Spaces:
Runtime error
Runtime error
nananie143
commited on
Upload folder using huggingface_hub
Browse files- agentic_system.py +6 -6
- app.py +15 -3
- meta_learning.py +15 -1
- orchestrator.py +4 -4
- reasoning/analogical.py +20 -9
- reasoning/chain_of_thought.py +11 -6
- reasoning/emergent.py +24 -6
- reasoning/local_llm.py +20 -4
- reasoning/monetization.py +30 -2
- reasoning/multimodal.py +29 -2
- reasoning/neurosymbolic.py +12 -1
- reasoning/quantum.py +11 -0
- reasoning/recursive.py +19 -9
- reasoning/specialized.py +59 -9
- reasoning/tree_of_thoughts.py +17 -14
- reasoning/venture_strategies.py +131 -8
- team_management.py +11 -1
agentic_system.py
CHANGED
@@ -425,17 +425,17 @@ class AgenticSystem:
|
|
425 |
# Initialize components
|
426 |
self.agents: Dict[str, Agent] = {}
|
427 |
self.reasoning_engine = ReasoningEngine(
|
428 |
-
min_confidence=0.7,
|
429 |
-
parallel_threshold=3,
|
430 |
-
learning_rate=0.1,
|
431 |
-
strategy_weights={
|
432 |
"LOCAL_LLM": 0.8,
|
433 |
"CHAIN_OF_THOUGHT": 0.6,
|
434 |
"TREE_OF_THOUGHTS": 0.5,
|
435 |
"META_LEARNING": 0.4
|
436 |
-
}
|
437 |
)
|
438 |
-
self.meta_learning = MetaLearningStrategy()
|
439 |
|
440 |
# System state
|
441 |
self.state = "initialized"
|
|
|
425 |
# Initialize components
|
426 |
self.agents: Dict[str, Agent] = {}
|
427 |
self.reasoning_engine = ReasoningEngine(
|
428 |
+
min_confidence=self.config.get('min_confidence', 0.7),
|
429 |
+
parallel_threshold=self.config.get('parallel_threshold', 3),
|
430 |
+
learning_rate=self.config.get('learning_rate', 0.1),
|
431 |
+
strategy_weights=self.config.get('strategy_weights', {
|
432 |
"LOCAL_LLM": 0.8,
|
433 |
"CHAIN_OF_THOUGHT": 0.6,
|
434 |
"TREE_OF_THOUGHTS": 0.5,
|
435 |
"META_LEARNING": 0.4
|
436 |
+
})
|
437 |
)
|
438 |
+
self.meta_learning = MetaLearningStrategy(config)
|
439 |
|
440 |
# System state
|
441 |
self.state = "initialized"
|
app.py
CHANGED
@@ -84,9 +84,21 @@ class ChatInterface:
|
|
84 |
if not check_network():
|
85 |
logger.warning("Network connectivity issues detected - continuing with degraded functionality")
|
86 |
|
87 |
-
# Initialize core components
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
self.team_manager = TeamManager(self.orchestrator)
|
91 |
self.chat_history = []
|
92 |
self.active_objectives = {}
|
|
|
84 |
if not check_network():
|
85 |
logger.warning("Network connectivity issues detected - continuing with degraded functionality")
|
86 |
|
87 |
+
# Initialize core components with consistent configuration
|
88 |
+
config = {
|
89 |
+
"min_confidence": 0.7,
|
90 |
+
"parallel_threshold": 3,
|
91 |
+
"learning_rate": 0.1,
|
92 |
+
"strategy_weights": {
|
93 |
+
"LOCAL_LLM": 0.8,
|
94 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
95 |
+
"TREE_OF_THOUGHTS": 0.5,
|
96 |
+
"META_LEARNING": 0.4
|
97 |
+
}
|
98 |
+
}
|
99 |
+
|
100 |
+
self.orchestrator = AgentOrchestrator(config)
|
101 |
+
self.agentic_system = AgenticSystem(config)
|
102 |
self.team_manager = TeamManager(self.orchestrator)
|
103 |
self.chat_history = []
|
104 |
self.active_objectives = {}
|
meta_learning.py
CHANGED
@@ -44,7 +44,21 @@ class MetaLearningSystem:
|
|
44 |
|
45 |
def __init__(self):
|
46 |
self.logger = logging.getLogger(__name__)
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
self.strategies = {}
|
49 |
self.performance_history = []
|
50 |
self.meta_parameters = MetaParameters()
|
|
|
44 |
|
45 |
def __init__(self):
|
46 |
self.logger = logging.getLogger(__name__)
|
47 |
+
|
48 |
+
# Initialize quantum system with consistent configuration
|
49 |
+
quantum_config = {
|
50 |
+
"min_confidence": 0.7,
|
51 |
+
"parallel_threshold": 3,
|
52 |
+
"learning_rate": 0.1,
|
53 |
+
"strategy_weights": {
|
54 |
+
"LOCAL_LLM": 0.8,
|
55 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
56 |
+
"TREE_OF_THOUGHTS": 0.5,
|
57 |
+
"META_LEARNING": 0.4
|
58 |
+
}
|
59 |
+
}
|
60 |
+
|
61 |
+
self.quantum_system = QuantumLearningSystem(quantum_config)
|
62 |
self.strategies = {}
|
63 |
self.performance_history = []
|
64 |
self.meta_parameters = MetaParameters()
|
orchestrator.py
CHANGED
@@ -124,10 +124,10 @@ class AgentOrchestrator:
|
|
124 |
parallel_threshold=5,
|
125 |
learning_rate=0.1,
|
126 |
strategy_weights={
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
}
|
132 |
)
|
133 |
|
|
|
124 |
parallel_threshold=5,
|
125 |
learning_rate=0.1,
|
126 |
strategy_weights={
|
127 |
+
"LOCAL_LLM": 2.0,
|
128 |
+
"CHAIN_OF_THOUGHT": 1.0,
|
129 |
+
"TREE_OF_THOUGHTS": 1.0,
|
130 |
+
"META_LEARNING": 1.5
|
131 |
}
|
132 |
)
|
133 |
|
reasoning/analogical.py
CHANGED
@@ -74,15 +74,26 @@ class AnalogicalReasoning(ReasoningStrategy):
|
|
74 |
- Learning from experience
|
75 |
"""
|
76 |
|
77 |
-
def __init__(self,
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
self.
|
84 |
-
self.
|
85 |
-
self.learning_rate = learning_rate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
# Knowledge base
|
88 |
self.patterns: Dict[str, AnalogicalPattern] = {}
|
|
|
74 |
- Learning from experience
|
75 |
"""
|
76 |
|
77 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
78 |
+
"""Initialize analogical reasoning."""
|
79 |
+
super().__init__()
|
80 |
+
self.config = config or {}
|
81 |
+
|
82 |
+
# Standard reasoning parameters
|
83 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
84 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
85 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
86 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
87 |
+
"LOCAL_LLM": 0.8,
|
88 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
89 |
+
"TREE_OF_THOUGHTS": 0.5,
|
90 |
+
"META_LEARNING": 0.4
|
91 |
+
})
|
92 |
+
|
93 |
+
# Analogical reasoning specific parameters
|
94 |
+
self.min_similarity = self.config.get('min_similarity', 0.6)
|
95 |
+
self.max_candidates = self.config.get('max_candidates', 5)
|
96 |
+
self.adaptation_threshold = self.config.get('adaptation_threshold', 0.7)
|
97 |
|
98 |
# Knowledge base
|
99 |
self.patterns: Dict[str, AnalogicalPattern] = {}
|
reasoning/chain_of_thought.py
CHANGED
@@ -41,14 +41,19 @@ class ChainOfThoughtStrategy(ReasoningStrategy):
|
|
41 |
"""
|
42 |
|
43 |
def __init__(self,
|
44 |
-
max_chain_length: int = 10,
|
45 |
min_confidence: float = 0.7,
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
self.min_confidence = min_confidence
|
50 |
-
self.
|
51 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
self.thought_history: List[Thought] = []
|
53 |
|
54 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
41 |
"""
|
42 |
|
43 |
def __init__(self,
|
|
|
44 |
min_confidence: float = 0.7,
|
45 |
+
parallel_threshold: int = 3,
|
46 |
+
learning_rate: float = 0.1,
|
47 |
+
strategy_weights: Optional[Dict[str, float]] = None):
|
48 |
self.min_confidence = min_confidence
|
49 |
+
self.parallel_threshold = parallel_threshold
|
50 |
+
self.learning_rate = learning_rate
|
51 |
+
self.strategy_weights = strategy_weights or {
|
52 |
+
"LOCAL_LLM": 0.8,
|
53 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
54 |
+
"TREE_OF_THOUGHTS": 0.5,
|
55 |
+
"META_LEARNING": 0.4
|
56 |
+
}
|
57 |
self.thought_history: List[Thought] = []
|
58 |
|
59 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
reasoning/emergent.py
CHANGED
@@ -22,17 +22,35 @@ class EmergentReasoning(ReasoningStrategy):
|
|
22 |
super().__init__()
|
23 |
self.config = config or {}
|
24 |
|
25 |
-
#
|
26 |
-
self.
|
27 |
-
self.
|
28 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
# Configure weights for strategy combination
|
31 |
-
self.weights = {
|
32 |
'meta': 0.4,
|
33 |
'chain': 0.3,
|
34 |
'tree': 0.3
|
35 |
-
}
|
36 |
|
37 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
38 |
"""
|
|
|
22 |
super().__init__()
|
23 |
self.config = config or {}
|
24 |
|
25 |
+
# Standard reasoning parameters
|
26 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
27 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
28 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
29 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
30 |
+
"LOCAL_LLM": 0.8,
|
31 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
32 |
+
"TREE_OF_THOUGHTS": 0.5,
|
33 |
+
"META_LEARNING": 0.4
|
34 |
+
})
|
35 |
+
|
36 |
+
# Initialize component strategies with shared config
|
37 |
+
strategy_config = {
|
38 |
+
'min_confidence': self.min_confidence,
|
39 |
+
'parallel_threshold': self.parallel_threshold,
|
40 |
+
'learning_rate': self.learning_rate,
|
41 |
+
'strategy_weights': self.strategy_weights
|
42 |
+
}
|
43 |
+
|
44 |
+
self.meta_learner = MetaLearningStrategy(strategy_config)
|
45 |
+
self.chain_of_thought = ChainOfThoughtStrategy(strategy_config)
|
46 |
+
self.tree_of_thoughts = TreeOfThoughtsStrategy(strategy_config)
|
47 |
|
48 |
# Configure weights for strategy combination
|
49 |
+
self.weights = self.config.get('combination_weights', {
|
50 |
'meta': 0.4,
|
51 |
'chain': 0.3,
|
52 |
'tree': 0.3
|
53 |
+
})
|
54 |
|
55 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
56 |
"""
|
reasoning/local_llm.py
CHANGED
@@ -11,11 +11,27 @@ from .base import ReasoningStrategy
|
|
11 |
class LocalLLMStrategy(ReasoningStrategy):
|
12 |
"""Implements reasoning using local LLM."""
|
13 |
|
14 |
-
def __init__(self):
|
15 |
"""Initialize the local LLM strategy."""
|
16 |
-
|
17 |
-
self.
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
self.logger = logging.getLogger(__name__)
|
20 |
self.model = None
|
21 |
|
|
|
11 |
class LocalLLMStrategy(ReasoningStrategy):
|
12 |
"""Implements reasoning using local LLM."""
|
13 |
|
14 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
15 |
"""Initialize the local LLM strategy."""
|
16 |
+
super().__init__()
|
17 |
+
self.config = config or {}
|
18 |
+
|
19 |
+
# Configure parameters with defaults
|
20 |
+
self.repo_id = self.config.get('repo_id', "gpt-omni/mini-omni2")
|
21 |
+
self.filename = self.config.get('filename', "mini-omni2.gguf")
|
22 |
+
self.model_dir = self.config.get('model_dir', "models")
|
23 |
+
|
24 |
+
# Standard reasoning parameters
|
25 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
26 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
27 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
28 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
29 |
+
"LOCAL_LLM": 0.8,
|
30 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
31 |
+
"TREE_OF_THOUGHTS": 0.5,
|
32 |
+
"META_LEARNING": 0.4
|
33 |
+
})
|
34 |
+
|
35 |
self.logger = logging.getLogger(__name__)
|
36 |
self.model = None
|
37 |
|
reasoning/monetization.py
CHANGED
@@ -41,7 +41,16 @@ class MonetizationOptimizer:
|
|
41 |
5. Increases lifetime value
|
42 |
"""
|
43 |
|
44 |
-
def __init__(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
self.models: Dict[str, MonetizationModel] = {}
|
46 |
self.streams: Dict[str, RevenueStream] = {}
|
47 |
|
@@ -293,7 +302,26 @@ class MonetizationStrategy(ReasoningStrategy):
|
|
293 |
"""Initialize monetization strategy."""
|
294 |
super().__init__()
|
295 |
self.config = config or {}
|
296 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
|
298 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
299 |
"""
|
|
|
41 |
5. Increases lifetime value
|
42 |
"""
|
43 |
|
44 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
45 |
+
"""Initialize monetization optimizer."""
|
46 |
+
self.config = config or {}
|
47 |
+
|
48 |
+
# Configure optimization parameters
|
49 |
+
self.min_revenue = self.config.get('min_revenue', 1_000_000)
|
50 |
+
self.min_margin = self.config.get('min_margin', 0.3)
|
51 |
+
self.max_churn = self.config.get('max_churn', 0.1)
|
52 |
+
self.target_ltv = self.config.get('target_ltv', 1000)
|
53 |
+
|
54 |
self.models: Dict[str, MonetizationModel] = {}
|
55 |
self.streams: Dict[str, RevenueStream] = {}
|
56 |
|
|
|
302 |
"""Initialize monetization strategy."""
|
303 |
super().__init__()
|
304 |
self.config = config or {}
|
305 |
+
|
306 |
+
# Standard reasoning parameters
|
307 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
308 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
309 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
310 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
311 |
+
"LOCAL_LLM": 0.8,
|
312 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
313 |
+
"TREE_OF_THOUGHTS": 0.5,
|
314 |
+
"META_LEARNING": 0.4
|
315 |
+
})
|
316 |
+
|
317 |
+
# Initialize optimizer with shared config
|
318 |
+
optimizer_config = {
|
319 |
+
'min_revenue': self.config.get('min_revenue', 1_000_000),
|
320 |
+
'min_margin': self.config.get('min_margin', 0.3),
|
321 |
+
'max_churn': self.config.get('max_churn', 0.1),
|
322 |
+
'target_ltv': self.config.get('target_ltv', 1000)
|
323 |
+
}
|
324 |
+
self.optimizer = MonetizationOptimizer(optimizer_config)
|
325 |
|
326 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
327 |
"""
|
reasoning/multimodal.py
CHANGED
@@ -35,14 +35,41 @@ class MultiModalReasoning(ReasoningStrategy):
|
|
35 |
super().__init__()
|
36 |
self.config = config or {}
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
# Configure modality weights
|
39 |
-
self.weights = {
|
40 |
'text': 0.4,
|
41 |
'image': 0.3,
|
42 |
'audio': 0.1,
|
43 |
'video': 0.1,
|
44 |
'structured': 0.1
|
45 |
-
}
|
46 |
|
47 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
48 |
"""
|
|
|
35 |
super().__init__()
|
36 |
self.config = config or {}
|
37 |
|
38 |
+
# Standard reasoning parameters
|
39 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
40 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
41 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
42 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
43 |
+
"LOCAL_LLM": 0.8,
|
44 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
45 |
+
"TREE_OF_THOUGHTS": 0.5,
|
46 |
+
"META_LEARNING": 0.4
|
47 |
+
})
|
48 |
+
|
49 |
+
# Configure model repositories
|
50 |
+
self.models = self.config.get('models', {
|
51 |
+
'img2img': {
|
52 |
+
'repo_id': 'enhanceaiteam/Flux-Uncensored-V2',
|
53 |
+
'filename': 'Flux-Uncensored-V2.safetensors'
|
54 |
+
},
|
55 |
+
'img2vid': {
|
56 |
+
'repo_id': 'stabilityai/stable-video-diffusion-img2vid-xt',
|
57 |
+
'filename': 'svd_xt.safetensors'
|
58 |
+
},
|
59 |
+
'any2any': {
|
60 |
+
'repo_id': 'deepseek-ai/JanusFlow-1.3B',
|
61 |
+
'filename': 'janusflow-1.3b.safetensors'
|
62 |
+
}
|
63 |
+
})
|
64 |
+
|
65 |
# Configure modality weights
|
66 |
+
self.weights = self.config.get('modality_weights', {
|
67 |
'text': 0.4,
|
68 |
'image': 0.3,
|
69 |
'audio': 0.1,
|
70 |
'video': 0.1,
|
71 |
'structured': 0.1
|
72 |
+
})
|
73 |
|
74 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
75 |
"""
|
reasoning/neurosymbolic.py
CHANGED
@@ -43,7 +43,18 @@ class NeurosymbolicReasoning(ReasoningStrategy):
|
|
43 |
super().__init__()
|
44 |
self.config = config or {}
|
45 |
|
46 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
self.feature_threshold = self.config.get('feature_threshold', 0.1)
|
48 |
self.rule_confidence_threshold = self.config.get('rule_confidence', 0.7)
|
49 |
self.max_rules = self.config.get('max_rules', 10)
|
|
|
43 |
super().__init__()
|
44 |
self.config = config or {}
|
45 |
|
46 |
+
# Standard reasoning parameters
|
47 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
48 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
49 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
50 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
51 |
+
"LOCAL_LLM": 0.8,
|
52 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
53 |
+
"TREE_OF_THOUGHTS": 0.5,
|
54 |
+
"META_LEARNING": 0.4
|
55 |
+
})
|
56 |
+
|
57 |
+
# Neurosymbolic specific parameters
|
58 |
self.feature_threshold = self.config.get('feature_threshold', 0.1)
|
59 |
self.rule_confidence_threshold = self.config.get('rule_confidence', 0.7)
|
60 |
self.max_rules = self.config.get('max_rules', 10)
|
reasoning/quantum.py
CHANGED
@@ -34,6 +34,17 @@ class QuantumReasoning(ReasoningStrategy):
|
|
34 |
super().__init__()
|
35 |
self.config = config or {}
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
# Configure quantum parameters
|
38 |
self.num_qubits = self.config.get('num_qubits', 3)
|
39 |
self.measurement_threshold = self.config.get('measurement_threshold', 0.1)
|
|
|
34 |
super().__init__()
|
35 |
self.config = config or {}
|
36 |
|
37 |
+
# Standard reasoning parameters
|
38 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
39 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
40 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
41 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
42 |
+
"LOCAL_LLM": 0.8,
|
43 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
44 |
+
"TREE_OF_THOUGHTS": 0.5,
|
45 |
+
"META_LEARNING": 0.4
|
46 |
+
})
|
47 |
+
|
48 |
# Configure quantum parameters
|
49 |
self.num_qubits = self.config.get('num_qubits', 3)
|
50 |
self.measurement_threshold = self.config.get('measurement_threshold', 0.1)
|
reasoning/recursive.py
CHANGED
@@ -65,15 +65,25 @@ class RecursiveReasoning(ReasoningStrategy):
|
|
65 |
- Optimization strategies
|
66 |
"""
|
67 |
|
68 |
-
def __init__(self,
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
self.min_confidence = min_confidence
|
75 |
-
self.parallel_threshold = parallel_threshold
|
76 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
# Problem tracking
|
79 |
self.subproblems: Dict[str, Subproblem] = {}
|
|
|
65 |
- Optimization strategies
|
66 |
"""
|
67 |
|
68 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
69 |
+
"""Initialize recursive reasoning."""
|
70 |
+
super().__init__()
|
71 |
+
self.config = config or {}
|
72 |
+
|
73 |
+
# Standard reasoning parameters
|
74 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
75 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
76 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
77 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
78 |
+
"LOCAL_LLM": 0.8,
|
79 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
80 |
+
"TREE_OF_THOUGHTS": 0.5,
|
81 |
+
"META_LEARNING": 0.4
|
82 |
+
})
|
83 |
+
|
84 |
+
# Recursive reasoning specific parameters
|
85 |
+
self.max_depth = self.config.get('max_depth', 5)
|
86 |
+
self.optimization_rounds = self.config.get('optimization_rounds', 2)
|
87 |
|
88 |
# Problem tracking
|
89 |
self.subproblems: Dict[str, Subproblem] = {}
|
reasoning/specialized.py
CHANGED
@@ -22,16 +22,34 @@ class SpecializedReasoning(ReasoningStrategy):
|
|
22 |
super().__init__()
|
23 |
self.config = config or {}
|
24 |
|
25 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
self.strategies = {
|
27 |
-
'code_rewrite': CodeRewriteStrategy(),
|
28 |
-
'security_audit': SecurityAuditStrategy(),
|
29 |
-
'performance': PerformanceOptimizationStrategy(),
|
30 |
-
'testing': TestGenerationStrategy(),
|
31 |
-
'documentation': DocumentationStrategy(),
|
32 |
-
'api_design': APIDesignStrategy(),
|
33 |
-
'dependencies': DependencyManagementStrategy(),
|
34 |
-
'code_review': CodeReviewStrategy()
|
35 |
}
|
36 |
|
37 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
@@ -134,6 +152,10 @@ class CodeRewriteStrategy(ReasoningStrategy):
|
|
134 |
5. Ensures backward compatibility
|
135 |
"""
|
136 |
|
|
|
|
|
|
|
|
|
137 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
138 |
"""Rewrite code while preserving functionality."""
|
139 |
try:
|
@@ -172,6 +194,10 @@ class SecurityAuditStrategy(ReasoningStrategy):
|
|
172 |
5. Monitors security state
|
173 |
"""
|
174 |
|
|
|
|
|
|
|
|
|
175 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
176 |
"""Perform security audit and generate recommendations."""
|
177 |
try:
|
@@ -208,6 +234,10 @@ class PerformanceOptimizationStrategy(ReasoningStrategy):
|
|
208 |
5. Validates optimizations
|
209 |
"""
|
210 |
|
|
|
|
|
|
|
|
|
211 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
212 |
"""Optimize code performance."""
|
213 |
try:
|
@@ -244,6 +274,10 @@ class TestGenerationStrategy(ReasoningStrategy):
|
|
244 |
5. Maintains test suite
|
245 |
"""
|
246 |
|
|
|
|
|
|
|
|
|
247 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
248 |
"""Generate comprehensive test suite."""
|
249 |
try:
|
@@ -283,6 +317,10 @@ class DocumentationStrategy(ReasoningStrategy):
|
|
283 |
5. Validates completeness
|
284 |
"""
|
285 |
|
|
|
|
|
|
|
|
|
286 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
287 |
"""Generate and maintain documentation."""
|
288 |
try:
|
@@ -322,6 +360,10 @@ class APIDesignStrategy(ReasoningStrategy):
|
|
322 |
5. Maintains versioning
|
323 |
"""
|
324 |
|
|
|
|
|
|
|
|
|
325 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
326 |
"""Design and validate API."""
|
327 |
try:
|
@@ -358,6 +400,10 @@ class DependencyManagementStrategy(ReasoningStrategy):
|
|
358 |
5. Maintains security
|
359 |
"""
|
360 |
|
|
|
|
|
|
|
|
|
361 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
362 |
"""Manage and optimize dependencies."""
|
363 |
try:
|
@@ -394,6 +440,10 @@ class CodeReviewStrategy(ReasoningStrategy):
|
|
394 |
5. Validates fixes
|
395 |
"""
|
396 |
|
|
|
|
|
|
|
|
|
397 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
398 |
"""Perform comprehensive code review."""
|
399 |
try:
|
|
|
22 |
super().__init__()
|
23 |
self.config = config or {}
|
24 |
|
25 |
+
# Standard reasoning parameters
|
26 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
27 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
28 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
29 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
30 |
+
"LOCAL_LLM": 0.8,
|
31 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
32 |
+
"TREE_OF_THOUGHTS": 0.5,
|
33 |
+
"META_LEARNING": 0.4
|
34 |
+
})
|
35 |
+
|
36 |
+
# Initialize component strategies with shared config
|
37 |
+
strategy_config = {
|
38 |
+
'min_confidence': self.min_confidence,
|
39 |
+
'parallel_threshold': self.parallel_threshold,
|
40 |
+
'learning_rate': self.learning_rate,
|
41 |
+
'strategy_weights': self.strategy_weights
|
42 |
+
}
|
43 |
+
|
44 |
self.strategies = {
|
45 |
+
'code_rewrite': CodeRewriteStrategy(strategy_config),
|
46 |
+
'security_audit': SecurityAuditStrategy(strategy_config),
|
47 |
+
'performance': PerformanceOptimizationStrategy(strategy_config),
|
48 |
+
'testing': TestGenerationStrategy(strategy_config),
|
49 |
+
'documentation': DocumentationStrategy(strategy_config),
|
50 |
+
'api_design': APIDesignStrategy(strategy_config),
|
51 |
+
'dependencies': DependencyManagementStrategy(strategy_config),
|
52 |
+
'code_review': CodeReviewStrategy(strategy_config)
|
53 |
}
|
54 |
|
55 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
152 |
5. Ensures backward compatibility
|
153 |
"""
|
154 |
|
155 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
156 |
+
super().__init__()
|
157 |
+
self.config = config or {}
|
158 |
+
|
159 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
160 |
"""Rewrite code while preserving functionality."""
|
161 |
try:
|
|
|
194 |
5. Monitors security state
|
195 |
"""
|
196 |
|
197 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
198 |
+
super().__init__()
|
199 |
+
self.config = config or {}
|
200 |
+
|
201 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
202 |
"""Perform security audit and generate recommendations."""
|
203 |
try:
|
|
|
234 |
5. Validates optimizations
|
235 |
"""
|
236 |
|
237 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
238 |
+
super().__init__()
|
239 |
+
self.config = config or {}
|
240 |
+
|
241 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
242 |
"""Optimize code performance."""
|
243 |
try:
|
|
|
274 |
5. Maintains test suite
|
275 |
"""
|
276 |
|
277 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
278 |
+
super().__init__()
|
279 |
+
self.config = config or {}
|
280 |
+
|
281 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
282 |
"""Generate comprehensive test suite."""
|
283 |
try:
|
|
|
317 |
5. Validates completeness
|
318 |
"""
|
319 |
|
320 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
321 |
+
super().__init__()
|
322 |
+
self.config = config or {}
|
323 |
+
|
324 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
325 |
"""Generate and maintain documentation."""
|
326 |
try:
|
|
|
360 |
5. Maintains versioning
|
361 |
"""
|
362 |
|
363 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
364 |
+
super().__init__()
|
365 |
+
self.config = config or {}
|
366 |
+
|
367 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
368 |
"""Design and validate API."""
|
369 |
try:
|
|
|
400 |
5. Maintains security
|
401 |
"""
|
402 |
|
403 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
404 |
+
super().__init__()
|
405 |
+
self.config = config or {}
|
406 |
+
|
407 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
408 |
"""Manage and optimize dependencies."""
|
409 |
try:
|
|
|
440 |
5. Validates fixes
|
441 |
"""
|
442 |
|
443 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
444 |
+
super().__init__()
|
445 |
+
self.config = config or {}
|
446 |
+
|
447 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
448 |
"""Perform comprehensive code review."""
|
449 |
try:
|
reasoning/tree_of_thoughts.py
CHANGED
@@ -44,16 +44,19 @@ class TreeOfThoughtsStrategy(ReasoningStrategy):
|
|
44 |
"""
|
45 |
|
46 |
def __init__(self,
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
prune_threshold: float = 0.4):
|
52 |
-
self.max_depth = max_depth
|
53 |
-
self.beam_width = beam_width
|
54 |
self.min_confidence = min_confidence
|
55 |
-
self.
|
56 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
self.node_history: Dict[str, TreeNode] = {}
|
58 |
self.path_patterns: Dict[str, float] = defaultdict(float)
|
59 |
|
@@ -119,7 +122,7 @@ class TreeOfThoughtsStrategy(ReasoningStrategy):
|
|
119 |
beam = [(root.evaluation_score, root)]
|
120 |
visited: Set[str] = set()
|
121 |
|
122 |
-
for depth in range(
|
123 |
next_beam = []
|
124 |
|
125 |
for _, node in beam:
|
@@ -136,12 +139,12 @@ class TreeOfThoughtsStrategy(ReasoningStrategy):
|
|
136 |
|
137 |
# Add to beam
|
138 |
for child in evaluated_children:
|
139 |
-
if child.evaluation_score >
|
140 |
next_beam.append((child.evaluation_score, child))
|
141 |
node.children.append(child)
|
142 |
|
143 |
# Select best nodes for next iteration
|
144 |
-
beam = heapq.nlargest(
|
145 |
|
146 |
if not beam:
|
147 |
break
|
@@ -213,7 +216,7 @@ class TreeOfThoughtsStrategy(ReasoningStrategy):
|
|
213 |
sorted_children = sorted(node.children, key=lambda x: x.evaluation_score, reverse=True)
|
214 |
|
215 |
# Explore top paths
|
216 |
-
for child in sorted_children[:
|
217 |
path.append(child)
|
218 |
dfs(child, path)
|
219 |
path.pop()
|
@@ -224,7 +227,7 @@ class TreeOfThoughtsStrategy(ReasoningStrategy):
|
|
224 |
evaluated_paths = await self._evaluate_paths(paths, context)
|
225 |
|
226 |
# Return top paths
|
227 |
-
return sorted(evaluated_paths, key=lambda p: sum(n.evaluation_score for n in p), reverse=True)[:
|
228 |
|
229 |
async def _synthesize_conclusion(self, paths: List[List[TreeNode]], context: Dict[str, Any]) -> Dict[str, Any]:
|
230 |
"""Synthesize final conclusion from best paths."""
|
|
|
44 |
"""
|
45 |
|
46 |
def __init__(self,
|
47 |
+
min_confidence: float = 0.7,
|
48 |
+
parallel_threshold: int = 3,
|
49 |
+
learning_rate: float = 0.1,
|
50 |
+
strategy_weights: Optional[Dict[str, float]] = None):
|
|
|
|
|
|
|
51 |
self.min_confidence = min_confidence
|
52 |
+
self.parallel_threshold = parallel_threshold
|
53 |
+
self.learning_rate = learning_rate
|
54 |
+
self.strategy_weights = strategy_weights or {
|
55 |
+
"LOCAL_LLM": 0.8,
|
56 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
57 |
+
"TREE_OF_THOUGHTS": 0.5,
|
58 |
+
"META_LEARNING": 0.4
|
59 |
+
}
|
60 |
self.node_history: Dict[str, TreeNode] = {}
|
61 |
self.path_patterns: Dict[str, float] = defaultdict(float)
|
62 |
|
|
|
122 |
beam = [(root.evaluation_score, root)]
|
123 |
visited: Set[str] = set()
|
124 |
|
125 |
+
for depth in range(5):
|
126 |
next_beam = []
|
127 |
|
128 |
for _, node in beam:
|
|
|
139 |
|
140 |
# Add to beam
|
141 |
for child in evaluated_children:
|
142 |
+
if child.evaluation_score > 0.4:
|
143 |
next_beam.append((child.evaluation_score, child))
|
144 |
node.children.append(child)
|
145 |
|
146 |
# Select best nodes for next iteration
|
147 |
+
beam = heapq.nlargest(3, next_beam, key=lambda x: x[0])
|
148 |
|
149 |
if not beam:
|
150 |
break
|
|
|
216 |
sorted_children = sorted(node.children, key=lambda x: x.evaluation_score, reverse=True)
|
217 |
|
218 |
# Explore top paths
|
219 |
+
for child in sorted_children[:3]:
|
220 |
path.append(child)
|
221 |
dfs(child, path)
|
222 |
path.pop()
|
|
|
227 |
evaluated_paths = await self._evaluate_paths(paths, context)
|
228 |
|
229 |
# Return top paths
|
230 |
+
return sorted(evaluated_paths, key=lambda p: sum(n.evaluation_score for n in p), reverse=True)[:3]
|
231 |
|
232 |
async def _synthesize_conclusion(self, paths: List[List[TreeNode]], context: Dict[str, Any]) -> Dict[str, Any]:
|
233 |
"""Synthesize final conclusion from best paths."""
|
reasoning/venture_strategies.py
CHANGED
@@ -67,6 +67,21 @@ class AIStartupStrategy(ReasoningStrategy):
|
|
67 |
5. Optimizes revenue streams
|
68 |
"""
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
71 |
"""Generate AI startup strategy."""
|
72 |
try:
|
@@ -108,6 +123,21 @@ class SaaSVentureStrategy(ReasoningStrategy):
|
|
108 |
5. Maximizes recurring revenue
|
109 |
"""
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
112 |
"""Generate SaaS venture strategy."""
|
113 |
try:
|
@@ -148,6 +178,21 @@ class AutomationVentureStrategy(ReasoningStrategy):
|
|
148 |
5. Maximizes ROI
|
149 |
"""
|
150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
152 |
"""Generate automation venture strategy."""
|
153 |
try:
|
@@ -188,6 +233,21 @@ class DataVentureStrategy(ReasoningStrategy):
|
|
188 |
5. Maximizes data value
|
189 |
"""
|
190 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
192 |
"""Generate data venture strategy."""
|
193 |
try:
|
@@ -228,6 +288,21 @@ class APIVentureStrategy(ReasoningStrategy):
|
|
228 |
5. Maximizes API value
|
229 |
"""
|
230 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
232 |
"""Generate API venture strategy."""
|
233 |
try:
|
@@ -268,6 +343,21 @@ class MarketplaceVentureStrategy(ReasoningStrategy):
|
|
268 |
5. Maximizes transaction value
|
269 |
"""
|
270 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
272 |
"""Generate marketplace venture strategy."""
|
273 |
try:
|
@@ -308,6 +398,21 @@ class VenturePortfolioStrategy(ReasoningStrategy):
|
|
308 |
5. Maximizes portfolio value
|
309 |
"""
|
310 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
312 |
"""Generate venture portfolio strategy."""
|
313 |
try:
|
@@ -433,18 +538,36 @@ class VentureStrategy(ReasoningStrategy):
|
|
433 |
super().__init__()
|
434 |
self.config = config or {}
|
435 |
|
436 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
437 |
self.strategies = {
|
438 |
-
VentureType.AI_STARTUP: AIStartupStrategy(),
|
439 |
-
VentureType.SAAS: SaaSVentureStrategy(),
|
440 |
-
VentureType.AUTOMATION_SERVICE: AutomationVentureStrategy(),
|
441 |
-
VentureType.DATA_ANALYTICS: DataVentureStrategy(),
|
442 |
-
VentureType.API_SERVICE: APIVentureStrategy(),
|
443 |
-
VentureType.MARKETPLACE: MarketplaceVentureStrategy()
|
444 |
}
|
445 |
|
446 |
# Portfolio strategy for multi-venture optimization
|
447 |
-
self.portfolio_strategy = VenturePortfolioStrategy()
|
448 |
|
449 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
450 |
"""
|
|
|
67 |
5. Optimizes revenue streams
|
68 |
"""
|
69 |
|
70 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
71 |
+
super().__init__()
|
72 |
+
self.config = config or {}
|
73 |
+
|
74 |
+
# Standard reasoning parameters
|
75 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
76 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
77 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
78 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
79 |
+
"LOCAL_LLM": 0.8,
|
80 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
81 |
+
"TREE_OF_THOUGHTS": 0.5,
|
82 |
+
"META_LEARNING": 0.4
|
83 |
+
})
|
84 |
+
|
85 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
86 |
"""Generate AI startup strategy."""
|
87 |
try:
|
|
|
123 |
5. Maximizes recurring revenue
|
124 |
"""
|
125 |
|
126 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
127 |
+
super().__init__()
|
128 |
+
self.config = config or {}
|
129 |
+
|
130 |
+
# Standard reasoning parameters
|
131 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
132 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
133 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
134 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
135 |
+
"LOCAL_LLM": 0.8,
|
136 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
137 |
+
"TREE_OF_THOUGHTS": 0.5,
|
138 |
+
"META_LEARNING": 0.4
|
139 |
+
})
|
140 |
+
|
141 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
142 |
"""Generate SaaS venture strategy."""
|
143 |
try:
|
|
|
178 |
5. Maximizes ROI
|
179 |
"""
|
180 |
|
181 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
182 |
+
super().__init__()
|
183 |
+
self.config = config or {}
|
184 |
+
|
185 |
+
# Standard reasoning parameters
|
186 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
187 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
188 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
189 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
190 |
+
"LOCAL_LLM": 0.8,
|
191 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
192 |
+
"TREE_OF_THOUGHTS": 0.5,
|
193 |
+
"META_LEARNING": 0.4
|
194 |
+
})
|
195 |
+
|
196 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
197 |
"""Generate automation venture strategy."""
|
198 |
try:
|
|
|
233 |
5. Maximizes data value
|
234 |
"""
|
235 |
|
236 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
237 |
+
super().__init__()
|
238 |
+
self.config = config or {}
|
239 |
+
|
240 |
+
# Standard reasoning parameters
|
241 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
242 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
243 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
244 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
245 |
+
"LOCAL_LLM": 0.8,
|
246 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
247 |
+
"TREE_OF_THOUGHTS": 0.5,
|
248 |
+
"META_LEARNING": 0.4
|
249 |
+
})
|
250 |
+
|
251 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
252 |
"""Generate data venture strategy."""
|
253 |
try:
|
|
|
288 |
5. Maximizes API value
|
289 |
"""
|
290 |
|
291 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
292 |
+
super().__init__()
|
293 |
+
self.config = config or {}
|
294 |
+
|
295 |
+
# Standard reasoning parameters
|
296 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
297 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
298 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
299 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
300 |
+
"LOCAL_LLM": 0.8,
|
301 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
302 |
+
"TREE_OF_THOUGHTS": 0.5,
|
303 |
+
"META_LEARNING": 0.4
|
304 |
+
})
|
305 |
+
|
306 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
307 |
"""Generate API venture strategy."""
|
308 |
try:
|
|
|
343 |
5. Maximizes transaction value
|
344 |
"""
|
345 |
|
346 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
347 |
+
super().__init__()
|
348 |
+
self.config = config or {}
|
349 |
+
|
350 |
+
# Standard reasoning parameters
|
351 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
352 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
353 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
354 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
355 |
+
"LOCAL_LLM": 0.8,
|
356 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
357 |
+
"TREE_OF_THOUGHTS": 0.5,
|
358 |
+
"META_LEARNING": 0.4
|
359 |
+
})
|
360 |
+
|
361 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
362 |
"""Generate marketplace venture strategy."""
|
363 |
try:
|
|
|
398 |
5. Maximizes portfolio value
|
399 |
"""
|
400 |
|
401 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
402 |
+
super().__init__()
|
403 |
+
self.config = config or {}
|
404 |
+
|
405 |
+
# Standard reasoning parameters
|
406 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
407 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
408 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
409 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
410 |
+
"LOCAL_LLM": 0.8,
|
411 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
412 |
+
"TREE_OF_THOUGHTS": 0.5,
|
413 |
+
"META_LEARNING": 0.4
|
414 |
+
})
|
415 |
+
|
416 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
417 |
"""Generate venture portfolio strategy."""
|
418 |
try:
|
|
|
538 |
super().__init__()
|
539 |
self.config = config or {}
|
540 |
|
541 |
+
# Standard reasoning parameters
|
542 |
+
self.min_confidence = self.config.get('min_confidence', 0.7)
|
543 |
+
self.parallel_threshold = self.config.get('parallel_threshold', 3)
|
544 |
+
self.learning_rate = self.config.get('learning_rate', 0.1)
|
545 |
+
self.strategy_weights = self.config.get('strategy_weights', {
|
546 |
+
"LOCAL_LLM": 0.8,
|
547 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
548 |
+
"TREE_OF_THOUGHTS": 0.5,
|
549 |
+
"META_LEARNING": 0.4
|
550 |
+
})
|
551 |
+
|
552 |
+
# Initialize component strategies with shared config
|
553 |
+
strategy_config = {
|
554 |
+
'min_confidence': self.min_confidence,
|
555 |
+
'parallel_threshold': self.parallel_threshold,
|
556 |
+
'learning_rate': self.learning_rate,
|
557 |
+
'strategy_weights': self.strategy_weights
|
558 |
+
}
|
559 |
+
|
560 |
self.strategies = {
|
561 |
+
VentureType.AI_STARTUP: AIStartupStrategy(strategy_config),
|
562 |
+
VentureType.SAAS: SaaSVentureStrategy(strategy_config),
|
563 |
+
VentureType.AUTOMATION_SERVICE: AutomationVentureStrategy(strategy_config),
|
564 |
+
VentureType.DATA_ANALYTICS: DataVentureStrategy(strategy_config),
|
565 |
+
VentureType.API_SERVICE: APIVentureStrategy(strategy_config),
|
566 |
+
VentureType.MARKETPLACE: MarketplaceVentureStrategy(strategy_config)
|
567 |
}
|
568 |
|
569 |
# Portfolio strategy for multi-venture optimization
|
570 |
+
self.portfolio_strategy = VenturePortfolioStrategy(strategy_config)
|
571 |
|
572 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
573 |
"""
|
team_management.py
CHANGED
@@ -486,7 +486,17 @@ class TeamManager:
|
|
486 |
class Agent:
|
487 |
def __init__(self, profile: Dict, reasoning_engine: UnifiedReasoningEngine, meta_learning: bool):
|
488 |
self.profile = profile
|
489 |
-
self.reasoning_engine = reasoning_engine
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
490 |
self.meta_learning = meta_learning
|
491 |
self.state = AgentState.IDLE
|
492 |
|
|
|
486 |
class Agent:
|
487 |
def __init__(self, profile: Dict, reasoning_engine: UnifiedReasoningEngine, meta_learning: bool):
|
488 |
self.profile = profile
|
489 |
+
self.reasoning_engine = reasoning_engine if reasoning_engine else UnifiedReasoningEngine(
|
490 |
+
min_confidence=0.7,
|
491 |
+
parallel_threshold=3,
|
492 |
+
learning_rate=0.1,
|
493 |
+
strategy_weights={
|
494 |
+
"LOCAL_LLM": 0.8,
|
495 |
+
"CHAIN_OF_THOUGHT": 0.6,
|
496 |
+
"TREE_OF_THOUGHTS": 0.5,
|
497 |
+
"META_LEARNING": 0.4
|
498 |
+
}
|
499 |
+
)
|
500 |
self.meta_learning = meta_learning
|
501 |
self.state = AgentState.IDLE
|
502 |
|