m",
"end": [
455,
94
],
"full_name": "List.drop_set_of_lt",
"kind": "commanddeclaration",
"start": [
453,
1
]
},
{
"code": "theorem take_set_of_lt (a : α) {n m : Nat} (l : List α) (h : m < n) :\n (l.set n a).take m = l.take m",
"end": [
463,
10
],
"full_name": "List.take_set_of_lt",
"kind": "commanddeclaration",
"start": [
457,
1
]
},
{
"code": "theorem length_eraseIdx : ∀ {l i}, i < length l → length (@eraseIdx α l i) = length l - 1",
"end": [
473,
92
],
"full_name": "List.length_eraseIdx",
"kind": "commanddeclaration",
"start": [
467,
1
]
},
{
"code": "@[simp] theorem length_tail (l : List α) : length (tail l) = length l - 1",
"end": [
479,
96
],
"full_name": "List.length_tail",
"kind": "commanddeclaration",
"start": [
479,
1
]
},
{
"code": "@[simp] theorem eraseP_nil : [].eraseP p = []",
"end": [
483,
53
],
"full_name": "List.eraseP_nil",
"kind": "commanddeclaration",
"start": [
483,
1
]
},
{
"code": "theorem eraseP_cons (a : α) (l : List α) :\n (a :: l).eraseP p = bif p a then l else a :: l.eraseP p",
"end": [
486,
67
],
"full_name": "List.eraseP_cons",
"kind": "commanddeclaration",
"start": [
485,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_pos {l : List α} (p) (h : p a) : (a :: l).eraseP p = l",
"end": [
489,
24
],
"full_name": "List.eraseP_cons_of_pos",
"kind": "commanddeclaration",
"start": [
488,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_neg {l : List α} (p) (h : ¬p a) :\n (a :: l).eraseP p = a :: l.eraseP p",
"end": [
492,
68
],
"full_name": "List.eraseP_cons_of_neg",
"kind": "commanddeclaration",
"start": [
491,
1
]
},
{
"code": "theorem eraseP_of_forall_not {l : List α} (h : ∀ a, a ∈ l → ¬p a) : l.eraseP p = l",
"end": [
497,
69
],
"full_name": "List.eraseP_of_forall_not",
"kind": "commanddeclaration",
"start": [
494,
1
]
},
{
"code": "theorem exists_of_eraseP : ∀ {l : List α} {a} (al : a ∈ l) (pa : p a),\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
510,
57
],
"full_name": "List.exists_of_eraseP",
"kind": "commanddeclaration",
"start": [
499,
1
]
},
{
"code": "theorem exists_or_eq_self_of_eraseP (p) (l : List α) :\n l.eraseP p = l ∨\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
519,
46
],
"full_name": "List.exists_or_eq_self_of_eraseP",
"kind": "commanddeclaration",
"start": [
512,
1
]
},
{
"code": "@[simp] theorem length_eraseP_of_mem (al : a ∈ l) (pa : p a) :\n length (l.eraseP p) = Nat.pred (length l)",
"end": [
524,
41
],
"full_name": "List.length_eraseP_of_mem",
"kind": "commanddeclaration",
"start": [
521,
1
]
},
{
"code": "theorem eraseP_append_left {a : α} (pa : p a) :\n ∀ {l₁ : List α} l₂, a ∈ l₁ → (l₁++l₂).eraseP p = l₁.eraseP p ++ l₂",
"end": [
531,
28
],
"full_name": "List.eraseP_append_left",
"kind": "commanddeclaration",
"start": [
526,
1
]
},
{
"code": "theorem eraseP_append_right :\n ∀ {l₁ : List α} l₂, (∀ b ∈ l₁, ¬p b) → eraseP p (l₁++l₂) = l₁ ++ l₂.eraseP p",
"end": [
537,
82
],
"full_name": "List.eraseP_append_right",
"kind": "commanddeclaration",
"start": [
533,
1
]
},
{
"code": "theorem eraseP_sublist (l : List α) : l.eraseP p <+ l",
"end": [
542,
56
],
"full_name": "List.eraseP_sublist",
"kind": "commanddeclaration",
"start": [
539,
1
]
},
{
"code": "theorem eraseP_subset (l : List α) : l.eraseP p ⊆ l",
"end": [
544,
81
],
"full_name": "List.eraseP_subset",
"kind": "commanddeclaration",
"start": [
544,
1
]
},
{
"code": "protected theorem Sublist.eraseP : l₁ <+ l₂ → l₁.eraseP p <+ l₂.eraseP p",
"end": [
553,
25
],
"full_name": "List.Sublist.eraseP",
"kind": "commanddeclaration",
"start": [
546,
1
]
},
{
"code": "theorem mem_of_mem_eraseP {l : List α} : a ∈ l.eraseP p → a ∈ l",
"end": [
555,
87
],
"full_name": "List.mem_of_mem_eraseP",
"kind": "commanddeclaration",
"start": [
555,
1
]
},
{
"code": "@[simp] theorem mem_eraseP_of_neg {l : List α} (pa : ¬p a) : a ∈ l.eraseP p ↔ a ∈ l",
"end": [
564,
33
],
"full_name": "List.mem_eraseP_of_neg",
"kind": "commanddeclaration",
"start": [
557,
1
]
},
{
"code": "theorem eraseP_map (f : β → α) : ∀ (l : List β), (map f l).eraseP p = map f (l.eraseP (p ∘ f))",
"end": [
568,
85
],
"full_name": "List.eraseP_map",
"kind": "commanddeclaration",
"start": [
566,
1
]
},
{
"code": "@[simp] theorem extractP_eq_find?_eraseP\n (l : List α) : extractP p l = (find? p l, eraseP p l)",
"end": [
578,
21
],
"full_name": "List.extractP_eq_find?_eraseP",
"kind": "commanddeclaration",
"start": [
570,
1
]
},
{
"code": "theorem erase_eq_eraseP' (a : α) (l : List α) : l.erase a = l.eraseP (· == a)",
"end": [
590,
46
],
"full_name": "List.erase_eq_eraseP'",
"kind": "commanddeclaration",
"start": [
585,
1
]
},
{
"code": "theorem erase_eq_eraseP [LawfulBEq α] (a : α) : ∀ l : List α, l.erase a = l.eraseP (a == ·)",
"end": [
595,
77
],
"full_name": "List.erase_eq_eraseP",
"kind": "commanddeclaration",
"start": [
592,
1
]
},
{
"code": "theorem exists_erase_eq [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n ∃ l₁ l₂, a ∉ l₁ ∧ l = l₁ ++ a :: l₂ ∧ l.erase a = l₁ ++ l₂",
"end": [
600,
99
],
"full_name": "List.exists_erase_eq",
"kind": "commanddeclaration",
"start": [
597,
1
]
},
{
"code": "@[simp] theorem length_erase_of_mem [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n length (l.erase a) = Nat.pred (length l)",
"end": [
604,
74
],
"full_name": "List.length_erase_of_mem",
"kind": "commanddeclaration",
"start": [
602,
1
]
},
{
"code": "theorem erase_append_left [LawfulBEq α] {l₁ : List α} (l₂) (h : a ∈ l₁) :\n (l₁ ++ l₂).erase a = l₁.erase a ++ l₂",
"end": [
608,
77
],
"full_name": "List.erase_append_left",
"kind": "commanddeclaration",
"start": [
606,
1
]
},
{
"code": "theorem erase_append_right [LawfulBEq α] {a : α} {l₁ : List α} (l₂ : List α) (h : a ∉ l₁) :\n (l₁ ++ l₂).erase a = (l₁ ++ l₂.erase a)",
"end": [
613,
55
],
"full_name": "List.erase_append_right",
"kind": "commanddeclaration",
"start": [
610,
1
]
},
{
"code": "theorem erase_sublist (a : α) (l : List α) : l.erase a <+ l",
"end": [
616,
42
],
"full_name": "List.erase_sublist",
"kind": "commanddeclaration",
"start": [
615,
1
]
},
{
"code": "theorem erase_subset (a : α) (l : List α) : l.erase a ⊆ l",
"end": [
618,
88
],
"full_name": "List.erase_subset",
"kind": "commanddeclaration",
"start": [
618,
1
]
},
{
"code": "theorem Sublist.erase (a : α) {l₁ l₂ : List α} (h : l₁ <+ l₂) : l₁.erase a <+ l₂.erase a",
"end": [
621,
47
],
"full_name": "List.Sublist.erase",
"kind": "commanddeclaration",
"start": [
620,
1
]
},
{
"code": "theorem mem_of_mem_erase {a b : α} {l : List α} (h : a ∈ l.erase b) : a ∈ l",
"end": [
624,
98
],
"full_name": "List.mem_of_mem_erase",
"kind": "commanddeclaration",
"start": [
624,
1
]
},
{
"code": "@[simp] theorem mem_erase_of_ne [LawfulBEq α] {a b : α} {l : List α} (ab : a ≠ b) :\n a ∈ l.erase b ↔ a ∈ l",
"end": [
628,
65
],
"full_name": "List.mem_erase_of_ne",
"kind": "commanddeclaration",
"start": [
626,
1
]
},
{
"code": "theorem erase_comm [LawfulBEq α] (a b : α) (l : List α) :\n (l.erase a).erase b = (l.erase b).erase a",
"end": [
644,
49
],
"full_name": "List.erase_comm",
"kind": "commanddeclaration",
"start": [
630,
1
]
},
{
"code": "@[simp] theorem filter_sublist {p : α → Bool} : ∀ (l : List α), filter p l <+ l",
"end": [
652,
93
],
"full_name": "List.filter_sublist",
"kind": "commanddeclaration",
"start": [
650,
1
]
},
{
"code": "protected theorem Sublist.filterMap (f : α → Option β) (s : l₁ <+ l₂) :\n filterMap f l₁ <+ filterMap f l₂",
"end": [
658,
76
],
"full_name": "List.Sublist.filterMap",
"kind": "commanddeclaration",
"start": [
656,
1
]
},
{
"code": "theorem Sublist.filter (p : α → Bool) {l₁ l₂} (s : l₁ <+ l₂) : filter p l₁ <+ filter p l₂",
"end": [
661,
48
],
"full_name": "List.Sublist.filter",
"kind": "commanddeclaration",
"start": [
660,
1
]
},
{
"code": "@[simp] theorem findIdx_nil {α : Type _} (p : α → Bool) : [].findIdx p = 0",
"end": [
665,
82
],
"full_name": "List.findIdx_nil",
"kind": "commanddeclaration",
"start": [
665,
1
]
},
{
"code": "theorem findIdx_cons (p : α → Bool) (b : α) (l : List α) :\n (b :: l).findIdx p = bif p b then 0 else (l.findIdx p) + 1",
"end": [
680,
43
],
"full_name": "List.findIdx_cons",
"kind": "commanddeclaration",
"start": [
667,
1
]
},
{
"code": "theorem findIdx_of_get?_eq_some {xs : List α} (w : xs.get? (xs.findIdx p) = some y) : p y",
"end": [
685,
65
],
"full_name": "List.findIdx_of_get?_eq_some",
"kind": "commanddeclaration",
"start": [
682,
1
]
},
{
"code": "theorem findIdx_get {xs : List α} {w : xs.findIdx p < xs.length} :\n p (xs.get ⟨xs.findIdx p, w⟩)",
"end": [
689,
45
],
"full_name": "List.findIdx_get",
"kind": "commanddeclaration",
"start": [
687,
1
]
},
{
"code": "theorem findIdx_lt_length_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.findIdx p < xs.length",
"end": [
703,
24
],
"full_name": "List.findIdx_lt_length_of_exists",
"kind": "commanddeclaration",
"start": [
691,
1
]
},
{
"code": "theorem findIdx_get?_eq_get_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.get? (xs.findIdx p) = some (xs.get ⟨xs.findIdx p, xs.findIdx_lt_length_of_exists h⟩)",
"end": [
707,
46
],
"full_name": "List.findIdx_get?_eq_get_of_exists",
"kind": "commanddeclaration",
"start": [
705,
1
]
},
{
"code": "@[simp] theorem findIdx?_nil : ([] : List α).findIdx? p i = none",
"end": [
711,
72
],
"full_name": "List.findIdx?_nil",
"kind": "commanddeclaration",
"start": [
711,
1
]
},
{
"code": "@[simp] theorem findIdx?_cons :\n (x :: xs).findIdx? p i = if p x then some i else findIdx? p xs (i + 1)",
"end": [
714,
82
],
"full_name": "List.findIdx?_cons",
"kind": "commanddeclaration",
"start": [
713,
1
]
},
{
"code": "@[simp] theorem findIdx?_succ :\n (xs : List α).findIdx? p (i+1) = (xs.findIdx? p i).map fun i => i + 1",
"end": [
719,
37
],
"full_name": "List.findIdx?_succ",
"kind": "commanddeclaration",
"start": [
716,
1
]
},
{
"code": "theorem findIdx?_eq_some_iff (xs : List α) (p : α → Bool) :\n xs.findIdx? p = some i ↔ (xs.take (i + 1)).map p = replicate i false ++ [true]",
"end": [
727,
52
],
"full_name": "List.findIdx?_eq_some_iff",
"kind": "commanddeclaration",
"start": [
721,
1
]
},
{
"code": "theorem findIdx?_of_eq_some {xs : List α} {p : α → Bool} (w : xs.findIdx? p = some i) :\n match xs.get? i with | some a => p a | none => false",
"end": [
735,
40
],
"full_name": "List.findIdx?_of_eq_some",
"kind": "commanddeclaration",
"start": [
729,
1
]
},
{
"code": "theorem findIdx?_of_eq_none {xs : List α} {p : α → Bool} (w : xs.findIdx? p = none) :\n ∀ i, match xs.get? i with | some a => ¬ p a | none => true",
"end": [
750,
30
],
"full_name": "List.findIdx?_of_eq_none",
"kind": "commanddeclaration",
"start": [
737,
1
]
},
{
"code": "@[simp] theorem findIdx?_append :\n (xs ++ ys : List α).findIdx? p =\n (xs.findIdx? p <|> (ys.findIdx? p).map fun i => i + xs.length)",
"end": [
756,
78
],
"full_name": "List.findIdx?_append",
"kind": "commanddeclaration",
"start": [
752,
1
]
},
{
"code": "@[simp] theorem findIdx?_replicate :\n (replicate n a).findIdx? p = if 0 < n ∧ p a then some 0 else none",
"end": [
764,
23
],
"full_name": "List.findIdx?_replicate",
"kind": "commanddeclaration",
"start": [
758,
1
]
},
{
"code": "theorem Pairwise.sublist : l₁ <+ l₂ → l₂.Pairwise R → l₁.Pairwise R",
"end": [
771,
80
],
"full_name": "List.Pairwise.sublist",
"kind": "commanddeclaration",
"start": [
768,
1
]
},
{
"code": "theorem pairwise_map {l : List α} :\n (l.map f).Pairwise R ↔ l.Pairwise fun a b => R (f a) (f b)",
"end": [
777,
58
],
"full_name": "List.pairwise_map",
"kind": "commanddeclaration",
"start": [
773,
1
]
},
{
"code": "theorem pairwise_append {l₁ l₂ : List α} :\n (l₁ ++ l₂).Pairwise R ↔ l₁.Pairwise R ∧ l₂.Pairwise R ∧ ∀ a ∈ l₁, ∀ b ∈ l₂, R a b",
"end": [
781,
74
],
"full_name": "List.pairwise_append",
"kind": "commanddeclaration",
"start": [
779,
1
]
},
{
"code": "theorem pairwise_reverse {l : List α} :\n l.reverse.Pairwise R ↔ l.Pairwise (fun a b => R b a)",
"end": [
785,
54
],
"full_name": "List.pairwise_reverse",
"kind": "commanddeclaration",
"start": [
783,
1
]
},
{
"code": "theorem Pairwise.imp {α R S} (H : ∀ {a b}, R a b → S a b) :\n ∀ {l : List α}, l.Pairwise R → l.Pairwise S",
"end": [
790,
50
],
"full_name": "List.Pairwise.imp",
"kind": "commanddeclaration",
"start": [
787,
1
]
},
{
"code": "theorem replaceF_nil : [].replaceF p = []",
"end": [
794,
49
],
"full_name": "List.replaceF_nil",
"kind": "commanddeclaration",
"start": [
794,
1
]
},
{
"code": "theorem replaceF_cons (a : α) (l : List α) :\n (a :: l).replaceF p = match p a with\n | none => a :: replaceF p l\n | some a' => a' :: l",
"end": [
799,
34
],
"full_name": "List.replaceF_cons",
"kind": "commanddeclaration",
"start": [
796,
1
]
},
{
"code": "theorem replaceF_cons_of_some {l : List α} (p) (h : p a = some a') :\n (a :: l).replaceF p = a' :: l",
"end": [
803,
26
],
"full_name": "List.replaceF_cons_of_some",
"kind": "commanddeclaration",
"start": [
801,
1
]
},
{
"code": "theorem replaceF_cons_of_none {l : List α} (p) (h : p a = none) :\n (a :: l).replaceF p = a :: l.replaceF p",
"end": [
806,
74
],
"full_name": "List.replaceF_cons_of_none",
"kind": "commanddeclaration",
"start": [
805,
1
]
},
{
"code": "theorem replaceF_of_forall_none {l : List α} (h : ∀ a, a ∈ l → p a = none) : l.replaceF p = l",
"end": [
811,
69
],
"full_name": "List.replaceF_of_forall_none",
"kind": "commanddeclaration",
"start": [
808,
1
]
},
{
"code": "theorem exists_of_replaceF : ∀ {l : List α} {a a'} (al : a ∈ l) (pa : p a = some a'),\n ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
825,
57
],
"full_name": "List.exists_of_replaceF",
"kind": "commanddeclaration",
"start": [
813,
1
]
},
{
"code": "theorem exists_or_eq_self_of_replaceF (p) (l : List α) :\n l.replaceF p = l ∨ ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
835,
62
],
"full_name": "List.exists_or_eq_self_of_replaceF",
"kind": "commanddeclaration",
"start": [
827,
1
]
},
{
"code": "@[simp] theorem length_replaceF : length (replaceF f l) = length l",
"end": [
838,
54
],
"full_name": "List.length_replaceF",
"kind": "commanddeclaration",
"start": [
837,
1
]
},
{
"code": "theorem disjoint_symm (d : Disjoint l₁ l₂) : Disjoint l₂ l₁",
"end": [
842,
86
],
"full_name": "List.disjoint_symm",
"kind": "commanddeclaration",
"start": [
842,
1
]
},
{
"code": "theorem disjoint_comm : Disjoint l₁ l₂ ↔ Disjoint l₂ l₁",
"end": [
844,
90
],
"full_name": "List.disjoint_comm",
"kind": "commanddeclaration",
"start": [
844,
1
]
},
{
"code": "theorem disjoint_left : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₁ → a ∉ l₂",
"end": [
846,
86
],
"full_name": "List.disjoint_left",
"kind": "commanddeclaration",
"start": [
846,
1
]
},
{
"code": "theorem disjoint_right : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₂ → a ∉ l₁",
"end": [
848,
82
],
"full_name": "List.disjoint_right",
"kind": "commanddeclaration",
"start": [
848,
1
]
},
{
"code": "theorem disjoint_iff_ne : Disjoint l₁ l₂ ↔ ∀ a ∈ l₁, ∀ b ∈ l₂, a ≠ b",
"end": [
851,
83
],
"full_name": "List.disjoint_iff_ne",
"kind": "commanddeclaration",
"start": [
850,
1
]
},
{
"code": "theorem disjoint_of_subset_left (ss : l₁ ⊆ l) (d : Disjoint l l₂) : Disjoint l₁ l₂",
"end": [
854,
22
],
"full_name": "List.disjoint_of_subset_left",
"kind": "commanddeclaration",
"start": [
853,
1
]
},
{
"code": "theorem disjoint_of_subset_right (ss : l₂ ⊆ l) (d : Disjoint l₁ l) : Disjoint l₁ l₂",
"end": [
857,
28
],
"full_name": "List.disjoint_of_subset_right",
"kind": "commanddeclaration",
"start": [
856,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_left {l₁ l₂} : Disjoint (a :: l₁) l₂ → Disjoint l₁ l₂",
"end": [
860,
42
],
"full_name": "List.disjoint_of_disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
859,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_right {l₁ l₂} : Disjoint l₁ (a :: l₂) → Disjoint l₁ l₂",
"end": [
863,
43
],
"full_name": "List.disjoint_of_disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
862,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_left (l : List α) : Disjoint [] l",
"end": [
865,
96
],
"full_name": "List.disjoint_nil_left",
"kind": "commanddeclaration",
"start": [
865,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_right (l : List α) : Disjoint l []",
"end": [
868,
48
],
"full_name": "List.disjoint_nil_right",
"kind": "commanddeclaration",
"start": [
867,
1
]
},
{
"code": "@[simp 1100] theorem singleton_disjoint : Disjoint [a] l ↔ a ∉ l",
"end": [
870,
87
],
"full_name": "List.singleton_disjoint",
"kind": "commanddeclaration",
"start": [
870,
1
]
},
{
"code": "@[simp 1100] theorem disjoint_singleton : Disjoint l [a] ↔ a ∉ l",
"end": [
873,
41
],
"full_name": "List.disjoint_singleton",
"kind": "commanddeclaration",
"start": [
872,
1
]
},
{
"code": "@[simp] theorem disjoint_append_left : Disjoint (l₁ ++ l₂) l ↔ Disjoint l₁ l ∧ Disjoint l₂ l",
"end": [
876,
38
],
"full_name": "List.disjoint_append_left",
"kind": "commanddeclaration",
"start": [
875,
1
]
},
{
"code": "@[simp] theorem disjoint_append_right : Disjoint l (l₁ ++ l₂) ↔ Disjoint l l₁ ∧ Disjoint l l₂",
"end": [
879,
76
],
"full_name": "List.disjoint_append_right",
"kind": "commanddeclaration",
"start": [
878,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_left : Disjoint (a::l₁) l₂ ↔ (a ∉ l₂) ∧ Disjoint l₁ l₂",
"end": [
882,
75
],
"full_name": "List.disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
881,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_right : Disjoint l₁ (a :: l₂) ↔ (a ∉ l₁) ∧ Disjoint l₁ l₂",
"end": [
885,
74
],
"full_name": "List.disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
884,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_left (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₁ l",
"end": [
888,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_left",
"kind": "commanddeclaration",
"start": [
887,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_right (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₂ l",
"end": [
891,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_right",
"kind": "commanddeclaration",
"start": [
890,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_left (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₁",
"end": [
894,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_left",
"kind": "commanddeclaration",
"start": [
893,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_right (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₂",
"end": [
897,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_right",
"kind": "commanddeclaration",
"start": [
896,
1
]
},
{
"code": "theorem foldl_hom (f : α₁ → α₂) (g₁ : α₁ → β → α₁) (g₂ : α₂ → β → α₂) (l : List β) (init : α₁)\n (H : ∀ x y, g₂ (f x) y = f (g₁ x y)) : l.foldl g₂ (f init) = f (l.foldl g₁ init)",
"end": [
903,
48
],
"full_name": "List.foldl_hom",
"kind": "commanddeclaration",
"start": [
901,
1
]
},
{
"code": "theorem foldr_hom (f : β₁ → β₂) (g₁ : α → β₁ → β₁) (g₂ : α → β₂ → β₂) (l : List α) (init : β₁)\n (H : ∀ x y, g₂ x (f y) = f (g₁ x y)) : l.foldr g₂ (f init) = f (l.foldr g₁ init)",
"end": [
907,
30
],
"full_name": "List.foldr_hom",
"kind": "commanddeclaration",
"start": [
905,
1
]
},
{
"code": "theorem union_def [BEq α] (l₁ l₂ : List α) : l₁ ∪ l₂ = foldr .insert l₂ l₁",
"end": [
915,
83
],
"full_name": "List.union_def",
"kind": "commanddeclaration",
"start": [
915,
1
]
},
{
"code": "@[simp] theorem nil_union (l : List α) : nil ∪ l = l",
"end": [
917,
88
],
"full_name": "List.nil_union",
"kind": "commanddeclaration",
"start": [
917,
1
]
},
{
"code": "@[simp] theorem cons_union (a : α) (l₁ l₂ : List α) :\n (a :: l₁) ∪ l₂ = (l₁ ∪ l₂).insert a",
"end": [
920,
75
],
"full_name": "List.cons_union",
"kind": "commanddeclaration",
"start": [
919,
1
]
},
{
"code": "@[simp] theorem mem_union_iff [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∪ l₂ ↔ x ∈ l₁ ∨ x ∈ l₂",
"end": [
923,
76
],
"full_name": "List.mem_union_iff",
"kind": "commanddeclaration",
"start": [
922,
1
]
},
{
"code": "theorem inter_def [BEq α] (l₁ l₂ : List α) : l₁ ∩ l₂ = filter (elem · l₂) l₁",
"end": [
929,
85
],
"full_name": "List.inter_def",
"kind": "commanddeclaration",
"start": [
929,
1
]
},
{
"code": "@[simp] theorem mem_inter_iff [BEq α] [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∩ l₂ ↔ x ∈ l₁ ∧ x ∈ l₂",
"end": [
933,
49
],
"full_name": "List.mem_inter_iff",
"kind": "commanddeclaration",
"start": [
931,
1
]
},
{
"code": "@[simp]\ntheorem pair_mem_product {xs : List α} {ys : List β} {x : α} {y : β} :\n (x, y) ∈ product xs ys ↔ x ∈ xs ∧ y ∈ ys",
"end": [
942,
47
],
"full_name": "List.pair_mem_product",
"kind": "commanddeclaration",
"start": [
937,
1
]
},
{
"code": "@[simp]\ntheorem leftpad_length (n : Nat) (a : α) (l : List α) :\n (leftpad n a l).length = max n l.length",
"end": [
951,
75
],
"full_name": "List.leftpad_length",
"kind": "commanddeclaration",
"start": [
946,
1
]
},
{
"code": "theorem leftpad_prefix (n : Nat) (a : α) (l : List α) :\n replicate (n - length l) a <+: leftpad n a l",
"end": [
956,
27
],
"full_name": "List.leftpad_prefix",
"kind": "commanddeclaration",
"start": [
953,
1
]
},
{
"code": "theorem leftpad_suffix (n : Nat) (a : α) (l : List α) : l <:+ (leftpad n a l)",
"end": [
960,
54
],
"full_name": "List.leftpad_suffix",
"kind": "commanddeclaration",
"start": [
958,
1
]
},
{
"code": "@[simp] theorem forIn_eq_forIn [Monad m] : @List.forIn α β m _ = forIn",
"end": [
965,
78
],
"full_name": "List.forIn_eq_forIn",
"kind": "commanddeclaration",
"start": [
965,
1
]
},
{
"code": "theorem forIn_eq_bindList [Monad m] [LawfulMonad m]\n (f : α → β → m (ForInStep β)) (l : List α) (init : β) :\n forIn l init f = ForInStep.run <$> (ForInStep.yield init).bindList f l",
"end": [
971,
30
],
"full_name": "List.forIn_eq_bindList",
"kind": "commanddeclaration",
"start": [
967,
1
]
},
{
"code": "@[simp] theorem forM_append [Monad m] [LawfulMonad m] (l₁ l₂ : List α) (f : α → m PUnit) :\n (l₁ ++ l₂).forM f = (do l₁.forM f; l₂.forM f)",
"end": [
974,
82
],
"full_name": "List.forM_append",
"kind": "commanddeclaration",
"start": [
973,
1
]
},
{
"code": "@[simp] theorem diff_nil (l : List α) : l.diff [] = l",
"end": [
982,
61
],
"full_name": "List.diff_nil",
"kind": "commanddeclaration",
"start": [
982,
1
]
},
{
"code": "@[simp] theorem diff_cons (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.erase a).diff l₂",
"end": [
985,
41
],
"full_name": "List.diff_cons",
"kind": "commanddeclaration",
"start": [
984,
1
]
},
{
"code": "theorem diff_cons_right (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.diff l₂).erase a",
"end": [
988,
71
],
"full_name": "List.diff_cons_right",
"kind": "commanddeclaration",
"start": [
987,
1
]
},
{
"code": "theorem diff_erase (l₁ l₂ : List α) (a : α) : (l₁.diff l₂).erase a = (l₁.erase a).diff l₂",
"end": [
991,
36
],
"full_name": "List.diff_erase",
"kind": "commanddeclaration",
"start": [
990,
1
]
},
{
"code": "@[simp] theorem nil_diff (l : List α) : [].diff l = []",
"end": [
994,
45
],
"full_name": "List.nil_diff",
"kind": "commanddeclaration",
"start": [
993,
1
]
},
{
"code": "theorem cons_diff (a : α) (l₁ l₂ : List α) :\n (a :: l₁).diff l₂ = if a ∈ l₂ then l₁.diff (l₂.erase a) else a :: l₁.diff l₂",
"end": [
1005,
14
],
"full_name": "List.cons_diff",
"kind": "commanddeclaration",
"start": [
996,
1
]
},
{
"code": "theorem cons_diff_of_mem {a : α} {l₂ : List α} (h : a ∈ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = l₁.diff (l₂.erase a)",
"end": [
1008,
76
],
"full_name": "List.cons_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1007,
1
]
},
{
"code": "theorem cons_diff_of_not_mem {a : α} {l₂ : List α} (h : a ∉ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = a :: l₁.diff l₂",
"end": [
1011,
71
],
"full_name": "List.cons_diff_of_not_mem",
"kind": "commanddeclaration",
"start": [
1010,
1
]
},
{
"code": "theorem diff_eq_foldl : ∀ l₁ l₂ : List α, l₁.diff l₂ = foldl List.erase l₁ l₂",
"end": [
1015,
65
],
"full_name": "List.diff_eq_foldl",
"kind": "commanddeclaration",
"start": [
1013,
1
]
},
{
"code": "@[simp] theorem diff_append (l₁ l₂ l₃ : List α) : l₁.diff (l₂ ++ l₃) = (l₁.diff l₂).diff l₃",
"end": [
1018,
42
],
"full_name": "List.diff_append",
"kind": "commanddeclaration",
"start": [
1017,
1
]
},
{
"code": "theorem diff_sublist : ∀ l₁ l₂ : List α, l₁.diff l₂ <+ l₁",
"end": [
1026,
34
],
"full_name": "List.diff_sublist",
"kind": "commanddeclaration",
"start": [
1020,
1
]
},
{
"code": "theorem diff_subset (l₁ l₂ : List α) : l₁.diff l₂ ⊆ l₁",
"end": [
1028,
83
],
"full_name": "List.diff_subset",
"kind": "commanddeclaration",
"start": [
1028,
1
]
},
{
"code": "theorem mem_diff_of_mem {a : α} : ∀ {l₁ l₂ : List α}, a ∈ l₁ → a ∉ l₂ → a ∈ l₁.diff l₂",
"end": [
1034,
94
],
"full_name": "List.mem_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1030,
1
]
},
{
"code": "theorem Sublist.diff_right : ∀ {l₁ l₂ l₃ : List α}, l₁ <+ l₂ → l₁.diff l₃ <+ l₂.diff l₃",
"end": [
1038,
75
],
"full_name": "List.Sublist.diff_right",
"kind": "commanddeclaration",
"start": [
1036,
1
]
},
{
"code": "theorem Sublist.erase_diff_erase_sublist {a : α} :\n ∀ {l₁ l₂ : List α}, l₁ <+ l₂ → (l₂.erase a).diff (l₁.erase a) <+ l₂.diff l₁",
"end": [
1048,
71
],
"full_name": "List.Sublist.erase_diff_erase_sublist",
"kind": "commanddeclaration",
"start": [
1040,
1
]
},
{
"code": "@[simp] theorem prefix_append (l₁ l₂ : List α) : l₁ <+: l₁ ++ l₂",
"end": [
1054,
78
],
"full_name": "List.prefix_append",
"kind": "commanddeclaration",
"start": [
1054,
1
]
},
{
"code": "@[simp] theorem suffix_append (l₁ l₂ : List α) : l₂ <:+ l₁ ++ l₂",
"end": [
1056,
78
],
"full_name": "List.suffix_append",
"kind": "commanddeclaration",
"start": [
1056,
1
]
},
{
"code": "theorem infix_append (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ l₂ ++ l₃",
"end": [
1058,
83
],
"full_name": "List.infix_append",
"kind": "commanddeclaration",
"start": [
1058,
1
]
},
{
"code": "@[simp] theorem infix_append' (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ (l₂ ++ l₃)",
"end": [
1061,
47
],
"full_name": "List.infix_append'",
"kind": "commanddeclaration",
"start": [
1060,
1
]
},
{
"code": "theorem IsPrefix.isInfix : l₁ <+: l₂ → l₁ <:+: l₂",
"end": [
1063,
78
],
"full_name": "List.IsPrefix.isInfix",
"kind": "commanddeclaration",
"start": [
1063,
1
]
},
{
"code": "theorem IsSuffix.isInfix : l₁ <:+ l₂ → l₁ <:+: l₂",
"end": [
1065,
98
],
"full_name": "List.IsSuffix.isInfix",
"kind": "commanddeclaration",
"start": [
1065,
1
]
},
{
"code": "theorem nil_prefix (l : List α) : [] <+: l",
"end": [
1067,
55
],
"full_name": "List.nil_prefix",
"kind": "commanddeclaration",
"start": [
1067,
1
]
},
{
"code": "theorem nil_suffix (l : List α) : [] <:+ l",
"end": [
1069,
64
],
"full_name": "List.nil_suffix",
"kind": "commanddeclaration",
"start": [
1069,
1
]
},
{
"code": "theorem nil_infix (l : List α) : [] <:+: l",
"end": [
1071,
69
],
"full_name": "List.nil_infix",
"kind": "commanddeclaration",
"start": [
1071,
1
]
},
{
"code": "theorem prefix_refl (l : List α) : l <+: l",
"end": [
1073,
65
],
"full_name": "List.prefix_refl",
"kind": "commanddeclaration",
"start": [
1073,
1
]
},
{
"code": "theorem suffix_refl (l : List α) : l <:+ l",
"end": [
1075,
56
],
"full_name": "List.suffix_refl",
"kind": "commanddeclaration",
"start": [
1075,
1
]
},
{
"code": "theorem infix_refl (l : List α) : l <:+: l",
"end": [
1077,
70
],
"full_name": "List.infix_refl",
"kind": "commanddeclaration",
"start": [
1077,
1
]
},
{
"code": "@[simp] theorem suffix_cons (a : α) : ∀ l, l <:+ a :: l",
"end": [
1079,
77
],
"full_name": "List.suffix_cons",
"kind": "commanddeclaration",
"start": [
1079,
1
]
},
{
"code": "theorem infix_cons : l₁ <:+: l₂ → l₁ <:+: a :: l₂",
"end": [
1081,
95
],
"full_name": "List.infix_cons",
"kind": "commanddeclaration",
"start": [
1081,
1
]
},
{
"code": "theorem infix_concat : l₁ <:+: l₂ → l₁ <:+: concat l₂ a",
"end": [
1084,
67
],
"full_name": "List.infix_concat",
"kind": "commanddeclaration",
"start": [
1083,
1
]
},
{
"code": "theorem IsPrefix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₂ → l₂ <+: l₃ → l₁ <+: l₃",
"end": [
1087,
75
],
"full_name": "List.IsPrefix.trans",
"kind": "commanddeclaration",
"start": [
1086,
1
]
},
{
"code": "theorem IsSuffix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+ l₂ → l₂ <:+ l₃ → l₁ <:+ l₃",
"end": [
1090,
68
],
"full_name": "List.IsSuffix.trans",
"kind": "commanddeclaration",
"start": [
1089,
1
]
},
{
"code": "theorem IsInfix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+: l₂ → l₂ <:+: l₃ → l₁ <:+: l₃",
"end": [
1093,
95
],
"full_name": "List.IsInfix.trans",
"kind": "commanddeclaration",
"start": [
1092,
1
]
},
{
"code": "protected theorem IsInfix.sublist : l₁ <:+: l₂ → l₁ <+ l₂",
"end": [
1096,
78
],
"full_name": "List.IsInfix.sublist",
"kind": "commanddeclaration",
"start": [
1095,
1
]
},
{
"code": "protected theorem IsInfix.subset (hl : l₁ <:+: l₂) : l₁ ⊆ l₂",
"end": [
1099,
20
],
"full_name": "List.IsInfix.subset",
"kind": "commanddeclaration",
"start": [
1098,
1
]
},
{
"code": "protected theorem IsPrefix.sublist (h : l₁ <+: l₂) : l₁ <+ l₂",
"end": [
1102,
20
],
"full_name": "List.IsPrefix.sublist",
"kind": "commanddeclaration",
"start": [
1101,
1
]
},
{
"code": "protected theorem IsPrefix.subset (hl : l₁ <+: l₂) : l₁ ⊆ l₂",
"end": [
1105,
20
],
"full_name": "List.IsPrefix.subset",
"kind": "commanddeclaration",
"start": [
1104,
1
]
},
{
"code": "protected theorem IsSuffix.sublist (h : l₁ <:+ l₂) : l₁ <+ l₂",
"end": [
1108,
20
],
"full_name": "List.IsSuffix.sublist",
"kind": "commanddeclaration",
"start": [
1107,
1
]
},
{
"code": "protected theorem IsSuffix.subset (hl : l₁ <:+ l₂) : l₁ ⊆ l₂",
"end": [
1111,
20
],
"full_name": "List.IsSuffix.subset",
"kind": "commanddeclaration",
"start": [
1110,
1
]
},
{
"code": "@[simp] theorem reverse_suffix : reverse l₁ <:+ reverse l₂ ↔ l₁ <+: l₂",
"end": [
1115,
59
],
"full_name": "List.reverse_suffix",
"kind": "commanddeclaration",
"start": [
1113,
1
]
},
{
"code": "@[simp] theorem reverse_prefix : reverse l₁ <+: reverse l₂ ↔ l₁ <:+ l₂",
"end": [
1118,
53
],
"full_name": "List.reverse_prefix",
"kind": "commanddeclaration",
"start": [
1117,
1
]
},
{
"code": "@[simp] theorem reverse_infix : reverse l₁ <:+: reverse l₂ ↔ l₁ <:+: l₂",
"end": [
1124,
61
],
"full_name": "List.reverse_infix",
"kind": "commanddeclaration",
"start": [
1120,
1
]
},
{
"code": "theorem IsInfix.length_le (h : l₁ <:+: l₂) : l₁.length ≤ l₂.length",
"end": [
1127,
22
],
"full_name": "List.IsInfix.length_le",
"kind": "commanddeclaration",
"start": [
1126,
1
]
},
{
"code": "theorem IsPrefix.length_le (h : l₁ <+: l₂) : l₁.length ≤ l₂.length",
"end": [
1130,
22
],
"full_name": "List.IsPrefix.length_le",
"kind": "commanddeclaration",
"start": [
1129,
1
]
},
{
"code": "theorem IsSuffix.length_le (h : l₁ <:+ l₂) : l₁.length ≤ l₂.length",
"end": [
1133,
22
],
"full_name": "List.IsSuffix.length_le",
"kind": "commanddeclaration",
"start": [
1132,
1
]
},
{
"code": "@[simp] theorem infix_nil : l <:+: [] ↔ l = []",
"end": [
1135,
98
],
"full_name": "List.infix_nil",
"kind": "commanddeclaration",
"start": [
1135,
1
]
},
{
"code": "@[simp] theorem prefix_nil : l <+: [] ↔ l = []",
"end": [
1137,
99
],
"full_name": "List.prefix_nil",
"kind": "commanddeclaration",
"start": [
1137,
1
]
},
{
"code": "@[simp] theorem suffix_nil : l <:+ [] ↔ l = []",
"end": [
1139,
99
],
"full_name": "List.suffix_nil",
"kind": "commanddeclaration",
"start": [
1139,
1
]
},
{
"code": "theorem infix_iff_prefix_suffix (l₁ l₂ : List α) : l₁ <:+: l₂ ↔ ∃ t, l₁ <+: t ∧ t <:+ l₂",
"end": [
1143,
60
],
"full_name": "List.infix_iff_prefix_suffix",
"kind": "commanddeclaration",
"start": [
1141,
1
]
},
{
"code": "theorem IsInfix.eq_of_length (h : l₁ <:+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1146,
25
],
"full_name": "List.IsInfix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1145,
1
]
},
{
"code": "theorem IsPrefix.eq_of_length (h : l₁ <+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1149,
25
],
"full_name": "List.IsPrefix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1148,
1
]
},
{
"code": "theorem IsSuffix.eq_of_length (h : l₁ <:+ l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1152,
25
],
"full_name": "List.IsSuffix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1151,
1
]
},
{
"code": "theorem prefix_of_prefix_length_le :\n ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₃ → l₂ <+: l₃ → length l₁ ≤ length l₂ → l₁ <+: l₂",
"end": [
1160,
20
],
"full_name": "List.prefix_of_prefix_length_le",
"kind": "commanddeclaration",
"start": [
1154,
1
]
},
{
"code": "theorem prefix_or_prefix_of_prefix (h₁ : l₁ <+: l₃) (h₂ : l₂ <+: l₃) : l₁ <+: l₂ ∨ l₂ <+: l₁",
"end": [
1164,
39
],
"full_name": "List.prefix_or_prefix_of_prefix",
"kind": "commanddeclaration",
"start": [
1162,
1
]
},
{
"code": "theorem suffix_of_suffix_length_le\n (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) (ll : length l₁ ≤ length l₂) : l₁ <:+ l₂",
"end": [
1169,
90
],
"full_name": "List.suffix_of_suffix_length_le",
"kind": "commanddeclaration",
"start": [
1166,
1
]
},
{
"code": "theorem suffix_or_suffix_of_suffix (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) : l₁ <:+ l₂ ∨ l₂ <:+ l₁",
"end": [
1173,
21
],
"full_name": "List.suffix_or_suffix_of_suffix",
"kind": "commanddeclaration",
"start": [
1171,
1
]
},
{
"code": "theorem suffix_cons_iff : l₁ <:+ a :: l₂ ↔ l₁ = a :: l₂ ∨ l₁ <:+ l₂",
"end": [
1184,
41
],
"full_name": "List.suffix_cons_iff",
"kind": "commanddeclaration",
"start": [
1175,
1
]
},
{
"code": "theorem infix_cons_iff : l₁ <:+: a :: l₂ ↔ l₁ <+: a :: l₂ ∨ l₁ <:+: l₂",
"end": [
1195,
27
],
"full_name": "List.infix_cons_iff",
"kind": "commanddeclaration",
"start": [
1186,
1
]
},
{
"code": "theorem infix_of_mem_join : ∀ {L : List (List α)}, l ∈ L → l <:+: join L",
"end": [
1202,
78
],
"full_name": "List.infix_of_mem_join",
"kind": "commanddeclaration",
"start": [
1197,
1
]
},
{
"code": "theorem prefix_append_right_inj (l) : l ++ l₁ <+: l ++ l₂ ↔ l₁ <+: l₂",
"end": [
1205,
63
],
"full_name": "List.prefix_append_right_inj",
"kind": "commanddeclaration",
"start": [
1204,
1
]
},
{
"code": "@[simp]\ntheorem prefix_cons_inj (a) : a :: l₁ <+: a :: l₂ ↔ l₁ <+: l₂",
"end": [
1209,
30
],
"full_name": "List.prefix_cons_inj",
"kind": "commanddeclaration",
"start": [
1207,
1
]
},
{
"code": "theorem take_prefix (n) (l : List α) : take n l <+: l",
"end": [
1212,
28
],
"full_name": "List.take_prefix",
"kind": "commanddeclaration",
"start": [
1211,
1
]
},
{
"code": "theorem drop_suffix (n) (l : List α) : drop n l <:+ l",
"end": [
1215,
28
],
"full_name": "List.drop_suffix",
"kind": "commanddeclaration",
"start": [
1214,
1
]
},
{
"code": "theorem take_sublist (n) (l : List α) : take n l <+ l",
"end": [
1218,
28
],
"full_name": "List.take_sublist",
"kind": "commanddeclaration",
"start": [
1217,
1
]
},
{
"code": "theorem drop_sublist (n) (l : List α) : drop n l <+ l",
"end": [
1221,
28
],
"full_name": "List.drop_sublist",
"kind": "commanddeclaration",
"start": [
1220,
1
]
},
{
"code": "theorem take_subset (n) (l : List α) : take n l ⊆ l",
"end": [
1224,
28
],
"full_name": "List.take_subset",
"kind": "commanddeclaration",
"start": [
1223,
1
]
},
{
"code": "theorem drop_subset (n) (l : List α) : drop n l ⊆ l",
"end": [
1227,
28
],
"full_name": "List.drop_subset",
"kind": "commanddeclaration",
"start": [
1226,
1
]
},
{
"code": "theorem mem_of_mem_take {l : List α} (h : a ∈ l.take n) : a ∈ l",
"end": [
1230,
20
],
"full_name": "List.mem_of_mem_take",
"kind": "commanddeclaration",
"start": [
1229,
1
]
},
{
"code": "theorem IsPrefix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <+: l₂) :\n l₁.filter p <+: l₂.filter p",
"end": [
1235,
42
],
"full_name": "List.IsPrefix.filter",
"kind": "commanddeclaration",
"start": [
1232,
1
]
},
{
"code": "theorem IsSuffix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+ l₂) :\n l₁.filter p <:+ l₂.filter p",
"end": [
1240,
42
],
"full_name": "List.IsSuffix.filter",
"kind": "commanddeclaration",
"start": [
1237,
1
]
},
{
"code": "theorem IsInfix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+: l₂) :\n l₁.filter p <:+: l₂.filter p",
"end": [
1245,
58
],
"full_name": "List.IsInfix.filter",
"kind": "commanddeclaration",
"start": [
1242,
1
]
},
{
"code": "theorem mem_of_mem_drop {n} {l : List α} (h : a ∈ l.drop n) : a ∈ l",
"end": [
1249,
89
],
"full_name": "List.mem_of_mem_drop",
"kind": "commanddeclaration",
"start": [
1249,
1
]
},
{
"code": "theorem disjoint_take_drop : ∀ {l : List α}, l.Nodup → m ≤ n → Disjoint (l.take m) (l.drop n)",
"end": [
1259,
61
],
"full_name": "List.disjoint_take_drop",
"kind": "commanddeclaration",
"start": [
1251,
1
]
},
{
"code": "@[simp]\ntheorem chain_cons {a b : α} {l : List α} : Chain R a (b :: l) ↔ R a b ∧ Chain R b l",
"end": [
1268,
27
],
"full_name": "List.chain_cons",
"kind": "commanddeclaration",
"start": [
1265,
1
]
},
{
"code": "theorem rel_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : R a b",
"end": [
1271,
21
],
"full_name": "List.rel_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1270,
1
]
},
{
"code": "theorem chain_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : Chain R b l",
"end": [
1274,
21
],
"full_name": "List.chain_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1273,
1
]
},
{
"code": "theorem Chain.imp' {R S : α → α → Prop} (HRS : ∀ ⦃a b⦄, R a b → S a b) {a b : α}\n (Hab : ∀ ⦃c⦄, R a c → S b c) {l : List α} (p : Chain R a l) : Chain S b l",
"end": [
1283,
24
],
"full_name": "List.Chain.imp'",
"kind": "commanddeclaration",
"start": [
1276,
1
]
},
{
"code": "theorem Chain.imp {R S : α → α → Prop} (H : ∀ a b, R a b → S a b) {a : α} {l : List α}\n (p : Chain R a l) : Chain S a l",
"end": [
1287,
17
],
"full_name": "List.Chain.imp",
"kind": "commanddeclaration",
"start": [
1285,
1
]
},
{
"code": "protected theorem Pairwise.chain (p : Pairwise R (a :: l)) : Chain R a l",
"end": [
1295,
36
],
"full_name": "List.Pairwise.chain",
"kind": "commanddeclaration",
"start": [
1289,
1
]
},
{
"code": "theorem range'_succ (s n step) : range' s (n + 1) step = s :: range' (s + step) n step",
"end": [
1300,
44
],
"full_name": "List.range'_succ",
"kind": "commanddeclaration",
"start": [
1299,
1
]
},
{
"code": "@[simp] theorem length_range' (s step) : ∀ n : Nat, length (range' s n step) = n",
"end": [
1304,
49
],
"full_name": "List.length_range'",
"kind": "commanddeclaration",
"start": [
1302,
1
]
},
{
"code": "@[simp] theorem range'_eq_nil : range' s n step = [] ↔ n = 0",
"end": [
1307,
39
],
"full_name": "List.range'_eq_nil",
"kind": "commanddeclaration",
"start": [
1306,
1
]
},
{
"code": "theorem mem_range' : ∀{n}, m ∈ range' s n step ↔ ∃ i < n, m = s + step * i",
"end": [
1314,
71
],
"full_name": "List.mem_range'",
"kind": "commanddeclaration",
"start": [
1309,
1
]
},
{
"code": "@[simp] theorem mem_range'_1 : m ∈ range' s n ↔ s ≤ m ∧ m < s + n",
"end": [
1319,
93
],
"full_name": "List.mem_range'_1",
"kind": "commanddeclaration",
"start": [
1316,
1
]
},
{
"code": "@[simp]\ntheorem map_add_range' (a) : ∀ s n step, map (a + ·) (range' s n step) = range' (a + s) n step",
"end": [
1324,
90
],
"full_name": "List.map_add_range'",
"kind": "commanddeclaration",
"start": [
1321,
1
]
},
{
"code": "theorem map_sub_range' (a s n : Nat) (h : a ≤ s) :\n map (· - a) (range' s n step) = range' (s - a) n step",
"end": [
1330,
42
],
"full_name": "List.map_sub_range'",
"kind": "commanddeclaration",
"start": [
1326,
1
]
},
{
"code": "theorem chain_succ_range' : ∀ s n step : Nat,\n Chain (fun a b => b = a + step) s (range' (s + step) n step)",
"end": [
1335,
69
],
"full_name": "List.chain_succ_range'",
"kind": "commanddeclaration",
"start": [
1332,
1
]
},
{
"code": "theorem chain_lt_range' (s n : Nat) {step} (h : 0 < step) :\n Chain (· < ·) s (range' (s + step) n step)",
"end": [
1339,
83
],
"full_name": "List.chain_lt_range'",
"kind": "commanddeclaration",
"start": [
1337,
1
]
},
{
"code": "theorem range'_append : ∀ s m n step : Nat,\n range' s m step ++ range' (s + step * m) n step = range' s (n + m) step",
"end": [
1346,
46
],
"full_name": "List.range'_append",
"kind": "commanddeclaration",
"start": [
1341,
1
]
},
{
"code": "@[simp] theorem range'_append_1 (s m n : Nat) :\n range' s m ++ range' (s + m) n = range' s (n + m)",
"end": [
1349,
94
],
"full_name": "List.range'_append_1",
"kind": "commanddeclaration",
"start": [
1348,
1
]
},
{
"code": "theorem range'_sublist_right {s m n : Nat} : range' s m step <+ range' s n step ↔ m ≤ n",
"end": [
1353,
88
],
"full_name": "List.range'_sublist_right",
"kind": "commanddeclaration",
"start": [
1351,
1
]
},
{
"code": "theorem range'_subset_right {s m n : Nat} (step0 : 0 < step) :\n range' s m step ⊆ range' s n step ↔ m ≤ n",
"end": [
1359,
82
],
"full_name": "List.range'_subset_right",
"kind": "commanddeclaration",
"start": [
1355,
1
]
},
{
"code": "theorem range'_subset_right_1 {s m n : Nat} : range' s m ⊆ range' s n ↔ m ≤ n",
"end": [
1362,
34
],
"full_name": "List.range'_subset_right_1",
"kind": "commanddeclaration",
"start": [
1361,
1
]
},
{
"code": "theorem getElem?_range' (s step) :\n ∀ {m n : Nat}, m < n → (range' s n step)[m]? = some (s + step * m)",
"end": [
1370,
55
],
"full_name": "List.getElem?_range'",
"kind": "commanddeclaration",
"start": [
1364,
1
]
},
{
"code": "@[simp] theorem getElem_range' {n m step} (i) (H : i < (range' n m step).length) :\n (range' n m step)[i] = n + step * i",
"end": [
1374,
70
],
"full_name": "List.getElem_range'",
"kind": "commanddeclaration",
"start": [
1372,
1
]
},
{
"code": "@[deprecated getElem?_range' (since := \"2024-06-12\")]\ntheorem get?_range' (s step) {m n : Nat} (h : m < n) :\n get? (range' s n step) m = some (s + step * m)",
"end": [
1379,
11
],
"full_name": "List.get?_range'",
"kind": "commanddeclaration",
"start": [
1376,
1
]
},
{
"code": "@[deprecated getElem_range' (since := \"2024-06-12\")]\ntheorem get_range' {n m step} (i) (H : i < (range' n m step).length) :\n get (range' n m step) ⟨i, H⟩ = n + step * i",
"end": [
1384,
7
],
"full_name": "List.get_range'",
"kind": "commanddeclaration",
"start": [
1381,
1
]
},
{
"code": "theorem range'_concat (s n : Nat) : range' s (n + 1) step = range' s n step ++ [s + step * n]",
"end": [
1387,
63
],
"full_name": "List.range'_concat",
"kind": "commanddeclaration",
"start": [
1386,
1
]
},
{
"code": "theorem range'_1_concat (s n : Nat) : range' s (n + 1) = range' s n ++ [s + n]",
"end": [
1390,
23
],
"full_name": "List.range'_1_concat",
"kind": "commanddeclaration",
"start": [
1389,
1
]
},
{
"code": "theorem range_loop_range' : ∀ s n : Nat, range.loop s (range' s n) = range' 0 (n + s)",
"end": [
1394,
101
],
"full_name": "List.range_loop_range'",
"kind": "commanddeclaration",
"start": [
1392,
1
]
},
{
"code": "theorem range_eq_range' (n : Nat) : range n = range' 0 n",
"end": [
1397,
56
],
"full_name": "List.range_eq_range'",
"kind": "commanddeclaration",
"start": [
1396,
1
]
},
{
"code": "theorem range_succ_eq_map (n : Nat) : range (n + 1) = 0 :: map succ (range n)",
"end": [
1401,
30
],
"full_name": "List.range_succ_eq_map",
"kind": "commanddeclaration",
"start": [
1399,
1
]
},
{
"code": "theorem range'_eq_map_range (s n : Nat) : range' s n = map (s + ·) (range n)",
"end": [
1404,
44
],
"full_name": "List.range'_eq_map_range",
"kind": "commanddeclaration",
"start": [
1403,
1
]
},
{
"code": "@[simp] theorem length_range (n : Nat) : length (range n) = n",
"end": [
1407,
45
],
"full_name": "List.length_range",
"kind": "commanddeclaration",
"start": [
1406,
1
]
},
{
"code": "@[simp] theorem range_eq_nil {n : Nat} : range n = [] ↔ n = 0",
"end": [
1410,
38
],
"full_name": "List.range_eq_nil",
"kind": "commanddeclaration",
"start": [
1409,
1
]
},
{
"code": "@[simp]\ntheorem range_sublist {m n : Nat} : range m <+ range n ↔ m ≤ n",
"end": [
1414,
52
],
"full_name": "List.range_sublist",
"kind": "commanddeclaration",
"start": [
1412,
1
]
},
{
"code": "@[simp]\ntheorem range_subset {m n : Nat} : range m ⊆ range n ↔ m ≤ n",
"end": [
1418,
65
],
"full_name": "List.range_subset",
"kind": "commanddeclaration",
"start": [
1416,
1
]
},
{
"code": "@[simp]\ntheorem mem_range {m n : Nat} : m ∈ range n ↔ m < n",
"end": [
1422,
81
],
"full_name": "List.mem_range",
"kind": "commanddeclaration",
"start": [
1420,
1
]
},
{
"code": "theorem not_mem_range_self {n : Nat} : n ∉ range n",
"end": [
1424,
62
],
"full_name": "List.not_mem_range_self",
"kind": "commanddeclaration",
"start": [
1424,
1
]
},
{
"code": "theorem self_mem_range_succ (n : Nat) : n ∈ range (n + 1)",
"end": [
1426,
69
],
"full_name": "List.self_mem_range_succ",
"kind": "commanddeclaration",
"start": [
1426,
1
]
},
{
"code": "theorem getElem?_range {m n : Nat} (h : m < n) : (range n)[m]? = some m",
"end": [
1429,
48
],
"full_name": "List.getElem?_range",
"kind": "commanddeclaration",
"start": [
1428,
1
]
},
{
"code": "@[simp] theorem getElem_range {n : Nat} (m) (h : m < (range n).length) : (range n)[m] = m",
"end": [
1432,
25
],
"full_name": "List.getElem_range",
"kind": "commanddeclaration",
"start": [
1431,
1
]
},
{
"code": "@[deprecated getElem?_range (since := \"2024-06-12\")]\ntheorem get?_range {m n : Nat} (h : m < n) : get? (range n) m = some m",
"end": [
1436,
27
],
"full_name": "List.get?_range",
"kind": "commanddeclaration",
"start": [
1434,
1
]
},
{
"code": "@[deprecated getElem_range (since := \"2024-06-12\")]\ntheorem get_range {n} (i) (H : i < (range n).length) : get (range n) ⟨i, H⟩ = i",
"end": [
1440,
7
],
"full_name": "List.get_range",
"kind": "commanddeclaration",
"start": [
1438,
1
]
},
{
"code": "theorem range_succ (n : Nat) : range (succ n) = range n ++ [n]",
"end": [
1443,
61
],
"full_name": "List.range_succ",
"kind": "commanddeclaration",
"start": [
1442,
1
]
},
{
"code": "theorem range_add (a b : Nat) : range (a + b) = range a ++ (range b).map (a + ·)",
"end": [
1447,
75
],
"full_name": "List.range_add",
"kind": "commanddeclaration",
"start": [
1445,
1
]
},
{
"code": "theorem iota_eq_reverse_range' : ∀ n : Nat, iota n = reverse (range' 1 n)",
"end": [
1451,
99
],
"full_name": "List.iota_eq_reverse_range'",
"kind": "commanddeclaration",
"start": [
1449,
1
]
},
{
"code": "@[simp] theorem length_iota (n : Nat) : length (iota n) = n",
"end": [
1453,
96
],
"full_name": "List.length_iota",
"kind": "commanddeclaration",
"start": [
1453,
1
]
},
{
"code": "@[simp]\ntheorem mem_iota {m n : Nat} : m ∈ iota n ↔ 1 ≤ m ∧ m ≤ n",
"end": [
1457,
59
],
"full_name": "List.mem_iota",
"kind": "commanddeclaration",
"start": [
1455,
1
]
},
{
"code": "theorem reverse_range' : ∀ s n : Nat, reverse (range' s n) = map (s + n - 1 - ·) (range n)",
"end": [
1464,
59
],
"full_name": "List.reverse_range'",
"kind": "commanddeclaration",
"start": [
1459,
1
]
},
{
"code": "@[simp] theorem enumFrom_map_fst (n) :\n ∀ (l : List α), map Prod.fst (enumFrom n l) = range' n l.length",
"end": [
1472,
55
],
"full_name": "List.enumFrom_map_fst",
"kind": "commanddeclaration",
"start": [
1469,
1
]
},
{
"code": "@[simp] theorem enum_map_fst (l : List α) : map Prod.fst (enum l) = range l.length",
"end": [
1475,
54
],
"full_name": "List.enum_map_fst",
"kind": "commanddeclaration",
"start": [
1474,
1
]
},
{
"code": "theorem foldrIdx_start :\n (xs : List α).foldrIdx f i s = (xs : List α).foldrIdx (fun i => f (i + s)) i",
"end": [
1487,
43
],
"full_name": "List.foldrIdx_start",
"kind": "commanddeclaration",
"start": [
1479,
1
]
},
{
"code": "@[simp] theorem foldrIdx_cons :\n (x :: xs : List α).foldrIdx f i s = f s x (foldrIdx f i xs (s + 1))",
"end": [
1490,
79
],
"full_name": "List.foldrIdx_cons",
"kind": "commanddeclaration",
"start": [
1489,
1
]
},
{
"code": "theorem findIdxs_cons_aux (p : α → Bool) :\n foldrIdx (fun i a is => if p a = true then (i + 1) :: is else is) [] xs s =\n map (· + 1) (foldrIdx (fun i a is => if p a = true then i :: is else is) [] xs s)",
"end": [
1499,
24
],
"full_name": "List.findIdxs_cons_aux",
"kind": "commanddeclaration",
"start": [
1492,
1
]
},
{
"code": "theorem findIdxs_cons :\n (x :: xs : List α).findIdxs p =\n bif p x then 0 :: (xs.findIdxs p).map (· + 1) else (xs.findIdxs p).map (· + 1)",
"end": [
1508,
28
],
"full_name": "List.findIdxs_cons",
"kind": "commanddeclaration",
"start": [
1501,
1
]
},
{
"code": "@[simp] theorem indexesOf_nil [BEq α] : ([] : List α).indexesOf x = []",
"end": [
1510,
78
],
"full_name": "List.indexesOf_nil",
"kind": "commanddeclaration",
"start": [
1510,
1
]
},
{
"code": "theorem indexesOf_cons [BEq α] : (x :: xs : List α).indexesOf y =\n bif x == y then 0 :: (xs.indexesOf y).map (· + 1) else (xs.indexesOf y).map (· + 1)",
"end": [
1514,
34
],
"full_name": "List.indexesOf_cons",
"kind": "commanddeclaration",
"start": [
1512,
1
]
},
{
"code": "@[simp] theorem indexOf_nil [BEq α] : ([] : List α).indexOf x = 0",
"end": [
1516,
73
],
"full_name": "List.indexOf_nil",
"kind": "commanddeclaration",
"start": [
1516,
1
]
},
{
"code": "theorem indexOf_cons [BEq α] :\n (x :: xs : List α).indexOf y = bif x == y then 0 else xs.indexOf y + 1",
"end": [
1521,
22
],
"full_name": "List.indexOf_cons",
"kind": "commanddeclaration",
"start": [
1518,
1
]
},
{
"code": "theorem indexOf_mem_indexesOf [BEq α] [LawfulBEq α] {xs : List α} (m : x ∈ xs) :\n xs.indexOf x ∈ xs.indexesOf x",
"end": [
1535,
14
],
"full_name": "List.indexOf_mem_indexesOf",
"kind": "commanddeclaration",
"start": [
1523,
1
]
},
{
"code": "theorem merge_loop_nil_left (s : α → α → Bool) (r t) :\n merge.loop s [] r t = reverseAux t r",
"end": [
1539,
18
],
"full_name": "List.merge_loop_nil_left",
"kind": "commanddeclaration",
"start": [
1537,
1
]
},
{
"code": "theorem merge_loop_nil_right (s : α → α → Bool) (l t) :\n merge.loop s l [] t = reverseAux t l",
"end": [
1543,
52
],
"full_name": "List.merge_loop_nil_right",
"kind": "commanddeclaration",
"start": [
1541,
1
]
},
{
"code": "theorem merge_loop (s : α → α → Bool) (l r t) :\n merge.loop s l r t = reverseAux t (merge s l r)",
"end": [
1567,
64
],
"full_name": "List.merge_loop",
"kind": "commanddeclaration",
"start": [
1545,
1
]
},
{
"code": "@[simp] theorem merge_nil (s : α → α → Bool) (l) : merge s l [] = l",
"end": [
1569,
95
],
"full_name": "List.merge_nil",
"kind": "commanddeclaration",
"start": [
1569,
1
]
},
{
"code": "@[simp] theorem nil_merge (s : α → α → Bool) (r) : merge s [] r = r",
"end": [
1571,
94
],
"full_name": "List.nil_merge",
"kind": "commanddeclaration",
"start": [
1571,
1
]
},
{
"code": "theorem cons_merge_cons (s : α → α → Bool) (a b l r) :\n merge s (a::l) (b::r) = if s a b then a :: merge s l (b::r) else b :: merge s (a::l) r",
"end": [
1575,
87
],
"full_name": "List.cons_merge_cons",
"kind": "commanddeclaration",
"start": [
1573,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_pos (s : α → α → Bool) (l r) (h : s a b) :\n merge s (a::l) (b::r) = a :: merge s l (b::r)",
"end": [
1579,
33
],
"full_name": "List.cons_merge_cons_pos",
"kind": "commanddeclaration",
"start": [
1577,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_neg (s : α → α → Bool) (l r) (h : ¬ s a b) :\n merge s (a::l) (b::r) = b :: merge s (a::l) r",
"end": [
1583,
33
],
"full_name": "List.cons_merge_cons_neg",
"kind": "commanddeclaration",
"start": [
1581,
1
]
},
{
"code": "@[simp] theorem length_merge (s : α → α → Bool) (l r) :\n (merge s l r).length = l.length + r.length",
"end": [
1594,
43
],
"full_name": "List.length_merge",
"kind": "commanddeclaration",
"start": [
1585,
1
]
},
{
"code": "@[simp]\ntheorem mem_merge {s : α → α → Bool} : x ∈ merge s l r ↔ x ∈ l ∨ x ∈ r",
"end": [
1605,
68
],
"full_name": "List.mem_merge",
"kind": "commanddeclaration",
"start": [
1596,
1
]
},
{
"code": "theorem mem_merge_left (s : α → α → Bool) (h : x ∈ l) : x ∈ merge s l r",
"end": [
1608,
24
],
"full_name": "List.mem_merge_left",
"kind": "commanddeclaration",
"start": [
1607,
1
]
},
{
"code": "theorem mem_merge_right (s : α → α → Bool) (h : x ∈ r) : x ∈ merge s l r",
"end": [
1611,
24
],
"full_name": "List.mem_merge_right",
"kind": "commanddeclaration",
"start": [
1610,
1
]
}
] | 327 | List.mem_merge | [
[
1597,
75
],
[
1605,
68
]
] | 2 | 9 | simp | α : Type u_1
x : α
l✝ r : List α
s : α → α → Bool
l : List α
⊢ x ∈ merge s [] l ↔ x ∈ [] ∨ x ∈ l | no goals |
.lake/packages/batteries/Batteries/Data/List/Lemmas.lean | [
[
"Batteries.Tactic.Alias",
".lake/packages/batteries/Batteries/Tactic/Alias.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
],
[
"Batteries.Control.ForInStep.Lemmas",
".lake/packages/batteries/Batteries/Control/ForInStep/Lemmas.lean"
],
[
"Batteries.Tactic.Init",
".lake/packages/batteries/Batteries/Tactic/Init.lean"
],
[
"Batteries.Data.List.Basic",
".lake/packages/batteries/Batteries/Data/List/Basic.lean"
]
] | [
{
"code": "@[simp] theorem mem_toArray {a : α} {l : List α} : a ∈ l.toArray ↔ a ∈ l",
"end": [
18,
23
],
"full_name": "List.mem_toArray",
"kind": "commanddeclaration",
"start": [
17,
1
]
},
{
"code": "@[simp]\ntheorem drop_one : ∀ l : List α, drop 1 l = tail l",
"end": [
24,
23
],
"full_name": "List.drop_one",
"kind": "commanddeclaration",
"start": [
22,
1
]
},
{
"code": "theorem zipWith_distrib_tail : (zipWith f l l').tail = zipWith f l.tail l'.tail",
"end": [
29,
47
],
"full_name": "List.zipWith_distrib_tail",
"kind": "commanddeclaration",
"start": [
28,
1
]
},
{
"code": "theorem subset_def {l₁ l₂ : List α} : l₁ ⊆ l₂ ↔ ∀ {a : α}, a ∈ l₁ → a ∈ l₂",
"end": [
33,
83
],
"full_name": "List.subset_def",
"kind": "commanddeclaration",
"start": [
33,
1
]
},
{
"code": "@[simp] theorem nil_subset (l : List α) : [] ⊆ l",
"end": [
35,
58
],
"full_name": "List.nil_subset",
"kind": "commanddeclaration",
"start": [
35,
1
]
},
{
"code": "@[simp] theorem Subset.refl (l : List α) : l ⊆ l",
"end": [
37,
65
],
"full_name": "List.Subset.refl",
"kind": "commanddeclaration",
"start": [
37,
1
]
},
{
"code": "theorem Subset.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ ⊆ l₂) (h₂ : l₂ ⊆ l₃) : l₁ ⊆ l₃",
"end": [
40,
23
],
"full_name": "List.Subset.trans",
"kind": "commanddeclaration",
"start": [
39,
1
]
},
{
"code": "@[simp] theorem subset_cons (a : α) (l : List α) : l ⊆ a :: l",
"end": [
48,
85
],
"full_name": "List.subset_cons",
"kind": "commanddeclaration",
"start": [
48,
1
]
},
{
"code": "theorem subset_of_cons_subset {a : α} {l₁ l₂ : List α} : a :: l₁ ⊆ l₂ → l₁ ⊆ l₂",
"end": [
51,
39
],
"full_name": "List.subset_of_cons_subset",
"kind": "commanddeclaration",
"start": [
50,
1
]
},
{
"code": "theorem subset_cons_of_subset (a : α) {l₁ l₂ : List α} : l₁ ⊆ l₂ → l₁ ⊆ a :: l₂",
"end": [
54,
29
],
"full_name": "List.subset_cons_of_subset",
"kind": "commanddeclaration",
"start": [
53,
1
]
},
{
"code": "theorem cons_subset_cons {l₁ l₂ : List α} (a : α) (s : l₁ ⊆ l₂) : a :: l₁ ⊆ a :: l₂",
"end": [
57,
62
],
"full_name": "List.cons_subset_cons",
"kind": "commanddeclaration",
"start": [
56,
1
]
},
{
"code": "@[simp] theorem subset_append_left (l₁ l₂ : List α) : l₁ ⊆ l₁ ++ l₂",
"end": [
59,
98
],
"full_name": "List.subset_append_left",
"kind": "commanddeclaration",
"start": [
59,
1
]
},
{
"code": "@[simp] theorem subset_append_right (l₁ l₂ : List α) : l₂ ⊆ l₁ ++ l₂",
"end": [
61,
100
],
"full_name": "List.subset_append_right",
"kind": "commanddeclaration",
"start": [
61,
1
]
},
{
"code": "theorem subset_append_of_subset_left (l₂ : List α) : l ⊆ l₁ → l ⊆ l₁ ++ l₂",
"end": [
64,
50
],
"full_name": "List.subset_append_of_subset_left",
"kind": "commanddeclaration",
"start": [
63,
1
]
},
{
"code": "theorem subset_append_of_subset_right (l₁ : List α) : l ⊆ l₂ → l ⊆ l₁ ++ l₂",
"end": [
67,
51
],
"full_name": "List.subset_append_of_subset_right",
"kind": "commanddeclaration",
"start": [
66,
1
]
},
{
"code": "@[simp] theorem cons_subset : a :: l ⊆ m ↔ a ∈ m ∧ l ⊆ m",
"end": [
70,
66
],
"full_name": "List.cons_subset",
"kind": "commanddeclaration",
"start": [
69,
1
]
},
{
"code": "@[simp] theorem append_subset {l₁ l₂ l : List α} :\n l₁ ++ l₂ ⊆ l ↔ l₁ ⊆ l ∧ l₂ ⊆ l",
"end": [
73,
79
],
"full_name": "List.append_subset",
"kind": "commanddeclaration",
"start": [
72,
1
]
},
{
"code": "theorem subset_nil {l : List α} : l ⊆ [] ↔ l = []",
"end": [
76,
99
],
"full_name": "List.subset_nil",
"kind": "commanddeclaration",
"start": [
75,
1
]
},
{
"code": "theorem map_subset {l₁ l₂ : List α} (f : α → β) (H : l₁ ⊆ l₂) : map f l₁ ⊆ map f l₂",
"end": [
79,
72
],
"full_name": "List.map_subset",
"kind": "commanddeclaration",
"start": [
78,
1
]
},
{
"code": "@[simp] theorem nil_sublist : ∀ l : List α, [] <+ l",
"end": [
85,
37
],
"full_name": "List.nil_sublist",
"kind": "commanddeclaration",
"start": [
83,
1
]
},
{
"code": "@[simp] theorem Sublist.refl : ∀ l : List α, l <+ l",
"end": [
89,
39
],
"full_name": "List.Sublist.refl",
"kind": "commanddeclaration",
"start": [
87,
1
]
},
{
"code": "theorem Sublist.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ <+ l₂) (h₂ : l₂ <+ l₃) : l₁ <+ l₃",
"end": [
100,
53
],
"full_name": "List.Sublist.trans",
"kind": "commanddeclaration",
"start": [
91,
1
]
},
{
"code": "@[simp] theorem sublist_cons (a : α) (l : List α) : l <+ a :: l",
"end": [
104,
91
],
"full_name": "List.sublist_cons",
"kind": "commanddeclaration",
"start": [
104,
1
]
},
{
"code": "theorem sublist_of_cons_sublist : a :: l₁ <+ l₂ → l₁ <+ l₂",
"end": [
107,
28
],
"full_name": "List.sublist_of_cons_sublist",
"kind": "commanddeclaration",
"start": [
106,
1
]
},
{
"code": "@[simp] theorem sublist_append_left : ∀ l₁ l₂ : List α, l₁ <+ l₁ ++ l₂",
"end": [
111,
55
],
"full_name": "List.sublist_append_left",
"kind": "commanddeclaration",
"start": [
109,
1
]
},
{
"code": "@[simp] theorem sublist_append_right : ∀ l₁ l₂ : List α, l₂ <+ l₁ ++ l₂",
"end": [
115,
55
],
"full_name": "List.sublist_append_right",
"kind": "commanddeclaration",
"start": [
113,
1
]
},
{
"code": "theorem sublist_append_of_sublist_left (s : l <+ l₁) : l <+ l₁ ++ l₂",
"end": [
118,
36
],
"full_name": "List.sublist_append_of_sublist_left",
"kind": "commanddeclaration",
"start": [
117,
1
]
},
{
"code": "theorem sublist_append_of_sublist_right (s : l <+ l₂) : l <+ l₁ ++ l₂",
"end": [
121,
37
],
"full_name": "List.sublist_append_of_sublist_right",
"kind": "commanddeclaration",
"start": [
120,
1
]
},
{
"code": "@[simp]\ntheorem cons_sublist_cons : a :: l₁ <+ a :: l₂ ↔ l₁ <+ l₂",
"end": [
125,
77
],
"full_name": "List.cons_sublist_cons",
"kind": "commanddeclaration",
"start": [
123,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_left : ∀ l, l ++ l₁ <+ l ++ l₂ ↔ l₁ <+ l₂",
"end": [
129,
69
],
"full_name": "List.append_sublist_append_left",
"kind": "commanddeclaration",
"start": [
127,
1
]
},
{
"code": "theorem Sublist.append_left : l₁ <+ l₂ → ∀ l, l ++ l₁ <+ l ++ l₂",
"end": [
132,
50
],
"full_name": "List.Sublist.append_left",
"kind": "commanddeclaration",
"start": [
131,
1
]
},
{
"code": "theorem Sublist.append_right : l₁ <+ l₂ → ∀ l, l₁ ++ l <+ l₂ ++ l",
"end": [
137,
48
],
"full_name": "List.Sublist.append_right",
"kind": "commanddeclaration",
"start": [
134,
1
]
},
{
"code": "theorem sublist_or_mem_of_sublist (h : l <+ l₁ ++ a :: l₂) : l <+ l₁ ++ l₂ ∨ a ∈ l",
"end": [
147,
65
],
"full_name": "List.sublist_or_mem_of_sublist",
"kind": "commanddeclaration",
"start": [
139,
1
]
},
{
"code": "theorem Sublist.reverse : l₁ <+ l₂ → l₁.reverse <+ l₂.reverse",
"end": [
152,
85
],
"full_name": "List.Sublist.reverse",
"kind": "commanddeclaration",
"start": [
149,
1
]
},
{
"code": "@[simp] theorem reverse_sublist : l₁.reverse <+ l₂.reverse ↔ l₁ <+ l₂",
"end": [
155,
82
],
"full_name": "List.reverse_sublist",
"kind": "commanddeclaration",
"start": [
154,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_right (l) : l₁ ++ l <+ l₂ ++ l ↔ l₁ <+ l₂",
"end": [
162,
30
],
"full_name": "List.append_sublist_append_right",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "theorem Sublist.append (hl : l₁ <+ l₂) (hr : r₁ <+ r₂) : l₁ ++ r₁ <+ l₂ ++ r₂",
"end": [
165,
66
],
"full_name": "List.Sublist.append",
"kind": "commanddeclaration",
"start": [
164,
1
]
},
{
"code": "theorem Sublist.subset : l₁ <+ l₂ → l₁ ⊆ l₂",
"end": [
171,
53
],
"full_name": "List.Sublist.subset",
"kind": "commanddeclaration",
"start": [
167,
1
]
},
{
"code": "theorem Sublist.length_le : l₁ <+ l₂ → length l₁ ≤ length l₂",
"end": [
185,
45
],
"full_name": "List.Sublist.length_le",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "@[simp] theorem sublist_nil {l : List α} : l <+ [] ↔ l = []",
"end": [
188,
64
],
"full_name": "List.sublist_nil",
"kind": "commanddeclaration",
"start": [
187,
1
]
},
{
"code": "theorem Sublist.eq_of_length : l₁ <+ l₂ → length l₁ = length l₂ → l₁ = l₂",
"end": [
193,
57
],
"full_name": "List.Sublist.eq_of_length",
"kind": "commanddeclaration",
"start": [
190,
1
]
},
{
"code": "theorem Sublist.eq_of_length_le (s : l₁ <+ l₂) (h : length l₂ ≤ length l₁) : l₁ = l₂",
"end": [
196,
50
],
"full_name": "List.Sublist.eq_of_length_le",
"kind": "commanddeclaration",
"start": [
195,
1
]
},
{
"code": "@[simp] theorem singleton_sublist {a : α} {l} : [a] <+ l ↔ a ∈ l",
"end": [
201,
66
],
"full_name": "List.singleton_sublist",
"kind": "commanddeclaration",
"start": [
198,
1
]
},
{
"code": "@[simp] theorem replicate_sublist_replicate {m n} (a : α) :\n replicate m a <+ replicate n a ↔ m ≤ n",
"end": [
209,
48
],
"full_name": "List.replicate_sublist_replicate",
"kind": "commanddeclaration",
"start": [
203,
1
]
},
{
"code": "theorem isSublist_iff_sublist [BEq α] [LawfulBEq α] {l₁ l₂ : List α} :\n l₁.isSublist l₂ ↔ l₁ <+ l₂",
"end": [
228,
24
],
"full_name": "List.isSublist_iff_sublist",
"kind": "commanddeclaration",
"start": [
211,
1
]
},
{
"code": "theorem tail_eq_tailD (l) : @tail α l = tailD l []",
"end": [
235,
73
],
"full_name": "List.tail_eq_tailD",
"kind": "commanddeclaration",
"start": [
235,
1
]
},
{
"code": "theorem tail_eq_tail? (l) : @tail α l = (tail? l).getD []",
"end": [
237,
85
],
"full_name": "List.tail_eq_tail?",
"kind": "commanddeclaration",
"start": [
237,
1
]
},
{
"code": "@[simp] theorem next?_nil : @next? α [] = none",
"end": [
241,
54
],
"full_name": "List.next?_nil",
"kind": "commanddeclaration",
"start": [
241,
1
]
},
{
"code": "@[simp] theorem next?_cons (a l) : @next? α (a :: l) = some (a, l)",
"end": [
242,
74
],
"full_name": "List.next?_cons",
"kind": "commanddeclaration",
"start": [
242,
1
]
},
{
"code": "theorem getElem_eq_iff {l : List α} {n : Nat} {h : n < l.length} : l[n] = x ↔ l[n]? = some x",
"end": [
248,
40
],
"full_name": "List.getElem_eq_iff",
"kind": "commanddeclaration",
"start": [
246,
1
]
},
{
"code": "@[deprecated getElem_eq_iff (since := \"2024-06-12\")]\ntheorem get_eq_iff : List.get l n = x ↔ l.get? n.1 = some x",
"end": [
252,
7
],
"full_name": "List.get_eq_iff",
"kind": "commanddeclaration",
"start": [
250,
1
]
},
{
"code": "theorem getElem?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs[i]? = xs[j]?) : i = j",
"end": [
273,
39
],
"full_name": "List.getElem?_inj",
"kind": "commanddeclaration",
"start": [
254,
1
]
},
{
"code": "@[deprecated getElem?_inj (since := \"2024-06-12\")]\ntheorem get?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs.get? i = xs.get? j) : i = j",
"end": [
279,
11
],
"full_name": "List.get?_inj",
"kind": "commanddeclaration",
"start": [
275,
1
]
},
{
"code": "theorem tail_drop (l : List α) (n : Nat) : (l.drop n).tail = l.drop (n + 1)",
"end": [
289,
16
],
"full_name": "List.tail_drop",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "@[simp] theorem modifyNth_nil (f : α → α) (n) : [].modifyNth f n = []",
"end": [
293,
92
],
"full_name": "List.modifyNth_nil",
"kind": "commanddeclaration",
"start": [
293,
1
]
},
{
"code": "@[simp] theorem modifyNth_zero_cons (f : α → α) (a : α) (l : List α) :\n (a :: l).modifyNth f 0 = f a :: l",
"end": [
296,
45
],
"full_name": "List.modifyNth_zero_cons",
"kind": "commanddeclaration",
"start": [
295,
1
]
},
{
"code": "@[simp] theorem modifyNth_succ_cons (f : α → α) (a : α) (l : List α) (n) :\n (a :: l).modifyNth f (n + 1) = a :: l.modifyNth f n",
"end": [
299,
66
],
"full_name": "List.modifyNth_succ_cons",
"kind": "commanddeclaration",
"start": [
298,
1
]
},
{
"code": "theorem modifyNthTail_id : ∀ n (l : List α), l.modifyNthTail id n = l",
"end": [
304,
60
],
"full_name": "List.modifyNthTail_id",
"kind": "commanddeclaration",
"start": [
301,
1
]
},
{
"code": "theorem eraseIdx_eq_modifyNthTail : ∀ n (l : List α), eraseIdx l n = modifyNthTail tail n l",
"end": [
309,
69
],
"full_name": "List.eraseIdx_eq_modifyNthTail",
"kind": "commanddeclaration",
"start": [
306,
1
]
},
{
"code": "theorem getElem?_modifyNth (f : α → α) :\n ∀ n (l : List α) m, (modifyNth f n l)[m]? = (fun a => if n = m then f a else a) <$> l[m]?",
"end": [
322,
79
],
"full_name": "List.getElem?_modifyNth",
"kind": "commanddeclaration",
"start": [
313,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth (since := \"2024-06-12\")]\ntheorem get?_modifyNth (f : α → α) (n) (l : List α) (m) :\n (modifyNth f n l).get? m = (fun a => if n = m then f a else a) <$> l.get? m",
"end": [
327,
28
],
"full_name": "List.get?_modifyNth",
"kind": "commanddeclaration",
"start": [
324,
1
]
},
{
"code": "theorem modifyNthTail_length (f : List α → List α) (H : ∀ l, length (f l) = length l) :\n ∀ n l, length (modifyNthTail f n l) = length l",
"end": [
333,
65
],
"full_name": "List.modifyNthTail_length",
"kind": "commanddeclaration",
"start": [
329,
1
]
},
{
"code": "theorem modifyNthTail_add (f : List α → List α) (n) (l₁ l₂ : List α) :\n modifyNthTail f (l₁.length + n) (l₁ ++ l₂) = l₁ ++ modifyNthTail f n l₂",
"end": [
337,
42
],
"full_name": "List.modifyNthTail_add",
"kind": "commanddeclaration",
"start": [
335,
1
]
},
{
"code": "theorem exists_of_modifyNthTail (f : List α → List α) {n} {l : List α} (h : n ≤ l.length) :\n ∃ l₁ l₂, l = l₁ ++ l₂ ∧ l₁.length = n ∧ modifyNthTail f n l = l₁ ++ f l₂",
"end": [
343,
58
],
"full_name": "List.exists_of_modifyNthTail",
"kind": "commanddeclaration",
"start": [
339,
1
]
},
{
"code": "@[simp] theorem modify_get?_length (f : α → α) : ∀ n l, length (modifyNth f n l) = length l",
"end": [
346,
53
],
"full_name": "List.modify_get?_length",
"kind": "commanddeclaration",
"start": [
345,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l)[n]? = f <$> l[n]?",
"end": [
350,
41
],
"full_name": "List.getElem?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_eq (since := \"2024-06-12\")]\ntheorem get?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l).get? n = f <$> l.get? n",
"end": [
355,
31
],
"full_name": "List.get?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
352,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l)[n]? = l[n]?",
"end": [
359,
52
],
"full_name": "List.getElem?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
357,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_ne (since := \"2024-06-12\")]\ntheorem get?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l).get? n = l.get? n",
"end": [
364,
11
],
"full_name": "List.get?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
361,
1
]
},
{
"code": "theorem exists_of_modifyNth (f : α → α) {n} {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ modifyNth f n l = l₁ ++ f a :: l₂",
"end": [
370,
74
],
"full_name": "List.exists_of_modifyNth",
"kind": "commanddeclaration",
"start": [
366,
1
]
},
{
"code": "theorem modifyNthTail_eq_take_drop (f : List α → List α) (H : f [] = []) :\n ∀ n l, modifyNthTail f n l = take n l ++ f (drop n l)",
"end": [
376,
76
],
"full_name": "List.modifyNthTail_eq_take_drop",
"kind": "commanddeclaration",
"start": [
372,
1
]
},
{
"code": "theorem modifyNth_eq_take_drop (f : α → α) :\n ∀ n l, modifyNth f n l = take n l ++ modifyHead f (drop n l)",
"end": [
380,
35
],
"full_name": "List.modifyNth_eq_take_drop",
"kind": "commanddeclaration",
"start": [
378,
1
]
},
{
"code": "theorem modifyNth_eq_take_cons_drop (f : α → α) {n l} (h) :\n modifyNth f n l = take n l ++ f l[n] :: drop (n + 1) l",
"end": [
384,
59
],
"full_name": "List.modifyNth_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
382,
1
]
},
{
"code": "theorem set_eq_modifyNth (a : α) : ∀ n (l : List α), set l n a = modifyNth (fun _ => a) n l",
"end": [
391,
62
],
"full_name": "List.set_eq_modifyNth",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "theorem set_eq_take_cons_drop (a : α) {n l} (h : n < length l) :\n set l n a = take n l ++ a :: drop (n + 1) l",
"end": [
395,
57
],
"full_name": "List.set_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
393,
1
]
},
{
"code": "theorem modifyNth_eq_set_get? (f : α → α) :\n ∀ n (l : List α), l.modifyNth f n = ((fun a => l.set n (f a)) <$> l.get? n).getD l",
"end": [
402,
92
],
"full_name": "List.modifyNth_eq_set_get?",
"kind": "commanddeclaration",
"start": [
397,
1
]
},
{
"code": "theorem modifyNth_eq_set_get (f : α → α) {n} {l : List α} (h) :\n l.modifyNth f n = l.set n (f (l.get ⟨n, h⟩))",
"end": [
406,
49
],
"full_name": "List.modifyNth_eq_set_get",
"kind": "commanddeclaration",
"start": [
404,
1
]
},
{
"code": "theorem exists_of_set {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
410,
55
],
"full_name": "List.exists_of_set",
"kind": "commanddeclaration",
"start": [
408,
1
]
},
{
"code": "theorem exists_of_set' {l : List α} (h : n < l.length) :\n ∃ l₁ l₂, l = l₁ ++ l[n] :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
414,
94
],
"full_name": "List.exists_of_set'",
"kind": "commanddeclaration",
"start": [
412,
1
]
},
{
"code": "@[simp]\ntheorem getElem?_set_eq' (a : α) (n) (l : List α) : (set l n a)[n]? = (fun _ => a) <$> l[n]?",
"end": [
418,
54
],
"full_name": "List.getElem?_set_eq'",
"kind": "commanddeclaration",
"start": [
416,
1
]
},
{
"code": "@[deprecated getElem?_set_eq' (since := \"2024-06-12\")]\ntheorem get?_set_eq (a : α) (n) (l : List α) : (set l n a).get? n = (fun _ => a) <$> l.get? n",
"end": [
422,
7
],
"full_name": "List.get?_set_eq",
"kind": "commanddeclaration",
"start": [
420,
1
]
},
{
"code": "theorem getElem?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a)[n]? = some a",
"end": [
425,
85
],
"full_name": "List.getElem?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
424,
1
]
},
{
"code": "@[deprecated getElem?_set_eq_of_lt (since := \"2024-06-12\")]\ntheorem get?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a).get? n = some a",
"end": [
430,
70
],
"full_name": "List.get?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
427,
1
]
},
{
"code": "@[deprecated getElem?_set_ne (since := \"2024-06-12\")]\ntheorem get?_set_ne (a : α) {m n} (l : List α) (h : m ≠ n) : (set l m a).get? n = l.get? n",
"end": [
434,
11
],
"full_name": "List.get?_set_ne",
"kind": "commanddeclaration",
"start": [
432,
1
]
},
{
"code": "theorem getElem?_set' (a : α) {m n} (l : List α) :\n (set l m a)[n]? = if m = n then (fun _ => a) <$> l[n]? else l[n]?",
"end": [
438,
30
],
"full_name": "List.getElem?_set'",
"kind": "commanddeclaration",
"start": [
436,
1
]
},
{
"code": "@[deprecated getElem?_set (since := \"2024-06-12\")]\ntheorem get?_set (a : α) {m n} (l : List α) :\n (set l m a).get? n = if m = n then (fun _ => a) <$> l.get? n else l.get? n",
"end": [
443,
23
],
"full_name": "List.get?_set",
"kind": "commanddeclaration",
"start": [
440,
1
]
},
{
"code": "theorem get?_set_of_lt (a : α) {m n} (l : List α) (h : n < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
447,
46
],
"full_name": "List.get?_set_of_lt",
"kind": "commanddeclaration",
"start": [
445,
1
]
},
{
"code": "theorem get?_set_of_lt' (a : α) {m n} (l : List α) (h : m < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
451,
80
],
"full_name": "List.get?_set_of_lt'",
"kind": "commanddeclaration",
"start": [
449,
1
]
},
{
"code": "theorem drop_set_of_lt (a : α) {n m : Nat} (l : List α) (h : n < m) :\n (l.set n a).drop m = l.drop m",
"end": [
455,
94
],
"full_name": "List.drop_set_of_lt",
"kind": "commanddeclaration",
"start": [
453,
1
]
},
{
"code": "theorem take_set_of_lt (a : α) {n m : Nat} (l : List α) (h : m < n) :\n (l.set n a).take m = l.take m",
"end": [
463,
10
],
"full_name": "List.take_set_of_lt",
"kind": "commanddeclaration",
"start": [
457,
1
]
},
{
"code": "theorem length_eraseIdx : ∀ {l i}, i < length l → length (@eraseIdx α l i) = length l - 1",
"end": [
473,
92
],
"full_name": "List.length_eraseIdx",
"kind": "commanddeclaration",
"start": [
467,
1
]
},
{
"code": "@[simp] theorem length_tail (l : List α) : length (tail l) = length l - 1",
"end": [
479,
96
],
"full_name": "List.length_tail",
"kind": "commanddeclaration",
"start": [
479,
1
]
},
{
"code": "@[simp] theorem eraseP_nil : [].eraseP p = []",
"end": [
483,
53
],
"full_name": "List.eraseP_nil",
"kind": "commanddeclaration",
"start": [
483,
1
]
},
{
"code": "theorem eraseP_cons (a : α) (l : List α) :\n (a :: l).eraseP p = bif p a then l else a :: l.eraseP p",
"end": [
486,
67
],
"full_name": "List.eraseP_cons",
"kind": "commanddeclaration",
"start": [
485,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_pos {l : List α} (p) (h : p a) : (a :: l).eraseP p = l",
"end": [
489,
24
],
"full_name": "List.eraseP_cons_of_pos",
"kind": "commanddeclaration",
"start": [
488,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_neg {l : List α} (p) (h : ¬p a) :\n (a :: l).eraseP p = a :: l.eraseP p",
"end": [
492,
68
],
"full_name": "List.eraseP_cons_of_neg",
"kind": "commanddeclaration",
"start": [
491,
1
]
},
{
"code": "theorem eraseP_of_forall_not {l : List α} (h : ∀ a, a ∈ l → ¬p a) : l.eraseP p = l",
"end": [
497,
69
],
"full_name": "List.eraseP_of_forall_not",
"kind": "commanddeclaration",
"start": [
494,
1
]
},
{
"code": "theorem exists_of_eraseP : ∀ {l : List α} {a} (al : a ∈ l) (pa : p a),\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
510,
57
],
"full_name": "List.exists_of_eraseP",
"kind": "commanddeclaration",
"start": [
499,
1
]
},
{
"code": "theorem exists_or_eq_self_of_eraseP (p) (l : List α) :\n l.eraseP p = l ∨\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
519,
46
],
"full_name": "List.exists_or_eq_self_of_eraseP",
"kind": "commanddeclaration",
"start": [
512,
1
]
},
{
"code": "@[simp] theorem length_eraseP_of_mem (al : a ∈ l) (pa : p a) :\n length (l.eraseP p) = Nat.pred (length l)",
"end": [
524,
41
],
"full_name": "List.length_eraseP_of_mem",
"kind": "commanddeclaration",
"start": [
521,
1
]
},
{
"code": "theorem eraseP_append_left {a : α} (pa : p a) :\n ∀ {l₁ : List α} l₂, a ∈ l₁ → (l₁++l₂).eraseP p = l₁.eraseP p ++ l₂",
"end": [
531,
28
],
"full_name": "List.eraseP_append_left",
"kind": "commanddeclaration",
"start": [
526,
1
]
},
{
"code": "theorem eraseP_append_right :\n ∀ {l₁ : List α} l₂, (∀ b ∈ l₁, ¬p b) → eraseP p (l₁++l₂) = l₁ ++ l₂.eraseP p",
"end": [
537,
82
],
"full_name": "List.eraseP_append_right",
"kind": "commanddeclaration",
"start": [
533,
1
]
},
{
"code": "theorem eraseP_sublist (l : List α) : l.eraseP p <+ l",
"end": [
542,
56
],
"full_name": "List.eraseP_sublist",
"kind": "commanddeclaration",
"start": [
539,
1
]
},
{
"code": "theorem eraseP_subset (l : List α) : l.eraseP p ⊆ l",
"end": [
544,
81
],
"full_name": "List.eraseP_subset",
"kind": "commanddeclaration",
"start": [
544,
1
]
},
{
"code": "protected theorem Sublist.eraseP : l₁ <+ l₂ → l₁.eraseP p <+ l₂.eraseP p",
"end": [
553,
25
],
"full_name": "List.Sublist.eraseP",
"kind": "commanddeclaration",
"start": [
546,
1
]
},
{
"code": "theorem mem_of_mem_eraseP {l : List α} : a ∈ l.eraseP p → a ∈ l",
"end": [
555,
87
],
"full_name": "List.mem_of_mem_eraseP",
"kind": "commanddeclaration",
"start": [
555,
1
]
},
{
"code": "@[simp] theorem mem_eraseP_of_neg {l : List α} (pa : ¬p a) : a ∈ l.eraseP p ↔ a ∈ l",
"end": [
564,
33
],
"full_name": "List.mem_eraseP_of_neg",
"kind": "commanddeclaration",
"start": [
557,
1
]
},
{
"code": "theorem eraseP_map (f : β → α) : ∀ (l : List β), (map f l).eraseP p = map f (l.eraseP (p ∘ f))",
"end": [
568,
85
],
"full_name": "List.eraseP_map",
"kind": "commanddeclaration",
"start": [
566,
1
]
},
{
"code": "@[simp] theorem extractP_eq_find?_eraseP\n (l : List α) : extractP p l = (find? p l, eraseP p l)",
"end": [
578,
21
],
"full_name": "List.extractP_eq_find?_eraseP",
"kind": "commanddeclaration",
"start": [
570,
1
]
},
{
"code": "theorem erase_eq_eraseP' (a : α) (l : List α) : l.erase a = l.eraseP (· == a)",
"end": [
590,
46
],
"full_name": "List.erase_eq_eraseP'",
"kind": "commanddeclaration",
"start": [
585,
1
]
},
{
"code": "theorem erase_eq_eraseP [LawfulBEq α] (a : α) : ∀ l : List α, l.erase a = l.eraseP (a == ·)",
"end": [
595,
77
],
"full_name": "List.erase_eq_eraseP",
"kind": "commanddeclaration",
"start": [
592,
1
]
},
{
"code": "theorem exists_erase_eq [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n ∃ l₁ l₂, a ∉ l₁ ∧ l = l₁ ++ a :: l₂ ∧ l.erase a = l₁ ++ l₂",
"end": [
600,
99
],
"full_name": "List.exists_erase_eq",
"kind": "commanddeclaration",
"start": [
597,
1
]
},
{
"code": "@[simp] theorem length_erase_of_mem [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n length (l.erase a) = Nat.pred (length l)",
"end": [
604,
74
],
"full_name": "List.length_erase_of_mem",
"kind": "commanddeclaration",
"start": [
602,
1
]
},
{
"code": "theorem erase_append_left [LawfulBEq α] {l₁ : List α} (l₂) (h : a ∈ l₁) :\n (l₁ ++ l₂).erase a = l₁.erase a ++ l₂",
"end": [
608,
77
],
"full_name": "List.erase_append_left",
"kind": "commanddeclaration",
"start": [
606,
1
]
},
{
"code": "theorem erase_append_right [LawfulBEq α] {a : α} {l₁ : List α} (l₂ : List α) (h : a ∉ l₁) :\n (l₁ ++ l₂).erase a = (l₁ ++ l₂.erase a)",
"end": [
613,
55
],
"full_name": "List.erase_append_right",
"kind": "commanddeclaration",
"start": [
610,
1
]
},
{
"code": "theorem erase_sublist (a : α) (l : List α) : l.erase a <+ l",
"end": [
616,
42
],
"full_name": "List.erase_sublist",
"kind": "commanddeclaration",
"start": [
615,
1
]
},
{
"code": "theorem erase_subset (a : α) (l : List α) : l.erase a ⊆ l",
"end": [
618,
88
],
"full_name": "List.erase_subset",
"kind": "commanddeclaration",
"start": [
618,
1
]
},
{
"code": "theorem Sublist.erase (a : α) {l₁ l₂ : List α} (h : l₁ <+ l₂) : l₁.erase a <+ l₂.erase a",
"end": [
621,
47
],
"full_name": "List.Sublist.erase",
"kind": "commanddeclaration",
"start": [
620,
1
]
},
{
"code": "theorem mem_of_mem_erase {a b : α} {l : List α} (h : a ∈ l.erase b) : a ∈ l",
"end": [
624,
98
],
"full_name": "List.mem_of_mem_erase",
"kind": "commanddeclaration",
"start": [
624,
1
]
},
{
"code": "@[simp] theorem mem_erase_of_ne [LawfulBEq α] {a b : α} {l : List α} (ab : a ≠ b) :\n a ∈ l.erase b ↔ a ∈ l",
"end": [
628,
65
],
"full_name": "List.mem_erase_of_ne",
"kind": "commanddeclaration",
"start": [
626,
1
]
},
{
"code": "theorem erase_comm [LawfulBEq α] (a b : α) (l : List α) :\n (l.erase a).erase b = (l.erase b).erase a",
"end": [
644,
49
],
"full_name": "List.erase_comm",
"kind": "commanddeclaration",
"start": [
630,
1
]
},
{
"code": "@[simp] theorem filter_sublist {p : α → Bool} : ∀ (l : List α), filter p l <+ l",
"end": [
652,
93
],
"full_name": "List.filter_sublist",
"kind": "commanddeclaration",
"start": [
650,
1
]
},
{
"code": "protected theorem Sublist.filterMap (f : α → Option β) (s : l₁ <+ l₂) :\n filterMap f l₁ <+ filterMap f l₂",
"end": [
658,
76
],
"full_name": "List.Sublist.filterMap",
"kind": "commanddeclaration",
"start": [
656,
1
]
},
{
"code": "theorem Sublist.filter (p : α → Bool) {l₁ l₂} (s : l₁ <+ l₂) : filter p l₁ <+ filter p l₂",
"end": [
661,
48
],
"full_name": "List.Sublist.filter",
"kind": "commanddeclaration",
"start": [
660,
1
]
},
{
"code": "@[simp] theorem findIdx_nil {α : Type _} (p : α → Bool) : [].findIdx p = 0",
"end": [
665,
82
],
"full_name": "List.findIdx_nil",
"kind": "commanddeclaration",
"start": [
665,
1
]
},
{
"code": "theorem findIdx_cons (p : α → Bool) (b : α) (l : List α) :\n (b :: l).findIdx p = bif p b then 0 else (l.findIdx p) + 1",
"end": [
680,
43
],
"full_name": "List.findIdx_cons",
"kind": "commanddeclaration",
"start": [
667,
1
]
},
{
"code": "theorem findIdx_of_get?_eq_some {xs : List α} (w : xs.get? (xs.findIdx p) = some y) : p y",
"end": [
685,
65
],
"full_name": "List.findIdx_of_get?_eq_some",
"kind": "commanddeclaration",
"start": [
682,
1
]
},
{
"code": "theorem findIdx_get {xs : List α} {w : xs.findIdx p < xs.length} :\n p (xs.get ⟨xs.findIdx p, w⟩)",
"end": [
689,
45
],
"full_name": "List.findIdx_get",
"kind": "commanddeclaration",
"start": [
687,
1
]
},
{
"code": "theorem findIdx_lt_length_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.findIdx p < xs.length",
"end": [
703,
24
],
"full_name": "List.findIdx_lt_length_of_exists",
"kind": "commanddeclaration",
"start": [
691,
1
]
},
{
"code": "theorem findIdx_get?_eq_get_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.get? (xs.findIdx p) = some (xs.get ⟨xs.findIdx p, xs.findIdx_lt_length_of_exists h⟩)",
"end": [
707,
46
],
"full_name": "List.findIdx_get?_eq_get_of_exists",
"kind": "commanddeclaration",
"start": [
705,
1
]
},
{
"code": "@[simp] theorem findIdx?_nil : ([] : List α).findIdx? p i = none",
"end": [
711,
72
],
"full_name": "List.findIdx?_nil",
"kind": "commanddeclaration",
"start": [
711,
1
]
},
{
"code": "@[simp] theorem findIdx?_cons :\n (x :: xs).findIdx? p i = if p x then some i else findIdx? p xs (i + 1)",
"end": [
714,
82
],
"full_name": "List.findIdx?_cons",
"kind": "commanddeclaration",
"start": [
713,
1
]
},
{
"code": "@[simp] theorem findIdx?_succ :\n (xs : List α).findIdx? p (i+1) = (xs.findIdx? p i).map fun i => i + 1",
"end": [
719,
37
],
"full_name": "List.findIdx?_succ",
"kind": "commanddeclaration",
"start": [
716,
1
]
},
{
"code": "theorem findIdx?_eq_some_iff (xs : List α) (p : α → Bool) :\n xs.findIdx? p = some i ↔ (xs.take (i + 1)).map p = replicate i false ++ [true]",
"end": [
727,
52
],
"full_name": "List.findIdx?_eq_some_iff",
"kind": "commanddeclaration",
"start": [
721,
1
]
},
{
"code": "theorem findIdx?_of_eq_some {xs : List α} {p : α → Bool} (w : xs.findIdx? p = some i) :\n match xs.get? i with | some a => p a | none => false",
"end": [
735,
40
],
"full_name": "List.findIdx?_of_eq_some",
"kind": "commanddeclaration",
"start": [
729,
1
]
},
{
"code": "theorem findIdx?_of_eq_none {xs : List α} {p : α → Bool} (w : xs.findIdx? p = none) :\n ∀ i, match xs.get? i with | some a => ¬ p a | none => true",
"end": [
750,
30
],
"full_name": "List.findIdx?_of_eq_none",
"kind": "commanddeclaration",
"start": [
737,
1
]
},
{
"code": "@[simp] theorem findIdx?_append :\n (xs ++ ys : List α).findIdx? p =\n (xs.findIdx? p <|> (ys.findIdx? p).map fun i => i + xs.length)",
"end": [
756,
78
],
"full_name": "List.findIdx?_append",
"kind": "commanddeclaration",
"start": [
752,
1
]
},
{
"code": "@[simp] theorem findIdx?_replicate :\n (replicate n a).findIdx? p = if 0 < n ∧ p a then some 0 else none",
"end": [
764,
23
],
"full_name": "List.findIdx?_replicate",
"kind": "commanddeclaration",
"start": [
758,
1
]
},
{
"code": "theorem Pairwise.sublist : l₁ <+ l₂ → l₂.Pairwise R → l₁.Pairwise R",
"end": [
771,
80
],
"full_name": "List.Pairwise.sublist",
"kind": "commanddeclaration",
"start": [
768,
1
]
},
{
"code": "theorem pairwise_map {l : List α} :\n (l.map f).Pairwise R ↔ l.Pairwise fun a b => R (f a) (f b)",
"end": [
777,
58
],
"full_name": "List.pairwise_map",
"kind": "commanddeclaration",
"start": [
773,
1
]
},
{
"code": "theorem pairwise_append {l₁ l₂ : List α} :\n (l₁ ++ l₂).Pairwise R ↔ l₁.Pairwise R ∧ l₂.Pairwise R ∧ ∀ a ∈ l₁, ∀ b ∈ l₂, R a b",
"end": [
781,
74
],
"full_name": "List.pairwise_append",
"kind": "commanddeclaration",
"start": [
779,
1
]
},
{
"code": "theorem pairwise_reverse {l : List α} :\n l.reverse.Pairwise R ↔ l.Pairwise (fun a b => R b a)",
"end": [
785,
54
],
"full_name": "List.pairwise_reverse",
"kind": "commanddeclaration",
"start": [
783,
1
]
},
{
"code": "theorem Pairwise.imp {α R S} (H : ∀ {a b}, R a b → S a b) :\n ∀ {l : List α}, l.Pairwise R → l.Pairwise S",
"end": [
790,
50
],
"full_name": "List.Pairwise.imp",
"kind": "commanddeclaration",
"start": [
787,
1
]
},
{
"code": "theorem replaceF_nil : [].replaceF p = []",
"end": [
794,
49
],
"full_name": "List.replaceF_nil",
"kind": "commanddeclaration",
"start": [
794,
1
]
},
{
"code": "theorem replaceF_cons (a : α) (l : List α) :\n (a :: l).replaceF p = match p a with\n | none => a :: replaceF p l\n | some a' => a' :: l",
"end": [
799,
34
],
"full_name": "List.replaceF_cons",
"kind": "commanddeclaration",
"start": [
796,
1
]
},
{
"code": "theorem replaceF_cons_of_some {l : List α} (p) (h : p a = some a') :\n (a :: l).replaceF p = a' :: l",
"end": [
803,
26
],
"full_name": "List.replaceF_cons_of_some",
"kind": "commanddeclaration",
"start": [
801,
1
]
},
{
"code": "theorem replaceF_cons_of_none {l : List α} (p) (h : p a = none) :\n (a :: l).replaceF p = a :: l.replaceF p",
"end": [
806,
74
],
"full_name": "List.replaceF_cons_of_none",
"kind": "commanddeclaration",
"start": [
805,
1
]
},
{
"code": "theorem replaceF_of_forall_none {l : List α} (h : ∀ a, a ∈ l → p a = none) : l.replaceF p = l",
"end": [
811,
69
],
"full_name": "List.replaceF_of_forall_none",
"kind": "commanddeclaration",
"start": [
808,
1
]
},
{
"code": "theorem exists_of_replaceF : ∀ {l : List α} {a a'} (al : a ∈ l) (pa : p a = some a'),\n ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
825,
57
],
"full_name": "List.exists_of_replaceF",
"kind": "commanddeclaration",
"start": [
813,
1
]
},
{
"code": "theorem exists_or_eq_self_of_replaceF (p) (l : List α) :\n l.replaceF p = l ∨ ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
835,
62
],
"full_name": "List.exists_or_eq_self_of_replaceF",
"kind": "commanddeclaration",
"start": [
827,
1
]
},
{
"code": "@[simp] theorem length_replaceF : length (replaceF f l) = length l",
"end": [
838,
54
],
"full_name": "List.length_replaceF",
"kind": "commanddeclaration",
"start": [
837,
1
]
},
{
"code": "theorem disjoint_symm (d : Disjoint l₁ l₂) : Disjoint l₂ l₁",
"end": [
842,
86
],
"full_name": "List.disjoint_symm",
"kind": "commanddeclaration",
"start": [
842,
1
]
},
{
"code": "theorem disjoint_comm : Disjoint l₁ l₂ ↔ Disjoint l₂ l₁",
"end": [
844,
90
],
"full_name": "List.disjoint_comm",
"kind": "commanddeclaration",
"start": [
844,
1
]
},
{
"code": "theorem disjoint_left : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₁ → a ∉ l₂",
"end": [
846,
86
],
"full_name": "List.disjoint_left",
"kind": "commanddeclaration",
"start": [
846,
1
]
},
{
"code": "theorem disjoint_right : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₂ → a ∉ l₁",
"end": [
848,
82
],
"full_name": "List.disjoint_right",
"kind": "commanddeclaration",
"start": [
848,
1
]
},
{
"code": "theorem disjoint_iff_ne : Disjoint l₁ l₂ ↔ ∀ a ∈ l₁, ∀ b ∈ l₂, a ≠ b",
"end": [
851,
83
],
"full_name": "List.disjoint_iff_ne",
"kind": "commanddeclaration",
"start": [
850,
1
]
},
{
"code": "theorem disjoint_of_subset_left (ss : l₁ ⊆ l) (d : Disjoint l l₂) : Disjoint l₁ l₂",
"end": [
854,
22
],
"full_name": "List.disjoint_of_subset_left",
"kind": "commanddeclaration",
"start": [
853,
1
]
},
{
"code": "theorem disjoint_of_subset_right (ss : l₂ ⊆ l) (d : Disjoint l₁ l) : Disjoint l₁ l₂",
"end": [
857,
28
],
"full_name": "List.disjoint_of_subset_right",
"kind": "commanddeclaration",
"start": [
856,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_left {l₁ l₂} : Disjoint (a :: l₁) l₂ → Disjoint l₁ l₂",
"end": [
860,
42
],
"full_name": "List.disjoint_of_disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
859,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_right {l₁ l₂} : Disjoint l₁ (a :: l₂) → Disjoint l₁ l₂",
"end": [
863,
43
],
"full_name": "List.disjoint_of_disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
862,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_left (l : List α) : Disjoint [] l",
"end": [
865,
96
],
"full_name": "List.disjoint_nil_left",
"kind": "commanddeclaration",
"start": [
865,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_right (l : List α) : Disjoint l []",
"end": [
868,
48
],
"full_name": "List.disjoint_nil_right",
"kind": "commanddeclaration",
"start": [
867,
1
]
},
{
"code": "@[simp 1100] theorem singleton_disjoint : Disjoint [a] l ↔ a ∉ l",
"end": [
870,
87
],
"full_name": "List.singleton_disjoint",
"kind": "commanddeclaration",
"start": [
870,
1
]
},
{
"code": "@[simp 1100] theorem disjoint_singleton : Disjoint l [a] ↔ a ∉ l",
"end": [
873,
41
],
"full_name": "List.disjoint_singleton",
"kind": "commanddeclaration",
"start": [
872,
1
]
},
{
"code": "@[simp] theorem disjoint_append_left : Disjoint (l₁ ++ l₂) l ↔ Disjoint l₁ l ∧ Disjoint l₂ l",
"end": [
876,
38
],
"full_name": "List.disjoint_append_left",
"kind": "commanddeclaration",
"start": [
875,
1
]
},
{
"code": "@[simp] theorem disjoint_append_right : Disjoint l (l₁ ++ l₂) ↔ Disjoint l l₁ ∧ Disjoint l l₂",
"end": [
879,
76
],
"full_name": "List.disjoint_append_right",
"kind": "commanddeclaration",
"start": [
878,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_left : Disjoint (a::l₁) l₂ ↔ (a ∉ l₂) ∧ Disjoint l₁ l₂",
"end": [
882,
75
],
"full_name": "List.disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
881,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_right : Disjoint l₁ (a :: l₂) ↔ (a ∉ l₁) ∧ Disjoint l₁ l₂",
"end": [
885,
74
],
"full_name": "List.disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
884,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_left (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₁ l",
"end": [
888,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_left",
"kind": "commanddeclaration",
"start": [
887,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_right (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₂ l",
"end": [
891,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_right",
"kind": "commanddeclaration",
"start": [
890,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_left (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₁",
"end": [
894,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_left",
"kind": "commanddeclaration",
"start": [
893,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_right (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₂",
"end": [
897,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_right",
"kind": "commanddeclaration",
"start": [
896,
1
]
},
{
"code": "theorem foldl_hom (f : α₁ → α₂) (g₁ : α₁ → β → α₁) (g₂ : α₂ → β → α₂) (l : List β) (init : α₁)\n (H : ∀ x y, g₂ (f x) y = f (g₁ x y)) : l.foldl g₂ (f init) = f (l.foldl g₁ init)",
"end": [
903,
48
],
"full_name": "List.foldl_hom",
"kind": "commanddeclaration",
"start": [
901,
1
]
},
{
"code": "theorem foldr_hom (f : β₁ → β₂) (g₁ : α → β₁ → β₁) (g₂ : α → β₂ → β₂) (l : List α) (init : β₁)\n (H : ∀ x y, g₂ x (f y) = f (g₁ x y)) : l.foldr g₂ (f init) = f (l.foldr g₁ init)",
"end": [
907,
30
],
"full_name": "List.foldr_hom",
"kind": "commanddeclaration",
"start": [
905,
1
]
},
{
"code": "theorem union_def [BEq α] (l₁ l₂ : List α) : l₁ ∪ l₂ = foldr .insert l₂ l₁",
"end": [
915,
83
],
"full_name": "List.union_def",
"kind": "commanddeclaration",
"start": [
915,
1
]
},
{
"code": "@[simp] theorem nil_union (l : List α) : nil ∪ l = l",
"end": [
917,
88
],
"full_name": "List.nil_union",
"kind": "commanddeclaration",
"start": [
917,
1
]
},
{
"code": "@[simp] theorem cons_union (a : α) (l₁ l₂ : List α) :\n (a :: l₁) ∪ l₂ = (l₁ ∪ l₂).insert a",
"end": [
920,
75
],
"full_name": "List.cons_union",
"kind": "commanddeclaration",
"start": [
919,
1
]
},
{
"code": "@[simp] theorem mem_union_iff [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∪ l₂ ↔ x ∈ l₁ ∨ x ∈ l₂",
"end": [
923,
76
],
"full_name": "List.mem_union_iff",
"kind": "commanddeclaration",
"start": [
922,
1
]
},
{
"code": "theorem inter_def [BEq α] (l₁ l₂ : List α) : l₁ ∩ l₂ = filter (elem · l₂) l₁",
"end": [
929,
85
],
"full_name": "List.inter_def",
"kind": "commanddeclaration",
"start": [
929,
1
]
},
{
"code": "@[simp] theorem mem_inter_iff [BEq α] [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∩ l₂ ↔ x ∈ l₁ ∧ x ∈ l₂",
"end": [
933,
49
],
"full_name": "List.mem_inter_iff",
"kind": "commanddeclaration",
"start": [
931,
1
]
},
{
"code": "@[simp]\ntheorem pair_mem_product {xs : List α} {ys : List β} {x : α} {y : β} :\n (x, y) ∈ product xs ys ↔ x ∈ xs ∧ y ∈ ys",
"end": [
942,
47
],
"full_name": "List.pair_mem_product",
"kind": "commanddeclaration",
"start": [
937,
1
]
},
{
"code": "@[simp]\ntheorem leftpad_length (n : Nat) (a : α) (l : List α) :\n (leftpad n a l).length = max n l.length",
"end": [
951,
75
],
"full_name": "List.leftpad_length",
"kind": "commanddeclaration",
"start": [
946,
1
]
},
{
"code": "theorem leftpad_prefix (n : Nat) (a : α) (l : List α) :\n replicate (n - length l) a <+: leftpad n a l",
"end": [
956,
27
],
"full_name": "List.leftpad_prefix",
"kind": "commanddeclaration",
"start": [
953,
1
]
},
{
"code": "theorem leftpad_suffix (n : Nat) (a : α) (l : List α) : l <:+ (leftpad n a l)",
"end": [
960,
54
],
"full_name": "List.leftpad_suffix",
"kind": "commanddeclaration",
"start": [
958,
1
]
},
{
"code": "@[simp] theorem forIn_eq_forIn [Monad m] : @List.forIn α β m _ = forIn",
"end": [
965,
78
],
"full_name": "List.forIn_eq_forIn",
"kind": "commanddeclaration",
"start": [
965,
1
]
},
{
"code": "theorem forIn_eq_bindList [Monad m] [LawfulMonad m]\n (f : α → β → m (ForInStep β)) (l : List α) (init : β) :\n forIn l init f = ForInStep.run <$> (ForInStep.yield init).bindList f l",
"end": [
971,
30
],
"full_name": "List.forIn_eq_bindList",
"kind": "commanddeclaration",
"start": [
967,
1
]
},
{
"code": "@[simp] theorem forM_append [Monad m] [LawfulMonad m] (l₁ l₂ : List α) (f : α → m PUnit) :\n (l₁ ++ l₂).forM f = (do l₁.forM f; l₂.forM f)",
"end": [
974,
82
],
"full_name": "List.forM_append",
"kind": "commanddeclaration",
"start": [
973,
1
]
},
{
"code": "@[simp] theorem diff_nil (l : List α) : l.diff [] = l",
"end": [
982,
61
],
"full_name": "List.diff_nil",
"kind": "commanddeclaration",
"start": [
982,
1
]
},
{
"code": "@[simp] theorem diff_cons (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.erase a).diff l₂",
"end": [
985,
41
],
"full_name": "List.diff_cons",
"kind": "commanddeclaration",
"start": [
984,
1
]
},
{
"code": "theorem diff_cons_right (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.diff l₂).erase a",
"end": [
988,
71
],
"full_name": "List.diff_cons_right",
"kind": "commanddeclaration",
"start": [
987,
1
]
},
{
"code": "theorem diff_erase (l₁ l₂ : List α) (a : α) : (l₁.diff l₂).erase a = (l₁.erase a).diff l₂",
"end": [
991,
36
],
"full_name": "List.diff_erase",
"kind": "commanddeclaration",
"start": [
990,
1
]
},
{
"code": "@[simp] theorem nil_diff (l : List α) : [].diff l = []",
"end": [
994,
45
],
"full_name": "List.nil_diff",
"kind": "commanddeclaration",
"start": [
993,
1
]
},
{
"code": "theorem cons_diff (a : α) (l₁ l₂ : List α) :\n (a :: l₁).diff l₂ = if a ∈ l₂ then l₁.diff (l₂.erase a) else a :: l₁.diff l₂",
"end": [
1005,
14
],
"full_name": "List.cons_diff",
"kind": "commanddeclaration",
"start": [
996,
1
]
},
{
"code": "theorem cons_diff_of_mem {a : α} {l₂ : List α} (h : a ∈ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = l₁.diff (l₂.erase a)",
"end": [
1008,
76
],
"full_name": "List.cons_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1007,
1
]
},
{
"code": "theorem cons_diff_of_not_mem {a : α} {l₂ : List α} (h : a ∉ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = a :: l₁.diff l₂",
"end": [
1011,
71
],
"full_name": "List.cons_diff_of_not_mem",
"kind": "commanddeclaration",
"start": [
1010,
1
]
},
{
"code": "theorem diff_eq_foldl : ∀ l₁ l₂ : List α, l₁.diff l₂ = foldl List.erase l₁ l₂",
"end": [
1015,
65
],
"full_name": "List.diff_eq_foldl",
"kind": "commanddeclaration",
"start": [
1013,
1
]
},
{
"code": "@[simp] theorem diff_append (l₁ l₂ l₃ : List α) : l₁.diff (l₂ ++ l₃) = (l₁.diff l₂).diff l₃",
"end": [
1018,
42
],
"full_name": "List.diff_append",
"kind": "commanddeclaration",
"start": [
1017,
1
]
},
{
"code": "theorem diff_sublist : ∀ l₁ l₂ : List α, l₁.diff l₂ <+ l₁",
"end": [
1026,
34
],
"full_name": "List.diff_sublist",
"kind": "commanddeclaration",
"start": [
1020,
1
]
},
{
"code": "theorem diff_subset (l₁ l₂ : List α) : l₁.diff l₂ ⊆ l₁",
"end": [
1028,
83
],
"full_name": "List.diff_subset",
"kind": "commanddeclaration",
"start": [
1028,
1
]
},
{
"code": "theorem mem_diff_of_mem {a : α} : ∀ {l₁ l₂ : List α}, a ∈ l₁ → a ∉ l₂ → a ∈ l₁.diff l₂",
"end": [
1034,
94
],
"full_name": "List.mem_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1030,
1
]
},
{
"code": "theorem Sublist.diff_right : ∀ {l₁ l₂ l₃ : List α}, l₁ <+ l₂ → l₁.diff l₃ <+ l₂.diff l₃",
"end": [
1038,
75
],
"full_name": "List.Sublist.diff_right",
"kind": "commanddeclaration",
"start": [
1036,
1
]
},
{
"code": "theorem Sublist.erase_diff_erase_sublist {a : α} :\n ∀ {l₁ l₂ : List α}, l₁ <+ l₂ → (l₂.erase a).diff (l₁.erase a) <+ l₂.diff l₁",
"end": [
1048,
71
],
"full_name": "List.Sublist.erase_diff_erase_sublist",
"kind": "commanddeclaration",
"start": [
1040,
1
]
},
{
"code": "@[simp] theorem prefix_append (l₁ l₂ : List α) : l₁ <+: l₁ ++ l₂",
"end": [
1054,
78
],
"full_name": "List.prefix_append",
"kind": "commanddeclaration",
"start": [
1054,
1
]
},
{
"code": "@[simp] theorem suffix_append (l₁ l₂ : List α) : l₂ <:+ l₁ ++ l₂",
"end": [
1056,
78
],
"full_name": "List.suffix_append",
"kind": "commanddeclaration",
"start": [
1056,
1
]
},
{
"code": "theorem infix_append (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ l₂ ++ l₃",
"end": [
1058,
83
],
"full_name": "List.infix_append",
"kind": "commanddeclaration",
"start": [
1058,
1
]
},
{
"code": "@[simp] theorem infix_append' (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ (l₂ ++ l₃)",
"end": [
1061,
47
],
"full_name": "List.infix_append'",
"kind": "commanddeclaration",
"start": [
1060,
1
]
},
{
"code": "theorem IsPrefix.isInfix : l₁ <+: l₂ → l₁ <:+: l₂",
"end": [
1063,
78
],
"full_name": "List.IsPrefix.isInfix",
"kind": "commanddeclaration",
"start": [
1063,
1
]
},
{
"code": "theorem IsSuffix.isInfix : l₁ <:+ l₂ → l₁ <:+: l₂",
"end": [
1065,
98
],
"full_name": "List.IsSuffix.isInfix",
"kind": "commanddeclaration",
"start": [
1065,
1
]
},
{
"code": "theorem nil_prefix (l : List α) : [] <+: l",
"end": [
1067,
55
],
"full_name": "List.nil_prefix",
"kind": "commanddeclaration",
"start": [
1067,
1
]
},
{
"code": "theorem nil_suffix (l : List α) : [] <:+ l",
"end": [
1069,
64
],
"full_name": "List.nil_suffix",
"kind": "commanddeclaration",
"start": [
1069,
1
]
},
{
"code": "theorem nil_infix (l : List α) : [] <:+: l",
"end": [
1071,
69
],
"full_name": "List.nil_infix",
"kind": "commanddeclaration",
"start": [
1071,
1
]
},
{
"code": "theorem prefix_refl (l : List α) : l <+: l",
"end": [
1073,
65
],
"full_name": "List.prefix_refl",
"kind": "commanddeclaration",
"start": [
1073,
1
]
},
{
"code": "theorem suffix_refl (l : List α) : l <:+ l",
"end": [
1075,
56
],
"full_name": "List.suffix_refl",
"kind": "commanddeclaration",
"start": [
1075,
1
]
},
{
"code": "theorem infix_refl (l : List α) : l <:+: l",
"end": [
1077,
70
],
"full_name": "List.infix_refl",
"kind": "commanddeclaration",
"start": [
1077,
1
]
},
{
"code": "@[simp] theorem suffix_cons (a : α) : ∀ l, l <:+ a :: l",
"end": [
1079,
77
],
"full_name": "List.suffix_cons",
"kind": "commanddeclaration",
"start": [
1079,
1
]
},
{
"code": "theorem infix_cons : l₁ <:+: l₂ → l₁ <:+: a :: l₂",
"end": [
1081,
95
],
"full_name": "List.infix_cons",
"kind": "commanddeclaration",
"start": [
1081,
1
]
},
{
"code": "theorem infix_concat : l₁ <:+: l₂ → l₁ <:+: concat l₂ a",
"end": [
1084,
67
],
"full_name": "List.infix_concat",
"kind": "commanddeclaration",
"start": [
1083,
1
]
},
{
"code": "theorem IsPrefix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₂ → l₂ <+: l₃ → l₁ <+: l₃",
"end": [
1087,
75
],
"full_name": "List.IsPrefix.trans",
"kind": "commanddeclaration",
"start": [
1086,
1
]
},
{
"code": "theorem IsSuffix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+ l₂ → l₂ <:+ l₃ → l₁ <:+ l₃",
"end": [
1090,
68
],
"full_name": "List.IsSuffix.trans",
"kind": "commanddeclaration",
"start": [
1089,
1
]
},
{
"code": "theorem IsInfix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+: l₂ → l₂ <:+: l₃ → l₁ <:+: l₃",
"end": [
1093,
95
],
"full_name": "List.IsInfix.trans",
"kind": "commanddeclaration",
"start": [
1092,
1
]
},
{
"code": "protected theorem IsInfix.sublist : l₁ <:+: l₂ → l₁ <+ l₂",
"end": [
1096,
78
],
"full_name": "List.IsInfix.sublist",
"kind": "commanddeclaration",
"start": [
1095,
1
]
},
{
"code": "protected theorem IsInfix.subset (hl : l₁ <:+: l₂) : l₁ ⊆ l₂",
"end": [
1099,
20
],
"full_name": "List.IsInfix.subset",
"kind": "commanddeclaration",
"start": [
1098,
1
]
},
{
"code": "protected theorem IsPrefix.sublist (h : l₁ <+: l₂) : l₁ <+ l₂",
"end": [
1102,
20
],
"full_name": "List.IsPrefix.sublist",
"kind": "commanddeclaration",
"start": [
1101,
1
]
},
{
"code": "protected theorem IsPrefix.subset (hl : l₁ <+: l₂) : l₁ ⊆ l₂",
"end": [
1105,
20
],
"full_name": "List.IsPrefix.subset",
"kind": "commanddeclaration",
"start": [
1104,
1
]
},
{
"code": "protected theorem IsSuffix.sublist (h : l₁ <:+ l₂) : l₁ <+ l₂",
"end": [
1108,
20
],
"full_name": "List.IsSuffix.sublist",
"kind": "commanddeclaration",
"start": [
1107,
1
]
},
{
"code": "protected theorem IsSuffix.subset (hl : l₁ <:+ l₂) : l₁ ⊆ l₂",
"end": [
1111,
20
],
"full_name": "List.IsSuffix.subset",
"kind": "commanddeclaration",
"start": [
1110,
1
]
},
{
"code": "@[simp] theorem reverse_suffix : reverse l₁ <:+ reverse l₂ ↔ l₁ <+: l₂",
"end": [
1115,
59
],
"full_name": "List.reverse_suffix",
"kind": "commanddeclaration",
"start": [
1113,
1
]
},
{
"code": "@[simp] theorem reverse_prefix : reverse l₁ <+: reverse l₂ ↔ l₁ <:+ l₂",
"end": [
1118,
53
],
"full_name": "List.reverse_prefix",
"kind": "commanddeclaration",
"start": [
1117,
1
]
},
{
"code": "@[simp] theorem reverse_infix : reverse l₁ <:+: reverse l₂ ↔ l₁ <:+: l₂",
"end": [
1124,
61
],
"full_name": "List.reverse_infix",
"kind": "commanddeclaration",
"start": [
1120,
1
]
},
{
"code": "theorem IsInfix.length_le (h : l₁ <:+: l₂) : l₁.length ≤ l₂.length",
"end": [
1127,
22
],
"full_name": "List.IsInfix.length_le",
"kind": "commanddeclaration",
"start": [
1126,
1
]
},
{
"code": "theorem IsPrefix.length_le (h : l₁ <+: l₂) : l₁.length ≤ l₂.length",
"end": [
1130,
22
],
"full_name": "List.IsPrefix.length_le",
"kind": "commanddeclaration",
"start": [
1129,
1
]
},
{
"code": "theorem IsSuffix.length_le (h : l₁ <:+ l₂) : l₁.length ≤ l₂.length",
"end": [
1133,
22
],
"full_name": "List.IsSuffix.length_le",
"kind": "commanddeclaration",
"start": [
1132,
1
]
},
{
"code": "@[simp] theorem infix_nil : l <:+: [] ↔ l = []",
"end": [
1135,
98
],
"full_name": "List.infix_nil",
"kind": "commanddeclaration",
"start": [
1135,
1
]
},
{
"code": "@[simp] theorem prefix_nil : l <+: [] ↔ l = []",
"end": [
1137,
99
],
"full_name": "List.prefix_nil",
"kind": "commanddeclaration",
"start": [
1137,
1
]
},
{
"code": "@[simp] theorem suffix_nil : l <:+ [] ↔ l = []",
"end": [
1139,
99
],
"full_name": "List.suffix_nil",
"kind": "commanddeclaration",
"start": [
1139,
1
]
},
{
"code": "theorem infix_iff_prefix_suffix (l₁ l₂ : List α) : l₁ <:+: l₂ ↔ ∃ t, l₁ <+: t ∧ t <:+ l₂",
"end": [
1143,
60
],
"full_name": "List.infix_iff_prefix_suffix",
"kind": "commanddeclaration",
"start": [
1141,
1
]
},
{
"code": "theorem IsInfix.eq_of_length (h : l₁ <:+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1146,
25
],
"full_name": "List.IsInfix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1145,
1
]
},
{
"code": "theorem IsPrefix.eq_of_length (h : l₁ <+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1149,
25
],
"full_name": "List.IsPrefix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1148,
1
]
},
{
"code": "theorem IsSuffix.eq_of_length (h : l₁ <:+ l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1152,
25
],
"full_name": "List.IsSuffix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1151,
1
]
},
{
"code": "theorem prefix_of_prefix_length_le :\n ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₃ → l₂ <+: l₃ → length l₁ ≤ length l₂ → l₁ <+: l₂",
"end": [
1160,
20
],
"full_name": "List.prefix_of_prefix_length_le",
"kind": "commanddeclaration",
"start": [
1154,
1
]
},
{
"code": "theorem prefix_or_prefix_of_prefix (h₁ : l₁ <+: l₃) (h₂ : l₂ <+: l₃) : l₁ <+: l₂ ∨ l₂ <+: l₁",
"end": [
1164,
39
],
"full_name": "List.prefix_or_prefix_of_prefix",
"kind": "commanddeclaration",
"start": [
1162,
1
]
},
{
"code": "theorem suffix_of_suffix_length_le\n (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) (ll : length l₁ ≤ length l₂) : l₁ <:+ l₂",
"end": [
1169,
90
],
"full_name": "List.suffix_of_suffix_length_le",
"kind": "commanddeclaration",
"start": [
1166,
1
]
},
{
"code": "theorem suffix_or_suffix_of_suffix (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) : l₁ <:+ l₂ ∨ l₂ <:+ l₁",
"end": [
1173,
21
],
"full_name": "List.suffix_or_suffix_of_suffix",
"kind": "commanddeclaration",
"start": [
1171,
1
]
},
{
"code": "theorem suffix_cons_iff : l₁ <:+ a :: l₂ ↔ l₁ = a :: l₂ ∨ l₁ <:+ l₂",
"end": [
1184,
41
],
"full_name": "List.suffix_cons_iff",
"kind": "commanddeclaration",
"start": [
1175,
1
]
},
{
"code": "theorem infix_cons_iff : l₁ <:+: a :: l₂ ↔ l₁ <+: a :: l₂ ∨ l₁ <:+: l₂",
"end": [
1195,
27
],
"full_name": "List.infix_cons_iff",
"kind": "commanddeclaration",
"start": [
1186,
1
]
},
{
"code": "theorem infix_of_mem_join : ∀ {L : List (List α)}, l ∈ L → l <:+: join L",
"end": [
1202,
78
],
"full_name": "List.infix_of_mem_join",
"kind": "commanddeclaration",
"start": [
1197,
1
]
},
{
"code": "theorem prefix_append_right_inj (l) : l ++ l₁ <+: l ++ l₂ ↔ l₁ <+: l₂",
"end": [
1205,
63
],
"full_name": "List.prefix_append_right_inj",
"kind": "commanddeclaration",
"start": [
1204,
1
]
},
{
"code": "@[simp]\ntheorem prefix_cons_inj (a) : a :: l₁ <+: a :: l₂ ↔ l₁ <+: l₂",
"end": [
1209,
30
],
"full_name": "List.prefix_cons_inj",
"kind": "commanddeclaration",
"start": [
1207,
1
]
},
{
"code": "theorem take_prefix (n) (l : List α) : take n l <+: l",
"end": [
1212,
28
],
"full_name": "List.take_prefix",
"kind": "commanddeclaration",
"start": [
1211,
1
]
},
{
"code": "theorem drop_suffix (n) (l : List α) : drop n l <:+ l",
"end": [
1215,
28
],
"full_name": "List.drop_suffix",
"kind": "commanddeclaration",
"start": [
1214,
1
]
},
{
"code": "theorem take_sublist (n) (l : List α) : take n l <+ l",
"end": [
1218,
28
],
"full_name": "List.take_sublist",
"kind": "commanddeclaration",
"start": [
1217,
1
]
},
{
"code": "theorem drop_sublist (n) (l : List α) : drop n l <+ l",
"end": [
1221,
28
],
"full_name": "List.drop_sublist",
"kind": "commanddeclaration",
"start": [
1220,
1
]
},
{
"code": "theorem take_subset (n) (l : List α) : take n l ⊆ l",
"end": [
1224,
28
],
"full_name": "List.take_subset",
"kind": "commanddeclaration",
"start": [
1223,
1
]
},
{
"code": "theorem drop_subset (n) (l : List α) : drop n l ⊆ l",
"end": [
1227,
28
],
"full_name": "List.drop_subset",
"kind": "commanddeclaration",
"start": [
1226,
1
]
},
{
"code": "theorem mem_of_mem_take {l : List α} (h : a ∈ l.take n) : a ∈ l",
"end": [
1230,
20
],
"full_name": "List.mem_of_mem_take",
"kind": "commanddeclaration",
"start": [
1229,
1
]
},
{
"code": "theorem IsPrefix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <+: l₂) :\n l₁.filter p <+: l₂.filter p",
"end": [
1235,
42
],
"full_name": "List.IsPrefix.filter",
"kind": "commanddeclaration",
"start": [
1232,
1
]
},
{
"code": "theorem IsSuffix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+ l₂) :\n l₁.filter p <:+ l₂.filter p",
"end": [
1240,
42
],
"full_name": "List.IsSuffix.filter",
"kind": "commanddeclaration",
"start": [
1237,
1
]
},
{
"code": "theorem IsInfix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+: l₂) :\n l₁.filter p <:+: l₂.filter p",
"end": [
1245,
58
],
"full_name": "List.IsInfix.filter",
"kind": "commanddeclaration",
"start": [
1242,
1
]
},
{
"code": "theorem mem_of_mem_drop {n} {l : List α} (h : a ∈ l.drop n) : a ∈ l",
"end": [
1249,
89
],
"full_name": "List.mem_of_mem_drop",
"kind": "commanddeclaration",
"start": [
1249,
1
]
},
{
"code": "theorem disjoint_take_drop : ∀ {l : List α}, l.Nodup → m ≤ n → Disjoint (l.take m) (l.drop n)",
"end": [
1259,
61
],
"full_name": "List.disjoint_take_drop",
"kind": "commanddeclaration",
"start": [
1251,
1
]
},
{
"code": "@[simp]\ntheorem chain_cons {a b : α} {l : List α} : Chain R a (b :: l) ↔ R a b ∧ Chain R b l",
"end": [
1268,
27
],
"full_name": "List.chain_cons",
"kind": "commanddeclaration",
"start": [
1265,
1
]
},
{
"code": "theorem rel_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : R a b",
"end": [
1271,
21
],
"full_name": "List.rel_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1270,
1
]
},
{
"code": "theorem chain_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : Chain R b l",
"end": [
1274,
21
],
"full_name": "List.chain_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1273,
1
]
},
{
"code": "theorem Chain.imp' {R S : α → α → Prop} (HRS : ∀ ⦃a b⦄, R a b → S a b) {a b : α}\n (Hab : ∀ ⦃c⦄, R a c → S b c) {l : List α} (p : Chain R a l) : Chain S b l",
"end": [
1283,
24
],
"full_name": "List.Chain.imp'",
"kind": "commanddeclaration",
"start": [
1276,
1
]
},
{
"code": "theorem Chain.imp {R S : α → α → Prop} (H : ∀ a b, R a b → S a b) {a : α} {l : List α}\n (p : Chain R a l) : Chain S a l",
"end": [
1287,
17
],
"full_name": "List.Chain.imp",
"kind": "commanddeclaration",
"start": [
1285,
1
]
},
{
"code": "protected theorem Pairwise.chain (p : Pairwise R (a :: l)) : Chain R a l",
"end": [
1295,
36
],
"full_name": "List.Pairwise.chain",
"kind": "commanddeclaration",
"start": [
1289,
1
]
},
{
"code": "theorem range'_succ (s n step) : range' s (n + 1) step = s :: range' (s + step) n step",
"end": [
1300,
44
],
"full_name": "List.range'_succ",
"kind": "commanddeclaration",
"start": [
1299,
1
]
},
{
"code": "@[simp] theorem length_range' (s step) : ∀ n : Nat, length (range' s n step) = n",
"end": [
1304,
49
],
"full_name": "List.length_range'",
"kind": "commanddeclaration",
"start": [
1302,
1
]
},
{
"code": "@[simp] theorem range'_eq_nil : range' s n step = [] ↔ n = 0",
"end": [
1307,
39
],
"full_name": "List.range'_eq_nil",
"kind": "commanddeclaration",
"start": [
1306,
1
]
},
{
"code": "theorem mem_range' : ∀{n}, m ∈ range' s n step ↔ ∃ i < n, m = s + step * i",
"end": [
1314,
71
],
"full_name": "List.mem_range'",
"kind": "commanddeclaration",
"start": [
1309,
1
]
},
{
"code": "@[simp] theorem mem_range'_1 : m ∈ range' s n ↔ s ≤ m ∧ m < s + n",
"end": [
1319,
93
],
"full_name": "List.mem_range'_1",
"kind": "commanddeclaration",
"start": [
1316,
1
]
},
{
"code": "@[simp]\ntheorem map_add_range' (a) : ∀ s n step, map (a + ·) (range' s n step) = range' (a + s) n step",
"end": [
1324,
90
],
"full_name": "List.map_add_range'",
"kind": "commanddeclaration",
"start": [
1321,
1
]
},
{
"code": "theorem map_sub_range' (a s n : Nat) (h : a ≤ s) :\n map (· - a) (range' s n step) = range' (s - a) n step",
"end": [
1330,
42
],
"full_name": "List.map_sub_range'",
"kind": "commanddeclaration",
"start": [
1326,
1
]
},
{
"code": "theorem chain_succ_range' : ∀ s n step : Nat,\n Chain (fun a b => b = a + step) s (range' (s + step) n step)",
"end": [
1335,
69
],
"full_name": "List.chain_succ_range'",
"kind": "commanddeclaration",
"start": [
1332,
1
]
},
{
"code": "theorem chain_lt_range' (s n : Nat) {step} (h : 0 < step) :\n Chain (· < ·) s (range' (s + step) n step)",
"end": [
1339,
83
],
"full_name": "List.chain_lt_range'",
"kind": "commanddeclaration",
"start": [
1337,
1
]
},
{
"code": "theorem range'_append : ∀ s m n step : Nat,\n range' s m step ++ range' (s + step * m) n step = range' s (n + m) step",
"end": [
1346,
46
],
"full_name": "List.range'_append",
"kind": "commanddeclaration",
"start": [
1341,
1
]
},
{
"code": "@[simp] theorem range'_append_1 (s m n : Nat) :\n range' s m ++ range' (s + m) n = range' s (n + m)",
"end": [
1349,
94
],
"full_name": "List.range'_append_1",
"kind": "commanddeclaration",
"start": [
1348,
1
]
},
{
"code": "theorem range'_sublist_right {s m n : Nat} : range' s m step <+ range' s n step ↔ m ≤ n",
"end": [
1353,
88
],
"full_name": "List.range'_sublist_right",
"kind": "commanddeclaration",
"start": [
1351,
1
]
},
{
"code": "theorem range'_subset_right {s m n : Nat} (step0 : 0 < step) :\n range' s m step ⊆ range' s n step ↔ m ≤ n",
"end": [
1359,
82
],
"full_name": "List.range'_subset_right",
"kind": "commanddeclaration",
"start": [
1355,
1
]
},
{
"code": "theorem range'_subset_right_1 {s m n : Nat} : range' s m ⊆ range' s n ↔ m ≤ n",
"end": [
1362,
34
],
"full_name": "List.range'_subset_right_1",
"kind": "commanddeclaration",
"start": [
1361,
1
]
},
{
"code": "theorem getElem?_range' (s step) :\n ∀ {m n : Nat}, m < n → (range' s n step)[m]? = some (s + step * m)",
"end": [
1370,
55
],
"full_name": "List.getElem?_range'",
"kind": "commanddeclaration",
"start": [
1364,
1
]
},
{
"code": "@[simp] theorem getElem_range' {n m step} (i) (H : i < (range' n m step).length) :\n (range' n m step)[i] = n + step * i",
"end": [
1374,
70
],
"full_name": "List.getElem_range'",
"kind": "commanddeclaration",
"start": [
1372,
1
]
},
{
"code": "@[deprecated getElem?_range' (since := \"2024-06-12\")]\ntheorem get?_range' (s step) {m n : Nat} (h : m < n) :\n get? (range' s n step) m = some (s + step * m)",
"end": [
1379,
11
],
"full_name": "List.get?_range'",
"kind": "commanddeclaration",
"start": [
1376,
1
]
},
{
"code": "@[deprecated getElem_range' (since := \"2024-06-12\")]\ntheorem get_range' {n m step} (i) (H : i < (range' n m step).length) :\n get (range' n m step) ⟨i, H⟩ = n + step * i",
"end": [
1384,
7
],
"full_name": "List.get_range'",
"kind": "commanddeclaration",
"start": [
1381,
1
]
},
{
"code": "theorem range'_concat (s n : Nat) : range' s (n + 1) step = range' s n step ++ [s + step * n]",
"end": [
1387,
63
],
"full_name": "List.range'_concat",
"kind": "commanddeclaration",
"start": [
1386,
1
]
},
{
"code": "theorem range'_1_concat (s n : Nat) : range' s (n + 1) = range' s n ++ [s + n]",
"end": [
1390,
23
],
"full_name": "List.range'_1_concat",
"kind": "commanddeclaration",
"start": [
1389,
1
]
},
{
"code": "theorem range_loop_range' : ∀ s n : Nat, range.loop s (range' s n) = range' 0 (n + s)",
"end": [
1394,
101
],
"full_name": "List.range_loop_range'",
"kind": "commanddeclaration",
"start": [
1392,
1
]
},
{
"code": "theorem range_eq_range' (n : Nat) : range n = range' 0 n",
"end": [
1397,
56
],
"full_name": "List.range_eq_range'",
"kind": "commanddeclaration",
"start": [
1396,
1
]
},
{
"code": "theorem range_succ_eq_map (n : Nat) : range (n + 1) = 0 :: map succ (range n)",
"end": [
1401,
30
],
"full_name": "List.range_succ_eq_map",
"kind": "commanddeclaration",
"start": [
1399,
1
]
},
{
"code": "theorem range'_eq_map_range (s n : Nat) : range' s n = map (s + ·) (range n)",
"end": [
1404,
44
],
"full_name": "List.range'_eq_map_range",
"kind": "commanddeclaration",
"start": [
1403,
1
]
},
{
"code": "@[simp] theorem length_range (n : Nat) : length (range n) = n",
"end": [
1407,
45
],
"full_name": "List.length_range",
"kind": "commanddeclaration",
"start": [
1406,
1
]
},
{
"code": "@[simp] theorem range_eq_nil {n : Nat} : range n = [] ↔ n = 0",
"end": [
1410,
38
],
"full_name": "List.range_eq_nil",
"kind": "commanddeclaration",
"start": [
1409,
1
]
},
{
"code": "@[simp]\ntheorem range_sublist {m n : Nat} : range m <+ range n ↔ m ≤ n",
"end": [
1414,
52
],
"full_name": "List.range_sublist",
"kind": "commanddeclaration",
"start": [
1412,
1
]
},
{
"code": "@[simp]\ntheorem range_subset {m n : Nat} : range m ⊆ range n ↔ m ≤ n",
"end": [
1418,
65
],
"full_name": "List.range_subset",
"kind": "commanddeclaration",
"start": [
1416,
1
]
},
{
"code": "@[simp]\ntheorem mem_range {m n : Nat} : m ∈ range n ↔ m < n",
"end": [
1422,
81
],
"full_name": "List.mem_range",
"kind": "commanddeclaration",
"start": [
1420,
1
]
},
{
"code": "theorem not_mem_range_self {n : Nat} : n ∉ range n",
"end": [
1424,
62
],
"full_name": "List.not_mem_range_self",
"kind": "commanddeclaration",
"start": [
1424,
1
]
},
{
"code": "theorem self_mem_range_succ (n : Nat) : n ∈ range (n + 1)",
"end": [
1426,
69
],
"full_name": "List.self_mem_range_succ",
"kind": "commanddeclaration",
"start": [
1426,
1
]
},
{
"code": "theorem getElem?_range {m n : Nat} (h : m < n) : (range n)[m]? = some m",
"end": [
1429,
48
],
"full_name": "List.getElem?_range",
"kind": "commanddeclaration",
"start": [
1428,
1
]
},
{
"code": "@[simp] theorem getElem_range {n : Nat} (m) (h : m < (range n).length) : (range n)[m] = m",
"end": [
1432,
25
],
"full_name": "List.getElem_range",
"kind": "commanddeclaration",
"start": [
1431,
1
]
},
{
"code": "@[deprecated getElem?_range (since := \"2024-06-12\")]\ntheorem get?_range {m n : Nat} (h : m < n) : get? (range n) m = some m",
"end": [
1436,
27
],
"full_name": "List.get?_range",
"kind": "commanddeclaration",
"start": [
1434,
1
]
},
{
"code": "@[deprecated getElem_range (since := \"2024-06-12\")]\ntheorem get_range {n} (i) (H : i < (range n).length) : get (range n) ⟨i, H⟩ = i",
"end": [
1440,
7
],
"full_name": "List.get_range",
"kind": "commanddeclaration",
"start": [
1438,
1
]
},
{
"code": "theorem range_succ (n : Nat) : range (succ n) = range n ++ [n]",
"end": [
1443,
61
],
"full_name": "List.range_succ",
"kind": "commanddeclaration",
"start": [
1442,
1
]
},
{
"code": "theorem range_add (a b : Nat) : range (a + b) = range a ++ (range b).map (a + ·)",
"end": [
1447,
75
],
"full_name": "List.range_add",
"kind": "commanddeclaration",
"start": [
1445,
1
]
},
{
"code": "theorem iota_eq_reverse_range' : ∀ n : Nat, iota n = reverse (range' 1 n)",
"end": [
1451,
99
],
"full_name": "List.iota_eq_reverse_range'",
"kind": "commanddeclaration",
"start": [
1449,
1
]
},
{
"code": "@[simp] theorem length_iota (n : Nat) : length (iota n) = n",
"end": [
1453,
96
],
"full_name": "List.length_iota",
"kind": "commanddeclaration",
"start": [
1453,
1
]
},
{
"code": "@[simp]\ntheorem mem_iota {m n : Nat} : m ∈ iota n ↔ 1 ≤ m ∧ m ≤ n",
"end": [
1457,
59
],
"full_name": "List.mem_iota",
"kind": "commanddeclaration",
"start": [
1455,
1
]
},
{
"code": "theorem reverse_range' : ∀ s n : Nat, reverse (range' s n) = map (s + n - 1 - ·) (range n)",
"end": [
1464,
59
],
"full_name": "List.reverse_range'",
"kind": "commanddeclaration",
"start": [
1459,
1
]
},
{
"code": "@[simp] theorem enumFrom_map_fst (n) :\n ∀ (l : List α), map Prod.fst (enumFrom n l) = range' n l.length",
"end": [
1472,
55
],
"full_name": "List.enumFrom_map_fst",
"kind": "commanddeclaration",
"start": [
1469,
1
]
},
{
"code": "@[simp] theorem enum_map_fst (l : List α) : map Prod.fst (enum l) = range l.length",
"end": [
1475,
54
],
"full_name": "List.enum_map_fst",
"kind": "commanddeclaration",
"start": [
1474,
1
]
},
{
"code": "theorem foldrIdx_start :\n (xs : List α).foldrIdx f i s = (xs : List α).foldrIdx (fun i => f (i + s)) i",
"end": [
1487,
43
],
"full_name": "List.foldrIdx_start",
"kind": "commanddeclaration",
"start": [
1479,
1
]
},
{
"code": "@[simp] theorem foldrIdx_cons :\n (x :: xs : List α).foldrIdx f i s = f s x (foldrIdx f i xs (s + 1))",
"end": [
1490,
79
],
"full_name": "List.foldrIdx_cons",
"kind": "commanddeclaration",
"start": [
1489,
1
]
},
{
"code": "theorem findIdxs_cons_aux (p : α → Bool) :\n foldrIdx (fun i a is => if p a = true then (i + 1) :: is else is) [] xs s =\n map (· + 1) (foldrIdx (fun i a is => if p a = true then i :: is else is) [] xs s)",
"end": [
1499,
24
],
"full_name": "List.findIdxs_cons_aux",
"kind": "commanddeclaration",
"start": [
1492,
1
]
},
{
"code": "theorem findIdxs_cons :\n (x :: xs : List α).findIdxs p =\n bif p x then 0 :: (xs.findIdxs p).map (· + 1) else (xs.findIdxs p).map (· + 1)",
"end": [
1508,
28
],
"full_name": "List.findIdxs_cons",
"kind": "commanddeclaration",
"start": [
1501,
1
]
},
{
"code": "@[simp] theorem indexesOf_nil [BEq α] : ([] : List α).indexesOf x = []",
"end": [
1510,
78
],
"full_name": "List.indexesOf_nil",
"kind": "commanddeclaration",
"start": [
1510,
1
]
},
{
"code": "theorem indexesOf_cons [BEq α] : (x :: xs : List α).indexesOf y =\n bif x == y then 0 :: (xs.indexesOf y).map (· + 1) else (xs.indexesOf y).map (· + 1)",
"end": [
1514,
34
],
"full_name": "List.indexesOf_cons",
"kind": "commanddeclaration",
"start": [
1512,
1
]
},
{
"code": "@[simp] theorem indexOf_nil [BEq α] : ([] : List α).indexOf x = 0",
"end": [
1516,
73
],
"full_name": "List.indexOf_nil",
"kind": "commanddeclaration",
"start": [
1516,
1
]
},
{
"code": "theorem indexOf_cons [BEq α] :\n (x :: xs : List α).indexOf y = bif x == y then 0 else xs.indexOf y + 1",
"end": [
1521,
22
],
"full_name": "List.indexOf_cons",
"kind": "commanddeclaration",
"start": [
1518,
1
]
},
{
"code": "theorem indexOf_mem_indexesOf [BEq α] [LawfulBEq α] {xs : List α} (m : x ∈ xs) :\n xs.indexOf x ∈ xs.indexesOf x",
"end": [
1535,
14
],
"full_name": "List.indexOf_mem_indexesOf",
"kind": "commanddeclaration",
"start": [
1523,
1
]
},
{
"code": "theorem merge_loop_nil_left (s : α → α → Bool) (r t) :\n merge.loop s [] r t = reverseAux t r",
"end": [
1539,
18
],
"full_name": "List.merge_loop_nil_left",
"kind": "commanddeclaration",
"start": [
1537,
1
]
},
{
"code": "theorem merge_loop_nil_right (s : α → α → Bool) (l t) :\n merge.loop s l [] t = reverseAux t l",
"end": [
1543,
52
],
"full_name": "List.merge_loop_nil_right",
"kind": "commanddeclaration",
"start": [
1541,
1
]
},
{
"code": "theorem merge_loop (s : α → α → Bool) (l r t) :\n merge.loop s l r t = reverseAux t (merge s l r)",
"end": [
1567,
64
],
"full_name": "List.merge_loop",
"kind": "commanddeclaration",
"start": [
1545,
1
]
},
{
"code": "@[simp] theorem merge_nil (s : α → α → Bool) (l) : merge s l [] = l",
"end": [
1569,
95
],
"full_name": "List.merge_nil",
"kind": "commanddeclaration",
"start": [
1569,
1
]
},
{
"code": "@[simp] theorem nil_merge (s : α → α → Bool) (r) : merge s [] r = r",
"end": [
1571,
94
],
"full_name": "List.nil_merge",
"kind": "commanddeclaration",
"start": [
1571,
1
]
},
{
"code": "theorem cons_merge_cons (s : α → α → Bool) (a b l r) :\n merge s (a::l) (b::r) = if s a b then a :: merge s l (b::r) else b :: merge s (a::l) r",
"end": [
1575,
87
],
"full_name": "List.cons_merge_cons",
"kind": "commanddeclaration",
"start": [
1573,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_pos (s : α → α → Bool) (l r) (h : s a b) :\n merge s (a::l) (b::r) = a :: merge s l (b::r)",
"end": [
1579,
33
],
"full_name": "List.cons_merge_cons_pos",
"kind": "commanddeclaration",
"start": [
1577,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_neg (s : α → α → Bool) (l r) (h : ¬ s a b) :\n merge s (a::l) (b::r) = b :: merge s (a::l) r",
"end": [
1583,
33
],
"full_name": "List.cons_merge_cons_neg",
"kind": "commanddeclaration",
"start": [
1581,
1
]
},
{
"code": "@[simp] theorem length_merge (s : α → α → Bool) (l r) :\n (merge s l r).length = l.length + r.length",
"end": [
1594,
43
],
"full_name": "List.length_merge",
"kind": "commanddeclaration",
"start": [
1585,
1
]
},
{
"code": "@[simp]\ntheorem mem_merge {s : α → α → Bool} : x ∈ merge s l r ↔ x ∈ l ∨ x ∈ r",
"end": [
1605,
68
],
"full_name": "List.mem_merge",
"kind": "commanddeclaration",
"start": [
1596,
1
]
},
{
"code": "theorem mem_merge_left (s : α → α → Bool) (h : x ∈ l) : x ∈ merge s l r",
"end": [
1608,
24
],
"full_name": "List.mem_merge_left",
"kind": "commanddeclaration",
"start": [
1607,
1
]
},
{
"code": "theorem mem_merge_right (s : α → α → Bool) (h : x ∈ r) : x ∈ merge s l r",
"end": [
1611,
24
],
"full_name": "List.mem_merge_right",
"kind": "commanddeclaration",
"start": [
1610,
1
]
}
] | 327 | List.mem_merge | [
[
1597,
75
],
[
1605,
68
]
] | 3 | 9 | rw [cons_merge_cons] | α : Type u_1
x : α
l✝ r✝ : List α
s : α → α → Bool
a : α
l : List α
b : α
r : List α
⊢ x ∈ merge s (a :: l) (b :: r) ↔ x ∈ a :: l ∨ x ∈ b :: r | α : Type u_1
x : α
l✝ r✝ : List α
s : α → α → Bool
a : α
l : List α
b : α
r : List α
⊢ (x ∈ if s a b = true then a :: merge s l (b :: r) else b :: merge s (a :: l) r) ↔ x ∈ a :: l ∨ x ∈ b :: r |
.lake/packages/batteries/Batteries/Data/List/Lemmas.lean | [
[
"Batteries.Tactic.Alias",
".lake/packages/batteries/Batteries/Tactic/Alias.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
],
[
"Batteries.Control.ForInStep.Lemmas",
".lake/packages/batteries/Batteries/Control/ForInStep/Lemmas.lean"
],
[
"Batteries.Tactic.Init",
".lake/packages/batteries/Batteries/Tactic/Init.lean"
],
[
"Batteries.Data.List.Basic",
".lake/packages/batteries/Batteries/Data/List/Basic.lean"
]
] | [
{
"code": "@[simp] theorem mem_toArray {a : α} {l : List α} : a ∈ l.toArray ↔ a ∈ l",
"end": [
18,
23
],
"full_name": "List.mem_toArray",
"kind": "commanddeclaration",
"start": [
17,
1
]
},
{
"code": "@[simp]\ntheorem drop_one : ∀ l : List α, drop 1 l = tail l",
"end": [
24,
23
],
"full_name": "List.drop_one",
"kind": "commanddeclaration",
"start": [
22,
1
]
},
{
"code": "theorem zipWith_distrib_tail : (zipWith f l l').tail = zipWith f l.tail l'.tail",
"end": [
29,
47
],
"full_name": "List.zipWith_distrib_tail",
"kind": "commanddeclaration",
"start": [
28,
1
]
},
{
"code": "theorem subset_def {l₁ l₂ : List α} : l₁ ⊆ l₂ ↔ ∀ {a : α}, a ∈ l₁ → a ∈ l₂",
"end": [
33,
83
],
"full_name": "List.subset_def",
"kind": "commanddeclaration",
"start": [
33,
1
]
},
{
"code": "@[simp] theorem nil_subset (l : List α) : [] ⊆ l",
"end": [
35,
58
],
"full_name": "List.nil_subset",
"kind": "commanddeclaration",
"start": [
35,
1
]
},
{
"code": "@[simp] theorem Subset.refl (l : List α) : l ⊆ l",
"end": [
37,
65
],
"full_name": "List.Subset.refl",
"kind": "commanddeclaration",
"start": [
37,
1
]
},
{
"code": "theorem Subset.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ ⊆ l₂) (h₂ : l₂ ⊆ l₃) : l₁ ⊆ l₃",
"end": [
40,
23
],
"full_name": "List.Subset.trans",
"kind": "commanddeclaration",
"start": [
39,
1
]
},
{
"code": "@[simp] theorem subset_cons (a : α) (l : List α) : l ⊆ a :: l",
"end": [
48,
85
],
"full_name": "List.subset_cons",
"kind": "commanddeclaration",
"start": [
48,
1
]
},
{
"code": "theorem subset_of_cons_subset {a : α} {l₁ l₂ : List α} : a :: l₁ ⊆ l₂ → l₁ ⊆ l₂",
"end": [
51,
39
],
"full_name": "List.subset_of_cons_subset",
"kind": "commanddeclaration",
"start": [
50,
1
]
},
{
"code": "theorem subset_cons_of_subset (a : α) {l₁ l₂ : List α} : l₁ ⊆ l₂ → l₁ ⊆ a :: l₂",
"end": [
54,
29
],
"full_name": "List.subset_cons_of_subset",
"kind": "commanddeclaration",
"start": [
53,
1
]
},
{
"code": "theorem cons_subset_cons {l₁ l₂ : List α} (a : α) (s : l₁ ⊆ l₂) : a :: l₁ ⊆ a :: l₂",
"end": [
57,
62
],
"full_name": "List.cons_subset_cons",
"kind": "commanddeclaration",
"start": [
56,
1
]
},
{
"code": "@[simp] theorem subset_append_left (l₁ l₂ : List α) : l₁ ⊆ l₁ ++ l₂",
"end": [
59,
98
],
"full_name": "List.subset_append_left",
"kind": "commanddeclaration",
"start": [
59,
1
]
},
{
"code": "@[simp] theorem subset_append_right (l₁ l₂ : List α) : l₂ ⊆ l₁ ++ l₂",
"end": [
61,
100
],
"full_name": "List.subset_append_right",
"kind": "commanddeclaration",
"start": [
61,
1
]
},
{
"code": "theorem subset_append_of_subset_left (l₂ : List α) : l ⊆ l₁ → l ⊆ l₁ ++ l₂",
"end": [
64,
50
],
"full_name": "List.subset_append_of_subset_left",
"kind": "commanddeclaration",
"start": [
63,
1
]
},
{
"code": "theorem subset_append_of_subset_right (l₁ : List α) : l ⊆ l₂ → l ⊆ l₁ ++ l₂",
"end": [
67,
51
],
"full_name": "List.subset_append_of_subset_right",
"kind": "commanddeclaration",
"start": [
66,
1
]
},
{
"code": "@[simp] theorem cons_subset : a :: l ⊆ m ↔ a ∈ m ∧ l ⊆ m",
"end": [
70,
66
],
"full_name": "List.cons_subset",
"kind": "commanddeclaration",
"start": [
69,
1
]
},
{
"code": "@[simp] theorem append_subset {l₁ l₂ l : List α} :\n l₁ ++ l₂ ⊆ l ↔ l₁ ⊆ l ∧ l₂ ⊆ l",
"end": [
73,
79
],
"full_name": "List.append_subset",
"kind": "commanddeclaration",
"start": [
72,
1
]
},
{
"code": "theorem subset_nil {l : List α} : l ⊆ [] ↔ l = []",
"end": [
76,
99
],
"full_name": "List.subset_nil",
"kind": "commanddeclaration",
"start": [
75,
1
]
},
{
"code": "theorem map_subset {l₁ l₂ : List α} (f : α → β) (H : l₁ ⊆ l₂) : map f l₁ ⊆ map f l₂",
"end": [
79,
72
],
"full_name": "List.map_subset",
"kind": "commanddeclaration",
"start": [
78,
1
]
},
{
"code": "@[simp] theorem nil_sublist : ∀ l : List α, [] <+ l",
"end": [
85,
37
],
"full_name": "List.nil_sublist",
"kind": "commanddeclaration",
"start": [
83,
1
]
},
{
"code": "@[simp] theorem Sublist.refl : ∀ l : List α, l <+ l",
"end": [
89,
39
],
"full_name": "List.Sublist.refl",
"kind": "commanddeclaration",
"start": [
87,
1
]
},
{
"code": "theorem Sublist.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ <+ l₂) (h₂ : l₂ <+ l₃) : l₁ <+ l₃",
"end": [
100,
53
],
"full_name": "List.Sublist.trans",
"kind": "commanddeclaration",
"start": [
91,
1
]
},
{
"code": "@[simp] theorem sublist_cons (a : α) (l : List α) : l <+ a :: l",
"end": [
104,
91
],
"full_name": "List.sublist_cons",
"kind": "commanddeclaration",
"start": [
104,
1
]
},
{
"code": "theorem sublist_of_cons_sublist : a :: l₁ <+ l₂ → l₁ <+ l₂",
"end": [
107,
28
],
"full_name": "List.sublist_of_cons_sublist",
"kind": "commanddeclaration",
"start": [
106,
1
]
},
{
"code": "@[simp] theorem sublist_append_left : ∀ l₁ l₂ : List α, l₁ <+ l₁ ++ l₂",
"end": [
111,
55
],
"full_name": "List.sublist_append_left",
"kind": "commanddeclaration",
"start": [
109,
1
]
},
{
"code": "@[simp] theorem sublist_append_right : ∀ l₁ l₂ : List α, l₂ <+ l₁ ++ l₂",
"end": [
115,
55
],
"full_name": "List.sublist_append_right",
"kind": "commanddeclaration",
"start": [
113,
1
]
},
{
"code": "theorem sublist_append_of_sublist_left (s : l <+ l₁) : l <+ l₁ ++ l₂",
"end": [
118,
36
],
"full_name": "List.sublist_append_of_sublist_left",
"kind": "commanddeclaration",
"start": [
117,
1
]
},
{
"code": "theorem sublist_append_of_sublist_right (s : l <+ l₂) : l <+ l₁ ++ l₂",
"end": [
121,
37
],
"full_name": "List.sublist_append_of_sublist_right",
"kind": "commanddeclaration",
"start": [
120,
1
]
},
{
"code": "@[simp]\ntheorem cons_sublist_cons : a :: l₁ <+ a :: l₂ ↔ l₁ <+ l₂",
"end": [
125,
77
],
"full_name": "List.cons_sublist_cons",
"kind": "commanddeclaration",
"start": [
123,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_left : ∀ l, l ++ l₁ <+ l ++ l₂ ↔ l₁ <+ l₂",
"end": [
129,
69
],
"full_name": "List.append_sublist_append_left",
"kind": "commanddeclaration",
"start": [
127,
1
]
},
{
"code": "theorem Sublist.append_left : l₁ <+ l₂ → ∀ l, l ++ l₁ <+ l ++ l₂",
"end": [
132,
50
],
"full_name": "List.Sublist.append_left",
"kind": "commanddeclaration",
"start": [
131,
1
]
},
{
"code": "theorem Sublist.append_right : l₁ <+ l₂ → ∀ l, l₁ ++ l <+ l₂ ++ l",
"end": [
137,
48
],
"full_name": "List.Sublist.append_right",
"kind": "commanddeclaration",
"start": [
134,
1
]
},
{
"code": "theorem sublist_or_mem_of_sublist (h : l <+ l₁ ++ a :: l₂) : l <+ l₁ ++ l₂ ∨ a ∈ l",
"end": [
147,
65
],
"full_name": "List.sublist_or_mem_of_sublist",
"kind": "commanddeclaration",
"start": [
139,
1
]
},
{
"code": "theorem Sublist.reverse : l₁ <+ l₂ → l₁.reverse <+ l₂.reverse",
"end": [
152,
85
],
"full_name": "List.Sublist.reverse",
"kind": "commanddeclaration",
"start": [
149,
1
]
},
{
"code": "@[simp] theorem reverse_sublist : l₁.reverse <+ l₂.reverse ↔ l₁ <+ l₂",
"end": [
155,
82
],
"full_name": "List.reverse_sublist",
"kind": "commanddeclaration",
"start": [
154,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_right (l) : l₁ ++ l <+ l₂ ++ l ↔ l₁ <+ l₂",
"end": [
162,
30
],
"full_name": "List.append_sublist_append_right",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "theorem Sublist.append (hl : l₁ <+ l₂) (hr : r₁ <+ r₂) : l₁ ++ r₁ <+ l₂ ++ r₂",
"end": [
165,
66
],
"full_name": "List.Sublist.append",
"kind": "commanddeclaration",
"start": [
164,
1
]
},
{
"code": "theorem Sublist.subset : l₁ <+ l₂ → l₁ ⊆ l₂",
"end": [
171,
53
],
"full_name": "List.Sublist.subset",
"kind": "commanddeclaration",
"start": [
167,
1
]
},
{
"code": "theorem Sublist.length_le : l₁ <+ l₂ → length l₁ ≤ length l₂",
"end": [
185,
45
],
"full_name": "List.Sublist.length_le",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "@[simp] theorem sublist_nil {l : List α} : l <+ [] ↔ l = []",
"end": [
188,
64
],
"full_name": "List.sublist_nil",
"kind": "commanddeclaration",
"start": [
187,
1
]
},
{
"code": "theorem Sublist.eq_of_length : l₁ <+ l₂ → length l₁ = length l₂ → l₁ = l₂",
"end": [
193,
57
],
"full_name": "List.Sublist.eq_of_length",
"kind": "commanddeclaration",
"start": [
190,
1
]
},
{
"code": "theorem Sublist.eq_of_length_le (s : l₁ <+ l₂) (h : length l₂ ≤ length l₁) : l₁ = l₂",
"end": [
196,
50
],
"full_name": "List.Sublist.eq_of_length_le",
"kind": "commanddeclaration",
"start": [
195,
1
]
},
{
"code": "@[simp] theorem singleton_sublist {a : α} {l} : [a] <+ l ↔ a ∈ l",
"end": [
201,
66
],
"full_name": "List.singleton_sublist",
"kind": "commanddeclaration",
"start": [
198,
1
]
},
{
"code": "@[simp] theorem replicate_sublist_replicate {m n} (a : α) :\n replicate m a <+ replicate n a ↔ m ≤ n",
"end": [
209,
48
],
"full_name": "List.replicate_sublist_replicate",
"kind": "commanddeclaration",
"start": [
203,
1
]
},
{
"code": "theorem isSublist_iff_sublist [BEq α] [LawfulBEq α] {l₁ l₂ : List α} :\n l₁.isSublist l₂ ↔ l₁ <+ l₂",
"end": [
228,
24
],
"full_name": "List.isSublist_iff_sublist",
"kind": "commanddeclaration",
"start": [
211,
1
]
},
{
"code": "theorem tail_eq_tailD (l) : @tail α l = tailD l []",
"end": [
235,
73
],
"full_name": "List.tail_eq_tailD",
"kind": "commanddeclaration",
"start": [
235,
1
]
},
{
"code": "theorem tail_eq_tail? (l) : @tail α l = (tail? l).getD []",
"end": [
237,
85
],
"full_name": "List.tail_eq_tail?",
"kind": "commanddeclaration",
"start": [
237,
1
]
},
{
"code": "@[simp] theorem next?_nil : @next? α [] = none",
"end": [
241,
54
],
"full_name": "List.next?_nil",
"kind": "commanddeclaration",
"start": [
241,
1
]
},
{
"code": "@[simp] theorem next?_cons (a l) : @next? α (a :: l) = some (a, l)",
"end": [
242,
74
],
"full_name": "List.next?_cons",
"kind": "commanddeclaration",
"start": [
242,
1
]
},
{
"code": "theorem getElem_eq_iff {l : List α} {n : Nat} {h : n < l.length} : l[n] = x ↔ l[n]? = some x",
"end": [
248,
40
],
"full_name": "List.getElem_eq_iff",
"kind": "commanddeclaration",
"start": [
246,
1
]
},
{
"code": "@[deprecated getElem_eq_iff (since := \"2024-06-12\")]\ntheorem get_eq_iff : List.get l n = x ↔ l.get? n.1 = some x",
"end": [
252,
7
],
"full_name": "List.get_eq_iff",
"kind": "commanddeclaration",
"start": [
250,
1
]
},
{
"code": "theorem getElem?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs[i]? = xs[j]?) : i = j",
"end": [
273,
39
],
"full_name": "List.getElem?_inj",
"kind": "commanddeclaration",
"start": [
254,
1
]
},
{
"code": "@[deprecated getElem?_inj (since := \"2024-06-12\")]\ntheorem get?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs.get? i = xs.get? j) : i = j",
"end": [
279,
11
],
"full_name": "List.get?_inj",
"kind": "commanddeclaration",
"start": [
275,
1
]
},
{
"code": "theorem tail_drop (l : List α) (n : Nat) : (l.drop n).tail = l.drop (n + 1)",
"end": [
289,
16
],
"full_name": "List.tail_drop",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "@[simp] theorem modifyNth_nil (f : α → α) (n) : [].modifyNth f n = []",
"end": [
293,
92
],
"full_name": "List.modifyNth_nil",
"kind": "commanddeclaration",
"start": [
293,
1
]
},
{
"code": "@[simp] theorem modifyNth_zero_cons (f : α → α) (a : α) (l : List α) :\n (a :: l).modifyNth f 0 = f a :: l",
"end": [
296,
45
],
"full_name": "List.modifyNth_zero_cons",
"kind": "commanddeclaration",
"start": [
295,
1
]
},
{
"code": "@[simp] theorem modifyNth_succ_cons (f : α → α) (a : α) (l : List α) (n) :\n (a :: l).modifyNth f (n + 1) = a :: l.modifyNth f n",
"end": [
299,
66
],
"full_name": "List.modifyNth_succ_cons",
"kind": "commanddeclaration",
"start": [
298,
1
]
},
{
"code": "theorem modifyNthTail_id : ∀ n (l : List α), l.modifyNthTail id n = l",
"end": [
304,
60
],
"full_name": "List.modifyNthTail_id",
"kind": "commanddeclaration",
"start": [
301,
1
]
},
{
"code": "theorem eraseIdx_eq_modifyNthTail : ∀ n (l : List α), eraseIdx l n = modifyNthTail tail n l",
"end": [
309,
69
],
"full_name": "List.eraseIdx_eq_modifyNthTail",
"kind": "commanddeclaration",
"start": [
306,
1
]
},
{
"code": "theorem getElem?_modifyNth (f : α → α) :\n ∀ n (l : List α) m, (modifyNth f n l)[m]? = (fun a => if n = m then f a else a) <$> l[m]?",
"end": [
322,
79
],
"full_name": "List.getElem?_modifyNth",
"kind": "commanddeclaration",
"start": [
313,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth (since := \"2024-06-12\")]\ntheorem get?_modifyNth (f : α → α) (n) (l : List α) (m) :\n (modifyNth f n l).get? m = (fun a => if n = m then f a else a) <$> l.get? m",
"end": [
327,
28
],
"full_name": "List.get?_modifyNth",
"kind": "commanddeclaration",
"start": [
324,
1
]
},
{
"code": "theorem modifyNthTail_length (f : List α → List α) (H : ∀ l, length (f l) = length l) :\n ∀ n l, length (modifyNthTail f n l) = length l",
"end": [
333,
65
],
"full_name": "List.modifyNthTail_length",
"kind": "commanddeclaration",
"start": [
329,
1
]
},
{
"code": "theorem modifyNthTail_add (f : List α → List α) (n) (l₁ l₂ : List α) :\n modifyNthTail f (l₁.length + n) (l₁ ++ l₂) = l₁ ++ modifyNthTail f n l₂",
"end": [
337,
42
],
"full_name": "List.modifyNthTail_add",
"kind": "commanddeclaration",
"start": [
335,
1
]
},
{
"code": "theorem exists_of_modifyNthTail (f : List α → List α) {n} {l : List α} (h : n ≤ l.length) :\n ∃ l₁ l₂, l = l₁ ++ l₂ ∧ l₁.length = n ∧ modifyNthTail f n l = l₁ ++ f l₂",
"end": [
343,
58
],
"full_name": "List.exists_of_modifyNthTail",
"kind": "commanddeclaration",
"start": [
339,
1
]
},
{
"code": "@[simp] theorem modify_get?_length (f : α → α) : ∀ n l, length (modifyNth f n l) = length l",
"end": [
346,
53
],
"full_name": "List.modify_get?_length",
"kind": "commanddeclaration",
"start": [
345,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l)[n]? = f <$> l[n]?",
"end": [
350,
41
],
"full_name": "List.getElem?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_eq (since := \"2024-06-12\")]\ntheorem get?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l).get? n = f <$> l.get? n",
"end": [
355,
31
],
"full_name": "List.get?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
352,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l)[n]? = l[n]?",
"end": [
359,
52
],
"full_name": "List.getElem?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
357,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_ne (since := \"2024-06-12\")]\ntheorem get?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l).get? n = l.get? n",
"end": [
364,
11
],
"full_name": "List.get?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
361,
1
]
},
{
"code": "theorem exists_of_modifyNth (f : α → α) {n} {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ modifyNth f n l = l₁ ++ f a :: l₂",
"end": [
370,
74
],
"full_name": "List.exists_of_modifyNth",
"kind": "commanddeclaration",
"start": [
366,
1
]
},
{
"code": "theorem modifyNthTail_eq_take_drop (f : List α → List α) (H : f [] = []) :\n ∀ n l, modifyNthTail f n l = take n l ++ f (drop n l)",
"end": [
376,
76
],
"full_name": "List.modifyNthTail_eq_take_drop",
"kind": "commanddeclaration",
"start": [
372,
1
]
},
{
"code": "theorem modifyNth_eq_take_drop (f : α → α) :\n ∀ n l, modifyNth f n l = take n l ++ modifyHead f (drop n l)",
"end": [
380,
35
],
"full_name": "List.modifyNth_eq_take_drop",
"kind": "commanddeclaration",
"start": [
378,
1
]
},
{
"code": "theorem modifyNth_eq_take_cons_drop (f : α → α) {n l} (h) :\n modifyNth f n l = take n l ++ f l[n] :: drop (n + 1) l",
"end": [
384,
59
],
"full_name": "List.modifyNth_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
382,
1
]
},
{
"code": "theorem set_eq_modifyNth (a : α) : ∀ n (l : List α), set l n a = modifyNth (fun _ => a) n l",
"end": [
391,
62
],
"full_name": "List.set_eq_modifyNth",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "theorem set_eq_take_cons_drop (a : α) {n l} (h : n < length l) :\n set l n a = take n l ++ a :: drop (n + 1) l",
"end": [
395,
57
],
"full_name": "List.set_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
393,
1
]
},
{
"code": "theorem modifyNth_eq_set_get? (f : α → α) :\n ∀ n (l : List α), l.modifyNth f n = ((fun a => l.set n (f a)) <$> l.get? n).getD l",
"end": [
402,
92
],
"full_name": "List.modifyNth_eq_set_get?",
"kind": "commanddeclaration",
"start": [
397,
1
]
},
{
"code": "theorem modifyNth_eq_set_get (f : α → α) {n} {l : List α} (h) :\n l.modifyNth f n = l.set n (f (l.get ⟨n, h⟩))",
"end": [
406,
49
],
"full_name": "List.modifyNth_eq_set_get",
"kind": "commanddeclaration",
"start": [
404,
1
]
},
{
"code": "theorem exists_of_set {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
410,
55
],
"full_name": "List.exists_of_set",
"kind": "commanddeclaration",
"start": [
408,
1
]
},
{
"code": "theorem exists_of_set' {l : List α} (h : n < l.length) :\n ∃ l₁ l₂, l = l₁ ++ l[n] :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
414,
94
],
"full_name": "List.exists_of_set'",
"kind": "commanddeclaration",
"start": [
412,
1
]
},
{
"code": "@[simp]\ntheorem getElem?_set_eq' (a : α) (n) (l : List α) : (set l n a)[n]? = (fun _ => a) <$> l[n]?",
"end": [
418,
54
],
"full_name": "List.getElem?_set_eq'",
"kind": "commanddeclaration",
"start": [
416,
1
]
},
{
"code": "@[deprecated getElem?_set_eq' (since := \"2024-06-12\")]\ntheorem get?_set_eq (a : α) (n) (l : List α) : (set l n a).get? n = (fun _ => a) <$> l.get? n",
"end": [
422,
7
],
"full_name": "List.get?_set_eq",
"kind": "commanddeclaration",
"start": [
420,
1
]
},
{
"code": "theorem getElem?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a)[n]? = some a",
"end": [
425,
85
],
"full_name": "List.getElem?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
424,
1
]
},
{
"code": "@[deprecated getElem?_set_eq_of_lt (since := \"2024-06-12\")]\ntheorem get?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a).get? n = some a",
"end": [
430,
70
],
"full_name": "List.get?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
427,
1
]
},
{
"code": "@[deprecated getElem?_set_ne (since := \"2024-06-12\")]\ntheorem get?_set_ne (a : α) {m n} (l : List α) (h : m ≠ n) : (set l m a).get? n = l.get? n",
"end": [
434,
11
],
"full_name": "List.get?_set_ne",
"kind": "commanddeclaration",
"start": [
432,
1
]
},
{
"code": "theorem getElem?_set' (a : α) {m n} (l : List α) :\n (set l m a)[n]? = if m = n then (fun _ => a) <$> l[n]? else l[n]?",
"end": [
438,
30
],
"full_name": "List.getElem?_set'",
"kind": "commanddeclaration",
"start": [
436,
1
]
},
{
"code": "@[deprecated getElem?_set (since := \"2024-06-12\")]\ntheorem get?_set (a : α) {m n} (l : List α) :\n (set l m a).get? n = if m = n then (fun _ => a) <$> l.get? n else l.get? n",
"end": [
443,
23
],
"full_name": "List.get?_set",
"kind": "commanddeclaration",
"start": [
440,
1
]
},
{
"code": "theorem get?_set_of_lt (a : α) {m n} (l : List α) (h : n < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
447,
46
],
"full_name": "List.get?_set_of_lt",
"kind": "commanddeclaration",
"start": [
445,
1
]
},
{
"code": "theorem get?_set_of_lt' (a : α) {m n} (l : List α) (h : m < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
451,
80
],
"full_name": "List.get?_set_of_lt'",
"kind": "commanddeclaration",
"start": [
449,
1
]
},
{
"code": "theorem drop_set_of_lt (a : α) {n m : Nat} (l : List α) (h : n < m) :\n (l.set n a).drop m = l.drop m",
"end": [
455,
94
],
"full_name": "List.drop_set_of_lt",
"kind": "commanddeclaration",
"start": [
453,
1
]
},
{
"code": "theorem take_set_of_lt (a : α) {n m : Nat} (l : List α) (h : m < n) :\n (l.set n a).take m = l.take m",
"end": [
463,
10
],
"full_name": "List.take_set_of_lt",
"kind": "commanddeclaration",
"start": [
457,
1
]
},
{
"code": "theorem length_eraseIdx : ∀ {l i}, i < length l → length (@eraseIdx α l i) = length l - 1",
"end": [
473,
92
],
"full_name": "List.length_eraseIdx",
"kind": "commanddeclaration",
"start": [
467,
1
]
},
{
"code": "@[simp] theorem length_tail (l : List α) : length (tail l) = length l - 1",
"end": [
479,
96
],
"full_name": "List.length_tail",
"kind": "commanddeclaration",
"start": [
479,
1
]
},
{
"code": "@[simp] theorem eraseP_nil : [].eraseP p = []",
"end": [
483,
53
],
"full_name": "List.eraseP_nil",
"kind": "commanddeclaration",
"start": [
483,
1
]
},
{
"code": "theorem eraseP_cons (a : α) (l : List α) :\n (a :: l).eraseP p = bif p a then l else a :: l.eraseP p",
"end": [
486,
67
],
"full_name": "List.eraseP_cons",
"kind": "commanddeclaration",
"start": [
485,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_pos {l : List α} (p) (h : p a) : (a :: l).eraseP p = l",
"end": [
489,
24
],
"full_name": "List.eraseP_cons_of_pos",
"kind": "commanddeclaration",
"start": [
488,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_neg {l : List α} (p) (h : ¬p a) :\n (a :: l).eraseP p = a :: l.eraseP p",
"end": [
492,
68
],
"full_name": "List.eraseP_cons_of_neg",
"kind": "commanddeclaration",
"start": [
491,
1
]
},
{
"code": "theorem eraseP_of_forall_not {l : List α} (h : ∀ a, a ∈ l → ¬p a) : l.eraseP p = l",
"end": [
497,
69
],
"full_name": "List.eraseP_of_forall_not",
"kind": "commanddeclaration",
"start": [
494,
1
]
},
{
"code": "theorem exists_of_eraseP : ∀ {l : List α} {a} (al : a ∈ l) (pa : p a),\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
510,
57
],
"full_name": "List.exists_of_eraseP",
"kind": "commanddeclaration",
"start": [
499,
1
]
},
{
"code": "theorem exists_or_eq_self_of_eraseP (p) (l : List α) :\n l.eraseP p = l ∨\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
519,
46
],
"full_name": "List.exists_or_eq_self_of_eraseP",
"kind": "commanddeclaration",
"start": [
512,
1
]
},
{
"code": "@[simp] theorem length_eraseP_of_mem (al : a ∈ l) (pa : p a) :\n length (l.eraseP p) = Nat.pred (length l)",
"end": [
524,
41
],
"full_name": "List.length_eraseP_of_mem",
"kind": "commanddeclaration",
"start": [
521,
1
]
},
{
"code": "theorem eraseP_append_left {a : α} (pa : p a) :\n ∀ {l₁ : List α} l₂, a ∈ l₁ → (l₁++l₂).eraseP p = l₁.eraseP p ++ l₂",
"end": [
531,
28
],
"full_name": "List.eraseP_append_left",
"kind": "commanddeclaration",
"start": [
526,
1
]
},
{
"code": "theorem eraseP_append_right :\n ∀ {l₁ : List α} l₂, (∀ b ∈ l₁, ¬p b) → eraseP p (l₁++l₂) = l₁ ++ l₂.eraseP p",
"end": [
537,
82
],
"full_name": "List.eraseP_append_right",
"kind": "commanddeclaration",
"start": [
533,
1
]
},
{
"code": "theorem eraseP_sublist (l : List α) : l.eraseP p <+ l",
"end": [
542,
56
],
"full_name": "List.eraseP_sublist",
"kind": "commanddeclaration",
"start": [
539,
1
]
},
{
"code": "theorem eraseP_subset (l : List α) : l.eraseP p ⊆ l",
"end": [
544,
81
],
"full_name": "List.eraseP_subset",
"kind": "commanddeclaration",
"start": [
544,
1
]
},
{
"code": "protected theorem Sublist.eraseP : l₁ <+ l₂ → l₁.eraseP p <+ l₂.eraseP p",
"end": [
553,
25
],
"full_name": "List.Sublist.eraseP",
"kind": "commanddeclaration",
"start": [
546,
1
]
},
{
"code": "theorem mem_of_mem_eraseP {l : List α} : a ∈ l.eraseP p → a ∈ l",
"end": [
555,
87
],
"full_name": "List.mem_of_mem_eraseP",
"kind": "commanddeclaration",
"start": [
555,
1
]
},
{
"code": "@[simp] theorem mem_eraseP_of_neg {l : List α} (pa : ¬p a) : a ∈ l.eraseP p ↔ a ∈ l",
"end": [
564,
33
],
"full_name": "List.mem_eraseP_of_neg",
"kind": "commanddeclaration",
"start": [
557,
1
]
},
{
"code": "theorem eraseP_map (f : β → α) : ∀ (l : List β), (map f l).eraseP p = map f (l.eraseP (p ∘ f))",
"end": [
568,
85
],
"full_name": "List.eraseP_map",
"kind": "commanddeclaration",
"start": [
566,
1
]
},
{
"code": "@[simp] theorem extractP_eq_find?_eraseP\n (l : List α) : extractP p l = (find? p l, eraseP p l)",
"end": [
578,
21
],
"full_name": "List.extractP_eq_find?_eraseP",
"kind": "commanddeclaration",
"start": [
570,
1
]
},
{
"code": "theorem erase_eq_eraseP' (a : α) (l : List α) : l.erase a = l.eraseP (· == a)",
"end": [
590,
46
],
"full_name": "List.erase_eq_eraseP'",
"kind": "commanddeclaration",
"start": [
585,
1
]
},
{
"code": "theorem erase_eq_eraseP [LawfulBEq α] (a : α) : ∀ l : List α, l.erase a = l.eraseP (a == ·)",
"end": [
595,
77
],
"full_name": "List.erase_eq_eraseP",
"kind": "commanddeclaration",
"start": [
592,
1
]
},
{
"code": "theorem exists_erase_eq [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n ∃ l₁ l₂, a ∉ l₁ ∧ l = l₁ ++ a :: l₂ ∧ l.erase a = l₁ ++ l₂",
"end": [
600,
99
],
"full_name": "List.exists_erase_eq",
"kind": "commanddeclaration",
"start": [
597,
1
]
},
{
"code": "@[simp] theorem length_erase_of_mem [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n length (l.erase a) = Nat.pred (length l)",
"end": [
604,
74
],
"full_name": "List.length_erase_of_mem",
"kind": "commanddeclaration",
"start": [
602,
1
]
},
{
"code": "theorem erase_append_left [LawfulBEq α] {l₁ : List α} (l₂) (h : a ∈ l₁) :\n (l₁ ++ l₂).erase a = l₁.erase a ++ l₂",
"end": [
608,
77
],
"full_name": "List.erase_append_left",
"kind": "commanddeclaration",
"start": [
606,
1
]
},
{
"code": "theorem erase_append_right [LawfulBEq α] {a : α} {l₁ : List α} (l₂ : List α) (h : a ∉ l₁) :\n (l₁ ++ l₂).erase a = (l₁ ++ l₂.erase a)",
"end": [
613,
55
],
"full_name": "List.erase_append_right",
"kind": "commanddeclaration",
"start": [
610,
1
]
},
{
"code": "theorem erase_sublist (a : α) (l : List α) : l.erase a <+ l",
"end": [
616,
42
],
"full_name": "List.erase_sublist",
"kind": "commanddeclaration",
"start": [
615,
1
]
},
{
"code": "theorem erase_subset (a : α) (l : List α) : l.erase a ⊆ l",
"end": [
618,
88
],
"full_name": "List.erase_subset",
"kind": "commanddeclaration",
"start": [
618,
1
]
},
{
"code": "theorem Sublist.erase (a : α) {l₁ l₂ : List α} (h : l₁ <+ l₂) : l₁.erase a <+ l₂.erase a",
"end": [
621,
47
],
"full_name": "List.Sublist.erase",
"kind": "commanddeclaration",
"start": [
620,
1
]
},
{
"code": "theorem mem_of_mem_erase {a b : α} {l : List α} (h : a ∈ l.erase b) : a ∈ l",
"end": [
624,
98
],
"full_name": "List.mem_of_mem_erase",
"kind": "commanddeclaration",
"start": [
624,
1
]
},
{
"code": "@[simp] theorem mem_erase_of_ne [LawfulBEq α] {a b : α} {l : List α} (ab : a ≠ b) :\n a ∈ l.erase b ↔ a ∈ l",
"end": [
628,
65
],
"full_name": "List.mem_erase_of_ne",
"kind": "commanddeclaration",
"start": [
626,
1
]
},
{
"code": "theorem erase_comm [LawfulBEq α] (a b : α) (l : List α) :\n (l.erase a).erase b = (l.erase b).erase a",
"end": [
644,
49
],
"full_name": "List.erase_comm",
"kind": "commanddeclaration",
"start": [
630,
1
]
},
{
"code": "@[simp] theorem filter_sublist {p : α → Bool} : ∀ (l : List α), filter p l <+ l",
"end": [
652,
93
],
"full_name": "List.filter_sublist",
"kind": "commanddeclaration",
"start": [
650,
1
]
},
{
"code": "protected theorem Sublist.filterMap (f : α → Option β) (s : l₁ <+ l₂) :\n filterMap f l₁ <+ filterMap f l₂",
"end": [
658,
76
],
"full_name": "List.Sublist.filterMap",
"kind": "commanddeclaration",
"start": [
656,
1
]
},
{
"code": "theorem Sublist.filter (p : α → Bool) {l₁ l₂} (s : l₁ <+ l₂) : filter p l₁ <+ filter p l₂",
"end": [
661,
48
],
"full_name": "List.Sublist.filter",
"kind": "commanddeclaration",
"start": [
660,
1
]
},
{
"code": "@[simp] theorem findIdx_nil {α : Type _} (p : α → Bool) : [].findIdx p = 0",
"end": [
665,
82
],
"full_name": "List.findIdx_nil",
"kind": "commanddeclaration",
"start": [
665,
1
]
},
{
"code": "theorem findIdx_cons (p : α → Bool) (b : α) (l : List α) :\n (b :: l).findIdx p = bif p b then 0 else (l.findIdx p) + 1",
"end": [
680,
43
],
"full_name": "List.findIdx_cons",
"kind": "commanddeclaration",
"start": [
667,
1
]
},
{
"code": "theorem findIdx_of_get?_eq_some {xs : List α} (w : xs.get? (xs.findIdx p) = some y) : p y",
"end": [
685,
65
],
"full_name": "List.findIdx_of_get?_eq_some",
"kind": "commanddeclaration",
"start": [
682,
1
]
},
{
"code": "theorem findIdx_get {xs : List α} {w : xs.findIdx p < xs.length} :\n p (xs.get ⟨xs.findIdx p, w⟩)",
"end": [
689,
45
],
"full_name": "List.findIdx_get",
"kind": "commanddeclaration",
"start": [
687,
1
]
},
{
"code": "theorem findIdx_lt_length_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.findIdx p < xs.length",
"end": [
703,
24
],
"full_name": "List.findIdx_lt_length_of_exists",
"kind": "commanddeclaration",
"start": [
691,
1
]
},
{
"code": "theorem findIdx_get?_eq_get_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.get? (xs.findIdx p) = some (xs.get ⟨xs.findIdx p, xs.findIdx_lt_length_of_exists h⟩)",
"end": [
707,
46
],
"full_name": "List.findIdx_get?_eq_get_of_exists",
"kind": "commanddeclaration",
"start": [
705,
1
]
},
{
"code": "@[simp] theorem findIdx?_nil : ([] : List α).findIdx? p i = none",
"end": [
711,
72
],
"full_name": "List.findIdx?_nil",
"kind": "commanddeclaration",
"start": [
711,
1
]
},
{
"code": "@[simp] theorem findIdx?_cons :\n (x :: xs).findIdx? p i = if p x then some i else findIdx? p xs (i + 1)",
"end": [
714,
82
],
"full_name": "List.findIdx?_cons",
"kind": "commanddeclaration",
"start": [
713,
1
]
},
{
"code": "@[simp] theorem findIdx?_succ :\n (xs : List α).findIdx? p (i+1) = (xs.findIdx? p i).map fun i => i + 1",
"end": [
719,
37
],
"full_name": "List.findIdx?_succ",
"kind": "commanddeclaration",
"start": [
716,
1
]
},
{
"code": "theorem findIdx?_eq_some_iff (xs : List α) (p : α → Bool) :\n xs.findIdx? p = some i ↔ (xs.take (i + 1)).map p = replicate i false ++ [true]",
"end": [
727,
52
],
"full_name": "List.findIdx?_eq_some_iff",
"kind": "commanddeclaration",
"start": [
721,
1
]
},
{
"code": "theorem findIdx?_of_eq_some {xs : List α} {p : α → Bool} (w : xs.findIdx? p = some i) :\n match xs.get? i with | some a => p a | none => false",
"end": [
735,
40
],
"full_name": "List.findIdx?_of_eq_some",
"kind": "commanddeclaration",
"start": [
729,
1
]
},
{
"code": "theorem findIdx?_of_eq_none {xs : List α} {p : α → Bool} (w : xs.findIdx? p = none) :\n ∀ i, match xs.get? i with | some a => ¬ p a | none => true",
"end": [
750,
30
],
"full_name": "List.findIdx?_of_eq_none",
"kind": "commanddeclaration",
"start": [
737,
1
]
},
{
"code": "@[simp] theorem findIdx?_append :\n (xs ++ ys : List α).findIdx? p =\n (xs.findIdx? p <|> (ys.findIdx? p).map fun i => i + xs.length)",
"end": [
756,
78
],
"full_name": "List.findIdx?_append",
"kind": "commanddeclaration",
"start": [
752,
1
]
},
{
"code": "@[simp] theorem findIdx?_replicate :\n (replicate n a).findIdx? p = if 0 < n ∧ p a then some 0 else none",
"end": [
764,
23
],
"full_name": "List.findIdx?_replicate",
"kind": "commanddeclaration",
"start": [
758,
1
]
},
{
"code": "theorem Pairwise.sublist : l₁ <+ l₂ → l₂.Pairwise R → l₁.Pairwise R",
"end": [
771,
80
],
"full_name": "List.Pairwise.sublist",
"kind": "commanddeclaration",
"start": [
768,
1
]
},
{
"code": "theorem pairwise_map {l : List α} :\n (l.map f).Pairwise R ↔ l.Pairwise fun a b => R (f a) (f b)",
"end": [
777,
58
],
"full_name": "List.pairwise_map",
"kind": "commanddeclaration",
"start": [
773,
1
]
},
{
"code": "theorem pairwise_append {l₁ l₂ : List α} :\n (l₁ ++ l₂).Pairwise R ↔ l₁.Pairwise R ∧ l₂.Pairwise R ∧ ∀ a ∈ l₁, ∀ b ∈ l₂, R a b",
"end": [
781,
74
],
"full_name": "List.pairwise_append",
"kind": "commanddeclaration",
"start": [
779,
1
]
},
{
"code": "theorem pairwise_reverse {l : List α} :\n l.reverse.Pairwise R ↔ l.Pairwise (fun a b => R b a)",
"end": [
785,
54
],
"full_name": "List.pairwise_reverse",
"kind": "commanddeclaration",
"start": [
783,
1
]
},
{
"code": "theorem Pairwise.imp {α R S} (H : ∀ {a b}, R a b → S a b) :\n ∀ {l : List α}, l.Pairwise R → l.Pairwise S",
"end": [
790,
50
],
"full_name": "List.Pairwise.imp",
"kind": "commanddeclaration",
"start": [
787,
1
]
},
{
"code": "theorem replaceF_nil : [].replaceF p = []",
"end": [
794,
49
],
"full_name": "List.replaceF_nil",
"kind": "commanddeclaration",
"start": [
794,
1
]
},
{
"code": "theorem replaceF_cons (a : α) (l : List α) :\n (a :: l).replaceF p = match p a with\n | none => a :: replaceF p l\n | some a' => a' :: l",
"end": [
799,
34
],
"full_name": "List.replaceF_cons",
"kind": "commanddeclaration",
"start": [
796,
1
]
},
{
"code": "theorem replaceF_cons_of_some {l : List α} (p) (h : p a = some a') :\n (a :: l).replaceF p = a' :: l",
"end": [
803,
26
],
"full_name": "List.replaceF_cons_of_some",
"kind": "commanddeclaration",
"start": [
801,
1
]
},
{
"code": "theorem replaceF_cons_of_none {l : List α} (p) (h : p a = none) :\n (a :: l).replaceF p = a :: l.replaceF p",
"end": [
806,
74
],
"full_name": "List.replaceF_cons_of_none",
"kind": "commanddeclaration",
"start": [
805,
1
]
},
{
"code": "theorem replaceF_of_forall_none {l : List α} (h : ∀ a, a ∈ l → p a = none) : l.replaceF p = l",
"end": [
811,
69
],
"full_name": "List.replaceF_of_forall_none",
"kind": "commanddeclaration",
"start": [
808,
1
]
},
{
"code": "theorem exists_of_replaceF : ∀ {l : List α} {a a'} (al : a ∈ l) (pa : p a = some a'),\n ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
825,
57
],
"full_name": "List.exists_of_replaceF",
"kind": "commanddeclaration",
"start": [
813,
1
]
},
{
"code": "theorem exists_or_eq_self_of_replaceF (p) (l : List α) :\n l.replaceF p = l ∨ ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
835,
62
],
"full_name": "List.exists_or_eq_self_of_replaceF",
"kind": "commanddeclaration",
"start": [
827,
1
]
},
{
"code": "@[simp] theorem length_replaceF : length (replaceF f l) = length l",
"end": [
838,
54
],
"full_name": "List.length_replaceF",
"kind": "commanddeclaration",
"start": [
837,
1
]
},
{
"code": "theorem disjoint_symm (d : Disjoint l₁ l₂) : Disjoint l₂ l₁",
"end": [
842,
86
],
"full_name": "List.disjoint_symm",
"kind": "commanddeclaration",
"start": [
842,
1
]
},
{
"code": "theorem disjoint_comm : Disjoint l₁ l₂ ↔ Disjoint l₂ l₁",
"end": [
844,
90
],
"full_name": "List.disjoint_comm",
"kind": "commanddeclaration",
"start": [
844,
1
]
},
{
"code": "theorem disjoint_left : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₁ → a ∉ l₂",
"end": [
846,
86
],
"full_name": "List.disjoint_left",
"kind": "commanddeclaration",
"start": [
846,
1
]
},
{
"code": "theorem disjoint_right : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₂ → a ∉ l₁",
"end": [
848,
82
],
"full_name": "List.disjoint_right",
"kind": "commanddeclaration",
"start": [
848,
1
]
},
{
"code": "theorem disjoint_iff_ne : Disjoint l₁ l₂ ↔ ∀ a ∈ l₁, ∀ b ∈ l₂, a ≠ b",
"end": [
851,
83
],
"full_name": "List.disjoint_iff_ne",
"kind": "commanddeclaration",
"start": [
850,
1
]
},
{
"code": "theorem disjoint_of_subset_left (ss : l₁ ⊆ l) (d : Disjoint l l₂) : Disjoint l₁ l₂",
"end": [
854,
22
],
"full_name": "List.disjoint_of_subset_left",
"kind": "commanddeclaration",
"start": [
853,
1
]
},
{
"code": "theorem disjoint_of_subset_right (ss : l₂ ⊆ l) (d : Disjoint l₁ l) : Disjoint l₁ l₂",
"end": [
857,
28
],
"full_name": "List.disjoint_of_subset_right",
"kind": "commanddeclaration",
"start": [
856,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_left {l₁ l₂} : Disjoint (a :: l₁) l₂ → Disjoint l₁ l₂",
"end": [
860,
42
],
"full_name": "List.disjoint_of_disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
859,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_right {l₁ l₂} : Disjoint l₁ (a :: l₂) → Disjoint l₁ l₂",
"end": [
863,
43
],
"full_name": "List.disjoint_of_disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
862,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_left (l : List α) : Disjoint [] l",
"end": [
865,
96
],
"full_name": "List.disjoint_nil_left",
"kind": "commanddeclaration",
"start": [
865,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_right (l : List α) : Disjoint l []",
"end": [
868,
48
],
"full_name": "List.disjoint_nil_right",
"kind": "commanddeclaration",
"start": [
867,
1
]
},
{
"code": "@[simp 1100] theorem singleton_disjoint : Disjoint [a] l ↔ a ∉ l",
"end": [
870,
87
],
"full_name": "List.singleton_disjoint",
"kind": "commanddeclaration",
"start": [
870,
1
]
},
{
"code": "@[simp 1100] theorem disjoint_singleton : Disjoint l [a] ↔ a ∉ l",
"end": [
873,
41
],
"full_name": "List.disjoint_singleton",
"kind": "commanddeclaration",
"start": [
872,
1
]
},
{
"code": "@[simp] theorem disjoint_append_left : Disjoint (l₁ ++ l₂) l ↔ Disjoint l₁ l ∧ Disjoint l₂ l",
"end": [
876,
38
],
"full_name": "List.disjoint_append_left",
"kind": "commanddeclaration",
"start": [
875,
1
]
},
{
"code": "@[simp] theorem disjoint_append_right : Disjoint l (l₁ ++ l₂) ↔ Disjoint l l₁ ∧ Disjoint l l₂",
"end": [
879,
76
],
"full_name": "List.disjoint_append_right",
"kind": "commanddeclaration",
"start": [
878,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_left : Disjoint (a::l₁) l₂ ↔ (a ∉ l₂) ∧ Disjoint l₁ l₂",
"end": [
882,
75
],
"full_name": "List.disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
881,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_right : Disjoint l₁ (a :: l₂) ↔ (a ∉ l₁) ∧ Disjoint l₁ l₂",
"end": [
885,
74
],
"full_name": "List.disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
884,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_left (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₁ l",
"end": [
888,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_left",
"kind": "commanddeclaration",
"start": [
887,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_right (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₂ l",
"end": [
891,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_right",
"kind": "commanddeclaration",
"start": [
890,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_left (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₁",
"end": [
894,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_left",
"kind": "commanddeclaration",
"start": [
893,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_right (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₂",
"end": [
897,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_right",
"kind": "commanddeclaration",
"start": [
896,
1
]
},
{
"code": "theorem foldl_hom (f : α₁ → α₂) (g₁ : α₁ → β → α₁) (g₂ : α₂ → β → α₂) (l : List β) (init : α₁)\n (H : ∀ x y, g₂ (f x) y = f (g₁ x y)) : l.foldl g₂ (f init) = f (l.foldl g₁ init)",
"end": [
903,
48
],
"full_name": "List.foldl_hom",
"kind": "commanddeclaration",
"start": [
901,
1
]
},
{
"code": "theorem foldr_hom (f : β₁ → β₂) (g₁ : α → β₁ → β₁) (g₂ : α → β₂ → β₂) (l : List α) (init : β₁)\n (H : ∀ x y, g₂ x (f y) = f (g₁ x y)) : l.foldr g₂ (f init) = f (l.foldr g₁ init)",
"end": [
907,
30
],
"full_name": "List.foldr_hom",
"kind": "commanddeclaration",
"start": [
905,
1
]
},
{
"code": "theorem union_def [BEq α] (l₁ l₂ : List α) : l₁ ∪ l₂ = foldr .insert l₂ l₁",
"end": [
915,
83
],
"full_name": "List.union_def",
"kind": "commanddeclaration",
"start": [
915,
1
]
},
{
"code": "@[simp] theorem nil_union (l : List α) : nil ∪ l = l",
"end": [
917,
88
],
"full_name": "List.nil_union",
"kind": "commanddeclaration",
"start": [
917,
1
]
},
{
"code": "@[simp] theorem cons_union (a : α) (l₁ l₂ : List α) :\n (a :: l₁) ∪ l₂ = (l₁ ∪ l₂).insert a",
"end": [
920,
75
],
"full_name": "List.cons_union",
"kind": "commanddeclaration",
"start": [
919,
1
]
},
{
"code": "@[simp] theorem mem_union_iff [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∪ l₂ ↔ x ∈ l₁ ∨ x ∈ l₂",
"end": [
923,
76
],
"full_name": "List.mem_union_iff",
"kind": "commanddeclaration",
"start": [
922,
1
]
},
{
"code": "theorem inter_def [BEq α] (l₁ l₂ : List α) : l₁ ∩ l₂ = filter (elem · l₂) l₁",
"end": [
929,
85
],
"full_name": "List.inter_def",
"kind": "commanddeclaration",
"start": [
929,
1
]
},
{
"code": "@[simp] theorem mem_inter_iff [BEq α] [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∩ l₂ ↔ x ∈ l₁ ∧ x ∈ l₂",
"end": [
933,
49
],
"full_name": "List.mem_inter_iff",
"kind": "commanddeclaration",
"start": [
931,
1
]
},
{
"code": "@[simp]\ntheorem pair_mem_product {xs : List α} {ys : List β} {x : α} {y : β} :\n (x, y) ∈ product xs ys ↔ x ∈ xs ∧ y ∈ ys",
"end": [
942,
47
],
"full_name": "List.pair_mem_product",
"kind": "commanddeclaration",
"start": [
937,
1
]
},
{
"code": "@[simp]\ntheorem leftpad_length (n : Nat) (a : α) (l : List α) :\n (leftpad n a l).length = max n l.length",
"end": [
951,
75
],
"full_name": "List.leftpad_length",
"kind": "commanddeclaration",
"start": [
946,
1
]
},
{
"code": "theorem leftpad_prefix (n : Nat) (a : α) (l : List α) :\n replicate (n - length l) a <+: leftpad n a l",
"end": [
956,
27
],
"full_name": "List.leftpad_prefix",
"kind": "commanddeclaration",
"start": [
953,
1
]
},
{
"code": "theorem leftpad_suffix (n : Nat) (a : α) (l : List α) : l <:+ (leftpad n a l)",
"end": [
960,
54
],
"full_name": "List.leftpad_suffix",
"kind": "commanddeclaration",
"start": [
958,
1
]
},
{
"code": "@[simp] theorem forIn_eq_forIn [Monad m] : @List.forIn α β m _ = forIn",
"end": [
965,
78
],
"full_name": "List.forIn_eq_forIn",
"kind": "commanddeclaration",
"start": [
965,
1
]
},
{
"code": "theorem forIn_eq_bindList [Monad m] [LawfulMonad m]\n (f : α → β → m (ForInStep β)) (l : List α) (init : β) :\n forIn l init f = ForInStep.run <$> (ForInStep.yield init).bindList f l",
"end": [
971,
30
],
"full_name": "List.forIn_eq_bindList",
"kind": "commanddeclaration",
"start": [
967,
1
]
},
{
"code": "@[simp] theorem forM_append [Monad m] [LawfulMonad m] (l₁ l₂ : List α) (f : α → m PUnit) :\n (l₁ ++ l₂).forM f = (do l₁.forM f; l₂.forM f)",
"end": [
974,
82
],
"full_name": "List.forM_append",
"kind": "commanddeclaration",
"start": [
973,
1
]
},
{
"code": "@[simp] theorem diff_nil (l : List α) : l.diff [] = l",
"end": [
982,
61
],
"full_name": "List.diff_nil",
"kind": "commanddeclaration",
"start": [
982,
1
]
},
{
"code": "@[simp] theorem diff_cons (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.erase a).diff l₂",
"end": [
985,
41
],
"full_name": "List.diff_cons",
"kind": "commanddeclaration",
"start": [
984,
1
]
},
{
"code": "theorem diff_cons_right (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.diff l₂).erase a",
"end": [
988,
71
],
"full_name": "List.diff_cons_right",
"kind": "commanddeclaration",
"start": [
987,
1
]
},
{
"code": "theorem diff_erase (l₁ l₂ : List α) (a : α) : (l₁.diff l₂).erase a = (l₁.erase a).diff l₂",
"end": [
991,
36
],
"full_name": "List.diff_erase",
"kind": "commanddeclaration",
"start": [
990,
1
]
},
{
"code": "@[simp] theorem nil_diff (l : List α) : [].diff l = []",
"end": [
994,
45
],
"full_name": "List.nil_diff",
"kind": "commanddeclaration",
"start": [
993,
1
]
},
{
"code": "theorem cons_diff (a : α) (l₁ l₂ : List α) :\n (a :: l₁).diff l₂ = if a ∈ l₂ then l₁.diff (l₂.erase a) else a :: l₁.diff l₂",
"end": [
1005,
14
],
"full_name": "List.cons_diff",
"kind": "commanddeclaration",
"start": [
996,
1
]
},
{
"code": "theorem cons_diff_of_mem {a : α} {l₂ : List α} (h : a ∈ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = l₁.diff (l₂.erase a)",
"end": [
1008,
76
],
"full_name": "List.cons_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1007,
1
]
},
{
"code": "theorem cons_diff_of_not_mem {a : α} {l₂ : List α} (h : a ∉ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = a :: l₁.diff l₂",
"end": [
1011,
71
],
"full_name": "List.cons_diff_of_not_mem",
"kind": "commanddeclaration",
"start": [
1010,
1
]
},
{
"code": "theorem diff_eq_foldl : ∀ l₁ l₂ : List α, l₁.diff l₂ = foldl List.erase l₁ l₂",
"end": [
1015,
65
],
"full_name": "List.diff_eq_foldl",
"kind": "commanddeclaration",
"start": [
1013,
1
]
},
{
"code": "@[simp] theorem diff_append (l₁ l₂ l₃ : List α) : l₁.diff (l₂ ++ l₃) = (l₁.diff l₂).diff l₃",
"end": [
1018,
42
],
"full_name": "List.diff_append",
"kind": "commanddeclaration",
"start": [
1017,
1
]
},
{
"code": "theorem diff_sublist : ∀ l₁ l₂ : List α, l₁.diff l₂ <+ l₁",
"end": [
1026,
34
],
"full_name": "List.diff_sublist",
"kind": "commanddeclaration",
"start": [
1020,
1
]
},
{
"code": "theorem diff_subset (l₁ l₂ : List α) : l₁.diff l₂ ⊆ l₁",
"end": [
1028,
83
],
"full_name": "List.diff_subset",
"kind": "commanddeclaration",
"start": [
1028,
1
]
},
{
"code": "theorem mem_diff_of_mem {a : α} : ∀ {l₁ l₂ : List α}, a ∈ l₁ → a ∉ l₂ → a ∈ l₁.diff l₂",
"end": [
1034,
94
],
"full_name": "List.mem_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1030,
1
]
},
{
"code": "theorem Sublist.diff_right : ∀ {l₁ l₂ l₃ : List α}, l₁ <+ l₂ → l₁.diff l₃ <+ l₂.diff l₃",
"end": [
1038,
75
],
"full_name": "List.Sublist.diff_right",
"kind": "commanddeclaration",
"start": [
1036,
1
]
},
{
"code": "theorem Sublist.erase_diff_erase_sublist {a : α} :\n ∀ {l₁ l₂ : List α}, l₁ <+ l₂ → (l₂.erase a).diff (l₁.erase a) <+ l₂.diff l₁",
"end": [
1048,
71
],
"full_name": "List.Sublist.erase_diff_erase_sublist",
"kind": "commanddeclaration",
"start": [
1040,
1
]
},
{
"code": "@[simp] theorem prefix_append (l₁ l₂ : List α) : l₁ <+: l₁ ++ l₂",
"end": [
1054,
78
],
"full_name": "List.prefix_append",
"kind": "commanddeclaration",
"start": [
1054,
1
]
},
{
"code": "@[simp] theorem suffix_append (l₁ l₂ : List α) : l₂ <:+ l₁ ++ l₂",
"end": [
1056,
78
],
"full_name": "List.suffix_append",
"kind": "commanddeclaration",
"start": [
1056,
1
]
},
{
"code": "theorem infix_append (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ l₂ ++ l₃",
"end": [
1058,
83
],
"full_name": "List.infix_append",
"kind": "commanddeclaration",
"start": [
1058,
1
]
},
{
"code": "@[simp] theorem infix_append' (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ (l₂ ++ l₃)",
"end": [
1061,
47
],
"full_name": "List.infix_append'",
"kind": "commanddeclaration",
"start": [
1060,
1
]
},
{
"code": "theorem IsPrefix.isInfix : l₁ <+: l₂ → l₁ <:+: l₂",
"end": [
1063,
78
],
"full_name": "List.IsPrefix.isInfix",
"kind": "commanddeclaration",
"start": [
1063,
1
]
},
{
"code": "theorem IsSuffix.isInfix : l₁ <:+ l₂ → l₁ <:+: l₂",
"end": [
1065,
98
],
"full_name": "List.IsSuffix.isInfix",
"kind": "commanddeclaration",
"start": [
1065,
1
]
},
{
"code": "theorem nil_prefix (l : List α) : [] <+: l",
"end": [
1067,
55
],
"full_name": "List.nil_prefix",
"kind": "commanddeclaration",
"start": [
1067,
1
]
},
{
"code": "theorem nil_suffix (l : List α) : [] <:+ l",
"end": [
1069,
64
],
"full_name": "List.nil_suffix",
"kind": "commanddeclaration",
"start": [
1069,
1
]
},
{
"code": "theorem nil_infix (l : List α) : [] <:+: l",
"end": [
1071,
69
],
"full_name": "List.nil_infix",
"kind": "commanddeclaration",
"start": [
1071,
1
]
},
{
"code": "theorem prefix_refl (l : List α) : l <+: l",
"end": [
1073,
65
],
"full_name": "List.prefix_refl",
"kind": "commanddeclaration",
"start": [
1073,
1
]
},
{
"code": "theorem suffix_refl (l : List α) : l <:+ l",
"end": [
1075,
56
],
"full_name": "List.suffix_refl",
"kind": "commanddeclaration",
"start": [
1075,
1
]
},
{
"code": "theorem infix_refl (l : List α) : l <:+: l",
"end": [
1077,
70
],
"full_name": "List.infix_refl",
"kind": "commanddeclaration",
"start": [
1077,
1
]
},
{
"code": "@[simp] theorem suffix_cons (a : α) : ∀ l, l <:+ a :: l",
"end": [
1079,
77
],
"full_name": "List.suffix_cons",
"kind": "commanddeclaration",
"start": [
1079,
1
]
},
{
"code": "theorem infix_cons : l₁ <:+: l₂ → l₁ <:+: a :: l₂",
"end": [
1081,
95
],
"full_name": "List.infix_cons",
"kind": "commanddeclaration",
"start": [
1081,
1
]
},
{
"code": "theorem infix_concat : l₁ <:+: l₂ → l₁ <:+: concat l₂ a",
"end": [
1084,
67
],
"full_name": "List.infix_concat",
"kind": "commanddeclaration",
"start": [
1083,
1
]
},
{
"code": "theorem IsPrefix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₂ → l₂ <+: l₃ → l₁ <+: l₃",
"end": [
1087,
75
],
"full_name": "List.IsPrefix.trans",
"kind": "commanddeclaration",
"start": [
1086,
1
]
},
{
"code": "theorem IsSuffix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+ l₂ → l₂ <:+ l₃ → l₁ <:+ l₃",
"end": [
1090,
68
],
"full_name": "List.IsSuffix.trans",
"kind": "commanddeclaration",
"start": [
1089,
1
]
},
{
"code": "theorem IsInfix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+: l₂ → l₂ <:+: l₃ → l₁ <:+: l₃",
"end": [
1093,
95
],
"full_name": "List.IsInfix.trans",
"kind": "commanddeclaration",
"start": [
1092,
1
]
},
{
"code": "protected theorem IsInfix.sublist : l₁ <:+: l₂ → l₁ <+ l₂",
"end": [
1096,
78
],
"full_name": "List.IsInfix.sublist",
"kind": "commanddeclaration",
"start": [
1095,
1
]
},
{
"code": "protected theorem IsInfix.subset (hl : l₁ <:+: l₂) : l₁ ⊆ l₂",
"end": [
1099,
20
],
"full_name": "List.IsInfix.subset",
"kind": "commanddeclaration",
"start": [
1098,
1
]
},
{
"code": "protected theorem IsPrefix.sublist (h : l₁ <+: l₂) : l₁ <+ l₂",
"end": [
1102,
20
],
"full_name": "List.IsPrefix.sublist",
"kind": "commanddeclaration",
"start": [
1101,
1
]
},
{
"code": "protected theorem IsPrefix.subset (hl : l₁ <+: l₂) : l₁ ⊆ l₂",
"end": [
1105,
20
],
"full_name": "List.IsPrefix.subset",
"kind": "commanddeclaration",
"start": [
1104,
1
]
},
{
"code": "protected theorem IsSuffix.sublist (h : l₁ <:+ l₂) : l₁ <+ l₂",
"end": [
1108,
20
],
"full_name": "List.IsSuffix.sublist",
"kind": "commanddeclaration",
"start": [
1107,
1
]
},
{
"code": "protected theorem IsSuffix.subset (hl : l₁ <:+ l₂) : l₁ ⊆ l₂",
"end": [
1111,
20
],
"full_name": "List.IsSuffix.subset",
"kind": "commanddeclaration",
"start": [
1110,
1
]
},
{
"code": "@[simp] theorem reverse_suffix : reverse l₁ <:+ reverse l₂ ↔ l₁ <+: l₂",
"end": [
1115,
59
],
"full_name": "List.reverse_suffix",
"kind": "commanddeclaration",
"start": [
1113,
1
]
},
{
"code": "@[simp] theorem reverse_prefix : reverse l₁ <+: reverse l₂ ↔ l₁ <:+ l₂",
"end": [
1118,
53
],
"full_name": "List.reverse_prefix",
"kind": "commanddeclaration",
"start": [
1117,
1
]
},
{
"code": "@[simp] theorem reverse_infix : reverse l₁ <:+: reverse l₂ ↔ l₁ <:+: l₂",
"end": [
1124,
61
],
"full_name": "List.reverse_infix",
"kind": "commanddeclaration",
"start": [
1120,
1
]
},
{
"code": "theorem IsInfix.length_le (h : l₁ <:+: l₂) : l₁.length ≤ l₂.length",
"end": [
1127,
22
],
"full_name": "List.IsInfix.length_le",
"kind": "commanddeclaration",
"start": [
1126,
1
]
},
{
"code": "theorem IsPrefix.length_le (h : l₁ <+: l₂) : l₁.length ≤ l₂.length",
"end": [
1130,
22
],
"full_name": "List.IsPrefix.length_le",
"kind": "commanddeclaration",
"start": [
1129,
1
]
},
{
"code": "theorem IsSuffix.length_le (h : l₁ <:+ l₂) : l₁.length ≤ l₂.length",
"end": [
1133,
22
],
"full_name": "List.IsSuffix.length_le",
"kind": "commanddeclaration",
"start": [
1132,
1
]
},
{
"code": "@[simp] theorem infix_nil : l <:+: [] ↔ l = []",
"end": [
1135,
98
],
"full_name": "List.infix_nil",
"kind": "commanddeclaration",
"start": [
1135,
1
]
},
{
"code": "@[simp] theorem prefix_nil : l <+: [] ↔ l = []",
"end": [
1137,
99
],
"full_name": "List.prefix_nil",
"kind": "commanddeclaration",
"start": [
1137,
1
]
},
{
"code": "@[simp] theorem suffix_nil : l <:+ [] ↔ l = []",
"end": [
1139,
99
],
"full_name": "List.suffix_nil",
"kind": "commanddeclaration",
"start": [
1139,
1
]
},
{
"code": "theorem infix_iff_prefix_suffix (l₁ l₂ : List α) : l₁ <:+: l₂ ↔ ∃ t, l₁ <+: t ∧ t <:+ l₂",
"end": [
1143,
60
],
"full_name": "List.infix_iff_prefix_suffix",
"kind": "commanddeclaration",
"start": [
1141,
1
]
},
{
"code": "theorem IsInfix.eq_of_length (h : l₁ <:+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1146,
25
],
"full_name": "List.IsInfix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1145,
1
]
},
{
"code": "theorem IsPrefix.eq_of_length (h : l₁ <+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1149,
25
],
"full_name": "List.IsPrefix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1148,
1
]
},
{
"code": "theorem IsSuffix.eq_of_length (h : l₁ <:+ l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1152,
25
],
"full_name": "List.IsSuffix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1151,
1
]
},
{
"code": "theorem prefix_of_prefix_length_le :\n ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₃ → l₂ <+: l₃ → length l₁ ≤ length l₂ → l₁ <+: l₂",
"end": [
1160,
20
],
"full_name": "List.prefix_of_prefix_length_le",
"kind": "commanddeclaration",
"start": [
1154,
1
]
},
{
"code": "theorem prefix_or_prefix_of_prefix (h₁ : l₁ <+: l₃) (h₂ : l₂ <+: l₃) : l₁ <+: l₂ ∨ l₂ <+: l₁",
"end": [
1164,
39
],
"full_name": "List.prefix_or_prefix_of_prefix",
"kind": "commanddeclaration",
"start": [
1162,
1
]
},
{
"code": "theorem suffix_of_suffix_length_le\n (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) (ll : length l₁ ≤ length l₂) : l₁ <:+ l₂",
"end": [
1169,
90
],
"full_name": "List.suffix_of_suffix_length_le",
"kind": "commanddeclaration",
"start": [
1166,
1
]
},
{
"code": "theorem suffix_or_suffix_of_suffix (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) : l₁ <:+ l₂ ∨ l₂ <:+ l₁",
"end": [
1173,
21
],
"full_name": "List.suffix_or_suffix_of_suffix",
"kind": "commanddeclaration",
"start": [
1171,
1
]
},
{
"code": "theorem suffix_cons_iff : l₁ <:+ a :: l₂ ↔ l₁ = a :: l₂ ∨ l₁ <:+ l₂",
"end": [
1184,
41
],
"full_name": "List.suffix_cons_iff",
"kind": "commanddeclaration",
"start": [
1175,
1
]
},
{
"code": "theorem infix_cons_iff : l₁ <:+: a :: l₂ ↔ l₁ <+: a :: l₂ ∨ l₁ <:+: l₂",
"end": [
1195,
27
],
"full_name": "List.infix_cons_iff",
"kind": "commanddeclaration",
"start": [
1186,
1
]
},
{
"code": "theorem infix_of_mem_join : ∀ {L : List (List α)}, l ∈ L → l <:+: join L",
"end": [
1202,
78
],
"full_name": "List.infix_of_mem_join",
"kind": "commanddeclaration",
"start": [
1197,
1
]
},
{
"code": "theorem prefix_append_right_inj (l) : l ++ l₁ <+: l ++ l₂ ↔ l₁ <+: l₂",
"end": [
1205,
63
],
"full_name": "List.prefix_append_right_inj",
"kind": "commanddeclaration",
"start": [
1204,
1
]
},
{
"code": "@[simp]\ntheorem prefix_cons_inj (a) : a :: l₁ <+: a :: l₂ ↔ l₁ <+: l₂",
"end": [
1209,
30
],
"full_name": "List.prefix_cons_inj",
"kind": "commanddeclaration",
"start": [
1207,
1
]
},
{
"code": "theorem take_prefix (n) (l : List α) : take n l <+: l",
"end": [
1212,
28
],
"full_name": "List.take_prefix",
"kind": "commanddeclaration",
"start": [
1211,
1
]
},
{
"code": "theorem drop_suffix (n) (l : List α) : drop n l <:+ l",
"end": [
1215,
28
],
"full_name": "List.drop_suffix",
"kind": "commanddeclaration",
"start": [
1214,
1
]
},
{
"code": "theorem take_sublist (n) (l : List α) : take n l <+ l",
"end": [
1218,
28
],
"full_name": "List.take_sublist",
"kind": "commanddeclaration",
"start": [
1217,
1
]
},
{
"code": "theorem drop_sublist (n) (l : List α) : drop n l <+ l",
"end": [
1221,
28
],
"full_name": "List.drop_sublist",
"kind": "commanddeclaration",
"start": [
1220,
1
]
},
{
"code": "theorem take_subset (n) (l : List α) : take n l ⊆ l",
"end": [
1224,
28
],
"full_name": "List.take_subset",
"kind": "commanddeclaration",
"start": [
1223,
1
]
},
{
"code": "theorem drop_subset (n) (l : List α) : drop n l ⊆ l",
"end": [
1227,
28
],
"full_name": "List.drop_subset",
"kind": "commanddeclaration",
"start": [
1226,
1
]
},
{
"code": "theorem mem_of_mem_take {l : List α} (h : a ∈ l.take n) : a ∈ l",
"end": [
1230,
20
],
"full_name": "List.mem_of_mem_take",
"kind": "commanddeclaration",
"start": [
1229,
1
]
},
{
"code": "theorem IsPrefix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <+: l₂) :\n l₁.filter p <+: l₂.filter p",
"end": [
1235,
42
],
"full_name": "List.IsPrefix.filter",
"kind": "commanddeclaration",
"start": [
1232,
1
]
},
{
"code": "theorem IsSuffix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+ l₂) :\n l₁.filter p <:+ l₂.filter p",
"end": [
1240,
42
],
"full_name": "List.IsSuffix.filter",
"kind": "commanddeclaration",
"start": [
1237,
1
]
},
{
"code": "theorem IsInfix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+: l₂) :\n l₁.filter p <:+: l₂.filter p",
"end": [
1245,
58
],
"full_name": "List.IsInfix.filter",
"kind": "commanddeclaration",
"start": [
1242,
1
]
},
{
"code": "theorem mem_of_mem_drop {n} {l : List α} (h : a ∈ l.drop n) : a ∈ l",
"end": [
1249,
89
],
"full_name": "List.mem_of_mem_drop",
"kind": "commanddeclaration",
"start": [
1249,
1
]
},
{
"code": "theorem disjoint_take_drop : ∀ {l : List α}, l.Nodup → m ≤ n → Disjoint (l.take m) (l.drop n)",
"end": [
1259,
61
],
"full_name": "List.disjoint_take_drop",
"kind": "commanddeclaration",
"start": [
1251,
1
]
},
{
"code": "@[simp]\ntheorem chain_cons {a b : α} {l : List α} : Chain R a (b :: l) ↔ R a b ∧ Chain R b l",
"end": [
1268,
27
],
"full_name": "List.chain_cons",
"kind": "commanddeclaration",
"start": [
1265,
1
]
},
{
"code": "theorem rel_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : R a b",
"end": [
1271,
21
],
"full_name": "List.rel_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1270,
1
]
},
{
"code": "theorem chain_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : Chain R b l",
"end": [
1274,
21
],
"full_name": "List.chain_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1273,
1
]
},
{
"code": "theorem Chain.imp' {R S : α → α → Prop} (HRS : ∀ ⦃a b⦄, R a b → S a b) {a b : α}\n (Hab : ∀ ⦃c⦄, R a c → S b c) {l : List α} (p : Chain R a l) : Chain S b l",
"end": [
1283,
24
],
"full_name": "List.Chain.imp'",
"kind": "commanddeclaration",
"start": [
1276,
1
]
},
{
"code": "theorem Chain.imp {R S : α → α → Prop} (H : ∀ a b, R a b → S a b) {a : α} {l : List α}\n (p : Chain R a l) : Chain S a l",
"end": [
1287,
17
],
"full_name": "List.Chain.imp",
"kind": "commanddeclaration",
"start": [
1285,
1
]
},
{
"code": "protected theorem Pairwise.chain (p : Pairwise R (a :: l)) : Chain R a l",
"end": [
1295,
36
],
"full_name": "List.Pairwise.chain",
"kind": "commanddeclaration",
"start": [
1289,
1
]
},
{
"code": "theorem range'_succ (s n step) : range' s (n + 1) step = s :: range' (s + step) n step",
"end": [
1300,
44
],
"full_name": "List.range'_succ",
"kind": "commanddeclaration",
"start": [
1299,
1
]
},
{
"code": "@[simp] theorem length_range' (s step) : ∀ n : Nat, length (range' s n step) = n",
"end": [
1304,
49
],
"full_name": "List.length_range'",
"kind": "commanddeclaration",
"start": [
1302,
1
]
},
{
"code": "@[simp] theorem range'_eq_nil : range' s n step = [] ↔ n = 0",
"end": [
1307,
39
],
"full_name": "List.range'_eq_nil",
"kind": "commanddeclaration",
"start": [
1306,
1
]
},
{
"code": "theorem mem_range' : ∀{n}, m ∈ range' s n step ↔ ∃ i < n, m = s + step * i",
"end": [
1314,
71
],
"full_name": "List.mem_range'",
"kind": "commanddeclaration",
"start": [
1309,
1
]
},
{
"code": "@[simp] theorem mem_range'_1 : m ∈ range' s n ↔ s ≤ m ∧ m < s + n",
"end": [
1319,
93
],
"full_name": "List.mem_range'_1",
"kind": "commanddeclaration",
"start": [
1316,
1
]
},
{
"code": "@[simp]\ntheorem map_add_range' (a) : ∀ s n step, map (a + ·) (range' s n step) = range' (a + s) n step",
"end": [
1324,
90
],
"full_name": "List.map_add_range'",
"kind": "commanddeclaration",
"start": [
1321,
1
]
},
{
"code": "theorem map_sub_range' (a s n : Nat) (h : a ≤ s) :\n map (· - a) (range' s n step) = range' (s - a) n step",
"end": [
1330,
42
],
"full_name": "List.map_sub_range'",
"kind": "commanddeclaration",
"start": [
1326,
1
]
},
{
"code": "theorem chain_succ_range' : ∀ s n step : Nat,\n Chain (fun a b => b = a + step) s (range' (s + step) n step)",
"end": [
1335,
69
],
"full_name": "List.chain_succ_range'",
"kind": "commanddeclaration",
"start": [
1332,
1
]
},
{
"code": "theorem chain_lt_range' (s n : Nat) {step} (h : 0 < step) :\n Chain (· < ·) s (range' (s + step) n step)",
"end": [
1339,
83
],
"full_name": "List.chain_lt_range'",
"kind": "commanddeclaration",
"start": [
1337,
1
]
},
{
"code": "theorem range'_append : ∀ s m n step : Nat,\n range' s m step ++ range' (s + step * m) n step = range' s (n + m) step",
"end": [
1346,
46
],
"full_name": "List.range'_append",
"kind": "commanddeclaration",
"start": [
1341,
1
]
},
{
"code": "@[simp] theorem range'_append_1 (s m n : Nat) :\n range' s m ++ range' (s + m) n = range' s (n + m)",
"end": [
1349,
94
],
"full_name": "List.range'_append_1",
"kind": "commanddeclaration",
"start": [
1348,
1
]
},
{
"code": "theorem range'_sublist_right {s m n : Nat} : range' s m step <+ range' s n step ↔ m ≤ n",
"end": [
1353,
88
],
"full_name": "List.range'_sublist_right",
"kind": "commanddeclaration",
"start": [
1351,
1
]
},
{
"code": "theorem range'_subset_right {s m n : Nat} (step0 : 0 < step) :\n range' s m step ⊆ range' s n step ↔ m ≤ n",
"end": [
1359,
82
],
"full_name": "List.range'_subset_right",
"kind": "commanddeclaration",
"start": [
1355,
1
]
},
{
"code": "theorem range'_subset_right_1 {s m n : Nat} : range' s m ⊆ range' s n ↔ m ≤ n",
"end": [
1362,
34
],
"full_name": "List.range'_subset_right_1",
"kind": "commanddeclaration",
"start": [
1361,
1
]
},
{
"code": "theorem getElem?_range' (s step) :\n ∀ {m n : Nat}, m < n → (range' s n step)[m]? = some (s + step * m)",
"end": [
1370,
55
],
"full_name": "List.getElem?_range'",
"kind": "commanddeclaration",
"start": [
1364,
1
]
},
{
"code": "@[simp] theorem getElem_range' {n m step} (i) (H : i < (range' n m step).length) :\n (range' n m step)[i] = n + step * i",
"end": [
1374,
70
],
"full_name": "List.getElem_range'",
"kind": "commanddeclaration",
"start": [
1372,
1
]
},
{
"code": "@[deprecated getElem?_range' (since := \"2024-06-12\")]\ntheorem get?_range' (s step) {m n : Nat} (h : m < n) :\n get? (range' s n step) m = some (s + step * m)",
"end": [
1379,
11
],
"full_name": "List.get?_range'",
"kind": "commanddeclaration",
"start": [
1376,
1
]
},
{
"code": "@[deprecated getElem_range' (since := \"2024-06-12\")]\ntheorem get_range' {n m step} (i) (H : i < (range' n m step).length) :\n get (range' n m step) ⟨i, H⟩ = n + step * i",
"end": [
1384,
7
],
"full_name": "List.get_range'",
"kind": "commanddeclaration",
"start": [
1381,
1
]
},
{
"code": "theorem range'_concat (s n : Nat) : range' s (n + 1) step = range' s n step ++ [s + step * n]",
"end": [
1387,
63
],
"full_name": "List.range'_concat",
"kind": "commanddeclaration",
"start": [
1386,
1
]
},
{
"code": "theorem range'_1_concat (s n : Nat) : range' s (n + 1) = range' s n ++ [s + n]",
"end": [
1390,
23
],
"full_name": "List.range'_1_concat",
"kind": "commanddeclaration",
"start": [
1389,
1
]
},
{
"code": "theorem range_loop_range' : ∀ s n : Nat, range.loop s (range' s n) = range' 0 (n + s)",
"end": [
1394,
101
],
"full_name": "List.range_loop_range'",
"kind": "commanddeclaration",
"start": [
1392,
1
]
},
{
"code": "theorem range_eq_range' (n : Nat) : range n = range' 0 n",
"end": [
1397,
56
],
"full_name": "List.range_eq_range'",
"kind": "commanddeclaration",
"start": [
1396,
1
]
},
{
"code": "theorem range_succ_eq_map (n : Nat) : range (n + 1) = 0 :: map succ (range n)",
"end": [
1401,
30
],
"full_name": "List.range_succ_eq_map",
"kind": "commanddeclaration",
"start": [
1399,
1
]
},
{
"code": "theorem range'_eq_map_range (s n : Nat) : range' s n = map (s + ·) (range n)",
"end": [
1404,
44
],
"full_name": "List.range'_eq_map_range",
"kind": "commanddeclaration",
"start": [
1403,
1
]
},
{
"code": "@[simp] theorem length_range (n : Nat) : length (range n) = n",
"end": [
1407,
45
],
"full_name": "List.length_range",
"kind": "commanddeclaration",
"start": [
1406,
1
]
},
{
"code": "@[simp] theorem range_eq_nil {n : Nat} : range n = [] ↔ n = 0",
"end": [
1410,
38
],
"full_name": "List.range_eq_nil",
"kind": "commanddeclaration",
"start": [
1409,
1
]
},
{
"code": "@[simp]\ntheorem range_sublist {m n : Nat} : range m <+ range n ↔ m ≤ n",
"end": [
1414,
52
],
"full_name": "List.range_sublist",
"kind": "commanddeclaration",
"start": [
1412,
1
]
},
{
"code": "@[simp]\ntheorem range_subset {m n : Nat} : range m ⊆ range n ↔ m ≤ n",
"end": [
1418,
65
],
"full_name": "List.range_subset",
"kind": "commanddeclaration",
"start": [
1416,
1
]
},
{
"code": "@[simp]\ntheorem mem_range {m n : Nat} : m ∈ range n ↔ m < n",
"end": [
1422,
81
],
"full_name": "List.mem_range",
"kind": "commanddeclaration",
"start": [
1420,
1
]
},
{
"code": "theorem not_mem_range_self {n : Nat} : n ∉ range n",
"end": [
1424,
62
],
"full_name": "List.not_mem_range_self",
"kind": "commanddeclaration",
"start": [
1424,
1
]
},
{
"code": "theorem self_mem_range_succ (n : Nat) : n ∈ range (n + 1)",
"end": [
1426,
69
],
"full_name": "List.self_mem_range_succ",
"kind": "commanddeclaration",
"start": [
1426,
1
]
},
{
"code": "theorem getElem?_range {m n : Nat} (h : m < n) : (range n)[m]? = some m",
"end": [
1429,
48
],
"full_name": "List.getElem?_range",
"kind": "commanddeclaration",
"start": [
1428,
1
]
},
{
"code": "@[simp] theorem getElem_range {n : Nat} (m) (h : m < (range n).length) : (range n)[m] = m",
"end": [
1432,
25
],
"full_name": "List.getElem_range",
"kind": "commanddeclaration",
"start": [
1431,
1
]
},
{
"code": "@[deprecated getElem?_range (since := \"2024-06-12\")]\ntheorem get?_range {m n : Nat} (h : m < n) : get? (range n) m = some m",
"end": [
1436,
27
],
"full_name": "List.get?_range",
"kind": "commanddeclaration",
"start": [
1434,
1
]
},
{
"code": "@[deprecated getElem_range (since := \"2024-06-12\")]\ntheorem get_range {n} (i) (H : i < (range n).length) : get (range n) ⟨i, H⟩ = i",
"end": [
1440,
7
],
"full_name": "List.get_range",
"kind": "commanddeclaration",
"start": [
1438,
1
]
},
{
"code": "theorem range_succ (n : Nat) : range (succ n) = range n ++ [n]",
"end": [
1443,
61
],
"full_name": "List.range_succ",
"kind": "commanddeclaration",
"start": [
1442,
1
]
},
{
"code": "theorem range_add (a b : Nat) : range (a + b) = range a ++ (range b).map (a + ·)",
"end": [
1447,
75
],
"full_name": "List.range_add",
"kind": "commanddeclaration",
"start": [
1445,
1
]
},
{
"code": "theorem iota_eq_reverse_range' : ∀ n : Nat, iota n = reverse (range' 1 n)",
"end": [
1451,
99
],
"full_name": "List.iota_eq_reverse_range'",
"kind": "commanddeclaration",
"start": [
1449,
1
]
},
{
"code": "@[simp] theorem length_iota (n : Nat) : length (iota n) = n",
"end": [
1453,
96
],
"full_name": "List.length_iota",
"kind": "commanddeclaration",
"start": [
1453,
1
]
},
{
"code": "@[simp]\ntheorem mem_iota {m n : Nat} : m ∈ iota n ↔ 1 ≤ m ∧ m ≤ n",
"end": [
1457,
59
],
"full_name": "List.mem_iota",
"kind": "commanddeclaration",
"start": [
1455,
1
]
},
{
"code": "theorem reverse_range' : ∀ s n : Nat, reverse (range' s n) = map (s + n - 1 - ·) (range n)",
"end": [
1464,
59
],
"full_name": "List.reverse_range'",
"kind": "commanddeclaration",
"start": [
1459,
1
]
},
{
"code": "@[simp] theorem enumFrom_map_fst (n) :\n ∀ (l : List α), map Prod.fst (enumFrom n l) = range' n l.length",
"end": [
1472,
55
],
"full_name": "List.enumFrom_map_fst",
"kind": "commanddeclaration",
"start": [
1469,
1
]
},
{
"code": "@[simp] theorem enum_map_fst (l : List α) : map Prod.fst (enum l) = range l.length",
"end": [
1475,
54
],
"full_name": "List.enum_map_fst",
"kind": "commanddeclaration",
"start": [
1474,
1
]
},
{
"code": "theorem foldrIdx_start :\n (xs : List α).foldrIdx f i s = (xs : List α).foldrIdx (fun i => f (i + s)) i",
"end": [
1487,
43
],
"full_name": "List.foldrIdx_start",
"kind": "commanddeclaration",
"start": [
1479,
1
]
},
{
"code": "@[simp] theorem foldrIdx_cons :\n (x :: xs : List α).foldrIdx f i s = f s x (foldrIdx f i xs (s + 1))",
"end": [
1490,
79
],
"full_name": "List.foldrIdx_cons",
"kind": "commanddeclaration",
"start": [
1489,
1
]
},
{
"code": "theorem findIdxs_cons_aux (p : α → Bool) :\n foldrIdx (fun i a is => if p a = true then (i + 1) :: is else is) [] xs s =\n map (· + 1) (foldrIdx (fun i a is => if p a = true then i :: is else is) [] xs s)",
"end": [
1499,
24
],
"full_name": "List.findIdxs_cons_aux",
"kind": "commanddeclaration",
"start": [
1492,
1
]
},
{
"code": "theorem findIdxs_cons :\n (x :: xs : List α).findIdxs p =\n bif p x then 0 :: (xs.findIdxs p).map (· + 1) else (xs.findIdxs p).map (· + 1)",
"end": [
1508,
28
],
"full_name": "List.findIdxs_cons",
"kind": "commanddeclaration",
"start": [
1501,
1
]
},
{
"code": "@[simp] theorem indexesOf_nil [BEq α] : ([] : List α).indexesOf x = []",
"end": [
1510,
78
],
"full_name": "List.indexesOf_nil",
"kind": "commanddeclaration",
"start": [
1510,
1
]
},
{
"code": "theorem indexesOf_cons [BEq α] : (x :: xs : List α).indexesOf y =\n bif x == y then 0 :: (xs.indexesOf y).map (· + 1) else (xs.indexesOf y).map (· + 1)",
"end": [
1514,
34
],
"full_name": "List.indexesOf_cons",
"kind": "commanddeclaration",
"start": [
1512,
1
]
},
{
"code": "@[simp] theorem indexOf_nil [BEq α] : ([] : List α).indexOf x = 0",
"end": [
1516,
73
],
"full_name": "List.indexOf_nil",
"kind": "commanddeclaration",
"start": [
1516,
1
]
},
{
"code": "theorem indexOf_cons [BEq α] :\n (x :: xs : List α).indexOf y = bif x == y then 0 else xs.indexOf y + 1",
"end": [
1521,
22
],
"full_name": "List.indexOf_cons",
"kind": "commanddeclaration",
"start": [
1518,
1
]
},
{
"code": "theorem indexOf_mem_indexesOf [BEq α] [LawfulBEq α] {xs : List α} (m : x ∈ xs) :\n xs.indexOf x ∈ xs.indexesOf x",
"end": [
1535,
14
],
"full_name": "List.indexOf_mem_indexesOf",
"kind": "commanddeclaration",
"start": [
1523,
1
]
},
{
"code": "theorem merge_loop_nil_left (s : α → α → Bool) (r t) :\n merge.loop s [] r t = reverseAux t r",
"end": [
1539,
18
],
"full_name": "List.merge_loop_nil_left",
"kind": "commanddeclaration",
"start": [
1537,
1
]
},
{
"code": "theorem merge_loop_nil_right (s : α → α → Bool) (l t) :\n merge.loop s l [] t = reverseAux t l",
"end": [
1543,
52
],
"full_name": "List.merge_loop_nil_right",
"kind": "commanddeclaration",
"start": [
1541,
1
]
},
{
"code": "theorem merge_loop (s : α → α → Bool) (l r t) :\n merge.loop s l r t = reverseAux t (merge s l r)",
"end": [
1567,
64
],
"full_name": "List.merge_loop",
"kind": "commanddeclaration",
"start": [
1545,
1
]
},
{
"code": "@[simp] theorem merge_nil (s : α → α → Bool) (l) : merge s l [] = l",
"end": [
1569,
95
],
"full_name": "List.merge_nil",
"kind": "commanddeclaration",
"start": [
1569,
1
]
},
{
"code": "@[simp] theorem nil_merge (s : α → α → Bool) (r) : merge s [] r = r",
"end": [
1571,
94
],
"full_name": "List.nil_merge",
"kind": "commanddeclaration",
"start": [
1571,
1
]
},
{
"code": "theorem cons_merge_cons (s : α → α → Bool) (a b l r) :\n merge s (a::l) (b::r) = if s a b then a :: merge s l (b::r) else b :: merge s (a::l) r",
"end": [
1575,
87
],
"full_name": "List.cons_merge_cons",
"kind": "commanddeclaration",
"start": [
1573,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_pos (s : α → α → Bool) (l r) (h : s a b) :\n merge s (a::l) (b::r) = a :: merge s l (b::r)",
"end": [
1579,
33
],
"full_name": "List.cons_merge_cons_pos",
"kind": "commanddeclaration",
"start": [
1577,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_neg (s : α → α → Bool) (l r) (h : ¬ s a b) :\n merge s (a::l) (b::r) = b :: merge s (a::l) r",
"end": [
1583,
33
],
"full_name": "List.cons_merge_cons_neg",
"kind": "commanddeclaration",
"start": [
1581,
1
]
},
{
"code": "@[simp] theorem length_merge (s : α → α → Bool) (l r) :\n (merge s l r).length = l.length + r.length",
"end": [
1594,
43
],
"full_name": "List.length_merge",
"kind": "commanddeclaration",
"start": [
1585,
1
]
},
{
"code": "@[simp]\ntheorem mem_merge {s : α → α → Bool} : x ∈ merge s l r ↔ x ∈ l ∨ x ∈ r",
"end": [
1605,
68
],
"full_name": "List.mem_merge",
"kind": "commanddeclaration",
"start": [
1596,
1
]
},
{
"code": "theorem mem_merge_left (s : α → α → Bool) (h : x ∈ l) : x ∈ merge s l r",
"end": [
1608,
24
],
"full_name": "List.mem_merge_left",
"kind": "commanddeclaration",
"start": [
1607,
1
]
},
{
"code": "theorem mem_merge_right (s : α → α → Bool) (h : x ∈ r) : x ∈ merge s l r",
"end": [
1611,
24
],
"full_name": "List.mem_merge_right",
"kind": "commanddeclaration",
"start": [
1610,
1
]
}
] | 327 | List.mem_merge | [
[
1597,
75
],
[
1605,
68
]
] | 4 | 9 | split | α : Type u_1
x : α
l✝ r✝ : List α
s : α → α → Bool
a : α
l : List α
b : α
r : List α
⊢ (x ∈ if s a b = true then a :: merge s l (b :: r) else b :: merge s (a :: l) r) ↔ x ∈ a :: l ∨ x ∈ b :: r | case isTrue
α : Type u_1
x : α
l✝ r✝ : List α
s : α → α → Bool
a : α
l : List α
b : α
r : List α
h✝ : s a b = true
⊢ x ∈ a :: merge s l (b :: r) ↔ x ∈ a :: l ∨ x ∈ b :: r
case isFalse
α : Type u_1
x : α
l✝ r✝ : List α
s : α → α → Bool
a : α
l : List α
b : α
r : List α
h✝ : ¬s a b = true
⊢ x ∈ b :: merge s (a :: l) r ↔ x ∈ a :: l ∨ x ∈ b :: r |
.lake/packages/batteries/Batteries/Data/List/Lemmas.lean | [
[
"Batteries.Tactic.Alias",
".lake/packages/batteries/Batteries/Tactic/Alias.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
],
[
"Batteries.Control.ForInStep.Lemmas",
".lake/packages/batteries/Batteries/Control/ForInStep/Lemmas.lean"
],
[
"Batteries.Tactic.Init",
".lake/packages/batteries/Batteries/Tactic/Init.lean"
],
[
"Batteries.Data.List.Basic",
".lake/packages/batteries/Batteries/Data/List/Basic.lean"
]
] | [
{
"code": "@[simp] theorem mem_toArray {a : α} {l : List α} : a ∈ l.toArray ↔ a ∈ l",
"end": [
18,
23
],
"full_name": "List.mem_toArray",
"kind": "commanddeclaration",
"start": [
17,
1
]
},
{
"code": "@[simp]\ntheorem drop_one : ∀ l : List α, drop 1 l = tail l",
"end": [
24,
23
],
"full_name": "List.drop_one",
"kind": "commanddeclaration",
"start": [
22,
1
]
},
{
"code": "theorem zipWith_distrib_tail : (zipWith f l l').tail = zipWith f l.tail l'.tail",
"end": [
29,
47
],
"full_name": "List.zipWith_distrib_tail",
"kind": "commanddeclaration",
"start": [
28,
1
]
},
{
"code": "theorem subset_def {l₁ l₂ : List α} : l₁ ⊆ l₂ ↔ ∀ {a : α}, a ∈ l₁ → a ∈ l₂",
"end": [
33,
83
],
"full_name": "List.subset_def",
"kind": "commanddeclaration",
"start": [
33,
1
]
},
{
"code": "@[simp] theorem nil_subset (l : List α) : [] ⊆ l",
"end": [
35,
58
],
"full_name": "List.nil_subset",
"kind": "commanddeclaration",
"start": [
35,
1
]
},
{
"code": "@[simp] theorem Subset.refl (l : List α) : l ⊆ l",
"end": [
37,
65
],
"full_name": "List.Subset.refl",
"kind": "commanddeclaration",
"start": [
37,
1
]
},
{
"code": "theorem Subset.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ ⊆ l₂) (h₂ : l₂ ⊆ l₃) : l₁ ⊆ l₃",
"end": [
40,
23
],
"full_name": "List.Subset.trans",
"kind": "commanddeclaration",
"start": [
39,
1
]
},
{
"code": "@[simp] theorem subset_cons (a : α) (l : List α) : l ⊆ a :: l",
"end": [
48,
85
],
"full_name": "List.subset_cons",
"kind": "commanddeclaration",
"start": [
48,
1
]
},
{
"code": "theorem subset_of_cons_subset {a : α} {l₁ l₂ : List α} : a :: l₁ ⊆ l₂ → l₁ ⊆ l₂",
"end": [
51,
39
],
"full_name": "List.subset_of_cons_subset",
"kind": "commanddeclaration",
"start": [
50,
1
]
},
{
"code": "theorem subset_cons_of_subset (a : α) {l₁ l₂ : List α} : l₁ ⊆ l₂ → l₁ ⊆ a :: l₂",
"end": [
54,
29
],
"full_name": "List.subset_cons_of_subset",
"kind": "commanddeclaration",
"start": [
53,
1
]
},
{
"code": "theorem cons_subset_cons {l₁ l₂ : List α} (a : α) (s : l₁ ⊆ l₂) : a :: l₁ ⊆ a :: l₂",
"end": [
57,
62
],
"full_name": "List.cons_subset_cons",
"kind": "commanddeclaration",
"start": [
56,
1
]
},
{
"code": "@[simp] theorem subset_append_left (l₁ l₂ : List α) : l₁ ⊆ l₁ ++ l₂",
"end": [
59,
98
],
"full_name": "List.subset_append_left",
"kind": "commanddeclaration",
"start": [
59,
1
]
},
{
"code": "@[simp] theorem subset_append_right (l₁ l₂ : List α) : l₂ ⊆ l₁ ++ l₂",
"end": [
61,
100
],
"full_name": "List.subset_append_right",
"kind": "commanddeclaration",
"start": [
61,
1
]
},
{
"code": "theorem subset_append_of_subset_left (l₂ : List α) : l ⊆ l₁ → l ⊆ l₁ ++ l₂",
"end": [
64,
50
],
"full_name": "List.subset_append_of_subset_left",
"kind": "commanddeclaration",
"start": [
63,
1
]
},
{
"code": "theorem subset_append_of_subset_right (l₁ : List α) : l ⊆ l₂ → l ⊆ l₁ ++ l₂",
"end": [
67,
51
],
"full_name": "List.subset_append_of_subset_right",
"kind": "commanddeclaration",
"start": [
66,
1
]
},
{
"code": "@[simp] theorem cons_subset : a :: l ⊆ m ↔ a ∈ m ∧ l ⊆ m",
"end": [
70,
66
],
"full_name": "List.cons_subset",
"kind": "commanddeclaration",
"start": [
69,
1
]
},
{
"code": "@[simp] theorem append_subset {l₁ l₂ l : List α} :\n l₁ ++ l₂ ⊆ l ↔ l₁ ⊆ l ∧ l₂ ⊆ l",
"end": [
73,
79
],
"full_name": "List.append_subset",
"kind": "commanddeclaration",
"start": [
72,
1
]
},
{
"code": "theorem subset_nil {l : List α} : l ⊆ [] ↔ l = []",
"end": [
76,
99
],
"full_name": "List.subset_nil",
"kind": "commanddeclaration",
"start": [
75,
1
]
},
{
"code": "theorem map_subset {l₁ l₂ : List α} (f : α → β) (H : l₁ ⊆ l₂) : map f l₁ ⊆ map f l₂",
"end": [
79,
72
],
"full_name": "List.map_subset",
"kind": "commanddeclaration",
"start": [
78,
1
]
},
{
"code": "@[simp] theorem nil_sublist : ∀ l : List α, [] <+ l",
"end": [
85,
37
],
"full_name": "List.nil_sublist",
"kind": "commanddeclaration",
"start": [
83,
1
]
},
{
"code": "@[simp] theorem Sublist.refl : ∀ l : List α, l <+ l",
"end": [
89,
39
],
"full_name": "List.Sublist.refl",
"kind": "commanddeclaration",
"start": [
87,
1
]
},
{
"code": "theorem Sublist.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ <+ l₂) (h₂ : l₂ <+ l₃) : l₁ <+ l₃",
"end": [
100,
53
],
"full_name": "List.Sublist.trans",
"kind": "commanddeclaration",
"start": [
91,
1
]
},
{
"code": "@[simp] theorem sublist_cons (a : α) (l : List α) : l <+ a :: l",
"end": [
104,
91
],
"full_name": "List.sublist_cons",
"kind": "commanddeclaration",
"start": [
104,
1
]
},
{
"code": "theorem sublist_of_cons_sublist : a :: l₁ <+ l₂ → l₁ <+ l₂",
"end": [
107,
28
],
"full_name": "List.sublist_of_cons_sublist",
"kind": "commanddeclaration",
"start": [
106,
1
]
},
{
"code": "@[simp] theorem sublist_append_left : ∀ l₁ l₂ : List α, l₁ <+ l₁ ++ l₂",
"end": [
111,
55
],
"full_name": "List.sublist_append_left",
"kind": "commanddeclaration",
"start": [
109,
1
]
},
{
"code": "@[simp] theorem sublist_append_right : ∀ l₁ l₂ : List α, l₂ <+ l₁ ++ l₂",
"end": [
115,
55
],
"full_name": "List.sublist_append_right",
"kind": "commanddeclaration",
"start": [
113,
1
]
},
{
"code": "theorem sublist_append_of_sublist_left (s : l <+ l₁) : l <+ l₁ ++ l₂",
"end": [
118,
36
],
"full_name": "List.sublist_append_of_sublist_left",
"kind": "commanddeclaration",
"start": [
117,
1
]
},
{
"code": "theorem sublist_append_of_sublist_right (s : l <+ l₂) : l <+ l₁ ++ l₂",
"end": [
121,
37
],
"full_name": "List.sublist_append_of_sublist_right",
"kind": "commanddeclaration",
"start": [
120,
1
]
},
{
"code": "@[simp]\ntheorem cons_sublist_cons : a :: l₁ <+ a :: l₂ ↔ l₁ <+ l₂",
"end": [
125,
77
],
"full_name": "List.cons_sublist_cons",
"kind": "commanddeclaration",
"start": [
123,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_left : ∀ l, l ++ l₁ <+ l ++ l₂ ↔ l₁ <+ l₂",
"end": [
129,
69
],
"full_name": "List.append_sublist_append_left",
"kind": "commanddeclaration",
"start": [
127,
1
]
},
{
"code": "theorem Sublist.append_left : l₁ <+ l₂ → ∀ l, l ++ l₁ <+ l ++ l₂",
"end": [
132,
50
],
"full_name": "List.Sublist.append_left",
"kind": "commanddeclaration",
"start": [
131,
1
]
},
{
"code": "theorem Sublist.append_right : l₁ <+ l₂ → ∀ l, l₁ ++ l <+ l₂ ++ l",
"end": [
137,
48
],
"full_name": "List.Sublist.append_right",
"kind": "commanddeclaration",
"start": [
134,
1
]
},
{
"code": "theorem sublist_or_mem_of_sublist (h : l <+ l₁ ++ a :: l₂) : l <+ l₁ ++ l₂ ∨ a ∈ l",
"end": [
147,
65
],
"full_name": "List.sublist_or_mem_of_sublist",
"kind": "commanddeclaration",
"start": [
139,
1
]
},
{
"code": "theorem Sublist.reverse : l₁ <+ l₂ → l₁.reverse <+ l₂.reverse",
"end": [
152,
85
],
"full_name": "List.Sublist.reverse",
"kind": "commanddeclaration",
"start": [
149,
1
]
},
{
"code": "@[simp] theorem reverse_sublist : l₁.reverse <+ l₂.reverse ↔ l₁ <+ l₂",
"end": [
155,
82
],
"full_name": "List.reverse_sublist",
"kind": "commanddeclaration",
"start": [
154,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_right (l) : l₁ ++ l <+ l₂ ++ l ↔ l₁ <+ l₂",
"end": [
162,
30
],
"full_name": "List.append_sublist_append_right",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "theorem Sublist.append (hl : l₁ <+ l₂) (hr : r₁ <+ r₂) : l₁ ++ r₁ <+ l₂ ++ r₂",
"end": [
165,
66
],
"full_name": "List.Sublist.append",
"kind": "commanddeclaration",
"start": [
164,
1
]
},
{
"code": "theorem Sublist.subset : l₁ <+ l₂ → l₁ ⊆ l₂",
"end": [
171,
53
],
"full_name": "List.Sublist.subset",
"kind": "commanddeclaration",
"start": [
167,
1
]
},
{
"code": "theorem Sublist.length_le : l₁ <+ l₂ → length l₁ ≤ length l₂",
"end": [
185,
45
],
"full_name": "List.Sublist.length_le",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "@[simp] theorem sublist_nil {l : List α} : l <+ [] ↔ l = []",
"end": [
188,
64
],
"full_name": "List.sublist_nil",
"kind": "commanddeclaration",
"start": [
187,
1
]
},
{
"code": "theorem Sublist.eq_of_length : l₁ <+ l₂ → length l₁ = length l₂ → l₁ = l₂",
"end": [
193,
57
],
"full_name": "List.Sublist.eq_of_length",
"kind": "commanddeclaration",
"start": [
190,
1
]
},
{
"code": "theorem Sublist.eq_of_length_le (s : l₁ <+ l₂) (h : length l₂ ≤ length l₁) : l₁ = l₂",
"end": [
196,
50
],
"full_name": "List.Sublist.eq_of_length_le",
"kind": "commanddeclaration",
"start": [
195,
1
]
},
{
"code": "@[simp] theorem singleton_sublist {a : α} {l} : [a] <+ l ↔ a ∈ l",
"end": [
201,
66
],
"full_name": "List.singleton_sublist",
"kind": "commanddeclaration",
"start": [
198,
1
]
},
{
"code": "@[simp] theorem replicate_sublist_replicate {m n} (a : α) :\n replicate m a <+ replicate n a ↔ m ≤ n",
"end": [
209,
48
],
"full_name": "List.replicate_sublist_replicate",
"kind": "commanddeclaration",
"start": [
203,
1
]
},
{
"code": "theorem isSublist_iff_sublist [BEq α] [LawfulBEq α] {l₁ l₂ : List α} :\n l₁.isSublist l₂ ↔ l₁ <+ l₂",
"end": [
228,
24
],
"full_name": "List.isSublist_iff_sublist",
"kind": "commanddeclaration",
"start": [
211,
1
]
},
{
"code": "theorem tail_eq_tailD (l) : @tail α l = tailD l []",
"end": [
235,
73
],
"full_name": "List.tail_eq_tailD",
"kind": "commanddeclaration",
"start": [
235,
1
]
},
{
"code": "theorem tail_eq_tail? (l) : @tail α l = (tail? l).getD []",
"end": [
237,
85
],
"full_name": "List.tail_eq_tail?",
"kind": "commanddeclaration",
"start": [
237,
1
]
},
{
"code": "@[simp] theorem next?_nil : @next? α [] = none",
"end": [
241,
54
],
"full_name": "List.next?_nil",
"kind": "commanddeclaration",
"start": [
241,
1
]
},
{
"code": "@[simp] theorem next?_cons (a l) : @next? α (a :: l) = some (a, l)",
"end": [
242,
74
],
"full_name": "List.next?_cons",
"kind": "commanddeclaration",
"start": [
242,
1
]
},
{
"code": "theorem getElem_eq_iff {l : List α} {n : Nat} {h : n < l.length} : l[n] = x ↔ l[n]? = some x",
"end": [
248,
40
],
"full_name": "List.getElem_eq_iff",
"kind": "commanddeclaration",
"start": [
246,
1
]
},
{
"code": "@[deprecated getElem_eq_iff (since := \"2024-06-12\")]\ntheorem get_eq_iff : List.get l n = x ↔ l.get? n.1 = some x",
"end": [
252,
7
],
"full_name": "List.get_eq_iff",
"kind": "commanddeclaration",
"start": [
250,
1
]
},
{
"code": "theorem getElem?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs[i]? = xs[j]?) : i = j",
"end": [
273,
39
],
"full_name": "List.getElem?_inj",
"kind": "commanddeclaration",
"start": [
254,
1
]
},
{
"code": "@[deprecated getElem?_inj (since := \"2024-06-12\")]\ntheorem get?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs.get? i = xs.get? j) : i = j",
"end": [
279,
11
],
"full_name": "List.get?_inj",
"kind": "commanddeclaration",
"start": [
275,
1
]
},
{
"code": "theorem tail_drop (l : List α) (n : Nat) : (l.drop n).tail = l.drop (n + 1)",
"end": [
289,
16
],
"full_name": "List.tail_drop",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "@[simp] theorem modifyNth_nil (f : α → α) (n) : [].modifyNth f n = []",
"end": [
293,
92
],
"full_name": "List.modifyNth_nil",
"kind": "commanddeclaration",
"start": [
293,
1
]
},
{
"code": "@[simp] theorem modifyNth_zero_cons (f : α → α) (a : α) (l : List α) :\n (a :: l).modifyNth f 0 = f a :: l",
"end": [
296,
45
],
"full_name": "List.modifyNth_zero_cons",
"kind": "commanddeclaration",
"start": [
295,
1
]
},
{
"code": "@[simp] theorem modifyNth_succ_cons (f : α → α) (a : α) (l : List α) (n) :\n (a :: l).modifyNth f (n + 1) = a :: l.modifyNth f n",
"end": [
299,
66
],
"full_name": "List.modifyNth_succ_cons",
"kind": "commanddeclaration",
"start": [
298,
1
]
},
{
"code": "theorem modifyNthTail_id : ∀ n (l : List α), l.modifyNthTail id n = l",
"end": [
304,
60
],
"full_name": "List.modifyNthTail_id",
"kind": "commanddeclaration",
"start": [
301,
1
]
},
{
"code": "theorem eraseIdx_eq_modifyNthTail : ∀ n (l : List α), eraseIdx l n = modifyNthTail tail n l",
"end": [
309,
69
],
"full_name": "List.eraseIdx_eq_modifyNthTail",
"kind": "commanddeclaration",
"start": [
306,
1
]
},
{
"code": "theorem getElem?_modifyNth (f : α → α) :\n ∀ n (l : List α) m, (modifyNth f n l)[m]? = (fun a => if n = m then f a else a) <$> l[m]?",
"end": [
322,
79
],
"full_name": "List.getElem?_modifyNth",
"kind": "commanddeclaration",
"start": [
313,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth (since := \"2024-06-12\")]\ntheorem get?_modifyNth (f : α → α) (n) (l : List α) (m) :\n (modifyNth f n l).get? m = (fun a => if n = m then f a else a) <$> l.get? m",
"end": [
327,
28
],
"full_name": "List.get?_modifyNth",
"kind": "commanddeclaration",
"start": [
324,
1
]
},
{
"code": "theorem modifyNthTail_length (f : List α → List α) (H : ∀ l, length (f l) = length l) :\n ∀ n l, length (modifyNthTail f n l) = length l",
"end": [
333,
65
],
"full_name": "List.modifyNthTail_length",
"kind": "commanddeclaration",
"start": [
329,
1
]
},
{
"code": "theorem modifyNthTail_add (f : List α → List α) (n) (l₁ l₂ : List α) :\n modifyNthTail f (l₁.length + n) (l₁ ++ l₂) = l₁ ++ modifyNthTail f n l₂",
"end": [
337,
42
],
"full_name": "List.modifyNthTail_add",
"kind": "commanddeclaration",
"start": [
335,
1
]
},
{
"code": "theorem exists_of_modifyNthTail (f : List α → List α) {n} {l : List α} (h : n ≤ l.length) :\n ∃ l₁ l₂, l = l₁ ++ l₂ ∧ l₁.length = n ∧ modifyNthTail f n l = l₁ ++ f l₂",
"end": [
343,
58
],
"full_name": "List.exists_of_modifyNthTail",
"kind": "commanddeclaration",
"start": [
339,
1
]
},
{
"code": "@[simp] theorem modify_get?_length (f : α → α) : ∀ n l, length (modifyNth f n l) = length l",
"end": [
346,
53
],
"full_name": "List.modify_get?_length",
"kind": "commanddeclaration",
"start": [
345,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l)[n]? = f <$> l[n]?",
"end": [
350,
41
],
"full_name": "List.getElem?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_eq (since := \"2024-06-12\")]\ntheorem get?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l).get? n = f <$> l.get? n",
"end": [
355,
31
],
"full_name": "List.get?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
352,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l)[n]? = l[n]?",
"end": [
359,
52
],
"full_name": "List.getElem?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
357,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_ne (since := \"2024-06-12\")]\ntheorem get?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l).get? n = l.get? n",
"end": [
364,
11
],
"full_name": "List.get?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
361,
1
]
},
{
"code": "theorem exists_of_modifyNth (f : α → α) {n} {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ modifyNth f n l = l₁ ++ f a :: l₂",
"end": [
370,
74
],
"full_name": "List.exists_of_modifyNth",
"kind": "commanddeclaration",
"start": [
366,
1
]
},
{
"code": "theorem modifyNthTail_eq_take_drop (f : List α → List α) (H : f [] = []) :\n ∀ n l, modifyNthTail f n l = take n l ++ f (drop n l)",
"end": [
376,
76
],
"full_name": "List.modifyNthTail_eq_take_drop",
"kind": "commanddeclaration",
"start": [
372,
1
]
},
{
"code": "theorem modifyNth_eq_take_drop (f : α → α) :\n ∀ n l, modifyNth f n l = take n l ++ modifyHead f (drop n l)",
"end": [
380,
35
],
"full_name": "List.modifyNth_eq_take_drop",
"kind": "commanddeclaration",
"start": [
378,
1
]
},
{
"code": "theorem modifyNth_eq_take_cons_drop (f : α → α) {n l} (h) :\n modifyNth f n l = take n l ++ f l[n] :: drop (n + 1) l",
"end": [
384,
59
],
"full_name": "List.modifyNth_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
382,
1
]
},
{
"code": "theorem set_eq_modifyNth (a : α) : ∀ n (l : List α), set l n a = modifyNth (fun _ => a) n l",
"end": [
391,
62
],
"full_name": "List.set_eq_modifyNth",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "theorem set_eq_take_cons_drop (a : α) {n l} (h : n < length l) :\n set l n a = take n l ++ a :: drop (n + 1) l",
"end": [
395,
57
],
"full_name": "List.set_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
393,
1
]
},
{
"code": "theorem modifyNth_eq_set_get? (f : α → α) :\n ∀ n (l : List α), l.modifyNth f n = ((fun a => l.set n (f a)) <$> l.get? n).getD l",
"end": [
402,
92
],
"full_name": "List.modifyNth_eq_set_get?",
"kind": "commanddeclaration",
"start": [
397,
1
]
},
{
"code": "theorem modifyNth_eq_set_get (f : α → α) {n} {l : List α} (h) :\n l.modifyNth f n = l.set n (f (l.get ⟨n, h⟩))",
"end": [
406,
49
],
"full_name": "List.modifyNth_eq_set_get",
"kind": "commanddeclaration",
"start": [
404,
1
]
},
{
"code": "theorem exists_of_set {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
410,
55
],
"full_name": "List.exists_of_set",
"kind": "commanddeclaration",
"start": [
408,
1
]
},
{
"code": "theorem exists_of_set' {l : List α} (h : n < l.length) :\n ∃ l₁ l₂, l = l₁ ++ l[n] :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
414,
94
],
"full_name": "List.exists_of_set'",
"kind": "commanddeclaration",
"start": [
412,
1
]
},
{
"code": "@[simp]\ntheorem getElem?_set_eq' (a : α) (n) (l : List α) : (set l n a)[n]? = (fun _ => a) <$> l[n]?",
"end": [
418,
54
],
"full_name": "List.getElem?_set_eq'",
"kind": "commanddeclaration",
"start": [
416,
1
]
},
{
"code": "@[deprecated getElem?_set_eq' (since := \"2024-06-12\")]\ntheorem get?_set_eq (a : α) (n) (l : List α) : (set l n a).get? n = (fun _ => a) <$> l.get? n",
"end": [
422,
7
],
"full_name": "List.get?_set_eq",
"kind": "commanddeclaration",
"start": [
420,
1
]
},
{
"code": "theorem getElem?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a)[n]? = some a",
"end": [
425,
85
],
"full_name": "List.getElem?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
424,
1
]
},
{
"code": "@[deprecated getElem?_set_eq_of_lt (since := \"2024-06-12\")]\ntheorem get?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a).get? n = some a",
"end": [
430,
70
],
"full_name": "List.get?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
427,
1
]
},
{
"code": "@[deprecated getElem?_set_ne (since := \"2024-06-12\")]\ntheorem get?_set_ne (a : α) {m n} (l : List α) (h : m ≠ n) : (set l m a).get? n = l.get? n",
"end": [
434,
11
],
"full_name": "List.get?_set_ne",
"kind": "commanddeclaration",
"start": [
432,
1
]
},
{
"code": "theorem getElem?_set' (a : α) {m n} (l : List α) :\n (set l m a)[n]? = if m = n then (fun _ => a) <$> l[n]? else l[n]?",
"end": [
438,
30
],
"full_name": "List.getElem?_set'",
"kind": "commanddeclaration",
"start": [
436,
1
]
},
{
"code": "@[deprecated getElem?_set (since := \"2024-06-12\")]\ntheorem get?_set (a : α) {m n} (l : List α) :\n (set l m a).get? n = if m = n then (fun _ => a) <$> l.get? n else l.get? n",
"end": [
443,
23
],
"full_name": "List.get?_set",
"kind": "commanddeclaration",
"start": [
440,
1
]
},
{
"code": "theorem get?_set_of_lt (a : α) {m n} (l : List α) (h : n < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
447,
46
],
"full_name": "List.get?_set_of_lt",
"kind": "commanddeclaration",
"start": [
445,
1
]
},
{
"code": "theorem get?_set_of_lt' (a : α) {m n} (l : List α) (h : m < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
451,
80
],
"full_name": "List.get?_set_of_lt'",
"kind": "commanddeclaration",
"start": [
449,
1
]
},
{
"code": "theorem drop_set_of_lt (a : α) {n m : Nat} (l : List α) (h : n < m) :\n (l.set n a).drop m = l.drop m",
"end": [
455,
94
],
"full_name": "List.drop_set_of_lt",
"kind": "commanddeclaration",
"start": [
453,
1
]
},
{
"code": "theorem take_set_of_lt (a : α) {n m : Nat} (l : List α) (h : m < n) :\n (l.set n a).take m = l.take m",
"end": [
463,
10
],
"full_name": "List.take_set_of_lt",
"kind": "commanddeclaration",
"start": [
457,
1
]
},
{
"code": "theorem length_eraseIdx : ∀ {l i}, i < length l → length (@eraseIdx α l i) = length l - 1",
"end": [
473,
92
],
"full_name": "List.length_eraseIdx",
"kind": "commanddeclaration",
"start": [
467,
1
]
},
{
"code": "@[simp] theorem length_tail (l : List α) : length (tail l) = length l - 1",
"end": [
479,
96
],
"full_name": "List.length_tail",
"kind": "commanddeclaration",
"start": [
479,
1
]
},
{
"code": "@[simp] theorem eraseP_nil : [].eraseP p = []",
"end": [
483,
53
],
"full_name": "List.eraseP_nil",
"kind": "commanddeclaration",
"start": [
483,
1
]
},
{
"code": "theorem eraseP_cons (a : α) (l : List α) :\n (a :: l).eraseP p = bif p a then l else a :: l.eraseP p",
"end": [
486,
67
],
"full_name": "List.eraseP_cons",
"kind": "commanddeclaration",
"start": [
485,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_pos {l : List α} (p) (h : p a) : (a :: l).eraseP p = l",
"end": [
489,
24
],
"full_name": "List.eraseP_cons_of_pos",
"kind": "commanddeclaration",
"start": [
488,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_neg {l : List α} (p) (h : ¬p a) :\n (a :: l).eraseP p = a :: l.eraseP p",
"end": [
492,
68
],
"full_name": "List.eraseP_cons_of_neg",
"kind": "commanddeclaration",
"start": [
491,
1
]
},
{
"code": "theorem eraseP_of_forall_not {l : List α} (h : ∀ a, a ∈ l → ¬p a) : l.eraseP p = l",
"end": [
497,
69
],
"full_name": "List.eraseP_of_forall_not",
"kind": "commanddeclaration",
"start": [
494,
1
]
},
{
"code": "theorem exists_of_eraseP : ∀ {l : List α} {a} (al : a ∈ l) (pa : p a),\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
510,
57
],
"full_name": "List.exists_of_eraseP",
"kind": "commanddeclaration",
"start": [
499,
1
]
},
{
"code": "theorem exists_or_eq_self_of_eraseP (p) (l : List α) :\n l.eraseP p = l ∨\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
519,
46
],
"full_name": "List.exists_or_eq_self_of_eraseP",
"kind": "commanddeclaration",
"start": [
512,
1
]
},
{
"code": "@[simp] theorem length_eraseP_of_mem (al : a ∈ l) (pa : p a) :\n length (l.eraseP p) = Nat.pred (length l)",
"end": [
524,
41
],
"full_name": "List.length_eraseP_of_mem",
"kind": "commanddeclaration",
"start": [
521,
1
]
},
{
"code": "theorem eraseP_append_left {a : α} (pa : p a) :\n ∀ {l₁ : List α} l₂, a ∈ l₁ → (l₁++l₂).eraseP p = l₁.eraseP p ++ l₂",
"end": [
531,
28
],
"full_name": "List.eraseP_append_left",
"kind": "commanddeclaration",
"start": [
526,
1
]
},
{
"code": "theorem eraseP_append_right :\n ∀ {l₁ : List α} l₂, (∀ b ∈ l₁, ¬p b) → eraseP p (l₁++l₂) = l₁ ++ l₂.eraseP p",
"end": [
537,
82
],
"full_name": "List.eraseP_append_right",
"kind": "commanddeclaration",
"start": [
533,
1
]
},
{
"code": "theorem eraseP_sublist (l : List α) : l.eraseP p <+ l",
"end": [
542,
56
],
"full_name": "List.eraseP_sublist",
"kind": "commanddeclaration",
"start": [
539,
1
]
},
{
"code": "theorem eraseP_subset (l : List α) : l.eraseP p ⊆ l",
"end": [
544,
81
],
"full_name": "List.eraseP_subset",
"kind": "commanddeclaration",
"start": [
544,
1
]
},
{
"code": "protected theorem Sublist.eraseP : l₁ <+ l₂ → l₁.eraseP p <+ l₂.eraseP p",
"end": [
553,
25
],
"full_name": "List.Sublist.eraseP",
"kind": "commanddeclaration",
"start": [
546,
1
]
},
{
"code": "theorem mem_of_mem_eraseP {l : List α} : a ∈ l.eraseP p → a ∈ l",
"end": [
555,
87
],
"full_name": "List.mem_of_mem_eraseP",
"kind": "commanddeclaration",
"start": [
555,
1
]
},
{
"code": "@[simp] theorem mem_eraseP_of_neg {l : List α} (pa : ¬p a) : a ∈ l.eraseP p ↔ a ∈ l",
"end": [
564,
33
],
"full_name": "List.mem_eraseP_of_neg",
"kind": "commanddeclaration",
"start": [
557,
1
]
},
{
"code": "theorem eraseP_map (f : β → α) : ∀ (l : List β), (map f l).eraseP p = map f (l.eraseP (p ∘ f))",
"end": [
568,
85
],
"full_name": "List.eraseP_map",
"kind": "commanddeclaration",
"start": [
566,
1
]
},
{
"code": "@[simp] theorem extractP_eq_find?_eraseP\n (l : List α) : extractP p l = (find? p l, eraseP p l)",
"end": [
578,
21
],
"full_name": "List.extractP_eq_find?_eraseP",
"kind": "commanddeclaration",
"start": [
570,
1
]
},
{
"code": "theorem erase_eq_eraseP' (a : α) (l : List α) : l.erase a = l.eraseP (· == a)",
"end": [
590,
46
],
"full_name": "List.erase_eq_eraseP'",
"kind": "commanddeclaration",
"start": [
585,
1
]
},
{
"code": "theorem erase_eq_eraseP [LawfulBEq α] (a : α) : ∀ l : List α, l.erase a = l.eraseP (a == ·)",
"end": [
595,
77
],
"full_name": "List.erase_eq_eraseP",
"kind": "commanddeclaration",
"start": [
592,
1
]
},
{
"code": "theorem exists_erase_eq [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n ∃ l₁ l₂, a ∉ l₁ ∧ l = l₁ ++ a :: l₂ ∧ l.erase a = l₁ ++ l₂",
"end": [
600,
99
],
"full_name": "List.exists_erase_eq",
"kind": "commanddeclaration",
"start": [
597,
1
]
},
{
"code": "@[simp] theorem length_erase_of_mem [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n length (l.erase a) = Nat.pred (length l)",
"end": [
604,
74
],
"full_name": "List.length_erase_of_mem",
"kind": "commanddeclaration",
"start": [
602,
1
]
},
{
"code": "theorem erase_append_left [LawfulBEq α] {l₁ : List α} (l₂) (h : a ∈ l₁) :\n (l₁ ++ l₂).erase a = l₁.erase a ++ l₂",
"end": [
608,
77
],
"full_name": "List.erase_append_left",
"kind": "commanddeclaration",
"start": [
606,
1
]
},
{
"code": "theorem erase_append_right [LawfulBEq α] {a : α} {l₁ : List α} (l₂ : List α) (h : a ∉ l₁) :\n (l₁ ++ l₂).erase a = (l₁ ++ l₂.erase a)",
"end": [
613,
55
],
"full_name": "List.erase_append_right",
"kind": "commanddeclaration",
"start": [
610,
1
]
},
{
"code": "theorem erase_sublist (a : α) (l : List α) : l.erase a <+ l",
"end": [
616,
42
],
"full_name": "List.erase_sublist",
"kind": "commanddeclaration",
"start": [
615,
1
]
},
{
"code": "theorem erase_subset (a : α) (l : List α) : l.erase a ⊆ l",
"end": [
618,
88
],
"full_name": "List.erase_subset",
"kind": "commanddeclaration",
"start": [
618,
1
]
},
{
"code": "theorem Sublist.erase (a : α) {l₁ l₂ : List α} (h : l₁ <+ l₂) : l₁.erase a <+ l₂.erase a",
"end": [
621,
47
],
"full_name": "List.Sublist.erase",
"kind": "commanddeclaration",
"start": [
620,
1
]
},
{
"code": "theorem mem_of_mem_erase {a b : α} {l : List α} (h : a ∈ l.erase b) : a ∈ l",
"end": [
624,
98
],
"full_name": "List.mem_of_mem_erase",
"kind": "commanddeclaration",
"start": [
624,
1
]
},
{
"code": "@[simp] theorem mem_erase_of_ne [LawfulBEq α] {a b : α} {l : List α} (ab : a ≠ b) :\n a ∈ l.erase b ↔ a ∈ l",
"end": [
628,
65
],
"full_name": "List.mem_erase_of_ne",
"kind": "commanddeclaration",
"start": [
626,
1
]
},
{
"code": "theorem erase_comm [LawfulBEq α] (a b : α) (l : List α) :\n (l.erase a).erase b = (l.erase b).erase a",
"end": [
644,
49
],
"full_name": "List.erase_comm",
"kind": "commanddeclaration",
"start": [
630,
1
]
},
{
"code": "@[simp] theorem filter_sublist {p : α → Bool} : ∀ (l : List α), filter p l <+ l",
"end": [
652,
93
],
"full_name": "List.filter_sublist",
"kind": "commanddeclaration",
"start": [
650,
1
]
},
{
"code": "protected theorem Sublist.filterMap (f : α → Option β) (s : l₁ <+ l₂) :\n filterMap f l₁ <+ filterMap f l₂",
"end": [
658,
76
],
"full_name": "List.Sublist.filterMap",
"kind": "commanddeclaration",
"start": [
656,
1
]
},
{
"code": "theorem Sublist.filter (p : α → Bool) {l₁ l₂} (s : l₁ <+ l₂) : filter p l₁ <+ filter p l₂",
"end": [
661,
48
],
"full_name": "List.Sublist.filter",
"kind": "commanddeclaration",
"start": [
660,
1
]
},
{
"code": "@[simp] theorem findIdx_nil {α : Type _} (p : α → Bool) : [].findIdx p = 0",
"end": [
665,
82
],
"full_name": "List.findIdx_nil",
"kind": "commanddeclaration",
"start": [
665,
1
]
},
{
"code": "theorem findIdx_cons (p : α → Bool) (b : α) (l : List α) :\n (b :: l).findIdx p = bif p b then 0 else (l.findIdx p) + 1",
"end": [
680,
43
],
"full_name": "List.findIdx_cons",
"kind": "commanddeclaration",
"start": [
667,
1
]
},
{
"code": "theorem findIdx_of_get?_eq_some {xs : List α} (w : xs.get? (xs.findIdx p) = some y) : p y",
"end": [
685,
65
],
"full_name": "List.findIdx_of_get?_eq_some",
"kind": "commanddeclaration",
"start": [
682,
1
]
},
{
"code": "theorem findIdx_get {xs : List α} {w : xs.findIdx p < xs.length} :\n p (xs.get ⟨xs.findIdx p, w⟩)",
"end": [
689,
45
],
"full_name": "List.findIdx_get",
"kind": "commanddeclaration",
"start": [
687,
1
]
},
{
"code": "theorem findIdx_lt_length_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.findIdx p < xs.length",
"end": [
703,
24
],
"full_name": "List.findIdx_lt_length_of_exists",
"kind": "commanddeclaration",
"start": [
691,
1
]
},
{
"code": "theorem findIdx_get?_eq_get_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.get? (xs.findIdx p) = some (xs.get ⟨xs.findIdx p, xs.findIdx_lt_length_of_exists h⟩)",
"end": [
707,
46
],
"full_name": "List.findIdx_get?_eq_get_of_exists",
"kind": "commanddeclaration",
"start": [
705,
1
]
},
{
"code": "@[simp] theorem findIdx?_nil : ([] : List α).findIdx? p i = none",
"end": [
711,
72
],
"full_name": "List.findIdx?_nil",
"kind": "commanddeclaration",
"start": [
711,
1
]
},
{
"code": "@[simp] theorem findIdx?_cons :\n (x :: xs).findIdx? p i = if p x then some i else findIdx? p xs (i + 1)",
"end": [
714,
82
],
"full_name": "List.findIdx?_cons",
"kind": "commanddeclaration",
"start": [
713,
1
]
},
{
"code": "@[simp] theorem findIdx?_succ :\n (xs : List α).findIdx? p (i+1) = (xs.findIdx? p i).map fun i => i + 1",
"end": [
719,
37
],
"full_name": "List.findIdx?_succ",
"kind": "commanddeclaration",
"start": [
716,
1
]
},
{
"code": "theorem findIdx?_eq_some_iff (xs : List α) (p : α → Bool) :\n xs.findIdx? p = some i ↔ (xs.take (i + 1)).map p = replicate i false ++ [true]",
"end": [
727,
52
],
"full_name": "List.findIdx?_eq_some_iff",
"kind": "commanddeclaration",
"start": [
721,
1
]
},
{
"code": "theorem findIdx?_of_eq_some {xs : List α} {p : α → Bool} (w : xs.findIdx? p = some i) :\n match xs.get? i with | some a => p a | none => false",
"end": [
735,
40
],
"full_name": "List.findIdx?_of_eq_some",
"kind": "commanddeclaration",
"start": [
729,
1
]
},
{
"code": "theorem findIdx?_of_eq_none {xs : List α} {p : α → Bool} (w : xs.findIdx? p = none) :\n ∀ i, match xs.get? i with | some a => ¬ p a | none => true",
"end": [
750,
30
],
"full_name": "List.findIdx?_of_eq_none",
"kind": "commanddeclaration",
"start": [
737,
1
]
},
{
"code": "@[simp] theorem findIdx?_append :\n (xs ++ ys : List α).findIdx? p =\n (xs.findIdx? p <|> (ys.findIdx? p).map fun i => i + xs.length)",
"end": [
756,
78
],
"full_name": "List.findIdx?_append",
"kind": "commanddeclaration",
"start": [
752,
1
]
},
{
"code": "@[simp] theorem findIdx?_replicate :\n (replicate n a).findIdx? p = if 0 < n ∧ p a then some 0 else none",
"end": [
764,
23
],
"full_name": "List.findIdx?_replicate",
"kind": "commanddeclaration",
"start": [
758,
1
]
},
{
"code": "theorem Pairwise.sublist : l₁ <+ l₂ → l₂.Pairwise R → l₁.Pairwise R",
"end": [
771,
80
],
"full_name": "List.Pairwise.sublist",
"kind": "commanddeclaration",
"start": [
768,
1
]
},
{
"code": "theorem pairwise_map {l : List α} :\n (l.map f).Pairwise R ↔ l.Pairwise fun a b => R (f a) (f b)",
"end": [
777,
58
],
"full_name": "List.pairwise_map",
"kind": "commanddeclaration",
"start": [
773,
1
]
},
{
"code": "theorem pairwise_append {l₁ l₂ : List α} :\n (l₁ ++ l₂).Pairwise R ↔ l₁.Pairwise R ∧ l₂.Pairwise R ∧ ∀ a ∈ l₁, ∀ b ∈ l₂, R a b",
"end": [
781,
74
],
"full_name": "List.pairwise_append",
"kind": "commanddeclaration",
"start": [
779,
1
]
},
{
"code": "theorem pairwise_reverse {l : List α} :\n l.reverse.Pairwise R ↔ l.Pairwise (fun a b => R b a)",
"end": [
785,
54
],
"full_name": "List.pairwise_reverse",
"kind": "commanddeclaration",
"start": [
783,
1
]
},
{
"code": "theorem Pairwise.imp {α R S} (H : ∀ {a b}, R a b → S a b) :\n ∀ {l : List α}, l.Pairwise R → l.Pairwise S",
"end": [
790,
50
],
"full_name": "List.Pairwise.imp",
"kind": "commanddeclaration",
"start": [
787,
1
]
},
{
"code": "theorem replaceF_nil : [].replaceF p = []",
"end": [
794,
49
],
"full_name": "List.replaceF_nil",
"kind": "commanddeclaration",
"start": [
794,
1
]
},
{
"code": "theorem replaceF_cons (a : α) (l : List α) :\n (a :: l).replaceF p = match p a with\n | none => a :: replaceF p l\n | some a' => a' :: l",
"end": [
799,
34
],
"full_name": "List.replaceF_cons",
"kind": "commanddeclaration",
"start": [
796,
1
]
},
{
"code": "theorem replaceF_cons_of_some {l : List α} (p) (h : p a = some a') :\n (a :: l).replaceF p = a' :: l",
"end": [
803,
26
],
"full_name": "List.replaceF_cons_of_some",
"kind": "commanddeclaration",
"start": [
801,
1
]
},
{
"code": "theorem replaceF_cons_of_none {l : List α} (p) (h : p a = none) :\n (a :: l).replaceF p = a :: l.replaceF p",
"end": [
806,
74
],
"full_name": "List.replaceF_cons_of_none",
"kind": "commanddeclaration",
"start": [
805,
1
]
},
{
"code": "theorem replaceF_of_forall_none {l : List α} (h : ∀ a, a ∈ l → p a = none) : l.replaceF p = l",
"end": [
811,
69
],
"full_name": "List.replaceF_of_forall_none",
"kind": "commanddeclaration",
"start": [
808,
1
]
},
{
"code": "theorem exists_of_replaceF : ∀ {l : List α} {a a'} (al : a ∈ l) (pa : p a = some a'),\n ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
825,
57
],
"full_name": "List.exists_of_replaceF",
"kind": "commanddeclaration",
"start": [
813,
1
]
},
{
"code": "theorem exists_or_eq_self_of_replaceF (p) (l : List α) :\n l.replaceF p = l ∨ ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
835,
62
],
"full_name": "List.exists_or_eq_self_of_replaceF",
"kind": "commanddeclaration",
"start": [
827,
1
]
},
{
"code": "@[simp] theorem length_replaceF : length (replaceF f l) = length l",
"end": [
838,
54
],
"full_name": "List.length_replaceF",
"kind": "commanddeclaration",
"start": [
837,
1
]
},
{
"code": "theorem disjoint_symm (d : Disjoint l₁ l₂) : Disjoint l₂ l₁",
"end": [
842,
86
],
"full_name": "List.disjoint_symm",
"kind": "commanddeclaration",
"start": [
842,
1
]
},
{
"code": "theorem disjoint_comm : Disjoint l₁ l₂ ↔ Disjoint l₂ l₁",
"end": [
844,
90
],
"full_name": "List.disjoint_comm",
"kind": "commanddeclaration",
"start": [
844,
1
]
},
{
"code": "theorem disjoint_left : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₁ → a ∉ l₂",
"end": [
846,
86
],
"full_name": "List.disjoint_left",
"kind": "commanddeclaration",
"start": [
846,
1
]
},
{
"code": "theorem disjoint_right : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₂ → a ∉ l₁",
"end": [
848,
82
],
"full_name": "List.disjoint_right",
"kind": "commanddeclaration",
"start": [
848,
1
]
},
{
"code": "theorem disjoint_iff_ne : Disjoint l₁ l₂ ↔ ∀ a ∈ l₁, ∀ b ∈ l₂, a ≠ b",
"end": [
851,
83
],
"full_name": "List.disjoint_iff_ne",
"kind": "commanddeclaration",
"start": [
850,
1
]
},
{
"code": "theorem disjoint_of_subset_left (ss : l₁ ⊆ l) (d : Disjoint l l₂) : Disjoint l₁ l₂",
"end": [
854,
22
],
"full_name": "List.disjoint_of_subset_left",
"kind": "commanddeclaration",
"start": [
853,
1
]
},
{
"code": "theorem disjoint_of_subset_right (ss : l₂ ⊆ l) (d : Disjoint l₁ l) : Disjoint l₁ l₂",
"end": [
857,
28
],
"full_name": "List.disjoint_of_subset_right",
"kind": "commanddeclaration",
"start": [
856,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_left {l₁ l₂} : Disjoint (a :: l₁) l₂ → Disjoint l₁ l₂",
"end": [
860,
42
],
"full_name": "List.disjoint_of_disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
859,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_right {l₁ l₂} : Disjoint l₁ (a :: l₂) → Disjoint l₁ l₂",
"end": [
863,
43
],
"full_name": "List.disjoint_of_disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
862,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_left (l : List α) : Disjoint [] l",
"end": [
865,
96
],
"full_name": "List.disjoint_nil_left",
"kind": "commanddeclaration",
"start": [
865,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_right (l : List α) : Disjoint l []",
"end": [
868,
48
],
"full_name": "List.disjoint_nil_right",
"kind": "commanddeclaration",
"start": [
867,
1
]
},
{
"code": "@[simp 1100] theorem singleton_disjoint : Disjoint [a] l ↔ a ∉ l",
"end": [
870,
87
],
"full_name": "List.singleton_disjoint",
"kind": "commanddeclaration",
"start": [
870,
1
]
},
{
"code": "@[simp 1100] theorem disjoint_singleton : Disjoint l [a] ↔ a ∉ l",
"end": [
873,
41
],
"full_name": "List.disjoint_singleton",
"kind": "commanddeclaration",
"start": [
872,
1
]
},
{
"code": "@[simp] theorem disjoint_append_left : Disjoint (l₁ ++ l₂) l ↔ Disjoint l₁ l ∧ Disjoint l₂ l",
"end": [
876,
38
],
"full_name": "List.disjoint_append_left",
"kind": "commanddeclaration",
"start": [
875,
1
]
},
{
"code": "@[simp] theorem disjoint_append_right : Disjoint l (l₁ ++ l₂) ↔ Disjoint l l₁ ∧ Disjoint l l₂",
"end": [
879,
76
],
"full_name": "List.disjoint_append_right",
"kind": "commanddeclaration",
"start": [
878,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_left : Disjoint (a::l₁) l₂ ↔ (a ∉ l₂) ∧ Disjoint l₁ l₂",
"end": [
882,
75
],
"full_name": "List.disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
881,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_right : Disjoint l₁ (a :: l₂) ↔ (a ∉ l₁) ∧ Disjoint l₁ l₂",
"end": [
885,
74
],
"full_name": "List.disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
884,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_left (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₁ l",
"end": [
888,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_left",
"kind": "commanddeclaration",
"start": [
887,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_right (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₂ l",
"end": [
891,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_right",
"kind": "commanddeclaration",
"start": [
890,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_left (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₁",
"end": [
894,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_left",
"kind": "commanddeclaration",
"start": [
893,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_right (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₂",
"end": [
897,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_right",
"kind": "commanddeclaration",
"start": [
896,
1
]
},
{
"code": "theorem foldl_hom (f : α₁ → α₂) (g₁ : α₁ → β → α₁) (g₂ : α₂ → β → α₂) (l : List β) (init : α₁)\n (H : ∀ x y, g₂ (f x) y = f (g₁ x y)) : l.foldl g₂ (f init) = f (l.foldl g₁ init)",
"end": [
903,
48
],
"full_name": "List.foldl_hom",
"kind": "commanddeclaration",
"start": [
901,
1
]
},
{
"code": "theorem foldr_hom (f : β₁ → β₂) (g₁ : α → β₁ → β₁) (g₂ : α → β₂ → β₂) (l : List α) (init : β₁)\n (H : ∀ x y, g₂ x (f y) = f (g₁ x y)) : l.foldr g₂ (f init) = f (l.foldr g₁ init)",
"end": [
907,
30
],
"full_name": "List.foldr_hom",
"kind": "commanddeclaration",
"start": [
905,
1
]
},
{
"code": "theorem union_def [BEq α] (l₁ l₂ : List α) : l₁ ∪ l₂ = foldr .insert l₂ l₁",
"end": [
915,
83
],
"full_name": "List.union_def",
"kind": "commanddeclaration",
"start": [
915,
1
]
},
{
"code": "@[simp] theorem nil_union (l : List α) : nil ∪ l = l",
"end": [
917,
88
],
"full_name": "List.nil_union",
"kind": "commanddeclaration",
"start": [
917,
1
]
},
{
"code": "@[simp] theorem cons_union (a : α) (l₁ l₂ : List α) :\n (a :: l₁) ∪ l₂ = (l₁ ∪ l₂).insert a",
"end": [
920,
75
],
"full_name": "List.cons_union",
"kind": "commanddeclaration",
"start": [
919,
1
]
},
{
"code": "@[simp] theorem mem_union_iff [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∪ l₂ ↔ x ∈ l₁ ∨ x ∈ l₂",
"end": [
923,
76
],
"full_name": "List.mem_union_iff",
"kind": "commanddeclaration",
"start": [
922,
1
]
},
{
"code": "theorem inter_def [BEq α] (l₁ l₂ : List α) : l₁ ∩ l₂ = filter (elem · l₂) l₁",
"end": [
929,
85
],
"full_name": "List.inter_def",
"kind": "commanddeclaration",
"start": [
929,
1
]
},
{
"code": "@[simp] theorem mem_inter_iff [BEq α] [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∩ l₂ ↔ x ∈ l₁ ∧ x ∈ l₂",
"end": [
933,
49
],
"full_name": "List.mem_inter_iff",
"kind": "commanddeclaration",
"start": [
931,
1
]
},
{
"code": "@[simp]\ntheorem pair_mem_product {xs : List α} {ys : List β} {x : α} {y : β} :\n (x, y) ∈ product xs ys ↔ x ∈ xs ∧ y ∈ ys",
"end": [
942,
47
],
"full_name": "List.pair_mem_product",
"kind": "commanddeclaration",
"start": [
937,
1
]
},
{
"code": "@[simp]\ntheorem leftpad_length (n : Nat) (a : α) (l : List α) :\n (leftpad n a l).length = max n l.length",
"end": [
951,
75
],
"full_name": "List.leftpad_length",
"kind": "commanddeclaration",
"start": [
946,
1
]
},
{
"code": "theorem leftpad_prefix (n : Nat) (a : α) (l : List α) :\n replicate (n - length l) a <+: leftpad n a l",
"end": [
956,
27
],
"full_name": "List.leftpad_prefix",
"kind": "commanddeclaration",
"start": [
953,
1
]
},
{
"code": "theorem leftpad_suffix (n : Nat) (a : α) (l : List α) : l <:+ (leftpad n a l)",
"end": [
960,
54
],
"full_name": "List.leftpad_suffix",
"kind": "commanddeclaration",
"start": [
958,
1
]
},
{
"code": "@[simp] theorem forIn_eq_forIn [Monad m] : @List.forIn α β m _ = forIn",
"end": [
965,
78
],
"full_name": "List.forIn_eq_forIn",
"kind": "commanddeclaration",
"start": [
965,
1
]
},
{
"code": "theorem forIn_eq_bindList [Monad m] [LawfulMonad m]\n (f : α → β → m (ForInStep β)) (l : List α) (init : β) :\n forIn l init f = ForInStep.run <$> (ForInStep.yield init).bindList f l",
"end": [
971,
30
],
"full_name": "List.forIn_eq_bindList",
"kind": "commanddeclaration",
"start": [
967,
1
]
},
{
"code": "@[simp] theorem forM_append [Monad m] [LawfulMonad m] (l₁ l₂ : List α) (f : α → m PUnit) :\n (l₁ ++ l₂).forM f = (do l₁.forM f; l₂.forM f)",
"end": [
974,
82
],
"full_name": "List.forM_append",
"kind": "commanddeclaration",
"start": [
973,
1
]
},
{
"code": "@[simp] theorem diff_nil (l : List α) : l.diff [] = l",
"end": [
982,
61
],
"full_name": "List.diff_nil",
"kind": "commanddeclaration",
"start": [
982,
1
]
},
{
"code": "@[simp] theorem diff_cons (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.erase a).diff l₂",
"end": [
985,
41
],
"full_name": "List.diff_cons",
"kind": "commanddeclaration",
"start": [
984,
1
]
},
{
"code": "theorem diff_cons_right (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.diff l₂).erase a",
"end": [
988,
71
],
"full_name": "List.diff_cons_right",
"kind": "commanddeclaration",
"start": [
987,
1
]
},
{
"code": "theorem diff_erase (l₁ l₂ : List α) (a : α) : (l₁.diff l₂).erase a = (l₁.erase a).diff l₂",
"end": [
991,
36
],
"full_name": "List.diff_erase",
"kind": "commanddeclaration",
"start": [
990,
1
]
},
{
"code": "@[simp] theorem nil_diff (l : List α) : [].diff l = []",
"end": [
994,
45
],
"full_name": "List.nil_diff",
"kind": "commanddeclaration",
"start": [
993,
1
]
},
{
"code": "theorem cons_diff (a : α) (l₁ l₂ : List α) :\n (a :: l₁).diff l₂ = if a ∈ l₂ then l₁.diff (l₂.erase a) else a :: l₁.diff l₂",
"end": [
1005,
14
],
"full_name": "List.cons_diff",
"kind": "commanddeclaration",
"start": [
996,
1
]
},
{
"code": "theorem cons_diff_of_mem {a : α} {l₂ : List α} (h : a ∈ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = l₁.diff (l₂.erase a)",
"end": [
1008,
76
],
"full_name": "List.cons_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1007,
1
]
},
{
"code": "theorem cons_diff_of_not_mem {a : α} {l₂ : List α} (h : a ∉ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = a :: l₁.diff l₂",
"end": [
1011,
71
],
"full_name": "List.cons_diff_of_not_mem",
"kind": "commanddeclaration",
"start": [
1010,
1
]
},
{
"code": "theorem diff_eq_foldl : ∀ l₁ l₂ : List α, l₁.diff l₂ = foldl List.erase l₁ l₂",
"end": [
1015,
65
],
"full_name": "List.diff_eq_foldl",
"kind": "commanddeclaration",
"start": [
1013,
1
]
},
{
"code": "@[simp] theorem diff_append (l₁ l₂ l₃ : List α) : l₁.diff (l₂ ++ l₃) = (l₁.diff l₂).diff l₃",
"end": [
1018,
42
],
"full_name": "List.diff_append",
"kind": "commanddeclaration",
"start": [
1017,
1
]
},
{
"code": "theorem diff_sublist : ∀ l₁ l₂ : List α, l₁.diff l₂ <+ l₁",
"end": [
1026,
34
],
"full_name": "List.diff_sublist",
"kind": "commanddeclaration",
"start": [
1020,
1
]
},
{
"code": "theorem diff_subset (l₁ l₂ : List α) : l₁.diff l₂ ⊆ l₁",
"end": [
1028,
83
],
"full_name": "List.diff_subset",
"kind": "commanddeclaration",
"start": [
1028,
1
]
},
{
"code": "theorem mem_diff_of_mem {a : α} : ∀ {l₁ l₂ : List α}, a ∈ l₁ → a ∉ l₂ → a ∈ l₁.diff l₂",
"end": [
1034,
94
],
"full_name": "List.mem_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1030,
1
]
},
{
"code": "theorem Sublist.diff_right : ∀ {l₁ l₂ l₃ : List α}, l₁ <+ l₂ → l₁.diff l₃ <+ l₂.diff l₃",
"end": [
1038,
75
],
"full_name": "List.Sublist.diff_right",
"kind": "commanddeclaration",
"start": [
1036,
1
]
},
{
"code": "theorem Sublist.erase_diff_erase_sublist {a : α} :\n ∀ {l₁ l₂ : List α}, l₁ <+ l₂ → (l₂.erase a).diff (l₁.erase a) <+ l₂.diff l₁",
"end": [
1048,
71
],
"full_name": "List.Sublist.erase_diff_erase_sublist",
"kind": "commanddeclaration",
"start": [
1040,
1
]
},
{
"code": "@[simp] theorem prefix_append (l₁ l₂ : List α) : l₁ <+: l₁ ++ l₂",
"end": [
1054,
78
],
"full_name": "List.prefix_append",
"kind": "commanddeclaration",
"start": [
1054,
1
]
},
{
"code": "@[simp] theorem suffix_append (l₁ l₂ : List α) : l₂ <:+ l₁ ++ l₂",
"end": [
1056,
78
],
"full_name": "List.suffix_append",
"kind": "commanddeclaration",
"start": [
1056,
1
]
},
{
"code": "theorem infix_append (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ l₂ ++ l₃",
"end": [
1058,
83
],
"full_name": "List.infix_append",
"kind": "commanddeclaration",
"start": [
1058,
1
]
},
{
"code": "@[simp] theorem infix_append' (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ (l₂ ++ l₃)",
"end": [
1061,
47
],
"full_name": "List.infix_append'",
"kind": "commanddeclaration",
"start": [
1060,
1
]
},
{
"code": "theorem IsPrefix.isInfix : l₁ <+: l₂ → l₁ <:+: l₂",
"end": [
1063,
78
],
"full_name": "List.IsPrefix.isInfix",
"kind": "commanddeclaration",
"start": [
1063,
1
]
},
{
"code": "theorem IsSuffix.isInfix : l₁ <:+ l₂ → l₁ <:+: l₂",
"end": [
1065,
98
],
"full_name": "List.IsSuffix.isInfix",
"kind": "commanddeclaration",
"start": [
1065,
1
]
},
{
"code": "theorem nil_prefix (l : List α) : [] <+: l",
"end": [
1067,
55
],
"full_name": "List.nil_prefix",
"kind": "commanddeclaration",
"start": [
1067,
1
]
},
{
"code": "theorem nil_suffix (l : List α) : [] <:+ l",
"end": [
1069,
64
],
"full_name": "List.nil_suffix",
"kind": "commanddeclaration",
"start": [
1069,
1
]
},
{
"code": "theorem nil_infix (l : List α) : [] <:+: l",
"end": [
1071,
69
],
"full_name": "List.nil_infix",
"kind": "commanddeclaration",
"start": [
1071,
1
]
},
{
"code": "theorem prefix_refl (l : List α) : l <+: l",
"end": [
1073,
65
],
"full_name": "List.prefix_refl",
"kind": "commanddeclaration",
"start": [
1073,
1
]
},
{
"code": "theorem suffix_refl (l : List α) : l <:+ l",
"end": [
1075,
56
],
"full_name": "List.suffix_refl",
"kind": "commanddeclaration",
"start": [
1075,
1
]
},
{
"code": "theorem infix_refl (l : List α) : l <:+: l",
"end": [
1077,
70
],
"full_name": "List.infix_refl",
"kind": "commanddeclaration",
"start": [
1077,
1
]
},
{
"code": "@[simp] theorem suffix_cons (a : α) : ∀ l, l <:+ a :: l",
"end": [
1079,
77
],
"full_name": "List.suffix_cons",
"kind": "commanddeclaration",
"start": [
1079,
1
]
},
{
"code": "theorem infix_cons : l₁ <:+: l₂ → l₁ <:+: a :: l₂",
"end": [
1081,
95
],
"full_name": "List.infix_cons",
"kind": "commanddeclaration",
"start": [
1081,
1
]
},
{
"code": "theorem infix_concat : l₁ <:+: l₂ → l₁ <:+: concat l₂ a",
"end": [
1084,
67
],
"full_name": "List.infix_concat",
"kind": "commanddeclaration",
"start": [
1083,
1
]
},
{
"code": "theorem IsPrefix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₂ → l₂ <+: l₃ → l₁ <+: l₃",
"end": [
1087,
75
],
"full_name": "List.IsPrefix.trans",
"kind": "commanddeclaration",
"start": [
1086,
1
]
},
{
"code": "theorem IsSuffix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+ l₂ → l₂ <:+ l₃ → l₁ <:+ l₃",
"end": [
1090,
68
],
"full_name": "List.IsSuffix.trans",
"kind": "commanddeclaration",
"start": [
1089,
1
]
},
{
"code": "theorem IsInfix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+: l₂ → l₂ <:+: l₃ → l₁ <:+: l₃",
"end": [
1093,
95
],
"full_name": "List.IsInfix.trans",
"kind": "commanddeclaration",
"start": [
1092,
1
]
},
{
"code": "protected theorem IsInfix.sublist : l₁ <:+: l₂ → l₁ <+ l₂",
"end": [
1096,
78
],
"full_name": "List.IsInfix.sublist",
"kind": "commanddeclaration",
"start": [
1095,
1
]
},
{
"code": "protected theorem IsInfix.subset (hl : l₁ <:+: l₂) : l₁ ⊆ l₂",
"end": [
1099,
20
],
"full_name": "List.IsInfix.subset",
"kind": "commanddeclaration",
"start": [
1098,
1
]
},
{
"code": "protected theorem IsPrefix.sublist (h : l₁ <+: l₂) : l₁ <+ l₂",
"end": [
1102,
20
],
"full_name": "List.IsPrefix.sublist",
"kind": "commanddeclaration",
"start": [
1101,
1
]
},
{
"code": "protected theorem IsPrefix.subset (hl : l₁ <+: l₂) : l₁ ⊆ l₂",
"end": [
1105,
20
],
"full_name": "List.IsPrefix.subset",
"kind": "commanddeclaration",
"start": [
1104,
1
]
},
{
"code": "protected theorem IsSuffix.sublist (h : l₁ <:+ l₂) : l₁ <+ l₂",
"end": [
1108,
20
],
"full_name": "List.IsSuffix.sublist",
"kind": "commanddeclaration",
"start": [
1107,
1
]
},
{
"code": "protected theorem IsSuffix.subset (hl : l₁ <:+ l₂) : l₁ ⊆ l₂",
"end": [
1111,
20
],
"full_name": "List.IsSuffix.subset",
"kind": "commanddeclaration",
"start": [
1110,
1
]
},
{
"code": "@[simp] theorem reverse_suffix : reverse l₁ <:+ reverse l₂ ↔ l₁ <+: l₂",
"end": [
1115,
59
],
"full_name": "List.reverse_suffix",
"kind": "commanddeclaration",
"start": [
1113,
1
]
},
{
"code": "@[simp] theorem reverse_prefix : reverse l₁ <+: reverse l₂ ↔ l₁ <:+ l₂",
"end": [
1118,
53
],
"full_name": "List.reverse_prefix",
"kind": "commanddeclaration",
"start": [
1117,
1
]
},
{
"code": "@[simp] theorem reverse_infix : reverse l₁ <:+: reverse l₂ ↔ l₁ <:+: l₂",
"end": [
1124,
61
],
"full_name": "List.reverse_infix",
"kind": "commanddeclaration",
"start": [
1120,
1
]
},
{
"code": "theorem IsInfix.length_le (h : l₁ <:+: l₂) : l₁.length ≤ l₂.length",
"end": [
1127,
22
],
"full_name": "List.IsInfix.length_le",
"kind": "commanddeclaration",
"start": [
1126,
1
]
},
{
"code": "theorem IsPrefix.length_le (h : l₁ <+: l₂) : l₁.length ≤ l₂.length",
"end": [
1130,
22
],
"full_name": "List.IsPrefix.length_le",
"kind": "commanddeclaration",
"start": [
1129,
1
]
},
{
"code": "theorem IsSuffix.length_le (h : l₁ <:+ l₂) : l₁.length ≤ l₂.length",
"end": [
1133,
22
],
"full_name": "List.IsSuffix.length_le",
"kind": "commanddeclaration",
"start": [
1132,
1
]
},
{
"code": "@[simp] theorem infix_nil : l <:+: [] ↔ l = []",
"end": [
1135,
98
],
"full_name": "List.infix_nil",
"kind": "commanddeclaration",
"start": [
1135,
1
]
},
{
"code": "@[simp] theorem prefix_nil : l <+: [] ↔ l = []",
"end": [
1137,
99
],
"full_name": "List.prefix_nil",
"kind": "commanddeclaration",
"start": [
1137,
1
]
},
{
"code": "@[simp] theorem suffix_nil : l <:+ [] ↔ l = []",
"end": [
1139,
99
],
"full_name": "List.suffix_nil",
"kind": "commanddeclaration",
"start": [
1139,
1
]
},
{
"code": "theorem infix_iff_prefix_suffix (l₁ l₂ : List α) : l₁ <:+: l₂ ↔ ∃ t, l₁ <+: t ∧ t <:+ l₂",
"end": [
1143,
60
],
"full_name": "List.infix_iff_prefix_suffix",
"kind": "commanddeclaration",
"start": [
1141,
1
]
},
{
"code": "theorem IsInfix.eq_of_length (h : l₁ <:+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1146,
25
],
"full_name": "List.IsInfix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1145,
1
]
},
{
"code": "theorem IsPrefix.eq_of_length (h : l₁ <+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1149,
25
],
"full_name": "List.IsPrefix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1148,
1
]
},
{
"code": "theorem IsSuffix.eq_of_length (h : l₁ <:+ l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1152,
25
],
"full_name": "List.IsSuffix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1151,
1
]
},
{
"code": "theorem prefix_of_prefix_length_le :\n ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₃ → l₂ <+: l₃ → length l₁ ≤ length l₂ → l₁ <+: l₂",
"end": [
1160,
20
],
"full_name": "List.prefix_of_prefix_length_le",
"kind": "commanddeclaration",
"start": [
1154,
1
]
},
{
"code": "theorem prefix_or_prefix_of_prefix (h₁ : l₁ <+: l₃) (h₂ : l₂ <+: l₃) : l₁ <+: l₂ ∨ l₂ <+: l₁",
"end": [
1164,
39
],
"full_name": "List.prefix_or_prefix_of_prefix",
"kind": "commanddeclaration",
"start": [
1162,
1
]
},
{
"code": "theorem suffix_of_suffix_length_le\n (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) (ll : length l₁ ≤ length l₂) : l₁ <:+ l₂",
"end": [
1169,
90
],
"full_name": "List.suffix_of_suffix_length_le",
"kind": "commanddeclaration",
"start": [
1166,
1
]
},
{
"code": "theorem suffix_or_suffix_of_suffix (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) : l₁ <:+ l₂ ∨ l₂ <:+ l₁",
"end": [
1173,
21
],
"full_name": "List.suffix_or_suffix_of_suffix",
"kind": "commanddeclaration",
"start": [
1171,
1
]
},
{
"code": "theorem suffix_cons_iff : l₁ <:+ a :: l₂ ↔ l₁ = a :: l₂ ∨ l₁ <:+ l₂",
"end": [
1184,
41
],
"full_name": "List.suffix_cons_iff",
"kind": "commanddeclaration",
"start": [
1175,
1
]
},
{
"code": "theorem infix_cons_iff : l₁ <:+: a :: l₂ ↔ l₁ <+: a :: l₂ ∨ l₁ <:+: l₂",
"end": [
1195,
27
],
"full_name": "List.infix_cons_iff",
"kind": "commanddeclaration",
"start": [
1186,
1
]
},
{
"code": "theorem infix_of_mem_join : ∀ {L : List (List α)}, l ∈ L → l <:+: join L",
"end": [
1202,
78
],
"full_name": "List.infix_of_mem_join",
"kind": "commanddeclaration",
"start": [
1197,
1
]
},
{
"code": "theorem prefix_append_right_inj (l) : l ++ l₁ <+: l ++ l₂ ↔ l₁ <+: l₂",
"end": [
1205,
63
],
"full_name": "List.prefix_append_right_inj",
"kind": "commanddeclaration",
"start": [
1204,
1
]
},
{
"code": "@[simp]\ntheorem prefix_cons_inj (a) : a :: l₁ <+: a :: l₂ ↔ l₁ <+: l₂",
"end": [
1209,
30
],
"full_name": "List.prefix_cons_inj",
"kind": "commanddeclaration",
"start": [
1207,
1
]
},
{
"code": "theorem take_prefix (n) (l : List α) : take n l <+: l",
"end": [
1212,
28
],
"full_name": "List.take_prefix",
"kind": "commanddeclaration",
"start": [
1211,
1
]
},
{
"code": "theorem drop_suffix (n) (l : List α) : drop n l <:+ l",
"end": [
1215,
28
],
"full_name": "List.drop_suffix",
"kind": "commanddeclaration",
"start": [
1214,
1
]
},
{
"code": "theorem take_sublist (n) (l : List α) : take n l <+ l",
"end": [
1218,
28
],
"full_name": "List.take_sublist",
"kind": "commanddeclaration",
"start": [
1217,
1
]
},
{
"code": "theorem drop_sublist (n) (l : List α) : drop n l <+ l",
"end": [
1221,
28
],
"full_name": "List.drop_sublist",
"kind": "commanddeclaration",
"start": [
1220,
1
]
},
{
"code": "theorem take_subset (n) (l : List α) : take n l ⊆ l",
"end": [
1224,
28
],
"full_name": "List.take_subset",
"kind": "commanddeclaration",
"start": [
1223,
1
]
},
{
"code": "theorem drop_subset (n) (l : List α) : drop n l ⊆ l",
"end": [
1227,
28
],
"full_name": "List.drop_subset",
"kind": "commanddeclaration",
"start": [
1226,
1
]
},
{
"code": "theorem mem_of_mem_take {l : List α} (h : a ∈ l.take n) : a ∈ l",
"end": [
1230,
20
],
"full_name": "List.mem_of_mem_take",
"kind": "commanddeclaration",
"start": [
1229,
1
]
},
{
"code": "theorem IsPrefix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <+: l₂) :\n l₁.filter p <+: l₂.filter p",
"end": [
1235,
42
],
"full_name": "List.IsPrefix.filter",
"kind": "commanddeclaration",
"start": [
1232,
1
]
},
{
"code": "theorem IsSuffix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+ l₂) :\n l₁.filter p <:+ l₂.filter p",
"end": [
1240,
42
],
"full_name": "List.IsSuffix.filter",
"kind": "commanddeclaration",
"start": [
1237,
1
]
},
{
"code": "theorem IsInfix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+: l₂) :\n l₁.filter p <:+: l₂.filter p",
"end": [
1245,
58
],
"full_name": "List.IsInfix.filter",
"kind": "commanddeclaration",
"start": [
1242,
1
]
},
{
"code": "theorem mem_of_mem_drop {n} {l : List α} (h : a ∈ l.drop n) : a ∈ l",
"end": [
1249,
89
],
"full_name": "List.mem_of_mem_drop",
"kind": "commanddeclaration",
"start": [
1249,
1
]
},
{
"code": "theorem disjoint_take_drop : ∀ {l : List α}, l.Nodup → m ≤ n → Disjoint (l.take m) (l.drop n)",
"end": [
1259,
61
],
"full_name": "List.disjoint_take_drop",
"kind": "commanddeclaration",
"start": [
1251,
1
]
},
{
"code": "@[simp]\ntheorem chain_cons {a b : α} {l : List α} : Chain R a (b :: l) ↔ R a b ∧ Chain R b l",
"end": [
1268,
27
],
"full_name": "List.chain_cons",
"kind": "commanddeclaration",
"start": [
1265,
1
]
},
{
"code": "theorem rel_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : R a b",
"end": [
1271,
21
],
"full_name": "List.rel_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1270,
1
]
},
{
"code": "theorem chain_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : Chain R b l",
"end": [
1274,
21
],
"full_name": "List.chain_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1273,
1
]
},
{
"code": "theorem Chain.imp' {R S : α → α → Prop} (HRS : ∀ ⦃a b⦄, R a b → S a b) {a b : α}\n (Hab : ∀ ⦃c⦄, R a c → S b c) {l : List α} (p : Chain R a l) : Chain S b l",
"end": [
1283,
24
],
"full_name": "List.Chain.imp'",
"kind": "commanddeclaration",
"start": [
1276,
1
]
},
{
"code": "theorem Chain.imp {R S : α → α → Prop} (H : ∀ a b, R a b → S a b) {a : α} {l : List α}\n (p : Chain R a l) : Chain S a l",
"end": [
1287,
17
],
"full_name": "List.Chain.imp",
"kind": "commanddeclaration",
"start": [
1285,
1
]
},
{
"code": "protected theorem Pairwise.chain (p : Pairwise R (a :: l)) : Chain R a l",
"end": [
1295,
36
],
"full_name": "List.Pairwise.chain",
"kind": "commanddeclaration",
"start": [
1289,
1
]
},
{
"code": "theorem range'_succ (s n step) : range' s (n + 1) step = s :: range' (s + step) n step",
"end": [
1300,
44
],
"full_name": "List.range'_succ",
"kind": "commanddeclaration",
"start": [
1299,
1
]
},
{
"code": "@[simp] theorem length_range' (s step) : ∀ n : Nat, length (range' s n step) = n",
"end": [
1304,
49
],
"full_name": "List.length_range'",
"kind": "commanddeclaration",
"start": [
1302,
1
]
},
{
"code": "@[simp] theorem range'_eq_nil : range' s n step = [] ↔ n = 0",
"end": [
1307,
39
],
"full_name": "List.range'_eq_nil",
"kind": "commanddeclaration",
"start": [
1306,
1
]
},
{
"code": "theorem mem_range' : ∀{n}, m ∈ range' s n step ↔ ∃ i < n, m = s + step * i",
"end": [
1314,
71
],
"full_name": "List.mem_range'",
"kind": "commanddeclaration",
"start": [
1309,
1
]
},
{
"code": "@[simp] theorem mem_range'_1 : m ∈ range' s n ↔ s ≤ m ∧ m < s + n",
"end": [
1319,
93
],
"full_name": "List.mem_range'_1",
"kind": "commanddeclaration",
"start": [
1316,
1
]
},
{
"code": "@[simp]\ntheorem map_add_range' (a) : ∀ s n step, map (a + ·) (range' s n step) = range' (a + s) n step",
"end": [
1324,
90
],
"full_name": "List.map_add_range'",
"kind": "commanddeclaration",
"start": [
1321,
1
]
},
{
"code": "theorem map_sub_range' (a s n : Nat) (h : a ≤ s) :\n map (· - a) (range' s n step) = range' (s - a) n step",
"end": [
1330,
42
],
"full_name": "List.map_sub_range'",
"kind": "commanddeclaration",
"start": [
1326,
1
]
},
{
"code": "theorem chain_succ_range' : ∀ s n step : Nat,\n Chain (fun a b => b = a + step) s (range' (s + step) n step)",
"end": [
1335,
69
],
"full_name": "List.chain_succ_range'",
"kind": "commanddeclaration",
"start": [
1332,
1
]
},
{
"code": "theorem chain_lt_range' (s n : Nat) {step} (h : 0 < step) :\n Chain (· < ·) s (range' (s + step) n step)",
"end": [
1339,
83
],
"full_name": "List.chain_lt_range'",
"kind": "commanddeclaration",
"start": [
1337,
1
]
},
{
"code": "theorem range'_append : ∀ s m n step : Nat,\n range' s m step ++ range' (s + step * m) n step = range' s (n + m) step",
"end": [
1346,
46
],
"full_name": "List.range'_append",
"kind": "commanddeclaration",
"start": [
1341,
1
]
},
{
"code": "@[simp] theorem range'_append_1 (s m n : Nat) :\n range' s m ++ range' (s + m) n = range' s (n + m)",
"end": [
1349,
94
],
"full_name": "List.range'_append_1",
"kind": "commanddeclaration",
"start": [
1348,
1
]
},
{
"code": "theorem range'_sublist_right {s m n : Nat} : range' s m step <+ range' s n step ↔ m ≤ n",
"end": [
1353,
88
],
"full_name": "List.range'_sublist_right",
"kind": "commanddeclaration",
"start": [
1351,
1
]
},
{
"code": "theorem range'_subset_right {s m n : Nat} (step0 : 0 < step) :\n range' s m step ⊆ range' s n step ↔ m ≤ n",
"end": [
1359,
82
],
"full_name": "List.range'_subset_right",
"kind": "commanddeclaration",
"start": [
1355,
1
]
},
{
"code": "theorem range'_subset_right_1 {s m n : Nat} : range' s m ⊆ range' s n ↔ m ≤ n",
"end": [
1362,
34
],
"full_name": "List.range'_subset_right_1",
"kind": "commanddeclaration",
"start": [
1361,
1
]
},
{
"code": "theorem getElem?_range' (s step) :\n ∀ {m n : Nat}, m < n → (range' s n step)[m]? = some (s + step * m)",
"end": [
1370,
55
],
"full_name": "List.getElem?_range'",
"kind": "commanddeclaration",
"start": [
1364,
1
]
},
{
"code": "@[simp] theorem getElem_range' {n m step} (i) (H : i < (range' n m step).length) :\n (range' n m step)[i] = n + step * i",
"end": [
1374,
70
],
"full_name": "List.getElem_range'",
"kind": "commanddeclaration",
"start": [
1372,
1
]
},
{
"code": "@[deprecated getElem?_range' (since := \"2024-06-12\")]\ntheorem get?_range' (s step) {m n : Nat} (h : m < n) :\n get? (range' s n step) m = some (s + step * m)",
"end": [
1379,
11
],
"full_name": "List.get?_range'",
"kind": "commanddeclaration",
"start": [
1376,
1
]
},
{
"code": "@[deprecated getElem_range' (since := \"2024-06-12\")]\ntheorem get_range' {n m step} (i) (H : i < (range' n m step).length) :\n get (range' n m step) ⟨i, H⟩ = n + step * i",
"end": [
1384,
7
],
"full_name": "List.get_range'",
"kind": "commanddeclaration",
"start": [
1381,
1
]
},
{
"code": "theorem range'_concat (s n : Nat) : range' s (n + 1) step = range' s n step ++ [s + step * n]",
"end": [
1387,
63
],
"full_name": "List.range'_concat",
"kind": "commanddeclaration",
"start": [
1386,
1
]
},
{
"code": "theorem range'_1_concat (s n : Nat) : range' s (n + 1) = range' s n ++ [s + n]",
"end": [
1390,
23
],
"full_name": "List.range'_1_concat",
"kind": "commanddeclaration",
"start": [
1389,
1
]
},
{
"code": "theorem range_loop_range' : ∀ s n : Nat, range.loop s (range' s n) = range' 0 (n + s)",
"end": [
1394,
101
],
"full_name": "List.range_loop_range'",
"kind": "commanddeclaration",
"start": [
1392,
1
]
},
{
"code": "theorem range_eq_range' (n : Nat) : range n = range' 0 n",
"end": [
1397,
56
],
"full_name": "List.range_eq_range'",
"kind": "commanddeclaration",
"start": [
1396,
1
]
},
{
"code": "theorem range_succ_eq_map (n : Nat) : range (n + 1) = 0 :: map succ (range n)",
"end": [
1401,
30
],
"full_name": "List.range_succ_eq_map",
"kind": "commanddeclaration",
"start": [
1399,
1
]
},
{
"code": "theorem range'_eq_map_range (s n : Nat) : range' s n = map (s + ·) (range n)",
"end": [
1404,
44
],
"full_name": "List.range'_eq_map_range",
"kind": "commanddeclaration",
"start": [
1403,
1
]
},
{
"code": "@[simp] theorem length_range (n : Nat) : length (range n) = n",
"end": [
1407,
45
],
"full_name": "List.length_range",
"kind": "commanddeclaration",
"start": [
1406,
1
]
},
{
"code": "@[simp] theorem range_eq_nil {n : Nat} : range n = [] ↔ n = 0",
"end": [
1410,
38
],
"full_name": "List.range_eq_nil",
"kind": "commanddeclaration",
"start": [
1409,
1
]
},
{
"code": "@[simp]\ntheorem range_sublist {m n : Nat} : range m <+ range n ↔ m ≤ n",
"end": [
1414,
52
],
"full_name": "List.range_sublist",
"kind": "commanddeclaration",
"start": [
1412,
1
]
},
{
"code": "@[simp]\ntheorem range_subset {m n : Nat} : range m ⊆ range n ↔ m ≤ n",
"end": [
1418,
65
],
"full_name": "List.range_subset",
"kind": "commanddeclaration",
"start": [
1416,
1
]
},
{
"code": "@[simp]\ntheorem mem_range {m n : Nat} : m ∈ range n ↔ m < n",
"end": [
1422,
81
],
"full_name": "List.mem_range",
"kind": "commanddeclaration",
"start": [
1420,
1
]
},
{
"code": "theorem not_mem_range_self {n : Nat} : n ∉ range n",
"end": [
1424,
62
],
"full_name": "List.not_mem_range_self",
"kind": "commanddeclaration",
"start": [
1424,
1
]
},
{
"code": "theorem self_mem_range_succ (n : Nat) : n ∈ range (n + 1)",
"end": [
1426,
69
],
"full_name": "List.self_mem_range_succ",
"kind": "commanddeclaration",
"start": [
1426,
1
]
},
{
"code": "theorem getElem?_range {m n : Nat} (h : m < n) : (range n)[m]? = some m",
"end": [
1429,
48
],
"full_name": "List.getElem?_range",
"kind": "commanddeclaration",
"start": [
1428,
1
]
},
{
"code": "@[simp] theorem getElem_range {n : Nat} (m) (h : m < (range n).length) : (range n)[m] = m",
"end": [
1432,
25
],
"full_name": "List.getElem_range",
"kind": "commanddeclaration",
"start": [
1431,
1
]
},
{
"code": "@[deprecated getElem?_range (since := \"2024-06-12\")]\ntheorem get?_range {m n : Nat} (h : m < n) : get? (range n) m = some m",
"end": [
1436,
27
],
"full_name": "List.get?_range",
"kind": "commanddeclaration",
"start": [
1434,
1
]
},
{
"code": "@[deprecated getElem_range (since := \"2024-06-12\")]\ntheorem get_range {n} (i) (H : i < (range n).length) : get (range n) ⟨i, H⟩ = i",
"end": [
1440,
7
],
"full_name": "List.get_range",
"kind": "commanddeclaration",
"start": [
1438,
1
]
},
{
"code": "theorem range_succ (n : Nat) : range (succ n) = range n ++ [n]",
"end": [
1443,
61
],
"full_name": "List.range_succ",
"kind": "commanddeclaration",
"start": [
1442,
1
]
},
{
"code": "theorem range_add (a b : Nat) : range (a + b) = range a ++ (range b).map (a + ·)",
"end": [
1447,
75
],
"full_name": "List.range_add",
"kind": "commanddeclaration",
"start": [
1445,
1
]
},
{
"code": "theorem iota_eq_reverse_range' : ∀ n : Nat, iota n = reverse (range' 1 n)",
"end": [
1451,
99
],
"full_name": "List.iota_eq_reverse_range'",
"kind": "commanddeclaration",
"start": [
1449,
1
]
},
{
"code": "@[simp] theorem length_iota (n : Nat) : length (iota n) = n",
"end": [
1453,
96
],
"full_name": "List.length_iota",
"kind": "commanddeclaration",
"start": [
1453,
1
]
},
{
"code": "@[simp]\ntheorem mem_iota {m n : Nat} : m ∈ iota n ↔ 1 ≤ m ∧ m ≤ n",
"end": [
1457,
59
],
"full_name": "List.mem_iota",
"kind": "commanddeclaration",
"start": [
1455,
1
]
},
{
"code": "theorem reverse_range' : ∀ s n : Nat, reverse (range' s n) = map (s + n - 1 - ·) (range n)",
"end": [
1464,
59
],
"full_name": "List.reverse_range'",
"kind": "commanddeclaration",
"start": [
1459,
1
]
},
{
"code": "@[simp] theorem enumFrom_map_fst (n) :\n ∀ (l : List α), map Prod.fst (enumFrom n l) = range' n l.length",
"end": [
1472,
55
],
"full_name": "List.enumFrom_map_fst",
"kind": "commanddeclaration",
"start": [
1469,
1
]
},
{
"code": "@[simp] theorem enum_map_fst (l : List α) : map Prod.fst (enum l) = range l.length",
"end": [
1475,
54
],
"full_name": "List.enum_map_fst",
"kind": "commanddeclaration",
"start": [
1474,
1
]
},
{
"code": "theorem foldrIdx_start :\n (xs : List α).foldrIdx f i s = (xs : List α).foldrIdx (fun i => f (i + s)) i",
"end": [
1487,
43
],
"full_name": "List.foldrIdx_start",
"kind": "commanddeclaration",
"start": [
1479,
1
]
},
{
"code": "@[simp] theorem foldrIdx_cons :\n (x :: xs : List α).foldrIdx f i s = f s x (foldrIdx f i xs (s + 1))",
"end": [
1490,
79
],
"full_name": "List.foldrIdx_cons",
"kind": "commanddeclaration",
"start": [
1489,
1
]
},
{
"code": "theorem findIdxs_cons_aux (p : α → Bool) :\n foldrIdx (fun i a is => if p a = true then (i + 1) :: is else is) [] xs s =\n map (· + 1) (foldrIdx (fun i a is => if p a = true then i :: is else is) [] xs s)",
"end": [
1499,
24
],
"full_name": "List.findIdxs_cons_aux",
"kind": "commanddeclaration",
"start": [
1492,
1
]
},
{
"code": "theorem findIdxs_cons :\n (x :: xs : List α).findIdxs p =\n bif p x then 0 :: (xs.findIdxs p).map (· + 1) else (xs.findIdxs p).map (· + 1)",
"end": [
1508,
28
],
"full_name": "List.findIdxs_cons",
"kind": "commanddeclaration",
"start": [
1501,
1
]
},
{
"code": "@[simp] theorem indexesOf_nil [BEq α] : ([] : List α).indexesOf x = []",
"end": [
1510,
78
],
"full_name": "List.indexesOf_nil",
"kind": "commanddeclaration",
"start": [
1510,
1
]
},
{
"code": "theorem indexesOf_cons [BEq α] : (x :: xs : List α).indexesOf y =\n bif x == y then 0 :: (xs.indexesOf y).map (· + 1) else (xs.indexesOf y).map (· + 1)",
"end": [
1514,
34
],
"full_name": "List.indexesOf_cons",
"kind": "commanddeclaration",
"start": [
1512,
1
]
},
{
"code": "@[simp] theorem indexOf_nil [BEq α] : ([] : List α).indexOf x = 0",
"end": [
1516,
73
],
"full_name": "List.indexOf_nil",
"kind": "commanddeclaration",
"start": [
1516,
1
]
},
{
"code": "theorem indexOf_cons [BEq α] :\n (x :: xs : List α).indexOf y = bif x == y then 0 else xs.indexOf y + 1",
"end": [
1521,
22
],
"full_name": "List.indexOf_cons",
"kind": "commanddeclaration",
"start": [
1518,
1
]
},
{
"code": "theorem indexOf_mem_indexesOf [BEq α] [LawfulBEq α] {xs : List α} (m : x ∈ xs) :\n xs.indexOf x ∈ xs.indexesOf x",
"end": [
1535,
14
],
"full_name": "List.indexOf_mem_indexesOf",
"kind": "commanddeclaration",
"start": [
1523,
1
]
},
{
"code": "theorem merge_loop_nil_left (s : α → α → Bool) (r t) :\n merge.loop s [] r t = reverseAux t r",
"end": [
1539,
18
],
"full_name": "List.merge_loop_nil_left",
"kind": "commanddeclaration",
"start": [
1537,
1
]
},
{
"code": "theorem merge_loop_nil_right (s : α → α → Bool) (l t) :\n merge.loop s l [] t = reverseAux t l",
"end": [
1543,
52
],
"full_name": "List.merge_loop_nil_right",
"kind": "commanddeclaration",
"start": [
1541,
1
]
},
{
"code": "theorem merge_loop (s : α → α → Bool) (l r t) :\n merge.loop s l r t = reverseAux t (merge s l r)",
"end": [
1567,
64
],
"full_name": "List.merge_loop",
"kind": "commanddeclaration",
"start": [
1545,
1
]
},
{
"code": "@[simp] theorem merge_nil (s : α → α → Bool) (l) : merge s l [] = l",
"end": [
1569,
95
],
"full_name": "List.merge_nil",
"kind": "commanddeclaration",
"start": [
1569,
1
]
},
{
"code": "@[simp] theorem nil_merge (s : α → α → Bool) (r) : merge s [] r = r",
"end": [
1571,
94
],
"full_name": "List.nil_merge",
"kind": "commanddeclaration",
"start": [
1571,
1
]
},
{
"code": "theorem cons_merge_cons (s : α → α → Bool) (a b l r) :\n merge s (a::l) (b::r) = if s a b then a :: merge s l (b::r) else b :: merge s (a::l) r",
"end": [
1575,
87
],
"full_name": "List.cons_merge_cons",
"kind": "commanddeclaration",
"start": [
1573,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_pos (s : α → α → Bool) (l r) (h : s a b) :\n merge s (a::l) (b::r) = a :: merge s l (b::r)",
"end": [
1579,
33
],
"full_name": "List.cons_merge_cons_pos",
"kind": "commanddeclaration",
"start": [
1577,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_neg (s : α → α → Bool) (l r) (h : ¬ s a b) :\n merge s (a::l) (b::r) = b :: merge s (a::l) r",
"end": [
1583,
33
],
"full_name": "List.cons_merge_cons_neg",
"kind": "commanddeclaration",
"start": [
1581,
1
]
},
{
"code": "@[simp] theorem length_merge (s : α → α → Bool) (l r) :\n (merge s l r).length = l.length + r.length",
"end": [
1594,
43
],
"full_name": "List.length_merge",
"kind": "commanddeclaration",
"start": [
1585,
1
]
},
{
"code": "@[simp]\ntheorem mem_merge {s : α → α → Bool} : x ∈ merge s l r ↔ x ∈ l ∨ x ∈ r",
"end": [
1605,
68
],
"full_name": "List.mem_merge",
"kind": "commanddeclaration",
"start": [
1596,
1
]
},
{
"code": "theorem mem_merge_left (s : α → α → Bool) (h : x ∈ l) : x ∈ merge s l r",
"end": [
1608,
24
],
"full_name": "List.mem_merge_left",
"kind": "commanddeclaration",
"start": [
1607,
1
]
},
{
"code": "theorem mem_merge_right (s : α → α → Bool) (h : x ∈ r) : x ∈ merge s l r",
"end": [
1611,
24
],
"full_name": "List.mem_merge_right",
"kind": "commanddeclaration",
"start": [
1610,
1
]
}
] | 327 | List.mem_merge | [
[
1597,
75
],
[
1605,
68
]
] | 5 | 9 | · simp [mem_merge (l := l) (r := b::r), or_assoc] | case isTrue
α : Type u_1
x : α
l✝ r✝ : List α
s : α → α → Bool
a : α
l : List α
b : α
r : List α
h✝ : s a b = true
⊢ x ∈ a :: merge s l (b :: r) ↔ x ∈ a :: l ∨ x ∈ b :: r
case isFalse
α : Type u_1
x : α
l✝ r✝ : List α
s : α → α → Bool
a : α
l : List α
b : α
r : List α
h✝ : ¬s a b = true
⊢ x ∈ b :: merge s (a :: l) r ↔ x ∈ a :: l ∨ x ∈ b :: r | case isFalse
α : Type u_1
x : α
l✝ r✝ : List α
s : α → α → Bool
a : α
l : List α
b : α
r : List α
h✝ : ¬s a b = true
⊢ x ∈ b :: merge s (a :: l) r ↔ x ∈ a :: l ∨ x ∈ b :: r |
.lake/packages/batteries/Batteries/Data/List/Lemmas.lean | [
[
"Batteries.Tactic.Alias",
".lake/packages/batteries/Batteries/Tactic/Alias.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
],
[
"Batteries.Control.ForInStep.Lemmas",
".lake/packages/batteries/Batteries/Control/ForInStep/Lemmas.lean"
],
[
"Batteries.Tactic.Init",
".lake/packages/batteries/Batteries/Tactic/Init.lean"
],
[
"Batteries.Data.List.Basic",
".lake/packages/batteries/Batteries/Data/List/Basic.lean"
]
] | [
{
"code": "@[simp] theorem mem_toArray {a : α} {l : List α} : a ∈ l.toArray ↔ a ∈ l",
"end": [
18,
23
],
"full_name": "List.mem_toArray",
"kind": "commanddeclaration",
"start": [
17,
1
]
},
{
"code": "@[simp]\ntheorem drop_one : ∀ l : List α, drop 1 l = tail l",
"end": [
24,
23
],
"full_name": "List.drop_one",
"kind": "commanddeclaration",
"start": [
22,
1
]
},
{
"code": "theorem zipWith_distrib_tail : (zipWith f l l').tail = zipWith f l.tail l'.tail",
"end": [
29,
47
],
"full_name": "List.zipWith_distrib_tail",
"kind": "commanddeclaration",
"start": [
28,
1
]
},
{
"code": "theorem subset_def {l₁ l₂ : List α} : l₁ ⊆ l₂ ↔ ∀ {a : α}, a ∈ l₁ → a ∈ l₂",
"end": [
33,
83
],
"full_name": "List.subset_def",
"kind": "commanddeclaration",
"start": [
33,
1
]
},
{
"code": "@[simp] theorem nil_subset (l : List α) : [] ⊆ l",
"end": [
35,
58
],
"full_name": "List.nil_subset",
"kind": "commanddeclaration",
"start": [
35,
1
]
},
{
"code": "@[simp] theorem Subset.refl (l : List α) : l ⊆ l",
"end": [
37,
65
],
"full_name": "List.Subset.refl",
"kind": "commanddeclaration",
"start": [
37,
1
]
},
{
"code": "theorem Subset.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ ⊆ l₂) (h₂ : l₂ ⊆ l₃) : l₁ ⊆ l₃",
"end": [
40,
23
],
"full_name": "List.Subset.trans",
"kind": "commanddeclaration",
"start": [
39,
1
]
},
{
"code": "@[simp] theorem subset_cons (a : α) (l : List α) : l ⊆ a :: l",
"end": [
48,
85
],
"full_name": "List.subset_cons",
"kind": "commanddeclaration",
"start": [
48,
1
]
},
{
"code": "theorem subset_of_cons_subset {a : α} {l₁ l₂ : List α} : a :: l₁ ⊆ l₂ → l₁ ⊆ l₂",
"end": [
51,
39
],
"full_name": "List.subset_of_cons_subset",
"kind": "commanddeclaration",
"start": [
50,
1
]
},
{
"code": "theorem subset_cons_of_subset (a : α) {l₁ l₂ : List α} : l₁ ⊆ l₂ → l₁ ⊆ a :: l₂",
"end": [
54,
29
],
"full_name": "List.subset_cons_of_subset",
"kind": "commanddeclaration",
"start": [
53,
1
]
},
{
"code": "theorem cons_subset_cons {l₁ l₂ : List α} (a : α) (s : l₁ ⊆ l₂) : a :: l₁ ⊆ a :: l₂",
"end": [
57,
62
],
"full_name": "List.cons_subset_cons",
"kind": "commanddeclaration",
"start": [
56,
1
]
},
{
"code": "@[simp] theorem subset_append_left (l₁ l₂ : List α) : l₁ ⊆ l₁ ++ l₂",
"end": [
59,
98
],
"full_name": "List.subset_append_left",
"kind": "commanddeclaration",
"start": [
59,
1
]
},
{
"code": "@[simp] theorem subset_append_right (l₁ l₂ : List α) : l₂ ⊆ l₁ ++ l₂",
"end": [
61,
100
],
"full_name": "List.subset_append_right",
"kind": "commanddeclaration",
"start": [
61,
1
]
},
{
"code": "theorem subset_append_of_subset_left (l₂ : List α) : l ⊆ l₁ → l ⊆ l₁ ++ l₂",
"end": [
64,
50
],
"full_name": "List.subset_append_of_subset_left",
"kind": "commanddeclaration",
"start": [
63,
1
]
},
{
"code": "theorem subset_append_of_subset_right (l₁ : List α) : l ⊆ l₂ → l ⊆ l₁ ++ l₂",
"end": [
67,
51
],
"full_name": "List.subset_append_of_subset_right",
"kind": "commanddeclaration",
"start": [
66,
1
]
},
{
"code": "@[simp] theorem cons_subset : a :: l ⊆ m ↔ a ∈ m ∧ l ⊆ m",
"end": [
70,
66
],
"full_name": "List.cons_subset",
"kind": "commanddeclaration",
"start": [
69,
1
]
},
{
"code": "@[simp] theorem append_subset {l₁ l₂ l : List α} :\n l₁ ++ l₂ ⊆ l ↔ l₁ ⊆ l ∧ l₂ ⊆ l",
"end": [
73,
79
],
"full_name": "List.append_subset",
"kind": "commanddeclaration",
"start": [
72,
1
]
},
{
"code": "theorem subset_nil {l : List α} : l ⊆ [] ↔ l = []",
"end": [
76,
99
],
"full_name": "List.subset_nil",
"kind": "commanddeclaration",
"start": [
75,
1
]
},
{
"code": "theorem map_subset {l₁ l₂ : List α} (f : α → β) (H : l₁ ⊆ l₂) : map f l₁ ⊆ map f l₂",
"end": [
79,
72
],
"full_name": "List.map_subset",
"kind": "commanddeclaration",
"start": [
78,
1
]
},
{
"code": "@[simp] theorem nil_sublist : ∀ l : List α, [] <+ l",
"end": [
85,
37
],
"full_name": "List.nil_sublist",
"kind": "commanddeclaration",
"start": [
83,
1
]
},
{
"code": "@[simp] theorem Sublist.refl : ∀ l : List α, l <+ l",
"end": [
89,
39
],
"full_name": "List.Sublist.refl",
"kind": "commanddeclaration",
"start": [
87,
1
]
},
{
"code": "theorem Sublist.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ <+ l₂) (h₂ : l₂ <+ l₃) : l₁ <+ l₃",
"end": [
100,
53
],
"full_name": "List.Sublist.trans",
"kind": "commanddeclaration",
"start": [
91,
1
]
},
{
"code": "@[simp] theorem sublist_cons (a : α) (l : List α) : l <+ a :: l",
"end": [
104,
91
],
"full_name": "List.sublist_cons",
"kind": "commanddeclaration",
"start": [
104,
1
]
},
{
"code": "theorem sublist_of_cons_sublist : a :: l₁ <+ l₂ → l₁ <+ l₂",
"end": [
107,
28
],
"full_name": "List.sublist_of_cons_sublist",
"kind": "commanddeclaration",
"start": [
106,
1
]
},
{
"code": "@[simp] theorem sublist_append_left : ∀ l₁ l₂ : List α, l₁ <+ l₁ ++ l₂",
"end": [
111,
55
],
"full_name": "List.sublist_append_left",
"kind": "commanddeclaration",
"start": [
109,
1
]
},
{
"code": "@[simp] theorem sublist_append_right : ∀ l₁ l₂ : List α, l₂ <+ l₁ ++ l₂",
"end": [
115,
55
],
"full_name": "List.sublist_append_right",
"kind": "commanddeclaration",
"start": [
113,
1
]
},
{
"code": "theorem sublist_append_of_sublist_left (s : l <+ l₁) : l <+ l₁ ++ l₂",
"end": [
118,
36
],
"full_name": "List.sublist_append_of_sublist_left",
"kind": "commanddeclaration",
"start": [
117,
1
]
},
{
"code": "theorem sublist_append_of_sublist_right (s : l <+ l₂) : l <+ l₁ ++ l₂",
"end": [
121,
37
],
"full_name": "List.sublist_append_of_sublist_right",
"kind": "commanddeclaration",
"start": [
120,
1
]
},
{
"code": "@[simp]\ntheorem cons_sublist_cons : a :: l₁ <+ a :: l₂ ↔ l₁ <+ l₂",
"end": [
125,
77
],
"full_name": "List.cons_sublist_cons",
"kind": "commanddeclaration",
"start": [
123,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_left : ∀ l, l ++ l₁ <+ l ++ l₂ ↔ l₁ <+ l₂",
"end": [
129,
69
],
"full_name": "List.append_sublist_append_left",
"kind": "commanddeclaration",
"start": [
127,
1
]
},
{
"code": "theorem Sublist.append_left : l₁ <+ l₂ → ∀ l, l ++ l₁ <+ l ++ l₂",
"end": [
132,
50
],
"full_name": "List.Sublist.append_left",
"kind": "commanddeclaration",
"start": [
131,
1
]
},
{
"code": "theorem Sublist.append_right : l₁ <+ l₂ → ∀ l, l₁ ++ l <+ l₂ ++ l",
"end": [
137,
48
],
"full_name": "List.Sublist.append_right",
"kind": "commanddeclaration",
"start": [
134,
1
]
},
{
"code": "theorem sublist_or_mem_of_sublist (h : l <+ l₁ ++ a :: l₂) : l <+ l₁ ++ l₂ ∨ a ∈ l",
"end": [
147,
65
],
"full_name": "List.sublist_or_mem_of_sublist",
"kind": "commanddeclaration",
"start": [
139,
1
]
},
{
"code": "theorem Sublist.reverse : l₁ <+ l₂ → l₁.reverse <+ l₂.reverse",
"end": [
152,
85
],
"full_name": "List.Sublist.reverse",
"kind": "commanddeclaration",
"start": [
149,
1
]
},
{
"code": "@[simp] theorem reverse_sublist : l₁.reverse <+ l₂.reverse ↔ l₁ <+ l₂",
"end": [
155,
82
],
"full_name": "List.reverse_sublist",
"kind": "commanddeclaration",
"start": [
154,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_right (l) : l₁ ++ l <+ l₂ ++ l ↔ l₁ <+ l₂",
"end": [
162,
30
],
"full_name": "List.append_sublist_append_right",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "theorem Sublist.append (hl : l₁ <+ l₂) (hr : r₁ <+ r₂) : l₁ ++ r₁ <+ l₂ ++ r₂",
"end": [
165,
66
],
"full_name": "List.Sublist.append",
"kind": "commanddeclaration",
"start": [
164,
1
]
},
{
"code": "theorem Sublist.subset : l₁ <+ l₂ → l₁ ⊆ l₂",
"end": [
171,
53
],
"full_name": "List.Sublist.subset",
"kind": "commanddeclaration",
"start": [
167,
1
]
},
{
"code": "theorem Sublist.length_le : l₁ <+ l₂ → length l₁ ≤ length l₂",
"end": [
185,
45
],
"full_name": "List.Sublist.length_le",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "@[simp] theorem sublist_nil {l : List α} : l <+ [] ↔ l = []",
"end": [
188,
64
],
"full_name": "List.sublist_nil",
"kind": "commanddeclaration",
"start": [
187,
1
]
},
{
"code": "theorem Sublist.eq_of_length : l₁ <+ l₂ → length l₁ = length l₂ → l₁ = l₂",
"end": [
193,
57
],
"full_name": "List.Sublist.eq_of_length",
"kind": "commanddeclaration",
"start": [
190,
1
]
},
{
"code": "theorem Sublist.eq_of_length_le (s : l₁ <+ l₂) (h : length l₂ ≤ length l₁) : l₁ = l₂",
"end": [
196,
50
],
"full_name": "List.Sublist.eq_of_length_le",
"kind": "commanddeclaration",
"start": [
195,
1
]
},
{
"code": "@[simp] theorem singleton_sublist {a : α} {l} : [a] <+ l ↔ a ∈ l",
"end": [
201,
66
],
"full_name": "List.singleton_sublist",
"kind": "commanddeclaration",
"start": [
198,
1
]
},
{
"code": "@[simp] theorem replicate_sublist_replicate {m n} (a : α) :\n replicate m a <+ replicate n a ↔ m ≤ n",
"end": [
209,
48
],
"full_name": "List.replicate_sublist_replicate",
"kind": "commanddeclaration",
"start": [
203,
1
]
},
{
"code": "theorem isSublist_iff_sublist [BEq α] [LawfulBEq α] {l₁ l₂ : List α} :\n l₁.isSublist l₂ ↔ l₁ <+ l₂",
"end": [
228,
24
],
"full_name": "List.isSublist_iff_sublist",
"kind": "commanddeclaration",
"start": [
211,
1
]
},
{
"code": "theorem tail_eq_tailD (l) : @tail α l = tailD l []",
"end": [
235,
73
],
"full_name": "List.tail_eq_tailD",
"kind": "commanddeclaration",
"start": [
235,
1
]
},
{
"code": "theorem tail_eq_tail? (l) : @tail α l = (tail? l).getD []",
"end": [
237,
85
],
"full_name": "List.tail_eq_tail?",
"kind": "commanddeclaration",
"start": [
237,
1
]
},
{
"code": "@[simp] theorem next?_nil : @next? α [] = none",
"end": [
241,
54
],
"full_name": "List.next?_nil",
"kind": "commanddeclaration",
"start": [
241,
1
]
},
{
"code": "@[simp] theorem next?_cons (a l) : @next? α (a :: l) = some (a, l)",
"end": [
242,
74
],
"full_name": "List.next?_cons",
"kind": "commanddeclaration",
"start": [
242,
1
]
},
{
"code": "theorem getElem_eq_iff {l : List α} {n : Nat} {h : n < l.length} : l[n] = x ↔ l[n]? = some x",
"end": [
248,
40
],
"full_name": "List.getElem_eq_iff",
"kind": "commanddeclaration",
"start": [
246,
1
]
},
{
"code": "@[deprecated getElem_eq_iff (since := \"2024-06-12\")]\ntheorem get_eq_iff : List.get l n = x ↔ l.get? n.1 = some x",
"end": [
252,
7
],
"full_name": "List.get_eq_iff",
"kind": "commanddeclaration",
"start": [
250,
1
]
},
{
"code": "theorem getElem?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs[i]? = xs[j]?) : i = j",
"end": [
273,
39
],
"full_name": "List.getElem?_inj",
"kind": "commanddeclaration",
"start": [
254,
1
]
},
{
"code": "@[deprecated getElem?_inj (since := \"2024-06-12\")]\ntheorem get?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs.get? i = xs.get? j) : i = j",
"end": [
279,
11
],
"full_name": "List.get?_inj",
"kind": "commanddeclaration",
"start": [
275,
1
]
},
{
"code": "theorem tail_drop (l : List α) (n : Nat) : (l.drop n).tail = l.drop (n + 1)",
"end": [
289,
16
],
"full_name": "List.tail_drop",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "@[simp] theorem modifyNth_nil (f : α → α) (n) : [].modifyNth f n = []",
"end": [
293,
92
],
"full_name": "List.modifyNth_nil",
"kind": "commanddeclaration",
"start": [
293,
1
]
},
{
"code": "@[simp] theorem modifyNth_zero_cons (f : α → α) (a : α) (l : List α) :\n (a :: l).modifyNth f 0 = f a :: l",
"end": [
296,
45
],
"full_name": "List.modifyNth_zero_cons",
"kind": "commanddeclaration",
"start": [
295,
1
]
},
{
"code": "@[simp] theorem modifyNth_succ_cons (f : α → α) (a : α) (l : List α) (n) :\n (a :: l).modifyNth f (n + 1) = a :: l.modifyNth f n",
"end": [
299,
66
],
"full_name": "List.modifyNth_succ_cons",
"kind": "commanddeclaration",
"start": [
298,
1
]
},
{
"code": "theorem modifyNthTail_id : ∀ n (l : List α), l.modifyNthTail id n = l",
"end": [
304,
60
],
"full_name": "List.modifyNthTail_id",
"kind": "commanddeclaration",
"start": [
301,
1
]
},
{
"code": "theorem eraseIdx_eq_modifyNthTail : ∀ n (l : List α), eraseIdx l n = modifyNthTail tail n l",
"end": [
309,
69
],
"full_name": "List.eraseIdx_eq_modifyNthTail",
"kind": "commanddeclaration",
"start": [
306,
1
]
},
{
"code": "theorem getElem?_modifyNth (f : α → α) :\n ∀ n (l : List α) m, (modifyNth f n l)[m]? = (fun a => if n = m then f a else a) <$> l[m]?",
"end": [
322,
79
],
"full_name": "List.getElem?_modifyNth",
"kind": "commanddeclaration",
"start": [
313,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth (since := \"2024-06-12\")]\ntheorem get?_modifyNth (f : α → α) (n) (l : List α) (m) :\n (modifyNth f n l).get? m = (fun a => if n = m then f a else a) <$> l.get? m",
"end": [
327,
28
],
"full_name": "List.get?_modifyNth",
"kind": "commanddeclaration",
"start": [
324,
1
]
},
{
"code": "theorem modifyNthTail_length (f : List α → List α) (H : ∀ l, length (f l) = length l) :\n ∀ n l, length (modifyNthTail f n l) = length l",
"end": [
333,
65
],
"full_name": "List.modifyNthTail_length",
"kind": "commanddeclaration",
"start": [
329,
1
]
},
{
"code": "theorem modifyNthTail_add (f : List α → List α) (n) (l₁ l₂ : List α) :\n modifyNthTail f (l₁.length + n) (l₁ ++ l₂) = l₁ ++ modifyNthTail f n l₂",
"end": [
337,
42
],
"full_name": "List.modifyNthTail_add",
"kind": "commanddeclaration",
"start": [
335,
1
]
},
{
"code": "theorem exists_of_modifyNthTail (f : List α → List α) {n} {l : List α} (h : n ≤ l.length) :\n ∃ l₁ l₂, l = l₁ ++ l₂ ∧ l₁.length = n ∧ modifyNthTail f n l = l₁ ++ f l₂",
"end": [
343,
58
],
"full_name": "List.exists_of_modifyNthTail",
"kind": "commanddeclaration",
"start": [
339,
1
]
},
{
"code": "@[simp] theorem modify_get?_length (f : α → α) : ∀ n l, length (modifyNth f n l) = length l",
"end": [
346,
53
],
"full_name": "List.modify_get?_length",
"kind": "commanddeclaration",
"start": [
345,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l)[n]? = f <$> l[n]?",
"end": [
350,
41
],
"full_name": "List.getElem?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_eq (since := \"2024-06-12\")]\ntheorem get?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l).get? n = f <$> l.get? n",
"end": [
355,
31
],
"full_name": "List.get?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
352,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l)[n]? = l[n]?",
"end": [
359,
52
],
"full_name": "List.getElem?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
357,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_ne (since := \"2024-06-12\")]\ntheorem get?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l).get? n = l.get? n",
"end": [
364,
11
],
"full_name": "List.get?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
361,
1
]
},
{
"code": "theorem exists_of_modifyNth (f : α → α) {n} {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ modifyNth f n l = l₁ ++ f a :: l₂",
"end": [
370,
74
],
"full_name": "List.exists_of_modifyNth",
"kind": "commanddeclaration",
"start": [
366,
1
]
},
{
"code": "theorem modifyNthTail_eq_take_drop (f : List α → List α) (H : f [] = []) :\n ∀ n l, modifyNthTail f n l = take n l ++ f (drop n l)",
"end": [
376,
76
],
"full_name": "List.modifyNthTail_eq_take_drop",
"kind": "commanddeclaration",
"start": [
372,
1
]
},
{
"code": "theorem modifyNth_eq_take_drop (f : α → α) :\n ∀ n l, modifyNth f n l = take n l ++ modifyHead f (drop n l)",
"end": [
380,
35
],
"full_name": "List.modifyNth_eq_take_drop",
"kind": "commanddeclaration",
"start": [
378,
1
]
},
{
"code": "theorem modifyNth_eq_take_cons_drop (f : α → α) {n l} (h) :\n modifyNth f n l = take n l ++ f l[n] :: drop (n + 1) l",
"end": [
384,
59
],
"full_name": "List.modifyNth_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
382,
1
]
},
{
"code": "theorem set_eq_modifyNth (a : α) : ∀ n (l : List α), set l n a = modifyNth (fun _ => a) n l",
"end": [
391,
62
],
"full_name": "List.set_eq_modifyNth",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "theorem set_eq_take_cons_drop (a : α) {n l} (h : n < length l) :\n set l n a = take n l ++ a :: drop (n + 1) l",
"end": [
395,
57
],
"full_name": "List.set_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
393,
1
]
},
{
"code": "theorem modifyNth_eq_set_get? (f : α → α) :\n ∀ n (l : List α), l.modifyNth f n = ((fun a => l.set n (f a)) <$> l.get? n).getD l",
"end": [
402,
92
],
"full_name": "List.modifyNth_eq_set_get?",
"kind": "commanddeclaration",
"start": [
397,
1
]
},
{
"code": "theorem modifyNth_eq_set_get (f : α → α) {n} {l : List α} (h) :\n l.modifyNth f n = l.set n (f (l.get ⟨n, h⟩))",
"end": [
406,
49
],
"full_name": "List.modifyNth_eq_set_get",
"kind": "commanddeclaration",
"start": [
404,
1
]
},
{
"code": "theorem exists_of_set {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
410,
55
],
"full_name": "List.exists_of_set",
"kind": "commanddeclaration",
"start": [
408,
1
]
},
{
"code": "theorem exists_of_set' {l : List α} (h : n < l.length) :\n ∃ l₁ l₂, l = l₁ ++ l[n] :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
414,
94
],
"full_name": "List.exists_of_set'",
"kind": "commanddeclaration",
"start": [
412,
1
]
},
{
"code": "@[simp]\ntheorem getElem?_set_eq' (a : α) (n) (l : List α) : (set l n a)[n]? = (fun _ => a) <$> l[n]?",
"end": [
418,
54
],
"full_name": "List.getElem?_set_eq'",
"kind": "commanddeclaration",
"start": [
416,
1
]
},
{
"code": "@[deprecated getElem?_set_eq' (since := \"2024-06-12\")]\ntheorem get?_set_eq (a : α) (n) (l : List α) : (set l n a).get? n = (fun _ => a) <$> l.get? n",
"end": [
422,
7
],
"full_name": "List.get?_set_eq",
"kind": "commanddeclaration",
"start": [
420,
1
]
},
{
"code": "theorem getElem?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a)[n]? = some a",
"end": [
425,
85
],
"full_name": "List.getElem?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
424,
1
]
},
{
"code": "@[deprecated getElem?_set_eq_of_lt (since := \"2024-06-12\")]\ntheorem get?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a).get? n = some a",
"end": [
430,
70
],
"full_name": "List.get?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
427,
1
]
},
{
"code": "@[deprecated getElem?_set_ne (since := \"2024-06-12\")]\ntheorem get?_set_ne (a : α) {m n} (l : List α) (h : m ≠ n) : (set l m a).get? n = l.get? n",
"end": [
434,
11
],
"full_name": "List.get?_set_ne",
"kind": "commanddeclaration",
"start": [
432,
1
]
},
{
"code": "theorem getElem?_set' (a : α) {m n} (l : List α) :\n (set l m a)[n]? = if m = n then (fun _ => a) <$> l[n]? else l[n]?",
"end": [
438,
30
],
"full_name": "List.getElem?_set'",
"kind": "commanddeclaration",
"start": [
436,
1
]
},
{
"code": "@[deprecated getElem?_set (since := \"2024-06-12\")]\ntheorem get?_set (a : α) {m n} (l : List α) :\n (set l m a).get? n = if m = n then (fun _ => a) <$> l.get? n else l.get? n",
"end": [
443,
23
],
"full_name": "List.get?_set",
"kind": "commanddeclaration",
"start": [
440,
1
]
},
{
"code": "theorem get?_set_of_lt (a : α) {m n} (l : List α) (h : n < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
447,
46
],
"full_name": "List.get?_set_of_lt",
"kind": "commanddeclaration",
"start": [
445,
1
]
},
{
"code": "theorem get?_set_of_lt' (a : α) {m n} (l : List α) (h : m < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
451,
80
],
"full_name": "List.get?_set_of_lt'",
"kind": "commanddeclaration",
"start": [
449,
1
]
},
{
"code": "theorem drop_set_of_lt (a : α) {n m : Nat} (l : List α) (h : n < m) :\n (l.set n a).drop m = l.drop m",
"end": [
455,
94
],
"full_name": "List.drop_set_of_lt",
"kind": "commanddeclaration",
"start": [
453,
1
]
},
{
"code": "theorem take_set_of_lt (a : α) {n m : Nat} (l : List α) (h : m < n) :\n (l.set n a).take m = l.take m",
"end": [
463,
10
],
"full_name": "List.take_set_of_lt",
"kind": "commanddeclaration",
"start": [
457,
1
]
},
{
"code": "theorem length_eraseIdx : ∀ {l i}, i < length l → length (@eraseIdx α l i) = length l - 1",
"end": [
473,
92
],
"full_name": "List.length_eraseIdx",
"kind": "commanddeclaration",
"start": [
467,
1
]
},
{
"code": "@[simp] theorem length_tail (l : List α) : length (tail l) = length l - 1",
"end": [
479,
96
],
"full_name": "List.length_tail",
"kind": "commanddeclaration",
"start": [
479,
1
]
},
{
"code": "@[simp] theorem eraseP_nil : [].eraseP p = []",
"end": [
483,
53
],
"full_name": "List.eraseP_nil",
"kind": "commanddeclaration",
"start": [
483,
1
]
},
{
"code": "theorem eraseP_cons (a : α) (l : List α) :\n (a :: l).eraseP p = bif p a then l else a :: l.eraseP p",
"end": [
486,
67
],
"full_name": "List.eraseP_cons",
"kind": "commanddeclaration",
"start": [
485,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_pos {l : List α} (p) (h : p a) : (a :: l).eraseP p = l",
"end": [
489,
24
],
"full_name": "List.eraseP_cons_of_pos",
"kind": "commanddeclaration",
"start": [
488,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_neg {l : List α} (p) (h : ¬p a) :\n (a :: l).eraseP p = a :: l.eraseP p",
"end": [
492,
68
],
"full_name": "List.eraseP_cons_of_neg",
"kind": "commanddeclaration",
"start": [
491,
1
]
},
{
"code": "theorem eraseP_of_forall_not {l : List α} (h : ∀ a, a ∈ l → ¬p a) : l.eraseP p = l",
"end": [
497,
69
],
"full_name": "List.eraseP_of_forall_not",
"kind": "commanddeclaration",
"start": [
494,
1
]
},
{
"code": "theorem exists_of_eraseP : ∀ {l : List α} {a} (al : a ∈ l) (pa : p a),\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
510,
57
],
"full_name": "List.exists_of_eraseP",
"kind": "commanddeclaration",
"start": [
499,
1
]
},
{
"code": "theorem exists_or_eq_self_of_eraseP (p) (l : List α) :\n l.eraseP p = l ∨\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
519,
46
],
"full_name": "List.exists_or_eq_self_of_eraseP",
"kind": "commanddeclaration",
"start": [
512,
1
]
},
{
"code": "@[simp] theorem length_eraseP_of_mem (al : a ∈ l) (pa : p a) :\n length (l.eraseP p) = Nat.pred (length l)",
"end": [
524,
41
],
"full_name": "List.length_eraseP_of_mem",
"kind": "commanddeclaration",
"start": [
521,
1
]
},
{
"code": "theorem eraseP_append_left {a : α} (pa : p a) :\n ∀ {l₁ : List α} l₂, a ∈ l₁ → (l₁++l₂).eraseP p = l₁.eraseP p ++ l₂",
"end": [
531,
28
],
"full_name": "List.eraseP_append_left",
"kind": "commanddeclaration",
"start": [
526,
1
]
},
{
"code": "theorem eraseP_append_right :\n ∀ {l₁ : List α} l₂, (∀ b ∈ l₁, ¬p b) → eraseP p (l₁++l₂) = l₁ ++ l₂.eraseP p",
"end": [
537,
82
],
"full_name": "List.eraseP_append_right",
"kind": "commanddeclaration",
"start": [
533,
1
]
},
{
"code": "theorem eraseP_sublist (l : List α) : l.eraseP p <+ l",
"end": [
542,
56
],
"full_name": "List.eraseP_sublist",
"kind": "commanddeclaration",
"start": [
539,
1
]
},
{
"code": "theorem eraseP_subset (l : List α) : l.eraseP p ⊆ l",
"end": [
544,
81
],
"full_name": "List.eraseP_subset",
"kind": "commanddeclaration",
"start": [
544,
1
]
},
{
"code": "protected theorem Sublist.eraseP : l₁ <+ l₂ → l₁.eraseP p <+ l₂.eraseP p",
"end": [
553,
25
],
"full_name": "List.Sublist.eraseP",
"kind": "commanddeclaration",
"start": [
546,
1
]
},
{
"code": "theorem mem_of_mem_eraseP {l : List α} : a ∈ l.eraseP p → a ∈ l",
"end": [
555,
87
],
"full_name": "List.mem_of_mem_eraseP",
"kind": "commanddeclaration",
"start": [
555,
1
]
},
{
"code": "@[simp] theorem mem_eraseP_of_neg {l : List α} (pa : ¬p a) : a ∈ l.eraseP p ↔ a ∈ l",
"end": [
564,
33
],
"full_name": "List.mem_eraseP_of_neg",
"kind": "commanddeclaration",
"start": [
557,
1
]
},
{
"code": "theorem eraseP_map (f : β → α) : ∀ (l : List β), (map f l).eraseP p = map f (l.eraseP (p ∘ f))",
"end": [
568,
85
],
"full_name": "List.eraseP_map",
"kind": "commanddeclaration",
"start": [
566,
1
]
},
{
"code": "@[simp] theorem extractP_eq_find?_eraseP\n (l : List α) : extractP p l = (find? p l, eraseP p l)",
"end": [
578,
21
],
"full_name": "List.extractP_eq_find?_eraseP",
"kind": "commanddeclaration",
"start": [
570,
1
]
},
{
"code": "theorem erase_eq_eraseP' (a : α) (l : List α) : l.erase a = l.eraseP (· == a)",
"end": [
590,
46
],
"full_name": "List.erase_eq_eraseP'",
"kind": "commanddeclaration",
"start": [
585,
1
]
},
{
"code": "theorem erase_eq_eraseP [LawfulBEq α] (a : α) : ∀ l : List α, l.erase a = l.eraseP (a == ·)",
"end": [
595,
77
],
"full_name": "List.erase_eq_eraseP",
"kind": "commanddeclaration",
"start": [
592,
1
]
},
{
"code": "theorem exists_erase_eq [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n ∃ l₁ l₂, a ∉ l₁ ∧ l = l₁ ++ a :: l₂ ∧ l.erase a = l₁ ++ l₂",
"end": [
600,
99
],
"full_name": "List.exists_erase_eq",
"kind": "commanddeclaration",
"start": [
597,
1
]
},
{
"code": "@[simp] theorem length_erase_of_mem [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n length (l.erase a) = Nat.pred (length l)",
"end": [
604,
74
],
"full_name": "List.length_erase_of_mem",
"kind": "commanddeclaration",
"start": [
602,
1
]
},
{
"code": "theorem erase_append_left [LawfulBEq α] {l₁ : List α} (l₂) (h : a ∈ l₁) :\n (l₁ ++ l₂).erase a = l₁.erase a ++ l₂",
"end": [
608,
77
],
"full_name": "List.erase_append_left",
"kind": "commanddeclaration",
"start": [
606,
1
]
},
{
"code": "theorem erase_append_right [LawfulBEq α] {a : α} {l₁ : List α} (l₂ : List α) (h : a ∉ l₁) :\n (l₁ ++ l₂).erase a = (l₁ ++ l₂.erase a)",
"end": [
613,
55
],
"full_name": "List.erase_append_right",
"kind": "commanddeclaration",
"start": [
610,
1
]
},
{
"code": "theorem erase_sublist (a : α) (l : List α) : l.erase a <+ l",
"end": [
616,
42
],
"full_name": "List.erase_sublist",
"kind": "commanddeclaration",
"start": [
615,
1
]
},
{
"code": "theorem erase_subset (a : α) (l : List α) : l.erase a ⊆ l",
"end": [
618,
88
],
"full_name": "List.erase_subset",
"kind": "commanddeclaration",
"start": [
618,
1
]
},
{
"code": "theorem Sublist.erase (a : α) {l₁ l₂ : List α} (h : l₁ <+ l₂) : l₁.erase a <+ l₂.erase a",
"end": [
621,
47
],
"full_name": "List.Sublist.erase",
"kind": "commanddeclaration",
"start": [
620,
1
]
},
{
"code": "theorem mem_of_mem_erase {a b : α} {l : List α} (h : a ∈ l.erase b) : a ∈ l",
"end": [
624,
98
],
"full_name": "List.mem_of_mem_erase",
"kind": "commanddeclaration",
"start": [
624,
1
]
},
{
"code": "@[simp] theorem mem_erase_of_ne [LawfulBEq α] {a b : α} {l : List α} (ab : a ≠ b) :\n a ∈ l.erase b ↔ a ∈ l",
"end": [
628,
65
],
"full_name": "List.mem_erase_of_ne",
"kind": "commanddeclaration",
"start": [
626,
1
]
},
{
"code": "theorem erase_comm [LawfulBEq α] (a b : α) (l : List α) :\n (l.erase a).erase b = (l.erase b).erase a",
"end": [
644,
49
],
"full_name": "List.erase_comm",
"kind": "commanddeclaration",
"start": [
630,
1
]
},
{
"code": "@[simp] theorem filter_sublist {p : α → Bool} : ∀ (l : List α), filter p l <+ l",
"end": [
652,
93
],
"full_name": "List.filter_sublist",
"kind": "commanddeclaration",
"start": [
650,
1
]
},
{
"code": "protected theorem Sublist.filterMap (f : α → Option β) (s : l₁ <+ l₂) :\n filterMap f l₁ <+ filterMap f l₂",
"end": [
658,
76
],
"full_name": "List.Sublist.filterMap",
"kind": "commanddeclaration",
"start": [
656,
1
]
},
{
"code": "theorem Sublist.filter (p : α → Bool) {l₁ l₂} (s : l₁ <+ l₂) : filter p l₁ <+ filter p l₂",
"end": [
661,
48
],
"full_name": "List.Sublist.filter",
"kind": "commanddeclaration",
"start": [
660,
1
]
},
{
"code": "@[simp] theorem findIdx_nil {α : Type _} (p : α → Bool) : [].findIdx p = 0",
"end": [
665,
82
],
"full_name": "List.findIdx_nil",
"kind": "commanddeclaration",
"start": [
665,
1
]
},
{
"code": "theorem findIdx_cons (p : α → Bool) (b : α) (l : List α) :\n (b :: l).findIdx p = bif p b then 0 else (l.findIdx p) + 1",
"end": [
680,
43
],
"full_name": "List.findIdx_cons",
"kind": "commanddeclaration",
"start": [
667,
1
]
},
{
"code": "theorem findIdx_of_get?_eq_some {xs : List α} (w : xs.get? (xs.findIdx p) = some y) : p y",
"end": [
685,
65
],
"full_name": "List.findIdx_of_get?_eq_some",
"kind": "commanddeclaration",
"start": [
682,
1
]
},
{
"code": "theorem findIdx_get {xs : List α} {w : xs.findIdx p < xs.length} :\n p (xs.get ⟨xs.findIdx p, w⟩)",
"end": [
689,
45
],
"full_name": "List.findIdx_get",
"kind": "commanddeclaration",
"start": [
687,
1
]
},
{
"code": "theorem findIdx_lt_length_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.findIdx p < xs.length",
"end": [
703,
24
],
"full_name": "List.findIdx_lt_length_of_exists",
"kind": "commanddeclaration",
"start": [
691,
1
]
},
{
"code": "theorem findIdx_get?_eq_get_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.get? (xs.findIdx p) = some (xs.get ⟨xs.findIdx p, xs.findIdx_lt_length_of_exists h⟩)",
"end": [
707,
46
],
"full_name": "List.findIdx_get?_eq_get_of_exists",
"kind": "commanddeclaration",
"start": [
705,
1
]
},
{
"code": "@[simp] theorem findIdx?_nil : ([] : List α).findIdx? p i = none",
"end": [
711,
72
],
"full_name": "List.findIdx?_nil",
"kind": "commanddeclaration",
"start": [
711,
1
]
},
{
"code": "@[simp] theorem findIdx?_cons :\n (x :: xs).findIdx? p i = if p x then some i else findIdx? p xs (i + 1)",
"end": [
714,
82
],
"full_name": "List.findIdx?_cons",
"kind": "commanddeclaration",
"start": [
713,
1
]
},
{
"code": "@[simp] theorem findIdx?_succ :\n (xs : List α).findIdx? p (i+1) = (xs.findIdx? p i).map fun i => i + 1",
"end": [
719,
37
],
"full_name": "List.findIdx?_succ",
"kind": "commanddeclaration",
"start": [
716,
1
]
},
{
"code": "theorem findIdx?_eq_some_iff (xs : List α) (p : α → Bool) :\n xs.findIdx? p = some i ↔ (xs.take (i + 1)).map p = replicate i false ++ [true]",
"end": [
727,
52
],
"full_name": "List.findIdx?_eq_some_iff",
"kind": "commanddeclaration",
"start": [
721,
1
]
},
{
"code": "theorem findIdx?_of_eq_some {xs : List α} {p : α → Bool} (w : xs.findIdx? p = some i) :\n match xs.get? i with | some a => p a | none => false",
"end": [
735,
40
],
"full_name": "List.findIdx?_of_eq_some",
"kind": "commanddeclaration",
"start": [
729,
1
]
},
{
"code": "theorem findIdx?_of_eq_none {xs : List α} {p : α → Bool} (w : xs.findIdx? p = none) :\n ∀ i, match xs.get? i with | some a => ¬ p a | none => true",
"end": [
750,
30
],
"full_name": "List.findIdx?_of_eq_none",
"kind": "commanddeclaration",
"start": [
737,
1
]
},
{
"code": "@[simp] theorem findIdx?_append :\n (xs ++ ys : List α).findIdx? p =\n (xs.findIdx? p <|> (ys.findIdx? p).map fun i => i + xs.length)",
"end": [
756,
78
],
"full_name": "List.findIdx?_append",
"kind": "commanddeclaration",
"start": [
752,
1
]
},
{
"code": "@[simp] theorem findIdx?_replicate :\n (replicate n a).findIdx? p = if 0 < n ∧ p a then some 0 else none",
"end": [
764,
23
],
"full_name": "List.findIdx?_replicate",
"kind": "commanddeclaration",
"start": [
758,
1
]
},
{
"code": "theorem Pairwise.sublist : l₁ <+ l₂ → l₂.Pairwise R → l₁.Pairwise R",
"end": [
771,
80
],
"full_name": "List.Pairwise.sublist",
"kind": "commanddeclaration",
"start": [
768,
1
]
},
{
"code": "theorem pairwise_map {l : List α} :\n (l.map f).Pairwise R ↔ l.Pairwise fun a b => R (f a) (f b)",
"end": [
777,
58
],
"full_name": "List.pairwise_map",
"kind": "commanddeclaration",
"start": [
773,
1
]
},
{
"code": "theorem pairwise_append {l₁ l₂ : List α} :\n (l₁ ++ l₂).Pairwise R ↔ l₁.Pairwise R ∧ l₂.Pairwise R ∧ ∀ a ∈ l₁, ∀ b ∈ l₂, R a b",
"end": [
781,
74
],
"full_name": "List.pairwise_append",
"kind": "commanddeclaration",
"start": [
779,
1
]
},
{
"code": "theorem pairwise_reverse {l : List α} :\n l.reverse.Pairwise R ↔ l.Pairwise (fun a b => R b a)",
"end": [
785,
54
],
"full_name": "List.pairwise_reverse",
"kind": "commanddeclaration",
"start": [
783,
1
]
},
{
"code": "theorem Pairwise.imp {α R S} (H : ∀ {a b}, R a b → S a b) :\n ∀ {l : List α}, l.Pairwise R → l.Pairwise S",
"end": [
790,
50
],
"full_name": "List.Pairwise.imp",
"kind": "commanddeclaration",
"start": [
787,
1
]
},
{
"code": "theorem replaceF_nil : [].replaceF p = []",
"end": [
794,
49
],
"full_name": "List.replaceF_nil",
"kind": "commanddeclaration",
"start": [
794,
1
]
},
{
"code": "theorem replaceF_cons (a : α) (l : List α) :\n (a :: l).replaceF p = match p a with\n | none => a :: replaceF p l\n | some a' => a' :: l",
"end": [
799,
34
],
"full_name": "List.replaceF_cons",
"kind": "commanddeclaration",
"start": [
796,
1
]
},
{
"code": "theorem replaceF_cons_of_some {l : List α} (p) (h : p a = some a') :\n (a :: l).replaceF p = a' :: l",
"end": [
803,
26
],
"full_name": "List.replaceF_cons_of_some",
"kind": "commanddeclaration",
"start": [
801,
1
]
},
{
"code": "theorem replaceF_cons_of_none {l : List α} (p) (h : p a = none) :\n (a :: l).replaceF p = a :: l.replaceF p",
"end": [
806,
74
],
"full_name": "List.replaceF_cons_of_none",
"kind": "commanddeclaration",
"start": [
805,
1
]
},
{
"code": "theorem replaceF_of_forall_none {l : List α} (h : ∀ a, a ∈ l → p a = none) : l.replaceF p = l",
"end": [
811,
69
],
"full_name": "List.replaceF_of_forall_none",
"kind": "commanddeclaration",
"start": [
808,
1
]
},
{
"code": "theorem exists_of_replaceF : ∀ {l : List α} {a a'} (al : a ∈ l) (pa : p a = some a'),\n ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
825,
57
],
"full_name": "List.exists_of_replaceF",
"kind": "commanddeclaration",
"start": [
813,
1
]
},
{
"code": "theorem exists_or_eq_self_of_replaceF (p) (l : List α) :\n l.replaceF p = l ∨ ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
835,
62
],
"full_name": "List.exists_or_eq_self_of_replaceF",
"kind": "commanddeclaration",
"start": [
827,
1
]
},
{
"code": "@[simp] theorem length_replaceF : length (replaceF f l) = length l",
"end": [
838,
54
],
"full_name": "List.length_replaceF",
"kind": "commanddeclaration",
"start": [
837,
1
]
},
{
"code": "theorem disjoint_symm (d : Disjoint l₁ l₂) : Disjoint l₂ l₁",
"end": [
842,
86
],
"full_name": "List.disjoint_symm",
"kind": "commanddeclaration",
"start": [
842,
1
]
},
{
"code": "theorem disjoint_comm : Disjoint l₁ l₂ ↔ Disjoint l₂ l₁",
"end": [
844,
90
],
"full_name": "List.disjoint_comm",
"kind": "commanddeclaration",
"start": [
844,
1
]
},
{
"code": "theorem disjoint_left : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₁ → a ∉ l₂",
"end": [
846,
86
],
"full_name": "List.disjoint_left",
"kind": "commanddeclaration",
"start": [
846,
1
]
},
{
"code": "theorem disjoint_right : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₂ → a ∉ l₁",
"end": [
848,
82
],
"full_name": "List.disjoint_right",
"kind": "commanddeclaration",
"start": [
848,
1
]
},
{
"code": "theorem disjoint_iff_ne : Disjoint l₁ l₂ ↔ ∀ a ∈ l₁, ∀ b ∈ l₂, a ≠ b",
"end": [
851,
83
],
"full_name": "List.disjoint_iff_ne",
"kind": "commanddeclaration",
"start": [
850,
1
]
},
{
"code": "theorem disjoint_of_subset_left (ss : l₁ ⊆ l) (d : Disjoint l l₂) : Disjoint l₁ l₂",
"end": [
854,
22
],
"full_name": "List.disjoint_of_subset_left",
"kind": "commanddeclaration",
"start": [
853,
1
]
},
{
"code": "theorem disjoint_of_subset_right (ss : l₂ ⊆ l) (d : Disjoint l₁ l) : Disjoint l₁ l₂",
"end": [
857,
28
],
"full_name": "List.disjoint_of_subset_right",
"kind": "commanddeclaration",
"start": [
856,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_left {l₁ l₂} : Disjoint (a :: l₁) l₂ → Disjoint l₁ l₂",
"end": [
860,
42
],
"full_name": "List.disjoint_of_disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
859,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_right {l₁ l₂} : Disjoint l₁ (a :: l₂) → Disjoint l₁ l₂",
"end": [
863,
43
],
"full_name": "List.disjoint_of_disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
862,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_left (l : List α) : Disjoint [] l",
"end": [
865,
96
],
"full_name": "List.disjoint_nil_left",
"kind": "commanddeclaration",
"start": [
865,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_right (l : List α) : Disjoint l []",
"end": [
868,
48
],
"full_name": "List.disjoint_nil_right",
"kind": "commanddeclaration",
"start": [
867,
1
]
},
{
"code": "@[simp 1100] theorem singleton_disjoint : Disjoint [a] l ↔ a ∉ l",
"end": [
870,
87
],
"full_name": "List.singleton_disjoint",
"kind": "commanddeclaration",
"start": [
870,
1
]
},
{
"code": "@[simp 1100] theorem disjoint_singleton : Disjoint l [a] ↔ a ∉ l",
"end": [
873,
41
],
"full_name": "List.disjoint_singleton",
"kind": "commanddeclaration",
"start": [
872,
1
]
},
{
"code": "@[simp] theorem disjoint_append_left : Disjoint (l₁ ++ l₂) l ↔ Disjoint l₁ l ∧ Disjoint l₂ l",
"end": [
876,
38
],
"full_name": "List.disjoint_append_left",
"kind": "commanddeclaration",
"start": [
875,
1
]
},
{
"code": "@[simp] theorem disjoint_append_right : Disjoint l (l₁ ++ l₂) ↔ Disjoint l l₁ ∧ Disjoint l l₂",
"end": [
879,
76
],
"full_name": "List.disjoint_append_right",
"kind": "commanddeclaration",
"start": [
878,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_left : Disjoint (a::l₁) l₂ ↔ (a ∉ l₂) ∧ Disjoint l₁ l₂",
"end": [
882,
75
],
"full_name": "List.disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
881,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_right : Disjoint l₁ (a :: l₂) ↔ (a ∉ l₁) ∧ Disjoint l₁ l₂",
"end": [
885,
74
],
"full_name": "List.disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
884,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_left (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₁ l",
"end": [
888,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_left",
"kind": "commanddeclaration",
"start": [
887,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_right (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₂ l",
"end": [
891,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_right",
"kind": "commanddeclaration",
"start": [
890,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_left (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₁",
"end": [
894,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_left",
"kind": "commanddeclaration",
"start": [
893,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_right (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₂",
"end": [
897,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_right",
"kind": "commanddeclaration",
"start": [
896,
1
]
},
{
"code": "theorem foldl_hom (f : α₁ → α₂) (g₁ : α₁ → β → α₁) (g₂ : α₂ → β → α₂) (l : List β) (init : α₁)\n (H : ∀ x y, g₂ (f x) y = f (g₁ x y)) : l.foldl g₂ (f init) = f (l.foldl g₁ init)",
"end": [
903,
48
],
"full_name": "List.foldl_hom",
"kind": "commanddeclaration",
"start": [
901,
1
]
},
{
"code": "theorem foldr_hom (f : β₁ → β₂) (g₁ : α → β₁ → β₁) (g₂ : α → β₂ → β₂) (l : List α) (init : β₁)\n (H : ∀ x y, g₂ x (f y) = f (g₁ x y)) : l.foldr g₂ (f init) = f (l.foldr g₁ init)",
"end": [
907,
30
],
"full_name": "List.foldr_hom",
"kind": "commanddeclaration",
"start": [
905,
1
]
},
{
"code": "theorem union_def [BEq α] (l₁ l₂ : List α) : l₁ ∪ l₂ = foldr .insert l₂ l₁",
"end": [
915,
83
],
"full_name": "List.union_def",
"kind": "commanddeclaration",
"start": [
915,
1
]
},
{
"code": "@[simp] theorem nil_union (l : List α) : nil ∪ l = l",
"end": [
917,
88
],
"full_name": "List.nil_union",
"kind": "commanddeclaration",
"start": [
917,
1
]
},
{
"code": "@[simp] theorem cons_union (a : α) (l₁ l₂ : List α) :\n (a :: l₁) ∪ l₂ = (l₁ ∪ l₂).insert a",
"end": [
920,
75
],
"full_name": "List.cons_union",
"kind": "commanddeclaration",
"start": [
919,
1
]
},
{
"code": "@[simp] theorem mem_union_iff [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∪ l₂ ↔ x ∈ l₁ ∨ x ∈ l₂",
"end": [
923,
76
],
"full_name": "List.mem_union_iff",
"kind": "commanddeclaration",
"start": [
922,
1
]
},
{
"code": "theorem inter_def [BEq α] (l₁ l₂ : List α) : l₁ ∩ l₂ = filter (elem · l₂) l₁",
"end": [
929,
85
],
"full_name": "List.inter_def",
"kind": "commanddeclaration",
"start": [
929,
1
]
},
{
"code": "@[simp] theorem mem_inter_iff [BEq α] [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∩ l₂ ↔ x ∈ l₁ ∧ x ∈ l₂",
"end": [
933,
49
],
"full_name": "List.mem_inter_iff",
"kind": "commanddeclaration",
"start": [
931,
1
]
},
{
"code": "@[simp]\ntheorem pair_mem_product {xs : List α} {ys : List β} {x : α} {y : β} :\n (x, y) ∈ product xs ys ↔ x ∈ xs ∧ y ∈ ys",
"end": [
942,
47
],
"full_name": "List.pair_mem_product",
"kind": "commanddeclaration",
"start": [
937,
1
]
},
{
"code": "@[simp]\ntheorem leftpad_length (n : Nat) (a : α) (l : List α) :\n (leftpad n a l).length = max n l.length",
"end": [
951,
75
],
"full_name": "List.leftpad_length",
"kind": "commanddeclaration",
"start": [
946,
1
]
},
{
"code": "theorem leftpad_prefix (n : Nat) (a : α) (l : List α) :\n replicate (n - length l) a <+: leftpad n a l",
"end": [
956,
27
],
"full_name": "List.leftpad_prefix",
"kind": "commanddeclaration",
"start": [
953,
1
]
},
{
"code": "theorem leftpad_suffix (n : Nat) (a : α) (l : List α) : l <:+ (leftpad n a l)",
"end": [
960,
54
],
"full_name": "List.leftpad_suffix",
"kind": "commanddeclaration",
"start": [
958,
1
]
},
{
"code": "@[simp] theorem forIn_eq_forIn [Monad m] : @List.forIn α β m _ = forIn",
"end": [
965,
78
],
"full_name": "List.forIn_eq_forIn",
"kind": "commanddeclaration",
"start": [
965,
1
]
},
{
"code": "theorem forIn_eq_bindList [Monad m] [LawfulMonad m]\n (f : α → β → m (ForInStep β)) (l : List α) (init : β) :\n forIn l init f = ForInStep.run <$> (ForInStep.yield init).bindList f l",
"end": [
971,
30
],
"full_name": "List.forIn_eq_bindList",
"kind": "commanddeclaration",
"start": [
967,
1
]
},
{
"code": "@[simp] theorem forM_append [Monad m] [LawfulMonad m] (l₁ l₂ : List α) (f : α → m PUnit) :\n (l₁ ++ l₂).forM f = (do l₁.forM f; l₂.forM f)",
"end": [
974,
82
],
"full_name": "List.forM_append",
"kind": "commanddeclaration",
"start": [
973,
1
]
},
{
"code": "@[simp] theorem diff_nil (l : List α) : l.diff [] = l",
"end": [
982,
61
],
"full_name": "List.diff_nil",
"kind": "commanddeclaration",
"start": [
982,
1
]
},
{
"code": "@[simp] theorem diff_cons (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.erase a).diff l₂",
"end": [
985,
41
],
"full_name": "List.diff_cons",
"kind": "commanddeclaration",
"start": [
984,
1
]
},
{
"code": "theorem diff_cons_right (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.diff l₂).erase a",
"end": [
988,
71
],
"full_name": "List.diff_cons_right",
"kind": "commanddeclaration",
"start": [
987,
1
]
},
{
"code": "theorem diff_erase (l₁ l₂ : List α) (a : α) : (l₁.diff l₂).erase a = (l₁.erase a).diff l₂",
"end": [
991,
36
],
"full_name": "List.diff_erase",
"kind": "commanddeclaration",
"start": [
990,
1
]
},
{
"code": "@[simp] theorem nil_diff (l : List α) : [].diff l = []",
"end": [
994,
45
],
"full_name": "List.nil_diff",
"kind": "commanddeclaration",
"start": [
993,
1
]
},
{
"code": "theorem cons_diff (a : α) (l₁ l₂ : List α) :\n (a :: l₁).diff l₂ = if a ∈ l₂ then l₁.diff (l₂.erase a) else a :: l₁.diff l₂",
"end": [
1005,
14
],
"full_name": "List.cons_diff",
"kind": "commanddeclaration",
"start": [
996,
1
]
},
{
"code": "theorem cons_diff_of_mem {a : α} {l₂ : List α} (h : a ∈ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = l₁.diff (l₂.erase a)",
"end": [
1008,
76
],
"full_name": "List.cons_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1007,
1
]
},
{
"code": "theorem cons_diff_of_not_mem {a : α} {l₂ : List α} (h : a ∉ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = a :: l₁.diff l₂",
"end": [
1011,
71
],
"full_name": "List.cons_diff_of_not_mem",
"kind": "commanddeclaration",
"start": [
1010,
1
]
},
{
"code": "theorem diff_eq_foldl : ∀ l₁ l₂ : List α, l₁.diff l₂ = foldl List.erase l₁ l₂",
"end": [
1015,
65
],
"full_name": "List.diff_eq_foldl",
"kind": "commanddeclaration",
"start": [
1013,
1
]
},
{
"code": "@[simp] theorem diff_append (l₁ l₂ l₃ : List α) : l₁.diff (l₂ ++ l₃) = (l₁.diff l₂).diff l₃",
"end": [
1018,
42
],
"full_name": "List.diff_append",
"kind": "commanddeclaration",
"start": [
1017,
1
]
},
{
"code": "theorem diff_sublist : ∀ l₁ l₂ : List α, l₁.diff l₂ <+ l₁",
"end": [
1026,
34
],
"full_name": "List.diff_sublist",
"kind": "commanddeclaration",
"start": [
1020,
1
]
},
{
"code": "theorem diff_subset (l₁ l₂ : List α) : l₁.diff l₂ ⊆ l₁",
"end": [
1028,
83
],
"full_name": "List.diff_subset",
"kind": "commanddeclaration",
"start": [
1028,
1
]
},
{
"code": "theorem mem_diff_of_mem {a : α} : ∀ {l₁ l₂ : List α}, a ∈ l₁ → a ∉ l₂ → a ∈ l₁.diff l₂",
"end": [
1034,
94
],
"full_name": "List.mem_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1030,
1
]
},
{
"code": "theorem Sublist.diff_right : ∀ {l₁ l₂ l₃ : List α}, l₁ <+ l₂ → l₁.diff l₃ <+ l₂.diff l₃",
"end": [
1038,
75
],
"full_name": "List.Sublist.diff_right",
"kind": "commanddeclaration",
"start": [
1036,
1
]
},
{
"code": "theorem Sublist.erase_diff_erase_sublist {a : α} :\n ∀ {l₁ l₂ : List α}, l₁ <+ l₂ → (l₂.erase a).diff (l₁.erase a) <+ l₂.diff l₁",
"end": [
1048,
71
],
"full_name": "List.Sublist.erase_diff_erase_sublist",
"kind": "commanddeclaration",
"start": [
1040,
1
]
},
{
"code": "@[simp] theorem prefix_append (l₁ l₂ : List α) : l₁ <+: l₁ ++ l₂",
"end": [
1054,
78
],
"full_name": "List.prefix_append",
"kind": "commanddeclaration",
"start": [
1054,
1
]
},
{
"code": "@[simp] theorem suffix_append (l₁ l₂ : List α) : l₂ <:+ l₁ ++ l₂",
"end": [
1056,
78
],
"full_name": "List.suffix_append",
"kind": "commanddeclaration",
"start": [
1056,
1
]
},
{
"code": "theorem infix_append (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ l₂ ++ l₃",
"end": [
1058,
83
],
"full_name": "List.infix_append",
"kind": "commanddeclaration",
"start": [
1058,
1
]
},
{
"code": "@[simp] theorem infix_append' (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ (l₂ ++ l₃)",
"end": [
1061,
47
],
"full_name": "List.infix_append'",
"kind": "commanddeclaration",
"start": [
1060,
1
]
},
{
"code": "theorem IsPrefix.isInfix : l₁ <+: l₂ → l₁ <:+: l₂",
"end": [
1063,
78
],
"full_name": "List.IsPrefix.isInfix",
"kind": "commanddeclaration",
"start": [
1063,
1
]
},
{
"code": "theorem IsSuffix.isInfix : l₁ <:+ l₂ → l₁ <:+: l₂",
"end": [
1065,
98
],
"full_name": "List.IsSuffix.isInfix",
"kind": "commanddeclaration",
"start": [
1065,
1
]
},
{
"code": "theorem nil_prefix (l : List α) : [] <+: l",
"end": [
1067,
55
],
"full_name": "List.nil_prefix",
"kind": "commanddeclaration",
"start": [
1067,
1
]
},
{
"code": "theorem nil_suffix (l : List α) : [] <:+ l",
"end": [
1069,
64
],
"full_name": "List.nil_suffix",
"kind": "commanddeclaration",
"start": [
1069,
1
]
},
{
"code": "theorem nil_infix (l : List α) : [] <:+: l",
"end": [
1071,
69
],
"full_name": "List.nil_infix",
"kind": "commanddeclaration",
"start": [
1071,
1
]
},
{
"code": "theorem prefix_refl (l : List α) : l <+: l",
"end": [
1073,
65
],
"full_name": "List.prefix_refl",
"kind": "commanddeclaration",
"start": [
1073,
1
]
},
{
"code": "theorem suffix_refl (l : List α) : l <:+ l",
"end": [
1075,
56
],
"full_name": "List.suffix_refl",
"kind": "commanddeclaration",
"start": [
1075,
1
]
},
{
"code": "theorem infix_refl (l : List α) : l <:+: l",
"end": [
1077,
70
],
"full_name": "List.infix_refl",
"kind": "commanddeclaration",
"start": [
1077,
1
]
},
{
"code": "@[simp] theorem suffix_cons (a : α) : ∀ l, l <:+ a :: l",
"end": [
1079,
77
],
"full_name": "List.suffix_cons",
"kind": "commanddeclaration",
"start": [
1079,
1
]
},
{
"code": "theorem infix_cons : l₁ <:+: l₂ → l₁ <:+: a :: l₂",
"end": [
1081,
95
],
"full_name": "List.infix_cons",
"kind": "commanddeclaration",
"start": [
1081,
1
]
},
{
"code": "theorem infix_concat : l₁ <:+: l₂ → l₁ <:+: concat l₂ a",
"end": [
1084,
67
],
"full_name": "List.infix_concat",
"kind": "commanddeclaration",
"start": [
1083,
1
]
},
{
"code": "theorem IsPrefix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₂ → l₂ <+: l₃ → l₁ <+: l₃",
"end": [
1087,
75
],
"full_name": "List.IsPrefix.trans",
"kind": "commanddeclaration",
"start": [
1086,
1
]
},
{
"code": "theorem IsSuffix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+ l₂ → l₂ <:+ l₃ → l₁ <:+ l₃",
"end": [
1090,
68
],
"full_name": "List.IsSuffix.trans",
"kind": "commanddeclaration",
"start": [
1089,
1
]
},
{
"code": "theorem IsInfix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+: l₂ → l₂ <:+: l₃ → l₁ <:+: l₃",
"end": [
1093,
95
],
"full_name": "List.IsInfix.trans",
"kind": "commanddeclaration",
"start": [
1092,
1
]
},
{
"code": "protected theorem IsInfix.sublist : l₁ <:+: l₂ → l₁ <+ l₂",
"end": [
1096,
78
],
"full_name": "List.IsInfix.sublist",
"kind": "commanddeclaration",
"start": [
1095,
1
]
},
{
"code": "protected theorem IsInfix.subset (hl : l₁ <:+: l₂) : l₁ ⊆ l₂",
"end": [
1099,
20
],
"full_name": "List.IsInfix.subset",
"kind": "commanddeclaration",
"start": [
1098,
1
]
},
{
"code": "protected theorem IsPrefix.sublist (h : l₁ <+: l₂) : l₁ <+ l₂",
"end": [
1102,
20
],
"full_name": "List.IsPrefix.sublist",
"kind": "commanddeclaration",
"start": [
1101,
1
]
},
{
"code": "protected theorem IsPrefix.subset (hl : l₁ <+: l₂) : l₁ ⊆ l₂",
"end": [
1105,
20
],
"full_name": "List.IsPrefix.subset",
"kind": "commanddeclaration",
"start": [
1104,
1
]
},
{
"code": "protected theorem IsSuffix.sublist (h : l₁ <:+ l₂) : l₁ <+ l₂",
"end": [
1108,
20
],
"full_name": "List.IsSuffix.sublist",
"kind": "commanddeclaration",
"start": [
1107,
1
]
},
{
"code": "protected theorem IsSuffix.subset (hl : l₁ <:+ l₂) : l₁ ⊆ l₂",
"end": [
1111,
20
],
"full_name": "List.IsSuffix.subset",
"kind": "commanddeclaration",
"start": [
1110,
1
]
},
{
"code": "@[simp] theorem reverse_suffix : reverse l₁ <:+ reverse l₂ ↔ l₁ <+: l₂",
"end": [
1115,
59
],
"full_name": "List.reverse_suffix",
"kind": "commanddeclaration",
"start": [
1113,
1
]
},
{
"code": "@[simp] theorem reverse_prefix : reverse l₁ <+: reverse l₂ ↔ l₁ <:+ l₂",
"end": [
1118,
53
],
"full_name": "List.reverse_prefix",
"kind": "commanddeclaration",
"start": [
1117,
1
]
},
{
"code": "@[simp] theorem reverse_infix : reverse l₁ <:+: reverse l₂ ↔ l₁ <:+: l₂",
"end": [
1124,
61
],
"full_name": "List.reverse_infix",
"kind": "commanddeclaration",
"start": [
1120,
1
]
},
{
"code": "theorem IsInfix.length_le (h : l₁ <:+: l₂) : l₁.length ≤ l₂.length",
"end": [
1127,
22
],
"full_name": "List.IsInfix.length_le",
"kind": "commanddeclaration",
"start": [
1126,
1
]
},
{
"code": "theorem IsPrefix.length_le (h : l₁ <+: l₂) : l₁.length ≤ l₂.length",
"end": [
1130,
22
],
"full_name": "List.IsPrefix.length_le",
"kind": "commanddeclaration",
"start": [
1129,
1
]
},
{
"code": "theorem IsSuffix.length_le (h : l₁ <:+ l₂) : l₁.length ≤ l₂.length",
"end": [
1133,
22
],
"full_name": "List.IsSuffix.length_le",
"kind": "commanddeclaration",
"start": [
1132,
1
]
},
{
"code": "@[simp] theorem infix_nil : l <:+: [] ↔ l = []",
"end": [
1135,
98
],
"full_name": "List.infix_nil",
"kind": "commanddeclaration",
"start": [
1135,
1
]
},
{
"code": "@[simp] theorem prefix_nil : l <+: [] ↔ l = []",
"end": [
1137,
99
],
"full_name": "List.prefix_nil",
"kind": "commanddeclaration",
"start": [
1137,
1
]
},
{
"code": "@[simp] theorem suffix_nil : l <:+ [] ↔ l = []",
"end": [
1139,
99
],
"full_name": "List.suffix_nil",
"kind": "commanddeclaration",
"start": [
1139,
1
]
},
{
"code": "theorem infix_iff_prefix_suffix (l₁ l₂ : List α) : l₁ <:+: l₂ ↔ ∃ t, l₁ <+: t ∧ t <:+ l₂",
"end": [
1143,
60
],
"full_name": "List.infix_iff_prefix_suffix",
"kind": "commanddeclaration",
"start": [
1141,
1
]
},
{
"code": "theorem IsInfix.eq_of_length (h : l₁ <:+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1146,
25
],
"full_name": "List.IsInfix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1145,
1
]
},
{
"code": "theorem IsPrefix.eq_of_length (h : l₁ <+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1149,
25
],
"full_name": "List.IsPrefix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1148,
1
]
},
{
"code": "theorem IsSuffix.eq_of_length (h : l₁ <:+ l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1152,
25
],
"full_name": "List.IsSuffix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1151,
1
]
},
{
"code": "theorem prefix_of_prefix_length_le :\n ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₃ → l₂ <+: l₃ → length l₁ ≤ length l₂ → l₁ <+: l₂",
"end": [
1160,
20
],
"full_name": "List.prefix_of_prefix_length_le",
"kind": "commanddeclaration",
"start": [
1154,
1
]
},
{
"code": "theorem prefix_or_prefix_of_prefix (h₁ : l₁ <+: l₃) (h₂ : l₂ <+: l₃) : l₁ <+: l₂ ∨ l₂ <+: l₁",
"end": [
1164,
39
],
"full_name": "List.prefix_or_prefix_of_prefix",
"kind": "commanddeclaration",
"start": [
1162,
1
]
},
{
"code": "theorem suffix_of_suffix_length_le\n (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) (ll : length l₁ ≤ length l₂) : l₁ <:+ l₂",
"end": [
1169,
90
],
"full_name": "List.suffix_of_suffix_length_le",
"kind": "commanddeclaration",
"start": [
1166,
1
]
},
{
"code": "theorem suffix_or_suffix_of_suffix (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) : l₁ <:+ l₂ ∨ l₂ <:+ l₁",
"end": [
1173,
21
],
"full_name": "List.suffix_or_suffix_of_suffix",
"kind": "commanddeclaration",
"start": [
1171,
1
]
},
{
"code": "theorem suffix_cons_iff : l₁ <:+ a :: l₂ ↔ l₁ = a :: l₂ ∨ l₁ <:+ l₂",
"end": [
1184,
41
],
"full_name": "List.suffix_cons_iff",
"kind": "commanddeclaration",
"start": [
1175,
1
]
},
{
"code": "theorem infix_cons_iff : l₁ <:+: a :: l₂ ↔ l₁ <+: a :: l₂ ∨ l₁ <:+: l₂",
"end": [
1195,
27
],
"full_name": "List.infix_cons_iff",
"kind": "commanddeclaration",
"start": [
1186,
1
]
},
{
"code": "theorem infix_of_mem_join : ∀ {L : List (List α)}, l ∈ L → l <:+: join L",
"end": [
1202,
78
],
"full_name": "List.infix_of_mem_join",
"kind": "commanddeclaration",
"start": [
1197,
1
]
},
{
"code": "theorem prefix_append_right_inj (l) : l ++ l₁ <+: l ++ l₂ ↔ l₁ <+: l₂",
"end": [
1205,
63
],
"full_name": "List.prefix_append_right_inj",
"kind": "commanddeclaration",
"start": [
1204,
1
]
},
{
"code": "@[simp]\ntheorem prefix_cons_inj (a) : a :: l₁ <+: a :: l₂ ↔ l₁ <+: l₂",
"end": [
1209,
30
],
"full_name": "List.prefix_cons_inj",
"kind": "commanddeclaration",
"start": [
1207,
1
]
},
{
"code": "theorem take_prefix (n) (l : List α) : take n l <+: l",
"end": [
1212,
28
],
"full_name": "List.take_prefix",
"kind": "commanddeclaration",
"start": [
1211,
1
]
},
{
"code": "theorem drop_suffix (n) (l : List α) : drop n l <:+ l",
"end": [
1215,
28
],
"full_name": "List.drop_suffix",
"kind": "commanddeclaration",
"start": [
1214,
1
]
},
{
"code": "theorem take_sublist (n) (l : List α) : take n l <+ l",
"end": [
1218,
28
],
"full_name": "List.take_sublist",
"kind": "commanddeclaration",
"start": [
1217,
1
]
},
{
"code": "theorem drop_sublist (n) (l : List α) : drop n l <+ l",
"end": [
1221,
28
],
"full_name": "List.drop_sublist",
"kind": "commanddeclaration",
"start": [
1220,
1
]
},
{
"code": "theorem take_subset (n) (l : List α) : take n l ⊆ l",
"end": [
1224,
28
],
"full_name": "List.take_subset",
"kind": "commanddeclaration",
"start": [
1223,
1
]
},
{
"code": "theorem drop_subset (n) (l : List α) : drop n l ⊆ l",
"end": [
1227,
28
],
"full_name": "List.drop_subset",
"kind": "commanddeclaration",
"start": [
1226,
1
]
},
{
"code": "theorem mem_of_mem_take {l : List α} (h : a ∈ l.take n) : a ∈ l",
"end": [
1230,
20
],
"full_name": "List.mem_of_mem_take",
"kind": "commanddeclaration",
"start": [
1229,
1
]
},
{
"code": "theorem IsPrefix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <+: l₂) :\n l₁.filter p <+: l₂.filter p",
"end": [
1235,
42
],
"full_name": "List.IsPrefix.filter",
"kind": "commanddeclaration",
"start": [
1232,
1
]
},
{
"code": "theorem IsSuffix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+ l₂) :\n l₁.filter p <:+ l₂.filter p",
"end": [
1240,
42
],
"full_name": "List.IsSuffix.filter",
"kind": "commanddeclaration",
"start": [
1237,
1
]
},
{
"code": "theorem IsInfix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+: l₂) :\n l₁.filter p <:+: l₂.filter p",
"end": [
1245,
58
],
"full_name": "List.IsInfix.filter",
"kind": "commanddeclaration",
"start": [
1242,
1
]
},
{
"code": "theorem mem_of_mem_drop {n} {l : List α} (h : a ∈ l.drop n) : a ∈ l",
"end": [
1249,
89
],
"full_name": "List.mem_of_mem_drop",
"kind": "commanddeclaration",
"start": [
1249,
1
]
},
{
"code": "theorem disjoint_take_drop : ∀ {l : List α}, l.Nodup → m ≤ n → Disjoint (l.take m) (l.drop n)",
"end": [
1259,
61
],
"full_name": "List.disjoint_take_drop",
"kind": "commanddeclaration",
"start": [
1251,
1
]
},
{
"code": "@[simp]\ntheorem chain_cons {a b : α} {l : List α} : Chain R a (b :: l) ↔ R a b ∧ Chain R b l",
"end": [
1268,
27
],
"full_name": "List.chain_cons",
"kind": "commanddeclaration",
"start": [
1265,
1
]
},
{
"code": "theorem rel_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : R a b",
"end": [
1271,
21
],
"full_name": "List.rel_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1270,
1
]
},
{
"code": "theorem chain_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : Chain R b l",
"end": [
1274,
21
],
"full_name": "List.chain_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1273,
1
]
},
{
"code": "theorem Chain.imp' {R S : α → α → Prop} (HRS : ∀ ⦃a b⦄, R a b → S a b) {a b : α}\n (Hab : ∀ ⦃c⦄, R a c → S b c) {l : List α} (p : Chain R a l) : Chain S b l",
"end": [
1283,
24
],
"full_name": "List.Chain.imp'",
"kind": "commanddeclaration",
"start": [
1276,
1
]
},
{
"code": "theorem Chain.imp {R S : α → α → Prop} (H : ∀ a b, R a b → S a b) {a : α} {l : List α}\n (p : Chain R a l) : Chain S a l",
"end": [
1287,
17
],
"full_name": "List.Chain.imp",
"kind": "commanddeclaration",
"start": [
1285,
1
]
},
{
"code": "protected theorem Pairwise.chain (p : Pairwise R (a :: l)) : Chain R a l",
"end": [
1295,
36
],
"full_name": "List.Pairwise.chain",
"kind": "commanddeclaration",
"start": [
1289,
1
]
},
{
"code": "theorem range'_succ (s n step) : range' s (n + 1) step = s :: range' (s + step) n step",
"end": [
1300,
44
],
"full_name": "List.range'_succ",
"kind": "commanddeclaration",
"start": [
1299,
1
]
},
{
"code": "@[simp] theorem length_range' (s step) : ∀ n : Nat, length (range' s n step) = n",
"end": [
1304,
49
],
"full_name": "List.length_range'",
"kind": "commanddeclaration",
"start": [
1302,
1
]
},
{
"code": "@[simp] theorem range'_eq_nil : range' s n step = [] ↔ n = 0",
"end": [
1307,
39
],
"full_name": "List.range'_eq_nil",
"kind": "commanddeclaration",
"start": [
1306,
1
]
},
{
"code": "theorem mem_range' : ∀{n}, m ∈ range' s n step ↔ ∃ i < n, m = s + step * i",
"end": [
1314,
71
],
"full_name": "List.mem_range'",
"kind": "commanddeclaration",
"start": [
1309,
1
]
},
{
"code": "@[simp] theorem mem_range'_1 : m ∈ range' s n ↔ s ≤ m ∧ m < s + n",
"end": [
1319,
93
],
"full_name": "List.mem_range'_1",
"kind": "commanddeclaration",
"start": [
1316,
1
]
},
{
"code": "@[simp]\ntheorem map_add_range' (a) : ∀ s n step, map (a + ·) (range' s n step) = range' (a + s) n step",
"end": [
1324,
90
],
"full_name": "List.map_add_range'",
"kind": "commanddeclaration",
"start": [
1321,
1
]
},
{
"code": "theorem map_sub_range' (a s n : Nat) (h : a ≤ s) :\n map (· - a) (range' s n step) = range' (s - a) n step",
"end": [
1330,
42
],
"full_name": "List.map_sub_range'",
"kind": "commanddeclaration",
"start": [
1326,
1
]
},
{
"code": "theorem chain_succ_range' : ∀ s n step : Nat,\n Chain (fun a b => b = a + step) s (range' (s + step) n step)",
"end": [
1335,
69
],
"full_name": "List.chain_succ_range'",
"kind": "commanddeclaration",
"start": [
1332,
1
]
},
{
"code": "theorem chain_lt_range' (s n : Nat) {step} (h : 0 < step) :\n Chain (· < ·) s (range' (s + step) n step)",
"end": [
1339,
83
],
"full_name": "List.chain_lt_range'",
"kind": "commanddeclaration",
"start": [
1337,
1
]
},
{
"code": "theorem range'_append : ∀ s m n step : Nat,\n range' s m step ++ range' (s + step * m) n step = range' s (n + m) step",
"end": [
1346,
46
],
"full_name": "List.range'_append",
"kind": "commanddeclaration",
"start": [
1341,
1
]
},
{
"code": "@[simp] theorem range'_append_1 (s m n : Nat) :\n range' s m ++ range' (s + m) n = range' s (n + m)",
"end": [
1349,
94
],
"full_name": "List.range'_append_1",
"kind": "commanddeclaration",
"start": [
1348,
1
]
},
{
"code": "theorem range'_sublist_right {s m n : Nat} : range' s m step <+ range' s n step ↔ m ≤ n",
"end": [
1353,
88
],
"full_name": "List.range'_sublist_right",
"kind": "commanddeclaration",
"start": [
1351,
1
]
},
{
"code": "theorem range'_subset_right {s m n : Nat} (step0 : 0 < step) :\n range' s m step ⊆ range' s n step ↔ m ≤ n",
"end": [
1359,
82
],
"full_name": "List.range'_subset_right",
"kind": "commanddeclaration",
"start": [
1355,
1
]
},
{
"code": "theorem range'_subset_right_1 {s m n : Nat} : range' s m ⊆ range' s n ↔ m ≤ n",
"end": [
1362,
34
],
"full_name": "List.range'_subset_right_1",
"kind": "commanddeclaration",
"start": [
1361,
1
]
},
{
"code": "theorem getElem?_range' (s step) :\n ∀ {m n : Nat}, m < n → (range' s n step)[m]? = some (s + step * m)",
"end": [
1370,
55
],
"full_name": "List.getElem?_range'",
"kind": "commanddeclaration",
"start": [
1364,
1
]
},
{
"code": "@[simp] theorem getElem_range' {n m step} (i) (H : i < (range' n m step).length) :\n (range' n m step)[i] = n + step * i",
"end": [
1374,
70
],
"full_name": "List.getElem_range'",
"kind": "commanddeclaration",
"start": [
1372,
1
]
},
{
"code": "@[deprecated getElem?_range' (since := \"2024-06-12\")]\ntheorem get?_range' (s step) {m n : Nat} (h : m < n) :\n get? (range' s n step) m = some (s + step * m)",
"end": [
1379,
11
],
"full_name": "List.get?_range'",
"kind": "commanddeclaration",
"start": [
1376,
1
]
},
{
"code": "@[deprecated getElem_range' (since := \"2024-06-12\")]\ntheorem get_range' {n m step} (i) (H : i < (range' n m step).length) :\n get (range' n m step) ⟨i, H⟩ = n + step * i",
"end": [
1384,
7
],
"full_name": "List.get_range'",
"kind": "commanddeclaration",
"start": [
1381,
1
]
},
{
"code": "theorem range'_concat (s n : Nat) : range' s (n + 1) step = range' s n step ++ [s + step * n]",
"end": [
1387,
63
],
"full_name": "List.range'_concat",
"kind": "commanddeclaration",
"start": [
1386,
1
]
},
{
"code": "theorem range'_1_concat (s n : Nat) : range' s (n + 1) = range' s n ++ [s + n]",
"end": [
1390,
23
],
"full_name": "List.range'_1_concat",
"kind": "commanddeclaration",
"start": [
1389,
1
]
},
{
"code": "theorem range_loop_range' : ∀ s n : Nat, range.loop s (range' s n) = range' 0 (n + s)",
"end": [
1394,
101
],
"full_name": "List.range_loop_range'",
"kind": "commanddeclaration",
"start": [
1392,
1
]
},
{
"code": "theorem range_eq_range' (n : Nat) : range n = range' 0 n",
"end": [
1397,
56
],
"full_name": "List.range_eq_range'",
"kind": "commanddeclaration",
"start": [
1396,
1
]
},
{
"code": "theorem range_succ_eq_map (n : Nat) : range (n + 1) = 0 :: map succ (range n)",
"end": [
1401,
30
],
"full_name": "List.range_succ_eq_map",
"kind": "commanddeclaration",
"start": [
1399,
1
]
},
{
"code": "theorem range'_eq_map_range (s n : Nat) : range' s n = map (s + ·) (range n)",
"end": [
1404,
44
],
"full_name": "List.range'_eq_map_range",
"kind": "commanddeclaration",
"start": [
1403,
1
]
},
{
"code": "@[simp] theorem length_range (n : Nat) : length (range n) = n",
"end": [
1407,
45
],
"full_name": "List.length_range",
"kind": "commanddeclaration",
"start": [
1406,
1
]
},
{
"code": "@[simp] theorem range_eq_nil {n : Nat} : range n = [] ↔ n = 0",
"end": [
1410,
38
],
"full_name": "List.range_eq_nil",
"kind": "commanddeclaration",
"start": [
1409,
1
]
},
{
"code": "@[simp]\ntheorem range_sublist {m n : Nat} : range m <+ range n ↔ m ≤ n",
"end": [
1414,
52
],
"full_name": "List.range_sublist",
"kind": "commanddeclaration",
"start": [
1412,
1
]
},
{
"code": "@[simp]\ntheorem range_subset {m n : Nat} : range m ⊆ range n ↔ m ≤ n",
"end": [
1418,
65
],
"full_name": "List.range_subset",
"kind": "commanddeclaration",
"start": [
1416,
1
]
},
{
"code": "@[simp]\ntheorem mem_range {m n : Nat} : m ∈ range n ↔ m < n",
"end": [
1422,
81
],
"full_name": "List.mem_range",
"kind": "commanddeclaration",
"start": [
1420,
1
]
},
{
"code": "theorem not_mem_range_self {n : Nat} : n ∉ range n",
"end": [
1424,
62
],
"full_name": "List.not_mem_range_self",
"kind": "commanddeclaration",
"start": [
1424,
1
]
},
{
"code": "theorem self_mem_range_succ (n : Nat) : n ∈ range (n + 1)",
"end": [
1426,
69
],
"full_name": "List.self_mem_range_succ",
"kind": "commanddeclaration",
"start": [
1426,
1
]
},
{
"code": "theorem getElem?_range {m n : Nat} (h : m < n) : (range n)[m]? = some m",
"end": [
1429,
48
],
"full_name": "List.getElem?_range",
"kind": "commanddeclaration",
"start": [
1428,
1
]
},
{
"code": "@[simp] theorem getElem_range {n : Nat} (m) (h : m < (range n).length) : (range n)[m] = m",
"end": [
1432,
25
],
"full_name": "List.getElem_range",
"kind": "commanddeclaration",
"start": [
1431,
1
]
},
{
"code": "@[deprecated getElem?_range (since := \"2024-06-12\")]\ntheorem get?_range {m n : Nat} (h : m < n) : get? (range n) m = some m",
"end": [
1436,
27
],
"full_name": "List.get?_range",
"kind": "commanddeclaration",
"start": [
1434,
1
]
},
{
"code": "@[deprecated getElem_range (since := \"2024-06-12\")]\ntheorem get_range {n} (i) (H : i < (range n).length) : get (range n) ⟨i, H⟩ = i",
"end": [
1440,
7
],
"full_name": "List.get_range",
"kind": "commanddeclaration",
"start": [
1438,
1
]
},
{
"code": "theorem range_succ (n : Nat) : range (succ n) = range n ++ [n]",
"end": [
1443,
61
],
"full_name": "List.range_succ",
"kind": "commanddeclaration",
"start": [
1442,
1
]
},
{
"code": "theorem range_add (a b : Nat) : range (a + b) = range a ++ (range b).map (a + ·)",
"end": [
1447,
75
],
"full_name": "List.range_add",
"kind": "commanddeclaration",
"start": [
1445,
1
]
},
{
"code": "theorem iota_eq_reverse_range' : ∀ n : Nat, iota n = reverse (range' 1 n)",
"end": [
1451,
99
],
"full_name": "List.iota_eq_reverse_range'",
"kind": "commanddeclaration",
"start": [
1449,
1
]
},
{
"code": "@[simp] theorem length_iota (n : Nat) : length (iota n) = n",
"end": [
1453,
96
],
"full_name": "List.length_iota",
"kind": "commanddeclaration",
"start": [
1453,
1
]
},
{
"code": "@[simp]\ntheorem mem_iota {m n : Nat} : m ∈ iota n ↔ 1 ≤ m ∧ m ≤ n",
"end": [
1457,
59
],
"full_name": "List.mem_iota",
"kind": "commanddeclaration",
"start": [
1455,
1
]
},
{
"code": "theorem reverse_range' : ∀ s n : Nat, reverse (range' s n) = map (s + n - 1 - ·) (range n)",
"end": [
1464,
59
],
"full_name": "List.reverse_range'",
"kind": "commanddeclaration",
"start": [
1459,
1
]
},
{
"code": "@[simp] theorem enumFrom_map_fst (n) :\n ∀ (l : List α), map Prod.fst (enumFrom n l) = range' n l.length",
"end": [
1472,
55
],
"full_name": "List.enumFrom_map_fst",
"kind": "commanddeclaration",
"start": [
1469,
1
]
},
{
"code": "@[simp] theorem enum_map_fst (l : List α) : map Prod.fst (enum l) = range l.length",
"end": [
1475,
54
],
"full_name": "List.enum_map_fst",
"kind": "commanddeclaration",
"start": [
1474,
1
]
},
{
"code": "theorem foldrIdx_start :\n (xs : List α).foldrIdx f i s = (xs : List α).foldrIdx (fun i => f (i + s)) i",
"end": [
1487,
43
],
"full_name": "List.foldrIdx_start",
"kind": "commanddeclaration",
"start": [
1479,
1
]
},
{
"code": "@[simp] theorem foldrIdx_cons :\n (x :: xs : List α).foldrIdx f i s = f s x (foldrIdx f i xs (s + 1))",
"end": [
1490,
79
],
"full_name": "List.foldrIdx_cons",
"kind": "commanddeclaration",
"start": [
1489,
1
]
},
{
"code": "theorem findIdxs_cons_aux (p : α → Bool) :\n foldrIdx (fun i a is => if p a = true then (i + 1) :: is else is) [] xs s =\n map (· + 1) (foldrIdx (fun i a is => if p a = true then i :: is else is) [] xs s)",
"end": [
1499,
24
],
"full_name": "List.findIdxs_cons_aux",
"kind": "commanddeclaration",
"start": [
1492,
1
]
},
{
"code": "theorem findIdxs_cons :\n (x :: xs : List α).findIdxs p =\n bif p x then 0 :: (xs.findIdxs p).map (· + 1) else (xs.findIdxs p).map (· + 1)",
"end": [
1508,
28
],
"full_name": "List.findIdxs_cons",
"kind": "commanddeclaration",
"start": [
1501,
1
]
},
{
"code": "@[simp] theorem indexesOf_nil [BEq α] : ([] : List α).indexesOf x = []",
"end": [
1510,
78
],
"full_name": "List.indexesOf_nil",
"kind": "commanddeclaration",
"start": [
1510,
1
]
},
{
"code": "theorem indexesOf_cons [BEq α] : (x :: xs : List α).indexesOf y =\n bif x == y then 0 :: (xs.indexesOf y).map (· + 1) else (xs.indexesOf y).map (· + 1)",
"end": [
1514,
34
],
"full_name": "List.indexesOf_cons",
"kind": "commanddeclaration",
"start": [
1512,
1
]
},
{
"code": "@[simp] theorem indexOf_nil [BEq α] : ([] : List α).indexOf x = 0",
"end": [
1516,
73
],
"full_name": "List.indexOf_nil",
"kind": "commanddeclaration",
"start": [
1516,
1
]
},
{
"code": "theorem indexOf_cons [BEq α] :\n (x :: xs : List α).indexOf y = bif x == y then 0 else xs.indexOf y + 1",
"end": [
1521,
22
],
"full_name": "List.indexOf_cons",
"kind": "commanddeclaration",
"start": [
1518,
1
]
},
{
"code": "theorem indexOf_mem_indexesOf [BEq α] [LawfulBEq α] {xs : List α} (m : x ∈ xs) :\n xs.indexOf x ∈ xs.indexesOf x",
"end": [
1535,
14
],
"full_name": "List.indexOf_mem_indexesOf",
"kind": "commanddeclaration",
"start": [
1523,
1
]
},
{
"code": "theorem merge_loop_nil_left (s : α → α → Bool) (r t) :\n merge.loop s [] r t = reverseAux t r",
"end": [
1539,
18
],
"full_name": "List.merge_loop_nil_left",
"kind": "commanddeclaration",
"start": [
1537,
1
]
},
{
"code": "theorem merge_loop_nil_right (s : α → α → Bool) (l t) :\n merge.loop s l [] t = reverseAux t l",
"end": [
1543,
52
],
"full_name": "List.merge_loop_nil_right",
"kind": "commanddeclaration",
"start": [
1541,
1
]
},
{
"code": "theorem merge_loop (s : α → α → Bool) (l r t) :\n merge.loop s l r t = reverseAux t (merge s l r)",
"end": [
1567,
64
],
"full_name": "List.merge_loop",
"kind": "commanddeclaration",
"start": [
1545,
1
]
},
{
"code": "@[simp] theorem merge_nil (s : α → α → Bool) (l) : merge s l [] = l",
"end": [
1569,
95
],
"full_name": "List.merge_nil",
"kind": "commanddeclaration",
"start": [
1569,
1
]
},
{
"code": "@[simp] theorem nil_merge (s : α → α → Bool) (r) : merge s [] r = r",
"end": [
1571,
94
],
"full_name": "List.nil_merge",
"kind": "commanddeclaration",
"start": [
1571,
1
]
},
{
"code": "theorem cons_merge_cons (s : α → α → Bool) (a b l r) :\n merge s (a::l) (b::r) = if s a b then a :: merge s l (b::r) else b :: merge s (a::l) r",
"end": [
1575,
87
],
"full_name": "List.cons_merge_cons",
"kind": "commanddeclaration",
"start": [
1573,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_pos (s : α → α → Bool) (l r) (h : s a b) :\n merge s (a::l) (b::r) = a :: merge s l (b::r)",
"end": [
1579,
33
],
"full_name": "List.cons_merge_cons_pos",
"kind": "commanddeclaration",
"start": [
1577,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_neg (s : α → α → Bool) (l r) (h : ¬ s a b) :\n merge s (a::l) (b::r) = b :: merge s (a::l) r",
"end": [
1583,
33
],
"full_name": "List.cons_merge_cons_neg",
"kind": "commanddeclaration",
"start": [
1581,
1
]
},
{
"code": "@[simp] theorem length_merge (s : α → α → Bool) (l r) :\n (merge s l r).length = l.length + r.length",
"end": [
1594,
43
],
"full_name": "List.length_merge",
"kind": "commanddeclaration",
"start": [
1585,
1
]
},
{
"code": "@[simp]\ntheorem mem_merge {s : α → α → Bool} : x ∈ merge s l r ↔ x ∈ l ∨ x ∈ r",
"end": [
1605,
68
],
"full_name": "List.mem_merge",
"kind": "commanddeclaration",
"start": [
1596,
1
]
},
{
"code": "theorem mem_merge_left (s : α → α → Bool) (h : x ∈ l) : x ∈ merge s l r",
"end": [
1608,
24
],
"full_name": "List.mem_merge_left",
"kind": "commanddeclaration",
"start": [
1607,
1
]
},
{
"code": "theorem mem_merge_right (s : α → α → Bool) (h : x ∈ r) : x ∈ merge s l r",
"end": [
1611,
24
],
"full_name": "List.mem_merge_right",
"kind": "commanddeclaration",
"start": [
1610,
1
]
}
] | 327 | List.mem_merge | [
[
1597,
75
],
[
1605,
68
]
] | 6 | 9 | · simp [mem_merge (l := a::l) (r := r), or_assoc, or_left_comm] | case isFalse
α : Type u_1
x : α
l✝ r✝ : List α
s : α → α → Bool
a : α
l : List α
b : α
r : List α
h✝ : ¬s a b = true
⊢ x ∈ b :: merge s (a :: l) r ↔ x ∈ a :: l ∨ x ∈ b :: r | no goals |
.lake/packages/batteries/Batteries/Data/List/Lemmas.lean | [
[
"Batteries.Tactic.Alias",
".lake/packages/batteries/Batteries/Tactic/Alias.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
],
[
"Batteries.Control.ForInStep.Lemmas",
".lake/packages/batteries/Batteries/Control/ForInStep/Lemmas.lean"
],
[
"Batteries.Tactic.Init",
".lake/packages/batteries/Batteries/Tactic/Init.lean"
],
[
"Batteries.Data.List.Basic",
".lake/packages/batteries/Batteries/Data/List/Basic.lean"
]
] | [
{
"code": "@[simp] theorem mem_toArray {a : α} {l : List α} : a ∈ l.toArray ↔ a ∈ l",
"end": [
18,
23
],
"full_name": "List.mem_toArray",
"kind": "commanddeclaration",
"start": [
17,
1
]
},
{
"code": "@[simp]\ntheorem drop_one : ∀ l : List α, drop 1 l = tail l",
"end": [
24,
23
],
"full_name": "List.drop_one",
"kind": "commanddeclaration",
"start": [
22,
1
]
},
{
"code": "theorem zipWith_distrib_tail : (zipWith f l l').tail = zipWith f l.tail l'.tail",
"end": [
29,
47
],
"full_name": "List.zipWith_distrib_tail",
"kind": "commanddeclaration",
"start": [
28,
1
]
},
{
"code": "theorem subset_def {l₁ l₂ : List α} : l₁ ⊆ l₂ ↔ ∀ {a : α}, a ∈ l₁ → a ∈ l₂",
"end": [
33,
83
],
"full_name": "List.subset_def",
"kind": "commanddeclaration",
"start": [
33,
1
]
},
{
"code": "@[simp] theorem nil_subset (l : List α) : [] ⊆ l",
"end": [
35,
58
],
"full_name": "List.nil_subset",
"kind": "commanddeclaration",
"start": [
35,
1
]
},
{
"code": "@[simp] theorem Subset.refl (l : List α) : l ⊆ l",
"end": [
37,
65
],
"full_name": "List.Subset.refl",
"kind": "commanddeclaration",
"start": [
37,
1
]
},
{
"code": "theorem Subset.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ ⊆ l₂) (h₂ : l₂ ⊆ l₃) : l₁ ⊆ l₃",
"end": [
40,
23
],
"full_name": "List.Subset.trans",
"kind": "commanddeclaration",
"start": [
39,
1
]
},
{
"code": "@[simp] theorem subset_cons (a : α) (l : List α) : l ⊆ a :: l",
"end": [
48,
85
],
"full_name": "List.subset_cons",
"kind": "commanddeclaration",
"start": [
48,
1
]
},
{
"code": "theorem subset_of_cons_subset {a : α} {l₁ l₂ : List α} : a :: l₁ ⊆ l₂ → l₁ ⊆ l₂",
"end": [
51,
39
],
"full_name": "List.subset_of_cons_subset",
"kind": "commanddeclaration",
"start": [
50,
1
]
},
{
"code": "theorem subset_cons_of_subset (a : α) {l₁ l₂ : List α} : l₁ ⊆ l₂ → l₁ ⊆ a :: l₂",
"end": [
54,
29
],
"full_name": "List.subset_cons_of_subset",
"kind": "commanddeclaration",
"start": [
53,
1
]
},
{
"code": "theorem cons_subset_cons {l₁ l₂ : List α} (a : α) (s : l₁ ⊆ l₂) : a :: l₁ ⊆ a :: l₂",
"end": [
57,
62
],
"full_name": "List.cons_subset_cons",
"kind": "commanddeclaration",
"start": [
56,
1
]
},
{
"code": "@[simp] theorem subset_append_left (l₁ l₂ : List α) : l₁ ⊆ l₁ ++ l₂",
"end": [
59,
98
],
"full_name": "List.subset_append_left",
"kind": "commanddeclaration",
"start": [
59,
1
]
},
{
"code": "@[simp] theorem subset_append_right (l₁ l₂ : List α) : l₂ ⊆ l₁ ++ l₂",
"end": [
61,
100
],
"full_name": "List.subset_append_right",
"kind": "commanddeclaration",
"start": [
61,
1
]
},
{
"code": "theorem subset_append_of_subset_left (l₂ : List α) : l ⊆ l₁ → l ⊆ l₁ ++ l₂",
"end": [
64,
50
],
"full_name": "List.subset_append_of_subset_left",
"kind": "commanddeclaration",
"start": [
63,
1
]
},
{
"code": "theorem subset_append_of_subset_right (l₁ : List α) : l ⊆ l₂ → l ⊆ l₁ ++ l₂",
"end": [
67,
51
],
"full_name": "List.subset_append_of_subset_right",
"kind": "commanddeclaration",
"start": [
66,
1
]
},
{
"code": "@[simp] theorem cons_subset : a :: l ⊆ m ↔ a ∈ m ∧ l ⊆ m",
"end": [
70,
66
],
"full_name": "List.cons_subset",
"kind": "commanddeclaration",
"start": [
69,
1
]
},
{
"code": "@[simp] theorem append_subset {l₁ l₂ l : List α} :\n l₁ ++ l₂ ⊆ l ↔ l₁ ⊆ l ∧ l₂ ⊆ l",
"end": [
73,
79
],
"full_name": "List.append_subset",
"kind": "commanddeclaration",
"start": [
72,
1
]
},
{
"code": "theorem subset_nil {l : List α} : l ⊆ [] ↔ l = []",
"end": [
76,
99
],
"full_name": "List.subset_nil",
"kind": "commanddeclaration",
"start": [
75,
1
]
},
{
"code": "theorem map_subset {l₁ l₂ : List α} (f : α → β) (H : l₁ ⊆ l₂) : map f l₁ ⊆ map f l₂",
"end": [
79,
72
],
"full_name": "List.map_subset",
"kind": "commanddeclaration",
"start": [
78,
1
]
},
{
"code": "@[simp] theorem nil_sublist : ∀ l : List α, [] <+ l",
"end": [
85,
37
],
"full_name": "List.nil_sublist",
"kind": "commanddeclaration",
"start": [
83,
1
]
},
{
"code": "@[simp] theorem Sublist.refl : ∀ l : List α, l <+ l",
"end": [
89,
39
],
"full_name": "List.Sublist.refl",
"kind": "commanddeclaration",
"start": [
87,
1
]
},
{
"code": "theorem Sublist.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ <+ l₂) (h₂ : l₂ <+ l₃) : l₁ <+ l₃",
"end": [
100,
53
],
"full_name": "List.Sublist.trans",
"kind": "commanddeclaration",
"start": [
91,
1
]
},
{
"code": "@[simp] theorem sublist_cons (a : α) (l : List α) : l <+ a :: l",
"end": [
104,
91
],
"full_name": "List.sublist_cons",
"kind": "commanddeclaration",
"start": [
104,
1
]
},
{
"code": "theorem sublist_of_cons_sublist : a :: l₁ <+ l₂ → l₁ <+ l₂",
"end": [
107,
28
],
"full_name": "List.sublist_of_cons_sublist",
"kind": "commanddeclaration",
"start": [
106,
1
]
},
{
"code": "@[simp] theorem sublist_append_left : ∀ l₁ l₂ : List α, l₁ <+ l₁ ++ l₂",
"end": [
111,
55
],
"full_name": "List.sublist_append_left",
"kind": "commanddeclaration",
"start": [
109,
1
]
},
{
"code": "@[simp] theorem sublist_append_right : ∀ l₁ l₂ : List α, l₂ <+ l₁ ++ l₂",
"end": [
115,
55
],
"full_name": "List.sublist_append_right",
"kind": "commanddeclaration",
"start": [
113,
1
]
},
{
"code": "theorem sublist_append_of_sublist_left (s : l <+ l₁) : l <+ l₁ ++ l₂",
"end": [
118,
36
],
"full_name": "List.sublist_append_of_sublist_left",
"kind": "commanddeclaration",
"start": [
117,
1
]
},
{
"code": "theorem sublist_append_of_sublist_right (s : l <+ l₂) : l <+ l₁ ++ l₂",
"end": [
121,
37
],
"full_name": "List.sublist_append_of_sublist_right",
"kind": "commanddeclaration",
"start": [
120,
1
]
},
{
"code": "@[simp]\ntheorem cons_sublist_cons : a :: l₁ <+ a :: l₂ ↔ l₁ <+ l₂",
"end": [
125,
77
],
"full_name": "List.cons_sublist_cons",
"kind": "commanddeclaration",
"start": [
123,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_left : ∀ l, l ++ l₁ <+ l ++ l₂ ↔ l₁ <+ l₂",
"end": [
129,
69
],
"full_name": "List.append_sublist_append_left",
"kind": "commanddeclaration",
"start": [
127,
1
]
},
{
"code": "theorem Sublist.append_left : l₁ <+ l₂ → ∀ l, l ++ l₁ <+ l ++ l₂",
"end": [
132,
50
],
"full_name": "List.Sublist.append_left",
"kind": "commanddeclaration",
"start": [
131,
1
]
},
{
"code": "theorem Sublist.append_right : l₁ <+ l₂ → ∀ l, l₁ ++ l <+ l₂ ++ l",
"end": [
137,
48
],
"full_name": "List.Sublist.append_right",
"kind": "commanddeclaration",
"start": [
134,
1
]
},
{
"code": "theorem sublist_or_mem_of_sublist (h : l <+ l₁ ++ a :: l₂) : l <+ l₁ ++ l₂ ∨ a ∈ l",
"end": [
147,
65
],
"full_name": "List.sublist_or_mem_of_sublist",
"kind": "commanddeclaration",
"start": [
139,
1
]
},
{
"code": "theorem Sublist.reverse : l₁ <+ l₂ → l₁.reverse <+ l₂.reverse",
"end": [
152,
85
],
"full_name": "List.Sublist.reverse",
"kind": "commanddeclaration",
"start": [
149,
1
]
},
{
"code": "@[simp] theorem reverse_sublist : l₁.reverse <+ l₂.reverse ↔ l₁ <+ l₂",
"end": [
155,
82
],
"full_name": "List.reverse_sublist",
"kind": "commanddeclaration",
"start": [
154,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_right (l) : l₁ ++ l <+ l₂ ++ l ↔ l₁ <+ l₂",
"end": [
162,
30
],
"full_name": "List.append_sublist_append_right",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "theorem Sublist.append (hl : l₁ <+ l₂) (hr : r₁ <+ r₂) : l₁ ++ r₁ <+ l₂ ++ r₂",
"end": [
165,
66
],
"full_name": "List.Sublist.append",
"kind": "commanddeclaration",
"start": [
164,
1
]
},
{
"code": "theorem Sublist.subset : l₁ <+ l₂ → l₁ ⊆ l₂",
"end": [
171,
53
],
"full_name": "List.Sublist.subset",
"kind": "commanddeclaration",
"start": [
167,
1
]
},
{
"code": "theorem Sublist.length_le : l₁ <+ l₂ → length l₁ ≤ length l₂",
"end": [
185,
45
],
"full_name": "List.Sublist.length_le",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "@[simp] theorem sublist_nil {l : List α} : l <+ [] ↔ l = []",
"end": [
188,
64
],
"full_name": "List.sublist_nil",
"kind": "commanddeclaration",
"start": [
187,
1
]
},
{
"code": "theorem Sublist.eq_of_length : l₁ <+ l₂ → length l₁ = length l₂ → l₁ = l₂",
"end": [
193,
57
],
"full_name": "List.Sublist.eq_of_length",
"kind": "commanddeclaration",
"start": [
190,
1
]
},
{
"code": "theorem Sublist.eq_of_length_le (s : l₁ <+ l₂) (h : length l₂ ≤ length l₁) : l₁ = l₂",
"end": [
196,
50
],
"full_name": "List.Sublist.eq_of_length_le",
"kind": "commanddeclaration",
"start": [
195,
1
]
},
{
"code": "@[simp] theorem singleton_sublist {a : α} {l} : [a] <+ l ↔ a ∈ l",
"end": [
201,
66
],
"full_name": "List.singleton_sublist",
"kind": "commanddeclaration",
"start": [
198,
1
]
},
{
"code": "@[simp] theorem replicate_sublist_replicate {m n} (a : α) :\n replicate m a <+ replicate n a ↔ m ≤ n",
"end": [
209,
48
],
"full_name": "List.replicate_sublist_replicate",
"kind": "commanddeclaration",
"start": [
203,
1
]
},
{
"code": "theorem isSublist_iff_sublist [BEq α] [LawfulBEq α] {l₁ l₂ : List α} :\n l₁.isSublist l₂ ↔ l₁ <+ l₂",
"end": [
228,
24
],
"full_name": "List.isSublist_iff_sublist",
"kind": "commanddeclaration",
"start": [
211,
1
]
},
{
"code": "theorem tail_eq_tailD (l) : @tail α l = tailD l []",
"end": [
235,
73
],
"full_name": "List.tail_eq_tailD",
"kind": "commanddeclaration",
"start": [
235,
1
]
},
{
"code": "theorem tail_eq_tail? (l) : @tail α l = (tail? l).getD []",
"end": [
237,
85
],
"full_name": "List.tail_eq_tail?",
"kind": "commanddeclaration",
"start": [
237,
1
]
},
{
"code": "@[simp] theorem next?_nil : @next? α [] = none",
"end": [
241,
54
],
"full_name": "List.next?_nil",
"kind": "commanddeclaration",
"start": [
241,
1
]
},
{
"code": "@[simp] theorem next?_cons (a l) : @next? α (a :: l) = some (a, l)",
"end": [
242,
74
],
"full_name": "List.next?_cons",
"kind": "commanddeclaration",
"start": [
242,
1
]
},
{
"code": "theorem getElem_eq_iff {l : List α} {n : Nat} {h : n < l.length} : l[n] = x ↔ l[n]? = some x",
"end": [
248,
40
],
"full_name": "List.getElem_eq_iff",
"kind": "commanddeclaration",
"start": [
246,
1
]
},
{
"code": "@[deprecated getElem_eq_iff (since := \"2024-06-12\")]\ntheorem get_eq_iff : List.get l n = x ↔ l.get? n.1 = some x",
"end": [
252,
7
],
"full_name": "List.get_eq_iff",
"kind": "commanddeclaration",
"start": [
250,
1
]
},
{
"code": "theorem getElem?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs[i]? = xs[j]?) : i = j",
"end": [
273,
39
],
"full_name": "List.getElem?_inj",
"kind": "commanddeclaration",
"start": [
254,
1
]
},
{
"code": "@[deprecated getElem?_inj (since := \"2024-06-12\")]\ntheorem get?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs.get? i = xs.get? j) : i = j",
"end": [
279,
11
],
"full_name": "List.get?_inj",
"kind": "commanddeclaration",
"start": [
275,
1
]
},
{
"code": "theorem tail_drop (l : List α) (n : Nat) : (l.drop n).tail = l.drop (n + 1)",
"end": [
289,
16
],
"full_name": "List.tail_drop",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "@[simp] theorem modifyNth_nil (f : α → α) (n) : [].modifyNth f n = []",
"end": [
293,
92
],
"full_name": "List.modifyNth_nil",
"kind": "commanddeclaration",
"start": [
293,
1
]
},
{
"code": "@[simp] theorem modifyNth_zero_cons (f : α → α) (a : α) (l : List α) :\n (a :: l).modifyNth f 0 = f a :: l",
"end": [
296,
45
],
"full_name": "List.modifyNth_zero_cons",
"kind": "commanddeclaration",
"start": [
295,
1
]
},
{
"code": "@[simp] theorem modifyNth_succ_cons (f : α → α) (a : α) (l : List α) (n) :\n (a :: l).modifyNth f (n + 1) = a :: l.modifyNth f n",
"end": [
299,
66
],
"full_name": "List.modifyNth_succ_cons",
"kind": "commanddeclaration",
"start": [
298,
1
]
},
{
"code": "theorem modifyNthTail_id : ∀ n (l : List α), l.modifyNthTail id n = l",
"end": [
304,
60
],
"full_name": "List.modifyNthTail_id",
"kind": "commanddeclaration",
"start": [
301,
1
]
},
{
"code": "theorem eraseIdx_eq_modifyNthTail : ∀ n (l : List α), eraseIdx l n = modifyNthTail tail n l",
"end": [
309,
69
],
"full_name": "List.eraseIdx_eq_modifyNthTail",
"kind": "commanddeclaration",
"start": [
306,
1
]
},
{
"code": "theorem getElem?_modifyNth (f : α → α) :\n ∀ n (l : List α) m, (modifyNth f n l)[m]? = (fun a => if n = m then f a else a) <$> l[m]?",
"end": [
322,
79
],
"full_name": "List.getElem?_modifyNth",
"kind": "commanddeclaration",
"start": [
313,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth (since := \"2024-06-12\")]\ntheorem get?_modifyNth (f : α → α) (n) (l : List α) (m) :\n (modifyNth f n l).get? m = (fun a => if n = m then f a else a) <$> l.get? m",
"end": [
327,
28
],
"full_name": "List.get?_modifyNth",
"kind": "commanddeclaration",
"start": [
324,
1
]
},
{
"code": "theorem modifyNthTail_length (f : List α → List α) (H : ∀ l, length (f l) = length l) :\n ∀ n l, length (modifyNthTail f n l) = length l",
"end": [
333,
65
],
"full_name": "List.modifyNthTail_length",
"kind": "commanddeclaration",
"start": [
329,
1
]
},
{
"code": "theorem modifyNthTail_add (f : List α → List α) (n) (l₁ l₂ : List α) :\n modifyNthTail f (l₁.length + n) (l₁ ++ l₂) = l₁ ++ modifyNthTail f n l₂",
"end": [
337,
42
],
"full_name": "List.modifyNthTail_add",
"kind": "commanddeclaration",
"start": [
335,
1
]
},
{
"code": "theorem exists_of_modifyNthTail (f : List α → List α) {n} {l : List α} (h : n ≤ l.length) :\n ∃ l₁ l₂, l = l₁ ++ l₂ ∧ l₁.length = n ∧ modifyNthTail f n l = l₁ ++ f l₂",
"end": [
343,
58
],
"full_name": "List.exists_of_modifyNthTail",
"kind": "commanddeclaration",
"start": [
339,
1
]
},
{
"code": "@[simp] theorem modify_get?_length (f : α → α) : ∀ n l, length (modifyNth f n l) = length l",
"end": [
346,
53
],
"full_name": "List.modify_get?_length",
"kind": "commanddeclaration",
"start": [
345,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l)[n]? = f <$> l[n]?",
"end": [
350,
41
],
"full_name": "List.getElem?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_eq (since := \"2024-06-12\")]\ntheorem get?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l).get? n = f <$> l.get? n",
"end": [
355,
31
],
"full_name": "List.get?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
352,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l)[n]? = l[n]?",
"end": [
359,
52
],
"full_name": "List.getElem?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
357,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_ne (since := \"2024-06-12\")]\ntheorem get?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l).get? n = l.get? n",
"end": [
364,
11
],
"full_name": "List.get?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
361,
1
]
},
{
"code": "theorem exists_of_modifyNth (f : α → α) {n} {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ modifyNth f n l = l₁ ++ f a :: l₂",
"end": [
370,
74
],
"full_name": "List.exists_of_modifyNth",
"kind": "commanddeclaration",
"start": [
366,
1
]
},
{
"code": "theorem modifyNthTail_eq_take_drop (f : List α → List α) (H : f [] = []) :\n ∀ n l, modifyNthTail f n l = take n l ++ f (drop n l)",
"end": [
376,
76
],
"full_name": "List.modifyNthTail_eq_take_drop",
"kind": "commanddeclaration",
"start": [
372,
1
]
},
{
"code": "theorem modifyNth_eq_take_drop (f : α → α) :\n ∀ n l, modifyNth f n l = take n l ++ modifyHead f (drop n l)",
"end": [
380,
35
],
"full_name": "List.modifyNth_eq_take_drop",
"kind": "commanddeclaration",
"start": [
378,
1
]
},
{
"code": "theorem modifyNth_eq_take_cons_drop (f : α → α) {n l} (h) :\n modifyNth f n l = take n l ++ f l[n] :: drop (n + 1) l",
"end": [
384,
59
],
"full_name": "List.modifyNth_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
382,
1
]
},
{
"code": "theorem set_eq_modifyNth (a : α) : ∀ n (l : List α), set l n a = modifyNth (fun _ => a) n l",
"end": [
391,
62
],
"full_name": "List.set_eq_modifyNth",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "theorem set_eq_take_cons_drop (a : α) {n l} (h : n < length l) :\n set l n a = take n l ++ a :: drop (n + 1) l",
"end": [
395,
57
],
"full_name": "List.set_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
393,
1
]
},
{
"code": "theorem modifyNth_eq_set_get? (f : α → α) :\n ∀ n (l : List α), l.modifyNth f n = ((fun a => l.set n (f a)) <$> l.get? n).getD l",
"end": [
402,
92
],
"full_name": "List.modifyNth_eq_set_get?",
"kind": "commanddeclaration",
"start": [
397,
1
]
},
{
"code": "theorem modifyNth_eq_set_get (f : α → α) {n} {l : List α} (h) :\n l.modifyNth f n = l.set n (f (l.get ⟨n, h⟩))",
"end": [
406,
49
],
"full_name": "List.modifyNth_eq_set_get",
"kind": "commanddeclaration",
"start": [
404,
1
]
},
{
"code": "theorem exists_of_set {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
410,
55
],
"full_name": "List.exists_of_set",
"kind": "commanddeclaration",
"start": [
408,
1
]
},
{
"code": "theorem exists_of_set' {l : List α} (h : n < l.length) :\n ∃ l₁ l₂, l = l₁ ++ l[n] :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
414,
94
],
"full_name": "List.exists_of_set'",
"kind": "commanddeclaration",
"start": [
412,
1
]
},
{
"code": "@[simp]\ntheorem getElem?_set_eq' (a : α) (n) (l : List α) : (set l n a)[n]? = (fun _ => a) <$> l[n]?",
"end": [
418,
54
],
"full_name": "List.getElem?_set_eq'",
"kind": "commanddeclaration",
"start": [
416,
1
]
},
{
"code": "@[deprecated getElem?_set_eq' (since := \"2024-06-12\")]\ntheorem get?_set_eq (a : α) (n) (l : List α) : (set l n a).get? n = (fun _ => a) <$> l.get? n",
"end": [
422,
7
],
"full_name": "List.get?_set_eq",
"kind": "commanddeclaration",
"start": [
420,
1
]
},
{
"code": "theorem getElem?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a)[n]? = some a",
"end": [
425,
85
],
"full_name": "List.getElem?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
424,
1
]
},
{
"code": "@[deprecated getElem?_set_eq_of_lt (since := \"2024-06-12\")]\ntheorem get?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a).get? n = some a",
"end": [
430,
70
],
"full_name": "List.get?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
427,
1
]
},
{
"code": "@[deprecated getElem?_set_ne (since := \"2024-06-12\")]\ntheorem get?_set_ne (a : α) {m n} (l : List α) (h : m ≠ n) : (set l m a).get? n = l.get? n",
"end": [
434,
11
],
"full_name": "List.get?_set_ne",
"kind": "commanddeclaration",
"start": [
432,
1
]
},
{
"code": "theorem getElem?_set' (a : α) {m n} (l : List α) :\n (set l m a)[n]? = if m = n then (fun _ => a) <$> l[n]? else l[n]?",
"end": [
438,
30
],
"full_name": "List.getElem?_set'",
"kind": "commanddeclaration",
"start": [
436,
1
]
},
{
"code": "@[deprecated getElem?_set (since := \"2024-06-12\")]\ntheorem get?_set (a : α) {m n} (l : List α) :\n (set l m a).get? n = if m = n then (fun _ => a) <$> l.get? n else l.get? n",
"end": [
443,
23
],
"full_name": "List.get?_set",
"kind": "commanddeclaration",
"start": [
440,
1
]
},
{
"code": "theorem get?_set_of_lt (a : α) {m n} (l : List α) (h : n < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
447,
46
],
"full_name": "List.get?_set_of_lt",
"kind": "commanddeclaration",
"start": [
445,
1
]
},
{
"code": "theorem get?_set_of_lt' (a : α) {m n} (l : List α) (h : m < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
451,
80
],
"full_name": "List.get?_set_of_lt'",
"kind": "commanddeclaration",
"start": [
449,
1
]
},
{
"code": "theorem drop_set_of_lt (a : α) {n m : Nat} (l : List α) (h : n < m) :\n (l.set n a).drop m = l.drop m",
"end": [
455,
94
],
"full_name": "List.drop_set_of_lt",
"kind": "commanddeclaration",
"start": [
453,
1
]
},
{
"code": "theorem take_set_of_lt (a : α) {n m : Nat} (l : List α) (h : m < n) :\n (l.set n a).take m = l.take m",
"end": [
463,
10
],
"full_name": "List.take_set_of_lt",
"kind": "commanddeclaration",
"start": [
457,
1
]
},
{
"code": "theorem length_eraseIdx : ∀ {l i}, i < length l → length (@eraseIdx α l i) = length l - 1",
"end": [
473,
92
],
"full_name": "List.length_eraseIdx",
"kind": "commanddeclaration",
"start": [
467,
1
]
},
{
"code": "@[simp] theorem length_tail (l : List α) : length (tail l) = length l - 1",
"end": [
479,
96
],
"full_name": "List.length_tail",
"kind": "commanddeclaration",
"start": [
479,
1
]
},
{
"code": "@[simp] theorem eraseP_nil : [].eraseP p = []",
"end": [
483,
53
],
"full_name": "List.eraseP_nil",
"kind": "commanddeclaration",
"start": [
483,
1
]
},
{
"code": "theorem eraseP_cons (a : α) (l : List α) :\n (a :: l).eraseP p = bif p a then l else a :: l.eraseP p",
"end": [
486,
67
],
"full_name": "List.eraseP_cons",
"kind": "commanddeclaration",
"start": [
485,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_pos {l : List α} (p) (h : p a) : (a :: l).eraseP p = l",
"end": [
489,
24
],
"full_name": "List.eraseP_cons_of_pos",
"kind": "commanddeclaration",
"start": [
488,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_neg {l : List α} (p) (h : ¬p a) :\n (a :: l).eraseP p = a :: l.eraseP p",
"end": [
492,
68
],
"full_name": "List.eraseP_cons_of_neg",
"kind": "commanddeclaration",
"start": [
491,
1
]
},
{
"code": "theorem eraseP_of_forall_not {l : List α} (h : ∀ a, a ∈ l → ¬p a) : l.eraseP p = l",
"end": [
497,
69
],
"full_name": "List.eraseP_of_forall_not",
"kind": "commanddeclaration",
"start": [
494,
1
]
},
{
"code": "theorem exists_of_eraseP : ∀ {l : List α} {a} (al : a ∈ l) (pa : p a),\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
510,
57
],
"full_name": "List.exists_of_eraseP",
"kind": "commanddeclaration",
"start": [
499,
1
]
},
{
"code": "theorem exists_or_eq_self_of_eraseP (p) (l : List α) :\n l.eraseP p = l ∨\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
519,
46
],
"full_name": "List.exists_or_eq_self_of_eraseP",
"kind": "commanddeclaration",
"start": [
512,
1
]
},
{
"code": "@[simp] theorem length_eraseP_of_mem (al : a ∈ l) (pa : p a) :\n length (l.eraseP p) = Nat.pred (length l)",
"end": [
524,
41
],
"full_name": "List.length_eraseP_of_mem",
"kind": "commanddeclaration",
"start": [
521,
1
]
},
{
"code": "theorem eraseP_append_left {a : α} (pa : p a) :\n ∀ {l₁ : List α} l₂, a ∈ l₁ → (l₁++l₂).eraseP p = l₁.eraseP p ++ l₂",
"end": [
531,
28
],
"full_name": "List.eraseP_append_left",
"kind": "commanddeclaration",
"start": [
526,
1
]
},
{
"code": "theorem eraseP_append_right :\n ∀ {l₁ : List α} l₂, (∀ b ∈ l₁, ¬p b) → eraseP p (l₁++l₂) = l₁ ++ l₂.eraseP p",
"end": [
537,
82
],
"full_name": "List.eraseP_append_right",
"kind": "commanddeclaration",
"start": [
533,
1
]
},
{
"code": "theorem eraseP_sublist (l : List α) : l.eraseP p <+ l",
"end": [
542,
56
],
"full_name": "List.eraseP_sublist",
"kind": "commanddeclaration",
"start": [
539,
1
]
},
{
"code": "theorem eraseP_subset (l : List α) : l.eraseP p ⊆ l",
"end": [
544,
81
],
"full_name": "List.eraseP_subset",
"kind": "commanddeclaration",
"start": [
544,
1
]
},
{
"code": "protected theorem Sublist.eraseP : l₁ <+ l₂ → l₁.eraseP p <+ l₂.eraseP p",
"end": [
553,
25
],
"full_name": "List.Sublist.eraseP",
"kind": "commanddeclaration",
"start": [
546,
1
]
},
{
"code": "theorem mem_of_mem_eraseP {l : List α} : a ∈ l.eraseP p → a ∈ l",
"end": [
555,
87
],
"full_name": "List.mem_of_mem_eraseP",
"kind": "commanddeclaration",
"start": [
555,
1
]
},
{
"code": "@[simp] theorem mem_eraseP_of_neg {l : List α} (pa : ¬p a) : a ∈ l.eraseP p ↔ a ∈ l",
"end": [
564,
33
],
"full_name": "List.mem_eraseP_of_neg",
"kind": "commanddeclaration",
"start": [
557,
1
]
},
{
"code": "theorem eraseP_map (f : β → α) : ∀ (l : List β), (map f l).eraseP p = map f (l.eraseP (p ∘ f))",
"end": [
568,
85
],
"full_name": "List.eraseP_map",
"kind": "commanddeclaration",
"start": [
566,
1
]
},
{
"code": "@[simp] theorem extractP_eq_find?_eraseP\n (l : List α) : extractP p l = (find? p l, eraseP p l)",
"end": [
578,
21
],
"full_name": "List.extractP_eq_find?_eraseP",
"kind": "commanddeclaration",
"start": [
570,
1
]
},
{
"code": "theorem erase_eq_eraseP' (a : α) (l : List α) : l.erase a = l.eraseP (· == a)",
"end": [
590,
46
],
"full_name": "List.erase_eq_eraseP'",
"kind": "commanddeclaration",
"start": [
585,
1
]
},
{
"code": "theorem erase_eq_eraseP [LawfulBEq α] (a : α) : ∀ l : List α, l.erase a = l.eraseP (a == ·)",
"end": [
595,
77
],
"full_name": "List.erase_eq_eraseP",
"kind": "commanddeclaration",
"start": [
592,
1
]
},
{
"code": "theorem exists_erase_eq [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n ∃ l₁ l₂, a ∉ l₁ ∧ l = l₁ ++ a :: l₂ ∧ l.erase a = l₁ ++ l₂",
"end": [
600,
99
],
"full_name": "List.exists_erase_eq",
"kind": "commanddeclaration",
"start": [
597,
1
]
},
{
"code": "@[simp] theorem length_erase_of_mem [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n length (l.erase a) = Nat.pred (length l)",
"end": [
604,
74
],
"full_name": "List.length_erase_of_mem",
"kind": "commanddeclaration",
"start": [
602,
1
]
},
{
"code": "theorem erase_append_left [LawfulBEq α] {l₁ : List α} (l₂) (h : a ∈ l₁) :\n (l₁ ++ l₂).erase a = l₁.erase a ++ l₂",
"end": [
608,
77
],
"full_name": "List.erase_append_left",
"kind": "commanddeclaration",
"start": [
606,
1
]
},
{
"code": "theorem erase_append_right [LawfulBEq α] {a : α} {l₁ : List α} (l₂ : List α) (h : a ∉ l₁) :\n (l₁ ++ l₂).erase a = (l₁ ++ l₂.erase a)",
"end": [
613,
55
],
"full_name": "List.erase_append_right",
"kind": "commanddeclaration",
"start": [
610,
1
]
},
{
"code": "theorem erase_sublist (a : α) (l : List α) : l.erase a <+ l",
"end": [
616,
42
],
"full_name": "List.erase_sublist",
"kind": "commanddeclaration",
"start": [
615,
1
]
},
{
"code": "theorem erase_subset (a : α) (l : List α) : l.erase a ⊆ l",
"end": [
618,
88
],
"full_name": "List.erase_subset",
"kind": "commanddeclaration",
"start": [
618,
1
]
},
{
"code": "theorem Sublist.erase (a : α) {l₁ l₂ : List α} (h : l₁ <+ l₂) : l₁.erase a <+ l₂.erase a",
"end": [
621,
47
],
"full_name": "List.Sublist.erase",
"kind": "commanddeclaration",
"start": [
620,
1
]
},
{
"code": "theorem mem_of_mem_erase {a b : α} {l : List α} (h : a ∈ l.erase b) : a ∈ l",
"end": [
624,
98
],
"full_name": "List.mem_of_mem_erase",
"kind": "commanddeclaration",
"start": [
624,
1
]
},
{
"code": "@[simp] theorem mem_erase_of_ne [LawfulBEq α] {a b : α} {l : List α} (ab : a ≠ b) :\n a ∈ l.erase b ↔ a ∈ l",
"end": [
628,
65
],
"full_name": "List.mem_erase_of_ne",
"kind": "commanddeclaration",
"start": [
626,
1
]
},
{
"code": "theorem erase_comm [LawfulBEq α] (a b : α) (l : List α) :\n (l.erase a).erase b = (l.erase b).erase a",
"end": [
644,
49
],
"full_name": "List.erase_comm",
"kind": "commanddeclaration",
"start": [
630,
1
]
},
{
"code": "@[simp] theorem filter_sublist {p : α → Bool} : ∀ (l : List α), filter p l <+ l",
"end": [
652,
93
],
"full_name": "List.filter_sublist",
"kind": "commanddeclaration",
"start": [
650,
1
]
},
{
"code": "protected theorem Sublist.filterMap (f : α → Option β) (s : l₁ <+ l₂) :\n filterMap f l₁ <+ filterMap f l₂",
"end": [
658,
76
],
"full_name": "List.Sublist.filterMap",
"kind": "commanddeclaration",
"start": [
656,
1
]
},
{
"code": "theorem Sublist.filter (p : α → Bool) {l₁ l₂} (s : l₁ <+ l₂) : filter p l₁ <+ filter p l₂",
"end": [
661,
48
],
"full_name": "List.Sublist.filter",
"kind": "commanddeclaration",
"start": [
660,
1
]
},
{
"code": "@[simp] theorem findIdx_nil {α : Type _} (p : α → Bool) : [].findIdx p = 0",
"end": [
665,
82
],
"full_name": "List.findIdx_nil",
"kind": "commanddeclaration",
"start": [
665,
1
]
},
{
"code": "theorem findIdx_cons (p : α → Bool) (b : α) (l : List α) :\n (b :: l).findIdx p = bif p b then 0 else (l.findIdx p) + 1",
"end": [
680,
43
],
"full_name": "List.findIdx_cons",
"kind": "commanddeclaration",
"start": [
667,
1
]
},
{
"code": "theorem findIdx_of_get?_eq_some {xs : List α} (w : xs.get? (xs.findIdx p) = some y) : p y",
"end": [
685,
65
],
"full_name": "List.findIdx_of_get?_eq_some",
"kind": "commanddeclaration",
"start": [
682,
1
]
},
{
"code": "theorem findIdx_get {xs : List α} {w : xs.findIdx p < xs.length} :\n p (xs.get ⟨xs.findIdx p, w⟩)",
"end": [
689,
45
],
"full_name": "List.findIdx_get",
"kind": "commanddeclaration",
"start": [
687,
1
]
},
{
"code": "theorem findIdx_lt_length_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.findIdx p < xs.length",
"end": [
703,
24
],
"full_name": "List.findIdx_lt_length_of_exists",
"kind": "commanddeclaration",
"start": [
691,
1
]
},
{
"code": "theorem findIdx_get?_eq_get_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.get? (xs.findIdx p) = some (xs.get ⟨xs.findIdx p, xs.findIdx_lt_length_of_exists h⟩)",
"end": [
707,
46
],
"full_name": "List.findIdx_get?_eq_get_of_exists",
"kind": "commanddeclaration",
"start": [
705,
1
]
},
{
"code": "@[simp] theorem findIdx?_nil : ([] : List α).findIdx? p i = none",
"end": [
711,
72
],
"full_name": "List.findIdx?_nil",
"kind": "commanddeclaration",
"start": [
711,
1
]
},
{
"code": "@[simp] theorem findIdx?_cons :\n (x :: xs).findIdx? p i = if p x then some i else findIdx? p xs (i + 1)",
"end": [
714,
82
],
"full_name": "List.findIdx?_cons",
"kind": "commanddeclaration",
"start": [
713,
1
]
},
{
"code": "@[simp] theorem findIdx?_succ :\n (xs : List α).findIdx? p (i+1) = (xs.findIdx? p i).map fun i => i + 1",
"end": [
719,
37
],
"full_name": "List.findIdx?_succ",
"kind": "commanddeclaration",
"start": [
716,
1
]
},
{
"code": "theorem findIdx?_eq_some_iff (xs : List α) (p : α → Bool) :\n xs.findIdx? p = some i ↔ (xs.take (i + 1)).map p = replicate i false ++ [true]",
"end": [
727,
52
],
"full_name": "List.findIdx?_eq_some_iff",
"kind": "commanddeclaration",
"start": [
721,
1
]
},
{
"code": "theorem findIdx?_of_eq_some {xs : List α} {p : α → Bool} (w : xs.findIdx? p = some i) :\n match xs.get? i with | some a => p a | none => false",
"end": [
735,
40
],
"full_name": "List.findIdx?_of_eq_some",
"kind": "commanddeclaration",
"start": [
729,
1
]
},
{
"code": "theorem findIdx?_of_eq_none {xs : List α} {p : α → Bool} (w : xs.findIdx? p = none) :\n ∀ i, match xs.get? i with | some a => ¬ p a | none => true",
"end": [
750,
30
],
"full_name": "List.findIdx?_of_eq_none",
"kind": "commanddeclaration",
"start": [
737,
1
]
},
{
"code": "@[simp] theorem findIdx?_append :\n (xs ++ ys : List α).findIdx? p =\n (xs.findIdx? p <|> (ys.findIdx? p).map fun i => i + xs.length)",
"end": [
756,
78
],
"full_name": "List.findIdx?_append",
"kind": "commanddeclaration",
"start": [
752,
1
]
},
{
"code": "@[simp] theorem findIdx?_replicate :\n (replicate n a).findIdx? p = if 0 < n ∧ p a then some 0 else none",
"end": [
764,
23
],
"full_name": "List.findIdx?_replicate",
"kind": "commanddeclaration",
"start": [
758,
1
]
},
{
"code": "theorem Pairwise.sublist : l₁ <+ l₂ → l₂.Pairwise R → l₁.Pairwise R",
"end": [
771,
80
],
"full_name": "List.Pairwise.sublist",
"kind": "commanddeclaration",
"start": [
768,
1
]
},
{
"code": "theorem pairwise_map {l : List α} :\n (l.map f).Pairwise R ↔ l.Pairwise fun a b => R (f a) (f b)",
"end": [
777,
58
],
"full_name": "List.pairwise_map",
"kind": "commanddeclaration",
"start": [
773,
1
]
},
{
"code": "theorem pairwise_append {l₁ l₂ : List α} :\n (l₁ ++ l₂).Pairwise R ↔ l₁.Pairwise R ∧ l₂.Pairwise R ∧ ∀ a ∈ l₁, ∀ b ∈ l₂, R a b",
"end": [
781,
74
],
"full_name": "List.pairwise_append",
"kind": "commanddeclaration",
"start": [
779,
1
]
},
{
"code": "theorem pairwise_reverse {l : List α} :\n l.reverse.Pairwise R ↔ l.Pairwise (fun a b => R b a)",
"end": [
785,
54
],
"full_name": "List.pairwise_reverse",
"kind": "commanddeclaration",
"start": [
783,
1
]
},
{
"code": "theorem Pairwise.imp {α R S} (H : ∀ {a b}, R a b → S a b) :\n ∀ {l : List α}, l.Pairwise R → l.Pairwise S",
"end": [
790,
50
],
"full_name": "List.Pairwise.imp",
"kind": "commanddeclaration",
"start": [
787,
1
]
},
{
"code": "theorem replaceF_nil : [].replaceF p = []",
"end": [
794,
49
],
"full_name": "List.replaceF_nil",
"kind": "commanddeclaration",
"start": [
794,
1
]
},
{
"code": "theorem replaceF_cons (a : α) (l : List α) :\n (a :: l).replaceF p = match p a with\n | none => a :: replaceF p l\n | some a' => a' :: l",
"end": [
799,
34
],
"full_name": "List.replaceF_cons",
"kind": "commanddeclaration",
"start": [
796,
1
]
},
{
"code": "theorem replaceF_cons_of_some {l : List α} (p) (h : p a = some a') :\n (a :: l).replaceF p = a' :: l",
"end": [
803,
26
],
"full_name": "List.replaceF_cons_of_some",
"kind": "commanddeclaration",
"start": [
801,
1
]
},
{
"code": "theorem replaceF_cons_of_none {l : List α} (p) (h : p a = none) :\n (a :: l).replaceF p = a :: l.replaceF p",
"end": [
806,
74
],
"full_name": "List.replaceF_cons_of_none",
"kind": "commanddeclaration",
"start": [
805,
1
]
},
{
"code": "theorem replaceF_of_forall_none {l : List α} (h : ∀ a, a ∈ l → p a = none) : l.replaceF p = l",
"end": [
811,
69
],
"full_name": "List.replaceF_of_forall_none",
"kind": "commanddeclaration",
"start": [
808,
1
]
},
{
"code": "theorem exists_of_replaceF : ∀ {l : List α} {a a'} (al : a ∈ l) (pa : p a = some a'),\n ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
825,
57
],
"full_name": "List.exists_of_replaceF",
"kind": "commanddeclaration",
"start": [
813,
1
]
},
{
"code": "theorem exists_or_eq_self_of_replaceF (p) (l : List α) :\n l.replaceF p = l ∨ ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
835,
62
],
"full_name": "List.exists_or_eq_self_of_replaceF",
"kind": "commanddeclaration",
"start": [
827,
1
]
},
{
"code": "@[simp] theorem length_replaceF : length (replaceF f l) = length l",
"end": [
838,
54
],
"full_name": "List.length_replaceF",
"kind": "commanddeclaration",
"start": [
837,
1
]
},
{
"code": "theorem disjoint_symm (d : Disjoint l₁ l₂) : Disjoint l₂ l₁",
"end": [
842,
86
],
"full_name": "List.disjoint_symm",
"kind": "commanddeclaration",
"start": [
842,
1
]
},
{
"code": "theorem disjoint_comm : Disjoint l₁ l₂ ↔ Disjoint l₂ l₁",
"end": [
844,
90
],
"full_name": "List.disjoint_comm",
"kind": "commanddeclaration",
"start": [
844,
1
]
},
{
"code": "theorem disjoint_left : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₁ → a ∉ l₂",
"end": [
846,
86
],
"full_name": "List.disjoint_left",
"kind": "commanddeclaration",
"start": [
846,
1
]
},
{
"code": "theorem disjoint_right : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₂ → a ∉ l₁",
"end": [
848,
82
],
"full_name": "List.disjoint_right",
"kind": "commanddeclaration",
"start": [
848,
1
]
},
{
"code": "theorem disjoint_iff_ne : Disjoint l₁ l₂ ↔ ∀ a ∈ l₁, ∀ b ∈ l₂, a ≠ b",
"end": [
851,
83
],
"full_name": "List.disjoint_iff_ne",
"kind": "commanddeclaration",
"start": [
850,
1
]
},
{
"code": "theorem disjoint_of_subset_left (ss : l₁ ⊆ l) (d : Disjoint l l₂) : Disjoint l₁ l₂",
"end": [
854,
22
],
"full_name": "List.disjoint_of_subset_left",
"kind": "commanddeclaration",
"start": [
853,
1
]
},
{
"code": "theorem disjoint_of_subset_right (ss : l₂ ⊆ l) (d : Disjoint l₁ l) : Disjoint l₁ l₂",
"end": [
857,
28
],
"full_name": "List.disjoint_of_subset_right",
"kind": "commanddeclaration",
"start": [
856,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_left {l₁ l₂} : Disjoint (a :: l₁) l₂ → Disjoint l₁ l₂",
"end": [
860,
42
],
"full_name": "List.disjoint_of_disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
859,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_right {l₁ l₂} : Disjoint l₁ (a :: l₂) → Disjoint l₁ l₂",
"end": [
863,
43
],
"full_name": "List.disjoint_of_disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
862,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_left (l : List α) : Disjoint [] l",
"end": [
865,
96
],
"full_name": "List.disjoint_nil_left",
"kind": "commanddeclaration",
"start": [
865,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_right (l : List α) : Disjoint l []",
"end": [
868,
48
],
"full_name": "List.disjoint_nil_right",
"kind": "commanddeclaration",
"start": [
867,
1
]
},
{
"code": "@[simp 1100] theorem singleton_disjoint : Disjoint [a] l ↔ a ∉ l",
"end": [
870,
87
],
"full_name": "List.singleton_disjoint",
"kind": "commanddeclaration",
"start": [
870,
1
]
},
{
"code": "@[simp 1100] theorem disjoint_singleton : Disjoint l [a] ↔ a ∉ l",
"end": [
873,
41
],
"full_name": "List.disjoint_singleton",
"kind": "commanddeclaration",
"start": [
872,
1
]
},
{
"code": "@[simp] theorem disjoint_append_left : Disjoint (l₁ ++ l₂) l ↔ Disjoint l₁ l ∧ Disjoint l₂ l",
"end": [
876,
38
],
"full_name": "List.disjoint_append_left",
"kind": "commanddeclaration",
"start": [
875,
1
]
},
{
"code": "@[simp] theorem disjoint_append_right : Disjoint l (l₁ ++ l₂) ↔ Disjoint l l₁ ∧ Disjoint l l₂",
"end": [
879,
76
],
"full_name": "List.disjoint_append_right",
"kind": "commanddeclaration",
"start": [
878,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_left : Disjoint (a::l₁) l₂ ↔ (a ∉ l₂) ∧ Disjoint l₁ l₂",
"end": [
882,
75
],
"full_name": "List.disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
881,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_right : Disjoint l₁ (a :: l₂) ↔ (a ∉ l₁) ∧ Disjoint l₁ l₂",
"end": [
885,
74
],
"full_name": "List.disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
884,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_left (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₁ l",
"end": [
888,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_left",
"kind": "commanddeclaration",
"start": [
887,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_right (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₂ l",
"end": [
891,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_right",
"kind": "commanddeclaration",
"start": [
890,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_left (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₁",
"end": [
894,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_left",
"kind": "commanddeclaration",
"start": [
893,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_right (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₂",
"end": [
897,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_right",
"kind": "commanddeclaration",
"start": [
896,
1
]
},
{
"code": "theorem foldl_hom (f : α₁ → α₂) (g₁ : α₁ → β → α₁) (g₂ : α₂ → β → α₂) (l : List β) (init : α₁)\n (H : ∀ x y, g₂ (f x) y = f (g₁ x y)) : l.foldl g₂ (f init) = f (l.foldl g₁ init)",
"end": [
903,
48
],
"full_name": "List.foldl_hom",
"kind": "commanddeclaration",
"start": [
901,
1
]
},
{
"code": "theorem foldr_hom (f : β₁ → β₂) (g₁ : α → β₁ → β₁) (g₂ : α → β₂ → β₂) (l : List α) (init : β₁)\n (H : ∀ x y, g₂ x (f y) = f (g₁ x y)) : l.foldr g₂ (f init) = f (l.foldr g₁ init)",
"end": [
907,
30
],
"full_name": "List.foldr_hom",
"kind": "commanddeclaration",
"start": [
905,
1
]
},
{
"code": "theorem union_def [BEq α] (l₁ l₂ : List α) : l₁ ∪ l₂ = foldr .insert l₂ l₁",
"end": [
915,
83
],
"full_name": "List.union_def",
"kind": "commanddeclaration",
"start": [
915,
1
]
},
{
"code": "@[simp] theorem nil_union (l : List α) : nil ∪ l = l",
"end": [
917,
88
],
"full_name": "List.nil_union",
"kind": "commanddeclaration",
"start": [
917,
1
]
},
{
"code": "@[simp] theorem cons_union (a : α) (l₁ l₂ : List α) :\n (a :: l₁) ∪ l₂ = (l₁ ∪ l₂).insert a",
"end": [
920,
75
],
"full_name": "List.cons_union",
"kind": "commanddeclaration",
"start": [
919,
1
]
},
{
"code": "@[simp] theorem mem_union_iff [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∪ l₂ ↔ x ∈ l₁ ∨ x ∈ l₂",
"end": [
923,
76
],
"full_name": "List.mem_union_iff",
"kind": "commanddeclaration",
"start": [
922,
1
]
},
{
"code": "theorem inter_def [BEq α] (l₁ l₂ : List α) : l₁ ∩ l₂ = filter (elem · l₂) l₁",
"end": [
929,
85
],
"full_name": "List.inter_def",
"kind": "commanddeclaration",
"start": [
929,
1
]
},
{
"code": "@[simp] theorem mem_inter_iff [BEq α] [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∩ l₂ ↔ x ∈ l₁ ∧ x ∈ l₂",
"end": [
933,
49
],
"full_name": "List.mem_inter_iff",
"kind": "commanddeclaration",
"start": [
931,
1
]
},
{
"code": "@[simp]\ntheorem pair_mem_product {xs : List α} {ys : List β} {x : α} {y : β} :\n (x, y) ∈ product xs ys ↔ x ∈ xs ∧ y ∈ ys",
"end": [
942,
47
],
"full_name": "List.pair_mem_product",
"kind": "commanddeclaration",
"start": [
937,
1
]
},
{
"code": "@[simp]\ntheorem leftpad_length (n : Nat) (a : α) (l : List α) :\n (leftpad n a l).length = max n l.length",
"end": [
951,
75
],
"full_name": "List.leftpad_length",
"kind": "commanddeclaration",
"start": [
946,
1
]
},
{
"code": "theorem leftpad_prefix (n : Nat) (a : α) (l : List α) :\n replicate (n - length l) a <+: leftpad n a l",
"end": [
956,
27
],
"full_name": "List.leftpad_prefix",
"kind": "commanddeclaration",
"start": [
953,
1
]
},
{
"code": "theorem leftpad_suffix (n : Nat) (a : α) (l : List α) : l <:+ (leftpad n a l)",
"end": [
960,
54
],
"full_name": "List.leftpad_suffix",
"kind": "commanddeclaration",
"start": [
958,
1
]
},
{
"code": "@[simp] theorem forIn_eq_forIn [Monad m] : @List.forIn α β m _ = forIn",
"end": [
965,
78
],
"full_name": "List.forIn_eq_forIn",
"kind": "commanddeclaration",
"start": [
965,
1
]
},
{
"code": "theorem forIn_eq_bindList [Monad m] [LawfulMonad m]\n (f : α → β → m (ForInStep β)) (l : List α) (init : β) :\n forIn l init f = ForInStep.run <$> (ForInStep.yield init).bindList f l",
"end": [
971,
30
],
"full_name": "List.forIn_eq_bindList",
"kind": "commanddeclaration",
"start": [
967,
1
]
},
{
"code": "@[simp] theorem forM_append [Monad m] [LawfulMonad m] (l₁ l₂ : List α) (f : α → m PUnit) :\n (l₁ ++ l₂).forM f = (do l₁.forM f; l₂.forM f)",
"end": [
974,
82
],
"full_name": "List.forM_append",
"kind": "commanddeclaration",
"start": [
973,
1
]
},
{
"code": "@[simp] theorem diff_nil (l : List α) : l.diff [] = l",
"end": [
982,
61
],
"full_name": "List.diff_nil",
"kind": "commanddeclaration",
"start": [
982,
1
]
},
{
"code": "@[simp] theorem diff_cons (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.erase a).diff l₂",
"end": [
985,
41
],
"full_name": "List.diff_cons",
"kind": "commanddeclaration",
"start": [
984,
1
]
},
{
"code": "theorem diff_cons_right (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.diff l₂).erase a",
"end": [
988,
71
],
"full_name": "List.diff_cons_right",
"kind": "commanddeclaration",
"start": [
987,
1
]
},
{
"code": "theorem diff_erase (l₁ l₂ : List α) (a : α) : (l₁.diff l₂).erase a = (l₁.erase a).diff l₂",
"end": [
991,
36
],
"full_name": "List.diff_erase",
"kind": "commanddeclaration",
"start": [
990,
1
]
},
{
"code": "@[simp] theorem nil_diff (l : List α) : [].diff l = []",
"end": [
994,
45
],
"full_name": "List.nil_diff",
"kind": "commanddeclaration",
"start": [
993,
1
]
},
{
"code": "theorem cons_diff (a : α) (l₁ l₂ : List α) :\n (a :: l₁).diff l₂ = if a ∈ l₂ then l₁.diff (l₂.erase a) else a :: l₁.diff l₂",
"end": [
1005,
14
],
"full_name": "List.cons_diff",
"kind": "commanddeclaration",
"start": [
996,
1
]
},
{
"code": "theorem cons_diff_of_mem {a : α} {l₂ : List α} (h : a ∈ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = l₁.diff (l₂.erase a)",
"end": [
1008,
76
],
"full_name": "List.cons_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1007,
1
]
},
{
"code": "theorem cons_diff_of_not_mem {a : α} {l₂ : List α} (h : a ∉ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = a :: l₁.diff l₂",
"end": [
1011,
71
],
"full_name": "List.cons_diff_of_not_mem",
"kind": "commanddeclaration",
"start": [
1010,
1
]
},
{
"code": "theorem diff_eq_foldl : ∀ l₁ l₂ : List α, l₁.diff l₂ = foldl List.erase l₁ l₂",
"end": [
1015,
65
],
"full_name": "List.diff_eq_foldl",
"kind": "commanddeclaration",
"start": [
1013,
1
]
},
{
"code": "@[simp] theorem diff_append (l₁ l₂ l₃ : List α) : l₁.diff (l₂ ++ l₃) = (l₁.diff l₂).diff l₃",
"end": [
1018,
42
],
"full_name": "List.diff_append",
"kind": "commanddeclaration",
"start": [
1017,
1
]
},
{
"code": "theorem diff_sublist : ∀ l₁ l₂ : List α, l₁.diff l₂ <+ l₁",
"end": [
1026,
34
],
"full_name": "List.diff_sublist",
"kind": "commanddeclaration",
"start": [
1020,
1
]
},
{
"code": "theorem diff_subset (l₁ l₂ : List α) : l₁.diff l₂ ⊆ l₁",
"end": [
1028,
83
],
"full_name": "List.diff_subset",
"kind": "commanddeclaration",
"start": [
1028,
1
]
},
{
"code": "theorem mem_diff_of_mem {a : α} : ∀ {l₁ l₂ : List α}, a ∈ l₁ → a ∉ l₂ → a ∈ l₁.diff l₂",
"end": [
1034,
94
],
"full_name": "List.mem_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1030,
1
]
},
{
"code": "theorem Sublist.diff_right : ∀ {l₁ l₂ l₃ : List α}, l₁ <+ l₂ → l₁.diff l₃ <+ l₂.diff l₃",
"end": [
1038,
75
],
"full_name": "List.Sublist.diff_right",
"kind": "commanddeclaration",
"start": [
1036,
1
]
},
{
"code": "theorem Sublist.erase_diff_erase_sublist {a : α} :\n ∀ {l₁ l₂ : List α}, l₁ <+ l₂ → (l₂.erase a).diff (l₁.erase a) <+ l₂.diff l₁",
"end": [
1048,
71
],
"full_name": "List.Sublist.erase_diff_erase_sublist",
"kind": "commanddeclaration",
"start": [
1040,
1
]
},
{
"code": "@[simp] theorem prefix_append (l₁ l₂ : List α) : l₁ <+: l₁ ++ l₂",
"end": [
1054,
78
],
"full_name": "List.prefix_append",
"kind": "commanddeclaration",
"start": [
1054,
1
]
},
{
"code": "@[simp] theorem suffix_append (l₁ l₂ : List α) : l₂ <:+ l₁ ++ l₂",
"end": [
1056,
78
],
"full_name": "List.suffix_append",
"kind": "commanddeclaration",
"start": [
1056,
1
]
},
{
"code": "theorem infix_append (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ l₂ ++ l₃",
"end": [
1058,
83
],
"full_name": "List.infix_append",
"kind": "commanddeclaration",
"start": [
1058,
1
]
},
{
"code": "@[simp] theorem infix_append' (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ (l₂ ++ l₃)",
"end": [
1061,
47
],
"full_name": "List.infix_append'",
"kind": "commanddeclaration",
"start": [
1060,
1
]
},
{
"code": "theorem IsPrefix.isInfix : l₁ <+: l₂ → l₁ <:+: l₂",
"end": [
1063,
78
],
"full_name": "List.IsPrefix.isInfix",
"kind": "commanddeclaration",
"start": [
1063,
1
]
},
{
"code": "theorem IsSuffix.isInfix : l₁ <:+ l₂ → l₁ <:+: l₂",
"end": [
1065,
98
],
"full_name": "List.IsSuffix.isInfix",
"kind": "commanddeclaration",
"start": [
1065,
1
]
},
{
"code": "theorem nil_prefix (l : List α) : [] <+: l",
"end": [
1067,
55
],
"full_name": "List.nil_prefix",
"kind": "commanddeclaration",
"start": [
1067,
1
]
},
{
"code": "theorem nil_suffix (l : List α) : [] <:+ l",
"end": [
1069,
64
],
"full_name": "List.nil_suffix",
"kind": "commanddeclaration",
"start": [
1069,
1
]
},
{
"code": "theorem nil_infix (l : List α) : [] <:+: l",
"end": [
1071,
69
],
"full_name": "List.nil_infix",
"kind": "commanddeclaration",
"start": [
1071,
1
]
},
{
"code": "theorem prefix_refl (l : List α) : l <+: l",
"end": [
1073,
65
],
"full_name": "List.prefix_refl",
"kind": "commanddeclaration",
"start": [
1073,
1
]
},
{
"code": "theorem suffix_refl (l : List α) : l <:+ l",
"end": [
1075,
56
],
"full_name": "List.suffix_refl",
"kind": "commanddeclaration",
"start": [
1075,
1
]
},
{
"code": "theorem infix_refl (l : List α) : l <:+: l",
"end": [
1077,
70
],
"full_name": "List.infix_refl",
"kind": "commanddeclaration",
"start": [
1077,
1
]
},
{
"code": "@[simp] theorem suffix_cons (a : α) : ∀ l, l <:+ a :: l",
"end": [
1079,
77
],
"full_name": "List.suffix_cons",
"kind": "commanddeclaration",
"start": [
1079,
1
]
},
{
"code": "theorem infix_cons : l₁ <:+: l₂ → l₁ <:+: a :: l₂",
"end": [
1081,
95
],
"full_name": "List.infix_cons",
"kind": "commanddeclaration",
"start": [
1081,
1
]
},
{
"code": "theorem infix_concat : l₁ <:+: l₂ → l₁ <:+: concat l₂ a",
"end": [
1084,
67
],
"full_name": "List.infix_concat",
"kind": "commanddeclaration",
"start": [
1083,
1
]
},
{
"code": "theorem IsPrefix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₂ → l₂ <+: l₃ → l₁ <+: l₃",
"end": [
1087,
75
],
"full_name": "List.IsPrefix.trans",
"kind": "commanddeclaration",
"start": [
1086,
1
]
},
{
"code": "theorem IsSuffix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+ l₂ → l₂ <:+ l₃ → l₁ <:+ l₃",
"end": [
1090,
68
],
"full_name": "List.IsSuffix.trans",
"kind": "commanddeclaration",
"start": [
1089,
1
]
},
{
"code": "theorem IsInfix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+: l₂ → l₂ <:+: l₃ → l₁ <:+: l₃",
"end": [
1093,
95
],
"full_name": "List.IsInfix.trans",
"kind": "commanddeclaration",
"start": [
1092,
1
]
},
{
"code": "protected theorem IsInfix.sublist : l₁ <:+: l₂ → l₁ <+ l₂",
"end": [
1096,
78
],
"full_name": "List.IsInfix.sublist",
"kind": "commanddeclaration",
"start": [
1095,
1
]
},
{
"code": "protected theorem IsInfix.subset (hl : l₁ <:+: l₂) : l₁ ⊆ l₂",
"end": [
1099,
20
],
"full_name": "List.IsInfix.subset",
"kind": "commanddeclaration",
"start": [
1098,
1
]
},
{
"code": "protected theorem IsPrefix.sublist (h : l₁ <+: l₂) : l₁ <+ l₂",
"end": [
1102,
20
],
"full_name": "List.IsPrefix.sublist",
"kind": "commanddeclaration",
"start": [
1101,
1
]
},
{
"code": "protected theorem IsPrefix.subset (hl : l₁ <+: l₂) : l₁ ⊆ l₂",
"end": [
1105,
20
],
"full_name": "List.IsPrefix.subset",
"kind": "commanddeclaration",
"start": [
1104,
1
]
},
{
"code": "protected theorem IsSuffix.sublist (h : l₁ <:+ l₂) : l₁ <+ l₂",
"end": [
1108,
20
],
"full_name": "List.IsSuffix.sublist",
"kind": "commanddeclaration",
"start": [
1107,
1
]
},
{
"code": "protected theorem IsSuffix.subset (hl : l₁ <:+ l₂) : l₁ ⊆ l₂",
"end": [
1111,
20
],
"full_name": "List.IsSuffix.subset",
"kind": "commanddeclaration",
"start": [
1110,
1
]
},
{
"code": "@[simp] theorem reverse_suffix : reverse l₁ <:+ reverse l₂ ↔ l₁ <+: l₂",
"end": [
1115,
59
],
"full_name": "List.reverse_suffix",
"kind": "commanddeclaration",
"start": [
1113,
1
]
},
{
"code": "@[simp] theorem reverse_prefix : reverse l₁ <+: reverse l₂ ↔ l₁ <:+ l₂",
"end": [
1118,
53
],
"full_name": "List.reverse_prefix",
"kind": "commanddeclaration",
"start": [
1117,
1
]
},
{
"code": "@[simp] theorem reverse_infix : reverse l₁ <:+: reverse l₂ ↔ l₁ <:+: l₂",
"end": [
1124,
61
],
"full_name": "List.reverse_infix",
"kind": "commanddeclaration",
"start": [
1120,
1
]
},
{
"code": "theorem IsInfix.length_le (h : l₁ <:+: l₂) : l₁.length ≤ l₂.length",
"end": [
1127,
22
],
"full_name": "List.IsInfix.length_le",
"kind": "commanddeclaration",
"start": [
1126,
1
]
},
{
"code": "theorem IsPrefix.length_le (h : l₁ <+: l₂) : l₁.length ≤ l₂.length",
"end": [
1130,
22
],
"full_name": "List.IsPrefix.length_le",
"kind": "commanddeclaration",
"start": [
1129,
1
]
},
{
"code": "theorem IsSuffix.length_le (h : l₁ <:+ l₂) : l₁.length ≤ l₂.length",
"end": [
1133,
22
],
"full_name": "List.IsSuffix.length_le",
"kind": "commanddeclaration",
"start": [
1132,
1
]
},
{
"code": "@[simp] theorem infix_nil : l <:+: [] ↔ l = []",
"end": [
1135,
98
],
"full_name": "List.infix_nil",
"kind": "commanddeclaration",
"start": [
1135,
1
]
},
{
"code": "@[simp] theorem prefix_nil : l <+: [] ↔ l = []",
"end": [
1137,
99
],
"full_name": "List.prefix_nil",
"kind": "commanddeclaration",
"start": [
1137,
1
]
},
{
"code": "@[simp] theorem suffix_nil : l <:+ [] ↔ l = []",
"end": [
1139,
99
],
"full_name": "List.suffix_nil",
"kind": "commanddeclaration",
"start": [
1139,
1
]
},
{
"code": "theorem infix_iff_prefix_suffix (l₁ l₂ : List α) : l₁ <:+: l₂ ↔ ∃ t, l₁ <+: t ∧ t <:+ l₂",
"end": [
1143,
60
],
"full_name": "List.infix_iff_prefix_suffix",
"kind": "commanddeclaration",
"start": [
1141,
1
]
},
{
"code": "theorem IsInfix.eq_of_length (h : l₁ <:+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1146,
25
],
"full_name": "List.IsInfix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1145,
1
]
},
{
"code": "theorem IsPrefix.eq_of_length (h : l₁ <+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1149,
25
],
"full_name": "List.IsPrefix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1148,
1
]
},
{
"code": "theorem IsSuffix.eq_of_length (h : l₁ <:+ l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1152,
25
],
"full_name": "List.IsSuffix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1151,
1
]
},
{
"code": "theorem prefix_of_prefix_length_le :\n ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₃ → l₂ <+: l₃ → length l₁ ≤ length l₂ → l₁ <+: l₂",
"end": [
1160,
20
],
"full_name": "List.prefix_of_prefix_length_le",
"kind": "commanddeclaration",
"start": [
1154,
1
]
},
{
"code": "theorem prefix_or_prefix_of_prefix (h₁ : l₁ <+: l₃) (h₂ : l₂ <+: l₃) : l₁ <+: l₂ ∨ l₂ <+: l₁",
"end": [
1164,
39
],
"full_name": "List.prefix_or_prefix_of_prefix",
"kind": "commanddeclaration",
"start": [
1162,
1
]
},
{
"code": "theorem suffix_of_suffix_length_le\n (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) (ll : length l₁ ≤ length l₂) : l₁ <:+ l₂",
"end": [
1169,
90
],
"full_name": "List.suffix_of_suffix_length_le",
"kind": "commanddeclaration",
"start": [
1166,
1
]
},
{
"code": "theorem suffix_or_suffix_of_suffix (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) : l₁ <:+ l₂ ∨ l₂ <:+ l₁",
"end": [
1173,
21
],
"full_name": "List.suffix_or_suffix_of_suffix",
"kind": "commanddeclaration",
"start": [
1171,
1
]
},
{
"code": "theorem suffix_cons_iff : l₁ <:+ a :: l₂ ↔ l₁ = a :: l₂ ∨ l₁ <:+ l₂",
"end": [
1184,
41
],
"full_name": "List.suffix_cons_iff",
"kind": "commanddeclaration",
"start": [
1175,
1
]
},
{
"code": "theorem infix_cons_iff : l₁ <:+: a :: l₂ ↔ l₁ <+: a :: l₂ ∨ l₁ <:+: l₂",
"end": [
1195,
27
],
"full_name": "List.infix_cons_iff",
"kind": "commanddeclaration",
"start": [
1186,
1
]
},
{
"code": "theorem infix_of_mem_join : ∀ {L : List (List α)}, l ∈ L → l <:+: join L",
"end": [
1202,
78
],
"full_name": "List.infix_of_mem_join",
"kind": "commanddeclaration",
"start": [
1197,
1
]
},
{
"code": "theorem prefix_append_right_inj (l) : l ++ l₁ <+: l ++ l₂ ↔ l₁ <+: l₂",
"end": [
1205,
63
],
"full_name": "List.prefix_append_right_inj",
"kind": "commanddeclaration",
"start": [
1204,
1
]
},
{
"code": "@[simp]\ntheorem prefix_cons_inj (a) : a :: l₁ <+: a :: l₂ ↔ l₁ <+: l₂",
"end": [
1209,
30
],
"full_name": "List.prefix_cons_inj",
"kind": "commanddeclaration",
"start": [
1207,
1
]
},
{
"code": "theorem take_prefix (n) (l : List α) : take n l <+: l",
"end": [
1212,
28
],
"full_name": "List.take_prefix",
"kind": "commanddeclaration",
"start": [
1211,
1
]
},
{
"code": "theorem drop_suffix (n) (l : List α) : drop n l <:+ l",
"end": [
1215,
28
],
"full_name": "List.drop_suffix",
"kind": "commanddeclaration",
"start": [
1214,
1
]
},
{
"code": "theorem take_sublist (n) (l : List α) : take n l <+ l",
"end": [
1218,
28
],
"full_name": "List.take_sublist",
"kind": "commanddeclaration",
"start": [
1217,
1
]
},
{
"code": "theorem drop_sublist (n) (l : List α) : drop n l <+ l",
"end": [
1221,
28
],
"full_name": "List.drop_sublist",
"kind": "commanddeclaration",
"start": [
1220,
1
]
},
{
"code": "theorem take_subset (n) (l : List α) : take n l ⊆ l",
"end": [
1224,
28
],
"full_name": "List.take_subset",
"kind": "commanddeclaration",
"start": [
1223,
1
]
},
{
"code": "theorem drop_subset (n) (l : List α) : drop n l ⊆ l",
"end": [
1227,
28
],
"full_name": "List.drop_subset",
"kind": "commanddeclaration",
"start": [
1226,
1
]
},
{
"code": "theorem mem_of_mem_take {l : List α} (h : a ∈ l.take n) : a ∈ l",
"end": [
1230,
20
],
"full_name": "List.mem_of_mem_take",
"kind": "commanddeclaration",
"start": [
1229,
1
]
},
{
"code": "theorem IsPrefix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <+: l₂) :\n l₁.filter p <+: l₂.filter p",
"end": [
1235,
42
],
"full_name": "List.IsPrefix.filter",
"kind": "commanddeclaration",
"start": [
1232,
1
]
},
{
"code": "theorem IsSuffix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+ l₂) :\n l₁.filter p <:+ l₂.filter p",
"end": [
1240,
42
],
"full_name": "List.IsSuffix.filter",
"kind": "commanddeclaration",
"start": [
1237,
1
]
},
{
"code": "theorem IsInfix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+: l₂) :\n l₁.filter p <:+: l₂.filter p",
"end": [
1245,
58
],
"full_name": "List.IsInfix.filter",
"kind": "commanddeclaration",
"start": [
1242,
1
]
},
{
"code": "theorem mem_of_mem_drop {n} {l : List α} (h : a ∈ l.drop n) : a ∈ l",
"end": [
1249,
89
],
"full_name": "List.mem_of_mem_drop",
"kind": "commanddeclaration",
"start": [
1249,
1
]
},
{
"code": "theorem disjoint_take_drop : ∀ {l : List α}, l.Nodup → m ≤ n → Disjoint (l.take m) (l.drop n)",
"end": [
1259,
61
],
"full_name": "List.disjoint_take_drop",
"kind": "commanddeclaration",
"start": [
1251,
1
]
},
{
"code": "@[simp]\ntheorem chain_cons {a b : α} {l : List α} : Chain R a (b :: l) ↔ R a b ∧ Chain R b l",
"end": [
1268,
27
],
"full_name": "List.chain_cons",
"kind": "commanddeclaration",
"start": [
1265,
1
]
},
{
"code": "theorem rel_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : R a b",
"end": [
1271,
21
],
"full_name": "List.rel_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1270,
1
]
},
{
"code": "theorem chain_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : Chain R b l",
"end": [
1274,
21
],
"full_name": "List.chain_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1273,
1
]
},
{
"code": "theorem Chain.imp' {R S : α → α → Prop} (HRS : ∀ ⦃a b⦄, R a b → S a b) {a b : α}\n (Hab : ∀ ⦃c⦄, R a c → S b c) {l : List α} (p : Chain R a l) : Chain S b l",
"end": [
1283,
24
],
"full_name": "List.Chain.imp'",
"kind": "commanddeclaration",
"start": [
1276,
1
]
},
{
"code": "theorem Chain.imp {R S : α → α → Prop} (H : ∀ a b, R a b → S a b) {a : α} {l : List α}\n (p : Chain R a l) : Chain S a l",
"end": [
1287,
17
],
"full_name": "List.Chain.imp",
"kind": "commanddeclaration",
"start": [
1285,
1
]
},
{
"code": "protected theorem Pairwise.chain (p : Pairwise R (a :: l)) : Chain R a l",
"end": [
1295,
36
],
"full_name": "List.Pairwise.chain",
"kind": "commanddeclaration",
"start": [
1289,
1
]
},
{
"code": "theorem range'_succ (s n step) : range' s (n + 1) step = s :: range' (s + step) n step",
"end": [
1300,
44
],
"full_name": "List.range'_succ",
"kind": "commanddeclaration",
"start": [
1299,
1
]
},
{
"code": "@[simp] theorem length_range' (s step) : ∀ n : Nat, length (range' s n step) = n",
"end": [
1304,
49
],
"full_name": "List.length_range'",
"kind": "commanddeclaration",
"start": [
1302,
1
]
},
{
"code": "@[simp] theorem range'_eq_nil : range' s n step = [] ↔ n = 0",
"end": [
1307,
39
],
"full_name": "List.range'_eq_nil",
"kind": "commanddeclaration",
"start": [
1306,
1
]
},
{
"code": "theorem mem_range' : ∀{n}, m ∈ range' s n step ↔ ∃ i < n, m = s + step * i",
"end": [
1314,
71
],
"full_name": "List.mem_range'",
"kind": "commanddeclaration",
"start": [
1309,
1
]
},
{
"code": "@[simp] theorem mem_range'_1 : m ∈ range' s n ↔ s ≤ m ∧ m < s + n",
"end": [
1319,
93
],
"full_name": "List.mem_range'_1",
"kind": "commanddeclaration",
"start": [
1316,
1
]
},
{
"code": "@[simp]\ntheorem map_add_range' (a) : ∀ s n step, map (a + ·) (range' s n step) = range' (a + s) n step",
"end": [
1324,
90
],
"full_name": "List.map_add_range'",
"kind": "commanddeclaration",
"start": [
1321,
1
]
},
{
"code": "theorem map_sub_range' (a s n : Nat) (h : a ≤ s) :\n map (· - a) (range' s n step) = range' (s - a) n step",
"end": [
1330,
42
],
"full_name": "List.map_sub_range'",
"kind": "commanddeclaration",
"start": [
1326,
1
]
},
{
"code": "theorem chain_succ_range' : ∀ s n step : Nat,\n Chain (fun a b => b = a + step) s (range' (s + step) n step)",
"end": [
1335,
69
],
"full_name": "List.chain_succ_range'",
"kind": "commanddeclaration",
"start": [
1332,
1
]
},
{
"code": "theorem chain_lt_range' (s n : Nat) {step} (h : 0 < step) :\n Chain (· < ·) s (range' (s + step) n step)",
"end": [
1339,
83
],
"full_name": "List.chain_lt_range'",
"kind": "commanddeclaration",
"start": [
1337,
1
]
},
{
"code": "theorem range'_append : ∀ s m n step : Nat,\n range' s m step ++ range' (s + step * m) n step = range' s (n + m) step",
"end": [
1346,
46
],
"full_name": "List.range'_append",
"kind": "commanddeclaration",
"start": [
1341,
1
]
},
{
"code": "@[simp] theorem range'_append_1 (s m n : Nat) :\n range' s m ++ range' (s + m) n = range' s (n + m)",
"end": [
1349,
94
],
"full_name": "List.range'_append_1",
"kind": "commanddeclaration",
"start": [
1348,
1
]
},
{
"code": "theorem range'_sublist_right {s m n : Nat} : range' s m step <+ range' s n step ↔ m ≤ n",
"end": [
1353,
88
],
"full_name": "List.range'_sublist_right",
"kind": "commanddeclaration",
"start": [
1351,
1
]
},
{
"code": "theorem range'_subset_right {s m n : Nat} (step0 : 0 < step) :\n range' s m step ⊆ range' s n step ↔ m ≤ n",
"end": [
1359,
82
],
"full_name": "List.range'_subset_right",
"kind": "commanddeclaration",
"start": [
1355,
1
]
},
{
"code": "theorem range'_subset_right_1 {s m n : Nat} : range' s m ⊆ range' s n ↔ m ≤ n",
"end": [
1362,
34
],
"full_name": "List.range'_subset_right_1",
"kind": "commanddeclaration",
"start": [
1361,
1
]
},
{
"code": "theorem getElem?_range' (s step) :\n ∀ {m n : Nat}, m < n → (range' s n step)[m]? = some (s + step * m)",
"end": [
1370,
55
],
"full_name": "List.getElem?_range'",
"kind": "commanddeclaration",
"start": [
1364,
1
]
},
{
"code": "@[simp] theorem getElem_range' {n m step} (i) (H : i < (range' n m step).length) :\n (range' n m step)[i] = n + step * i",
"end": [
1374,
70
],
"full_name": "List.getElem_range'",
"kind": "commanddeclaration",
"start": [
1372,
1
]
},
{
"code": "@[deprecated getElem?_range' (since := \"2024-06-12\")]\ntheorem get?_range' (s step) {m n : Nat} (h : m < n) :\n get? (range' s n step) m = some (s + step * m)",
"end": [
1379,
11
],
"full_name": "List.get?_range'",
"kind": "commanddeclaration",
"start": [
1376,
1
]
},
{
"code": "@[deprecated getElem_range' (since := \"2024-06-12\")]\ntheorem get_range' {n m step} (i) (H : i < (range' n m step).length) :\n get (range' n m step) ⟨i, H⟩ = n + step * i",
"end": [
1384,
7
],
"full_name": "List.get_range'",
"kind": "commanddeclaration",
"start": [
1381,
1
]
},
{
"code": "theorem range'_concat (s n : Nat) : range' s (n + 1) step = range' s n step ++ [s + step * n]",
"end": [
1387,
63
],
"full_name": "List.range'_concat",
"kind": "commanddeclaration",
"start": [
1386,
1
]
},
{
"code": "theorem range'_1_concat (s n : Nat) : range' s (n + 1) = range' s n ++ [s + n]",
"end": [
1390,
23
],
"full_name": "List.range'_1_concat",
"kind": "commanddeclaration",
"start": [
1389,
1
]
},
{
"code": "theorem range_loop_range' : ∀ s n : Nat, range.loop s (range' s n) = range' 0 (n + s)",
"end": [
1394,
101
],
"full_name": "List.range_loop_range'",
"kind": "commanddeclaration",
"start": [
1392,
1
]
},
{
"code": "theorem range_eq_range' (n : Nat) : range n = range' 0 n",
"end": [
1397,
56
],
"full_name": "List.range_eq_range'",
"kind": "commanddeclaration",
"start": [
1396,
1
]
},
{
"code": "theorem range_succ_eq_map (n : Nat) : range (n + 1) = 0 :: map succ (range n)",
"end": [
1401,
30
],
"full_name": "List.range_succ_eq_map",
"kind": "commanddeclaration",
"start": [
1399,
1
]
},
{
"code": "theorem range'_eq_map_range (s n : Nat) : range' s n = map (s + ·) (range n)",
"end": [
1404,
44
],
"full_name": "List.range'_eq_map_range",
"kind": "commanddeclaration",
"start": [
1403,
1
]
},
{
"code": "@[simp] theorem length_range (n : Nat) : length (range n) = n",
"end": [
1407,
45
],
"full_name": "List.length_range",
"kind": "commanddeclaration",
"start": [
1406,
1
]
},
{
"code": "@[simp] theorem range_eq_nil {n : Nat} : range n = [] ↔ n = 0",
"end": [
1410,
38
],
"full_name": "List.range_eq_nil",
"kind": "commanddeclaration",
"start": [
1409,
1
]
},
{
"code": "@[simp]\ntheorem range_sublist {m n : Nat} : range m <+ range n ↔ m ≤ n",
"end": [
1414,
52
],
"full_name": "List.range_sublist",
"kind": "commanddeclaration",
"start": [
1412,
1
]
},
{
"code": "@[simp]\ntheorem range_subset {m n : Nat} : range m ⊆ range n ↔ m ≤ n",
"end": [
1418,
65
],
"full_name": "List.range_subset",
"kind": "commanddeclaration",
"start": [
1416,
1
]
},
{
"code": "@[simp]\ntheorem mem_range {m n : Nat} : m ∈ range n ↔ m < n",
"end": [
1422,
81
],
"full_name": "List.mem_range",
"kind": "commanddeclaration",
"start": [
1420,
1
]
},
{
"code": "theorem not_mem_range_self {n : Nat} : n ∉ range n",
"end": [
1424,
62
],
"full_name": "List.not_mem_range_self",
"kind": "commanddeclaration",
"start": [
1424,
1
]
},
{
"code": "theorem self_mem_range_succ (n : Nat) : n ∈ range (n + 1)",
"end": [
1426,
69
],
"full_name": "List.self_mem_range_succ",
"kind": "commanddeclaration",
"start": [
1426,
1
]
},
{
"code": "theorem getElem?_range {m n : Nat} (h : m < n) : (range n)[m]? = some m",
"end": [
1429,
48
],
"full_name": "List.getElem?_range",
"kind": "commanddeclaration",
"start": [
1428,
1
]
},
{
"code": "@[simp] theorem getElem_range {n : Nat} (m) (h : m < (range n).length) : (range n)[m] = m",
"end": [
1432,
25
],
"full_name": "List.getElem_range",
"kind": "commanddeclaration",
"start": [
1431,
1
]
},
{
"code": "@[deprecated getElem?_range (since := \"2024-06-12\")]\ntheorem get?_range {m n : Nat} (h : m < n) : get? (range n) m = some m",
"end": [
1436,
27
],
"full_name": "List.get?_range",
"kind": "commanddeclaration",
"start": [
1434,
1
]
},
{
"code": "@[deprecated getElem_range (since := \"2024-06-12\")]\ntheorem get_range {n} (i) (H : i < (range n).length) : get (range n) ⟨i, H⟩ = i",
"end": [
1440,
7
],
"full_name": "List.get_range",
"kind": "commanddeclaration",
"start": [
1438,
1
]
},
{
"code": "theorem range_succ (n : Nat) : range (succ n) = range n ++ [n]",
"end": [
1443,
61
],
"full_name": "List.range_succ",
"kind": "commanddeclaration",
"start": [
1442,
1
]
},
{
"code": "theorem range_add (a b : Nat) : range (a + b) = range a ++ (range b).map (a + ·)",
"end": [
1447,
75
],
"full_name": "List.range_add",
"kind": "commanddeclaration",
"start": [
1445,
1
]
},
{
"code": "theorem iota_eq_reverse_range' : ∀ n : Nat, iota n = reverse (range' 1 n)",
"end": [
1451,
99
],
"full_name": "List.iota_eq_reverse_range'",
"kind": "commanddeclaration",
"start": [
1449,
1
]
},
{
"code": "@[simp] theorem length_iota (n : Nat) : length (iota n) = n",
"end": [
1453,
96
],
"full_name": "List.length_iota",
"kind": "commanddeclaration",
"start": [
1453,
1
]
},
{
"code": "@[simp]\ntheorem mem_iota {m n : Nat} : m ∈ iota n ↔ 1 ≤ m ∧ m ≤ n",
"end": [
1457,
59
],
"full_name": "List.mem_iota",
"kind": "commanddeclaration",
"start": [
1455,
1
]
},
{
"code": "theorem reverse_range' : ∀ s n : Nat, reverse (range' s n) = map (s + n - 1 - ·) (range n)",
"end": [
1464,
59
],
"full_name": "List.reverse_range'",
"kind": "commanddeclaration",
"start": [
1459,
1
]
},
{
"code": "@[simp] theorem enumFrom_map_fst (n) :\n ∀ (l : List α), map Prod.fst (enumFrom n l) = range' n l.length",
"end": [
1472,
55
],
"full_name": "List.enumFrom_map_fst",
"kind": "commanddeclaration",
"start": [
1469,
1
]
},
{
"code": "@[simp] theorem enum_map_fst (l : List α) : map Prod.fst (enum l) = range l.length",
"end": [
1475,
54
],
"full_name": "List.enum_map_fst",
"kind": "commanddeclaration",
"start": [
1474,
1
]
},
{
"code": "theorem foldrIdx_start :\n (xs : List α).foldrIdx f i s = (xs : List α).foldrIdx (fun i => f (i + s)) i",
"end": [
1487,
43
],
"full_name": "List.foldrIdx_start",
"kind": "commanddeclaration",
"start": [
1479,
1
]
},
{
"code": "@[simp] theorem foldrIdx_cons :\n (x :: xs : List α).foldrIdx f i s = f s x (foldrIdx f i xs (s + 1))",
"end": [
1490,
79
],
"full_name": "List.foldrIdx_cons",
"kind": "commanddeclaration",
"start": [
1489,
1
]
},
{
"code": "theorem findIdxs_cons_aux (p : α → Bool) :\n foldrIdx (fun i a is => if p a = true then (i + 1) :: is else is) [] xs s =\n map (· + 1) (foldrIdx (fun i a is => if p a = true then i :: is else is) [] xs s)",
"end": [
1499,
24
],
"full_name": "List.findIdxs_cons_aux",
"kind": "commanddeclaration",
"start": [
1492,
1
]
},
{
"code": "theorem findIdxs_cons :\n (x :: xs : List α).findIdxs p =\n bif p x then 0 :: (xs.findIdxs p).map (· + 1) else (xs.findIdxs p).map (· + 1)",
"end": [
1508,
28
],
"full_name": "List.findIdxs_cons",
"kind": "commanddeclaration",
"start": [
1501,
1
]
},
{
"code": "@[simp] theorem indexesOf_nil [BEq α] : ([] : List α).indexesOf x = []",
"end": [
1510,
78
],
"full_name": "List.indexesOf_nil",
"kind": "commanddeclaration",
"start": [
1510,
1
]
},
{
"code": "theorem indexesOf_cons [BEq α] : (x :: xs : List α).indexesOf y =\n bif x == y then 0 :: (xs.indexesOf y).map (· + 1) else (xs.indexesOf y).map (· + 1)",
"end": [
1514,
34
],
"full_name": "List.indexesOf_cons",
"kind": "commanddeclaration",
"start": [
1512,
1
]
},
{
"code": "@[simp] theorem indexOf_nil [BEq α] : ([] : List α).indexOf x = 0",
"end": [
1516,
73
],
"full_name": "List.indexOf_nil",
"kind": "commanddeclaration",
"start": [
1516,
1
]
},
{
"code": "theorem indexOf_cons [BEq α] :\n (x :: xs : List α).indexOf y = bif x == y then 0 else xs.indexOf y + 1",
"end": [
1521,
22
],
"full_name": "List.indexOf_cons",
"kind": "commanddeclaration",
"start": [
1518,
1
]
},
{
"code": "theorem indexOf_mem_indexesOf [BEq α] [LawfulBEq α] {xs : List α} (m : x ∈ xs) :\n xs.indexOf x ∈ xs.indexesOf x",
"end": [
1535,
14
],
"full_name": "List.indexOf_mem_indexesOf",
"kind": "commanddeclaration",
"start": [
1523,
1
]
},
{
"code": "theorem merge_loop_nil_left (s : α → α → Bool) (r t) :\n merge.loop s [] r t = reverseAux t r",
"end": [
1539,
18
],
"full_name": "List.merge_loop_nil_left",
"kind": "commanddeclaration",
"start": [
1537,
1
]
},
{
"code": "theorem merge_loop_nil_right (s : α → α → Bool) (l t) :\n merge.loop s l [] t = reverseAux t l",
"end": [
1543,
52
],
"full_name": "List.merge_loop_nil_right",
"kind": "commanddeclaration",
"start": [
1541,
1
]
},
{
"code": "theorem merge_loop (s : α → α → Bool) (l r t) :\n merge.loop s l r t = reverseAux t (merge s l r)",
"end": [
1567,
64
],
"full_name": "List.merge_loop",
"kind": "commanddeclaration",
"start": [
1545,
1
]
},
{
"code": "@[simp] theorem merge_nil (s : α → α → Bool) (l) : merge s l [] = l",
"end": [
1569,
95
],
"full_name": "List.merge_nil",
"kind": "commanddeclaration",
"start": [
1569,
1
]
},
{
"code": "@[simp] theorem nil_merge (s : α → α → Bool) (r) : merge s [] r = r",
"end": [
1571,
94
],
"full_name": "List.nil_merge",
"kind": "commanddeclaration",
"start": [
1571,
1
]
},
{
"code": "theorem cons_merge_cons (s : α → α → Bool) (a b l r) :\n merge s (a::l) (b::r) = if s a b then a :: merge s l (b::r) else b :: merge s (a::l) r",
"end": [
1575,
87
],
"full_name": "List.cons_merge_cons",
"kind": "commanddeclaration",
"start": [
1573,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_pos (s : α → α → Bool) (l r) (h : s a b) :\n merge s (a::l) (b::r) = a :: merge s l (b::r)",
"end": [
1579,
33
],
"full_name": "List.cons_merge_cons_pos",
"kind": "commanddeclaration",
"start": [
1577,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_neg (s : α → α → Bool) (l r) (h : ¬ s a b) :\n merge s (a::l) (b::r) = b :: merge s (a::l) r",
"end": [
1583,
33
],
"full_name": "List.cons_merge_cons_neg",
"kind": "commanddeclaration",
"start": [
1581,
1
]
},
{
"code": "@[simp] theorem length_merge (s : α → α → Bool) (l r) :\n (merge s l r).length = l.length + r.length",
"end": [
1594,
43
],
"full_name": "List.length_merge",
"kind": "commanddeclaration",
"start": [
1585,
1
]
},
{
"code": "@[simp]\ntheorem mem_merge {s : α → α → Bool} : x ∈ merge s l r ↔ x ∈ l ∨ x ∈ r",
"end": [
1605,
68
],
"full_name": "List.mem_merge",
"kind": "commanddeclaration",
"start": [
1596,
1
]
},
{
"code": "theorem mem_merge_left (s : α → α → Bool) (h : x ∈ l) : x ∈ merge s l r",
"end": [
1608,
24
],
"full_name": "List.mem_merge_left",
"kind": "commanddeclaration",
"start": [
1607,
1
]
},
{
"code": "theorem mem_merge_right (s : α → α → Bool) (h : x ∈ r) : x ∈ merge s l r",
"end": [
1611,
24
],
"full_name": "List.mem_merge_right",
"kind": "commanddeclaration",
"start": [
1610,
1
]
}
] | 327 | List.mem_merge | [
[
1597,
75
],
[
1605,
68
]
] | 7 | 9 | simp [mem_merge (l := l) (r := b::r), or_assoc] | case isTrue
α : Type u_1
x : α
l✝ r✝ : List α
s : α → α → Bool
a : α
l : List α
b : α
r : List α
h✝ : s a b = true
⊢ x ∈ a :: merge s l (b :: r) ↔ x ∈ a :: l ∨ x ∈ b :: r | no goals |
.lake/packages/batteries/Batteries/Data/List/Lemmas.lean | [
[
"Batteries.Tactic.Alias",
".lake/packages/batteries/Batteries/Tactic/Alias.lean"
],
[
"Init",
".lake/packages/lean4/src/lean/Init.lean"
],
[
"Batteries.Control.ForInStep.Lemmas",
".lake/packages/batteries/Batteries/Control/ForInStep/Lemmas.lean"
],
[
"Batteries.Tactic.Init",
".lake/packages/batteries/Batteries/Tactic/Init.lean"
],
[
"Batteries.Data.List.Basic",
".lake/packages/batteries/Batteries/Data/List/Basic.lean"
]
] | [
{
"code": "@[simp] theorem mem_toArray {a : α} {l : List α} : a ∈ l.toArray ↔ a ∈ l",
"end": [
18,
23
],
"full_name": "List.mem_toArray",
"kind": "commanddeclaration",
"start": [
17,
1
]
},
{
"code": "@[simp]\ntheorem drop_one : ∀ l : List α, drop 1 l = tail l",
"end": [
24,
23
],
"full_name": "List.drop_one",
"kind": "commanddeclaration",
"start": [
22,
1
]
},
{
"code": "theorem zipWith_distrib_tail : (zipWith f l l').tail = zipWith f l.tail l'.tail",
"end": [
29,
47
],
"full_name": "List.zipWith_distrib_tail",
"kind": "commanddeclaration",
"start": [
28,
1
]
},
{
"code": "theorem subset_def {l₁ l₂ : List α} : l₁ ⊆ l₂ ↔ ∀ {a : α}, a ∈ l₁ → a ∈ l₂",
"end": [
33,
83
],
"full_name": "List.subset_def",
"kind": "commanddeclaration",
"start": [
33,
1
]
},
{
"code": "@[simp] theorem nil_subset (l : List α) : [] ⊆ l",
"end": [
35,
58
],
"full_name": "List.nil_subset",
"kind": "commanddeclaration",
"start": [
35,
1
]
},
{
"code": "@[simp] theorem Subset.refl (l : List α) : l ⊆ l",
"end": [
37,
65
],
"full_name": "List.Subset.refl",
"kind": "commanddeclaration",
"start": [
37,
1
]
},
{
"code": "theorem Subset.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ ⊆ l₂) (h₂ : l₂ ⊆ l₃) : l₁ ⊆ l₃",
"end": [
40,
23
],
"full_name": "List.Subset.trans",
"kind": "commanddeclaration",
"start": [
39,
1
]
},
{
"code": "@[simp] theorem subset_cons (a : α) (l : List α) : l ⊆ a :: l",
"end": [
48,
85
],
"full_name": "List.subset_cons",
"kind": "commanddeclaration",
"start": [
48,
1
]
},
{
"code": "theorem subset_of_cons_subset {a : α} {l₁ l₂ : List α} : a :: l₁ ⊆ l₂ → l₁ ⊆ l₂",
"end": [
51,
39
],
"full_name": "List.subset_of_cons_subset",
"kind": "commanddeclaration",
"start": [
50,
1
]
},
{
"code": "theorem subset_cons_of_subset (a : α) {l₁ l₂ : List α} : l₁ ⊆ l₂ → l₁ ⊆ a :: l₂",
"end": [
54,
29
],
"full_name": "List.subset_cons_of_subset",
"kind": "commanddeclaration",
"start": [
53,
1
]
},
{
"code": "theorem cons_subset_cons {l₁ l₂ : List α} (a : α) (s : l₁ ⊆ l₂) : a :: l₁ ⊆ a :: l₂",
"end": [
57,
62
],
"full_name": "List.cons_subset_cons",
"kind": "commanddeclaration",
"start": [
56,
1
]
},
{
"code": "@[simp] theorem subset_append_left (l₁ l₂ : List α) : l₁ ⊆ l₁ ++ l₂",
"end": [
59,
98
],
"full_name": "List.subset_append_left",
"kind": "commanddeclaration",
"start": [
59,
1
]
},
{
"code": "@[simp] theorem subset_append_right (l₁ l₂ : List α) : l₂ ⊆ l₁ ++ l₂",
"end": [
61,
100
],
"full_name": "List.subset_append_right",
"kind": "commanddeclaration",
"start": [
61,
1
]
},
{
"code": "theorem subset_append_of_subset_left (l₂ : List α) : l ⊆ l₁ → l ⊆ l₁ ++ l₂",
"end": [
64,
50
],
"full_name": "List.subset_append_of_subset_left",
"kind": "commanddeclaration",
"start": [
63,
1
]
},
{
"code": "theorem subset_append_of_subset_right (l₁ : List α) : l ⊆ l₂ → l ⊆ l₁ ++ l₂",
"end": [
67,
51
],
"full_name": "List.subset_append_of_subset_right",
"kind": "commanddeclaration",
"start": [
66,
1
]
},
{
"code": "@[simp] theorem cons_subset : a :: l ⊆ m ↔ a ∈ m ∧ l ⊆ m",
"end": [
70,
66
],
"full_name": "List.cons_subset",
"kind": "commanddeclaration",
"start": [
69,
1
]
},
{
"code": "@[simp] theorem append_subset {l₁ l₂ l : List α} :\n l₁ ++ l₂ ⊆ l ↔ l₁ ⊆ l ∧ l₂ ⊆ l",
"end": [
73,
79
],
"full_name": "List.append_subset",
"kind": "commanddeclaration",
"start": [
72,
1
]
},
{
"code": "theorem subset_nil {l : List α} : l ⊆ [] ↔ l = []",
"end": [
76,
99
],
"full_name": "List.subset_nil",
"kind": "commanddeclaration",
"start": [
75,
1
]
},
{
"code": "theorem map_subset {l₁ l₂ : List α} (f : α → β) (H : l₁ ⊆ l₂) : map f l₁ ⊆ map f l₂",
"end": [
79,
72
],
"full_name": "List.map_subset",
"kind": "commanddeclaration",
"start": [
78,
1
]
},
{
"code": "@[simp] theorem nil_sublist : ∀ l : List α, [] <+ l",
"end": [
85,
37
],
"full_name": "List.nil_sublist",
"kind": "commanddeclaration",
"start": [
83,
1
]
},
{
"code": "@[simp] theorem Sublist.refl : ∀ l : List α, l <+ l",
"end": [
89,
39
],
"full_name": "List.Sublist.refl",
"kind": "commanddeclaration",
"start": [
87,
1
]
},
{
"code": "theorem Sublist.trans {l₁ l₂ l₃ : List α} (h₁ : l₁ <+ l₂) (h₂ : l₂ <+ l₃) : l₁ <+ l₃",
"end": [
100,
53
],
"full_name": "List.Sublist.trans",
"kind": "commanddeclaration",
"start": [
91,
1
]
},
{
"code": "@[simp] theorem sublist_cons (a : α) (l : List α) : l <+ a :: l",
"end": [
104,
91
],
"full_name": "List.sublist_cons",
"kind": "commanddeclaration",
"start": [
104,
1
]
},
{
"code": "theorem sublist_of_cons_sublist : a :: l₁ <+ l₂ → l₁ <+ l₂",
"end": [
107,
28
],
"full_name": "List.sublist_of_cons_sublist",
"kind": "commanddeclaration",
"start": [
106,
1
]
},
{
"code": "@[simp] theorem sublist_append_left : ∀ l₁ l₂ : List α, l₁ <+ l₁ ++ l₂",
"end": [
111,
55
],
"full_name": "List.sublist_append_left",
"kind": "commanddeclaration",
"start": [
109,
1
]
},
{
"code": "@[simp] theorem sublist_append_right : ∀ l₁ l₂ : List α, l₂ <+ l₁ ++ l₂",
"end": [
115,
55
],
"full_name": "List.sublist_append_right",
"kind": "commanddeclaration",
"start": [
113,
1
]
},
{
"code": "theorem sublist_append_of_sublist_left (s : l <+ l₁) : l <+ l₁ ++ l₂",
"end": [
118,
36
],
"full_name": "List.sublist_append_of_sublist_left",
"kind": "commanddeclaration",
"start": [
117,
1
]
},
{
"code": "theorem sublist_append_of_sublist_right (s : l <+ l₂) : l <+ l₁ ++ l₂",
"end": [
121,
37
],
"full_name": "List.sublist_append_of_sublist_right",
"kind": "commanddeclaration",
"start": [
120,
1
]
},
{
"code": "@[simp]\ntheorem cons_sublist_cons : a :: l₁ <+ a :: l₂ ↔ l₁ <+ l₂",
"end": [
125,
77
],
"full_name": "List.cons_sublist_cons",
"kind": "commanddeclaration",
"start": [
123,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_left : ∀ l, l ++ l₁ <+ l ++ l₂ ↔ l₁ <+ l₂",
"end": [
129,
69
],
"full_name": "List.append_sublist_append_left",
"kind": "commanddeclaration",
"start": [
127,
1
]
},
{
"code": "theorem Sublist.append_left : l₁ <+ l₂ → ∀ l, l ++ l₁ <+ l ++ l₂",
"end": [
132,
50
],
"full_name": "List.Sublist.append_left",
"kind": "commanddeclaration",
"start": [
131,
1
]
},
{
"code": "theorem Sublist.append_right : l₁ <+ l₂ → ∀ l, l₁ ++ l <+ l₂ ++ l",
"end": [
137,
48
],
"full_name": "List.Sublist.append_right",
"kind": "commanddeclaration",
"start": [
134,
1
]
},
{
"code": "theorem sublist_or_mem_of_sublist (h : l <+ l₁ ++ a :: l₂) : l <+ l₁ ++ l₂ ∨ a ∈ l",
"end": [
147,
65
],
"full_name": "List.sublist_or_mem_of_sublist",
"kind": "commanddeclaration",
"start": [
139,
1
]
},
{
"code": "theorem Sublist.reverse : l₁ <+ l₂ → l₁.reverse <+ l₂.reverse",
"end": [
152,
85
],
"full_name": "List.Sublist.reverse",
"kind": "commanddeclaration",
"start": [
149,
1
]
},
{
"code": "@[simp] theorem reverse_sublist : l₁.reverse <+ l₂.reverse ↔ l₁ <+ l₂",
"end": [
155,
82
],
"full_name": "List.reverse_sublist",
"kind": "commanddeclaration",
"start": [
154,
1
]
},
{
"code": "@[simp] theorem append_sublist_append_right (l) : l₁ ++ l <+ l₂ ++ l ↔ l₁ <+ l₂",
"end": [
162,
30
],
"full_name": "List.append_sublist_append_right",
"kind": "commanddeclaration",
"start": [
157,
1
]
},
{
"code": "theorem Sublist.append (hl : l₁ <+ l₂) (hr : r₁ <+ r₂) : l₁ ++ r₁ <+ l₂ ++ r₂",
"end": [
165,
66
],
"full_name": "List.Sublist.append",
"kind": "commanddeclaration",
"start": [
164,
1
]
},
{
"code": "theorem Sublist.subset : l₁ <+ l₂ → l₁ ⊆ l₂",
"end": [
171,
53
],
"full_name": "List.Sublist.subset",
"kind": "commanddeclaration",
"start": [
167,
1
]
},
{
"code": "theorem Sublist.length_le : l₁ <+ l₂ → length l₁ ≤ length l₂",
"end": [
185,
45
],
"full_name": "List.Sublist.length_le",
"kind": "commanddeclaration",
"start": [
182,
1
]
},
{
"code": "@[simp] theorem sublist_nil {l : List α} : l <+ [] ↔ l = []",
"end": [
188,
64
],
"full_name": "List.sublist_nil",
"kind": "commanddeclaration",
"start": [
187,
1
]
},
{
"code": "theorem Sublist.eq_of_length : l₁ <+ l₂ → length l₁ = length l₂ → l₁ = l₂",
"end": [
193,
57
],
"full_name": "List.Sublist.eq_of_length",
"kind": "commanddeclaration",
"start": [
190,
1
]
},
{
"code": "theorem Sublist.eq_of_length_le (s : l₁ <+ l₂) (h : length l₂ ≤ length l₁) : l₁ = l₂",
"end": [
196,
50
],
"full_name": "List.Sublist.eq_of_length_le",
"kind": "commanddeclaration",
"start": [
195,
1
]
},
{
"code": "@[simp] theorem singleton_sublist {a : α} {l} : [a] <+ l ↔ a ∈ l",
"end": [
201,
66
],
"full_name": "List.singleton_sublist",
"kind": "commanddeclaration",
"start": [
198,
1
]
},
{
"code": "@[simp] theorem replicate_sublist_replicate {m n} (a : α) :\n replicate m a <+ replicate n a ↔ m ≤ n",
"end": [
209,
48
],
"full_name": "List.replicate_sublist_replicate",
"kind": "commanddeclaration",
"start": [
203,
1
]
},
{
"code": "theorem isSublist_iff_sublist [BEq α] [LawfulBEq α] {l₁ l₂ : List α} :\n l₁.isSublist l₂ ↔ l₁ <+ l₂",
"end": [
228,
24
],
"full_name": "List.isSublist_iff_sublist",
"kind": "commanddeclaration",
"start": [
211,
1
]
},
{
"code": "theorem tail_eq_tailD (l) : @tail α l = tailD l []",
"end": [
235,
73
],
"full_name": "List.tail_eq_tailD",
"kind": "commanddeclaration",
"start": [
235,
1
]
},
{
"code": "theorem tail_eq_tail? (l) : @tail α l = (tail? l).getD []",
"end": [
237,
85
],
"full_name": "List.tail_eq_tail?",
"kind": "commanddeclaration",
"start": [
237,
1
]
},
{
"code": "@[simp] theorem next?_nil : @next? α [] = none",
"end": [
241,
54
],
"full_name": "List.next?_nil",
"kind": "commanddeclaration",
"start": [
241,
1
]
},
{
"code": "@[simp] theorem next?_cons (a l) : @next? α (a :: l) = some (a, l)",
"end": [
242,
74
],
"full_name": "List.next?_cons",
"kind": "commanddeclaration",
"start": [
242,
1
]
},
{
"code": "theorem getElem_eq_iff {l : List α} {n : Nat} {h : n < l.length} : l[n] = x ↔ l[n]? = some x",
"end": [
248,
40
],
"full_name": "List.getElem_eq_iff",
"kind": "commanddeclaration",
"start": [
246,
1
]
},
{
"code": "@[deprecated getElem_eq_iff (since := \"2024-06-12\")]\ntheorem get_eq_iff : List.get l n = x ↔ l.get? n.1 = some x",
"end": [
252,
7
],
"full_name": "List.get_eq_iff",
"kind": "commanddeclaration",
"start": [
250,
1
]
},
{
"code": "theorem getElem?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs[i]? = xs[j]?) : i = j",
"end": [
273,
39
],
"full_name": "List.getElem?_inj",
"kind": "commanddeclaration",
"start": [
254,
1
]
},
{
"code": "@[deprecated getElem?_inj (since := \"2024-06-12\")]\ntheorem get?_inj\n (h₀ : i < xs.length) (h₁ : Nodup xs) (h₂ : xs.get? i = xs.get? j) : i = j",
"end": [
279,
11
],
"full_name": "List.get?_inj",
"kind": "commanddeclaration",
"start": [
275,
1
]
},
{
"code": "theorem tail_drop (l : List α) (n : Nat) : (l.drop n).tail = l.drop (n + 1)",
"end": [
289,
16
],
"full_name": "List.tail_drop",
"kind": "commanddeclaration",
"start": [
283,
1
]
},
{
"code": "@[simp] theorem modifyNth_nil (f : α → α) (n) : [].modifyNth f n = []",
"end": [
293,
92
],
"full_name": "List.modifyNth_nil",
"kind": "commanddeclaration",
"start": [
293,
1
]
},
{
"code": "@[simp] theorem modifyNth_zero_cons (f : α → α) (a : α) (l : List α) :\n (a :: l).modifyNth f 0 = f a :: l",
"end": [
296,
45
],
"full_name": "List.modifyNth_zero_cons",
"kind": "commanddeclaration",
"start": [
295,
1
]
},
{
"code": "@[simp] theorem modifyNth_succ_cons (f : α → α) (a : α) (l : List α) (n) :\n (a :: l).modifyNth f (n + 1) = a :: l.modifyNth f n",
"end": [
299,
66
],
"full_name": "List.modifyNth_succ_cons",
"kind": "commanddeclaration",
"start": [
298,
1
]
},
{
"code": "theorem modifyNthTail_id : ∀ n (l : List α), l.modifyNthTail id n = l",
"end": [
304,
60
],
"full_name": "List.modifyNthTail_id",
"kind": "commanddeclaration",
"start": [
301,
1
]
},
{
"code": "theorem eraseIdx_eq_modifyNthTail : ∀ n (l : List α), eraseIdx l n = modifyNthTail tail n l",
"end": [
309,
69
],
"full_name": "List.eraseIdx_eq_modifyNthTail",
"kind": "commanddeclaration",
"start": [
306,
1
]
},
{
"code": "theorem getElem?_modifyNth (f : α → α) :\n ∀ n (l : List α) m, (modifyNth f n l)[m]? = (fun a => if n = m then f a else a) <$> l[m]?",
"end": [
322,
79
],
"full_name": "List.getElem?_modifyNth",
"kind": "commanddeclaration",
"start": [
313,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth (since := \"2024-06-12\")]\ntheorem get?_modifyNth (f : α → α) (n) (l : List α) (m) :\n (modifyNth f n l).get? m = (fun a => if n = m then f a else a) <$> l.get? m",
"end": [
327,
28
],
"full_name": "List.get?_modifyNth",
"kind": "commanddeclaration",
"start": [
324,
1
]
},
{
"code": "theorem modifyNthTail_length (f : List α → List α) (H : ∀ l, length (f l) = length l) :\n ∀ n l, length (modifyNthTail f n l) = length l",
"end": [
333,
65
],
"full_name": "List.modifyNthTail_length",
"kind": "commanddeclaration",
"start": [
329,
1
]
},
{
"code": "theorem modifyNthTail_add (f : List α → List α) (n) (l₁ l₂ : List α) :\n modifyNthTail f (l₁.length + n) (l₁ ++ l₂) = l₁ ++ modifyNthTail f n l₂",
"end": [
337,
42
],
"full_name": "List.modifyNthTail_add",
"kind": "commanddeclaration",
"start": [
335,
1
]
},
{
"code": "theorem exists_of_modifyNthTail (f : List α → List α) {n} {l : List α} (h : n ≤ l.length) :\n ∃ l₁ l₂, l = l₁ ++ l₂ ∧ l₁.length = n ∧ modifyNthTail f n l = l₁ ++ f l₂",
"end": [
343,
58
],
"full_name": "List.exists_of_modifyNthTail",
"kind": "commanddeclaration",
"start": [
339,
1
]
},
{
"code": "@[simp] theorem modify_get?_length (f : α → α) : ∀ n l, length (modifyNth f n l) = length l",
"end": [
346,
53
],
"full_name": "List.modify_get?_length",
"kind": "commanddeclaration",
"start": [
345,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l)[n]? = f <$> l[n]?",
"end": [
350,
41
],
"full_name": "List.getElem?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
348,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_eq (since := \"2024-06-12\")]\ntheorem get?_modifyNth_eq (f : α → α) (n) (l : List α) :\n (modifyNth f n l).get? n = f <$> l.get? n",
"end": [
355,
31
],
"full_name": "List.get?_modifyNth_eq",
"kind": "commanddeclaration",
"start": [
352,
1
]
},
{
"code": "@[simp] theorem getElem?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l)[n]? = l[n]?",
"end": [
359,
52
],
"full_name": "List.getElem?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
357,
1
]
},
{
"code": "@[deprecated getElem?_modifyNth_ne (since := \"2024-06-12\")]\ntheorem get?_modifyNth_ne (f : α → α) {m n} (l : List α) (h : m ≠ n) :\n (modifyNth f m l).get? n = l.get? n",
"end": [
364,
11
],
"full_name": "List.get?_modifyNth_ne",
"kind": "commanddeclaration",
"start": [
361,
1
]
},
{
"code": "theorem exists_of_modifyNth (f : α → α) {n} {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ modifyNth f n l = l₁ ++ f a :: l₂",
"end": [
370,
74
],
"full_name": "List.exists_of_modifyNth",
"kind": "commanddeclaration",
"start": [
366,
1
]
},
{
"code": "theorem modifyNthTail_eq_take_drop (f : List α → List α) (H : f [] = []) :\n ∀ n l, modifyNthTail f n l = take n l ++ f (drop n l)",
"end": [
376,
76
],
"full_name": "List.modifyNthTail_eq_take_drop",
"kind": "commanddeclaration",
"start": [
372,
1
]
},
{
"code": "theorem modifyNth_eq_take_drop (f : α → α) :\n ∀ n l, modifyNth f n l = take n l ++ modifyHead f (drop n l)",
"end": [
380,
35
],
"full_name": "List.modifyNth_eq_take_drop",
"kind": "commanddeclaration",
"start": [
378,
1
]
},
{
"code": "theorem modifyNth_eq_take_cons_drop (f : α → α) {n l} (h) :\n modifyNth f n l = take n l ++ f l[n] :: drop (n + 1) l",
"end": [
384,
59
],
"full_name": "List.modifyNth_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
382,
1
]
},
{
"code": "theorem set_eq_modifyNth (a : α) : ∀ n (l : List α), set l n a = modifyNth (fun _ => a) n l",
"end": [
391,
62
],
"full_name": "List.set_eq_modifyNth",
"kind": "commanddeclaration",
"start": [
388,
1
]
},
{
"code": "theorem set_eq_take_cons_drop (a : α) {n l} (h : n < length l) :\n set l n a = take n l ++ a :: drop (n + 1) l",
"end": [
395,
57
],
"full_name": "List.set_eq_take_cons_drop",
"kind": "commanddeclaration",
"start": [
393,
1
]
},
{
"code": "theorem modifyNth_eq_set_get? (f : α → α) :\n ∀ n (l : List α), l.modifyNth f n = ((fun a => l.set n (f a)) <$> l.get? n).getD l",
"end": [
402,
92
],
"full_name": "List.modifyNth_eq_set_get?",
"kind": "commanddeclaration",
"start": [
397,
1
]
},
{
"code": "theorem modifyNth_eq_set_get (f : α → α) {n} {l : List α} (h) :\n l.modifyNth f n = l.set n (f (l.get ⟨n, h⟩))",
"end": [
406,
49
],
"full_name": "List.modifyNth_eq_set_get",
"kind": "commanddeclaration",
"start": [
404,
1
]
},
{
"code": "theorem exists_of_set {l : List α} (h : n < l.length) :\n ∃ l₁ a l₂, l = l₁ ++ a :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
410,
55
],
"full_name": "List.exists_of_set",
"kind": "commanddeclaration",
"start": [
408,
1
]
},
{
"code": "theorem exists_of_set' {l : List α} (h : n < l.length) :\n ∃ l₁ l₂, l = l₁ ++ l[n] :: l₂ ∧ l₁.length = n ∧ l.set n a' = l₁ ++ a' :: l₂",
"end": [
414,
94
],
"full_name": "List.exists_of_set'",
"kind": "commanddeclaration",
"start": [
412,
1
]
},
{
"code": "@[simp]\ntheorem getElem?_set_eq' (a : α) (n) (l : List α) : (set l n a)[n]? = (fun _ => a) <$> l[n]?",
"end": [
418,
54
],
"full_name": "List.getElem?_set_eq'",
"kind": "commanddeclaration",
"start": [
416,
1
]
},
{
"code": "@[deprecated getElem?_set_eq' (since := \"2024-06-12\")]\ntheorem get?_set_eq (a : α) (n) (l : List α) : (set l n a).get? n = (fun _ => a) <$> l.get? n",
"end": [
422,
7
],
"full_name": "List.get?_set_eq",
"kind": "commanddeclaration",
"start": [
420,
1
]
},
{
"code": "theorem getElem?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a)[n]? = some a",
"end": [
425,
85
],
"full_name": "List.getElem?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
424,
1
]
},
{
"code": "@[deprecated getElem?_set_eq_of_lt (since := \"2024-06-12\")]\ntheorem get?_set_eq_of_lt (a : α) {n} {l : List α} (h : n < length l) :\n (set l n a).get? n = some a",
"end": [
430,
70
],
"full_name": "List.get?_set_eq_of_lt",
"kind": "commanddeclaration",
"start": [
427,
1
]
},
{
"code": "@[deprecated getElem?_set_ne (since := \"2024-06-12\")]\ntheorem get?_set_ne (a : α) {m n} (l : List α) (h : m ≠ n) : (set l m a).get? n = l.get? n",
"end": [
434,
11
],
"full_name": "List.get?_set_ne",
"kind": "commanddeclaration",
"start": [
432,
1
]
},
{
"code": "theorem getElem?_set' (a : α) {m n} (l : List α) :\n (set l m a)[n]? = if m = n then (fun _ => a) <$> l[n]? else l[n]?",
"end": [
438,
30
],
"full_name": "List.getElem?_set'",
"kind": "commanddeclaration",
"start": [
436,
1
]
},
{
"code": "@[deprecated getElem?_set (since := \"2024-06-12\")]\ntheorem get?_set (a : α) {m n} (l : List α) :\n (set l m a).get? n = if m = n then (fun _ => a) <$> l.get? n else l.get? n",
"end": [
443,
23
],
"full_name": "List.get?_set",
"kind": "commanddeclaration",
"start": [
440,
1
]
},
{
"code": "theorem get?_set_of_lt (a : α) {m n} (l : List α) (h : n < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
447,
46
],
"full_name": "List.get?_set_of_lt",
"kind": "commanddeclaration",
"start": [
445,
1
]
},
{
"code": "theorem get?_set_of_lt' (a : α) {m n} (l : List α) (h : m < length l) :\n (set l m a).get? n = if m = n then some a else l.get? n",
"end": [
451,
80
],
"full_name": "List.get?_set_of_lt'",
"kind": "commanddeclaration",
"start": [
449,
1
]
},
{
"code": "theorem drop_set_of_lt (a : α) {n m : Nat} (l : List α) (h : n < m) :\n (l.set n a).drop m = l.drop m",
"end": [
455,
94
],
"full_name": "List.drop_set_of_lt",
"kind": "commanddeclaration",
"start": [
453,
1
]
},
{
"code": "theorem take_set_of_lt (a : α) {n m : Nat} (l : List α) (h : m < n) :\n (l.set n a).take m = l.take m",
"end": [
463,
10
],
"full_name": "List.take_set_of_lt",
"kind": "commanddeclaration",
"start": [
457,
1
]
},
{
"code": "theorem length_eraseIdx : ∀ {l i}, i < length l → length (@eraseIdx α l i) = length l - 1",
"end": [
473,
92
],
"full_name": "List.length_eraseIdx",
"kind": "commanddeclaration",
"start": [
467,
1
]
},
{
"code": "@[simp] theorem length_tail (l : List α) : length (tail l) = length l - 1",
"end": [
479,
96
],
"full_name": "List.length_tail",
"kind": "commanddeclaration",
"start": [
479,
1
]
},
{
"code": "@[simp] theorem eraseP_nil : [].eraseP p = []",
"end": [
483,
53
],
"full_name": "List.eraseP_nil",
"kind": "commanddeclaration",
"start": [
483,
1
]
},
{
"code": "theorem eraseP_cons (a : α) (l : List α) :\n (a :: l).eraseP p = bif p a then l else a :: l.eraseP p",
"end": [
486,
67
],
"full_name": "List.eraseP_cons",
"kind": "commanddeclaration",
"start": [
485,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_pos {l : List α} (p) (h : p a) : (a :: l).eraseP p = l",
"end": [
489,
24
],
"full_name": "List.eraseP_cons_of_pos",
"kind": "commanddeclaration",
"start": [
488,
1
]
},
{
"code": "@[simp] theorem eraseP_cons_of_neg {l : List α} (p) (h : ¬p a) :\n (a :: l).eraseP p = a :: l.eraseP p",
"end": [
492,
68
],
"full_name": "List.eraseP_cons_of_neg",
"kind": "commanddeclaration",
"start": [
491,
1
]
},
{
"code": "theorem eraseP_of_forall_not {l : List α} (h : ∀ a, a ∈ l → ¬p a) : l.eraseP p = l",
"end": [
497,
69
],
"full_name": "List.eraseP_of_forall_not",
"kind": "commanddeclaration",
"start": [
494,
1
]
},
{
"code": "theorem exists_of_eraseP : ∀ {l : List α} {a} (al : a ∈ l) (pa : p a),\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
510,
57
],
"full_name": "List.exists_of_eraseP",
"kind": "commanddeclaration",
"start": [
499,
1
]
},
{
"code": "theorem exists_or_eq_self_of_eraseP (p) (l : List α) :\n l.eraseP p = l ∨\n ∃ a l₁ l₂, (∀ b ∈ l₁, ¬p b) ∧ p a ∧ l = l₁ ++ a :: l₂ ∧ l.eraseP p = l₁ ++ l₂",
"end": [
519,
46
],
"full_name": "List.exists_or_eq_self_of_eraseP",
"kind": "commanddeclaration",
"start": [
512,
1
]
},
{
"code": "@[simp] theorem length_eraseP_of_mem (al : a ∈ l) (pa : p a) :\n length (l.eraseP p) = Nat.pred (length l)",
"end": [
524,
41
],
"full_name": "List.length_eraseP_of_mem",
"kind": "commanddeclaration",
"start": [
521,
1
]
},
{
"code": "theorem eraseP_append_left {a : α} (pa : p a) :\n ∀ {l₁ : List α} l₂, a ∈ l₁ → (l₁++l₂).eraseP p = l₁.eraseP p ++ l₂",
"end": [
531,
28
],
"full_name": "List.eraseP_append_left",
"kind": "commanddeclaration",
"start": [
526,
1
]
},
{
"code": "theorem eraseP_append_right :\n ∀ {l₁ : List α} l₂, (∀ b ∈ l₁, ¬p b) → eraseP p (l₁++l₂) = l₁ ++ l₂.eraseP p",
"end": [
537,
82
],
"full_name": "List.eraseP_append_right",
"kind": "commanddeclaration",
"start": [
533,
1
]
},
{
"code": "theorem eraseP_sublist (l : List α) : l.eraseP p <+ l",
"end": [
542,
56
],
"full_name": "List.eraseP_sublist",
"kind": "commanddeclaration",
"start": [
539,
1
]
},
{
"code": "theorem eraseP_subset (l : List α) : l.eraseP p ⊆ l",
"end": [
544,
81
],
"full_name": "List.eraseP_subset",
"kind": "commanddeclaration",
"start": [
544,
1
]
},
{
"code": "protected theorem Sublist.eraseP : l₁ <+ l₂ → l₁.eraseP p <+ l₂.eraseP p",
"end": [
553,
25
],
"full_name": "List.Sublist.eraseP",
"kind": "commanddeclaration",
"start": [
546,
1
]
},
{
"code": "theorem mem_of_mem_eraseP {l : List α} : a ∈ l.eraseP p → a ∈ l",
"end": [
555,
87
],
"full_name": "List.mem_of_mem_eraseP",
"kind": "commanddeclaration",
"start": [
555,
1
]
},
{
"code": "@[simp] theorem mem_eraseP_of_neg {l : List α} (pa : ¬p a) : a ∈ l.eraseP p ↔ a ∈ l",
"end": [
564,
33
],
"full_name": "List.mem_eraseP_of_neg",
"kind": "commanddeclaration",
"start": [
557,
1
]
},
{
"code": "theorem eraseP_map (f : β → α) : ∀ (l : List β), (map f l).eraseP p = map f (l.eraseP (p ∘ f))",
"end": [
568,
85
],
"full_name": "List.eraseP_map",
"kind": "commanddeclaration",
"start": [
566,
1
]
},
{
"code": "@[simp] theorem extractP_eq_find?_eraseP\n (l : List α) : extractP p l = (find? p l, eraseP p l)",
"end": [
578,
21
],
"full_name": "List.extractP_eq_find?_eraseP",
"kind": "commanddeclaration",
"start": [
570,
1
]
},
{
"code": "theorem erase_eq_eraseP' (a : α) (l : List α) : l.erase a = l.eraseP (· == a)",
"end": [
590,
46
],
"full_name": "List.erase_eq_eraseP'",
"kind": "commanddeclaration",
"start": [
585,
1
]
},
{
"code": "theorem erase_eq_eraseP [LawfulBEq α] (a : α) : ∀ l : List α, l.erase a = l.eraseP (a == ·)",
"end": [
595,
77
],
"full_name": "List.erase_eq_eraseP",
"kind": "commanddeclaration",
"start": [
592,
1
]
},
{
"code": "theorem exists_erase_eq [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n ∃ l₁ l₂, a ∉ l₁ ∧ l = l₁ ++ a :: l₂ ∧ l.erase a = l₁ ++ l₂",
"end": [
600,
99
],
"full_name": "List.exists_erase_eq",
"kind": "commanddeclaration",
"start": [
597,
1
]
},
{
"code": "@[simp] theorem length_erase_of_mem [LawfulBEq α] {a : α} {l : List α} (h : a ∈ l) :\n length (l.erase a) = Nat.pred (length l)",
"end": [
604,
74
],
"full_name": "List.length_erase_of_mem",
"kind": "commanddeclaration",
"start": [
602,
1
]
},
{
"code": "theorem erase_append_left [LawfulBEq α] {l₁ : List α} (l₂) (h : a ∈ l₁) :\n (l₁ ++ l₂).erase a = l₁.erase a ++ l₂",
"end": [
608,
77
],
"full_name": "List.erase_append_left",
"kind": "commanddeclaration",
"start": [
606,
1
]
},
{
"code": "theorem erase_append_right [LawfulBEq α] {a : α} {l₁ : List α} (l₂ : List α) (h : a ∉ l₁) :\n (l₁ ++ l₂).erase a = (l₁ ++ l₂.erase a)",
"end": [
613,
55
],
"full_name": "List.erase_append_right",
"kind": "commanddeclaration",
"start": [
610,
1
]
},
{
"code": "theorem erase_sublist (a : α) (l : List α) : l.erase a <+ l",
"end": [
616,
42
],
"full_name": "List.erase_sublist",
"kind": "commanddeclaration",
"start": [
615,
1
]
},
{
"code": "theorem erase_subset (a : α) (l : List α) : l.erase a ⊆ l",
"end": [
618,
88
],
"full_name": "List.erase_subset",
"kind": "commanddeclaration",
"start": [
618,
1
]
},
{
"code": "theorem Sublist.erase (a : α) {l₁ l₂ : List α} (h : l₁ <+ l₂) : l₁.erase a <+ l₂.erase a",
"end": [
621,
47
],
"full_name": "List.Sublist.erase",
"kind": "commanddeclaration",
"start": [
620,
1
]
},
{
"code": "theorem mem_of_mem_erase {a b : α} {l : List α} (h : a ∈ l.erase b) : a ∈ l",
"end": [
624,
98
],
"full_name": "List.mem_of_mem_erase",
"kind": "commanddeclaration",
"start": [
624,
1
]
},
{
"code": "@[simp] theorem mem_erase_of_ne [LawfulBEq α] {a b : α} {l : List α} (ab : a ≠ b) :\n a ∈ l.erase b ↔ a ∈ l",
"end": [
628,
65
],
"full_name": "List.mem_erase_of_ne",
"kind": "commanddeclaration",
"start": [
626,
1
]
},
{
"code": "theorem erase_comm [LawfulBEq α] (a b : α) (l : List α) :\n (l.erase a).erase b = (l.erase b).erase a",
"end": [
644,
49
],
"full_name": "List.erase_comm",
"kind": "commanddeclaration",
"start": [
630,
1
]
},
{
"code": "@[simp] theorem filter_sublist {p : α → Bool} : ∀ (l : List α), filter p l <+ l",
"end": [
652,
93
],
"full_name": "List.filter_sublist",
"kind": "commanddeclaration",
"start": [
650,
1
]
},
{
"code": "protected theorem Sublist.filterMap (f : α → Option β) (s : l₁ <+ l₂) :\n filterMap f l₁ <+ filterMap f l₂",
"end": [
658,
76
],
"full_name": "List.Sublist.filterMap",
"kind": "commanddeclaration",
"start": [
656,
1
]
},
{
"code": "theorem Sublist.filter (p : α → Bool) {l₁ l₂} (s : l₁ <+ l₂) : filter p l₁ <+ filter p l₂",
"end": [
661,
48
],
"full_name": "List.Sublist.filter",
"kind": "commanddeclaration",
"start": [
660,
1
]
},
{
"code": "@[simp] theorem findIdx_nil {α : Type _} (p : α → Bool) : [].findIdx p = 0",
"end": [
665,
82
],
"full_name": "List.findIdx_nil",
"kind": "commanddeclaration",
"start": [
665,
1
]
},
{
"code": "theorem findIdx_cons (p : α → Bool) (b : α) (l : List α) :\n (b :: l).findIdx p = bif p b then 0 else (l.findIdx p) + 1",
"end": [
680,
43
],
"full_name": "List.findIdx_cons",
"kind": "commanddeclaration",
"start": [
667,
1
]
},
{
"code": "theorem findIdx_of_get?_eq_some {xs : List α} (w : xs.get? (xs.findIdx p) = some y) : p y",
"end": [
685,
65
],
"full_name": "List.findIdx_of_get?_eq_some",
"kind": "commanddeclaration",
"start": [
682,
1
]
},
{
"code": "theorem findIdx_get {xs : List α} {w : xs.findIdx p < xs.length} :\n p (xs.get ⟨xs.findIdx p, w⟩)",
"end": [
689,
45
],
"full_name": "List.findIdx_get",
"kind": "commanddeclaration",
"start": [
687,
1
]
},
{
"code": "theorem findIdx_lt_length_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.findIdx p < xs.length",
"end": [
703,
24
],
"full_name": "List.findIdx_lt_length_of_exists",
"kind": "commanddeclaration",
"start": [
691,
1
]
},
{
"code": "theorem findIdx_get?_eq_get_of_exists {xs : List α} (h : ∃ x ∈ xs, p x) :\n xs.get? (xs.findIdx p) = some (xs.get ⟨xs.findIdx p, xs.findIdx_lt_length_of_exists h⟩)",
"end": [
707,
46
],
"full_name": "List.findIdx_get?_eq_get_of_exists",
"kind": "commanddeclaration",
"start": [
705,
1
]
},
{
"code": "@[simp] theorem findIdx?_nil : ([] : List α).findIdx? p i = none",
"end": [
711,
72
],
"full_name": "List.findIdx?_nil",
"kind": "commanddeclaration",
"start": [
711,
1
]
},
{
"code": "@[simp] theorem findIdx?_cons :\n (x :: xs).findIdx? p i = if p x then some i else findIdx? p xs (i + 1)",
"end": [
714,
82
],
"full_name": "List.findIdx?_cons",
"kind": "commanddeclaration",
"start": [
713,
1
]
},
{
"code": "@[simp] theorem findIdx?_succ :\n (xs : List α).findIdx? p (i+1) = (xs.findIdx? p i).map fun i => i + 1",
"end": [
719,
37
],
"full_name": "List.findIdx?_succ",
"kind": "commanddeclaration",
"start": [
716,
1
]
},
{
"code": "theorem findIdx?_eq_some_iff (xs : List α) (p : α → Bool) :\n xs.findIdx? p = some i ↔ (xs.take (i + 1)).map p = replicate i false ++ [true]",
"end": [
727,
52
],
"full_name": "List.findIdx?_eq_some_iff",
"kind": "commanddeclaration",
"start": [
721,
1
]
},
{
"code": "theorem findIdx?_of_eq_some {xs : List α} {p : α → Bool} (w : xs.findIdx? p = some i) :\n match xs.get? i with | some a => p a | none => false",
"end": [
735,
40
],
"full_name": "List.findIdx?_of_eq_some",
"kind": "commanddeclaration",
"start": [
729,
1
]
},
{
"code": "theorem findIdx?_of_eq_none {xs : List α} {p : α → Bool} (w : xs.findIdx? p = none) :\n ∀ i, match xs.get? i with | some a => ¬ p a | none => true",
"end": [
750,
30
],
"full_name": "List.findIdx?_of_eq_none",
"kind": "commanddeclaration",
"start": [
737,
1
]
},
{
"code": "@[simp] theorem findIdx?_append :\n (xs ++ ys : List α).findIdx? p =\n (xs.findIdx? p <|> (ys.findIdx? p).map fun i => i + xs.length)",
"end": [
756,
78
],
"full_name": "List.findIdx?_append",
"kind": "commanddeclaration",
"start": [
752,
1
]
},
{
"code": "@[simp] theorem findIdx?_replicate :\n (replicate n a).findIdx? p = if 0 < n ∧ p a then some 0 else none",
"end": [
764,
23
],
"full_name": "List.findIdx?_replicate",
"kind": "commanddeclaration",
"start": [
758,
1
]
},
{
"code": "theorem Pairwise.sublist : l₁ <+ l₂ → l₂.Pairwise R → l₁.Pairwise R",
"end": [
771,
80
],
"full_name": "List.Pairwise.sublist",
"kind": "commanddeclaration",
"start": [
768,
1
]
},
{
"code": "theorem pairwise_map {l : List α} :\n (l.map f).Pairwise R ↔ l.Pairwise fun a b => R (f a) (f b)",
"end": [
777,
58
],
"full_name": "List.pairwise_map",
"kind": "commanddeclaration",
"start": [
773,
1
]
},
{
"code": "theorem pairwise_append {l₁ l₂ : List α} :\n (l₁ ++ l₂).Pairwise R ↔ l₁.Pairwise R ∧ l₂.Pairwise R ∧ ∀ a ∈ l₁, ∀ b ∈ l₂, R a b",
"end": [
781,
74
],
"full_name": "List.pairwise_append",
"kind": "commanddeclaration",
"start": [
779,
1
]
},
{
"code": "theorem pairwise_reverse {l : List α} :\n l.reverse.Pairwise R ↔ l.Pairwise (fun a b => R b a)",
"end": [
785,
54
],
"full_name": "List.pairwise_reverse",
"kind": "commanddeclaration",
"start": [
783,
1
]
},
{
"code": "theorem Pairwise.imp {α R S} (H : ∀ {a b}, R a b → S a b) :\n ∀ {l : List α}, l.Pairwise R → l.Pairwise S",
"end": [
790,
50
],
"full_name": "List.Pairwise.imp",
"kind": "commanddeclaration",
"start": [
787,
1
]
},
{
"code": "theorem replaceF_nil : [].replaceF p = []",
"end": [
794,
49
],
"full_name": "List.replaceF_nil",
"kind": "commanddeclaration",
"start": [
794,
1
]
},
{
"code": "theorem replaceF_cons (a : α) (l : List α) :\n (a :: l).replaceF p = match p a with\n | none => a :: replaceF p l\n | some a' => a' :: l",
"end": [
799,
34
],
"full_name": "List.replaceF_cons",
"kind": "commanddeclaration",
"start": [
796,
1
]
},
{
"code": "theorem replaceF_cons_of_some {l : List α} (p) (h : p a = some a') :\n (a :: l).replaceF p = a' :: l",
"end": [
803,
26
],
"full_name": "List.replaceF_cons_of_some",
"kind": "commanddeclaration",
"start": [
801,
1
]
},
{
"code": "theorem replaceF_cons_of_none {l : List α} (p) (h : p a = none) :\n (a :: l).replaceF p = a :: l.replaceF p",
"end": [
806,
74
],
"full_name": "List.replaceF_cons_of_none",
"kind": "commanddeclaration",
"start": [
805,
1
]
},
{
"code": "theorem replaceF_of_forall_none {l : List α} (h : ∀ a, a ∈ l → p a = none) : l.replaceF p = l",
"end": [
811,
69
],
"full_name": "List.replaceF_of_forall_none",
"kind": "commanddeclaration",
"start": [
808,
1
]
},
{
"code": "theorem exists_of_replaceF : ∀ {l : List α} {a a'} (al : a ∈ l) (pa : p a = some a'),\n ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
825,
57
],
"full_name": "List.exists_of_replaceF",
"kind": "commanddeclaration",
"start": [
813,
1
]
},
{
"code": "theorem exists_or_eq_self_of_replaceF (p) (l : List α) :\n l.replaceF p = l ∨ ∃ a a' l₁ l₂,\n (∀ b ∈ l₁, p b = none) ∧ p a = some a' ∧ l = l₁ ++ a :: l₂ ∧ l.replaceF p = l₁ ++ a' :: l₂",
"end": [
835,
62
],
"full_name": "List.exists_or_eq_self_of_replaceF",
"kind": "commanddeclaration",
"start": [
827,
1
]
},
{
"code": "@[simp] theorem length_replaceF : length (replaceF f l) = length l",
"end": [
838,
54
],
"full_name": "List.length_replaceF",
"kind": "commanddeclaration",
"start": [
837,
1
]
},
{
"code": "theorem disjoint_symm (d : Disjoint l₁ l₂) : Disjoint l₂ l₁",
"end": [
842,
86
],
"full_name": "List.disjoint_symm",
"kind": "commanddeclaration",
"start": [
842,
1
]
},
{
"code": "theorem disjoint_comm : Disjoint l₁ l₂ ↔ Disjoint l₂ l₁",
"end": [
844,
90
],
"full_name": "List.disjoint_comm",
"kind": "commanddeclaration",
"start": [
844,
1
]
},
{
"code": "theorem disjoint_left : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₁ → a ∉ l₂",
"end": [
846,
86
],
"full_name": "List.disjoint_left",
"kind": "commanddeclaration",
"start": [
846,
1
]
},
{
"code": "theorem disjoint_right : Disjoint l₁ l₂ ↔ ∀ ⦃a⦄, a ∈ l₂ → a ∉ l₁",
"end": [
848,
82
],
"full_name": "List.disjoint_right",
"kind": "commanddeclaration",
"start": [
848,
1
]
},
{
"code": "theorem disjoint_iff_ne : Disjoint l₁ l₂ ↔ ∀ a ∈ l₁, ∀ b ∈ l₂, a ≠ b",
"end": [
851,
83
],
"full_name": "List.disjoint_iff_ne",
"kind": "commanddeclaration",
"start": [
850,
1
]
},
{
"code": "theorem disjoint_of_subset_left (ss : l₁ ⊆ l) (d : Disjoint l l₂) : Disjoint l₁ l₂",
"end": [
854,
22
],
"full_name": "List.disjoint_of_subset_left",
"kind": "commanddeclaration",
"start": [
853,
1
]
},
{
"code": "theorem disjoint_of_subset_right (ss : l₂ ⊆ l) (d : Disjoint l₁ l) : Disjoint l₁ l₂",
"end": [
857,
28
],
"full_name": "List.disjoint_of_subset_right",
"kind": "commanddeclaration",
"start": [
856,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_left {l₁ l₂} : Disjoint (a :: l₁) l₂ → Disjoint l₁ l₂",
"end": [
860,
42
],
"full_name": "List.disjoint_of_disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
859,
1
]
},
{
"code": "theorem disjoint_of_disjoint_cons_right {l₁ l₂} : Disjoint l₁ (a :: l₂) → Disjoint l₁ l₂",
"end": [
863,
43
],
"full_name": "List.disjoint_of_disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
862,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_left (l : List α) : Disjoint [] l",
"end": [
865,
96
],
"full_name": "List.disjoint_nil_left",
"kind": "commanddeclaration",
"start": [
865,
1
]
},
{
"code": "@[simp] theorem disjoint_nil_right (l : List α) : Disjoint l []",
"end": [
868,
48
],
"full_name": "List.disjoint_nil_right",
"kind": "commanddeclaration",
"start": [
867,
1
]
},
{
"code": "@[simp 1100] theorem singleton_disjoint : Disjoint [a] l ↔ a ∉ l",
"end": [
870,
87
],
"full_name": "List.singleton_disjoint",
"kind": "commanddeclaration",
"start": [
870,
1
]
},
{
"code": "@[simp 1100] theorem disjoint_singleton : Disjoint l [a] ↔ a ∉ l",
"end": [
873,
41
],
"full_name": "List.disjoint_singleton",
"kind": "commanddeclaration",
"start": [
872,
1
]
},
{
"code": "@[simp] theorem disjoint_append_left : Disjoint (l₁ ++ l₂) l ↔ Disjoint l₁ l ∧ Disjoint l₂ l",
"end": [
876,
38
],
"full_name": "List.disjoint_append_left",
"kind": "commanddeclaration",
"start": [
875,
1
]
},
{
"code": "@[simp] theorem disjoint_append_right : Disjoint l (l₁ ++ l₂) ↔ Disjoint l l₁ ∧ Disjoint l l₂",
"end": [
879,
76
],
"full_name": "List.disjoint_append_right",
"kind": "commanddeclaration",
"start": [
878,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_left : Disjoint (a::l₁) l₂ ↔ (a ∉ l₂) ∧ Disjoint l₁ l₂",
"end": [
882,
75
],
"full_name": "List.disjoint_cons_left",
"kind": "commanddeclaration",
"start": [
881,
1
]
},
{
"code": "@[simp] theorem disjoint_cons_right : Disjoint l₁ (a :: l₂) ↔ (a ∉ l₁) ∧ Disjoint l₁ l₂",
"end": [
885,
74
],
"full_name": "List.disjoint_cons_right",
"kind": "commanddeclaration",
"start": [
884,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_left (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₁ l",
"end": [
888,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_left",
"kind": "commanddeclaration",
"start": [
887,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_left_right (d : Disjoint (l₁ ++ l₂) l) : Disjoint l₂ l",
"end": [
891,
31
],
"full_name": "List.disjoint_of_disjoint_append_left_right",
"kind": "commanddeclaration",
"start": [
890,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_left (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₁",
"end": [
894,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_left",
"kind": "commanddeclaration",
"start": [
893,
1
]
},
{
"code": "theorem disjoint_of_disjoint_append_right_right (d : Disjoint l (l₁ ++ l₂)) : Disjoint l l₂",
"end": [
897,
32
],
"full_name": "List.disjoint_of_disjoint_append_right_right",
"kind": "commanddeclaration",
"start": [
896,
1
]
},
{
"code": "theorem foldl_hom (f : α₁ → α₂) (g₁ : α₁ → β → α₁) (g₂ : α₂ → β → α₂) (l : List β) (init : α₁)\n (H : ∀ x y, g₂ (f x) y = f (g₁ x y)) : l.foldl g₂ (f init) = f (l.foldl g₁ init)",
"end": [
903,
48
],
"full_name": "List.foldl_hom",
"kind": "commanddeclaration",
"start": [
901,
1
]
},
{
"code": "theorem foldr_hom (f : β₁ → β₂) (g₁ : α → β₁ → β₁) (g₂ : α → β₂ → β₂) (l : List α) (init : β₁)\n (H : ∀ x y, g₂ x (f y) = f (g₁ x y)) : l.foldr g₂ (f init) = f (l.foldr g₁ init)",
"end": [
907,
30
],
"full_name": "List.foldr_hom",
"kind": "commanddeclaration",
"start": [
905,
1
]
},
{
"code": "theorem union_def [BEq α] (l₁ l₂ : List α) : l₁ ∪ l₂ = foldr .insert l₂ l₁",
"end": [
915,
83
],
"full_name": "List.union_def",
"kind": "commanddeclaration",
"start": [
915,
1
]
},
{
"code": "@[simp] theorem nil_union (l : List α) : nil ∪ l = l",
"end": [
917,
88
],
"full_name": "List.nil_union",
"kind": "commanddeclaration",
"start": [
917,
1
]
},
{
"code": "@[simp] theorem cons_union (a : α) (l₁ l₂ : List α) :\n (a :: l₁) ∪ l₂ = (l₁ ∪ l₂).insert a",
"end": [
920,
75
],
"full_name": "List.cons_union",
"kind": "commanddeclaration",
"start": [
919,
1
]
},
{
"code": "@[simp] theorem mem_union_iff [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∪ l₂ ↔ x ∈ l₁ ∨ x ∈ l₂",
"end": [
923,
76
],
"full_name": "List.mem_union_iff",
"kind": "commanddeclaration",
"start": [
922,
1
]
},
{
"code": "theorem inter_def [BEq α] (l₁ l₂ : List α) : l₁ ∩ l₂ = filter (elem · l₂) l₁",
"end": [
929,
85
],
"full_name": "List.inter_def",
"kind": "commanddeclaration",
"start": [
929,
1
]
},
{
"code": "@[simp] theorem mem_inter_iff [BEq α] [LawfulBEq α] {x : α} {l₁ l₂ : List α} :\n x ∈ l₁ ∩ l₂ ↔ x ∈ l₁ ∧ x ∈ l₂",
"end": [
933,
49
],
"full_name": "List.mem_inter_iff",
"kind": "commanddeclaration",
"start": [
931,
1
]
},
{
"code": "@[simp]\ntheorem pair_mem_product {xs : List α} {ys : List β} {x : α} {y : β} :\n (x, y) ∈ product xs ys ↔ x ∈ xs ∧ y ∈ ys",
"end": [
942,
47
],
"full_name": "List.pair_mem_product",
"kind": "commanddeclaration",
"start": [
937,
1
]
},
{
"code": "@[simp]\ntheorem leftpad_length (n : Nat) (a : α) (l : List α) :\n (leftpad n a l).length = max n l.length",
"end": [
951,
75
],
"full_name": "List.leftpad_length",
"kind": "commanddeclaration",
"start": [
946,
1
]
},
{
"code": "theorem leftpad_prefix (n : Nat) (a : α) (l : List α) :\n replicate (n - length l) a <+: leftpad n a l",
"end": [
956,
27
],
"full_name": "List.leftpad_prefix",
"kind": "commanddeclaration",
"start": [
953,
1
]
},
{
"code": "theorem leftpad_suffix (n : Nat) (a : α) (l : List α) : l <:+ (leftpad n a l)",
"end": [
960,
54
],
"full_name": "List.leftpad_suffix",
"kind": "commanddeclaration",
"start": [
958,
1
]
},
{
"code": "@[simp] theorem forIn_eq_forIn [Monad m] : @List.forIn α β m _ = forIn",
"end": [
965,
78
],
"full_name": "List.forIn_eq_forIn",
"kind": "commanddeclaration",
"start": [
965,
1
]
},
{
"code": "theorem forIn_eq_bindList [Monad m] [LawfulMonad m]\n (f : α → β → m (ForInStep β)) (l : List α) (init : β) :\n forIn l init f = ForInStep.run <$> (ForInStep.yield init).bindList f l",
"end": [
971,
30
],
"full_name": "List.forIn_eq_bindList",
"kind": "commanddeclaration",
"start": [
967,
1
]
},
{
"code": "@[simp] theorem forM_append [Monad m] [LawfulMonad m] (l₁ l₂ : List α) (f : α → m PUnit) :\n (l₁ ++ l₂).forM f = (do l₁.forM f; l₂.forM f)",
"end": [
974,
82
],
"full_name": "List.forM_append",
"kind": "commanddeclaration",
"start": [
973,
1
]
},
{
"code": "@[simp] theorem diff_nil (l : List α) : l.diff [] = l",
"end": [
982,
61
],
"full_name": "List.diff_nil",
"kind": "commanddeclaration",
"start": [
982,
1
]
},
{
"code": "@[simp] theorem diff_cons (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.erase a).diff l₂",
"end": [
985,
41
],
"full_name": "List.diff_cons",
"kind": "commanddeclaration",
"start": [
984,
1
]
},
{
"code": "theorem diff_cons_right (l₁ l₂ : List α) (a : α) : l₁.diff (a :: l₂) = (l₁.diff l₂).erase a",
"end": [
988,
71
],
"full_name": "List.diff_cons_right",
"kind": "commanddeclaration",
"start": [
987,
1
]
},
{
"code": "theorem diff_erase (l₁ l₂ : List α) (a : α) : (l₁.diff l₂).erase a = (l₁.erase a).diff l₂",
"end": [
991,
36
],
"full_name": "List.diff_erase",
"kind": "commanddeclaration",
"start": [
990,
1
]
},
{
"code": "@[simp] theorem nil_diff (l : List α) : [].diff l = []",
"end": [
994,
45
],
"full_name": "List.nil_diff",
"kind": "commanddeclaration",
"start": [
993,
1
]
},
{
"code": "theorem cons_diff (a : α) (l₁ l₂ : List α) :\n (a :: l₁).diff l₂ = if a ∈ l₂ then l₁.diff (l₂.erase a) else a :: l₁.diff l₂",
"end": [
1005,
14
],
"full_name": "List.cons_diff",
"kind": "commanddeclaration",
"start": [
996,
1
]
},
{
"code": "theorem cons_diff_of_mem {a : α} {l₂ : List α} (h : a ∈ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = l₁.diff (l₂.erase a)",
"end": [
1008,
76
],
"full_name": "List.cons_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1007,
1
]
},
{
"code": "theorem cons_diff_of_not_mem {a : α} {l₂ : List α} (h : a ∉ l₂) (l₁ : List α) :\n (a :: l₁).diff l₂ = a :: l₁.diff l₂",
"end": [
1011,
71
],
"full_name": "List.cons_diff_of_not_mem",
"kind": "commanddeclaration",
"start": [
1010,
1
]
},
{
"code": "theorem diff_eq_foldl : ∀ l₁ l₂ : List α, l₁.diff l₂ = foldl List.erase l₁ l₂",
"end": [
1015,
65
],
"full_name": "List.diff_eq_foldl",
"kind": "commanddeclaration",
"start": [
1013,
1
]
},
{
"code": "@[simp] theorem diff_append (l₁ l₂ l₃ : List α) : l₁.diff (l₂ ++ l₃) = (l₁.diff l₂).diff l₃",
"end": [
1018,
42
],
"full_name": "List.diff_append",
"kind": "commanddeclaration",
"start": [
1017,
1
]
},
{
"code": "theorem diff_sublist : ∀ l₁ l₂ : List α, l₁.diff l₂ <+ l₁",
"end": [
1026,
34
],
"full_name": "List.diff_sublist",
"kind": "commanddeclaration",
"start": [
1020,
1
]
},
{
"code": "theorem diff_subset (l₁ l₂ : List α) : l₁.diff l₂ ⊆ l₁",
"end": [
1028,
83
],
"full_name": "List.diff_subset",
"kind": "commanddeclaration",
"start": [
1028,
1
]
},
{
"code": "theorem mem_diff_of_mem {a : α} : ∀ {l₁ l₂ : List α}, a ∈ l₁ → a ∉ l₂ → a ∈ l₁.diff l₂",
"end": [
1034,
94
],
"full_name": "List.mem_diff_of_mem",
"kind": "commanddeclaration",
"start": [
1030,
1
]
},
{
"code": "theorem Sublist.diff_right : ∀ {l₁ l₂ l₃ : List α}, l₁ <+ l₂ → l₁.diff l₃ <+ l₂.diff l₃",
"end": [
1038,
75
],
"full_name": "List.Sublist.diff_right",
"kind": "commanddeclaration",
"start": [
1036,
1
]
},
{
"code": "theorem Sublist.erase_diff_erase_sublist {a : α} :\n ∀ {l₁ l₂ : List α}, l₁ <+ l₂ → (l₂.erase a).diff (l₁.erase a) <+ l₂.diff l₁",
"end": [
1048,
71
],
"full_name": "List.Sublist.erase_diff_erase_sublist",
"kind": "commanddeclaration",
"start": [
1040,
1
]
},
{
"code": "@[simp] theorem prefix_append (l₁ l₂ : List α) : l₁ <+: l₁ ++ l₂",
"end": [
1054,
78
],
"full_name": "List.prefix_append",
"kind": "commanddeclaration",
"start": [
1054,
1
]
},
{
"code": "@[simp] theorem suffix_append (l₁ l₂ : List α) : l₂ <:+ l₁ ++ l₂",
"end": [
1056,
78
],
"full_name": "List.suffix_append",
"kind": "commanddeclaration",
"start": [
1056,
1
]
},
{
"code": "theorem infix_append (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ l₂ ++ l₃",
"end": [
1058,
83
],
"full_name": "List.infix_append",
"kind": "commanddeclaration",
"start": [
1058,
1
]
},
{
"code": "@[simp] theorem infix_append' (l₁ l₂ l₃ : List α) : l₂ <:+: l₁ ++ (l₂ ++ l₃)",
"end": [
1061,
47
],
"full_name": "List.infix_append'",
"kind": "commanddeclaration",
"start": [
1060,
1
]
},
{
"code": "theorem IsPrefix.isInfix : l₁ <+: l₂ → l₁ <:+: l₂",
"end": [
1063,
78
],
"full_name": "List.IsPrefix.isInfix",
"kind": "commanddeclaration",
"start": [
1063,
1
]
},
{
"code": "theorem IsSuffix.isInfix : l₁ <:+ l₂ → l₁ <:+: l₂",
"end": [
1065,
98
],
"full_name": "List.IsSuffix.isInfix",
"kind": "commanddeclaration",
"start": [
1065,
1
]
},
{
"code": "theorem nil_prefix (l : List α) : [] <+: l",
"end": [
1067,
55
],
"full_name": "List.nil_prefix",
"kind": "commanddeclaration",
"start": [
1067,
1
]
},
{
"code": "theorem nil_suffix (l : List α) : [] <:+ l",
"end": [
1069,
64
],
"full_name": "List.nil_suffix",
"kind": "commanddeclaration",
"start": [
1069,
1
]
},
{
"code": "theorem nil_infix (l : List α) : [] <:+: l",
"end": [
1071,
69
],
"full_name": "List.nil_infix",
"kind": "commanddeclaration",
"start": [
1071,
1
]
},
{
"code": "theorem prefix_refl (l : List α) : l <+: l",
"end": [
1073,
65
],
"full_name": "List.prefix_refl",
"kind": "commanddeclaration",
"start": [
1073,
1
]
},
{
"code": "theorem suffix_refl (l : List α) : l <:+ l",
"end": [
1075,
56
],
"full_name": "List.suffix_refl",
"kind": "commanddeclaration",
"start": [
1075,
1
]
},
{
"code": "theorem infix_refl (l : List α) : l <:+: l",
"end": [
1077,
70
],
"full_name": "List.infix_refl",
"kind": "commanddeclaration",
"start": [
1077,
1
]
},
{
"code": "@[simp] theorem suffix_cons (a : α) : ∀ l, l <:+ a :: l",
"end": [
1079,
77
],
"full_name": "List.suffix_cons",
"kind": "commanddeclaration",
"start": [
1079,
1
]
},
{
"code": "theorem infix_cons : l₁ <:+: l₂ → l₁ <:+: a :: l₂",
"end": [
1081,
95
],
"full_name": "List.infix_cons",
"kind": "commanddeclaration",
"start": [
1081,
1
]
},
{
"code": "theorem infix_concat : l₁ <:+: l₂ → l₁ <:+: concat l₂ a",
"end": [
1084,
67
],
"full_name": "List.infix_concat",
"kind": "commanddeclaration",
"start": [
1083,
1
]
},
{
"code": "theorem IsPrefix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₂ → l₂ <+: l₃ → l₁ <+: l₃",
"end": [
1087,
75
],
"full_name": "List.IsPrefix.trans",
"kind": "commanddeclaration",
"start": [
1086,
1
]
},
{
"code": "theorem IsSuffix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+ l₂ → l₂ <:+ l₃ → l₁ <:+ l₃",
"end": [
1090,
68
],
"full_name": "List.IsSuffix.trans",
"kind": "commanddeclaration",
"start": [
1089,
1
]
},
{
"code": "theorem IsInfix.trans : ∀ {l₁ l₂ l₃ : List α}, l₁ <:+: l₂ → l₂ <:+: l₃ → l₁ <:+: l₃",
"end": [
1093,
95
],
"full_name": "List.IsInfix.trans",
"kind": "commanddeclaration",
"start": [
1092,
1
]
},
{
"code": "protected theorem IsInfix.sublist : l₁ <:+: l₂ → l₁ <+ l₂",
"end": [
1096,
78
],
"full_name": "List.IsInfix.sublist",
"kind": "commanddeclaration",
"start": [
1095,
1
]
},
{
"code": "protected theorem IsInfix.subset (hl : l₁ <:+: l₂) : l₁ ⊆ l₂",
"end": [
1099,
20
],
"full_name": "List.IsInfix.subset",
"kind": "commanddeclaration",
"start": [
1098,
1
]
},
{
"code": "protected theorem IsPrefix.sublist (h : l₁ <+: l₂) : l₁ <+ l₂",
"end": [
1102,
20
],
"full_name": "List.IsPrefix.sublist",
"kind": "commanddeclaration",
"start": [
1101,
1
]
},
{
"code": "protected theorem IsPrefix.subset (hl : l₁ <+: l₂) : l₁ ⊆ l₂",
"end": [
1105,
20
],
"full_name": "List.IsPrefix.subset",
"kind": "commanddeclaration",
"start": [
1104,
1
]
},
{
"code": "protected theorem IsSuffix.sublist (h : l₁ <:+ l₂) : l₁ <+ l₂",
"end": [
1108,
20
],
"full_name": "List.IsSuffix.sublist",
"kind": "commanddeclaration",
"start": [
1107,
1
]
},
{
"code": "protected theorem IsSuffix.subset (hl : l₁ <:+ l₂) : l₁ ⊆ l₂",
"end": [
1111,
20
],
"full_name": "List.IsSuffix.subset",
"kind": "commanddeclaration",
"start": [
1110,
1
]
},
{
"code": "@[simp] theorem reverse_suffix : reverse l₁ <:+ reverse l₂ ↔ l₁ <+: l₂",
"end": [
1115,
59
],
"full_name": "List.reverse_suffix",
"kind": "commanddeclaration",
"start": [
1113,
1
]
},
{
"code": "@[simp] theorem reverse_prefix : reverse l₁ <+: reverse l₂ ↔ l₁ <:+ l₂",
"end": [
1118,
53
],
"full_name": "List.reverse_prefix",
"kind": "commanddeclaration",
"start": [
1117,
1
]
},
{
"code": "@[simp] theorem reverse_infix : reverse l₁ <:+: reverse l₂ ↔ l₁ <:+: l₂",
"end": [
1124,
61
],
"full_name": "List.reverse_infix",
"kind": "commanddeclaration",
"start": [
1120,
1
]
},
{
"code": "theorem IsInfix.length_le (h : l₁ <:+: l₂) : l₁.length ≤ l₂.length",
"end": [
1127,
22
],
"full_name": "List.IsInfix.length_le",
"kind": "commanddeclaration",
"start": [
1126,
1
]
},
{
"code": "theorem IsPrefix.length_le (h : l₁ <+: l₂) : l₁.length ≤ l₂.length",
"end": [
1130,
22
],
"full_name": "List.IsPrefix.length_le",
"kind": "commanddeclaration",
"start": [
1129,
1
]
},
{
"code": "theorem IsSuffix.length_le (h : l₁ <:+ l₂) : l₁.length ≤ l₂.length",
"end": [
1133,
22
],
"full_name": "List.IsSuffix.length_le",
"kind": "commanddeclaration",
"start": [
1132,
1
]
},
{
"code": "@[simp] theorem infix_nil : l <:+: [] ↔ l = []",
"end": [
1135,
98
],
"full_name": "List.infix_nil",
"kind": "commanddeclaration",
"start": [
1135,
1
]
},
{
"code": "@[simp] theorem prefix_nil : l <+: [] ↔ l = []",
"end": [
1137,
99
],
"full_name": "List.prefix_nil",
"kind": "commanddeclaration",
"start": [
1137,
1
]
},
{
"code": "@[simp] theorem suffix_nil : l <:+ [] ↔ l = []",
"end": [
1139,
99
],
"full_name": "List.suffix_nil",
"kind": "commanddeclaration",
"start": [
1139,
1
]
},
{
"code": "theorem infix_iff_prefix_suffix (l₁ l₂ : List α) : l₁ <:+: l₂ ↔ ∃ t, l₁ <+: t ∧ t <:+ l₂",
"end": [
1143,
60
],
"full_name": "List.infix_iff_prefix_suffix",
"kind": "commanddeclaration",
"start": [
1141,
1
]
},
{
"code": "theorem IsInfix.eq_of_length (h : l₁ <:+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1146,
25
],
"full_name": "List.IsInfix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1145,
1
]
},
{
"code": "theorem IsPrefix.eq_of_length (h : l₁ <+: l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1149,
25
],
"full_name": "List.IsPrefix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1148,
1
]
},
{
"code": "theorem IsSuffix.eq_of_length (h : l₁ <:+ l₂) : l₁.length = l₂.length → l₁ = l₂",
"end": [
1152,
25
],
"full_name": "List.IsSuffix.eq_of_length",
"kind": "commanddeclaration",
"start": [
1151,
1
]
},
{
"code": "theorem prefix_of_prefix_length_le :\n ∀ {l₁ l₂ l₃ : List α}, l₁ <+: l₃ → l₂ <+: l₃ → length l₁ ≤ length l₂ → l₁ <+: l₂",
"end": [
1160,
20
],
"full_name": "List.prefix_of_prefix_length_le",
"kind": "commanddeclaration",
"start": [
1154,
1
]
},
{
"code": "theorem prefix_or_prefix_of_prefix (h₁ : l₁ <+: l₃) (h₂ : l₂ <+: l₃) : l₁ <+: l₂ ∨ l₂ <+: l₁",
"end": [
1164,
39
],
"full_name": "List.prefix_or_prefix_of_prefix",
"kind": "commanddeclaration",
"start": [
1162,
1
]
},
{
"code": "theorem suffix_of_suffix_length_le\n (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) (ll : length l₁ ≤ length l₂) : l₁ <:+ l₂",
"end": [
1169,
90
],
"full_name": "List.suffix_of_suffix_length_le",
"kind": "commanddeclaration",
"start": [
1166,
1
]
},
{
"code": "theorem suffix_or_suffix_of_suffix (h₁ : l₁ <:+ l₃) (h₂ : l₂ <:+ l₃) : l₁ <:+ l₂ ∨ l₂ <:+ l₁",
"end": [
1173,
21
],
"full_name": "List.suffix_or_suffix_of_suffix",
"kind": "commanddeclaration",
"start": [
1171,
1
]
},
{
"code": "theorem suffix_cons_iff : l₁ <:+ a :: l₂ ↔ l₁ = a :: l₂ ∨ l₁ <:+ l₂",
"end": [
1184,
41
],
"full_name": "List.suffix_cons_iff",
"kind": "commanddeclaration",
"start": [
1175,
1
]
},
{
"code": "theorem infix_cons_iff : l₁ <:+: a :: l₂ ↔ l₁ <+: a :: l₂ ∨ l₁ <:+: l₂",
"end": [
1195,
27
],
"full_name": "List.infix_cons_iff",
"kind": "commanddeclaration",
"start": [
1186,
1
]
},
{
"code": "theorem infix_of_mem_join : ∀ {L : List (List α)}, l ∈ L → l <:+: join L",
"end": [
1202,
78
],
"full_name": "List.infix_of_mem_join",
"kind": "commanddeclaration",
"start": [
1197,
1
]
},
{
"code": "theorem prefix_append_right_inj (l) : l ++ l₁ <+: l ++ l₂ ↔ l₁ <+: l₂",
"end": [
1205,
63
],
"full_name": "List.prefix_append_right_inj",
"kind": "commanddeclaration",
"start": [
1204,
1
]
},
{
"code": "@[simp]\ntheorem prefix_cons_inj (a) : a :: l₁ <+: a :: l₂ ↔ l₁ <+: l₂",
"end": [
1209,
30
],
"full_name": "List.prefix_cons_inj",
"kind": "commanddeclaration",
"start": [
1207,
1
]
},
{
"code": "theorem take_prefix (n) (l : List α) : take n l <+: l",
"end": [
1212,
28
],
"full_name": "List.take_prefix",
"kind": "commanddeclaration",
"start": [
1211,
1
]
},
{
"code": "theorem drop_suffix (n) (l : List α) : drop n l <:+ l",
"end": [
1215,
28
],
"full_name": "List.drop_suffix",
"kind": "commanddeclaration",
"start": [
1214,
1
]
},
{
"code": "theorem take_sublist (n) (l : List α) : take n l <+ l",
"end": [
1218,
28
],
"full_name": "List.take_sublist",
"kind": "commanddeclaration",
"start": [
1217,
1
]
},
{
"code": "theorem drop_sublist (n) (l : List α) : drop n l <+ l",
"end": [
1221,
28
],
"full_name": "List.drop_sublist",
"kind": "commanddeclaration",
"start": [
1220,
1
]
},
{
"code": "theorem take_subset (n) (l : List α) : take n l ⊆ l",
"end": [
1224,
28
],
"full_name": "List.take_subset",
"kind": "commanddeclaration",
"start": [
1223,
1
]
},
{
"code": "theorem drop_subset (n) (l : List α) : drop n l ⊆ l",
"end": [
1227,
28
],
"full_name": "List.drop_subset",
"kind": "commanddeclaration",
"start": [
1226,
1
]
},
{
"code": "theorem mem_of_mem_take {l : List α} (h : a ∈ l.take n) : a ∈ l",
"end": [
1230,
20
],
"full_name": "List.mem_of_mem_take",
"kind": "commanddeclaration",
"start": [
1229,
1
]
},
{
"code": "theorem IsPrefix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <+: l₂) :\n l₁.filter p <+: l₂.filter p",
"end": [
1235,
42
],
"full_name": "List.IsPrefix.filter",
"kind": "commanddeclaration",
"start": [
1232,
1
]
},
{
"code": "theorem IsSuffix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+ l₂) :\n l₁.filter p <:+ l₂.filter p",
"end": [
1240,
42
],
"full_name": "List.IsSuffix.filter",
"kind": "commanddeclaration",
"start": [
1237,
1
]
},
{
"code": "theorem IsInfix.filter (p : α → Bool) ⦃l₁ l₂ : List α⦄ (h : l₁ <:+: l₂) :\n l₁.filter p <:+: l₂.filter p",
"end": [
1245,
58
],
"full_name": "List.IsInfix.filter",
"kind": "commanddeclaration",
"start": [
1242,
1
]
},
{
"code": "theorem mem_of_mem_drop {n} {l : List α} (h : a ∈ l.drop n) : a ∈ l",
"end": [
1249,
89
],
"full_name": "List.mem_of_mem_drop",
"kind": "commanddeclaration",
"start": [
1249,
1
]
},
{
"code": "theorem disjoint_take_drop : ∀ {l : List α}, l.Nodup → m ≤ n → Disjoint (l.take m) (l.drop n)",
"end": [
1259,
61
],
"full_name": "List.disjoint_take_drop",
"kind": "commanddeclaration",
"start": [
1251,
1
]
},
{
"code": "@[simp]\ntheorem chain_cons {a b : α} {l : List α} : Chain R a (b :: l) ↔ R a b ∧ Chain R b l",
"end": [
1268,
27
],
"full_name": "List.chain_cons",
"kind": "commanddeclaration",
"start": [
1265,
1
]
},
{
"code": "theorem rel_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : R a b",
"end": [
1271,
21
],
"full_name": "List.rel_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1270,
1
]
},
{
"code": "theorem chain_of_chain_cons {a b : α} {l : List α} (p : Chain R a (b :: l)) : Chain R b l",
"end": [
1274,
21
],
"full_name": "List.chain_of_chain_cons",
"kind": "commanddeclaration",
"start": [
1273,
1
]
},
{
"code": "theorem Chain.imp' {R S : α → α → Prop} (HRS : ∀ ⦃a b⦄, R a b → S a b) {a b : α}\n (Hab : ∀ ⦃c⦄, R a c → S b c) {l : List α} (p : Chain R a l) : Chain S b l",
"end": [
1283,
24
],
"full_name": "List.Chain.imp'",
"kind": "commanddeclaration",
"start": [
1276,
1
]
},
{
"code": "theorem Chain.imp {R S : α → α → Prop} (H : ∀ a b, R a b → S a b) {a : α} {l : List α}\n (p : Chain R a l) : Chain S a l",
"end": [
1287,
17
],
"full_name": "List.Chain.imp",
"kind": "commanddeclaration",
"start": [
1285,
1
]
},
{
"code": "protected theorem Pairwise.chain (p : Pairwise R (a :: l)) : Chain R a l",
"end": [
1295,
36
],
"full_name": "List.Pairwise.chain",
"kind": "commanddeclaration",
"start": [
1289,
1
]
},
{
"code": "theorem range'_succ (s n step) : range' s (n + 1) step = s :: range' (s + step) n step",
"end": [
1300,
44
],
"full_name": "List.range'_succ",
"kind": "commanddeclaration",
"start": [
1299,
1
]
},
{
"code": "@[simp] theorem length_range' (s step) : ∀ n : Nat, length (range' s n step) = n",
"end": [
1304,
49
],
"full_name": "List.length_range'",
"kind": "commanddeclaration",
"start": [
1302,
1
]
},
{
"code": "@[simp] theorem range'_eq_nil : range' s n step = [] ↔ n = 0",
"end": [
1307,
39
],
"full_name": "List.range'_eq_nil",
"kind": "commanddeclaration",
"start": [
1306,
1
]
},
{
"code": "theorem mem_range' : ∀{n}, m ∈ range' s n step ↔ ∃ i < n, m = s + step * i",
"end": [
1314,
71
],
"full_name": "List.mem_range'",
"kind": "commanddeclaration",
"start": [
1309,
1
]
},
{
"code": "@[simp] theorem mem_range'_1 : m ∈ range' s n ↔ s ≤ m ∧ m < s + n",
"end": [
1319,
93
],
"full_name": "List.mem_range'_1",
"kind": "commanddeclaration",
"start": [
1316,
1
]
},
{
"code": "@[simp]\ntheorem map_add_range' (a) : ∀ s n step, map (a + ·) (range' s n step) = range' (a + s) n step",
"end": [
1324,
90
],
"full_name": "List.map_add_range'",
"kind": "commanddeclaration",
"start": [
1321,
1
]
},
{
"code": "theorem map_sub_range' (a s n : Nat) (h : a ≤ s) :\n map (· - a) (range' s n step) = range' (s - a) n step",
"end": [
1330,
42
],
"full_name": "List.map_sub_range'",
"kind": "commanddeclaration",
"start": [
1326,
1
]
},
{
"code": "theorem chain_succ_range' : ∀ s n step : Nat,\n Chain (fun a b => b = a + step) s (range' (s + step) n step)",
"end": [
1335,
69
],
"full_name": "List.chain_succ_range'",
"kind": "commanddeclaration",
"start": [
1332,
1
]
},
{
"code": "theorem chain_lt_range' (s n : Nat) {step} (h : 0 < step) :\n Chain (· < ·) s (range' (s + step) n step)",
"end": [
1339,
83
],
"full_name": "List.chain_lt_range'",
"kind": "commanddeclaration",
"start": [
1337,
1
]
},
{
"code": "theorem range'_append : ∀ s m n step : Nat,\n range' s m step ++ range' (s + step * m) n step = range' s (n + m) step",
"end": [
1346,
46
],
"full_name": "List.range'_append",
"kind": "commanddeclaration",
"start": [
1341,
1
]
},
{
"code": "@[simp] theorem range'_append_1 (s m n : Nat) :\n range' s m ++ range' (s + m) n = range' s (n + m)",
"end": [
1349,
94
],
"full_name": "List.range'_append_1",
"kind": "commanddeclaration",
"start": [
1348,
1
]
},
{
"code": "theorem range'_sublist_right {s m n : Nat} : range' s m step <+ range' s n step ↔ m ≤ n",
"end": [
1353,
88
],
"full_name": "List.range'_sublist_right",
"kind": "commanddeclaration",
"start": [
1351,
1
]
},
{
"code": "theorem range'_subset_right {s m n : Nat} (step0 : 0 < step) :\n range' s m step ⊆ range' s n step ↔ m ≤ n",
"end": [
1359,
82
],
"full_name": "List.range'_subset_right",
"kind": "commanddeclaration",
"start": [
1355,
1
]
},
{
"code": "theorem range'_subset_right_1 {s m n : Nat} : range' s m ⊆ range' s n ↔ m ≤ n",
"end": [
1362,
34
],
"full_name": "List.range'_subset_right_1",
"kind": "commanddeclaration",
"start": [
1361,
1
]
},
{
"code": "theorem getElem?_range' (s step) :\n ∀ {m n : Nat}, m < n → (range' s n step)[m]? = some (s + step * m)",
"end": [
1370,
55
],
"full_name": "List.getElem?_range'",
"kind": "commanddeclaration",
"start": [
1364,
1
]
},
{
"code": "@[simp] theorem getElem_range' {n m step} (i) (H : i < (range' n m step).length) :\n (range' n m step)[i] = n + step * i",
"end": [
1374,
70
],
"full_name": "List.getElem_range'",
"kind": "commanddeclaration",
"start": [
1372,
1
]
},
{
"code": "@[deprecated getElem?_range' (since := \"2024-06-12\")]\ntheorem get?_range' (s step) {m n : Nat} (h : m < n) :\n get? (range' s n step) m = some (s + step * m)",
"end": [
1379,
11
],
"full_name": "List.get?_range'",
"kind": "commanddeclaration",
"start": [
1376,
1
]
},
{
"code": "@[deprecated getElem_range' (since := \"2024-06-12\")]\ntheorem get_range' {n m step} (i) (H : i < (range' n m step).length) :\n get (range' n m step) ⟨i, H⟩ = n + step * i",
"end": [
1384,
7
],
"full_name": "List.get_range'",
"kind": "commanddeclaration",
"start": [
1381,
1
]
},
{
"code": "theorem range'_concat (s n : Nat) : range' s (n + 1) step = range' s n step ++ [s + step * n]",
"end": [
1387,
63
],
"full_name": "List.range'_concat",
"kind": "commanddeclaration",
"start": [
1386,
1
]
},
{
"code": "theorem range'_1_concat (s n : Nat) : range' s (n + 1) = range' s n ++ [s + n]",
"end": [
1390,
23
],
"full_name": "List.range'_1_concat",
"kind": "commanddeclaration",
"start": [
1389,
1
]
},
{
"code": "theorem range_loop_range' : ∀ s n : Nat, range.loop s (range' s n) = range' 0 (n + s)",
"end": [
1394,
101
],
"full_name": "List.range_loop_range'",
"kind": "commanddeclaration",
"start": [
1392,
1
]
},
{
"code": "theorem range_eq_range' (n : Nat) : range n = range' 0 n",
"end": [
1397,
56
],
"full_name": "List.range_eq_range'",
"kind": "commanddeclaration",
"start": [
1396,
1
]
},
{
"code": "theorem range_succ_eq_map (n : Nat) : range (n + 1) = 0 :: map succ (range n)",
"end": [
1401,
30
],
"full_name": "List.range_succ_eq_map",
"kind": "commanddeclaration",
"start": [
1399,
1
]
},
{
"code": "theorem range'_eq_map_range (s n : Nat) : range' s n = map (s + ·) (range n)",
"end": [
1404,
44
],
"full_name": "List.range'_eq_map_range",
"kind": "commanddeclaration",
"start": [
1403,
1
]
},
{
"code": "@[simp] theorem length_range (n : Nat) : length (range n) = n",
"end": [
1407,
45
],
"full_name": "List.length_range",
"kind": "commanddeclaration",
"start": [
1406,
1
]
},
{
"code": "@[simp] theorem range_eq_nil {n : Nat} : range n = [] ↔ n = 0",
"end": [
1410,
38
],
"full_name": "List.range_eq_nil",
"kind": "commanddeclaration",
"start": [
1409,
1
]
},
{
"code": "@[simp]\ntheorem range_sublist {m n : Nat} : range m <+ range n ↔ m ≤ n",
"end": [
1414,
52
],
"full_name": "List.range_sublist",
"kind": "commanddeclaration",
"start": [
1412,
1
]
},
{
"code": "@[simp]\ntheorem range_subset {m n : Nat} : range m ⊆ range n ↔ m ≤ n",
"end": [
1418,
65
],
"full_name": "List.range_subset",
"kind": "commanddeclaration",
"start": [
1416,
1
]
},
{
"code": "@[simp]\ntheorem mem_range {m n : Nat} : m ∈ range n ↔ m < n",
"end": [
1422,
81
],
"full_name": "List.mem_range",
"kind": "commanddeclaration",
"start": [
1420,
1
]
},
{
"code": "theorem not_mem_range_self {n : Nat} : n ∉ range n",
"end": [
1424,
62
],
"full_name": "List.not_mem_range_self",
"kind": "commanddeclaration",
"start": [
1424,
1
]
},
{
"code": "theorem self_mem_range_succ (n : Nat) : n ∈ range (n + 1)",
"end": [
1426,
69
],
"full_name": "List.self_mem_range_succ",
"kind": "commanddeclaration",
"start": [
1426,
1
]
},
{
"code": "theorem getElem?_range {m n : Nat} (h : m < n) : (range n)[m]? = some m",
"end": [
1429,
48
],
"full_name": "List.getElem?_range",
"kind": "commanddeclaration",
"start": [
1428,
1
]
},
{
"code": "@[simp] theorem getElem_range {n : Nat} (m) (h : m < (range n).length) : (range n)[m] = m",
"end": [
1432,
25
],
"full_name": "List.getElem_range",
"kind": "commanddeclaration",
"start": [
1431,
1
]
},
{
"code": "@[deprecated getElem?_range (since := \"2024-06-12\")]\ntheorem get?_range {m n : Nat} (h : m < n) : get? (range n) m = some m",
"end": [
1436,
27
],
"full_name": "List.get?_range",
"kind": "commanddeclaration",
"start": [
1434,
1
]
},
{
"code": "@[deprecated getElem_range (since := \"2024-06-12\")]\ntheorem get_range {n} (i) (H : i < (range n).length) : get (range n) ⟨i, H⟩ = i",
"end": [
1440,
7
],
"full_name": "List.get_range",
"kind": "commanddeclaration",
"start": [
1438,
1
]
},
{
"code": "theorem range_succ (n : Nat) : range (succ n) = range n ++ [n]",
"end": [
1443,
61
],
"full_name": "List.range_succ",
"kind": "commanddeclaration",
"start": [
1442,
1
]
},
{
"code": "theorem range_add (a b : Nat) : range (a + b) = range a ++ (range b).map (a + ·)",
"end": [
1447,
75
],
"full_name": "List.range_add",
"kind": "commanddeclaration",
"start": [
1445,
1
]
},
{
"code": "theorem iota_eq_reverse_range' : ∀ n : Nat, iota n = reverse (range' 1 n)",
"end": [
1451,
99
],
"full_name": "List.iota_eq_reverse_range'",
"kind": "commanddeclaration",
"start": [
1449,
1
]
},
{
"code": "@[simp] theorem length_iota (n : Nat) : length (iota n) = n",
"end": [
1453,
96
],
"full_name": "List.length_iota",
"kind": "commanddeclaration",
"start": [
1453,
1
]
},
{
"code": "@[simp]\ntheorem mem_iota {m n : Nat} : m ∈ iota n ↔ 1 ≤ m ∧ m ≤ n",
"end": [
1457,
59
],
"full_name": "List.mem_iota",
"kind": "commanddeclaration",
"start": [
1455,
1
]
},
{
"code": "theorem reverse_range' : ∀ s n : Nat, reverse (range' s n) = map (s + n - 1 - ·) (range n)",
"end": [
1464,
59
],
"full_name": "List.reverse_range'",
"kind": "commanddeclaration",
"start": [
1459,
1
]
},
{
"code": "@[simp] theorem enumFrom_map_fst (n) :\n ∀ (l : List α), map Prod.fst (enumFrom n l) = range' n l.length",
"end": [
1472,
55
],
"full_name": "List.enumFrom_map_fst",
"kind": "commanddeclaration",
"start": [
1469,
1
]
},
{
"code": "@[simp] theorem enum_map_fst (l : List α) : map Prod.fst (enum l) = range l.length",
"end": [
1475,
54
],
"full_name": "List.enum_map_fst",
"kind": "commanddeclaration",
"start": [
1474,
1
]
},
{
"code": "theorem foldrIdx_start :\n (xs : List α).foldrIdx f i s = (xs : List α).foldrIdx (fun i => f (i + s)) i",
"end": [
1487,
43
],
"full_name": "List.foldrIdx_start",
"kind": "commanddeclaration",
"start": [
1479,
1
]
},
{
"code": "@[simp] theorem foldrIdx_cons :\n (x :: xs : List α).foldrIdx f i s = f s x (foldrIdx f i xs (s + 1))",
"end": [
1490,
79
],
"full_name": "List.foldrIdx_cons",
"kind": "commanddeclaration",
"start": [
1489,
1
]
},
{
"code": "theorem findIdxs_cons_aux (p : α → Bool) :\n foldrIdx (fun i a is => if p a = true then (i + 1) :: is else is) [] xs s =\n map (· + 1) (foldrIdx (fun i a is => if p a = true then i :: is else is) [] xs s)",
"end": [
1499,
24
],
"full_name": "List.findIdxs_cons_aux",
"kind": "commanddeclaration",
"start": [
1492,
1
]
},
{
"code": "theorem findIdxs_cons :\n (x :: xs : List α).findIdxs p =\n bif p x then 0 :: (xs.findIdxs p).map (· + 1) else (xs.findIdxs p).map (· + 1)",
"end": [
1508,
28
],
"full_name": "List.findIdxs_cons",
"kind": "commanddeclaration",
"start": [
1501,
1
]
},
{
"code": "@[simp] theorem indexesOf_nil [BEq α] : ([] : List α).indexesOf x = []",
"end": [
1510,
78
],
"full_name": "List.indexesOf_nil",
"kind": "commanddeclaration",
"start": [
1510,
1
]
},
{
"code": "theorem indexesOf_cons [BEq α] : (x :: xs : List α).indexesOf y =\n bif x == y then 0 :: (xs.indexesOf y).map (· + 1) else (xs.indexesOf y).map (· + 1)",
"end": [
1514,
34
],
"full_name": "List.indexesOf_cons",
"kind": "commanddeclaration",
"start": [
1512,
1
]
},
{
"code": "@[simp] theorem indexOf_nil [BEq α] : ([] : List α).indexOf x = 0",
"end": [
1516,
73
],
"full_name": "List.indexOf_nil",
"kind": "commanddeclaration",
"start": [
1516,
1
]
},
{
"code": "theorem indexOf_cons [BEq α] :\n (x :: xs : List α).indexOf y = bif x == y then 0 else xs.indexOf y + 1",
"end": [
1521,
22
],
"full_name": "List.indexOf_cons",
"kind": "commanddeclaration",
"start": [
1518,
1
]
},
{
"code": "theorem indexOf_mem_indexesOf [BEq α] [LawfulBEq α] {xs : List α} (m : x ∈ xs) :\n xs.indexOf x ∈ xs.indexesOf x",
"end": [
1535,
14
],
"full_name": "List.indexOf_mem_indexesOf",
"kind": "commanddeclaration",
"start": [
1523,
1
]
},
{
"code": "theorem merge_loop_nil_left (s : α → α → Bool) (r t) :\n merge.loop s [] r t = reverseAux t r",
"end": [
1539,
18
],
"full_name": "List.merge_loop_nil_left",
"kind": "commanddeclaration",
"start": [
1537,
1
]
},
{
"code": "theorem merge_loop_nil_right (s : α → α → Bool) (l t) :\n merge.loop s l [] t = reverseAux t l",
"end": [
1543,
52
],
"full_name": "List.merge_loop_nil_right",
"kind": "commanddeclaration",
"start": [
1541,
1
]
},
{
"code": "theorem merge_loop (s : α → α → Bool) (l r t) :\n merge.loop s l r t = reverseAux t (merge s l r)",
"end": [
1567,
64
],
"full_name": "List.merge_loop",
"kind": "commanddeclaration",
"start": [
1545,
1
]
},
{
"code": "@[simp] theorem merge_nil (s : α → α → Bool) (l) : merge s l [] = l",
"end": [
1569,
95
],
"full_name": "List.merge_nil",
"kind": "commanddeclaration",
"start": [
1569,
1
]
},
{
"code": "@[simp] theorem nil_merge (s : α → α → Bool) (r) : merge s [] r = r",
"end": [
1571,
94
],
"full_name": "List.nil_merge",
"kind": "commanddeclaration",
"start": [
1571,
1
]
},
{
"code": "theorem cons_merge_cons (s : α → α → Bool) (a b l r) :\n merge s (a::l) (b::r) = if s a b then a :: merge s l (b::r) else b :: merge s (a::l) r",
"end": [
1575,
87
],
"full_name": "List.cons_merge_cons",
"kind": "commanddeclaration",
"start": [
1573,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_pos (s : α → α → Bool) (l r) (h : s a b) :\n merge s (a::l) (b::r) = a :: merge s l (b::r)",
"end": [
1579,
33
],
"full_name": "List.cons_merge_cons_pos",
"kind": "commanddeclaration",
"start": [
1577,
1
]
},
{
"code": "@[simp] theorem cons_merge_cons_neg (s : α → α → Bool) (l r) (h : ¬ s a b) :\n merge s (a::l) (b::r) = b :: merge s (a::l) r",
"end": [
1583,
33
],
"full_name": "List.cons_merge_cons_neg",
"kind": "commanddeclaration",
"start": [
1581,
1
]
},
{
"code": "@[simp] theorem length_merge (s : α → α → Bool) (l r) :\n (merge s l r).length = l.length + r.length",
"end": [
1594,
43
],
"full_name": "List.length_merge",
"kind": "commanddeclaration",
"start": [
1585,
1
]
},
{
"code": "@[simp]\ntheorem mem_merge {s : α → α → Bool} : x ∈ merge s l r ↔ x ∈ l ∨ x ∈ r",
"end": [
1605,
68
],
"full_name": "List.mem_merge",
"kind": "commanddeclaration",
"start": [
1596,
1
]
},
{
"code": "theorem mem_merge_left (s : α → α → Bool) (h : x ∈ l) : x ∈ merge s l r",
"end": [
1608,
24
],
"full_name": "List.mem_merge_left",
"kind": "commanddeclaration",
"start": [
1607,
1
]
},
{
"code": "theorem mem_merge_right (s : α → α → Bool) (h : x ∈ r) : x ∈ merge s l r",
"end": [
1611,
24
],
"full_name": "List.mem_merge_right",
"kind": "commanddeclaration",
"start": [
1610,
1
]
}
] | 327 | List.mem_merge | [
[
1597,
75
],
[
1605,
68
]
] | 8 | 9 | simp [mem_merge (l := a::l) (r := r), or_assoc, or_left_comm] | case isFalse
α : Type u_1
x : α
l✝ r✝ : List α
s : α → α → Bool
a : α
l : List α
b : α
r : List α
h✝ : ¬s a b = true
⊢ x ∈ b :: merge s (a :: l) r ↔ x ∈ a :: l ∨ x ∈ b :: r | no goals |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.