Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- agentic_system.py +6 -6
- app.py +15 -3
- meta_learning.py +15 -1
- orchestrator.py +4 -4
- reasoning/analogical.py +20 -9
- reasoning/chain_of_thought.py +11 -6
- reasoning/emergent.py +24 -6
- reasoning/local_llm.py +20 -4
- reasoning/monetization.py +30 -2
- reasoning/multimodal.py +29 -2
- reasoning/neurosymbolic.py +12 -1
- reasoning/quantum.py +11 -0
- reasoning/recursive.py +19 -9
- reasoning/specialized.py +59 -9
- reasoning/tree_of_thoughts.py +17 -14
- reasoning/venture_strategies.py +131 -8
- team_management.py +11 -1
agentic_system.py
CHANGED
|
@@ -425,17 +425,17 @@ class AgenticSystem:
|
|
| 425 |
# Initialize components
|
| 426 |
self.agents: Dict[str, Agent] = {}
|
| 427 |
self.reasoning_engine = ReasoningEngine(
|
| 428 |
-
min_confidence=0.7,
|
| 429 |
-
parallel_threshold=3,
|
| 430 |
-
learning_rate=0.1,
|
| 431 |
-
strategy_weights={
|
| 432 |
"LOCAL_LLM": 0.8,
|
| 433 |
"CHAIN_OF_THOUGHT": 0.6,
|
| 434 |
"TREE_OF_THOUGHTS": 0.5,
|
| 435 |
"META_LEARNING": 0.4
|
| 436 |
-
}
|
| 437 |
)
|
| 438 |
-
self.meta_learning = MetaLearningStrategy()
|
| 439 |
|
| 440 |
# System state
|
| 441 |
self.state = "initialized"
|
|
|
|
| 425 |
# Initialize components
|
| 426 |
self.agents: Dict[str, Agent] = {}
|
| 427 |
self.reasoning_engine = ReasoningEngine(
|
| 428 |
+
min_confidence=self.config.get('min_confidence', 0.7),
|
| 429 |
+
parallel_threshold=self.config.get('parallel_threshold', 3),
|
| 430 |
+
learning_rate=self.config.get('learning_rate', 0.1),
|
| 431 |
+
strategy_weights=self.config.get('strategy_weights', {
|
| 432 |
"LOCAL_LLM": 0.8,
|
| 433 |
"CHAIN_OF_THOUGHT": 0.6,
|
| 434 |
"TREE_OF_THOUGHTS": 0.5,
|
| 435 |
"META_LEARNING": 0.4
|
| 436 |
+
})
|
| 437 |
)
|
| 438 |
+
self.meta_learning = MetaLearningStrategy(config)
|
| 439 |
|
| 440 |
# System state
|
| 441 |
self.state = "initialized"
|
app.py
CHANGED
|
@@ -84,9 +84,21 @@ class ChatInterface:
|
|
| 84 |
if not check_network():
|
| 85 |
logger.warning("Network connectivity issues detected - continuing with degraded functionality")
|
| 86 |
|
| 87 |
-
# Initialize core components
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
self.team_manager = TeamManager(self.orchestrator)
|
| 91 |
self.chat_history = []
|
| 92 |
self.active_objectives = {}
|
|
|
|
| 84 |
if not check_network():
|
| 85 |
logger.warning("Network connectivity issues detected - continuing with degraded functionality")
|
| 86 |
|
| 87 |
+
# Initialize core components with consistent configuration
|
| 88 |
+
config = {
|
| 89 |
+
"min_confidence": 0.7,
|
| 90 |
+
"parallel_threshold": 3,
|
| 91 |
+
"learning_rate": 0.1,
|
| 92 |
+
"strategy_weights": {
|
| 93 |
+
"LOCAL_LLM": 0.8,
|
| 94 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
| 95 |
+
"TREE_OF_THOUGHTS": 0.5,
|
| 96 |
+
"META_LEARNING": 0.4
|
| 97 |
+
}
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
self.orchestrator = AgentOrchestrator(config)
|
| 101 |
+
self.agentic_system = AgenticSystem(config)
|
| 102 |
self.team_manager = TeamManager(self.orchestrator)
|
| 103 |
self.chat_history = []
|
| 104 |
self.active_objectives = {}
|
meta_learning.py
CHANGED
|
@@ -44,7 +44,21 @@ class MetaLearningSystem:
|
|
| 44 |
|
| 45 |
def __init__(self):
|
| 46 |
self.logger = logging.getLogger(__name__)
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
self.strategies = {}
|
| 49 |
self.performance_history = []
|
| 50 |
self.meta_parameters = MetaParameters()
|
|
|
|
| 44 |
|
| 45 |
def __init__(self):
|
| 46 |
self.logger = logging.getLogger(__name__)
|
| 47 |
+
|
| 48 |
+
# Initialize quantum system with consistent configuration
|
| 49 |
+
quantum_config = {
|
| 50 |
+
"min_confidence": 0.7,
|
| 51 |
+
"parallel_threshold": 3,
|
| 52 |
+
"learning_rate": 0.1,
|
| 53 |
+
"strategy_weights": {
|
| 54 |
+
"LOCAL_LLM": 0.8,
|
| 55 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
| 56 |
+
"TREE_OF_THOUGHTS": 0.5,
|
| 57 |
+
"META_LEARNING": 0.4
|
| 58 |
+
}
|
| 59 |
+
}
|
| 60 |
+
|
| 61 |
+
self.quantum_system = QuantumLearningSystem(quantum_config)
|
| 62 |
self.strategies = {}
|
| 63 |
self.performance_history = []
|
| 64 |
self.meta_parameters = MetaParameters()
|
orchestrator.py
CHANGED
|
@@ -124,10 +124,10 @@ class AgentOrchestrator:
|
|
| 124 |
parallel_threshold=5,
|
| 125 |
learning_rate=0.1,
|
| 126 |
strategy_weights={
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
}
|
| 132 |
)
|
| 133 |
|
|
|
|
| 124 |
parallel_threshold=5,
|
| 125 |
learning_rate=0.1,
|
| 126 |
strategy_weights={
|
| 127 |
+
"LOCAL_LLM": 2.0,
|
| 128 |
+
"CHAIN_OF_THOUGHT": 1.0,
|
| 129 |
+
"TREE_OF_THOUGHTS": 1.0,
|
| 130 |
+
"META_LEARNING": 1.5
|
| 131 |
}
|
| 132 |
)
|
| 133 |
|
reasoning/analogical.py
CHANGED
|
@@ -74,15 +74,26 @@ class AnalogicalReasoning(ReasoningStrategy):
|
|
| 74 |
- Learning from experience
|
| 75 |
"""
|
| 76 |
|
| 77 |
-
def __init__(self,
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
self.
|
| 84 |
-
self.
|
| 85 |
-
self.learning_rate = learning_rate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
# Knowledge base
|
| 88 |
self.patterns: Dict[str, AnalogicalPattern] = {}
|
|
|
|
| 74 |
- Learning from experience
|
| 75 |
"""
|
| 76 |
|
| 77 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
| 78 |
+
"""Initialize analogical reasoning."""
|
| 79 |
+
super().__init__()
|
| 80 |
+
self.config = config or {}
|
| 81 |
+
|
| 82 |
+
# Standard reasoning parameters
|
| 83 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
| 84 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
| 85 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
| 86 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
| 87 |
+
"LOCAL_LLM": 0.8,
|
| 88 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
| 89 |
+
"TREE_OF_THOUGHTS": 0.5,
|
| 90 |
+
"META_LEARNING": 0.4
|
| 91 |
+
})
|
| 92 |
+
|
| 93 |
+
# Analogical reasoning specific parameters
|
| 94 |
+
self.min_similarity = self.config.get('min_similarity', 0.6)
|
| 95 |
+
self.max_candidates = self.config.get('max_candidates', 5)
|
| 96 |
+
self.adaptation_threshold = self.config.get('adaptation_threshold', 0.7)
|
| 97 |
|
| 98 |
# Knowledge base
|
| 99 |
self.patterns: Dict[str, AnalogicalPattern] = {}
|
reasoning/chain_of_thought.py
CHANGED
|
@@ -41,14 +41,19 @@ class ChainOfThoughtStrategy(ReasoningStrategy):
|
|
| 41 |
"""
|
| 42 |
|
| 43 |
def __init__(self,
|
| 44 |
-
max_chain_length: int = 10,
|
| 45 |
min_confidence: float = 0.7,
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
self.min_confidence = min_confidence
|
| 50 |
-
self.
|
| 51 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
self.thought_history: List[Thought] = []
|
| 53 |
|
| 54 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
|
| 41 |
"""
|
| 42 |
|
| 43 |
def __init__(self,
|
|
|
|
| 44 |
min_confidence: float = 0.7,
|
| 45 |
+
parallel_threshold: int = 3,
|
| 46 |
+
learning_rate: float = 0.1,
|
| 47 |
+
strategy_weights: Optional[Dict[str, float]] = None):
|
| 48 |
self.min_confidence = min_confidence
|
| 49 |
+
self.parallel_threshold = parallel_threshold
|
| 50 |
+
self.learning_rate = learning_rate
|
| 51 |
+
self.strategy_weights = strategy_weights or {
|
| 52 |
+
"LOCAL_LLM": 0.8,
|
| 53 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
| 54 |
+
"TREE_OF_THOUGHTS": 0.5,
|
| 55 |
+
"META_LEARNING": 0.4
|
| 56 |
+
}
|
| 57 |
self.thought_history: List[Thought] = []
|
| 58 |
|
| 59 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
reasoning/emergent.py
CHANGED
|
@@ -22,17 +22,35 @@ class EmergentReasoning(ReasoningStrategy):
|
|
| 22 |
super().__init__()
|
| 23 |
self.config = config or {}
|
| 24 |
|
| 25 |
-
#
|
| 26 |
-
self.
|
| 27 |
-
self.
|
| 28 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
# Configure weights for strategy combination
|
| 31 |
-
self.weights = {
|
| 32 |
'meta': 0.4,
|
| 33 |
'chain': 0.3,
|
| 34 |
'tree': 0.3
|
| 35 |
-
}
|
| 36 |
|
| 37 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 38 |
"""
|
|
|
|
| 22 |
super().__init__()
|
| 23 |
self.config = config or {}
|
| 24 |
|
| 25 |
+
# Standard reasoning parameters
|
| 26 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
| 27 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
| 28 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
| 29 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
| 30 |
+
"LOCAL_LLM": 0.8,
|
| 31 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
| 32 |
+
"TREE_OF_THOUGHTS": 0.5,
|
| 33 |
+
"META_LEARNING": 0.4
|
| 34 |
+
})
|
| 35 |
+
|
| 36 |
+
# Initialize component strategies with shared config
|
| 37 |
+
strategy_config = {
|
| 38 |
+
'min_confidence': self.min_confidence,
|
| 39 |
+
'parallel_threshold': self.parallel_threshold,
|
| 40 |
+
'learning_rate': self.learning_rate,
|
| 41 |
+
'strategy_weights': self.strategy_weights
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
self.meta_learner = MetaLearningStrategy(strategy_config)
|
| 45 |
+
self.chain_of_thought = ChainOfThoughtStrategy(strategy_config)
|
| 46 |
+
self.tree_of_thoughts = TreeOfThoughtsStrategy(strategy_config)
|
| 47 |
|
| 48 |
# Configure weights for strategy combination
|
| 49 |
+
self.weights = self.config.get('combination_weights', {
|
| 50 |
'meta': 0.4,
|
| 51 |
'chain': 0.3,
|
| 52 |
'tree': 0.3
|
| 53 |
+
})
|
| 54 |
|
| 55 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 56 |
"""
|
reasoning/local_llm.py
CHANGED
|
@@ -11,11 +11,27 @@ from .base import ReasoningStrategy
|
|
| 11 |
class LocalLLMStrategy(ReasoningStrategy):
|
| 12 |
"""Implements reasoning using local LLM."""
|
| 13 |
|
| 14 |
-
def __init__(self):
|
| 15 |
"""Initialize the local LLM strategy."""
|
| 16 |
-
|
| 17 |
-
self.
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
self.logger = logging.getLogger(__name__)
|
| 20 |
self.model = None
|
| 21 |
|
|
|
|
| 11 |
class LocalLLMStrategy(ReasoningStrategy):
|
| 12 |
"""Implements reasoning using local LLM."""
|
| 13 |
|
| 14 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
| 15 |
"""Initialize the local LLM strategy."""
|
| 16 |
+
super().__init__()
|
| 17 |
+
self.config = config or {}
|
| 18 |
+
|
| 19 |
+
# Configure parameters with defaults
|
| 20 |
+
self.repo_id = self.config.get('repo_id', "gpt-omni/mini-omni2")
|
| 21 |
+
self.filename = self.config.get('filename', "mini-omni2.gguf")
|
| 22 |
+
self.model_dir = self.config.get('model_dir', "models")
|
| 23 |
+
|
| 24 |
+
# Standard reasoning parameters
|
| 25 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
| 26 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
| 27 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
| 28 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
| 29 |
+
"LOCAL_LLM": 0.8,
|
| 30 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
| 31 |
+
"TREE_OF_THOUGHTS": 0.5,
|
| 32 |
+
"META_LEARNING": 0.4
|
| 33 |
+
})
|
| 34 |
+
|
| 35 |
self.logger = logging.getLogger(__name__)
|
| 36 |
self.model = None
|
| 37 |
|
reasoning/monetization.py
CHANGED
|
@@ -41,7 +41,16 @@ class MonetizationOptimizer:
|
|
| 41 |
5. Increases lifetime value
|
| 42 |
"""
|
| 43 |
|
| 44 |
-
def __init__(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
self.models: Dict[str, MonetizationModel] = {}
|
| 46 |
self.streams: Dict[str, RevenueStream] = {}
|
| 47 |
|
|
@@ -293,7 +302,26 @@ class MonetizationStrategy(ReasoningStrategy):
|
|
| 293 |
"""Initialize monetization strategy."""
|
| 294 |
super().__init__()
|
| 295 |
self.config = config or {}
|
| 296 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
|
| 298 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 299 |
"""
|
|
|
|
| 41 |
5. Increases lifetime value
|
| 42 |
"""
|
| 43 |
|
| 44 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
| 45 |
+
"""Initialize monetization optimizer."""
|
| 46 |
+
self.config = config or {}
|
| 47 |
+
|
| 48 |
+
# Configure optimization parameters
|
| 49 |
+
self.min_revenue = self.config.get('min_revenue', 1_000_000)
|
| 50 |
+
self.min_margin = self.config.get('min_margin', 0.3)
|
| 51 |
+
self.max_churn = self.config.get('max_churn', 0.1)
|
| 52 |
+
self.target_ltv = self.config.get('target_ltv', 1000)
|
| 53 |
+
|
| 54 |
self.models: Dict[str, MonetizationModel] = {}
|
| 55 |
self.streams: Dict[str, RevenueStream] = {}
|
| 56 |
|
|
|
|
| 302 |
"""Initialize monetization strategy."""
|
| 303 |
super().__init__()
|
| 304 |
self.config = config or {}
|
| 305 |
+
|
| 306 |
+
# Standard reasoning parameters
|
| 307 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
| 308 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
| 309 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
| 310 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
| 311 |
+
"LOCAL_LLM": 0.8,
|
| 312 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
| 313 |
+
"TREE_OF_THOUGHTS": 0.5,
|
| 314 |
+
"META_LEARNING": 0.4
|
| 315 |
+
})
|
| 316 |
+
|
| 317 |
+
# Initialize optimizer with shared config
|
| 318 |
+
optimizer_config = {
|
| 319 |
+
'min_revenue': self.config.get('min_revenue', 1_000_000),
|
| 320 |
+
'min_margin': self.config.get('min_margin', 0.3),
|
| 321 |
+
'max_churn': self.config.get('max_churn', 0.1),
|
| 322 |
+
'target_ltv': self.config.get('target_ltv', 1000)
|
| 323 |
+
}
|
| 324 |
+
self.optimizer = MonetizationOptimizer(optimizer_config)
|
| 325 |
|
| 326 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 327 |
"""
|
reasoning/multimodal.py
CHANGED
|
@@ -35,14 +35,41 @@ class MultiModalReasoning(ReasoningStrategy):
|
|
| 35 |
super().__init__()
|
| 36 |
self.config = config or {}
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
# Configure modality weights
|
| 39 |
-
self.weights = {
|
| 40 |
'text': 0.4,
|
| 41 |
'image': 0.3,
|
| 42 |
'audio': 0.1,
|
| 43 |
'video': 0.1,
|
| 44 |
'structured': 0.1
|
| 45 |
-
}
|
| 46 |
|
| 47 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 48 |
"""
|
|
|
|
| 35 |
super().__init__()
|
| 36 |
self.config = config or {}
|
| 37 |
|
| 38 |
+
# Standard reasoning parameters
|
| 39 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
| 40 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
| 41 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
| 42 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
| 43 |
+
"LOCAL_LLM": 0.8,
|
| 44 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
| 45 |
+
"TREE_OF_THOUGHTS": 0.5,
|
| 46 |
+
"META_LEARNING": 0.4
|
| 47 |
+
})
|
| 48 |
+
|
| 49 |
+
# Configure model repositories
|
| 50 |
+
self.models = self.config.get('models', {
|
| 51 |
+
'img2img': {
|
| 52 |
+
'repo_id': 'enhanceaiteam/Flux-Uncensored-V2',
|
| 53 |
+
'filename': 'Flux-Uncensored-V2.safetensors'
|
| 54 |
+
},
|
| 55 |
+
'img2vid': {
|
| 56 |
+
'repo_id': 'stabilityai/stable-video-diffusion-img2vid-xt',
|
| 57 |
+
'filename': 'svd_xt.safetensors'
|
| 58 |
+
},
|
| 59 |
+
'any2any': {
|
| 60 |
+
'repo_id': 'deepseek-ai/JanusFlow-1.3B',
|
| 61 |
+
'filename': 'janusflow-1.3b.safetensors'
|
| 62 |
+
}
|
| 63 |
+
})
|
| 64 |
+
|
| 65 |
# Configure modality weights
|
| 66 |
+
self.weights = self.config.get('modality_weights', {
|
| 67 |
'text': 0.4,
|
| 68 |
'image': 0.3,
|
| 69 |
'audio': 0.1,
|
| 70 |
'video': 0.1,
|
| 71 |
'structured': 0.1
|
| 72 |
+
})
|
| 73 |
|
| 74 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 75 |
"""
|
reasoning/neurosymbolic.py
CHANGED
|
@@ -43,7 +43,18 @@ class NeurosymbolicReasoning(ReasoningStrategy):
|
|
| 43 |
super().__init__()
|
| 44 |
self.config = config or {}
|
| 45 |
|
| 46 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
self.feature_threshold = self.config.get('feature_threshold', 0.1)
|
| 48 |
self.rule_confidence_threshold = self.config.get('rule_confidence', 0.7)
|
| 49 |
self.max_rules = self.config.get('max_rules', 10)
|
|
|
|
| 43 |
super().__init__()
|
| 44 |
self.config = config or {}
|
| 45 |
|
| 46 |
+
# Standard reasoning parameters
|
| 47 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
| 48 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
| 49 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
| 50 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
| 51 |
+
"LOCAL_LLM": 0.8,
|
| 52 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
| 53 |
+
"TREE_OF_THOUGHTS": 0.5,
|
| 54 |
+
"META_LEARNING": 0.4
|
| 55 |
+
})
|
| 56 |
+
|
| 57 |
+
# Neurosymbolic specific parameters
|
| 58 |
self.feature_threshold = self.config.get('feature_threshold', 0.1)
|
| 59 |
self.rule_confidence_threshold = self.config.get('rule_confidence', 0.7)
|
| 60 |
self.max_rules = self.config.get('max_rules', 10)
|
reasoning/quantum.py
CHANGED
|
@@ -34,6 +34,17 @@ class QuantumReasoning(ReasoningStrategy):
|
|
| 34 |
super().__init__()
|
| 35 |
self.config = config or {}
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
# Configure quantum parameters
|
| 38 |
self.num_qubits = self.config.get('num_qubits', 3)
|
| 39 |
self.measurement_threshold = self.config.get('measurement_threshold', 0.1)
|
|
|
|
| 34 |
super().__init__()
|
| 35 |
self.config = config or {}
|
| 36 |
|
| 37 |
+
# Standard reasoning parameters
|
| 38 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
| 39 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
| 40 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
| 41 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
| 42 |
+
"LOCAL_LLM": 0.8,
|
| 43 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
| 44 |
+
"TREE_OF_THOUGHTS": 0.5,
|
| 45 |
+
"META_LEARNING": 0.4
|
| 46 |
+
})
|
| 47 |
+
|
| 48 |
# Configure quantum parameters
|
| 49 |
self.num_qubits = self.config.get('num_qubits', 3)
|
| 50 |
self.measurement_threshold = self.config.get('measurement_threshold', 0.1)
|
reasoning/recursive.py
CHANGED
|
@@ -65,15 +65,25 @@ class RecursiveReasoning(ReasoningStrategy):
|
|
| 65 |
- Optimization strategies
|
| 66 |
"""
|
| 67 |
|
| 68 |
-
def __init__(self,
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
self.min_confidence = min_confidence
|
| 75 |
-
self.parallel_threshold = parallel_threshold
|
| 76 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
# Problem tracking
|
| 79 |
self.subproblems: Dict[str, Subproblem] = {}
|
|
|
|
| 65 |
- Optimization strategies
|
| 66 |
"""
|
| 67 |
|
| 68 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
| 69 |
+
"""Initialize recursive reasoning."""
|
| 70 |
+
super().__init__()
|
| 71 |
+
self.config = config or {}
|
| 72 |
+
|
| 73 |
+
# Standard reasoning parameters
|
| 74 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
| 75 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
| 76 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
| 77 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
| 78 |
+
"LOCAL_LLM": 0.8,
|
| 79 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
| 80 |
+
"TREE_OF_THOUGHTS": 0.5,
|
| 81 |
+
"META_LEARNING": 0.4
|
| 82 |
+
})
|
| 83 |
+
|
| 84 |
+
# Recursive reasoning specific parameters
|
| 85 |
+
self.max_depth = self.config.get('max_depth', 5)
|
| 86 |
+
self.optimization_rounds = self.config.get('optimization_rounds', 2)
|
| 87 |
|
| 88 |
# Problem tracking
|
| 89 |
self.subproblems: Dict[str, Subproblem] = {}
|
reasoning/specialized.py
CHANGED
|
@@ -22,16 +22,34 @@ class SpecializedReasoning(ReasoningStrategy):
|
|
| 22 |
super().__init__()
|
| 23 |
self.config = config or {}
|
| 24 |
|
| 25 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
self.strategies = {
|
| 27 |
-
'code_rewrite': CodeRewriteStrategy(),
|
| 28 |
-
'security_audit': SecurityAuditStrategy(),
|
| 29 |
-
'performance': PerformanceOptimizationStrategy(),
|
| 30 |
-
'testing': TestGenerationStrategy(),
|
| 31 |
-
'documentation': DocumentationStrategy(),
|
| 32 |
-
'api_design': APIDesignStrategy(),
|
| 33 |
-
'dependencies': DependencyManagementStrategy(),
|
| 34 |
-
'code_review': CodeReviewStrategy()
|
| 35 |
}
|
| 36 |
|
| 37 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
|
@@ -134,6 +152,10 @@ class CodeRewriteStrategy(ReasoningStrategy):
|
|
| 134 |
5. Ensures backward compatibility
|
| 135 |
"""
|
| 136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 138 |
"""Rewrite code while preserving functionality."""
|
| 139 |
try:
|
|
@@ -172,6 +194,10 @@ class SecurityAuditStrategy(ReasoningStrategy):
|
|
| 172 |
5. Monitors security state
|
| 173 |
"""
|
| 174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 176 |
"""Perform security audit and generate recommendations."""
|
| 177 |
try:
|
|
@@ -208,6 +234,10 @@ class PerformanceOptimizationStrategy(ReasoningStrategy):
|
|
| 208 |
5. Validates optimizations
|
| 209 |
"""
|
| 210 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 212 |
"""Optimize code performance."""
|
| 213 |
try:
|
|
@@ -244,6 +274,10 @@ class TestGenerationStrategy(ReasoningStrategy):
|
|
| 244 |
5. Maintains test suite
|
| 245 |
"""
|
| 246 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 248 |
"""Generate comprehensive test suite."""
|
| 249 |
try:
|
|
@@ -283,6 +317,10 @@ class DocumentationStrategy(ReasoningStrategy):
|
|
| 283 |
5. Validates completeness
|
| 284 |
"""
|
| 285 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 287 |
"""Generate and maintain documentation."""
|
| 288 |
try:
|
|
@@ -322,6 +360,10 @@ class APIDesignStrategy(ReasoningStrategy):
|
|
| 322 |
5. Maintains versioning
|
| 323 |
"""
|
| 324 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 326 |
"""Design and validate API."""
|
| 327 |
try:
|
|
@@ -358,6 +400,10 @@ class DependencyManagementStrategy(ReasoningStrategy):
|
|
| 358 |
5. Maintains security
|
| 359 |
"""
|
| 360 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 361 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 362 |
"""Manage and optimize dependencies."""
|
| 363 |
try:
|
|
@@ -394,6 +440,10 @@ class CodeReviewStrategy(ReasoningStrategy):
|
|
| 394 |
5. Validates fixes
|
| 395 |
"""
|
| 396 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 397 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 398 |
"""Perform comprehensive code review."""
|
| 399 |
try:
|
|
|
|
| 22 |
super().__init__()
|
| 23 |
self.config = config or {}
|
| 24 |
|
| 25 |
+
# Standard reasoning parameters
|
| 26 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
| 27 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
| 28 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
| 29 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
| 30 |
+
"LOCAL_LLM": 0.8,
|
| 31 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
| 32 |
+
"TREE_OF_THOUGHTS": 0.5,
|
| 33 |
+
"META_LEARNING": 0.4
|
| 34 |
+
})
|
| 35 |
+
|
| 36 |
+
# Initialize component strategies with shared config
|
| 37 |
+
strategy_config = {
|
| 38 |
+
'min_confidence': self.min_confidence,
|
| 39 |
+
'parallel_threshold': self.parallel_threshold,
|
| 40 |
+
'learning_rate': self.learning_rate,
|
| 41 |
+
'strategy_weights': self.strategy_weights
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
self.strategies = {
|
| 45 |
+
'code_rewrite': CodeRewriteStrategy(strategy_config),
|
| 46 |
+
'security_audit': SecurityAuditStrategy(strategy_config),
|
| 47 |
+
'performance': PerformanceOptimizationStrategy(strategy_config),
|
| 48 |
+
'testing': TestGenerationStrategy(strategy_config),
|
| 49 |
+
'documentation': DocumentationStrategy(strategy_config),
|
| 50 |
+
'api_design': APIDesignStrategy(strategy_config),
|
| 51 |
+
'dependencies': DependencyManagementStrategy(strategy_config),
|
| 52 |
+
'code_review': CodeReviewStrategy(strategy_config)
|
| 53 |
}
|
| 54 |
|
| 55 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
|
| 152 |
5. Ensures backward compatibility
|
| 153 |
"""
|
| 154 |
|
| 155 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
| 156 |
+
super().__init__()
|
| 157 |
+
self.config = config or {}
|
| 158 |
+
|
| 159 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 160 |
"""Rewrite code while preserving functionality."""
|
| 161 |
try:
|
|
|
|
| 194 |
5. Monitors security state
|
| 195 |
"""
|
| 196 |
|
| 197 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
| 198 |
+
super().__init__()
|
| 199 |
+
self.config = config or {}
|
| 200 |
+
|
| 201 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 202 |
"""Perform security audit and generate recommendations."""
|
| 203 |
try:
|
|
|
|
| 234 |
5. Validates optimizations
|
| 235 |
"""
|
| 236 |
|
| 237 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
| 238 |
+
super().__init__()
|
| 239 |
+
self.config = config or {}
|
| 240 |
+
|
| 241 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 242 |
"""Optimize code performance."""
|
| 243 |
try:
|
|
|
|
| 274 |
5. Maintains test suite
|
| 275 |
"""
|
| 276 |
|
| 277 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
| 278 |
+
super().__init__()
|
| 279 |
+
self.config = config or {}
|
| 280 |
+
|
| 281 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 282 |
"""Generate comprehensive test suite."""
|
| 283 |
try:
|
|
|
|
| 317 |
5. Validates completeness
|
| 318 |
"""
|
| 319 |
|
| 320 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
| 321 |
+
super().__init__()
|
| 322 |
+
self.config = config or {}
|
| 323 |
+
|
| 324 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 325 |
"""Generate and maintain documentation."""
|
| 326 |
try:
|
|
|
|
| 360 |
5. Maintains versioning
|
| 361 |
"""
|
| 362 |
|
| 363 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
| 364 |
+
super().__init__()
|
| 365 |
+
self.config = config or {}
|
| 366 |
+
|
| 367 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 368 |
"""Design and validate API."""
|
| 369 |
try:
|
|
|
|
| 400 |
5. Maintains security
|
| 401 |
"""
|
| 402 |
|
| 403 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
| 404 |
+
super().__init__()
|
| 405 |
+
self.config = config or {}
|
| 406 |
+
|
| 407 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 408 |
"""Manage and optimize dependencies."""
|
| 409 |
try:
|
|
|
|
| 440 |
5. Validates fixes
|
| 441 |
"""
|
| 442 |
|
| 443 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
| 444 |
+
super().__init__()
|
| 445 |
+
self.config = config or {}
|
| 446 |
+
|
| 447 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 448 |
"""Perform comprehensive code review."""
|
| 449 |
try:
|
reasoning/tree_of_thoughts.py
CHANGED
|
@@ -44,16 +44,19 @@ class TreeOfThoughtsStrategy(ReasoningStrategy):
|
|
| 44 |
"""
|
| 45 |
|
| 46 |
def __init__(self,
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
prune_threshold: float = 0.4):
|
| 52 |
-
self.max_depth = max_depth
|
| 53 |
-
self.beam_width = beam_width
|
| 54 |
self.min_confidence = min_confidence
|
| 55 |
-
self.
|
| 56 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
self.node_history: Dict[str, TreeNode] = {}
|
| 58 |
self.path_patterns: Dict[str, float] = defaultdict(float)
|
| 59 |
|
|
@@ -119,7 +122,7 @@ class TreeOfThoughtsStrategy(ReasoningStrategy):
|
|
| 119 |
beam = [(root.evaluation_score, root)]
|
| 120 |
visited: Set[str] = set()
|
| 121 |
|
| 122 |
-
for depth in range(
|
| 123 |
next_beam = []
|
| 124 |
|
| 125 |
for _, node in beam:
|
|
@@ -136,12 +139,12 @@ class TreeOfThoughtsStrategy(ReasoningStrategy):
|
|
| 136 |
|
| 137 |
# Add to beam
|
| 138 |
for child in evaluated_children:
|
| 139 |
-
if child.evaluation_score >
|
| 140 |
next_beam.append((child.evaluation_score, child))
|
| 141 |
node.children.append(child)
|
| 142 |
|
| 143 |
# Select best nodes for next iteration
|
| 144 |
-
beam = heapq.nlargest(
|
| 145 |
|
| 146 |
if not beam:
|
| 147 |
break
|
|
@@ -213,7 +216,7 @@ class TreeOfThoughtsStrategy(ReasoningStrategy):
|
|
| 213 |
sorted_children = sorted(node.children, key=lambda x: x.evaluation_score, reverse=True)
|
| 214 |
|
| 215 |
# Explore top paths
|
| 216 |
-
for child in sorted_children[:
|
| 217 |
path.append(child)
|
| 218 |
dfs(child, path)
|
| 219 |
path.pop()
|
|
@@ -224,7 +227,7 @@ class TreeOfThoughtsStrategy(ReasoningStrategy):
|
|
| 224 |
evaluated_paths = await self._evaluate_paths(paths, context)
|
| 225 |
|
| 226 |
# Return top paths
|
| 227 |
-
return sorted(evaluated_paths, key=lambda p: sum(n.evaluation_score for n in p), reverse=True)[:
|
| 228 |
|
| 229 |
async def _synthesize_conclusion(self, paths: List[List[TreeNode]], context: Dict[str, Any]) -> Dict[str, Any]:
|
| 230 |
"""Synthesize final conclusion from best paths."""
|
|
|
|
| 44 |
"""
|
| 45 |
|
| 46 |
def __init__(self,
|
| 47 |
+
min_confidence: float = 0.7,
|
| 48 |
+
parallel_threshold: int = 3,
|
| 49 |
+
learning_rate: float = 0.1,
|
| 50 |
+
strategy_weights: Optional[Dict[str, float]] = None):
|
|
|
|
|
|
|
|
|
|
| 51 |
self.min_confidence = min_confidence
|
| 52 |
+
self.parallel_threshold = parallel_threshold
|
| 53 |
+
self.learning_rate = learning_rate
|
| 54 |
+
self.strategy_weights = strategy_weights or {
|
| 55 |
+
"LOCAL_LLM": 0.8,
|
| 56 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
| 57 |
+
"TREE_OF_THOUGHTS": 0.5,
|
| 58 |
+
"META_LEARNING": 0.4
|
| 59 |
+
}
|
| 60 |
self.node_history: Dict[str, TreeNode] = {}
|
| 61 |
self.path_patterns: Dict[str, float] = defaultdict(float)
|
| 62 |
|
|
|
|
| 122 |
beam = [(root.evaluation_score, root)]
|
| 123 |
visited: Set[str] = set()
|
| 124 |
|
| 125 |
+
for depth in range(5):
|
| 126 |
next_beam = []
|
| 127 |
|
| 128 |
for _, node in beam:
|
|
|
|
| 139 |
|
| 140 |
# Add to beam
|
| 141 |
for child in evaluated_children:
|
| 142 |
+
if child.evaluation_score > 0.4:
|
| 143 |
next_beam.append((child.evaluation_score, child))
|
| 144 |
node.children.append(child)
|
| 145 |
|
| 146 |
# Select best nodes for next iteration
|
| 147 |
+
beam = heapq.nlargest(3, next_beam, key=lambda x: x[0])
|
| 148 |
|
| 149 |
if not beam:
|
| 150 |
break
|
|
|
|
| 216 |
sorted_children = sorted(node.children, key=lambda x: x.evaluation_score, reverse=True)
|
| 217 |
|
| 218 |
# Explore top paths
|
| 219 |
+
for child in sorted_children[:3]:
|
| 220 |
path.append(child)
|
| 221 |
dfs(child, path)
|
| 222 |
path.pop()
|
|
|
|
| 227 |
evaluated_paths = await self._evaluate_paths(paths, context)
|
| 228 |
|
| 229 |
# Return top paths
|
| 230 |
+
return sorted(evaluated_paths, key=lambda p: sum(n.evaluation_score for n in p), reverse=True)[:3]
|
| 231 |
|
| 232 |
async def _synthesize_conclusion(self, paths: List[List[TreeNode]], context: Dict[str, Any]) -> Dict[str, Any]:
|
| 233 |
"""Synthesize final conclusion from best paths."""
|
reasoning/venture_strategies.py
CHANGED
|
@@ -67,6 +67,21 @@ class AIStartupStrategy(ReasoningStrategy):
|
|
| 67 |
5. Optimizes revenue streams
|
| 68 |
"""
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 71 |
"""Generate AI startup strategy."""
|
| 72 |
try:
|
|
@@ -108,6 +123,21 @@ class SaaSVentureStrategy(ReasoningStrategy):
|
|
| 108 |
5. Maximizes recurring revenue
|
| 109 |
"""
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 112 |
"""Generate SaaS venture strategy."""
|
| 113 |
try:
|
|
@@ -148,6 +178,21 @@ class AutomationVentureStrategy(ReasoningStrategy):
|
|
| 148 |
5. Maximizes ROI
|
| 149 |
"""
|
| 150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 152 |
"""Generate automation venture strategy."""
|
| 153 |
try:
|
|
@@ -188,6 +233,21 @@ class DataVentureStrategy(ReasoningStrategy):
|
|
| 188 |
5. Maximizes data value
|
| 189 |
"""
|
| 190 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 192 |
"""Generate data venture strategy."""
|
| 193 |
try:
|
|
@@ -228,6 +288,21 @@ class APIVentureStrategy(ReasoningStrategy):
|
|
| 228 |
5. Maximizes API value
|
| 229 |
"""
|
| 230 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 232 |
"""Generate API venture strategy."""
|
| 233 |
try:
|
|
@@ -268,6 +343,21 @@ class MarketplaceVentureStrategy(ReasoningStrategy):
|
|
| 268 |
5. Maximizes transaction value
|
| 269 |
"""
|
| 270 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 272 |
"""Generate marketplace venture strategy."""
|
| 273 |
try:
|
|
@@ -308,6 +398,21 @@ class VenturePortfolioStrategy(ReasoningStrategy):
|
|
| 308 |
5. Maximizes portfolio value
|
| 309 |
"""
|
| 310 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 311 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 312 |
"""Generate venture portfolio strategy."""
|
| 313 |
try:
|
|
@@ -433,18 +538,36 @@ class VentureStrategy(ReasoningStrategy):
|
|
| 433 |
super().__init__()
|
| 434 |
self.config = config or {}
|
| 435 |
|
| 436 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 437 |
self.strategies = {
|
| 438 |
-
VentureType.AI_STARTUP: AIStartupStrategy(),
|
| 439 |
-
VentureType.SAAS: SaaSVentureStrategy(),
|
| 440 |
-
VentureType.AUTOMATION_SERVICE: AutomationVentureStrategy(),
|
| 441 |
-
VentureType.DATA_ANALYTICS: DataVentureStrategy(),
|
| 442 |
-
VentureType.API_SERVICE: APIVentureStrategy(),
|
| 443 |
-
VentureType.MARKETPLACE: MarketplaceVentureStrategy()
|
| 444 |
}
|
| 445 |
|
| 446 |
# Portfolio strategy for multi-venture optimization
|
| 447 |
-
self.portfolio_strategy = VenturePortfolioStrategy()
|
| 448 |
|
| 449 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 450 |
"""
|
|
|
|
| 67 |
5. Optimizes revenue streams
|
| 68 |
"""
|
| 69 |
|
| 70 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
| 71 |
+
super().__init__()
|
| 72 |
+
self.config = config or {}
|
| 73 |
+
|
| 74 |
+
# Standard reasoning parameters
|
| 75 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
| 76 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
| 77 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
| 78 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
| 79 |
+
"LOCAL_LLM": 0.8,
|
| 80 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
| 81 |
+
"TREE_OF_THOUGHTS": 0.5,
|
| 82 |
+
"META_LEARNING": 0.4
|
| 83 |
+
})
|
| 84 |
+
|
| 85 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 86 |
"""Generate AI startup strategy."""
|
| 87 |
try:
|
|
|
|
| 123 |
5. Maximizes recurring revenue
|
| 124 |
"""
|
| 125 |
|
| 126 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
| 127 |
+
super().__init__()
|
| 128 |
+
self.config = config or {}
|
| 129 |
+
|
| 130 |
+
# Standard reasoning parameters
|
| 131 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
| 132 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
| 133 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
| 134 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
| 135 |
+
"LOCAL_LLM": 0.8,
|
| 136 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
| 137 |
+
"TREE_OF_THOUGHTS": 0.5,
|
| 138 |
+
"META_LEARNING": 0.4
|
| 139 |
+
})
|
| 140 |
+
|
| 141 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 142 |
"""Generate SaaS venture strategy."""
|
| 143 |
try:
|
|
|
|
| 178 |
5. Maximizes ROI
|
| 179 |
"""
|
| 180 |
|
| 181 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
| 182 |
+
super().__init__()
|
| 183 |
+
self.config = config or {}
|
| 184 |
+
|
| 185 |
+
# Standard reasoning parameters
|
| 186 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
| 187 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
| 188 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
| 189 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
| 190 |
+
"LOCAL_LLM": 0.8,
|
| 191 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
| 192 |
+
"TREE_OF_THOUGHTS": 0.5,
|
| 193 |
+
"META_LEARNING": 0.4
|
| 194 |
+
})
|
| 195 |
+
|
| 196 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 197 |
"""Generate automation venture strategy."""
|
| 198 |
try:
|
|
|
|
| 233 |
5. Maximizes data value
|
| 234 |
"""
|
| 235 |
|
| 236 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
| 237 |
+
super().__init__()
|
| 238 |
+
self.config = config or {}
|
| 239 |
+
|
| 240 |
+
# Standard reasoning parameters
|
| 241 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
| 242 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
| 243 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
| 244 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
| 245 |
+
"LOCAL_LLM": 0.8,
|
| 246 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
| 247 |
+
"TREE_OF_THOUGHTS": 0.5,
|
| 248 |
+
"META_LEARNING": 0.4
|
| 249 |
+
})
|
| 250 |
+
|
| 251 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 252 |
"""Generate data venture strategy."""
|
| 253 |
try:
|
|
|
|
| 288 |
5. Maximizes API value
|
| 289 |
"""
|
| 290 |
|
| 291 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
| 292 |
+
super().__init__()
|
| 293 |
+
self.config = config or {}
|
| 294 |
+
|
| 295 |
+
# Standard reasoning parameters
|
| 296 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
| 297 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
| 298 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
| 299 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
| 300 |
+
"LOCAL_LLM": 0.8,
|
| 301 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
| 302 |
+
"TREE_OF_THOUGHTS": 0.5,
|
| 303 |
+
"META_LEARNING": 0.4
|
| 304 |
+
})
|
| 305 |
+
|
| 306 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 307 |
"""Generate API venture strategy."""
|
| 308 |
try:
|
|
|
|
| 343 |
5. Maximizes transaction value
|
| 344 |
"""
|
| 345 |
|
| 346 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
| 347 |
+
super().__init__()
|
| 348 |
+
self.config = config or {}
|
| 349 |
+
|
| 350 |
+
# Standard reasoning parameters
|
| 351 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
| 352 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
| 353 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
| 354 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
| 355 |
+
"LOCAL_LLM": 0.8,
|
| 356 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
| 357 |
+
"TREE_OF_THOUGHTS": 0.5,
|
| 358 |
+
"META_LEARNING": 0.4
|
| 359 |
+
})
|
| 360 |
+
|
| 361 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 362 |
"""Generate marketplace venture strategy."""
|
| 363 |
try:
|
|
|
|
| 398 |
5. Maximizes portfolio value
|
| 399 |
"""
|
| 400 |
|
| 401 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
| 402 |
+
super().__init__()
|
| 403 |
+
self.config = config or {}
|
| 404 |
+
|
| 405 |
+
# Standard reasoning parameters
|
| 406 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
| 407 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
| 408 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
| 409 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
| 410 |
+
"LOCAL_LLM": 0.8,
|
| 411 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
| 412 |
+
"TREE_OF_THOUGHTS": 0.5,
|
| 413 |
+
"META_LEARNING": 0.4
|
| 414 |
+
})
|
| 415 |
+
|
| 416 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 417 |
"""Generate venture portfolio strategy."""
|
| 418 |
try:
|
|
|
|
| 538 |
super().__init__()
|
| 539 |
self.config = config or {}
|
| 540 |
|
| 541 |
+
# Standard reasoning parameters
|
| 542 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
| 543 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
| 544 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
| 545 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
| 546 |
+
"LOCAL_LLM": 0.8,
|
| 547 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
| 548 |
+
"TREE_OF_THOUGHTS": 0.5,
|
| 549 |
+
"META_LEARNING": 0.4
|
| 550 |
+
})
|
| 551 |
+
|
| 552 |
+
# Initialize component strategies with shared config
|
| 553 |
+
strategy_config = {
|
| 554 |
+
'min_confidence': self.min_confidence,
|
| 555 |
+
'parallel_threshold': self.parallel_threshold,
|
| 556 |
+
'learning_rate': self.learning_rate,
|
| 557 |
+
'strategy_weights': self.strategy_weights
|
| 558 |
+
}
|
| 559 |
+
|
| 560 |
self.strategies = {
|
| 561 |
+
VentureType.AI_STARTUP: AIStartupStrategy(strategy_config),
|
| 562 |
+
VentureType.SAAS: SaaSVentureStrategy(strategy_config),
|
| 563 |
+
VentureType.AUTOMATION_SERVICE: AutomationVentureStrategy(strategy_config),
|
| 564 |
+
VentureType.DATA_ANALYTICS: DataVentureStrategy(strategy_config),
|
| 565 |
+
VentureType.API_SERVICE: APIVentureStrategy(strategy_config),
|
| 566 |
+
VentureType.MARKETPLACE: MarketplaceVentureStrategy(strategy_config)
|
| 567 |
}
|
| 568 |
|
| 569 |
# Portfolio strategy for multi-venture optimization
|
| 570 |
+
self.portfolio_strategy = VenturePortfolioStrategy(strategy_config)
|
| 571 |
|
| 572 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
| 573 |
"""
|
team_management.py
CHANGED
|
@@ -486,7 +486,17 @@ class TeamManager:
|
|
| 486 |
class Agent:
|
| 487 |
def __init__(self, profile: Dict, reasoning_engine: UnifiedReasoningEngine, meta_learning: bool):
|
| 488 |
self.profile = profile
|
| 489 |
-
self.reasoning_engine = reasoning_engine
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 490 |
self.meta_learning = meta_learning
|
| 491 |
self.state = AgentState.IDLE
|
| 492 |
|
|
|
|
| 486 |
class Agent:
|
| 487 |
def __init__(self, profile: Dict, reasoning_engine: UnifiedReasoningEngine, meta_learning: bool):
|
| 488 |
self.profile = profile
|
| 489 |
+
self.reasoning_engine = reasoning_engine if reasoning_engine else UnifiedReasoningEngine(
|
| 490 |
+
min_confidence=0.7,
|
| 491 |
+
parallel_threshold=3,
|
| 492 |
+
learning_rate=0.1,
|
| 493 |
+
strategy_weights={
|
| 494 |
+
"LOCAL_LLM": 0.8,
|
| 495 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
| 496 |
+
"TREE_OF_THOUGHTS": 0.5,
|
| 497 |
+
"META_LEARNING": 0.4
|
| 498 |
+
}
|
| 499 |
+
)
|
| 500 |
self.meta_learning = meta_learning
|
| 501 |
self.state = AgentState.IDLE
|
| 502 |
|