File size: 14,696 Bytes
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
46ce865
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ef1144
dcb2a99
3ef1144
1671ec3
3ef1144
 
 
 
 
 
 
 
 
 
 
 
1671ec3
3ef1144
 
 
 
 
 
 
 
 
 
 
 
 
 
1671ec3
 
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
"""
Meta-Learning System
------------------
Implements meta-learning capabilities for improved learning and adaptation.
"""

from typing import Dict, Any, List, Optional, Tuple
import numpy as np
from dataclasses import dataclass, field
import logging
from datetime import datetime
from enum import Enum
import json
from quantum_learning import QuantumLearningSystem, Pattern, PatternType

class LearningStrategy(Enum):
    GRADIENT_BASED = "gradient_based"
    MEMORY_BASED = "memory_based"
    EVOLUTIONARY = "evolutionary"
    REINFORCEMENT = "reinforcement"
    QUANTUM = "quantum"

@dataclass
class MetaParameters:
    """Meta-parameters for learning strategies"""
    learning_rate: float = 0.01
    memory_size: int = 1000
    evolution_rate: float = 0.1
    exploration_rate: float = 0.2
    quantum_interference: float = 0.5
    adaptation_threshold: float = 0.7

@dataclass
class LearningMetrics:
    """Metrics for learning performance"""
    accuracy: float
    convergence_rate: float
    adaptation_speed: float
    resource_usage: float
    timestamp: str = field(default_factory=lambda: datetime.now().isoformat())

class MetaLearningSystem:
    """Meta-learning system for optimizing learning strategies"""
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        self.logger = logging.getLogger(__name__)
        self.config = config or {}
        
        # Standard reasoning parameters
        self.min_confidence = self.config.get('min_confidence', 0.7)
        self.parallel_threshold = self.config.get('parallel_threshold', 3)
        self.learning_rate = self.config.get('learning_rate', 0.1)
        self.strategy_weights = self.config.get('strategy_weights', {
            "LOCAL_LLM": 0.8,
            "CHAIN_OF_THOUGHT": 0.6,
            "TREE_OF_THOUGHTS": 0.5,
            "META_LEARNING": 0.4
        })
        
        # Initialize quantum system with shared config
        quantum_config = {
            'min_confidence': self.min_confidence,
            'parallel_threshold': self.parallel_threshold,
            'learning_rate': self.learning_rate,
            'strategy_weights': self.strategy_weights,
            'num_qubits': self.config.get('num_qubits', 8),
            'entanglement_strength': self.config.get('entanglement_strength', 0.5),
            'interference_threshold': self.config.get('interference_threshold', 0.3),
            'tunneling_rate': self.config.get('tunneling_rate', 0.1),
            'annealing_schedule': self.config.get('annealing_schedule', {
                'initial_temp': 1.0,
                'final_temp': 0.01,
                'steps': 100,
                'cooling_rate': 0.95
            })
        }
        self.quantum_system = QuantumLearningSystem(quantum_config)
        self.strategies = {}
        self.performance_history = []
        self.meta_parameters = MetaParameters()
        
    async def optimize_learning(
        self,
        observation: Dict[str, Any],
        current_strategy: LearningStrategy
    ) -> Tuple[Dict[str, Any], LearningMetrics]:
        """Optimize learning strategy based on observation"""
        try:
            # Process with quantum system
            quantum_result = await self.quantum_system.process_observation(observation)
            
            # Evaluate current strategy
            current_metrics = self._evaluate_strategy(
                current_strategy,
                observation,
                quantum_result
            )
            
            # Update performance history
            self._update_performance_history(current_metrics)
            
            # Adapt meta-parameters
            self._adapt_meta_parameters(current_metrics)
            
            # Select optimal strategy
            optimal_strategy = self._select_optimal_strategy(
                observation,
                current_metrics
            )
            
            # Apply selected strategy
            result = await self._apply_strategy(
                optimal_strategy,
                observation,
                quantum_result
            )
            
            return result, current_metrics
            
        except Exception as e:
            self.logger.error(f"Failed to optimize learning: {str(e)}")
            raise
            
    def _evaluate_strategy(
        self,
        strategy: LearningStrategy,
        observation: Dict[str, Any],
        quantum_result: Dict[str, Any]
    ) -> LearningMetrics:
        """Evaluate performance of current learning strategy"""
        # Calculate accuracy
        accuracy = self._calculate_accuracy(
            strategy,
            observation,
            quantum_result
        )
        
        # Calculate convergence rate
        convergence_rate = self._calculate_convergence_rate(
            strategy,
            self.performance_history
        )
        
        # Calculate adaptation speed
        adaptation_speed = self._calculate_adaptation_speed(
            strategy,
            observation
        )
        
        # Calculate resource usage
        resource_usage = self._calculate_resource_usage(strategy)
        
        return LearningMetrics(
            accuracy=accuracy,
            convergence_rate=convergence_rate,
            adaptation_speed=adaptation_speed,
            resource_usage=resource_usage
        )
        
    def _update_performance_history(
        self,
        metrics: LearningMetrics
    ) -> None:
        """Update performance history with new metrics"""
        self.performance_history.append(metrics)
        
        # Maintain history size
        if len(self.performance_history) > self.meta_parameters.memory_size:
            self.performance_history.pop(0)
            
    def _adapt_meta_parameters(
        self,
        metrics: LearningMetrics
    ) -> None:
        """Adapt meta-parameters based on performance metrics"""
        # Adjust learning rate
        if metrics.convergence_rate < self.meta_parameters.adaptation_threshold:
            self.meta_parameters.learning_rate *= 0.9
        else:
            self.meta_parameters.learning_rate *= 1.1
            
        # Adjust memory size
        if metrics.resource_usage > 0.8:
            self.meta_parameters.memory_size = int(
                self.meta_parameters.memory_size * 0.9
            )
        elif metrics.resource_usage < 0.2:
            self.meta_parameters.memory_size = int(
                self.meta_parameters.memory_size * 1.1
            )
            
        # Adjust evolution rate
        if metrics.adaptation_speed < self.meta_parameters.adaptation_threshold:
            self.meta_parameters.evolution_rate *= 1.1
        else:
            self.meta_parameters.evolution_rate *= 0.9
            
        # Adjust exploration rate
        if metrics.accuracy < self.meta_parameters.adaptation_threshold:
            self.meta_parameters.exploration_rate *= 1.1
        else:
            self.meta_parameters.exploration_rate *= 0.9
            
        # Adjust quantum interference
        if metrics.accuracy > 0.8:
            self.meta_parameters.quantum_interference *= 1.1
        else:
            self.meta_parameters.quantum_interference *= 0.9
            
        # Ensure parameters stay within reasonable bounds
        self._normalize_parameters()
        
    def _normalize_parameters(self) -> None:
        """Normalize meta-parameters to stay within bounds"""
        self.meta_parameters.learning_rate = np.clip(
            self.meta_parameters.learning_rate,
            0.001,
            0.1
        )
        self.meta_parameters.memory_size = np.clip(
            self.meta_parameters.memory_size,
            100,
            10000
        )
        self.meta_parameters.evolution_rate = np.clip(
            self.meta_parameters.evolution_rate,
            0.01,
            0.5
        )
        self.meta_parameters.exploration_rate = np.clip(
            self.meta_parameters.exploration_rate,
            0.1,
            0.9
        )
        self.meta_parameters.quantum_interference = np.clip(
            self.meta_parameters.quantum_interference,
            0.1,
            0.9
        )
        
    def _select_optimal_strategy(
        self,
        observation: Dict[str, Any],
        metrics: LearningMetrics
    ) -> LearningStrategy:
        """Select optimal learning strategy"""
        strategies = list(LearningStrategy)
        scores = []
        
        for strategy in strategies:
            # Calculate strategy score
            score = self._calculate_strategy_score(
                strategy,
                observation,
                metrics
            )
            scores.append((strategy, score))
            
        # Select strategy with highest score
        optimal_strategy = max(scores, key=lambda x: x[1])[0]
        
        return optimal_strategy
        
    async def _apply_strategy(
        self,
        strategy: LearningStrategy,
        observation: Dict[str, Any],
        quantum_result: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Apply selected learning strategy"""
        if strategy == LearningStrategy.GRADIENT_BASED:
            return await self._apply_gradient_strategy(
                observation,
                quantum_result
            )
        elif strategy == LearningStrategy.MEMORY_BASED:
            return await self._apply_memory_strategy(
                observation,
                quantum_result
            )
        elif strategy == LearningStrategy.EVOLUTIONARY:
            return await self._apply_evolutionary_strategy(
                observation,
                quantum_result
            )
        elif strategy == LearningStrategy.REINFORCEMENT:
            return await self._apply_reinforcement_strategy(
                observation,
                quantum_result
            )
        else:  # QUANTUM
            return quantum_result
            
    def _calculate_accuracy(
        self,
        strategy: LearningStrategy,
        observation: Dict[str, Any],
        quantum_result: Dict[str, Any]
    ) -> float:
        """Calculate accuracy of learning strategy"""
        if "patterns" not in quantum_result:
            return 0.0
            
        patterns = quantum_result["patterns"]
        if not patterns:
            return 0.0
            
        # Calculate pattern confidence
        confidence_sum = sum(pattern.confidence for pattern in patterns)
        return confidence_sum / len(patterns)
        
    def _calculate_convergence_rate(
        self,
        strategy: LearningStrategy,
        history: List[LearningMetrics]
    ) -> float:
        """Calculate convergence rate of learning strategy"""
        if not history:
            return 0.0
            
        # Calculate rate of improvement
        accuracies = [metrics.accuracy for metrics in history[-10:]]
        if len(accuracies) < 2:
            return 0.0
            
        differences = np.diff(accuracies)
        return float(np.mean(differences > 0))
        
    def _calculate_adaptation_speed(
        self,
        strategy: LearningStrategy,
        observation: Dict[str, Any]
    ) -> float:
        """Calculate adaptation speed of learning strategy"""
        if not self.performance_history:
            return 0.0
            
        # Calculate time to reach adaptation threshold
        threshold = self.meta_parameters.adaptation_threshold
        for i, metrics in enumerate(self.performance_history):
            if metrics.accuracy >= threshold:
                return 1.0 / (i + 1)
                
        return 0.0
        
    def _calculate_resource_usage(
        self,
        strategy: LearningStrategy
    ) -> float:
        """Calculate resource usage of learning strategy"""
        # Simulate resource usage based on strategy
        base_usage = {
            LearningStrategy.GRADIENT_BASED: 0.4,
            LearningStrategy.MEMORY_BASED: 0.6,
            LearningStrategy.EVOLUTIONARY: 0.7,
            LearningStrategy.REINFORCEMENT: 0.5,
            LearningStrategy.QUANTUM: 0.8
        }
        
        return base_usage[strategy]
        
    def _calculate_strategy_score(
        self,
        strategy: LearningStrategy,
        observation: Dict[str, Any],
        metrics: LearningMetrics
    ) -> float:
        """Calculate score for learning strategy"""
        # Weight different factors
        weights = {
            "accuracy": 0.4,
            "convergence": 0.2,
            "adaptation": 0.2,
            "resources": 0.2
        }
        
        score = (
            weights["accuracy"] * metrics.accuracy +
            weights["convergence"] * metrics.convergence_rate +
            weights["adaptation"] * metrics.adaptation_speed +
            weights["resources"] * (1 - metrics.resource_usage)
        )
        
        # Add exploration bonus
        if np.random.random() < self.meta_parameters.exploration_rate:
            score += 0.1
            
        return score
        
    async def _apply_gradient_strategy(
        self,
        observation: Dict[str, Any],
        quantum_result: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Apply gradient-based learning strategy"""
        return {
            "result": "gradient_optimization",
            "quantum_enhanced": quantum_result,
            "meta_parameters": self.meta_parameters.__dict__
        }
        
    async def _apply_memory_strategy(
        self,
        observation: Dict[str, Any],
        quantum_result: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Apply memory-based learning strategy"""
        return {
            "result": "memory_optimization",
            "quantum_enhanced": quantum_result,
            "meta_parameters": self.meta_parameters.__dict__
        }
        
    async def _apply_evolutionary_strategy(
        self,
        observation: Dict[str, Any],
        quantum_result: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Apply evolutionary learning strategy"""
        return {
            "result": "evolutionary_optimization",
            "quantum_enhanced": quantum_result,
            "meta_parameters": self.meta_parameters.__dict__
        }
        
    async def _apply_reinforcement_strategy(
        self,
        observation: Dict[str, Any],
        quantum_result: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Apply reinforcement learning strategy"""
        return {
            "result": "reinforcement_optimization",
            "quantum_enhanced": quantum_result,
            "meta_parameters": self.meta_parameters.__dict__
        }