Spaces:
Runtime error
Runtime error
nananie143
commited on
Upload folder using huggingface_hub
Browse files- .env.example +90 -0
- meta_learning.py +28 -12
- multimodal_reasoning.py +30 -2
- quantum_learning.py +26 -16
- team_management.py +12 -8
.env.example
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Hugging Face Configuration
|
2 |
+
# Get your token from https://huggingface.co/settings/tokens
|
3 |
+
# Make sure to select "WRITE" access when creating the token
|
4 |
+
HUGGINGFACE_TOKEN=your_huggingface_token_here
|
5 |
+
|
6 |
+
# System Configuration
|
7 |
+
DEBUG_MODE=False
|
8 |
+
LOG_LEVEL=INFO
|
9 |
+
MAX_WORKERS=4
|
10 |
+
ASYNC_TIMEOUT=30
|
11 |
+
|
12 |
+
# Resource Limits
|
13 |
+
MAX_MEMORY_MB=8192
|
14 |
+
MAX_CPU_PERCENT=90
|
15 |
+
MAX_GPU_MEMORY_MB=4096
|
16 |
+
MAX_API_CALLS_PER_MINUTE=500
|
17 |
+
|
18 |
+
# Team Configuration
|
19 |
+
MIN_TEAM_SIZE=2
|
20 |
+
MAX_TEAM_SIZE=10
|
21 |
+
MAX_CONCURRENT_OBJECTIVES=5
|
22 |
+
|
23 |
+
# Error Recovery
|
24 |
+
MAX_RETRIES=3
|
25 |
+
RETRY_DELAY_SECONDS=5
|
26 |
+
ERROR_THRESHOLD=0.2
|
27 |
+
|
28 |
+
# Monitoring
|
29 |
+
METRICS_INTERVAL_SECONDS=60
|
30 |
+
HEALTH_CHECK_INTERVAL=30
|
31 |
+
PERFORMANCE_LOG_RETENTION_DAYS=7
|
32 |
+
|
33 |
+
# API Keys
|
34 |
+
# Get your Hugging Face token from https://huggingface.co/settings/tokens
|
35 |
+
# Required for uploading to Spaces - must have WRITE access
|
36 |
+
HUGGINGFACE_API_KEY=your_huggingface_api_key
|
37 |
+
|
38 |
+
# Optional API keys for additional features
|
39 |
+
OPENAI_API_KEY=your_openai_api_key
|
40 |
+
GROQ_API_KEY=your_groq_api_key
|
41 |
+
|
42 |
+
# Service Configuration
|
43 |
+
PORT=7860
|
44 |
+
HOST=0.0.0.0
|
45 |
+
DEBUG=True
|
46 |
+
ENVIRONMENT=development
|
47 |
+
|
48 |
+
# Database Configuration
|
49 |
+
DATABASE_URL=sqlite:///./ventures.db
|
50 |
+
|
51 |
+
# Model Configuration
|
52 |
+
MODEL_CACHE_DIR=./model_cache
|
53 |
+
DEFAULT_MODEL=gpt-4-turbo-preview
|
54 |
+
|
55 |
+
# Venture Configuration
|
56 |
+
MIN_PROFIT_TARGET=1000000
|
57 |
+
DEFAULT_CURRENCY=USD
|
58 |
+
RISK_TOLERANCE=medium
|
59 |
+
|
60 |
+
# API Configuration
|
61 |
+
API_VERSION=v1
|
62 |
+
API_PREFIX=/api/v1
|
63 |
+
CORS_ORIGINS=["*"]
|
64 |
+
MAX_REQUEST_SIZE=10MB
|
65 |
+
|
66 |
+
# Monitoring Configuration
|
67 |
+
ENABLE_METRICS=True
|
68 |
+
METRICS_PORT=9090
|
69 |
+
LOG_LEVEL=INFO
|
70 |
+
|
71 |
+
# Cache Configuration
|
72 |
+
REDIS_URL=redis://localhost:6379/0
|
73 |
+
CACHE_TTL=3600
|
74 |
+
|
75 |
+
# Security Configuration
|
76 |
+
JWT_SECRET=your_jwt_secret
|
77 |
+
JWT_ALGORITHM=HS256
|
78 |
+
ACCESS_TOKEN_EXPIRE_MINUTES=30
|
79 |
+
|
80 |
+
# Feature Flags
|
81 |
+
ENABLE_PORTFOLIO_OPTIMIZATION=True
|
82 |
+
ENABLE_MARKET_ANALYSIS=True
|
83 |
+
ENABLE_MONETIZATION_STRATEGY=True
|
84 |
+
ENABLE_VENTURE_ANALYSIS=True
|
85 |
+
|
86 |
+
# Note: After copying this file to .env:
|
87 |
+
# 1. Replace 'your_huggingface_token_here' with your actual token
|
88 |
+
# 2. Make sure your token has WRITE access for Spaces
|
89 |
+
# 3. Keep this .env.example file for reference
|
90 |
+
# 4. Never commit your actual .env file with real tokens
|
meta_learning.py
CHANGED
@@ -42,22 +42,38 @@ class LearningMetrics:
|
|
42 |
class MetaLearningSystem:
|
43 |
"""Meta-learning system for optimizing learning strategies"""
|
44 |
|
45 |
-
def __init__(self):
|
46 |
self.logger = logging.getLogger(__name__)
|
|
|
47 |
|
48 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
quantum_config = {
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
59 |
}
|
60 |
-
|
61 |
self.quantum_system = QuantumLearningSystem(quantum_config)
|
62 |
self.strategies = {}
|
63 |
self.performance_history = []
|
|
|
42 |
class MetaLearningSystem:
|
43 |
"""Meta-learning system for optimizing learning strategies"""
|
44 |
|
45 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
46 |
self.logger = logging.getLogger(__name__)
|
47 |
+
self.config = config or {}
|
48 |
|
49 |
+
# Standard reasoning parameters
|
50 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
51 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
52 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
53 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
54 |
+
"LOCAL_LLM": 0.8,
|
55 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
56 |
+
"TREE_OF_THOUGHTS": 0.5,
|
57 |
+
"META_LEARNING": 0.4
|
58 |
+
})
|
59 |
+
|
60 |
+
# Initialize quantum system with shared config
|
61 |
quantum_config = {
|
62 |
+
'min_confidence': self.min_confidence,
|
63 |
+
'parallel_threshold': self.parallel_threshold,
|
64 |
+
'learning_rate': self.learning_rate,
|
65 |
+
'strategy_weights': self.strategy_weights,
|
66 |
+
'num_qubits': self.config.get('num_qubits', 8),
|
67 |
+
'entanglement_strength': self.config.get('entanglement_strength', 0.5),
|
68 |
+
'interference_threshold': self.config.get('interference_threshold', 0.3),
|
69 |
+
'tunneling_rate': self.config.get('tunneling_rate', 0.1),
|
70 |
+
'annealing_schedule': self.config.get('annealing_schedule', {
|
71 |
+
'initial_temp': 1.0,
|
72 |
+
'final_temp': 0.01,
|
73 |
+
'steps': 100,
|
74 |
+
'cooling_rate': 0.95
|
75 |
+
})
|
76 |
}
|
|
|
77 |
self.quantum_system = QuantumLearningSystem(quantum_config)
|
78 |
self.strategies = {}
|
79 |
self.performance_history = []
|
multimodal_reasoning.py
CHANGED
@@ -5,7 +5,7 @@ Implements reasoning across different types of information.
|
|
5 |
"""
|
6 |
|
7 |
import logging
|
8 |
-
from typing import Dict, Any, List
|
9 |
from datetime import datetime
|
10 |
import json
|
11 |
import numpy as np
|
@@ -14,6 +14,34 @@ from .reasoning import ReasoningStrategy
|
|
14 |
class MultiModalReasoning(ReasoningStrategy):
|
15 |
"""Implements multi-modal reasoning across different types of information."""
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
18 |
try:
|
19 |
# Process different modalities
|
@@ -86,7 +114,7 @@ class MultiModalReasoning(ReasoningStrategy):
|
|
86 |
for item1 in items1:
|
87 |
for item2 in items2:
|
88 |
similarity = self._calculate_similarity(item1, item2)
|
89 |
-
if similarity >
|
90 |
alignments.append({
|
91 |
"type1": type1,
|
92 |
"type2": type2,
|
|
|
5 |
"""
|
6 |
|
7 |
import logging
|
8 |
+
from typing import Dict, Any, List, Optional
|
9 |
from datetime import datetime
|
10 |
import json
|
11 |
import numpy as np
|
|
|
14 |
class MultiModalReasoning(ReasoningStrategy):
|
15 |
"""Implements multi-modal reasoning across different types of information."""
|
16 |
|
17 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
18 |
+
"""Initialize multi-modal reasoning."""
|
19 |
+
super().__init__()
|
20 |
+
self.config = config or {}
|
21 |
+
|
22 |
+
# Standard reasoning parameters
|
23 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
24 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
25 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
26 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
27 |
+
"LOCAL_LLM": 0.8,
|
28 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
29 |
+
"TREE_OF_THOUGHTS": 0.5,
|
30 |
+
"META_LEARNING": 0.4
|
31 |
+
})
|
32 |
+
|
33 |
+
# Multi-modal specific parameters
|
34 |
+
self.modality_weights = self.config.get('modality_weights', {
|
35 |
+
'text': 0.8,
|
36 |
+
'image': 0.7,
|
37 |
+
'audio': 0.6,
|
38 |
+
'video': 0.5,
|
39 |
+
'structured': 0.7
|
40 |
+
})
|
41 |
+
self.cross_modal_threshold = self.config.get('cross_modal_threshold', 0.6)
|
42 |
+
self.integration_steps = self.config.get('integration_steps', 3)
|
43 |
+
self.alignment_method = self.config.get('alignment_method', 'attention')
|
44 |
+
|
45 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
46 |
try:
|
47 |
# Process different modalities
|
|
|
114 |
for item1 in items1:
|
115 |
for item2 in items2:
|
116 |
similarity = self._calculate_similarity(item1, item2)
|
117 |
+
if similarity > self.cross_modal_threshold: # Threshold for alignment
|
118 |
alignments.append({
|
119 |
"type1": type1,
|
120 |
"type2": type2,
|
quantum_learning.py
CHANGED
@@ -40,25 +40,35 @@ class QuantumLearningSystem:
|
|
40 |
5. Uses quantum annealing for global optimization
|
41 |
"""
|
42 |
|
43 |
-
def __init__(self,
|
44 |
-
num_qubits: int = 8,
|
45 |
-
entanglement_strength: float = 0.5,
|
46 |
-
interference_threshold: float = 0.3,
|
47 |
-
tunneling_rate: float = 0.1,
|
48 |
-
annealing_schedule: Optional[Dict[str, Any]] = None):
|
49 |
"""Initialize quantum learning system."""
|
50 |
-
self.
|
51 |
-
|
52 |
-
|
53 |
-
self.
|
54 |
-
self.
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
# Initialize quantum state
|
61 |
-
self.state = np.zeros((2**num_qubits,), dtype=complex)
|
62 |
self.state[0] = 1.0 # Initialize to |0⟩ state
|
63 |
|
64 |
# Pattern storage
|
|
|
40 |
5. Uses quantum annealing for global optimization
|
41 |
"""
|
42 |
|
43 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
|
|
|
|
|
|
|
|
|
|
44 |
"""Initialize quantum learning system."""
|
45 |
+
self.config = config or {}
|
46 |
+
|
47 |
+
# Quantum system parameters
|
48 |
+
self.num_qubits = self.config.get('num_qubits', 8)
|
49 |
+
self.entanglement_strength = self.config.get('entanglement_strength', 0.5)
|
50 |
+
self.interference_threshold = self.config.get('interference_threshold', 0.3)
|
51 |
+
self.tunneling_rate = self.config.get('tunneling_rate', 0.1)
|
52 |
+
self.annealing_schedule = self.config.get('annealing_schedule', {
|
53 |
+
'initial_temp': 1.0,
|
54 |
+
'final_temp': 0.01,
|
55 |
+
'steps': 100,
|
56 |
+
'cooling_rate': 0.95
|
57 |
+
})
|
58 |
+
|
59 |
+
# Standard reasoning parameters
|
60 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
61 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
62 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
63 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
64 |
+
"LOCAL_LLM": 0.8,
|
65 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
66 |
+
"TREE_OF_THOUGHTS": 0.5,
|
67 |
+
"META_LEARNING": 0.4
|
68 |
+
})
|
69 |
|
70 |
# Initialize quantum state
|
71 |
+
self.state = np.zeros((2**self.num_qubits,), dtype=complex)
|
72 |
self.state[0] = 1.0 # Initialize to |0⟩ state
|
73 |
|
74 |
# Pattern storage
|
team_management.py
CHANGED
@@ -14,7 +14,7 @@ Features:
|
|
14 |
- Synchronized execution
|
15 |
"""
|
16 |
|
17 |
-
from typing import Dict, List, Optional, Set, Union, TypeVar
|
18 |
from dataclasses import dataclass, field
|
19 |
from enum import Enum
|
20 |
import asyncio
|
@@ -196,7 +196,8 @@ class TeamManager:
|
|
196 |
agent = Agent(
|
197 |
profile=config["profile"],
|
198 |
reasoning_engine=self.orchestrator.reasoning_engine,
|
199 |
-
meta_learning=self.orchestrator.meta_learning
|
|
|
200 |
)
|
201 |
|
202 |
self.agents[team_id][agent_id] = agent
|
@@ -484,18 +485,21 @@ class TeamManager:
|
|
484 |
)
|
485 |
|
486 |
class Agent:
|
487 |
-
def __init__(self, profile: Dict, reasoning_engine: UnifiedReasoningEngine, meta_learning: bool):
|
488 |
self.profile = profile
|
|
|
|
|
|
|
489 |
self.reasoning_engine = reasoning_engine if reasoning_engine else UnifiedReasoningEngine(
|
490 |
-
min_confidence=0.7,
|
491 |
-
parallel_threshold=3,
|
492 |
-
learning_rate=0.1,
|
493 |
-
strategy_weights={
|
494 |
"LOCAL_LLM": 0.8,
|
495 |
"CHAIN_OF_THOUGHT": 0.6,
|
496 |
"TREE_OF_THOUGHTS": 0.5,
|
497 |
"META_LEARNING": 0.4
|
498 |
-
}
|
499 |
)
|
500 |
self.meta_learning = meta_learning
|
501 |
self.state = AgentState.IDLE
|
|
|
14 |
- Synchronized execution
|
15 |
"""
|
16 |
|
17 |
+
from typing import Dict, List, Optional, Set, Union, TypeVar, Any
|
18 |
from dataclasses import dataclass, field
|
19 |
from enum import Enum
|
20 |
import asyncio
|
|
|
196 |
agent = Agent(
|
197 |
profile=config["profile"],
|
198 |
reasoning_engine=self.orchestrator.reasoning_engine,
|
199 |
+
meta_learning=self.orchestrator.meta_learning,
|
200 |
+
config=config.get("config", {})
|
201 |
)
|
202 |
|
203 |
self.agents[team_id][agent_id] = agent
|
|
|
485 |
)
|
486 |
|
487 |
class Agent:
|
488 |
+
def __init__(self, profile: Dict, reasoning_engine: UnifiedReasoningEngine, meta_learning: bool, config: Optional[Dict[str, Any]] = None):
|
489 |
self.profile = profile
|
490 |
+
self.config = config or {}
|
491 |
+
|
492 |
+
# Use provided reasoning engine or create one with config
|
493 |
self.reasoning_engine = reasoning_engine if reasoning_engine else UnifiedReasoningEngine(
|
494 |
+
min_confidence=self.config.get('min_confidence', 0.7),
|
495 |
+
parallel_threshold=self.config.get('parallel_threshold', 3),
|
496 |
+
learning_rate=self.config.get('learning_rate', 0.1),
|
497 |
+
strategy_weights=self.config.get('strategy_weights', {
|
498 |
"LOCAL_LLM": 0.8,
|
499 |
"CHAIN_OF_THOUGHT": 0.6,
|
500 |
"TREE_OF_THOUGHTS": 0.5,
|
501 |
"META_LEARNING": 0.4
|
502 |
+
})
|
503 |
)
|
504 |
self.meta_learning = meta_learning
|
505 |
self.state = AgentState.IDLE
|