nananie143 commited on
Commit
1671ec3
·
verified ·
1 Parent(s): 3bbd2b9

Upload folder using huggingface_hub

Browse files
agentic_system.py CHANGED
@@ -425,17 +425,17 @@ class AgenticSystem:
425
  # Initialize components
426
  self.agents: Dict[str, Agent] = {}
427
  self.reasoning_engine = ReasoningEngine(
428
- min_confidence=0.7,
429
- parallel_threshold=3,
430
- learning_rate=0.1,
431
- strategy_weights={
432
  "LOCAL_LLM": 0.8,
433
  "CHAIN_OF_THOUGHT": 0.6,
434
  "TREE_OF_THOUGHTS": 0.5,
435
  "META_LEARNING": 0.4
436
- }
437
  )
438
- self.meta_learning = MetaLearningStrategy()
439
 
440
  # System state
441
  self.state = "initialized"
 
425
  # Initialize components
426
  self.agents: Dict[str, Agent] = {}
427
  self.reasoning_engine = ReasoningEngine(
428
+ min_confidence=self.config.get('min_confidence', 0.7),
429
+ parallel_threshold=self.config.get('parallel_threshold', 3),
430
+ learning_rate=self.config.get('learning_rate', 0.1),
431
+ strategy_weights=self.config.get('strategy_weights', {
432
  "LOCAL_LLM": 0.8,
433
  "CHAIN_OF_THOUGHT": 0.6,
434
  "TREE_OF_THOUGHTS": 0.5,
435
  "META_LEARNING": 0.4
436
+ })
437
  )
438
+ self.meta_learning = MetaLearningStrategy(config)
439
 
440
  # System state
441
  self.state = "initialized"
app.py CHANGED
@@ -84,9 +84,21 @@ class ChatInterface:
84
  if not check_network():
85
  logger.warning("Network connectivity issues detected - continuing with degraded functionality")
86
 
87
- # Initialize core components
88
- self.orchestrator = AgentOrchestrator()
89
- self.agentic_system = AgenticSystem()
 
 
 
 
 
 
 
 
 
 
 
 
90
  self.team_manager = TeamManager(self.orchestrator)
91
  self.chat_history = []
92
  self.active_objectives = {}
 
84
  if not check_network():
85
  logger.warning("Network connectivity issues detected - continuing with degraded functionality")
86
 
87
+ # Initialize core components with consistent configuration
88
+ config = {
89
+ "min_confidence": 0.7,
90
+ "parallel_threshold": 3,
91
+ "learning_rate": 0.1,
92
+ "strategy_weights": {
93
+ "LOCAL_LLM": 0.8,
94
+ "CHAIN_OF_THOUGHT": 0.6,
95
+ "TREE_OF_THOUGHTS": 0.5,
96
+ "META_LEARNING": 0.4
97
+ }
98
+ }
99
+
100
+ self.orchestrator = AgentOrchestrator(config)
101
+ self.agentic_system = AgenticSystem(config)
102
  self.team_manager = TeamManager(self.orchestrator)
103
  self.chat_history = []
104
  self.active_objectives = {}
meta_learning.py CHANGED
@@ -44,7 +44,21 @@ class MetaLearningSystem:
44
 
45
  def __init__(self):
46
  self.logger = logging.getLogger(__name__)
47
- self.quantum_system = QuantumLearningSystem()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  self.strategies = {}
49
  self.performance_history = []
50
  self.meta_parameters = MetaParameters()
 
44
 
45
  def __init__(self):
46
  self.logger = logging.getLogger(__name__)
47
+
48
+ # Initialize quantum system with consistent configuration
49
+ quantum_config = {
50
+ "min_confidence": 0.7,
51
+ "parallel_threshold": 3,
52
+ "learning_rate": 0.1,
53
+ "strategy_weights": {
54
+ "LOCAL_LLM": 0.8,
55
+ "CHAIN_OF_THOUGHT": 0.6,
56
+ "TREE_OF_THOUGHTS": 0.5,
57
+ "META_LEARNING": 0.4
58
+ }
59
+ }
60
+
61
+ self.quantum_system = QuantumLearningSystem(quantum_config)
62
  self.strategies = {}
63
  self.performance_history = []
64
  self.meta_parameters = MetaParameters()
orchestrator.py CHANGED
@@ -124,10 +124,10 @@ class AgentOrchestrator:
124
  parallel_threshold=5,
125
  learning_rate=0.1,
126
  strategy_weights={
127
- ReasoningMode.CHAIN_OF_THOUGHT: 1.0,
128
- ReasoningMode.TREE_OF_THOUGHTS: 1.0,
129
- ReasoningMode.META_LEARNING: 1.5,
130
- ReasoningMode.LOCAL_LLM: 2.0
131
  }
132
  )
133
 
 
124
  parallel_threshold=5,
125
  learning_rate=0.1,
126
  strategy_weights={
127
+ "LOCAL_LLM": 2.0,
128
+ "CHAIN_OF_THOUGHT": 1.0,
129
+ "TREE_OF_THOUGHTS": 1.0,
130
+ "META_LEARNING": 1.5
131
  }
132
  )
133
 
reasoning/analogical.py CHANGED
@@ -74,15 +74,26 @@ class AnalogicalReasoning(ReasoningStrategy):
74
  - Learning from experience
75
  """
76
 
77
- def __init__(self,
78
- min_similarity: float = 0.6,
79
- max_candidates: int = 5,
80
- adaptation_threshold: float = 0.7,
81
- learning_rate: float = 0.1):
82
- self.min_similarity = min_similarity
83
- self.max_candidates = max_candidates
84
- self.adaptation_threshold = adaptation_threshold
85
- self.learning_rate = learning_rate
 
 
 
 
 
 
 
 
 
 
 
86
 
87
  # Knowledge base
88
  self.patterns: Dict[str, AnalogicalPattern] = {}
 
74
  - Learning from experience
75
  """
76
 
77
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
78
+ """Initialize analogical reasoning."""
79
+ super().__init__()
80
+ self.config = config or {}
81
+
82
+ # Standard reasoning parameters
83
+ self.min_confidence = self.config.get('min_confidence', 0.7)
84
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
85
+ self.learning_rate = self.config.get('learning_rate', 0.1)
86
+ self.strategy_weights = self.config.get('strategy_weights', {
87
+ "LOCAL_LLM": 0.8,
88
+ "CHAIN_OF_THOUGHT": 0.6,
89
+ "TREE_OF_THOUGHTS": 0.5,
90
+ "META_LEARNING": 0.4
91
+ })
92
+
93
+ # Analogical reasoning specific parameters
94
+ self.min_similarity = self.config.get('min_similarity', 0.6)
95
+ self.max_candidates = self.config.get('max_candidates', 5)
96
+ self.adaptation_threshold = self.config.get('adaptation_threshold', 0.7)
97
 
98
  # Knowledge base
99
  self.patterns: Dict[str, AnalogicalPattern] = {}
reasoning/chain_of_thought.py CHANGED
@@ -41,14 +41,19 @@ class ChainOfThoughtStrategy(ReasoningStrategy):
41
  """
42
 
43
  def __init__(self,
44
- max_chain_length: int = 10,
45
  min_confidence: float = 0.7,
46
- exploration_breadth: int = 3,
47
- enable_reflection: bool = True):
48
- self.max_chain_length = max_chain_length
49
  self.min_confidence = min_confidence
50
- self.exploration_breadth = exploration_breadth
51
- self.enable_reflection = enable_reflection
 
 
 
 
 
 
52
  self.thought_history: List[Thought] = []
53
 
54
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
 
41
  """
42
 
43
  def __init__(self,
 
44
  min_confidence: float = 0.7,
45
+ parallel_threshold: int = 3,
46
+ learning_rate: float = 0.1,
47
+ strategy_weights: Optional[Dict[str, float]] = None):
48
  self.min_confidence = min_confidence
49
+ self.parallel_threshold = parallel_threshold
50
+ self.learning_rate = learning_rate
51
+ self.strategy_weights = strategy_weights or {
52
+ "LOCAL_LLM": 0.8,
53
+ "CHAIN_OF_THOUGHT": 0.6,
54
+ "TREE_OF_THOUGHTS": 0.5,
55
+ "META_LEARNING": 0.4
56
+ }
57
  self.thought_history: List[Thought] = []
58
 
59
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
reasoning/emergent.py CHANGED
@@ -22,17 +22,35 @@ class EmergentReasoning(ReasoningStrategy):
22
  super().__init__()
23
  self.config = config or {}
24
 
25
- # Initialize component strategies
26
- self.meta_learner = MetaLearningStrategy()
27
- self.chain_of_thought = ChainOfThoughtStrategy()
28
- self.tree_of_thoughts = TreeOfThoughtsStrategy()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
  # Configure weights for strategy combination
31
- self.weights = {
32
  'meta': 0.4,
33
  'chain': 0.3,
34
  'tree': 0.3
35
- }
36
 
37
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
38
  """
 
22
  super().__init__()
23
  self.config = config or {}
24
 
25
+ # Standard reasoning parameters
26
+ self.min_confidence = self.config.get('min_confidence', 0.7)
27
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
28
+ self.learning_rate = self.config.get('learning_rate', 0.1)
29
+ self.strategy_weights = self.config.get('strategy_weights', {
30
+ "LOCAL_LLM": 0.8,
31
+ "CHAIN_OF_THOUGHT": 0.6,
32
+ "TREE_OF_THOUGHTS": 0.5,
33
+ "META_LEARNING": 0.4
34
+ })
35
+
36
+ # Initialize component strategies with shared config
37
+ strategy_config = {
38
+ 'min_confidence': self.min_confidence,
39
+ 'parallel_threshold': self.parallel_threshold,
40
+ 'learning_rate': self.learning_rate,
41
+ 'strategy_weights': self.strategy_weights
42
+ }
43
+
44
+ self.meta_learner = MetaLearningStrategy(strategy_config)
45
+ self.chain_of_thought = ChainOfThoughtStrategy(strategy_config)
46
+ self.tree_of_thoughts = TreeOfThoughtsStrategy(strategy_config)
47
 
48
  # Configure weights for strategy combination
49
+ self.weights = self.config.get('combination_weights', {
50
  'meta': 0.4,
51
  'chain': 0.3,
52
  'tree': 0.3
53
+ })
54
 
55
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
56
  """
reasoning/local_llm.py CHANGED
@@ -11,11 +11,27 @@ from .base import ReasoningStrategy
11
  class LocalLLMStrategy(ReasoningStrategy):
12
  """Implements reasoning using local LLM."""
13
 
14
- def __init__(self):
15
  """Initialize the local LLM strategy."""
16
- self.repo_id = "tensorblock/Llama-3.2-3B-Overthinker-GGUF"
17
- self.filename = "Llama-3.2-3B-Overthinker-Q8_0.gguf"
18
- self.model_dir = "models"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  self.logger = logging.getLogger(__name__)
20
  self.model = None
21
 
 
11
  class LocalLLMStrategy(ReasoningStrategy):
12
  """Implements reasoning using local LLM."""
13
 
14
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
15
  """Initialize the local LLM strategy."""
16
+ super().__init__()
17
+ self.config = config or {}
18
+
19
+ # Configure parameters with defaults
20
+ self.repo_id = self.config.get('repo_id', "gpt-omni/mini-omni2")
21
+ self.filename = self.config.get('filename', "mini-omni2.gguf")
22
+ self.model_dir = self.config.get('model_dir', "models")
23
+
24
+ # Standard reasoning parameters
25
+ self.min_confidence = self.config.get('min_confidence', 0.7)
26
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
27
+ self.learning_rate = self.config.get('learning_rate', 0.1)
28
+ self.strategy_weights = self.config.get('strategy_weights', {
29
+ "LOCAL_LLM": 0.8,
30
+ "CHAIN_OF_THOUGHT": 0.6,
31
+ "TREE_OF_THOUGHTS": 0.5,
32
+ "META_LEARNING": 0.4
33
+ })
34
+
35
  self.logger = logging.getLogger(__name__)
36
  self.model = None
37
 
reasoning/monetization.py CHANGED
@@ -41,7 +41,16 @@ class MonetizationOptimizer:
41
  5. Increases lifetime value
42
  """
43
 
44
- def __init__(self):
 
 
 
 
 
 
 
 
 
45
  self.models: Dict[str, MonetizationModel] = {}
46
  self.streams: Dict[str, RevenueStream] = {}
47
 
@@ -293,7 +302,26 @@ class MonetizationStrategy(ReasoningStrategy):
293
  """Initialize monetization strategy."""
294
  super().__init__()
295
  self.config = config or {}
296
- self.optimizer = MonetizationOptimizer()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297
 
298
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
299
  """
 
41
  5. Increases lifetime value
42
  """
43
 
44
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
45
+ """Initialize monetization optimizer."""
46
+ self.config = config or {}
47
+
48
+ # Configure optimization parameters
49
+ self.min_revenue = self.config.get('min_revenue', 1_000_000)
50
+ self.min_margin = self.config.get('min_margin', 0.3)
51
+ self.max_churn = self.config.get('max_churn', 0.1)
52
+ self.target_ltv = self.config.get('target_ltv', 1000)
53
+
54
  self.models: Dict[str, MonetizationModel] = {}
55
  self.streams: Dict[str, RevenueStream] = {}
56
 
 
302
  """Initialize monetization strategy."""
303
  super().__init__()
304
  self.config = config or {}
305
+
306
+ # Standard reasoning parameters
307
+ self.min_confidence = self.config.get('min_confidence', 0.7)
308
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
309
+ self.learning_rate = self.config.get('learning_rate', 0.1)
310
+ self.strategy_weights = self.config.get('strategy_weights', {
311
+ "LOCAL_LLM": 0.8,
312
+ "CHAIN_OF_THOUGHT": 0.6,
313
+ "TREE_OF_THOUGHTS": 0.5,
314
+ "META_LEARNING": 0.4
315
+ })
316
+
317
+ # Initialize optimizer with shared config
318
+ optimizer_config = {
319
+ 'min_revenue': self.config.get('min_revenue', 1_000_000),
320
+ 'min_margin': self.config.get('min_margin', 0.3),
321
+ 'max_churn': self.config.get('max_churn', 0.1),
322
+ 'target_ltv': self.config.get('target_ltv', 1000)
323
+ }
324
+ self.optimizer = MonetizationOptimizer(optimizer_config)
325
 
326
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
327
  """
reasoning/multimodal.py CHANGED
@@ -35,14 +35,41 @@ class MultiModalReasoning(ReasoningStrategy):
35
  super().__init__()
36
  self.config = config or {}
37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  # Configure modality weights
39
- self.weights = {
40
  'text': 0.4,
41
  'image': 0.3,
42
  'audio': 0.1,
43
  'video': 0.1,
44
  'structured': 0.1
45
- }
46
 
47
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
48
  """
 
35
  super().__init__()
36
  self.config = config or {}
37
 
38
+ # Standard reasoning parameters
39
+ self.min_confidence = self.config.get('min_confidence', 0.7)
40
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
41
+ self.learning_rate = self.config.get('learning_rate', 0.1)
42
+ self.strategy_weights = self.config.get('strategy_weights', {
43
+ "LOCAL_LLM": 0.8,
44
+ "CHAIN_OF_THOUGHT": 0.6,
45
+ "TREE_OF_THOUGHTS": 0.5,
46
+ "META_LEARNING": 0.4
47
+ })
48
+
49
+ # Configure model repositories
50
+ self.models = self.config.get('models', {
51
+ 'img2img': {
52
+ 'repo_id': 'enhanceaiteam/Flux-Uncensored-V2',
53
+ 'filename': 'Flux-Uncensored-V2.safetensors'
54
+ },
55
+ 'img2vid': {
56
+ 'repo_id': 'stabilityai/stable-video-diffusion-img2vid-xt',
57
+ 'filename': 'svd_xt.safetensors'
58
+ },
59
+ 'any2any': {
60
+ 'repo_id': 'deepseek-ai/JanusFlow-1.3B',
61
+ 'filename': 'janusflow-1.3b.safetensors'
62
+ }
63
+ })
64
+
65
  # Configure modality weights
66
+ self.weights = self.config.get('modality_weights', {
67
  'text': 0.4,
68
  'image': 0.3,
69
  'audio': 0.1,
70
  'video': 0.1,
71
  'structured': 0.1
72
+ })
73
 
74
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
75
  """
reasoning/neurosymbolic.py CHANGED
@@ -43,7 +43,18 @@ class NeurosymbolicReasoning(ReasoningStrategy):
43
  super().__init__()
44
  self.config = config or {}
45
 
46
- # Configure parameters
 
 
 
 
 
 
 
 
 
 
 
47
  self.feature_threshold = self.config.get('feature_threshold', 0.1)
48
  self.rule_confidence_threshold = self.config.get('rule_confidence', 0.7)
49
  self.max_rules = self.config.get('max_rules', 10)
 
43
  super().__init__()
44
  self.config = config or {}
45
 
46
+ # Standard reasoning parameters
47
+ self.min_confidence = self.config.get('min_confidence', 0.7)
48
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
49
+ self.learning_rate = self.config.get('learning_rate', 0.1)
50
+ self.strategy_weights = self.config.get('strategy_weights', {
51
+ "LOCAL_LLM": 0.8,
52
+ "CHAIN_OF_THOUGHT": 0.6,
53
+ "TREE_OF_THOUGHTS": 0.5,
54
+ "META_LEARNING": 0.4
55
+ })
56
+
57
+ # Neurosymbolic specific parameters
58
  self.feature_threshold = self.config.get('feature_threshold', 0.1)
59
  self.rule_confidence_threshold = self.config.get('rule_confidence', 0.7)
60
  self.max_rules = self.config.get('max_rules', 10)
reasoning/quantum.py CHANGED
@@ -34,6 +34,17 @@ class QuantumReasoning(ReasoningStrategy):
34
  super().__init__()
35
  self.config = config or {}
36
 
 
 
 
 
 
 
 
 
 
 
 
37
  # Configure quantum parameters
38
  self.num_qubits = self.config.get('num_qubits', 3)
39
  self.measurement_threshold = self.config.get('measurement_threshold', 0.1)
 
34
  super().__init__()
35
  self.config = config or {}
36
 
37
+ # Standard reasoning parameters
38
+ self.min_confidence = self.config.get('min_confidence', 0.7)
39
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
40
+ self.learning_rate = self.config.get('learning_rate', 0.1)
41
+ self.strategy_weights = self.config.get('strategy_weights', {
42
+ "LOCAL_LLM": 0.8,
43
+ "CHAIN_OF_THOUGHT": 0.6,
44
+ "TREE_OF_THOUGHTS": 0.5,
45
+ "META_LEARNING": 0.4
46
+ })
47
+
48
  # Configure quantum parameters
49
  self.num_qubits = self.config.get('num_qubits', 3)
50
  self.measurement_threshold = self.config.get('measurement_threshold', 0.1)
reasoning/recursive.py CHANGED
@@ -65,15 +65,25 @@ class RecursiveReasoning(ReasoningStrategy):
65
  - Optimization strategies
66
  """
67
 
68
- def __init__(self,
69
- max_depth: int = 5,
70
- min_confidence: float = 0.7,
71
- parallel_threshold: int = 3,
72
- optimization_rounds: int = 2):
73
- self.max_depth = max_depth
74
- self.min_confidence = min_confidence
75
- self.parallel_threshold = parallel_threshold
76
- self.optimization_rounds = optimization_rounds
 
 
 
 
 
 
 
 
 
 
77
 
78
  # Problem tracking
79
  self.subproblems: Dict[str, Subproblem] = {}
 
65
  - Optimization strategies
66
  """
67
 
68
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
69
+ """Initialize recursive reasoning."""
70
+ super().__init__()
71
+ self.config = config or {}
72
+
73
+ # Standard reasoning parameters
74
+ self.min_confidence = self.config.get('min_confidence', 0.7)
75
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
76
+ self.learning_rate = self.config.get('learning_rate', 0.1)
77
+ self.strategy_weights = self.config.get('strategy_weights', {
78
+ "LOCAL_LLM": 0.8,
79
+ "CHAIN_OF_THOUGHT": 0.6,
80
+ "TREE_OF_THOUGHTS": 0.5,
81
+ "META_LEARNING": 0.4
82
+ })
83
+
84
+ # Recursive reasoning specific parameters
85
+ self.max_depth = self.config.get('max_depth', 5)
86
+ self.optimization_rounds = self.config.get('optimization_rounds', 2)
87
 
88
  # Problem tracking
89
  self.subproblems: Dict[str, Subproblem] = {}
reasoning/specialized.py CHANGED
@@ -22,16 +22,34 @@ class SpecializedReasoning(ReasoningStrategy):
22
  super().__init__()
23
  self.config = config or {}
24
 
25
- # Initialize component strategies
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  self.strategies = {
27
- 'code_rewrite': CodeRewriteStrategy(),
28
- 'security_audit': SecurityAuditStrategy(),
29
- 'performance': PerformanceOptimizationStrategy(),
30
- 'testing': TestGenerationStrategy(),
31
- 'documentation': DocumentationStrategy(),
32
- 'api_design': APIDesignStrategy(),
33
- 'dependencies': DependencyManagementStrategy(),
34
- 'code_review': CodeReviewStrategy()
35
  }
36
 
37
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
@@ -134,6 +152,10 @@ class CodeRewriteStrategy(ReasoningStrategy):
134
  5. Ensures backward compatibility
135
  """
136
 
 
 
 
 
137
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
138
  """Rewrite code while preserving functionality."""
139
  try:
@@ -172,6 +194,10 @@ class SecurityAuditStrategy(ReasoningStrategy):
172
  5. Monitors security state
173
  """
174
 
 
 
 
 
175
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
176
  """Perform security audit and generate recommendations."""
177
  try:
@@ -208,6 +234,10 @@ class PerformanceOptimizationStrategy(ReasoningStrategy):
208
  5. Validates optimizations
209
  """
210
 
 
 
 
 
211
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
212
  """Optimize code performance."""
213
  try:
@@ -244,6 +274,10 @@ class TestGenerationStrategy(ReasoningStrategy):
244
  5. Maintains test suite
245
  """
246
 
 
 
 
 
247
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
248
  """Generate comprehensive test suite."""
249
  try:
@@ -283,6 +317,10 @@ class DocumentationStrategy(ReasoningStrategy):
283
  5. Validates completeness
284
  """
285
 
 
 
 
 
286
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
287
  """Generate and maintain documentation."""
288
  try:
@@ -322,6 +360,10 @@ class APIDesignStrategy(ReasoningStrategy):
322
  5. Maintains versioning
323
  """
324
 
 
 
 
 
325
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
326
  """Design and validate API."""
327
  try:
@@ -358,6 +400,10 @@ class DependencyManagementStrategy(ReasoningStrategy):
358
  5. Maintains security
359
  """
360
 
 
 
 
 
361
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
362
  """Manage and optimize dependencies."""
363
  try:
@@ -394,6 +440,10 @@ class CodeReviewStrategy(ReasoningStrategy):
394
  5. Validates fixes
395
  """
396
 
 
 
 
 
397
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
398
  """Perform comprehensive code review."""
399
  try:
 
22
  super().__init__()
23
  self.config = config or {}
24
 
25
+ # Standard reasoning parameters
26
+ self.min_confidence = self.config.get('min_confidence', 0.7)
27
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
28
+ self.learning_rate = self.config.get('learning_rate', 0.1)
29
+ self.strategy_weights = self.config.get('strategy_weights', {
30
+ "LOCAL_LLM": 0.8,
31
+ "CHAIN_OF_THOUGHT": 0.6,
32
+ "TREE_OF_THOUGHTS": 0.5,
33
+ "META_LEARNING": 0.4
34
+ })
35
+
36
+ # Initialize component strategies with shared config
37
+ strategy_config = {
38
+ 'min_confidence': self.min_confidence,
39
+ 'parallel_threshold': self.parallel_threshold,
40
+ 'learning_rate': self.learning_rate,
41
+ 'strategy_weights': self.strategy_weights
42
+ }
43
+
44
  self.strategies = {
45
+ 'code_rewrite': CodeRewriteStrategy(strategy_config),
46
+ 'security_audit': SecurityAuditStrategy(strategy_config),
47
+ 'performance': PerformanceOptimizationStrategy(strategy_config),
48
+ 'testing': TestGenerationStrategy(strategy_config),
49
+ 'documentation': DocumentationStrategy(strategy_config),
50
+ 'api_design': APIDesignStrategy(strategy_config),
51
+ 'dependencies': DependencyManagementStrategy(strategy_config),
52
+ 'code_review': CodeReviewStrategy(strategy_config)
53
  }
54
 
55
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
 
152
  5. Ensures backward compatibility
153
  """
154
 
155
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
156
+ super().__init__()
157
+ self.config = config or {}
158
+
159
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
160
  """Rewrite code while preserving functionality."""
161
  try:
 
194
  5. Monitors security state
195
  """
196
 
197
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
198
+ super().__init__()
199
+ self.config = config or {}
200
+
201
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
202
  """Perform security audit and generate recommendations."""
203
  try:
 
234
  5. Validates optimizations
235
  """
236
 
237
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
238
+ super().__init__()
239
+ self.config = config or {}
240
+
241
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
242
  """Optimize code performance."""
243
  try:
 
274
  5. Maintains test suite
275
  """
276
 
277
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
278
+ super().__init__()
279
+ self.config = config or {}
280
+
281
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
282
  """Generate comprehensive test suite."""
283
  try:
 
317
  5. Validates completeness
318
  """
319
 
320
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
321
+ super().__init__()
322
+ self.config = config or {}
323
+
324
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
325
  """Generate and maintain documentation."""
326
  try:
 
360
  5. Maintains versioning
361
  """
362
 
363
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
364
+ super().__init__()
365
+ self.config = config or {}
366
+
367
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
368
  """Design and validate API."""
369
  try:
 
400
  5. Maintains security
401
  """
402
 
403
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
404
+ super().__init__()
405
+ self.config = config or {}
406
+
407
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
408
  """Manage and optimize dependencies."""
409
  try:
 
440
  5. Validates fixes
441
  """
442
 
443
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
444
+ super().__init__()
445
+ self.config = config or {}
446
+
447
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
448
  """Perform comprehensive code review."""
449
  try:
reasoning/tree_of_thoughts.py CHANGED
@@ -44,16 +44,19 @@ class TreeOfThoughtsStrategy(ReasoningStrategy):
44
  """
45
 
46
  def __init__(self,
47
- max_depth: int = 5,
48
- beam_width: int = 3,
49
- min_confidence: float = 0.6,
50
- exploration_factor: float = 0.3,
51
- prune_threshold: float = 0.4):
52
- self.max_depth = max_depth
53
- self.beam_width = beam_width
54
  self.min_confidence = min_confidence
55
- self.exploration_factor = exploration_factor
56
- self.prune_threshold = prune_threshold
 
 
 
 
 
 
57
  self.node_history: Dict[str, TreeNode] = {}
58
  self.path_patterns: Dict[str, float] = defaultdict(float)
59
 
@@ -119,7 +122,7 @@ class TreeOfThoughtsStrategy(ReasoningStrategy):
119
  beam = [(root.evaluation_score, root)]
120
  visited: Set[str] = set()
121
 
122
- for depth in range(self.max_depth):
123
  next_beam = []
124
 
125
  for _, node in beam:
@@ -136,12 +139,12 @@ class TreeOfThoughtsStrategy(ReasoningStrategy):
136
 
137
  # Add to beam
138
  for child in evaluated_children:
139
- if child.evaluation_score > self.prune_threshold:
140
  next_beam.append((child.evaluation_score, child))
141
  node.children.append(child)
142
 
143
  # Select best nodes for next iteration
144
- beam = heapq.nlargest(self.beam_width, next_beam, key=lambda x: x[0])
145
 
146
  if not beam:
147
  break
@@ -213,7 +216,7 @@ class TreeOfThoughtsStrategy(ReasoningStrategy):
213
  sorted_children = sorted(node.children, key=lambda x: x.evaluation_score, reverse=True)
214
 
215
  # Explore top paths
216
- for child in sorted_children[:self.beam_width]:
217
  path.append(child)
218
  dfs(child, path)
219
  path.pop()
@@ -224,7 +227,7 @@ class TreeOfThoughtsStrategy(ReasoningStrategy):
224
  evaluated_paths = await self._evaluate_paths(paths, context)
225
 
226
  # Return top paths
227
- return sorted(evaluated_paths, key=lambda p: sum(n.evaluation_score for n in p), reverse=True)[:self.beam_width]
228
 
229
  async def _synthesize_conclusion(self, paths: List[List[TreeNode]], context: Dict[str, Any]) -> Dict[str, Any]:
230
  """Synthesize final conclusion from best paths."""
 
44
  """
45
 
46
  def __init__(self,
47
+ min_confidence: float = 0.7,
48
+ parallel_threshold: int = 3,
49
+ learning_rate: float = 0.1,
50
+ strategy_weights: Optional[Dict[str, float]] = None):
 
 
 
51
  self.min_confidence = min_confidence
52
+ self.parallel_threshold = parallel_threshold
53
+ self.learning_rate = learning_rate
54
+ self.strategy_weights = strategy_weights or {
55
+ "LOCAL_LLM": 0.8,
56
+ "CHAIN_OF_THOUGHT": 0.6,
57
+ "TREE_OF_THOUGHTS": 0.5,
58
+ "META_LEARNING": 0.4
59
+ }
60
  self.node_history: Dict[str, TreeNode] = {}
61
  self.path_patterns: Dict[str, float] = defaultdict(float)
62
 
 
122
  beam = [(root.evaluation_score, root)]
123
  visited: Set[str] = set()
124
 
125
+ for depth in range(5):
126
  next_beam = []
127
 
128
  for _, node in beam:
 
139
 
140
  # Add to beam
141
  for child in evaluated_children:
142
+ if child.evaluation_score > 0.4:
143
  next_beam.append((child.evaluation_score, child))
144
  node.children.append(child)
145
 
146
  # Select best nodes for next iteration
147
+ beam = heapq.nlargest(3, next_beam, key=lambda x: x[0])
148
 
149
  if not beam:
150
  break
 
216
  sorted_children = sorted(node.children, key=lambda x: x.evaluation_score, reverse=True)
217
 
218
  # Explore top paths
219
+ for child in sorted_children[:3]:
220
  path.append(child)
221
  dfs(child, path)
222
  path.pop()
 
227
  evaluated_paths = await self._evaluate_paths(paths, context)
228
 
229
  # Return top paths
230
+ return sorted(evaluated_paths, key=lambda p: sum(n.evaluation_score for n in p), reverse=True)[:3]
231
 
232
  async def _synthesize_conclusion(self, paths: List[List[TreeNode]], context: Dict[str, Any]) -> Dict[str, Any]:
233
  """Synthesize final conclusion from best paths."""
reasoning/venture_strategies.py CHANGED
@@ -67,6 +67,21 @@ class AIStartupStrategy(ReasoningStrategy):
67
  5. Optimizes revenue streams
68
  """
69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
71
  """Generate AI startup strategy."""
72
  try:
@@ -108,6 +123,21 @@ class SaaSVentureStrategy(ReasoningStrategy):
108
  5. Maximizes recurring revenue
109
  """
110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
112
  """Generate SaaS venture strategy."""
113
  try:
@@ -148,6 +178,21 @@ class AutomationVentureStrategy(ReasoningStrategy):
148
  5. Maximizes ROI
149
  """
150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
152
  """Generate automation venture strategy."""
153
  try:
@@ -188,6 +233,21 @@ class DataVentureStrategy(ReasoningStrategy):
188
  5. Maximizes data value
189
  """
190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
191
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
192
  """Generate data venture strategy."""
193
  try:
@@ -228,6 +288,21 @@ class APIVentureStrategy(ReasoningStrategy):
228
  5. Maximizes API value
229
  """
230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
231
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
232
  """Generate API venture strategy."""
233
  try:
@@ -268,6 +343,21 @@ class MarketplaceVentureStrategy(ReasoningStrategy):
268
  5. Maximizes transaction value
269
  """
270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
271
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
272
  """Generate marketplace venture strategy."""
273
  try:
@@ -308,6 +398,21 @@ class VenturePortfolioStrategy(ReasoningStrategy):
308
  5. Maximizes portfolio value
309
  """
310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
312
  """Generate venture portfolio strategy."""
313
  try:
@@ -433,18 +538,36 @@ class VentureStrategy(ReasoningStrategy):
433
  super().__init__()
434
  self.config = config or {}
435
 
436
- # Initialize component strategies
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437
  self.strategies = {
438
- VentureType.AI_STARTUP: AIStartupStrategy(),
439
- VentureType.SAAS: SaaSVentureStrategy(),
440
- VentureType.AUTOMATION_SERVICE: AutomationVentureStrategy(),
441
- VentureType.DATA_ANALYTICS: DataVentureStrategy(),
442
- VentureType.API_SERVICE: APIVentureStrategy(),
443
- VentureType.MARKETPLACE: MarketplaceVentureStrategy()
444
  }
445
 
446
  # Portfolio strategy for multi-venture optimization
447
- self.portfolio_strategy = VenturePortfolioStrategy()
448
 
449
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
450
  """
 
67
  5. Optimizes revenue streams
68
  """
69
 
70
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
71
+ super().__init__()
72
+ self.config = config or {}
73
+
74
+ # Standard reasoning parameters
75
+ self.min_confidence = self.config.get('min_confidence', 0.7)
76
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
77
+ self.learning_rate = self.config.get('learning_rate', 0.1)
78
+ self.strategy_weights = self.config.get('strategy_weights', {
79
+ "LOCAL_LLM": 0.8,
80
+ "CHAIN_OF_THOUGHT": 0.6,
81
+ "TREE_OF_THOUGHTS": 0.5,
82
+ "META_LEARNING": 0.4
83
+ })
84
+
85
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
86
  """Generate AI startup strategy."""
87
  try:
 
123
  5. Maximizes recurring revenue
124
  """
125
 
126
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
127
+ super().__init__()
128
+ self.config = config or {}
129
+
130
+ # Standard reasoning parameters
131
+ self.min_confidence = self.config.get('min_confidence', 0.7)
132
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
133
+ self.learning_rate = self.config.get('learning_rate', 0.1)
134
+ self.strategy_weights = self.config.get('strategy_weights', {
135
+ "LOCAL_LLM": 0.8,
136
+ "CHAIN_OF_THOUGHT": 0.6,
137
+ "TREE_OF_THOUGHTS": 0.5,
138
+ "META_LEARNING": 0.4
139
+ })
140
+
141
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
142
  """Generate SaaS venture strategy."""
143
  try:
 
178
  5. Maximizes ROI
179
  """
180
 
181
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
182
+ super().__init__()
183
+ self.config = config or {}
184
+
185
+ # Standard reasoning parameters
186
+ self.min_confidence = self.config.get('min_confidence', 0.7)
187
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
188
+ self.learning_rate = self.config.get('learning_rate', 0.1)
189
+ self.strategy_weights = self.config.get('strategy_weights', {
190
+ "LOCAL_LLM": 0.8,
191
+ "CHAIN_OF_THOUGHT": 0.6,
192
+ "TREE_OF_THOUGHTS": 0.5,
193
+ "META_LEARNING": 0.4
194
+ })
195
+
196
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
197
  """Generate automation venture strategy."""
198
  try:
 
233
  5. Maximizes data value
234
  """
235
 
236
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
237
+ super().__init__()
238
+ self.config = config or {}
239
+
240
+ # Standard reasoning parameters
241
+ self.min_confidence = self.config.get('min_confidence', 0.7)
242
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
243
+ self.learning_rate = self.config.get('learning_rate', 0.1)
244
+ self.strategy_weights = self.config.get('strategy_weights', {
245
+ "LOCAL_LLM": 0.8,
246
+ "CHAIN_OF_THOUGHT": 0.6,
247
+ "TREE_OF_THOUGHTS": 0.5,
248
+ "META_LEARNING": 0.4
249
+ })
250
+
251
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
252
  """Generate data venture strategy."""
253
  try:
 
288
  5. Maximizes API value
289
  """
290
 
291
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
292
+ super().__init__()
293
+ self.config = config or {}
294
+
295
+ # Standard reasoning parameters
296
+ self.min_confidence = self.config.get('min_confidence', 0.7)
297
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
298
+ self.learning_rate = self.config.get('learning_rate', 0.1)
299
+ self.strategy_weights = self.config.get('strategy_weights', {
300
+ "LOCAL_LLM": 0.8,
301
+ "CHAIN_OF_THOUGHT": 0.6,
302
+ "TREE_OF_THOUGHTS": 0.5,
303
+ "META_LEARNING": 0.4
304
+ })
305
+
306
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
307
  """Generate API venture strategy."""
308
  try:
 
343
  5. Maximizes transaction value
344
  """
345
 
346
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
347
+ super().__init__()
348
+ self.config = config or {}
349
+
350
+ # Standard reasoning parameters
351
+ self.min_confidence = self.config.get('min_confidence', 0.7)
352
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
353
+ self.learning_rate = self.config.get('learning_rate', 0.1)
354
+ self.strategy_weights = self.config.get('strategy_weights', {
355
+ "LOCAL_LLM": 0.8,
356
+ "CHAIN_OF_THOUGHT": 0.6,
357
+ "TREE_OF_THOUGHTS": 0.5,
358
+ "META_LEARNING": 0.4
359
+ })
360
+
361
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
362
  """Generate marketplace venture strategy."""
363
  try:
 
398
  5. Maximizes portfolio value
399
  """
400
 
401
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
402
+ super().__init__()
403
+ self.config = config or {}
404
+
405
+ # Standard reasoning parameters
406
+ self.min_confidence = self.config.get('min_confidence', 0.7)
407
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
408
+ self.learning_rate = self.config.get('learning_rate', 0.1)
409
+ self.strategy_weights = self.config.get('strategy_weights', {
410
+ "LOCAL_LLM": 0.8,
411
+ "CHAIN_OF_THOUGHT": 0.6,
412
+ "TREE_OF_THOUGHTS": 0.5,
413
+ "META_LEARNING": 0.4
414
+ })
415
+
416
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
417
  """Generate venture portfolio strategy."""
418
  try:
 
538
  super().__init__()
539
  self.config = config or {}
540
 
541
+ # Standard reasoning parameters
542
+ self.min_confidence = self.config.get('min_confidence', 0.7)
543
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
544
+ self.learning_rate = self.config.get('learning_rate', 0.1)
545
+ self.strategy_weights = self.config.get('strategy_weights', {
546
+ "LOCAL_LLM": 0.8,
547
+ "CHAIN_OF_THOUGHT": 0.6,
548
+ "TREE_OF_THOUGHTS": 0.5,
549
+ "META_LEARNING": 0.4
550
+ })
551
+
552
+ # Initialize component strategies with shared config
553
+ strategy_config = {
554
+ 'min_confidence': self.min_confidence,
555
+ 'parallel_threshold': self.parallel_threshold,
556
+ 'learning_rate': self.learning_rate,
557
+ 'strategy_weights': self.strategy_weights
558
+ }
559
+
560
  self.strategies = {
561
+ VentureType.AI_STARTUP: AIStartupStrategy(strategy_config),
562
+ VentureType.SAAS: SaaSVentureStrategy(strategy_config),
563
+ VentureType.AUTOMATION_SERVICE: AutomationVentureStrategy(strategy_config),
564
+ VentureType.DATA_ANALYTICS: DataVentureStrategy(strategy_config),
565
+ VentureType.API_SERVICE: APIVentureStrategy(strategy_config),
566
+ VentureType.MARKETPLACE: MarketplaceVentureStrategy(strategy_config)
567
  }
568
 
569
  # Portfolio strategy for multi-venture optimization
570
+ self.portfolio_strategy = VenturePortfolioStrategy(strategy_config)
571
 
572
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
573
  """
team_management.py CHANGED
@@ -486,7 +486,17 @@ class TeamManager:
486
  class Agent:
487
  def __init__(self, profile: Dict, reasoning_engine: UnifiedReasoningEngine, meta_learning: bool):
488
  self.profile = profile
489
- self.reasoning_engine = reasoning_engine
 
 
 
 
 
 
 
 
 
 
490
  self.meta_learning = meta_learning
491
  self.state = AgentState.IDLE
492
 
 
486
  class Agent:
487
  def __init__(self, profile: Dict, reasoning_engine: UnifiedReasoningEngine, meta_learning: bool):
488
  self.profile = profile
489
+ self.reasoning_engine = reasoning_engine if reasoning_engine else UnifiedReasoningEngine(
490
+ min_confidence=0.7,
491
+ parallel_threshold=3,
492
+ learning_rate=0.1,
493
+ strategy_weights={
494
+ "LOCAL_LLM": 0.8,
495
+ "CHAIN_OF_THOUGHT": 0.6,
496
+ "TREE_OF_THOUGHTS": 0.5,
497
+ "META_LEARNING": 0.4
498
+ }
499
+ )
500
  self.meta_learning = meta_learning
501
  self.state = AgentState.IDLE
502