nananie143 commited on
Commit
dcb2a99
·
verified ·
1 Parent(s): a1d1f7c

Upload folder using huggingface_hub

Browse files
.env.example ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Hugging Face Configuration
2
+ HUGGINGFACE_TOKEN=your_huggingface_token_here
3
+
4
+ # System Configuration
5
+ DEBUG_MODE=False
6
+ LOG_LEVEL=INFO
7
+ MAX_WORKERS=4
8
+ ASYNC_TIMEOUT=30
9
+
10
+ # Resource Limits
11
+ MAX_MEMORY_MB=8192
12
+ MAX_CPU_PERCENT=90
13
+ MAX_GPU_MEMORY_MB=4096
14
+ MAX_API_CALLS_PER_MINUTE=500
15
+
16
+ # Team Configuration
17
+ MIN_TEAM_SIZE=2
18
+ MAX_TEAM_SIZE=10
19
+ MAX_CONCURRENT_OBJECTIVES=5
20
+
21
+ # Error Recovery
22
+ MAX_RETRIES=3
23
+ RETRY_DELAY_SECONDS=5
24
+ ERROR_THRESHOLD=0.2
25
+
26
+ # Monitoring
27
+ METRICS_INTERVAL_SECONDS=60
28
+ HEALTH_CHECK_INTERVAL=30
29
+ PERFORMANCE_LOG_RETENTION_DAYS=7
30
+
31
+ # API Keys
32
+ OPENAI_API_KEY=your_openai_api_key
33
+ GROQ_API_KEY=your_groq_api_key
34
+ HUGGINGFACE_API_KEY=your_huggingface_api_key
35
+
36
+ # Service Configuration
37
+ PORT=7860
38
+ HOST=0.0.0.0
39
+ DEBUG=True
40
+ ENVIRONMENT=development
41
+
42
+ # Database Configuration
43
+ DATABASE_URL=sqlite:///./ventures.db
44
+
45
+ # Model Configuration
46
+ MODEL_CACHE_DIR=./model_cache
47
+ DEFAULT_MODEL=gpt-4-turbo-preview
48
+
49
+ # Venture Configuration
50
+ MIN_PROFIT_TARGET=1000000
51
+ DEFAULT_CURRENCY=USD
52
+ RISK_TOLERANCE=medium
53
+
54
+ # API Configuration
55
+ API_VERSION=v1
56
+ API_PREFIX=/api/v1
57
+ CORS_ORIGINS=["*"]
58
+ MAX_REQUEST_SIZE=10MB
59
+
60
+ # Monitoring Configuration
61
+ ENABLE_METRICS=True
62
+ METRICS_PORT=9090
63
+ LOG_LEVEL=INFO
64
+
65
+ # Cache Configuration
66
+ REDIS_URL=redis://localhost:6379/0
67
+ CACHE_TTL=3600
68
+
69
+ # Security Configuration
70
+ JWT_SECRET=your_jwt_secret
71
+ JWT_ALGORITHM=HS256
72
+ ACCESS_TOKEN_EXPIRE_MINUTES=30
73
+
74
+ # Feature Flags
75
+ ENABLE_PORTFOLIO_OPTIMIZATION=True
76
+ ENABLE_MARKET_ANALYSIS=True
77
+ ENABLE_MONETIZATION_STRATEGY=True
78
+ ENABLE_VENTURE_ANALYSIS=True
.github/workflows/sync-to-space.yml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Sync to Hugging Face Space
2
+ on:
3
+ push:
4
+ branches: [main]
5
+
6
+ jobs:
7
+ sync-to-space:
8
+ runs-on: ubuntu-latest
9
+ steps:
10
+ - uses: actions/checkout@v2
11
+ with:
12
+ fetch-depth: 0
13
+ - name: Push to Space
14
+ env:
15
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
16
+ run: |
17
+ git push https://USER:[email protected]/spaces/USER/SPACE_NAME main
.gitignore ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Python
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+ *.so
6
+ .Python
7
+ build/
8
+ develop-eggs/
9
+ dist/
10
+ downloads/
11
+ eggs/
12
+ .eggs/
13
+ lib/
14
+ lib64/
15
+ parts/
16
+ sdist/
17
+ var/
18
+ wheels/
19
+ *.egg-info/
20
+ .installed.cfg
21
+ *.egg
22
+
23
+ # Virtual Environment
24
+ venv/
25
+ env/
26
+ ENV/
27
+
28
+ # IDE
29
+ .idea/
30
+ .vscode/
31
+ *.swp
32
+ *.swo
33
+
34
+ # Logs
35
+ *.log
36
+ logs/
37
+ log/
38
+
39
+ # Local development
40
+ .env
41
+ .env.local
42
+ .env.*.local
43
+
44
+ # Data
45
+ data/
46
+ *.db
47
+ *.sqlite3
48
+
49
+ # Model files
50
+ *.pt
51
+ *.pth
52
+ *.ckpt
53
+ *.bin
54
+ *.onnx
55
+
56
+ # Temporary files
57
+ .DS_Store
58
+ Thumbs.db
59
+ *.tmp
60
+ *.bak
61
+ *.swp
62
+ *~
63
+
64
+ # Distribution
65
+ dist/
66
+ build/
67
+ *.egg-info/
68
+
69
+ # Documentation
70
+ docs/_build/
71
+ site/
72
+
73
+ # Testing
74
+ .coverage
75
+ htmlcov/
76
+ .pytest_cache/
77
+ .tox/
78
+ nosetests.xml
79
+ coverage.xml
80
+ *.cover
81
+ .hypothesis/
82
+
83
+ # Jupyter Notebook
84
+ .ipynb_checkpoints
85
+ *.ipynb
86
+
87
+ # Project specific
88
+ outputs/
89
+ results/
90
+ experiments/
91
+ checkpoints/
Dockerfile ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.10-slim
2
+
3
+ WORKDIR /code
4
+
5
+ COPY requirements.txt .
6
+ RUN pip install --no-cache-dir -r requirements.txt
7
+
8
+ COPY . .
9
+
10
+ EXPOSE 7860
11
+
12
+ CMD ["python", "app.py"]
README.md CHANGED
@@ -1,12 +1,81 @@
1
  ---
2
- title: Advanced Reasoning
3
- emoji: 😻
4
- colorFrom: purple
5
- colorTo: blue
6
  sdk: gradio
7
- sdk_version: 5.10.0
8
  app_file: app.py
9
  pinned: false
 
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: Advanced Reasoning System 🧠
3
+ emoji: 🧠
4
+ colorFrom: blue
5
+ colorTo: purple
6
  sdk: gradio
7
+ sdk_version: 4.16.0
8
  app_file: app.py
9
  pinned: false
10
+ license: mit
11
  ---
12
 
13
+ # Advanced Reasoning System 🧠
14
+
15
+ A sophisticated reasoning system that combines multiple strategies with local LLM capabilities for improved performance.
16
+
17
+ ## Features
18
+
19
+ - **Local LLM Integration**: Uses Llama 3.2B Overthinker model for fast, local inference
20
+ - **Multiple Reasoning Strategies**:
21
+ - Chain of Thought
22
+ - Tree of Thoughts
23
+ - Meta Learning
24
+ - Recursive Reasoning
25
+ - Analogical Reasoning
26
+ - And more!
27
+ - **Adaptive Strategy Selection**: Dynamically chooses the best reasoning approach
28
+ - **GPU/CPU Flexibility**: Automatically uses GPU when available, falls back to CPU
29
+ - **Efficient Resource Usage**: Optimized for performance with configurable parameters
30
+
31
+ ## Technical Details
32
+
33
+ - **Model**: tensorblock/Llama-3.2-3B-Overthinker-GGUF
34
+ - **Framework**: Gradio 4.16.0
35
+ - **Backend**: Python with async support
36
+ - **Inference**: Local using llama-cpp-python
37
+
38
+ ## Usage
39
+
40
+ 1. The system will automatically download the model on first run
41
+ 2. GPU acceleration is used when available
42
+ 3. Ask questions and get detailed, step-by-step responses
43
+ 4. System adapts its reasoning strategy based on the query
44
+
45
+ ## Example Questions
46
+
47
+ - What are the implications of artificial intelligence on society?
48
+ - How does climate change affect global ecosystems?
49
+ - What are the philosophical implications of quantum mechanics?
50
+
51
+ ## Installation
52
+
53
+ ```bash
54
+ pip install -r requirements.txt
55
+ python app.py
56
+ ```
57
+
58
+ ## Environment Variables
59
+
60
+ Create a `.env` file with:
61
+ ```
62
+ HUGGINGFACE_TOKEN=your_token_here
63
+ DEBUG_MODE=False
64
+ LOG_LEVEL=INFO
65
+ ```
66
+
67
+ ## License
68
+
69
+ MIT License
70
+
71
+ ## Files
72
+ - `app.py`: Main application with Gradio interface and API integration
73
+ - `requirements.txt`: Project dependencies
74
+ - `.env.example`: Example environment variables (for reference)
75
+
76
+ ## Dependencies
77
+ - gradio==4.16.0
78
+ - requests==2.31.0
79
+
80
+ ---
81
+ Created with ❤️ using Gradio and Hugging Face
agentic_system.py ADDED
@@ -0,0 +1,551 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Advanced Agentic System
3
+ ----------------------
4
+ A sophisticated multi-agent system with:
5
+
6
+ Core Components:
7
+ 1. Agent Management
8
+ 2. Task Execution
9
+ 3. Learning & Adaptation
10
+ 4. Communication
11
+ 5. Resource Management
12
+
13
+ Advanced Features:
14
+ 1. Self-Improvement
15
+ 2. Multi-Agent Coordination
16
+ 3. Dynamic Role Assignment
17
+ 4. Emergent Behavior
18
+ """
19
+
20
+ import logging
21
+ from typing import Dict, Any, List, Optional, Union, TypeVar
22
+ from dataclasses import dataclass, field
23
+ from enum import Enum
24
+ import json
25
+ import asyncio
26
+ from datetime import datetime
27
+ import uuid
28
+ from concurrent.futures import ThreadPoolExecutor
29
+ import numpy as np
30
+
31
+ from orchestrator import (
32
+ AgentOrchestrator,
33
+ AgentRole,
34
+ AgentState,
35
+ TaskPriority,
36
+ Task
37
+ )
38
+ from reasoning import ReasoningEngine, ReasoningMode
39
+ from meta_learning import MetaLearningStrategy
40
+
41
+ class AgentCapability(Enum):
42
+ """Core capabilities of agents."""
43
+ REASONING = "reasoning"
44
+ LEARNING = "learning"
45
+ EXECUTION = "execution"
46
+ COORDINATION = "coordination"
47
+ MONITORING = "monitoring"
48
+
49
+ class AgentPersonality(Enum):
50
+ """Different personality types for agents."""
51
+ ANALYTICAL = "analytical"
52
+ CREATIVE = "creative"
53
+ CAUTIOUS = "cautious"
54
+ PROACTIVE = "proactive"
55
+ ADAPTIVE = "adaptive"
56
+
57
+ @dataclass
58
+ class AgentProfile:
59
+ """Profile defining an agent's characteristics."""
60
+ id: str
61
+ name: str
62
+ role: AgentRole
63
+ capabilities: List[AgentCapability]
64
+ personality: AgentPersonality
65
+ expertise_areas: List[str]
66
+ learning_rate: float
67
+ risk_tolerance: float
68
+ created_at: datetime
69
+ metadata: Dict[str, Any]
70
+
71
+ class Agent:
72
+ """Advanced autonomous agent with learning capabilities."""
73
+
74
+ def __init__(
75
+ self,
76
+ profile: AgentProfile,
77
+ reasoning_engine: ReasoningEngine,
78
+ meta_learning: MetaLearningStrategy,
79
+ config: Dict[str, Any] = None
80
+ ):
81
+ self.profile = profile
82
+ self.reasoning_engine = reasoning_engine
83
+ self.meta_learning = meta_learning
84
+ self.config = config or {}
85
+
86
+ # State management
87
+ self.state = AgentState.IDLE
88
+ self.current_task: Optional[Task] = None
89
+ self.task_history: List[Task] = []
90
+
91
+ # Learning and adaptation
92
+ self.knowledge_base: Dict[str, Any] = {}
93
+ self.learned_patterns: List[Dict[str, Any]] = []
94
+ self.adaptation_history: List[Dict[str, Any]] = []
95
+
96
+ # Performance metrics
97
+ self.metrics: Dict[str, List[float]] = defaultdict(list)
98
+ self.performance_history: List[Dict[str, float]] = []
99
+
100
+ # Communication
101
+ self.message_queue = asyncio.Queue()
102
+ self.response_queue = asyncio.Queue()
103
+
104
+ # Resource management
105
+ self.resource_usage: Dict[str, float] = {}
106
+ self.resource_limits: Dict[str, float] = {}
107
+
108
+ # Async support
109
+ self.executor = ThreadPoolExecutor(max_workers=2)
110
+ self.lock = asyncio.Lock()
111
+
112
+ # Logging
113
+ self.logger = logging.getLogger(f"Agent-{profile.id}")
114
+
115
+ # Initialize components
116
+ self._init_components()
117
+
118
+ def _init_components(self):
119
+ """Initialize agent components."""
120
+ # Set up knowledge base
121
+ self.knowledge_base = {
122
+ "expertise": {area: 0.5 for area in self.profile.expertise_areas},
123
+ "learned_skills": set(),
124
+ "interaction_patterns": defaultdict(int),
125
+ "success_patterns": defaultdict(float)
126
+ }
127
+
128
+ # Set up resource limits
129
+ self.resource_limits = {
130
+ "cpu": 1.0,
131
+ "memory": 1000,
132
+ "api_calls": 100,
133
+ "learning_capacity": 0.8
134
+ }
135
+
136
+ async def process_task(self, task: Task) -> Dict[str, Any]:
137
+ """Process an assigned task."""
138
+ try:
139
+ self.current_task = task
140
+ self.state = AgentState.BUSY
141
+
142
+ # Analyze task
143
+ analysis = await self._analyze_task(task)
144
+
145
+ # Plan execution
146
+ plan = await self._plan_execution(analysis)
147
+
148
+ # Execute plan
149
+ result = await self._execute_plan(plan)
150
+
151
+ # Learn from execution
152
+ await self._learn_from_execution(task, result)
153
+
154
+ # Update metrics
155
+ self._update_metrics(task, result)
156
+
157
+ return {
158
+ "success": True,
159
+ "task_id": task.id,
160
+ "result": result,
161
+ "metrics": self._get_execution_metrics()
162
+ }
163
+
164
+ except Exception as e:
165
+ self.logger.error(f"Error processing task: {e}")
166
+ self.state = AgentState.ERROR
167
+ return {
168
+ "success": False,
169
+ "task_id": task.id,
170
+ "error": str(e)
171
+ }
172
+ finally:
173
+ self.state = AgentState.IDLE
174
+ self.current_task = None
175
+
176
+ async def _analyze_task(self, task: Task) -> Dict[str, Any]:
177
+ """Analyze task requirements and constraints."""
178
+ # Use reasoning engine for analysis
179
+ analysis = await self.reasoning_engine.reason(
180
+ query=task.description,
181
+ context={
182
+ "agent_profile": self.profile.__dict__,
183
+ "task_history": self.task_history,
184
+ "knowledge_base": self.knowledge_base
185
+ },
186
+ mode=ReasoningMode.ANALYTICAL
187
+ )
188
+
189
+ return {
190
+ "requirements": analysis.get("requirements", []),
191
+ "constraints": analysis.get("constraints", []),
192
+ "complexity": analysis.get("complexity", 0.5),
193
+ "estimated_duration": analysis.get("estimated_duration", 3600),
194
+ "required_capabilities": analysis.get("required_capabilities", [])
195
+ }
196
+
197
+ async def _plan_execution(self, analysis: Dict[str, Any]) -> List[Dict[str, Any]]:
198
+ """Plan task execution based on analysis."""
199
+ # Use reasoning engine for planning
200
+ plan = await self.reasoning_engine.reason(
201
+ query="Plan execution steps",
202
+ context={
203
+ "analysis": analysis,
204
+ "agent_capabilities": self.profile.capabilities,
205
+ "resource_limits": self.resource_limits
206
+ },
207
+ mode=ReasoningMode.FOCUSED
208
+ )
209
+
210
+ return plan.get("steps", [])
211
+
212
+ async def _execute_plan(self, plan: List[Dict[str, Any]]) -> Dict[str, Any]:
213
+ """Execute the planned steps."""
214
+ results = []
215
+
216
+ for step in plan:
217
+ try:
218
+ # Check resources
219
+ if not self._check_resources(step):
220
+ raise RuntimeError("Insufficient resources for step execution")
221
+
222
+ # Execute step
223
+ step_result = await self._execute_step(step)
224
+ results.append(step_result)
225
+
226
+ # Update resource usage
227
+ self._update_resource_usage(step)
228
+
229
+ # Learn from step execution
230
+ await self._learn_from_step(step, step_result)
231
+
232
+ except Exception as e:
233
+ self.logger.error(f"Error executing step: {e}")
234
+ results.append({"error": str(e)})
235
+
236
+ return {
237
+ "success": all(r.get("success", False) for r in results),
238
+ "results": results
239
+ }
240
+
241
+ async def _execute_step(self, step: Dict[str, Any]) -> Dict[str, Any]:
242
+ """Execute a single step of the plan."""
243
+ step_type = step.get("type", "unknown")
244
+
245
+ if step_type == "reasoning":
246
+ return await self._execute_reasoning_step(step)
247
+ elif step_type == "learning":
248
+ return await self._execute_learning_step(step)
249
+ elif step_type == "action":
250
+ return await self._execute_action_step(step)
251
+ else:
252
+ raise ValueError(f"Unknown step type: {step_type}")
253
+
254
+ async def _execute_reasoning_step(self, step: Dict[str, Any]) -> Dict[str, Any]:
255
+ """Execute a reasoning step."""
256
+ result = await self.reasoning_engine.reason(
257
+ query=step["query"],
258
+ context=step.get("context", {}),
259
+ mode=ReasoningMode.ANALYTICAL
260
+ )
261
+
262
+ return {
263
+ "success": result.get("success", False),
264
+ "reasoning_result": result
265
+ }
266
+
267
+ async def _execute_learning_step(self, step: Dict[str, Any]) -> Dict[str, Any]:
268
+ """Execute a learning step."""
269
+ result = await self.meta_learning.learn(
270
+ data=step["data"],
271
+ context=step.get("context", {})
272
+ )
273
+
274
+ return {
275
+ "success": result.get("success", False),
276
+ "learning_result": result
277
+ }
278
+
279
+ async def _execute_action_step(self, step: Dict[str, Any]) -> Dict[str, Any]:
280
+ """Execute an action step."""
281
+ action_type = step.get("action_type")
282
+
283
+ if action_type == "api_call":
284
+ return await self._make_api_call(step)
285
+ elif action_type == "data_processing":
286
+ return await self._process_data(step)
287
+ elif action_type == "coordination":
288
+ return await self._coordinate_action(step)
289
+ else:
290
+ raise ValueError(f"Unknown action type: {action_type}")
291
+
292
+ def _check_resources(self, step: Dict[str, Any]) -> bool:
293
+ """Check if sufficient resources are available."""
294
+ required_resources = step.get("required_resources", {})
295
+
296
+ for resource, amount in required_resources.items():
297
+ if self.resource_usage.get(resource, 0) + amount > self.resource_limits.get(resource, float('inf')):
298
+ return False
299
+
300
+ return True
301
+
302
+ def _update_resource_usage(self, step: Dict[str, Any]):
303
+ """Update resource usage after step execution."""
304
+ used_resources = step.get("used_resources", {})
305
+
306
+ for resource, amount in used_resources.items():
307
+ self.resource_usage[resource] = self.resource_usage.get(resource, 0) + amount
308
+
309
+ async def _learn_from_execution(self, task: Task, result: Dict[str, Any]):
310
+ """Learn from task execution experience."""
311
+ # Prepare learning data
312
+ learning_data = {
313
+ "task": task.__dict__,
314
+ "result": result,
315
+ "context": {
316
+ "agent_state": self.state,
317
+ "resource_usage": self.resource_usage,
318
+ "performance_metrics": self._get_execution_metrics()
319
+ }
320
+ }
321
+
322
+ # Learn patterns
323
+ patterns = await self.meta_learning.learn(
324
+ data=learning_data,
325
+ context=self.knowledge_base
326
+ )
327
+
328
+ # Update knowledge base
329
+ self._update_knowledge_base(patterns)
330
+
331
+ # Record adaptation
332
+ self.adaptation_history.append({
333
+ "timestamp": datetime.now(),
334
+ "patterns": patterns,
335
+ "metrics": self._get_execution_metrics()
336
+ })
337
+
338
+ async def _learn_from_step(self, step: Dict[str, Any], result: Dict[str, Any]):
339
+ """Learn from individual step execution."""
340
+ if result.get("success", False):
341
+ # Update success patterns
342
+ pattern_key = f"{step['type']}:{step.get('action_type', 'none')}"
343
+ self.knowledge_base["success_patterns"][pattern_key] += 1
344
+
345
+ # Learn from successful execution
346
+ await self.meta_learning.learn(
347
+ data={
348
+ "step": step,
349
+ "result": result
350
+ },
351
+ context={"pattern_key": pattern_key}
352
+ )
353
+
354
+ def _update_knowledge_base(self, patterns: Dict[str, Any]):
355
+ """Update knowledge base with new patterns."""
356
+ # Update expertise levels
357
+ for area, pattern in patterns.get("expertise_patterns", {}).items():
358
+ if area in self.knowledge_base["expertise"]:
359
+ current = self.knowledge_base["expertise"][area]
360
+ self.knowledge_base["expertise"][area] = current * 0.9 + pattern * 0.1
361
+
362
+ # Add new learned skills
363
+ new_skills = patterns.get("learned_skills", set())
364
+ self.knowledge_base["learned_skills"].update(new_skills)
365
+
366
+ # Update interaction patterns
367
+ for pattern, count in patterns.get("interaction_patterns", {}).items():
368
+ self.knowledge_base["interaction_patterns"][pattern] += count
369
+
370
+ def _update_metrics(self, task: Task, result: Dict[str, Any]):
371
+ """Update performance metrics."""
372
+ metrics = {
373
+ "success": float(result.get("success", False)),
374
+ "duration": (datetime.now() - task.created_at).total_seconds(),
375
+ "resource_efficiency": self._calculate_resource_efficiency(),
376
+ "learning_progress": self._calculate_learning_progress()
377
+ }
378
+
379
+ for key, value in metrics.items():
380
+ self.metrics[key].append(value)
381
+
382
+ self.performance_history.append({
383
+ "timestamp": datetime.now(),
384
+ "metrics": metrics
385
+ })
386
+
387
+ def _calculate_resource_efficiency(self) -> float:
388
+ """Calculate resource usage efficiency."""
389
+ if not self.resource_limits:
390
+ return 1.0
391
+
392
+ efficiencies = []
393
+ for resource, usage in self.resource_usage.items():
394
+ limit = self.resource_limits.get(resource, float('inf'))
395
+ if limit > 0:
396
+ efficiencies.append(1 - (usage / limit))
397
+
398
+ return sum(efficiencies) / len(efficiencies) if efficiencies else 1.0
399
+
400
+ def _calculate_learning_progress(self) -> float:
401
+ """Calculate learning progress."""
402
+ if not self.knowledge_base["expertise"]:
403
+ return 0.0
404
+
405
+ return sum(self.knowledge_base["expertise"].values()) / len(self.knowledge_base["expertise"])
406
+
407
+ def _get_execution_metrics(self) -> Dict[str, float]:
408
+ """Get current execution metrics."""
409
+ return {
410
+ key: sum(values[-10:]) / len(values[-10:])
411
+ for key, values in self.metrics.items()
412
+ if values
413
+ }
414
+
415
+ class AgenticSystem:
416
+ """Advanced multi-agent system with orchestration."""
417
+
418
+ def __init__(self, config: Dict[str, Any] = None):
419
+ self.config = config or {}
420
+
421
+ # Initialize orchestrator
422
+ self.orchestrator = AgentOrchestrator(config)
423
+
424
+ # Initialize components
425
+ self.agents: Dict[str, Agent] = {}
426
+ self.reasoning_engine = ReasoningEngine(
427
+ model_manager=None, # Will be injected
428
+ max_depth=5,
429
+ beam_width=3
430
+ )
431
+ self.meta_learning = MetaLearningStrategy()
432
+
433
+ # System state
434
+ self.state = "initialized"
435
+ self.metrics: Dict[str, List[float]] = defaultdict(list)
436
+
437
+ # Async support
438
+ self.executor = ThreadPoolExecutor(max_workers=4)
439
+ self.lock = asyncio.Lock()
440
+
441
+ # Logging
442
+ self.logger = logging.getLogger("AgenticSystem")
443
+
444
+ async def create_agent(
445
+ self,
446
+ name: str,
447
+ role: AgentRole,
448
+ capabilities: List[AgentCapability],
449
+ personality: AgentPersonality,
450
+ expertise_areas: List[str]
451
+ ) -> str:
452
+ """Create a new agent."""
453
+ # Create agent profile
454
+ profile = AgentProfile(
455
+ id=str(uuid.uuid4()),
456
+ name=name,
457
+ role=role,
458
+ capabilities=capabilities,
459
+ personality=personality,
460
+ expertise_areas=expertise_areas,
461
+ learning_rate=0.1,
462
+ risk_tolerance=0.5,
463
+ created_at=datetime.now(),
464
+ metadata={}
465
+ )
466
+
467
+ # Create agent instance
468
+ agent = Agent(
469
+ profile=profile,
470
+ reasoning_engine=self.reasoning_engine,
471
+ meta_learning=self.meta_learning,
472
+ config=self.config.get("agent_config", {})
473
+ )
474
+
475
+ # Register with orchestrator
476
+ agent_id = await self.orchestrator.register_agent(
477
+ role=role,
478
+ capabilities=[c.value for c in capabilities]
479
+ )
480
+
481
+ # Store agent
482
+ async with self.lock:
483
+ self.agents[agent_id] = agent
484
+
485
+ return agent_id
486
+
487
+ async def submit_task(
488
+ self,
489
+ description: str,
490
+ priority: TaskPriority = TaskPriority.MEDIUM,
491
+ deadline: Optional[datetime] = None
492
+ ) -> str:
493
+ """Submit a task to the system."""
494
+ return await self.orchestrator.submit_task(
495
+ description=description,
496
+ priority=priority,
497
+ deadline=deadline
498
+ )
499
+
500
+ async def get_task_status(self, task_id: str) -> Dict[str, Any]:
501
+ """Get status of a task."""
502
+ return await self.orchestrator.get_task_status(task_id)
503
+
504
+ async def get_agent_status(self, agent_id: str) -> Dict[str, Any]:
505
+ """Get status of an agent."""
506
+ agent = self.agents.get(agent_id)
507
+ if not agent:
508
+ raise ValueError(f"Unknown agent: {agent_id}")
509
+
510
+ return {
511
+ "profile": agent.profile.__dict__,
512
+ "state": agent.state,
513
+ "current_task": agent.current_task.__dict__ if agent.current_task else None,
514
+ "metrics": agent._get_execution_metrics(),
515
+ "resource_usage": agent.resource_usage
516
+ }
517
+
518
+ async def get_system_status(self) -> Dict[str, Any]:
519
+ """Get overall system status."""
520
+ return {
521
+ "state": self.state,
522
+ "agent_count": len(self.agents),
523
+ "active_tasks": len([a for a in self.agents.values() if a.state == AgentState.BUSY]),
524
+ "performance_metrics": self._calculate_system_metrics(),
525
+ "resource_usage": self._calculate_resource_usage()
526
+ }
527
+
528
+ def _calculate_system_metrics(self) -> Dict[str, float]:
529
+ """Calculate overall system metrics."""
530
+ metrics = defaultdict(list)
531
+
532
+ for agent in self.agents.values():
533
+ agent_metrics = agent._get_execution_metrics()
534
+ for key, value in agent_metrics.items():
535
+ metrics[key].append(value)
536
+
537
+ return {
538
+ key: sum(values) / len(values)
539
+ for key, values in metrics.items()
540
+ if values
541
+ }
542
+
543
+ def _calculate_resource_usage(self) -> Dict[str, float]:
544
+ """Calculate overall resource usage."""
545
+ usage = defaultdict(float)
546
+
547
+ for agent in self.agents.values():
548
+ for resource, amount in agent.resource_usage.items():
549
+ usage[resource] += amount
550
+
551
+ return dict(usage)
api/venture_api.py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """API endpoints for venture strategies and analysis."""
2
+
3
+ from fastapi import APIRouter, HTTPException, Depends
4
+ from typing import List, Dict, Any, Optional
5
+ from pydantic import BaseModel, Field
6
+ from datetime import datetime
7
+
8
+ from reasoning.venture_strategies import (
9
+ AIStartupStrategy, SaaSVentureStrategy, AutomationVentureStrategy,
10
+ DataVentureStrategy, APIVentureStrategy, MarketplaceVentureStrategy,
11
+ AIInfrastructureStrategy, AIConsultingStrategy, AIProductStrategy,
12
+ FinTechStrategy, HealthTechStrategy, EdTechStrategy,
13
+ BlockchainStrategy, AIMarketplaceStrategy
14
+ )
15
+ from reasoning.market_analysis import MarketAnalyzer
16
+ from reasoning.portfolio_optimization import PortfolioOptimizer
17
+ from reasoning.monetization import MonetizationOptimizer
18
+
19
+ router = APIRouter(prefix="/api/ventures", tags=["ventures"])
20
+
21
+ # Models
22
+ class VentureRequest(BaseModel):
23
+ """Venture analysis request."""
24
+ venture_type: str
25
+ query: str
26
+ context: Dict[str, Any] = Field(default_factory=dict)
27
+
28
+ class MarketRequest(BaseModel):
29
+ """Market analysis request."""
30
+ segment: str
31
+ context: Dict[str, Any] = Field(default_factory=dict)
32
+
33
+ class PortfolioRequest(BaseModel):
34
+ """Portfolio optimization request."""
35
+ ventures: List[str]
36
+ context: Dict[str, Any] = Field(default_factory=dict)
37
+
38
+ class MonetizationRequest(BaseModel):
39
+ """Monetization optimization request."""
40
+ venture_type: str
41
+ context: Dict[str, Any] = Field(default_factory=dict)
42
+
43
+ # Strategy mapping
44
+ VENTURE_STRATEGIES = {
45
+ "ai_startup": AIStartupStrategy(),
46
+ "saas": SaaSVentureStrategy(),
47
+ "automation": AutomationVentureStrategy(),
48
+ "data": DataVentureStrategy(),
49
+ "api": APIVentureStrategy(),
50
+ "marketplace": MarketplaceVentureStrategy(),
51
+ "ai_infrastructure": AIInfrastructureStrategy(),
52
+ "ai_consulting": AIConsultingStrategy(),
53
+ "ai_product": AIProductStrategy(),
54
+ "fintech": FinTechStrategy(),
55
+ "healthtech": HealthTechStrategy(),
56
+ "edtech": EdTechStrategy(),
57
+ "blockchain": BlockchainStrategy(),
58
+ "ai_marketplace": AIMarketplaceStrategy()
59
+ }
60
+
61
+ # Endpoints
62
+ @router.post("/analyze")
63
+ async def analyze_venture(request: VentureRequest):
64
+ """Analyze venture opportunity."""
65
+ try:
66
+ strategy = VENTURE_STRATEGIES.get(request.venture_type)
67
+ if not strategy:
68
+ raise HTTPException(
69
+ status_code=400,
70
+ detail=f"Invalid venture type: {request.venture_type}"
71
+ )
72
+
73
+ result = await strategy.reason(request.query, request.context)
74
+ return {
75
+ "success": True,
76
+ "result": result,
77
+ "timestamp": datetime.now().isoformat()
78
+ }
79
+ except Exception as e:
80
+ raise HTTPException(status_code=500, detail=str(e))
81
+
82
+ @router.post("/market")
83
+ async def analyze_market(request: MarketRequest):
84
+ """Analyze market opportunity."""
85
+ try:
86
+ analyzer = MarketAnalyzer()
87
+ result = await analyzer.analyze_market(request.segment, request.context)
88
+ return {
89
+ "success": True,
90
+ "result": result,
91
+ "timestamp": datetime.now().isoformat()
92
+ }
93
+ except Exception as e:
94
+ raise HTTPException(status_code=500, detail=str(e))
95
+
96
+ @router.post("/portfolio")
97
+ async def optimize_portfolio(request: PortfolioRequest):
98
+ """Optimize venture portfolio."""
99
+ try:
100
+ optimizer = PortfolioOptimizer()
101
+ result = await optimizer.optimize_portfolio(request.ventures, request.context)
102
+ return {
103
+ "success": True,
104
+ "result": result,
105
+ "timestamp": datetime.now().isoformat()
106
+ }
107
+ except Exception as e:
108
+ raise HTTPException(status_code=500, detail=str(e))
109
+
110
+ @router.post("/monetization")
111
+ async def optimize_monetization(request: MonetizationRequest):
112
+ """Optimize venture monetization."""
113
+ try:
114
+ optimizer = MonetizationOptimizer()
115
+ result = await optimizer.optimize_monetization(
116
+ request.venture_type, request.context)
117
+ return {
118
+ "success": True,
119
+ "result": result,
120
+ "timestamp": datetime.now().isoformat()
121
+ }
122
+ except Exception as e:
123
+ raise HTTPException(status_code=500, detail=str(e))
124
+
125
+ @router.get("/strategies")
126
+ async def list_strategies():
127
+ """List available venture strategies."""
128
+ return {
129
+ "success": True,
130
+ "strategies": list(VENTURE_STRATEGIES.keys()),
131
+ "timestamp": datetime.now().isoformat()
132
+ }
133
+
134
+ @router.get("/metrics/{venture_type}")
135
+ async def get_venture_metrics(venture_type: str):
136
+ """Get venture performance metrics."""
137
+ try:
138
+ strategy = VENTURE_STRATEGIES.get(venture_type)
139
+ if not strategy:
140
+ raise HTTPException(
141
+ status_code=400,
142
+ detail=f"Invalid venture type: {venture_type}"
143
+ )
144
+
145
+ metrics = strategy.get_venture_metrics()
146
+ return {
147
+ "success": True,
148
+ "metrics": metrics,
149
+ "timestamp": datetime.now().isoformat()
150
+ }
151
+ except Exception as e:
152
+ raise HTTPException(status_code=500, detail=str(e))
153
+
154
+ @router.get("/insights")
155
+ async def get_market_insights():
156
+ """Get comprehensive market insights."""
157
+ try:
158
+ analyzer = MarketAnalyzer()
159
+ insights = analyzer.get_market_insights()
160
+ return {
161
+ "success": True,
162
+ "insights": insights,
163
+ "timestamp": datetime.now().isoformat()
164
+ }
165
+ except Exception as e:
166
+ raise HTTPException(status_code=500, detail=str(e))
167
+
168
+ @router.get("/portfolio/insights")
169
+ async def get_portfolio_insights():
170
+ """Get comprehensive portfolio insights."""
171
+ try:
172
+ optimizer = PortfolioOptimizer()
173
+ insights = optimizer.get_portfolio_insights()
174
+ return {
175
+ "success": True,
176
+ "insights": insights,
177
+ "timestamp": datetime.now().isoformat()
178
+ }
179
+ except Exception as e:
180
+ raise HTTPException(status_code=500, detail=str(e))
181
+
182
+ @router.get("/monetization/metrics")
183
+ async def get_monetization_metrics():
184
+ """Get comprehensive monetization metrics."""
185
+ try:
186
+ optimizer = MonetizationOptimizer()
187
+ metrics = optimizer.get_monetization_metrics()
188
+ return {
189
+ "success": True,
190
+ "metrics": metrics,
191
+ "timestamp": datetime.now().isoformat()
192
+ }
193
+ except Exception as e:
194
+ raise HTTPException(status_code=500, detail=str(e))
app.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Advanced Agentic System Interface
3
+ -------------------------------
4
+ Provides an interface to interact with the autonomous agent system
5
+ using local LLM for improved performance.
6
+ """
7
+
8
+ import gradio as gr
9
+ import asyncio
10
+ from typing import Dict, Any, List
11
+ import json
12
+ from datetime import datetime
13
+ import logging
14
+
15
+ from agentic_system import AgenticSystem
16
+ from team_management import TeamManager
17
+ from orchestrator import AgentOrchestrator
18
+ from reasoning.unified_engine import UnifiedReasoningEngine
19
+
20
+ # Configure logging
21
+ logging.basicConfig(level=logging.INFO)
22
+ logger = logging.getLogger(__name__)
23
+
24
+ class AgentInterface:
25
+ """Interface for the agentic system."""
26
+
27
+ def __init__(self):
28
+ """Initialize the interface components."""
29
+ self.orchestrator = AgentOrchestrator()
30
+ self.reasoning_engine = UnifiedReasoningEngine(
31
+ min_confidence=0.7,
32
+ parallel_threshold=3,
33
+ learning_rate=0.1
34
+ )
35
+
36
+ async def process_query(self, message: str) -> str:
37
+ """Process user query through the reasoning system."""
38
+ try:
39
+ # Prepare context
40
+ context = {
41
+ 'timestamp': datetime.now().isoformat(),
42
+ 'objective': 'Provide helpful and accurate responses',
43
+ 'mode': 'analytical'
44
+ }
45
+
46
+ # Get response from reasoning engine
47
+ result = await self.reasoning_engine.reason(
48
+ query=message,
49
+ context=context
50
+ )
51
+
52
+ if result.success:
53
+ return result.answer
54
+ else:
55
+ return f"Error: Unable to process query. Please try again."
56
+
57
+ except Exception as e:
58
+ logger.error(f"Error processing query: {e}")
59
+ return f"Error: {str(e)}"
60
+
61
+ # Initialize interface
62
+ interface = AgentInterface()
63
+
64
+ # Create Gradio interface
65
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
66
+ gr.Markdown("""
67
+ # AI Reasoning System
68
+ This system uses advanced reasoning strategies including local LLM for improved performance.
69
+
70
+ Note: First query might take a few seconds as the model loads.
71
+ """)
72
+
73
+ with gr.Row():
74
+ with gr.Column(scale=4):
75
+ input_text = gr.Textbox(
76
+ label="Your question",
77
+ placeholder="Ask me anything...",
78
+ lines=2
79
+ )
80
+ output_text = gr.Textbox(
81
+ label="Response",
82
+ lines=10,
83
+ interactive=False
84
+ )
85
+ submit_btn = gr.Button("Ask")
86
+ clear_btn = gr.Button("Clear")
87
+
88
+ with gr.Column(scale=1):
89
+ gr.Markdown("""
90
+ ### Example Questions:
91
+ - What are the implications of artificial intelligence on society?
92
+ - How does climate change affect global ecosystems?
93
+ - What are the philosophical implications of quantum mechanics?
94
+ """)
95
+
96
+ # Set up event handlers
97
+ submit_btn.click(
98
+ fn=interface.process_query,
99
+ inputs=input_text,
100
+ outputs=output_text
101
+ )
102
+ clear_btn.click(
103
+ lambda: ("", ""),
104
+ inputs=None,
105
+ outputs=[input_text, output_text]
106
+ )
107
+
108
+ # Launch the interface
109
+ if __name__ == "__main__":
110
+ demo.launch()
app.py.backup ADDED
@@ -0,0 +1,338 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Advanced Agentic System Interface
3
+ -------------------------------
4
+ Provides a chat interface to interact with the autonomous agent teams:
5
+ - Team A: Coders (App/Software Developers)
6
+ - Team B: Business (Entrepreneurs)
7
+ - Team C: Research (Deep Online Research)
8
+ - Team D: Crypto & Sports Trading
9
+ """
10
+
11
+ import gradio as gr
12
+ import asyncio
13
+ from typing import Dict, Any, List
14
+ import json
15
+ from datetime import datetime
16
+
17
+ from agentic_system import AgenticSystem
18
+ from team_management import TeamManager, TeamType, TeamObjective
19
+ from orchestrator import AgentOrchestrator
20
+ from reasoning import ReasoningEngine
21
+
22
+ class ChatInterface:
23
+ def __init__(self):
24
+ # Initialize core components
25
+ self.orchestrator = AgentOrchestrator()
26
+ self.agentic_system = AgenticSystem()
27
+ self.team_manager = TeamManager(self.orchestrator)
28
+ self.chat_history = []
29
+ self.active_objectives = {}
30
+
31
+ # Initialize teams
32
+ asyncio.run(self.team_manager.initialize_team_agents())
33
+
34
+ async def process_message(
35
+ self,
36
+ message: str,
37
+ history: List[List[str]]
38
+ ) -> str:
39
+ """Process incoming chat message."""
40
+ try:
41
+ # Analyze message intent
42
+ intent = await self._analyze_intent(message)
43
+
44
+ if intent["type"] == "query":
45
+ response = await self._handle_query(message)
46
+ elif intent["type"] == "objective":
47
+ response = await self._handle_objective(message)
48
+ elif intent["type"] == "status":
49
+ response = await self._handle_status_request(message)
50
+ else:
51
+ response = await self._handle_general_chat(message)
52
+
53
+ # Update chat history
54
+ self.chat_history.append({
55
+ "role": "user",
56
+ "content": message,
57
+ "timestamp": datetime.now()
58
+ })
59
+ self.chat_history.append({
60
+ "role": "assistant",
61
+ "content": response,
62
+ "timestamp": datetime.now()
63
+ })
64
+
65
+ return response
66
+
67
+ except Exception as e:
68
+ return f"Error processing message: {str(e)}"
69
+
70
+ async def _analyze_intent(self, message: str) -> Dict[str, Any]:
71
+ """Analyze user message intent."""
72
+ # Use reasoning engine to analyze intent
73
+ analysis = await self.orchestrator.reasoning_engine.reason(
74
+ query=message,
75
+ context={
76
+ "chat_history": self.chat_history,
77
+ "active_objectives": self.active_objectives
78
+ }
79
+ )
80
+
81
+ return {
82
+ "type": analysis.get("intent_type", "general"),
83
+ "confidence": analysis.get("confidence", 0.5),
84
+ "entities": analysis.get("entities", []),
85
+ "action_required": analysis.get("action_required", False)
86
+ }
87
+
88
+ async def _handle_query(self, message: str) -> str:
89
+ """Handle information queries."""
90
+ # Get relevant teams for the query
91
+ recommended_teams = await self.team_manager.get_team_recommendations(message)
92
+
93
+ # Get responses from relevant teams
94
+ responses = []
95
+ for team_type in recommended_teams:
96
+ team_response = await self._get_team_response(team_type, message)
97
+ responses.append(team_response)
98
+
99
+ # Combine and format responses
100
+ combined_response = self._format_team_responses(responses)
101
+
102
+ return combined_response
103
+
104
+ async def _handle_objective(self, message: str) -> str:
105
+ """Handle new objective creation."""
106
+ # Analyze objective requirements
107
+ analysis = await self.orchestrator.reasoning_engine.reason(
108
+ query=f"Analyze objective requirements: {message}",
109
+ context={"teams": self.team_manager.teams}
110
+ )
111
+
112
+ # Determine required teams
113
+ required_teams = [
114
+ TeamType[team.upper()]
115
+ for team in analysis.get("required_teams", [])
116
+ ]
117
+
118
+ # Create cross-team objective
119
+ objective_id = await self.team_manager.create_cross_team_objective(
120
+ objective=message,
121
+ required_teams=required_teams
122
+ )
123
+
124
+ self.active_objectives[objective_id] = {
125
+ "description": message,
126
+ "teams": required_teams,
127
+ "status": "initiated",
128
+ "created_at": datetime.now()
129
+ }
130
+
131
+ return self._format_objective_creation(objective_id)
132
+
133
+ async def _handle_status_request(self, message: str) -> str:
134
+ """Handle status check requests."""
135
+ # Get system status
136
+ system_status = await self.agentic_system.get_system_status()
137
+
138
+ # Get team status
139
+ team_status = {}
140
+ for team_id, team in self.team_manager.teams.items():
141
+ team_status[team.name] = await self.team_manager.monitor_objective_progress(team_id)
142
+
143
+ # Get objective status
144
+ objective_status = {}
145
+ for obj_id, obj in self.active_objectives.items():
146
+ objective_status[obj_id] = await self.team_manager.monitor_objective_progress(obj_id)
147
+
148
+ return self._format_status_response(system_status, team_status, objective_status)
149
+
150
+ async def _handle_general_chat(self, message: str) -> str:
151
+ """Handle general chat interactions."""
152
+ # Use reasoning engine for response generation
153
+ response = await self.orchestrator.reasoning_engine.reason(
154
+ query=message,
155
+ context={
156
+ "chat_history": self.chat_history,
157
+ "system_state": await self.agentic_system.get_system_status()
158
+ }
159
+ )
160
+
161
+ return response.get("response", "I'm not sure how to respond to that.")
162
+
163
+ async def _get_team_response(self, team_type: TeamType, query: str) -> Dict[str, Any]:
164
+ """Get response from a specific team."""
165
+ team_id = next(
166
+ (tid for tid, team in self.team_manager.teams.items()
167
+ if team.type == team_type),
168
+ None
169
+ )
170
+
171
+ if not team_id:
172
+ return {
173
+ "team": team_type.value,
174
+ "response": "Team not available",
175
+ "confidence": 0.0
176
+ }
177
+
178
+ # Get team agents
179
+ team_agents = self.team_manager.agents[team_id]
180
+
181
+ # Aggregate responses from team agents
182
+ responses = []
183
+ for agent in team_agents.values():
184
+ agent_response = await agent.process_query(query)
185
+ responses.append(agent_response)
186
+
187
+ # Combine responses
188
+ combined_response = self._combine_agent_responses(responses)
189
+
190
+ return {
191
+ "team": team_type.value,
192
+ "response": combined_response,
193
+ "confidence": sum(r.get("confidence", 0) for r in responses) / len(responses)
194
+ }
195
+
196
+ def _combine_agent_responses(self, responses: List[Dict[str, Any]]) -> str:
197
+ """Combine multiple agent responses into a coherent response."""
198
+ # Sort by confidence
199
+ valid_responses = [
200
+ r for r in responses
201
+ if r.get("success", False) and r.get("response")
202
+ ]
203
+
204
+ if not valid_responses:
205
+ return "No valid response available"
206
+
207
+ sorted_responses = sorted(
208
+ valid_responses,
209
+ key=lambda x: x.get("confidence", 0),
210
+ reverse=True
211
+ )
212
+
213
+ # Take the highest confidence response
214
+ best_response = sorted_responses[0]
215
+
216
+ return best_response.get("response", "No response available")
217
+
218
+ def _format_team_responses(self, responses: List[Dict[str, Any]]) -> str:
219
+ """Format team responses into a readable message."""
220
+ formatted = []
221
+
222
+ for response in responses:
223
+ if response.get("confidence", 0) > 0.3: # Confidence threshold
224
+ formatted.append(
225
+ f"Team {response['team'].title()}:\n"
226
+ f"{response['response']}\n"
227
+ )
228
+
229
+ if not formatted:
230
+ return "No team was able to provide a confident response."
231
+
232
+ return "\n".join(formatted)
233
+
234
+ def _format_objective_creation(self, objective_id: str) -> str:
235
+ """Format objective creation response."""
236
+ objective = self.active_objectives[objective_id]
237
+
238
+ return (
239
+ f"Objective created successfully!\n\n"
240
+ f"Objective ID: {objective_id}\n"
241
+ f"Description: {objective['description']}\n"
242
+ f"Assigned Teams: {', '.join(t.value for t in objective['teams'])}\n"
243
+ f"Status: {objective['status']}\n"
244
+ f"Created: {objective['created_at'].strftime('%Y-%m-%d %H:%M:%S')}"
245
+ )
246
+
247
+ def _format_status_response(
248
+ self,
249
+ system_status: Dict[str, Any],
250
+ team_status: Dict[str, Any],
251
+ objective_status: Dict[str, Any]
252
+ ) -> str:
253
+ """Format status response."""
254
+ # Format system status
255
+ status = [
256
+ "System Status:",
257
+ f"- State: {system_status['state']}",
258
+ f"- Active Agents: {system_status['agent_count']}",
259
+ f"- Active Tasks: {system_status['active_tasks']}",
260
+ "\nTeam Status:"
261
+ ]
262
+
263
+ # Add team status
264
+ for team_name, team_info in team_status.items():
265
+ status.extend([
266
+ f"\n{team_name}:",
267
+ f"- Active Agents: {team_info['active_agents']}",
268
+ f"- Completion Rate: {team_info['completion_rate']:.2%}",
269
+ f"- Collaboration Score: {team_info['collaboration_score']:.2f}"
270
+ ])
271
+
272
+ # Add objective status
273
+ if objective_status:
274
+ status.append("\nActive Objectives:")
275
+ for obj_id, obj_info in objective_status.items():
276
+ obj = self.active_objectives[obj_id]
277
+ status.extend([
278
+ f"\n{obj['description']}:",
279
+ f"- Status: {obj['status']}",
280
+ f"- Teams: {', '.join(t.value for t in obj['teams'])}",
281
+ f"- Progress: {sum(t['completion_rate'] for t in obj_info.values())/len(obj_info):.2%}"
282
+ ])
283
+
284
+ return "\n".join(status)
285
+
286
+ class VentureUI:
287
+ def __init__(self, app):
288
+ self.app = app
289
+
290
+ def create_interface(self):
291
+ return gr.Interface(
292
+ fn=self.app,
293
+ inputs=[
294
+ gr.Textbox(
295
+ label="Message",
296
+ placeholder="Chat with the Agentic System...",
297
+ lines=2
298
+ ),
299
+ gr.State([]) # For chat history
300
+ ],
301
+ outputs=gr.Textbox(
302
+ label="Response",
303
+ lines=10
304
+ ),
305
+ title="Advanced Agentic System Chat Interface",
306
+ description="""
307
+ Chat with our autonomous agent teams:
308
+ - Team A: Coders (App/Software Developers)
309
+ - Team B: Business (Entrepreneurs)
310
+ - Team C: Research (Deep Online Research)
311
+ - Team D: Crypto & Sports Trading
312
+
313
+ You can:
314
+ 1. Ask questions
315
+ 2. Create new objectives
316
+ 3. Check status of teams and objectives
317
+ 4. Get insights and recommendations
318
+ """,
319
+ theme="default",
320
+ allow_flagging="never"
321
+ )
322
+
323
+ def create_chat_interface() -> gr.Interface:
324
+ """Create Gradio chat interface."""
325
+ chat = ChatInterface()
326
+ ui = VentureUI(chat.process_message)
327
+
328
+ return ui.create_interface()
329
+
330
+ # Create and launch the interface
331
+ interface = create_chat_interface()
332
+
333
+ if __name__ == "__main__":
334
+ interface.launch(
335
+ server_name="0.0.0.0",
336
+ server_port=7860,
337
+ share=True
338
+ )
app.yaml ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ title: Advanced Reasoning System
2
+ emoji: 🧠
3
+ colorFrom: indigo
4
+ colorTo: purple
5
+ sdk: gradio
6
+ sdk_version: 4.16.0
7
+ app_file: app.py
8
+ pinned: false
9
+ license: mit
check_space_status.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub import HfApi
2
+ import time
3
+ import os
4
+ import requests
5
+
6
+ def check_space_status():
7
+ api = HfApi()
8
+ space_name = "nananie143/Agentic_llm"
9
+
10
+ try:
11
+ # First try direct API request
12
+ response = requests.get(
13
+ f"https://huggingface.co/api/spaces/{space_name}/runtime",
14
+ headers={"Authorization": f"Bearer {os.environ['HUGGINGFACE_TOKEN']}"}
15
+ )
16
+ print(f"\nAPI Response Status: {response.status_code}")
17
+ if response.ok:
18
+ data = response.json()
19
+ print(f"Space Info: {data}")
20
+ return data.get("stage")
21
+
22
+ # Fallback to HF API
23
+ space_info = api.space_info(space_name)
24
+ print(f"\nSpace Info via HF API: {space_info}")
25
+
26
+ if hasattr(space_info, 'runtime'):
27
+ status = space_info.runtime.stage
28
+ print(f"Status: {status}")
29
+ return status
30
+
31
+ print("No status information available")
32
+ return None
33
+
34
+ except Exception as e:
35
+ print(f"Error checking status: {e}")
36
+ return None
37
+
38
+ print("Starting Space status check...")
39
+ print("Will check every 30 seconds until the Space is running...")
40
+
41
+ while True:
42
+ status = check_space_status()
43
+ print(f"Current status: {status}")
44
+
45
+ if status == "RUNNING":
46
+ print("\nSpace is now running! ")
47
+ print(f"Access your Space at: https://huggingface.co/spaces/nananie143/Agentic_llm")
48
+ break
49
+ elif status == "FAILED":
50
+ print("\nSpace build failed! Please check the logs for details.")
51
+ break
52
+ elif status is None:
53
+ print("\nCouldn't determine status. Will try again...")
54
+
55
+ time.sleep(30)
config.py ADDED
@@ -0,0 +1,321 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ System Configuration
3
+ ------------------
4
+ Central configuration for the Agentic System including:
5
+ 1. Local Model Settings
6
+ 2. Team Settings
7
+ 3. System Parameters
8
+ 4. Resource Limits
9
+ 5. Free API Configurations
10
+ """
11
+
12
+ import os
13
+ from typing import Dict, Any
14
+ from pathlib import Path
15
+ from dotenv import load_dotenv
16
+
17
+ # Load environment variables
18
+ load_dotenv()
19
+
20
+ class SystemConfig:
21
+ """System-wide configuration."""
22
+
23
+ # Base Paths
24
+ BASE_DIR = Path(__file__).parent.absolute()
25
+ CACHE_DIR = BASE_DIR / "cache"
26
+ LOG_DIR = BASE_DIR / "logs"
27
+ DATA_DIR = BASE_DIR / "data"
28
+ MODEL_DIR = BASE_DIR / "models"
29
+
30
+ # System Parameters
31
+ DEBUG_MODE = os.getenv("DEBUG_MODE", "False").lower() == "true"
32
+ LOG_LEVEL = os.getenv("LOG_LEVEL", "INFO")
33
+ MAX_WORKERS = int(os.getenv("MAX_WORKERS", "4"))
34
+ ASYNC_TIMEOUT = int(os.getenv("ASYNC_TIMEOUT", "30"))
35
+
36
+ # Local Model Configurations
37
+ MODEL_CONFIG = {
38
+ "quick_coder": {
39
+ "name": "tugstugi/Qwen2.5-Coder-0.5B-QwQ-draft",
40
+ "type": "transformers",
41
+ "description": "Fast code completion and simple tasks",
42
+ "temperature": 0.2,
43
+ "max_tokens": 1000,
44
+ "timeout": 30
45
+ },
46
+ "deep_coder": {
47
+ "name": "YorkieOH10/deepseek-coder-6.7B-kexer-Q8_0-GGUF",
48
+ "type": "gguf",
49
+ "description": "Complex code generation and refactoring",
50
+ "temperature": 0.3,
51
+ "max_tokens": 2000,
52
+ "timeout": 45
53
+ },
54
+ "text_gen": {
55
+ "name": "Orenguteng/Llama-3-8B-Lexi-Uncensored",
56
+ "type": "transformers",
57
+ "description": "General text generation and reasoning",
58
+ "temperature": 0.7,
59
+ "max_tokens": 1500,
60
+ "timeout": 40
61
+ },
62
+ "workflow": {
63
+ "name": "deepseek-ai/JanusFlow-1.3B",
64
+ "type": "transformers",
65
+ "description": "Task planning and workflow management",
66
+ "temperature": 0.5,
67
+ "max_tokens": 1000,
68
+ "timeout": 30
69
+ }
70
+ }
71
+
72
+ # Team Configurations
73
+ TEAM_CONFIG = {
74
+ "coders": {
75
+ "min_agents": 3,
76
+ "max_agents": 7,
77
+ "capabilities": [
78
+ "full_stack_development",
79
+ "cloud_architecture",
80
+ "ai_ml",
81
+ "blockchain",
82
+ "mobile_development"
83
+ ],
84
+ "resource_limits": {
85
+ "cpu_percent": 80,
86
+ "memory_mb": 4096,
87
+ "gpu_memory_mb": 2048
88
+ }
89
+ },
90
+ "business": {
91
+ "min_agents": 2,
92
+ "max_agents": 5,
93
+ "capabilities": [
94
+ "market_analysis",
95
+ "business_strategy",
96
+ "digital_transformation",
97
+ "startup_innovation",
98
+ "product_management"
99
+ ],
100
+ "resource_limits": {
101
+ "cpu_percent": 60,
102
+ "memory_mb": 2048,
103
+ "api_calls_per_minute": 100
104
+ }
105
+ },
106
+ "research": {
107
+ "min_agents": 2,
108
+ "max_agents": 6,
109
+ "capabilities": [
110
+ "deep_research",
111
+ "data_analysis",
112
+ "trend_forecasting",
113
+ "competitive_analysis",
114
+ "technology_assessment"
115
+ ],
116
+ "resource_limits": {
117
+ "cpu_percent": 70,
118
+ "memory_mb": 3072,
119
+ "api_calls_per_minute": 150
120
+ }
121
+ },
122
+ "traders": {
123
+ "min_agents": 2,
124
+ "max_agents": 5,
125
+ "capabilities": [
126
+ "crypto_trading",
127
+ "sports_betting",
128
+ "risk_management",
129
+ "market_timing",
130
+ "portfolio_optimization"
131
+ ],
132
+ "resource_limits": {
133
+ "cpu_percent": 60,
134
+ "memory_mb": 2048,
135
+ "api_calls_per_minute": 200
136
+ }
137
+ }
138
+ }
139
+
140
+ # Resource Management
141
+ RESOURCE_LIMITS = {
142
+ "total_cpu_percent": 90,
143
+ "total_memory_mb": 8192,
144
+ "total_gpu_memory_mb": 4096,
145
+ "max_api_calls_per_minute": 500,
146
+ "max_concurrent_tasks": 20
147
+ }
148
+
149
+ # Collaboration Settings
150
+ COLLABORATION_CONFIG = {
151
+ "min_confidence_threshold": 0.6,
152
+ "max_team_size": 10,
153
+ "max_concurrent_objectives": 5,
154
+ "objective_timeout_minutes": 60,
155
+ "team_sync_interval_seconds": 30
156
+ }
157
+
158
+ # Error Recovery
159
+ ERROR_RECOVERY = {
160
+ "max_retries": 3,
161
+ "retry_delay_seconds": 5,
162
+ "error_threshold": 0.2,
163
+ "recovery_timeout": 300
164
+ }
165
+
166
+ # Monitoring
167
+ MONITORING = {
168
+ "metrics_interval_seconds": 60,
169
+ "health_check_interval": 30,
170
+ "performance_log_retention_days": 7,
171
+ "alert_threshold": {
172
+ "cpu": 85,
173
+ "memory": 90,
174
+ "error_rate": 0.1
175
+ }
176
+ }
177
+
178
+ # Free API Configurations (No API Keys Required)
179
+ API_CONFIG = {
180
+ "search": {
181
+ "duckduckgo": {
182
+ "base_url": "https://api.duckduckgo.com",
183
+ "rate_limit": 100,
184
+ "requires_auth": False,
185
+ "method": "GET"
186
+ },
187
+ "wikipedia": {
188
+ "base_url": "https://en.wikipedia.org/w/api.php",
189
+ "rate_limit": 200,
190
+ "requires_auth": False,
191
+ "method": "GET"
192
+ },
193
+ "arxiv": {
194
+ "base_url": "http://export.arxiv.org/api/query",
195
+ "rate_limit": 60,
196
+ "requires_auth": False,
197
+ "method": "GET"
198
+ },
199
+ "crossref": {
200
+ "base_url": "https://api.crossref.org/works",
201
+ "rate_limit": 50,
202
+ "requires_auth": False,
203
+ "method": "GET"
204
+ },
205
+ "unpaywall": {
206
+ "base_url": "https://api.unpaywall.org/v2",
207
+ "rate_limit": 100,
208
+ "requires_auth": False,
209
+ "method": "GET"
210
+ }
211
+ },
212
+ "crypto": {
213
+ "coincap": {
214
+ "base_url": "https://api.coincap.io/v2",
215
+ "rate_limit": 200,
216
+ "requires_auth": False,
217
+ "method": "GET",
218
+ "endpoints": {
219
+ "assets": "/assets",
220
+ "rates": "/rates",
221
+ "markets": "/markets"
222
+ }
223
+ },
224
+ "blockchair": {
225
+ "base_url": "https://api.blockchair.com",
226
+ "rate_limit": 30,
227
+ "requires_auth": False,
228
+ "method": "GET"
229
+ }
230
+ },
231
+ "news": {
232
+ "wikinews": {
233
+ "base_url": "https://en.wikinews.org/w/api.php",
234
+ "rate_limit": 200,
235
+ "requires_auth": False,
236
+ "method": "GET"
237
+ },
238
+ "reddit": {
239
+ "base_url": "https://www.reddit.com/r/news/.json",
240
+ "rate_limit": 60,
241
+ "requires_auth": False,
242
+ "method": "GET"
243
+ },
244
+ "hackernews": {
245
+ "base_url": "https://hacker-news.firebaseio.com/v0",
246
+ "rate_limit": 100,
247
+ "requires_auth": False,
248
+ "method": "GET"
249
+ }
250
+ },
251
+ "market_data": {
252
+ "yahoo_finance": {
253
+ "base_url": "https://query1.finance.yahoo.com/v8/finance",
254
+ "rate_limit": 100,
255
+ "requires_auth": False,
256
+ "method": "GET"
257
+ },
258
+ "marketstack_free": {
259
+ "base_url": "https://api.marketstack.com/v1",
260
+ "rate_limit": 100,
261
+ "requires_auth": False,
262
+ "method": "GET"
263
+ }
264
+ },
265
+ "sports": {
266
+ "football_data": {
267
+ "base_url": "https://www.football-data.org/v4",
268
+ "rate_limit": 10,
269
+ "requires_auth": False,
270
+ "method": "GET",
271
+ "free_endpoints": [
272
+ "/competitions",
273
+ "/matches"
274
+ ]
275
+ },
276
+ "nhl": {
277
+ "base_url": "https://statsapi.web.nhl.com/api/v1",
278
+ "rate_limit": 50,
279
+ "requires_auth": False,
280
+ "method": "GET"
281
+ },
282
+ "mlb": {
283
+ "base_url": "https://statsapi.mlb.com/api/v1",
284
+ "rate_limit": 50,
285
+ "requires_auth": False,
286
+ "method": "GET"
287
+ }
288
+ },
289
+ "web_scraping": {
290
+ "web_archive": {
291
+ "base_url": "https://archive.org/wayback/available",
292
+ "rate_limit": 40,
293
+ "requires_auth": False,
294
+ "method": "GET"
295
+ },
296
+ "metahtml": {
297
+ "base_url": "https://html.spec.whatwg.org/multipage",
298
+ "rate_limit": 30,
299
+ "requires_auth": False,
300
+ "method": "GET"
301
+ }
302
+ }
303
+ }
304
+
305
+ @classmethod
306
+ def get_team_config(cls, team_name: str) -> Dict[str, Any]:
307
+ """Get configuration for a specific team."""
308
+ return cls.TEAM_CONFIG.get(team_name, {})
309
+
310
+ @classmethod
311
+ def get_model_config(cls, model_type: str) -> Dict[str, Any]:
312
+ """Get configuration for a specific model type."""
313
+ return cls.MODEL_CONFIG.get(model_type, {})
314
+
315
+ @classmethod
316
+ def get_api_config(cls, api_name: str) -> Dict[str, Any]:
317
+ """Get configuration for a specific API."""
318
+ for category in cls.API_CONFIG.values():
319
+ if api_name in category:
320
+ return category[api_name]
321
+ return {}
fix_indentation.patch ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ --- reasoning.py
2
+ +++ reasoning.py
3
+ @@ -2796,297 +2796,297 @@
4
+ async def _cross_modal_alignment(self, modalities: Dict[str, List[Dict[str, Any]]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
5
+ """Align information across different modalities."""
6
+ try:
7
+ # Extract modality types
8
+ modal_types = list(modalities.keys())
9
+
10
+ # Initialize alignment results
11
+ alignments = []
12
+
13
+ # Process each modality pair
14
+ for i in range(len(modal_types)):
15
+ for j in range(i + 1, len(modal_types)):
16
+ type1, type2 = modal_types[i], modal_types[j]
17
+
18
+ # Get items from each modality
19
+ items1 = modalities[type1]
20
+ items2 = modalities[type2]
21
+
22
+ # Find alignments between items
23
+ for item1 in items1:
24
+ for item2 in items2:
25
+ similarity = self._calculate_similarity(item1, item2)
26
+ if similarity > 0.5: # Threshold for alignment
27
+ alignments.append({
28
+ "type1": type1,
29
+ "type2": type2,
30
+ "item1": item1,
31
+ "item2": item2,
32
+ "similarity": similarity
33
+ })
34
+
35
+ # Sort alignments by similarity
36
+ alignments.sort(key=lambda x: x["similarity"], reverse=True)
37
+
38
+ return alignments
39
+
40
+ except Exception as e:
41
+ logging.error(f"Error in cross-modal alignment: {str(e)}")
42
+ return []
meta_learning.py ADDED
@@ -0,0 +1,406 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Meta-Learning System
3
+ ------------------
4
+ Implements meta-learning capabilities for improved learning and adaptation.
5
+ """
6
+
7
+ from typing import Dict, Any, List, Optional, Tuple
8
+ import numpy as np
9
+ from dataclasses import dataclass, field
10
+ import logging
11
+ from datetime import datetime
12
+ from enum import Enum
13
+ import json
14
+ from .quantum_learning import QuantumLearningSystem, Pattern, PatternType
15
+
16
+ class LearningStrategy(Enum):
17
+ GRADIENT_BASED = "gradient_based"
18
+ MEMORY_BASED = "memory_based"
19
+ EVOLUTIONARY = "evolutionary"
20
+ REINFORCEMENT = "reinforcement"
21
+ QUANTUM = "quantum"
22
+
23
+ @dataclass
24
+ class MetaParameters:
25
+ """Meta-parameters for learning strategies"""
26
+ learning_rate: float = 0.01
27
+ memory_size: int = 1000
28
+ evolution_rate: float = 0.1
29
+ exploration_rate: float = 0.2
30
+ quantum_interference: float = 0.5
31
+ adaptation_threshold: float = 0.7
32
+
33
+ @dataclass
34
+ class LearningMetrics:
35
+ """Metrics for learning performance"""
36
+ accuracy: float
37
+ convergence_rate: float
38
+ adaptation_speed: float
39
+ resource_usage: float
40
+ timestamp: str = field(default_factory=lambda: datetime.now().isoformat())
41
+
42
+ class MetaLearningSystem:
43
+ """Meta-learning system for optimizing learning strategies"""
44
+
45
+ def __init__(self):
46
+ self.logger = logging.getLogger(__name__)
47
+ self.quantum_system = QuantumLearningSystem()
48
+ self.strategies = {}
49
+ self.performance_history = []
50
+ self.meta_parameters = MetaParameters()
51
+
52
+ async def optimize_learning(
53
+ self,
54
+ observation: Dict[str, Any],
55
+ current_strategy: LearningStrategy
56
+ ) -> Tuple[Dict[str, Any], LearningMetrics]:
57
+ """Optimize learning strategy based on observation"""
58
+ try:
59
+ # Process with quantum system
60
+ quantum_result = await self.quantum_system.process_observation(observation)
61
+
62
+ # Evaluate current strategy
63
+ current_metrics = self._evaluate_strategy(
64
+ current_strategy,
65
+ observation,
66
+ quantum_result
67
+ )
68
+
69
+ # Update performance history
70
+ self._update_performance_history(current_metrics)
71
+
72
+ # Adapt meta-parameters
73
+ self._adapt_meta_parameters(current_metrics)
74
+
75
+ # Select optimal strategy
76
+ optimal_strategy = self._select_optimal_strategy(
77
+ observation,
78
+ current_metrics
79
+ )
80
+
81
+ # Apply selected strategy
82
+ result = await self._apply_strategy(
83
+ optimal_strategy,
84
+ observation,
85
+ quantum_result
86
+ )
87
+
88
+ return result, current_metrics
89
+
90
+ except Exception as e:
91
+ self.logger.error(f"Failed to optimize learning: {str(e)}")
92
+ raise
93
+
94
+ def _evaluate_strategy(
95
+ self,
96
+ strategy: LearningStrategy,
97
+ observation: Dict[str, Any],
98
+ quantum_result: Dict[str, Any]
99
+ ) -> LearningMetrics:
100
+ """Evaluate performance of current learning strategy"""
101
+ # Calculate accuracy
102
+ accuracy = self._calculate_accuracy(
103
+ strategy,
104
+ observation,
105
+ quantum_result
106
+ )
107
+
108
+ # Calculate convergence rate
109
+ convergence_rate = self._calculate_convergence_rate(
110
+ strategy,
111
+ self.performance_history
112
+ )
113
+
114
+ # Calculate adaptation speed
115
+ adaptation_speed = self._calculate_adaptation_speed(
116
+ strategy,
117
+ observation
118
+ )
119
+
120
+ # Calculate resource usage
121
+ resource_usage = self._calculate_resource_usage(strategy)
122
+
123
+ return LearningMetrics(
124
+ accuracy=accuracy,
125
+ convergence_rate=convergence_rate,
126
+ adaptation_speed=adaptation_speed,
127
+ resource_usage=resource_usage
128
+ )
129
+
130
+ def _update_performance_history(
131
+ self,
132
+ metrics: LearningMetrics
133
+ ) -> None:
134
+ """Update performance history with new metrics"""
135
+ self.performance_history.append(metrics)
136
+
137
+ # Maintain history size
138
+ if len(self.performance_history) > self.meta_parameters.memory_size:
139
+ self.performance_history.pop(0)
140
+
141
+ def _adapt_meta_parameters(
142
+ self,
143
+ metrics: LearningMetrics
144
+ ) -> None:
145
+ """Adapt meta-parameters based on performance metrics"""
146
+ # Adjust learning rate
147
+ if metrics.convergence_rate < self.meta_parameters.adaptation_threshold:
148
+ self.meta_parameters.learning_rate *= 0.9
149
+ else:
150
+ self.meta_parameters.learning_rate *= 1.1
151
+
152
+ # Adjust memory size
153
+ if metrics.resource_usage > 0.8:
154
+ self.meta_parameters.memory_size = int(
155
+ self.meta_parameters.memory_size * 0.9
156
+ )
157
+ elif metrics.resource_usage < 0.2:
158
+ self.meta_parameters.memory_size = int(
159
+ self.meta_parameters.memory_size * 1.1
160
+ )
161
+
162
+ # Adjust evolution rate
163
+ if metrics.adaptation_speed < self.meta_parameters.adaptation_threshold:
164
+ self.meta_parameters.evolution_rate *= 1.1
165
+ else:
166
+ self.meta_parameters.evolution_rate *= 0.9
167
+
168
+ # Adjust exploration rate
169
+ if metrics.accuracy < self.meta_parameters.adaptation_threshold:
170
+ self.meta_parameters.exploration_rate *= 1.1
171
+ else:
172
+ self.meta_parameters.exploration_rate *= 0.9
173
+
174
+ # Adjust quantum interference
175
+ if metrics.accuracy > 0.8:
176
+ self.meta_parameters.quantum_interference *= 1.1
177
+ else:
178
+ self.meta_parameters.quantum_interference *= 0.9
179
+
180
+ # Ensure parameters stay within reasonable bounds
181
+ self._normalize_parameters()
182
+
183
+ def _normalize_parameters(self) -> None:
184
+ """Normalize meta-parameters to stay within bounds"""
185
+ self.meta_parameters.learning_rate = np.clip(
186
+ self.meta_parameters.learning_rate,
187
+ 0.001,
188
+ 0.1
189
+ )
190
+ self.meta_parameters.memory_size = np.clip(
191
+ self.meta_parameters.memory_size,
192
+ 100,
193
+ 10000
194
+ )
195
+ self.meta_parameters.evolution_rate = np.clip(
196
+ self.meta_parameters.evolution_rate,
197
+ 0.01,
198
+ 0.5
199
+ )
200
+ self.meta_parameters.exploration_rate = np.clip(
201
+ self.meta_parameters.exploration_rate,
202
+ 0.1,
203
+ 0.9
204
+ )
205
+ self.meta_parameters.quantum_interference = np.clip(
206
+ self.meta_parameters.quantum_interference,
207
+ 0.1,
208
+ 0.9
209
+ )
210
+
211
+ def _select_optimal_strategy(
212
+ self,
213
+ observation: Dict[str, Any],
214
+ metrics: LearningMetrics
215
+ ) -> LearningStrategy:
216
+ """Select optimal learning strategy"""
217
+ strategies = list(LearningStrategy)
218
+ scores = []
219
+
220
+ for strategy in strategies:
221
+ # Calculate strategy score
222
+ score = self._calculate_strategy_score(
223
+ strategy,
224
+ observation,
225
+ metrics
226
+ )
227
+ scores.append((strategy, score))
228
+
229
+ # Select strategy with highest score
230
+ optimal_strategy = max(scores, key=lambda x: x[1])[0]
231
+
232
+ return optimal_strategy
233
+
234
+ async def _apply_strategy(
235
+ self,
236
+ strategy: LearningStrategy,
237
+ observation: Dict[str, Any],
238
+ quantum_result: Dict[str, Any]
239
+ ) -> Dict[str, Any]:
240
+ """Apply selected learning strategy"""
241
+ if strategy == LearningStrategy.GRADIENT_BASED:
242
+ return await self._apply_gradient_strategy(
243
+ observation,
244
+ quantum_result
245
+ )
246
+ elif strategy == LearningStrategy.MEMORY_BASED:
247
+ return await self._apply_memory_strategy(
248
+ observation,
249
+ quantum_result
250
+ )
251
+ elif strategy == LearningStrategy.EVOLUTIONARY:
252
+ return await self._apply_evolutionary_strategy(
253
+ observation,
254
+ quantum_result
255
+ )
256
+ elif strategy == LearningStrategy.REINFORCEMENT:
257
+ return await self._apply_reinforcement_strategy(
258
+ observation,
259
+ quantum_result
260
+ )
261
+ else: # QUANTUM
262
+ return quantum_result
263
+
264
+ def _calculate_accuracy(
265
+ self,
266
+ strategy: LearningStrategy,
267
+ observation: Dict[str, Any],
268
+ quantum_result: Dict[str, Any]
269
+ ) -> float:
270
+ """Calculate accuracy of learning strategy"""
271
+ if "patterns" not in quantum_result:
272
+ return 0.0
273
+
274
+ patterns = quantum_result["patterns"]
275
+ if not patterns:
276
+ return 0.0
277
+
278
+ # Calculate pattern confidence
279
+ confidence_sum = sum(pattern.confidence for pattern in patterns)
280
+ return confidence_sum / len(patterns)
281
+
282
+ def _calculate_convergence_rate(
283
+ self,
284
+ strategy: LearningStrategy,
285
+ history: List[LearningMetrics]
286
+ ) -> float:
287
+ """Calculate convergence rate of learning strategy"""
288
+ if not history:
289
+ return 0.0
290
+
291
+ # Calculate rate of improvement
292
+ accuracies = [metrics.accuracy for metrics in history[-10:]]
293
+ if len(accuracies) < 2:
294
+ return 0.0
295
+
296
+ differences = np.diff(accuracies)
297
+ return float(np.mean(differences > 0))
298
+
299
+ def _calculate_adaptation_speed(
300
+ self,
301
+ strategy: LearningStrategy,
302
+ observation: Dict[str, Any]
303
+ ) -> float:
304
+ """Calculate adaptation speed of learning strategy"""
305
+ if not self.performance_history:
306
+ return 0.0
307
+
308
+ # Calculate time to reach adaptation threshold
309
+ threshold = self.meta_parameters.adaptation_threshold
310
+ for i, metrics in enumerate(self.performance_history):
311
+ if metrics.accuracy >= threshold:
312
+ return 1.0 / (i + 1)
313
+
314
+ return 0.0
315
+
316
+ def _calculate_resource_usage(
317
+ self,
318
+ strategy: LearningStrategy
319
+ ) -> float:
320
+ """Calculate resource usage of learning strategy"""
321
+ # Simulate resource usage based on strategy
322
+ base_usage = {
323
+ LearningStrategy.GRADIENT_BASED: 0.4,
324
+ LearningStrategy.MEMORY_BASED: 0.6,
325
+ LearningStrategy.EVOLUTIONARY: 0.7,
326
+ LearningStrategy.REINFORCEMENT: 0.5,
327
+ LearningStrategy.QUANTUM: 0.8
328
+ }
329
+
330
+ return base_usage[strategy]
331
+
332
+ def _calculate_strategy_score(
333
+ self,
334
+ strategy: LearningStrategy,
335
+ observation: Dict[str, Any],
336
+ metrics: LearningMetrics
337
+ ) -> float:
338
+ """Calculate score for learning strategy"""
339
+ # Weight different factors
340
+ weights = {
341
+ "accuracy": 0.4,
342
+ "convergence": 0.2,
343
+ "adaptation": 0.2,
344
+ "resources": 0.2
345
+ }
346
+
347
+ score = (
348
+ weights["accuracy"] * metrics.accuracy +
349
+ weights["convergence"] * metrics.convergence_rate +
350
+ weights["adaptation"] * metrics.adaptation_speed +
351
+ weights["resources"] * (1 - metrics.resource_usage)
352
+ )
353
+
354
+ # Add exploration bonus
355
+ if np.random.random() < self.meta_parameters.exploration_rate:
356
+ score += 0.1
357
+
358
+ return score
359
+
360
+ async def _apply_gradient_strategy(
361
+ self,
362
+ observation: Dict[str, Any],
363
+ quantum_result: Dict[str, Any]
364
+ ) -> Dict[str, Any]:
365
+ """Apply gradient-based learning strategy"""
366
+ return {
367
+ "result": "gradient_optimization",
368
+ "quantum_enhanced": quantum_result,
369
+ "meta_parameters": self.meta_parameters.__dict__
370
+ }
371
+
372
+ async def _apply_memory_strategy(
373
+ self,
374
+ observation: Dict[str, Any],
375
+ quantum_result: Dict[str, Any]
376
+ ) -> Dict[str, Any]:
377
+ """Apply memory-based learning strategy"""
378
+ return {
379
+ "result": "memory_optimization",
380
+ "quantum_enhanced": quantum_result,
381
+ "meta_parameters": self.meta_parameters.__dict__
382
+ }
383
+
384
+ async def _apply_evolutionary_strategy(
385
+ self,
386
+ observation: Dict[str, Any],
387
+ quantum_result: Dict[str, Any]
388
+ ) -> Dict[str, Any]:
389
+ """Apply evolutionary learning strategy"""
390
+ return {
391
+ "result": "evolutionary_optimization",
392
+ "quantum_enhanced": quantum_result,
393
+ "meta_parameters": self.meta_parameters.__dict__
394
+ }
395
+
396
+ async def _apply_reinforcement_strategy(
397
+ self,
398
+ observation: Dict[str, Any],
399
+ quantum_result: Dict[str, Any]
400
+ ) -> Dict[str, Any]:
401
+ """Apply reinforcement learning strategy"""
402
+ return {
403
+ "result": "reinforcement_optimization",
404
+ "quantum_enhanced": quantum_result,
405
+ "meta_parameters": self.meta_parameters.__dict__
406
+ }
multimodal_reasoning.py ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Multi-Modal Reasoning Implementation
3
+ ----------------------------------
4
+ Implements reasoning across different types of information.
5
+ """
6
+
7
+ import logging
8
+ from typing import Dict, Any, List
9
+ from datetime import datetime
10
+ import json
11
+ import numpy as np
12
+ from .reasoning import ReasoningStrategy
13
+
14
+ class MultiModalReasoning(ReasoningStrategy):
15
+ """Implements multi-modal reasoning across different types of information."""
16
+
17
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
18
+ try:
19
+ # Process different modalities
20
+ modalities = await self._process_modalities(query, context)
21
+
22
+ # Align across modalities
23
+ alignment = await self._cross_modal_alignment(modalities, context)
24
+
25
+ # Integrated analysis
26
+ integration = await self._integrated_analysis(alignment, context)
27
+
28
+ # Generate final response
29
+ response = await self._generate_response(integration, context)
30
+
31
+ return {
32
+ "success": True,
33
+ "answer": response["conclusion"],
34
+ "modalities": modalities,
35
+ "alignment": alignment,
36
+ "integration": integration,
37
+ "confidence": response["confidence"]
38
+ }
39
+ except Exception as e:
40
+ logging.error(f"Error in multi-modal reasoning: {str(e)}")
41
+ return {"success": False, "error": str(e)}
42
+
43
+ async def _process_modalities(self, query: str, context: Dict[str, Any]) -> Dict[str, List[Dict[str, Any]]]:
44
+ """Process query across different modalities."""
45
+ prompt = f"""
46
+ Process query across modalities:
47
+ Query: {query}
48
+ Context: {json.dumps(context)}
49
+
50
+ For each modality extract:
51
+ 1. [Type]: Modality type
52
+ 2. [Content]: Relevant content
53
+ 3. [Features]: Key features
54
+ 4. [Quality]: Content quality
55
+
56
+ Format as:
57
+ [M1]
58
+ Type: ...
59
+ Content: ...
60
+ Features: ...
61
+ Quality: ...
62
+ """
63
+
64
+ response = await context["groq_api"].predict(prompt)
65
+ return self._parse_modalities(response["answer"])
66
+
67
+ async def _cross_modal_alignment(self, modalities: Dict[str, List[Dict[str, Any]]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
68
+ """Align information across different modalities."""
69
+ try:
70
+ # Extract modality types
71
+ modal_types = list(modalities.keys())
72
+
73
+ # Initialize alignment results
74
+ alignments = []
75
+
76
+ # Process each modality pair
77
+ for i in range(len(modal_types)):
78
+ for j in range(i + 1, len(modal_types)):
79
+ type1, type2 = modal_types[i], modal_types[j]
80
+
81
+ # Get items from each modality
82
+ items1 = modalities[type1]
83
+ items2 = modalities[type2]
84
+
85
+ # Find alignments between items
86
+ for item1 in items1:
87
+ for item2 in items2:
88
+ similarity = self._calculate_similarity(item1, item2)
89
+ if similarity > 0.5: # Threshold for alignment
90
+ alignments.append({
91
+ "type1": type1,
92
+ "type2": type2,
93
+ "item1": item1,
94
+ "item2": item2,
95
+ "similarity": similarity
96
+ })
97
+
98
+ # Sort alignments by similarity
99
+ alignments.sort(key=lambda x: x["similarity"], reverse=True)
100
+
101
+ return alignments
102
+
103
+ except Exception as e:
104
+ logging.error(f"Error in cross-modal alignment: {str(e)}")
105
+ return []
106
+
107
+ def _calculate_similarity(self, item1: Dict[str, Any], item2: Dict[str, Any]) -> float:
108
+ """Calculate similarity between two items from different modalities."""
109
+ try:
110
+ # Extract content from items
111
+ content1 = str(item1.get("content", ""))
112
+ content2 = str(item2.get("content", ""))
113
+
114
+ # Calculate basic similarity (can be enhanced with more sophisticated methods)
115
+ common_words = set(content1.lower().split()) & set(content2.lower().split())
116
+ total_words = set(content1.lower().split()) | set(content2.lower().split())
117
+
118
+ if not total_words:
119
+ return 0.0
120
+
121
+ return len(common_words) / len(total_words)
122
+
123
+ except Exception as e:
124
+ logging.error(f"Error calculating similarity: {str(e)}")
125
+ return 0.0
126
+
127
+ async def _integrated_analysis(self, alignment: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
128
+ prompt = f"""
129
+ Perform integrated multi-modal analysis:
130
+ Alignment: {json.dumps(alignment)}
131
+ Context: {json.dumps(context)}
132
+
133
+ For each insight:
134
+ 1. [Insight]: Key finding
135
+ 2. [Sources]: Contributing modalities
136
+ 3. [Support]: Supporting evidence
137
+ 4. [Confidence]: Confidence level
138
+
139
+ Format as:
140
+ [I1]
141
+ Insight: ...
142
+ Sources: ...
143
+ Support: ...
144
+ Confidence: ...
145
+ """
146
+
147
+ response = await context["groq_api"].predict(prompt)
148
+ return self._parse_integration(response["answer"])
149
+
150
+ async def _generate_response(self, integration: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]:
151
+ prompt = f"""
152
+ Generate unified multi-modal response:
153
+ Integration: {json.dumps(integration)}
154
+ Context: {json.dumps(context)}
155
+
156
+ Provide:
157
+ 1. Main conclusion
158
+ 2. Modal contributions
159
+ 3. Integration benefits
160
+ 4. Confidence level (0-1)
161
+ """
162
+
163
+ response = await context["groq_api"].predict(prompt)
164
+ return self._parse_response(response["answer"])
165
+
166
+ def _parse_modalities(self, response: str) -> Dict[str, List[Dict[str, Any]]]:
167
+ """Parse modalities from response."""
168
+ modalities = {}
169
+ current_modality = None
170
+
171
+ for line in response.split('\n'):
172
+ line = line.strip()
173
+ if not line:
174
+ continue
175
+
176
+ if line.startswith('[M'):
177
+ if current_modality:
178
+ if current_modality["type"] not in modalities:
179
+ modalities[current_modality["type"]] = []
180
+ modalities[current_modality["type"]].append(current_modality)
181
+ current_modality = {
182
+ "type": "",
183
+ "content": "",
184
+ "features": "",
185
+ "quality": ""
186
+ }
187
+ elif current_modality:
188
+ if line.startswith('Type:'):
189
+ current_modality["type"] = line[5:].strip()
190
+ elif line.startswith('Content:'):
191
+ current_modality["content"] = line[8:].strip()
192
+ elif line.startswith('Features:'):
193
+ current_modality["features"] = line[9:].strip()
194
+ elif line.startswith('Quality:'):
195
+ current_modality["quality"] = line[8:].strip()
196
+
197
+ if current_modality:
198
+ if current_modality["type"] not in modalities:
199
+ modalities[current_modality["type"]] = []
200
+ modalities[current_modality["type"]].append(current_modality)
201
+
202
+ return modalities
203
+
204
+ def _parse_integration(self, response: str) -> List[Dict[str, Any]]:
205
+ """Parse integration from response."""
206
+ integration = []
207
+ current_insight = None
208
+
209
+ for line in response.split('\n'):
210
+ line = line.strip()
211
+ if not line:
212
+ continue
213
+
214
+ if line.startswith('[I'):
215
+ if current_insight:
216
+ integration.append(current_insight)
217
+ current_insight = {
218
+ "insight": "",
219
+ "sources": "",
220
+ "support": "",
221
+ "confidence": 0.0
222
+ }
223
+ elif current_insight:
224
+ if line.startswith('Insight:'):
225
+ current_insight["insight"] = line[8:].strip()
226
+ elif line.startswith('Sources:'):
227
+ current_insight["sources"] = line[8:].strip()
228
+ elif line.startswith('Support:'):
229
+ current_insight["support"] = line[8:].strip()
230
+ elif line.startswith('Confidence:'):
231
+ try:
232
+ current_insight["confidence"] = float(line[11:].strip())
233
+ except:
234
+ pass
235
+
236
+ if current_insight:
237
+ integration.append(current_insight)
238
+
239
+ return integration
240
+
241
+ def _parse_response(self, response: str) -> Dict[str, Any]:
242
+ """Parse response from response."""
243
+ response_dict = {
244
+ "conclusion": "",
245
+ "modal_contributions": [],
246
+ "integration_benefits": [],
247
+ "confidence": 0.0
248
+ }
249
+
250
+ mode = None
251
+ for line in response.split('\n'):
252
+ line = line.strip()
253
+ if not line:
254
+ continue
255
+
256
+ if line.startswith('Conclusion:'):
257
+ response_dict["conclusion"] = line[11:].strip()
258
+ elif line.startswith('Modal Contributions:'):
259
+ mode = "modal"
260
+ elif line.startswith('Integration Benefits:'):
261
+ mode = "integration"
262
+ elif line.startswith('Confidence:'):
263
+ try:
264
+ response_dict["confidence"] = float(line[11:].strip())
265
+ except:
266
+ response_dict["confidence"] = 0.5
267
+ mode = None
268
+ elif mode == "modal" and line.startswith('- '):
269
+ response_dict["modal_contributions"].append(line[2:].strip())
270
+ elif mode == "integration" and line.startswith('- '):
271
+ response_dict["integration_benefits"].append(line[2:].strip())
272
+
273
+ return response_dict
orchestrator.py ADDED
@@ -0,0 +1,522 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Agentic Orchestrator for Advanced AI System
3
+ -----------------------------------------
4
+ Manages and coordinates multiple agentic components:
5
+ 1. Task Planning & Decomposition
6
+ 2. Resource Management
7
+ 3. Agent Communication
8
+ 4. State Management
9
+ 5. Error Recovery
10
+ 6. Performance Monitoring
11
+ """
12
+
13
+ import logging
14
+ from typing import Dict, Any, List, Optional, Union, TypeVar, Generic
15
+ from dataclasses import dataclass, field
16
+ from enum import Enum
17
+ import json
18
+ import asyncio
19
+ from datetime import datetime
20
+ import uuid
21
+ from concurrent.futures import ThreadPoolExecutor
22
+ import networkx as nx
23
+ from collections import defaultdict
24
+ import numpy as np
25
+
26
+ from reasoning import ReasoningEngine, ReasoningMode
27
+ from meta_learning import MetaLearningStrategy
28
+
29
+ T = TypeVar('T')
30
+
31
+ class AgentRole(Enum):
32
+ """Different roles an agent can take."""
33
+ PLANNER = "planner"
34
+ EXECUTOR = "executor"
35
+ MONITOR = "monitor"
36
+ COORDINATOR = "coordinator"
37
+ LEARNER = "learner"
38
+
39
+ class AgentState(Enum):
40
+ """Possible states of an agent."""
41
+ IDLE = "idle"
42
+ BUSY = "busy"
43
+ ERROR = "error"
44
+ LEARNING = "learning"
45
+ TERMINATED = "terminated"
46
+
47
+ class TaskPriority(Enum):
48
+ """Task priority levels."""
49
+ LOW = 0
50
+ MEDIUM = 1
51
+ HIGH = 2
52
+ CRITICAL = 3
53
+
54
+ @dataclass
55
+ class AgentMetadata:
56
+ """Metadata about an agent."""
57
+ id: str
58
+ role: AgentRole
59
+ capabilities: List[str]
60
+ state: AgentState
61
+ load: float
62
+ last_active: datetime
63
+ metrics: Dict[str, float]
64
+
65
+ @dataclass
66
+ class Task:
67
+ """Represents a task in the system."""
68
+ id: str
69
+ description: str
70
+ priority: TaskPriority
71
+ dependencies: List[str]
72
+ assigned_to: Optional[str]
73
+ state: str
74
+ created_at: datetime
75
+ deadline: Optional[datetime]
76
+ metadata: Dict[str, Any]
77
+
78
+ class AgentOrchestrator:
79
+ """Advanced orchestrator for managing agentic system."""
80
+
81
+ def __init__(self, config: Dict[str, Any] = None):
82
+ self.config = config or {}
83
+
84
+ # Core components
85
+ self.agents: Dict[str, AgentMetadata] = {}
86
+ self.tasks: Dict[str, Task] = {}
87
+ self.task_graph = nx.DiGraph()
88
+
89
+ # State management
90
+ self.state_history: List[Dict[str, Any]] = []
91
+ self.global_state: Dict[str, Any] = {}
92
+
93
+ # Resource management
94
+ self.resource_pool: Dict[str, Any] = {}
95
+ self.resource_locks: Dict[str, asyncio.Lock] = {}
96
+
97
+ # Communication
98
+ self.message_queue = asyncio.Queue()
99
+ self.event_bus = asyncio.Queue()
100
+
101
+ # Performance monitoring
102
+ self.metrics = defaultdict(list)
103
+ self.performance_log = []
104
+
105
+ # Error handling
106
+ self.error_handlers: Dict[str, callable] = {}
107
+ self.recovery_strategies: Dict[str, callable] = {}
108
+
109
+ # Async support
110
+ self.executor = ThreadPoolExecutor(max_workers=4)
111
+ self.lock = asyncio.Lock()
112
+
113
+ # Logging
114
+ self.logger = logging.getLogger(__name__)
115
+
116
+ # Initialize components
117
+ self._init_components()
118
+
119
+ def _init_components(self):
120
+ """Initialize orchestrator components."""
121
+ # Initialize reasoning engine
122
+ self.reasoning_engine = ReasoningEngine(
123
+ model_manager=None, # Will be injected
124
+ max_depth=5,
125
+ beam_width=3,
126
+ config=self.config.get("reasoning", {})
127
+ )
128
+
129
+ # Initialize meta-learning
130
+ self.meta_learning = MetaLearningStrategy()
131
+
132
+ # Register basic error handlers
133
+ self._register_error_handlers()
134
+
135
+ async def register_agent(
136
+ self,
137
+ role: AgentRole,
138
+ capabilities: List[str]
139
+ ) -> str:
140
+ """Register a new agent with the orchestrator."""
141
+ agent_id = str(uuid.uuid4())
142
+
143
+ agent = AgentMetadata(
144
+ id=agent_id,
145
+ role=role,
146
+ capabilities=capabilities,
147
+ state=AgentState.IDLE,
148
+ load=0.0,
149
+ last_active=datetime.now(),
150
+ metrics={}
151
+ )
152
+
153
+ async with self.lock:
154
+ self.agents[agent_id] = agent
155
+ self.logger.info(f"Registered new agent: {agent_id} with role {role}")
156
+
157
+ return agent_id
158
+
159
+ async def submit_task(
160
+ self,
161
+ description: str,
162
+ priority: TaskPriority = TaskPriority.MEDIUM,
163
+ dependencies: List[str] = None,
164
+ deadline: Optional[datetime] = None,
165
+ metadata: Dict[str, Any] = None
166
+ ) -> str:
167
+ """Submit a new task to the orchestrator."""
168
+ task_id = str(uuid.uuid4())
169
+
170
+ task = Task(
171
+ id=task_id,
172
+ description=description,
173
+ priority=priority,
174
+ dependencies=dependencies or [],
175
+ assigned_to=None,
176
+ state="pending",
177
+ created_at=datetime.now(),
178
+ deadline=deadline,
179
+ metadata=metadata or {}
180
+ )
181
+
182
+ async with self.lock:
183
+ self.tasks[task_id] = task
184
+ self._update_task_graph(task)
185
+
186
+ # Trigger task planning
187
+ await self._plan_task_execution(task_id)
188
+
189
+ return task_id
190
+
191
+ async def _plan_task_execution(self, task_id: str) -> None:
192
+ """Plan the execution of a task."""
193
+ task = self.tasks[task_id]
194
+
195
+ # Check dependencies
196
+ if not await self._check_dependencies(task):
197
+ self.logger.info(f"Task {task_id} waiting for dependencies")
198
+ return
199
+
200
+ # Find suitable agent
201
+ agent_id = await self._find_suitable_agent(task)
202
+ if not agent_id:
203
+ self.logger.warning(f"No suitable agent found for task {task_id}")
204
+ return
205
+
206
+ # Assign task
207
+ await self._assign_task(task_id, agent_id)
208
+
209
+ async def _check_dependencies(self, task: Task) -> bool:
210
+ """Check if all task dependencies are satisfied."""
211
+ for dep_id in task.dependencies:
212
+ if dep_id not in self.tasks:
213
+ return False
214
+ if self.tasks[dep_id].state != "completed":
215
+ return False
216
+ return True
217
+
218
+ async def _find_suitable_agent(self, task: Task) -> Optional[str]:
219
+ """Find the most suitable agent for a task."""
220
+ best_agent = None
221
+ best_score = float('-inf')
222
+
223
+ for agent_id, agent in self.agents.items():
224
+ if agent.state != AgentState.IDLE:
225
+ continue
226
+
227
+ score = await self._calculate_agent_suitability(agent, task)
228
+ if score > best_score:
229
+ best_score = score
230
+ best_agent = agent_id
231
+
232
+ return best_agent
233
+
234
+ async def _calculate_agent_suitability(
235
+ self,
236
+ agent: AgentMetadata,
237
+ task: Task
238
+ ) -> float:
239
+ """Calculate how suitable an agent is for a task."""
240
+ # Base score on capabilities match
241
+ capability_score = sum(
242
+ 1 for cap in task.metadata.get("required_capabilities", [])
243
+ if cap in agent.capabilities
244
+ )
245
+
246
+ # Consider agent load
247
+ load_score = 1 - agent.load
248
+
249
+ # Consider agent's recent performance
250
+ performance_score = sum(agent.metrics.values()) / len(agent.metrics) if agent.metrics else 0.5
251
+
252
+ # Weighted combination
253
+ weights = self.config.get("agent_selection_weights", {
254
+ "capabilities": 0.5,
255
+ "load": 0.3,
256
+ "performance": 0.2
257
+ })
258
+
259
+ return (
260
+ weights["capabilities"] * capability_score +
261
+ weights["load"] * load_score +
262
+ weights["performance"] * performance_score
263
+ )
264
+
265
+ async def _assign_task(self, task_id: str, agent_id: str) -> None:
266
+ """Assign a task to an agent."""
267
+ async with self.lock:
268
+ task = self.tasks[task_id]
269
+ agent = self.agents[agent_id]
270
+
271
+ task.assigned_to = agent_id
272
+ task.state = "assigned"
273
+ agent.state = AgentState.BUSY
274
+ agent.load += 1
275
+ agent.last_active = datetime.now()
276
+
277
+ self.logger.info(f"Assigned task {task_id} to agent {agent_id}")
278
+
279
+ # Notify agent
280
+ await self.message_queue.put({
281
+ "type": "task_assignment",
282
+ "task_id": task_id,
283
+ "agent_id": agent_id,
284
+ "timestamp": datetime.now()
285
+ })
286
+
287
+ def _update_task_graph(self, task: Task) -> None:
288
+ """Update the task dependency graph."""
289
+ self.task_graph.add_node(task.id, task=task)
290
+ for dep_id in task.dependencies:
291
+ self.task_graph.add_edge(dep_id, task.id)
292
+
293
+ async def _monitor_system_state(self):
294
+ """Monitor overall system state."""
295
+ while True:
296
+ try:
297
+ # Collect agent states
298
+ agent_states = {
299
+ agent_id: {
300
+ "state": agent.state,
301
+ "load": agent.load,
302
+ "metrics": agent.metrics
303
+ }
304
+ for agent_id, agent in self.agents.items()
305
+ }
306
+
307
+ # Collect task states
308
+ task_states = {
309
+ task_id: {
310
+ "state": task.state,
311
+ "assigned_to": task.assigned_to,
312
+ "deadline": task.deadline
313
+ }
314
+ for task_id, task in self.tasks.items()
315
+ }
316
+
317
+ # Update global state
318
+ self.global_state = {
319
+ "timestamp": datetime.now(),
320
+ "agents": agent_states,
321
+ "tasks": task_states,
322
+ "resource_usage": self._get_resource_usage(),
323
+ "performance_metrics": self._calculate_performance_metrics()
324
+ }
325
+
326
+ # Archive state
327
+ self.state_history.append(self.global_state.copy())
328
+
329
+ # Trim history if too long
330
+ if len(self.state_history) > 1000:
331
+ self.state_history = self.state_history[-1000:]
332
+
333
+ # Check for anomalies
334
+ await self._check_anomalies()
335
+
336
+ await asyncio.sleep(1) # Monitor frequency
337
+
338
+ except Exception as e:
339
+ self.logger.error(f"Error in system monitoring: {e}")
340
+ await self._handle_error("monitoring_error", e)
341
+
342
+ def _get_resource_usage(self) -> Dict[str, float]:
343
+ """Get current resource usage statistics."""
344
+ return {
345
+ "cpu_usage": sum(agent.load for agent in self.agents.values()) / len(self.agents),
346
+ "memory_usage": len(self.state_history) * 1000, # Rough estimate
347
+ "queue_size": self.message_queue.qsize()
348
+ }
349
+
350
+ def _calculate_performance_metrics(self) -> Dict[str, float]:
351
+ """Calculate current performance metrics."""
352
+ metrics = {}
353
+
354
+ # Task completion rate
355
+ completed_tasks = sum(1 for task in self.tasks.values() if task.state == "completed")
356
+ total_tasks = len(self.tasks)
357
+ metrics["task_completion_rate"] = completed_tasks / max(1, total_tasks)
358
+
359
+ # Average task duration
360
+ durations = []
361
+ for task in self.tasks.values():
362
+ if task.state == "completed" and "completion_time" in task.metadata:
363
+ duration = (task.metadata["completion_time"] - task.created_at).total_seconds()
364
+ durations.append(duration)
365
+ metrics["avg_task_duration"] = sum(durations) / len(durations) if durations else 0
366
+
367
+ # Agent utilization
368
+ metrics["agent_utilization"] = sum(agent.load for agent in self.agents.values()) / len(self.agents)
369
+
370
+ return metrics
371
+
372
+ async def _check_anomalies(self):
373
+ """Check for system anomalies."""
374
+ # Check for overloaded agents
375
+ for agent_id, agent in self.agents.items():
376
+ if agent.load > 0.9: # 90% load threshold
377
+ await self._handle_overload(agent_id)
378
+
379
+ # Check for stalled tasks
380
+ now = datetime.now()
381
+ for task_id, task in self.tasks.items():
382
+ if task.state == "assigned":
383
+ duration = (now - task.created_at).total_seconds()
384
+ if duration > 3600: # 1 hour threshold
385
+ await self._handle_stalled_task(task_id)
386
+
387
+ # Check for missed deadlines
388
+ for task_id, task in self.tasks.items():
389
+ if task.deadline and now > task.deadline and task.state != "completed":
390
+ await self._handle_missed_deadline(task_id)
391
+
392
+ async def _handle_overload(self, agent_id: str):
393
+ """Handle an overloaded agent."""
394
+ agent = self.agents[agent_id]
395
+
396
+ # Try to redistribute tasks
397
+ assigned_tasks = [
398
+ task_id for task_id, task in self.tasks.items()
399
+ if task.assigned_to == agent_id and task.state == "assigned"
400
+ ]
401
+
402
+ for task_id in assigned_tasks:
403
+ # Find another suitable agent
404
+ new_agent_id = await self._find_suitable_agent(self.tasks[task_id])
405
+ if new_agent_id:
406
+ await self._reassign_task(task_id, new_agent_id)
407
+
408
+ async def _handle_stalled_task(self, task_id: str):
409
+ """Handle a stalled task."""
410
+ task = self.tasks[task_id]
411
+
412
+ # First, try to ping the assigned agent
413
+ if task.assigned_to:
414
+ agent = self.agents[task.assigned_to]
415
+ if agent.state == AgentState.ERROR:
416
+ # Agent is in error state, reassign task
417
+ await self._reassign_task(task_id, None)
418
+ else:
419
+ # Request status update from agent
420
+ await self.message_queue.put({
421
+ "type": "status_request",
422
+ "task_id": task_id,
423
+ "agent_id": task.assigned_to,
424
+ "timestamp": datetime.now()
425
+ })
426
+
427
+ async def _handle_missed_deadline(self, task_id: str):
428
+ """Handle a missed deadline."""
429
+ task = self.tasks[task_id]
430
+
431
+ # Log the incident
432
+ self.logger.warning(f"Task {task_id} missed deadline: {task.deadline}")
433
+
434
+ # Update task priority to CRITICAL
435
+ task.priority = TaskPriority.CRITICAL
436
+
437
+ # If task is assigned, try to speed it up
438
+ if task.assigned_to:
439
+ await self.message_queue.put({
440
+ "type": "expedite_request",
441
+ "task_id": task_id,
442
+ "agent_id": task.assigned_to,
443
+ "timestamp": datetime.now()
444
+ })
445
+ else:
446
+ # If not assigned, try to assign to fastest available agent
447
+ await self._plan_task_execution(task_id)
448
+
449
+ async def _reassign_task(self, task_id: str, new_agent_id: Optional[str] = None):
450
+ """Reassign a task to a new agent."""
451
+ task = self.tasks[task_id]
452
+ old_agent_id = task.assigned_to
453
+
454
+ if old_agent_id:
455
+ # Update old agent
456
+ old_agent = self.agents[old_agent_id]
457
+ old_agent.load -= 1
458
+ if old_agent.load <= 0:
459
+ old_agent.state = AgentState.IDLE
460
+
461
+ if new_agent_id is None:
462
+ # Find new suitable agent
463
+ new_agent_id = await self._find_suitable_agent(task)
464
+
465
+ if new_agent_id:
466
+ # Assign to new agent
467
+ await self._assign_task(task_id, new_agent_id)
468
+ else:
469
+ # No suitable agent found, mark task as pending
470
+ task.state = "pending"
471
+ task.assigned_to = None
472
+
473
+ def _register_error_handlers(self):
474
+ """Register basic error handlers."""
475
+ self.error_handlers.update({
476
+ "monitoring_error": self._handle_monitoring_error,
477
+ "agent_error": self._handle_agent_error,
478
+ "task_error": self._handle_task_error,
479
+ "resource_error": self._handle_resource_error
480
+ })
481
+
482
+ self.recovery_strategies.update({
483
+ "agent_recovery": self._recover_agent,
484
+ "task_recovery": self._recover_task,
485
+ "resource_recovery": self._recover_resource
486
+ })
487
+
488
+ async def _handle_error(self, error_type: str, error: Exception):
489
+ """Handle an error using registered handlers."""
490
+ handler = self.error_handlers.get(error_type)
491
+ if handler:
492
+ try:
493
+ await handler(error)
494
+ except Exception as e:
495
+ self.logger.error(f"Error in error handler: {e}")
496
+ else:
497
+ self.logger.error(f"No handler for error type: {error_type}")
498
+ self.logger.error(f"Error: {error}")
499
+
500
+ async def _handle_monitoring_error(self, error: Exception):
501
+ """Handle monitoring system errors."""
502
+ self.logger.error(f"Monitoring error: {error}")
503
+ # Implement recovery logic
504
+ pass
505
+
506
+ async def _handle_agent_error(self, error: Exception):
507
+ """Handle agent-related errors."""
508
+ self.logger.error(f"Agent error: {error}")
509
+ # Implement recovery logic
510
+ pass
511
+
512
+ async def _handle_task_error(self, error: Exception):
513
+ """Handle task-related errors."""
514
+ self.logger.error(f"Task error: {error}")
515
+ # Implement recovery logic
516
+ pass
517
+
518
+ async def _handle_resource_error(self, error: Exception):
519
+ """Handle resource-related errors."""
520
+ self.logger.error(f"Resource error: {error}")
521
+ # Implement recovery logic
522
+ pass
quick_check.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+ import os
3
+ import time
4
+ from datetime import datetime
5
+ import sys
6
+
7
+ def check_space():
8
+ url = "https://huggingface.co/api/spaces/nananie143/Agentic_llm"
9
+ headers = {"Authorization": f"Bearer {os.environ['HUGGINGFACE_TOKEN']}"}
10
+
11
+ try:
12
+ response = requests.get(url, headers=headers)
13
+ if response.ok:
14
+ data = response.json()
15
+ runtime = data.get('runtime', {})
16
+ stage = runtime.get('stage', 'UNKNOWN')
17
+ hardware = runtime.get('hardware', {})
18
+ domains = runtime.get('domains', [{}])[0]
19
+
20
+ status_time = datetime.now().strftime('%H:%M:%S')
21
+ sys.stdout.write(f"\n[{status_time}] Space Status:\n")
22
+ sys.stdout.write(f"Stage: {stage}\n")
23
+ sys.stdout.write(f"Hardware: {hardware.get('current', 'Not assigned')} (requested: {hardware.get('requested', 'None')})\n")
24
+ sys.stdout.write(f"Domain: {domains.get('domain', 'Not assigned')} (status: {domains.get('stage', 'Unknown')})\n")
25
+ sys.stdout.flush()
26
+
27
+ if stage == "RUNNING":
28
+ sys.stdout.write("\n🚀 Space is now running!\n")
29
+ sys.stdout.write(f"Access your Space at: https://{domains.get('domain', 'nananie143-agentic-llm.hf.space')}\n")
30
+ sys.stdout.flush()
31
+ return True
32
+ elif stage == "FAILED":
33
+ sys.stdout.write("\n❌ Space build failed!\n")
34
+ sys.stdout.flush()
35
+ return True
36
+
37
+ return False
38
+
39
+ except Exception as e:
40
+ sys.stdout.write(f"\n[{datetime.now().strftime('%H:%M:%S')}] Error checking status: {e}\n")
41
+ sys.stdout.flush()
42
+ return False
43
+
44
+ sys.stdout.write("\nStarting automatic Space status check...\n")
45
+ sys.stdout.write("Will check every 2 minutes until the Space is running or fails...\n")
46
+ sys.stdout.write("Press Ctrl+C to stop checking\n\n")
47
+ sys.stdout.flush()
48
+
49
+ while True:
50
+ should_stop = check_space()
51
+ if should_stop:
52
+ break
53
+ time.sleep(120) # Wait 2 minutes
reasoning.py ADDED
The diff for this file is too large to render. See raw diff
 
reasoning.py.bak2 ADDED
The diff for this file is too large to render. See raw diff
 
reasoning/__init__.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Advanced Reasoning Engine for Multi-Model System
3
+ ---------------------------------------------
4
+ A highly sophisticated reasoning system combining:
5
+
6
+ Core Reasoning:
7
+ 1. Chain of Thought (CoT)
8
+ 2. Tree of Thoughts (ToT)
9
+ 3. Graph of Thoughts (GoT)
10
+ 4. Recursive Reasoning
11
+ 5. Analogical Reasoning
12
+ 6. Meta-Learning
13
+
14
+ Advanced Reasoning:
15
+ 7. Neurosymbolic Reasoning
16
+ 8. Counterfactual Reasoning
17
+ 9. State Space Search
18
+ 10. Probabilistic Reasoning
19
+ 11. Causal Inference
20
+ 12. Temporal Reasoning
21
+
22
+ Learning & Adaptation:
23
+ 13. Online Learning
24
+ 14. Transfer Learning
25
+ 15. Meta-Learning
26
+ 16. Active Learning
27
+
28
+ Robustness Features:
29
+ 17. Uncertainty Quantification
30
+ 18. Error Recovery
31
+ 19. Consistency Checking
32
+ 20. Bias Detection
33
+ """
34
+
35
+ from .base import ReasoningStrategy
36
+ from .multimodal import MultiModalReasoning
37
+ from .bayesian import BayesianReasoning
38
+ from .quantum import QuantumReasoning, QuantumInspiredStrategy
39
+ from .neurosymbolic import NeurosymbolicReasoning
40
+ from .emergent import EmergentReasoning
41
+ from .meta import MetaLearningStrategy
42
+ from .chain_of_thought import ChainOfThoughtStrategy
43
+ from .tree_of_thoughts import TreeOfThoughtsStrategy
44
+ from .recursive import RecursiveReasoning
45
+ from .analogical import AnalogicalReasoning
46
+ from .causal import CausalReasoning
47
+ from .state_space import StateSpaceSearch
48
+ from .counterfactual import CounterfactualReasoning
49
+ from .meta_reasoning import MetaReasoning
50
+ from .engine import BavePantherReasoning
51
+
52
+ __all__ = [
53
+ 'ReasoningStrategy',
54
+ 'MultiModalReasoning',
55
+ 'BayesianReasoning',
56
+ 'QuantumReasoning',
57
+ 'QuantumInspiredStrategy',
58
+ 'NeurosymbolicReasoning',
59
+ 'EmergentReasoning',
60
+ 'MetaLearningStrategy',
61
+ 'ChainOfThoughtStrategy',
62
+ 'TreeOfThoughtsStrategy',
63
+ 'RecursiveReasoning',
64
+ 'AnalogicalReasoning',
65
+ 'CausalReasoning',
66
+ 'StateSpaceSearch',
67
+ 'CounterfactualReasoning',
68
+ 'MetaReasoning',
69
+ 'BavePantherReasoning'
70
+ ]
reasoning/agentic.py ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Specialized reasoning strategies for Agentic Workflow."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Tuple
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import asyncio
10
+ from collections import defaultdict
11
+
12
+ from .base import ReasoningStrategy
13
+
14
+ class TaskType(Enum):
15
+ """Types of tasks in agentic workflow."""
16
+ CODE_GENERATION = "code_generation"
17
+ CODE_MODIFICATION = "code_modification"
18
+ CODE_REVIEW = "code_review"
19
+ DEBUGGING = "debugging"
20
+ ARCHITECTURE = "architecture"
21
+ OPTIMIZATION = "optimization"
22
+ DOCUMENTATION = "documentation"
23
+ TESTING = "testing"
24
+
25
+ class ResourceType(Enum):
26
+ """Types of resources in agentic workflow."""
27
+ CODE_CONTEXT = "code_context"
28
+ SYSTEM_CONTEXT = "system_context"
29
+ USER_CONTEXT = "user_context"
30
+ TOOLS = "tools"
31
+ APIS = "apis"
32
+ DOCUMENTATION = "documentation"
33
+ DEPENDENCIES = "dependencies"
34
+ HISTORY = "history"
35
+
36
+ @dataclass
37
+ class TaskComponent:
38
+ """Component of a decomposed task."""
39
+ id: str
40
+ type: TaskType
41
+ description: str
42
+ dependencies: List[str]
43
+ resources: Dict[ResourceType, Any]
44
+ constraints: List[str]
45
+ priority: float
46
+ metadata: Dict[str, Any] = field(default_factory=dict)
47
+
48
+ @dataclass
49
+ class ResourceAllocation:
50
+ """Resource allocation for a task."""
51
+ resource_type: ResourceType
52
+ quantity: Union[int, float]
53
+ priority: float
54
+ constraints: List[str]
55
+ metadata: Dict[str, Any] = field(default_factory=dict)
56
+
57
+ @dataclass
58
+ class ExecutionStep:
59
+ """Step in task execution."""
60
+ id: str
61
+ task_id: str
62
+ action: str
63
+ resources: Dict[ResourceType, Any]
64
+ status: str
65
+ result: Optional[Dict[str, Any]]
66
+ feedback: List[str]
67
+ timestamp: datetime = field(default_factory=datetime.now)
68
+
69
+ class TaskDecompositionStrategy(ReasoningStrategy):
70
+ """
71
+ Advanced task decomposition strategy that:
72
+ 1. Analyzes task complexity and dependencies
73
+ 2. Breaks down tasks into manageable components
74
+ 3. Identifies resource requirements
75
+ 4. Establishes execution order
76
+ 5. Manages constraints and priorities
77
+ """
78
+
79
+ def __init__(self, max_components: int = 10):
80
+ self.max_components = max_components
81
+ self.components: Dict[str, TaskComponent] = {}
82
+
83
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
84
+ """Decompose task into components."""
85
+ try:
86
+ # Analyze task
87
+ task_analysis = await self._analyze_task(query, context)
88
+
89
+ # Generate components
90
+ components = await self._generate_components(task_analysis, context)
91
+
92
+ # Establish dependencies
93
+ dependency_graph = await self._establish_dependencies(components, context)
94
+
95
+ # Determine execution order
96
+ execution_order = await self._determine_execution_order(
97
+ components, dependency_graph, context)
98
+
99
+ return {
100
+ "success": True,
101
+ "components": [self._component_to_dict(c) for c in components],
102
+ "dependency_graph": dependency_graph,
103
+ "execution_order": execution_order,
104
+ "metadata": {
105
+ "total_components": len(components),
106
+ "complexity_score": task_analysis.get("complexity_score", 0.0),
107
+ "resource_requirements": task_analysis.get("resource_requirements", {})
108
+ }
109
+ }
110
+ except Exception as e:
111
+ logging.error(f"Error in task decomposition: {str(e)}")
112
+ return {"success": False, "error": str(e)}
113
+
114
+ class ResourceManagementStrategy(ReasoningStrategy):
115
+ """
116
+ Advanced resource management strategy that:
117
+ 1. Tracks available resources
118
+ 2. Allocates resources to tasks
119
+ 3. Handles resource constraints
120
+ 4. Optimizes resource utilization
121
+ 5. Manages resource dependencies
122
+ """
123
+
124
+ def __init__(self):
125
+ self.allocations: Dict[str, ResourceAllocation] = {}
126
+ self.utilization_history: List[Dict[str, Any]] = []
127
+
128
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
129
+ """Manage resource allocation."""
130
+ try:
131
+ # Analyze resource requirements
132
+ requirements = await self._analyze_requirements(query, context)
133
+
134
+ # Check resource availability
135
+ availability = await self._check_availability(requirements, context)
136
+
137
+ # Generate allocation plan
138
+ allocation_plan = await self._generate_allocation_plan(
139
+ requirements, availability, context)
140
+
141
+ # Optimize allocations
142
+ optimized_plan = await self._optimize_allocations(allocation_plan, context)
143
+
144
+ return {
145
+ "success": True,
146
+ "allocation_plan": optimized_plan,
147
+ "resource_metrics": {
148
+ "utilization": self._calculate_utilization(),
149
+ "efficiency": self._calculate_efficiency(),
150
+ "constraints_satisfied": self._check_constraints(optimized_plan)
151
+ }
152
+ }
153
+ except Exception as e:
154
+ logging.error(f"Error in resource management: {str(e)}")
155
+ return {"success": False, "error": str(e)}
156
+
157
+ class ContextualPlanningStrategy(ReasoningStrategy):
158
+ """
159
+ Advanced contextual planning strategy that:
160
+ 1. Analyzes multiple context types
161
+ 2. Generates context-aware plans
162
+ 3. Handles context changes
163
+ 4. Maintains context consistency
164
+ 5. Optimizes for context constraints
165
+ """
166
+
167
+ def __init__(self):
168
+ self.context_history: List[Dict[str, Any]] = []
169
+ self.plan_adaptations: List[Dict[str, Any]] = []
170
+
171
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
172
+ """Generate context-aware plan."""
173
+ try:
174
+ # Analyze contexts
175
+ context_analysis = await self._analyze_contexts(query, context)
176
+
177
+ # Generate base plan
178
+ base_plan = await self._generate_base_plan(context_analysis, context)
179
+
180
+ # Adapt to contexts
181
+ adapted_plan = await self._adapt_to_contexts(base_plan, context_analysis)
182
+
183
+ # Validate plan
184
+ validation = await self._validate_plan(adapted_plan, context)
185
+
186
+ return {
187
+ "success": True,
188
+ "plan": adapted_plan,
189
+ "context_impact": context_analysis.get("impact_assessment", {}),
190
+ "adaptations": self.plan_adaptations,
191
+ "validation_results": validation
192
+ }
193
+ except Exception as e:
194
+ logging.error(f"Error in contextual planning: {str(e)}")
195
+ return {"success": False, "error": str(e)}
196
+
197
+ class AdaptiveExecutionStrategy(ReasoningStrategy):
198
+ """
199
+ Advanced adaptive execution strategy that:
200
+ 1. Monitors execution progress
201
+ 2. Adapts to changes and feedback
202
+ 3. Handles errors and exceptions
203
+ 4. Optimizes execution flow
204
+ 5. Maintains execution state
205
+ """
206
+
207
+ def __init__(self):
208
+ self.execution_steps: List[ExecutionStep] = []
209
+ self.adaptation_history: List[Dict[str, Any]] = []
210
+
211
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
212
+ """Execute task adaptively."""
213
+ try:
214
+ # Initialize execution
215
+ execution_state = await self._initialize_execution(query, context)
216
+
217
+ # Monitor and adapt
218
+ while not self._is_execution_complete(execution_state):
219
+ # Execute step
220
+ step_result = await self._execute_step(execution_state, context)
221
+
222
+ # Process feedback
223
+ feedback = await self._process_feedback(step_result, context)
224
+
225
+ # Adapt execution
226
+ execution_state = await self._adapt_execution(
227
+ execution_state, feedback, context)
228
+
229
+ # Record step
230
+ self._record_step(step_result, feedback)
231
+
232
+ return {
233
+ "success": True,
234
+ "execution_trace": [self._step_to_dict(s) for s in self.execution_steps],
235
+ "adaptations": self.adaptation_history,
236
+ "final_state": execution_state
237
+ }
238
+ except Exception as e:
239
+ logging.error(f"Error in adaptive execution: {str(e)}")
240
+ return {"success": False, "error": str(e)}
241
+
242
+ class FeedbackIntegrationStrategy(ReasoningStrategy):
243
+ """
244
+ Advanced feedback integration strategy that:
245
+ 1. Collects multiple types of feedback
246
+ 2. Analyzes feedback patterns
247
+ 3. Generates improvement suggestions
248
+ 4. Tracks feedback implementation
249
+ 5. Measures feedback impact
250
+ """
251
+
252
+ def __init__(self):
253
+ self.feedback_history: List[Dict[str, Any]] = []
254
+ self.improvement_history: List[Dict[str, Any]] = []
255
+
256
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
257
+ """Integrate and apply feedback."""
258
+ try:
259
+ # Collect feedback
260
+ feedback = await self._collect_feedback(query, context)
261
+
262
+ # Analyze patterns
263
+ patterns = await self._analyze_patterns(feedback, context)
264
+
265
+ # Generate improvements
266
+ improvements = await self._generate_improvements(patterns, context)
267
+
268
+ # Implement changes
269
+ implementation = await self._implement_improvements(improvements, context)
270
+
271
+ # Measure impact
272
+ impact = await self._measure_impact(implementation, context)
273
+
274
+ return {
275
+ "success": True,
276
+ "feedback_analysis": patterns,
277
+ "improvements": improvements,
278
+ "implementation_status": implementation,
279
+ "impact_metrics": impact
280
+ }
281
+ except Exception as e:
282
+ logging.error(f"Error in feedback integration: {str(e)}")
283
+ return {"success": False, "error": str(e)}
284
+
285
+ async def _collect_feedback(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]:
286
+ """Collect feedback from multiple sources."""
287
+ prompt = f"""
288
+ Collect feedback from:
289
+ Query: {query}
290
+ Context: {json.dumps(context)}
291
+
292
+ Consider:
293
+ 1. User feedback
294
+ 2. System metrics
295
+ 3. Code analysis
296
+ 4. Performance data
297
+ 5. Error patterns
298
+
299
+ Format as:
300
+ [Feedback]
301
+ Source: ...
302
+ Type: ...
303
+ Content: ...
304
+ Priority: ...
305
+ """
306
+
307
+ response = await context["groq_api"].predict(prompt)
308
+ return self._parse_feedback(response["answer"])
309
+
310
+ def _parse_feedback(self, response: str) -> List[Dict[str, Any]]:
311
+ """Parse feedback from response."""
312
+ feedback_items = []
313
+ current = None
314
+
315
+ for line in response.split('\n'):
316
+ line = line.strip()
317
+ if not line:
318
+ continue
319
+
320
+ if line.startswith('[Feedback]'):
321
+ if current:
322
+ feedback_items.append(current)
323
+ current = {
324
+ "source": "",
325
+ "type": "",
326
+ "content": "",
327
+ "priority": 0.0
328
+ }
329
+ elif current:
330
+ if line.startswith('Source:'):
331
+ current["source"] = line[7:].strip()
332
+ elif line.startswith('Type:'):
333
+ current["type"] = line[5:].strip()
334
+ elif line.startswith('Content:'):
335
+ current["content"] = line[8:].strip()
336
+ elif line.startswith('Priority:'):
337
+ try:
338
+ current["priority"] = float(line[9:].strip())
339
+ except:
340
+ pass
341
+
342
+ if current:
343
+ feedback_items.append(current)
344
+
345
+ return feedback_items
reasoning/analogical.py ADDED
@@ -0,0 +1,600 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Analogical reasoning implementation with advanced pattern matching and transfer learning."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Tuple, Callable
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import numpy as np
10
+ from collections import defaultdict
11
+
12
+ from .base import ReasoningStrategy
13
+
14
+ class AnalogicalLevel(Enum):
15
+ """Levels of analogical similarity."""
16
+ SURFACE = "surface"
17
+ STRUCTURAL = "structural"
18
+ SEMANTIC = "semantic"
19
+ FUNCTIONAL = "functional"
20
+ CAUSAL = "causal"
21
+ ABSTRACT = "abstract"
22
+
23
+ class MappingType(Enum):
24
+ """Types of analogical mappings."""
25
+ DIRECT = "direct"
26
+ TRANSFORMED = "transformed"
27
+ COMPOSITE = "composite"
28
+ ABSTRACT = "abstract"
29
+ METAPHORICAL = "metaphorical"
30
+ HYBRID = "hybrid"
31
+
32
+ @dataclass
33
+ class AnalogicalPattern:
34
+ """Represents a pattern for analogical matching."""
35
+ id: str
36
+ level: AnalogicalLevel
37
+ features: Dict[str, Any]
38
+ relations: List[Tuple[str, str, str]] # (entity1, relation, entity2)
39
+ constraints: List[str]
40
+ metadata: Dict[str, Any] = field(default_factory=dict)
41
+
42
+ @dataclass
43
+ class AnalogicalMapping:
44
+ """Represents a mapping between source and target domains."""
45
+ id: str
46
+ type: MappingType
47
+ source_elements: Dict[str, Any]
48
+ target_elements: Dict[str, Any]
49
+ correspondences: List[Tuple[str, str, float]] # (source, target, strength)
50
+ transformations: List[Dict[str, Any]]
51
+ confidence: float
52
+ metadata: Dict[str, Any] = field(default_factory=dict)
53
+
54
+ @dataclass
55
+ class AnalogicalSolution:
56
+ """Represents a solution derived through analogical reasoning."""
57
+ id: str
58
+ source_analogy: str
59
+ mapping: AnalogicalMapping
60
+ adaptation: Dict[str, Any]
61
+ inference: Dict[str, Any]
62
+ confidence: float
63
+ validation: Dict[str, Any]
64
+ metadata: Dict[str, Any] = field(default_factory=dict)
65
+
66
+ class AnalogicalReasoning(ReasoningStrategy):
67
+ """
68
+ Advanced Analogical Reasoning implementation with:
69
+ - Multi-level pattern matching
70
+ - Sophisticated similarity metrics
71
+ - Transfer learning capabilities
72
+ - Dynamic adaptation mechanisms
73
+ - Quality assessment
74
+ - Learning from experience
75
+ """
76
+
77
+ def __init__(self,
78
+ min_similarity: float = 0.6,
79
+ max_candidates: int = 5,
80
+ adaptation_threshold: float = 0.7,
81
+ learning_rate: float = 0.1):
82
+ self.min_similarity = min_similarity
83
+ self.max_candidates = max_candidates
84
+ self.adaptation_threshold = adaptation_threshold
85
+ self.learning_rate = learning_rate
86
+
87
+ # Knowledge base
88
+ self.patterns: Dict[str, AnalogicalPattern] = {}
89
+ self.mappings: Dict[str, AnalogicalMapping] = {}
90
+ self.solutions: Dict[str, AnalogicalSolution] = {}
91
+
92
+ # Learning components
93
+ self.pattern_weights: Dict[str, float] = defaultdict(float)
94
+ self.success_history: List[Dict[str, Any]] = []
95
+ self.adaptation_history: List[Dict[str, Any]] = []
96
+
97
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
98
+ """Main reasoning method implementing analogical reasoning."""
99
+ try:
100
+ # Extract patterns from query
101
+ patterns = await self._extract_patterns(query, context)
102
+
103
+ # Find analogical matches
104
+ matches = await self._find_matches(patterns, context)
105
+
106
+ # Create and evaluate mappings
107
+ mappings = await self._create_mappings(matches, context)
108
+
109
+ # Generate and adapt solutions
110
+ solutions = await self._generate_solutions(mappings, context)
111
+
112
+ # Select best solution
113
+ best_solution = await self._select_best_solution(solutions, context)
114
+
115
+ # Learn from experience
116
+ self._update_knowledge(patterns, mappings, best_solution)
117
+
118
+ return {
119
+ "success": True,
120
+ "answer": best_solution.inference["conclusion"],
121
+ "confidence": best_solution.confidence,
122
+ "analogy": {
123
+ "source": best_solution.source_analogy,
124
+ "mapping": self._mapping_to_dict(best_solution.mapping),
125
+ "adaptation": best_solution.adaptation
126
+ },
127
+ "reasoning_trace": best_solution.metadata.get("reasoning_trace", []),
128
+ "meta_insights": best_solution.metadata.get("meta_insights", [])
129
+ }
130
+ except Exception as e:
131
+ logging.error(f"Error in analogical reasoning: {str(e)}")
132
+ return {"success": False, "error": str(e)}
133
+
134
+ async def _extract_patterns(self, query: str, context: Dict[str, Any]) -> List[AnalogicalPattern]:
135
+ """Extract patterns from query for analogical matching."""
136
+ prompt = f"""
137
+ Extract analogical patterns from query:
138
+ Query: {query}
139
+ Context: {json.dumps(context)}
140
+
141
+ For each pattern level:
142
+ 1. Surface features
143
+ 2. Structural relations
144
+ 3. Semantic concepts
145
+ 4. Functional roles
146
+ 5. Causal relationships
147
+ 6. Abstract principles
148
+
149
+ Format as:
150
+ [P1]
151
+ Level: ...
152
+ Features: ...
153
+ Relations: ...
154
+ Constraints: ...
155
+
156
+ [P2]
157
+ ...
158
+ """
159
+
160
+ response = await context["groq_api"].predict(prompt)
161
+ return self._parse_patterns(response["answer"])
162
+
163
+ async def _find_matches(self, patterns: List[AnalogicalPattern], context: Dict[str, Any]) -> List[Dict[str, Any]]:
164
+ """Find matching patterns in knowledge base."""
165
+ prompt = f"""
166
+ Find analogical matches:
167
+ Patterns: {json.dumps([self._pattern_to_dict(p) for p in patterns])}
168
+ Context: {json.dumps(context)}
169
+
170
+ For each match provide:
171
+ 1. Source domain
172
+ 2. Similarity assessment
173
+ 3. Key correspondences
174
+ 4. Transfer potential
175
+
176
+ Format as:
177
+ [M1]
178
+ Source: ...
179
+ Similarity: ...
180
+ Correspondences: ...
181
+ Transfer: ...
182
+
183
+ [M2]
184
+ ...
185
+ """
186
+
187
+ response = await context["groq_api"].predict(prompt)
188
+ return self._parse_matches(response["answer"])
189
+
190
+ async def _create_mappings(self, matches: List[Dict[str, Any]], context: Dict[str, Any]) -> List[AnalogicalMapping]:
191
+ """Create mappings between source and target domains."""
192
+ prompt = f"""
193
+ Create analogical mappings:
194
+ Matches: {json.dumps(matches)}
195
+ Context: {json.dumps(context)}
196
+
197
+ For each mapping specify:
198
+ 1. [Type]: {" | ".join([t.value for t in MappingType])}
199
+ 2. [Elements]: Source and target elements
200
+ 3. [Correspondences]: Element mappings
201
+ 4. [Transformations]: Required adaptations
202
+ 5. [Confidence]: Mapping strength
203
+
204
+ Format as:
205
+ [Map1]
206
+ Type: ...
207
+ Elements: ...
208
+ Correspondences: ...
209
+ Transformations: ...
210
+ Confidence: ...
211
+ """
212
+
213
+ response = await context["groq_api"].predict(prompt)
214
+ return self._parse_mappings(response["answer"])
215
+
216
+ async def _generate_solutions(self, mappings: List[AnalogicalMapping], context: Dict[str, Any]) -> List[AnalogicalSolution]:
217
+ """Generate solutions through analogical transfer."""
218
+ prompt = f"""
219
+ Generate analogical solutions:
220
+ Mappings: {json.dumps([self._mapping_to_dict(m) for m in mappings])}
221
+ Context: {json.dumps(context)}
222
+
223
+ For each solution provide:
224
+ 1. Analogical inference
225
+ 2. Required adaptations
226
+ 3. Validation criteria
227
+ 4. Confidence assessment
228
+ 5. Reasoning trace
229
+
230
+ Format as:
231
+ [S1]
232
+ Inference: ...
233
+ Adaptation: ...
234
+ Validation: ...
235
+ Confidence: ...
236
+ Trace: ...
237
+ """
238
+
239
+ response = await context["groq_api"].predict(prompt)
240
+ return self._parse_solutions(response["answer"], mappings)
241
+
242
+ async def _select_best_solution(self, solutions: List[AnalogicalSolution], context: Dict[str, Any]) -> AnalogicalSolution:
243
+ """Select the best solution based on multiple criteria."""
244
+ prompt = f"""
245
+ Evaluate and select best solution:
246
+ Solutions: {json.dumps([self._solution_to_dict(s) for s in solutions])}
247
+ Context: {json.dumps(context)}
248
+
249
+ Evaluate based on:
250
+ 1. Inference quality
251
+ 2. Adaptation feasibility
252
+ 3. Validation strength
253
+ 4. Overall confidence
254
+
255
+ Format as:
256
+ [Evaluation]
257
+ Rankings: ...
258
+ Rationale: ...
259
+ Selection: ...
260
+ Confidence: ...
261
+ """
262
+
263
+ response = await context["groq_api"].predict(prompt)
264
+ selection = self._parse_selection(response["answer"])
265
+
266
+ # Find selected solution
267
+ selected = max(solutions, key=lambda s: s.confidence)
268
+ for solution in solutions:
269
+ if solution.id == selection.get("selected_id"):
270
+ selected = solution
271
+ break
272
+
273
+ return selected
274
+
275
+ def _update_knowledge(self, patterns: List[AnalogicalPattern], mappings: List[AnalogicalMapping], solution: AnalogicalSolution):
276
+ """Update knowledge base with new patterns and successful mappings."""
277
+ # Update patterns
278
+ for pattern in patterns:
279
+ if pattern.id not in self.patterns:
280
+ self.patterns[pattern.id] = pattern
281
+ self.pattern_weights[pattern.id] += self.learning_rate * solution.confidence
282
+
283
+ # Update mappings
284
+ if solution.mapping.id not in self.mappings:
285
+ self.mappings[solution.mapping.id] = solution.mapping
286
+
287
+ # Record solution
288
+ self.solutions[solution.id] = solution
289
+
290
+ # Update history
291
+ self.success_history.append({
292
+ "timestamp": datetime.now().isoformat(),
293
+ "solution_id": solution.id,
294
+ "confidence": solution.confidence,
295
+ "patterns": [p.id for p in patterns],
296
+ "mapping_type": solution.mapping.type.value
297
+ })
298
+
299
+ # Update adaptation history
300
+ self.adaptation_history.append({
301
+ "timestamp": datetime.now().isoformat(),
302
+ "solution_id": solution.id,
303
+ "adaptations": solution.adaptation,
304
+ "success": solution.confidence >= self.adaptation_threshold
305
+ })
306
+
307
+ def _parse_patterns(self, response: str) -> List[AnalogicalPattern]:
308
+ """Parse patterns from response."""
309
+ patterns = []
310
+ current = None
311
+
312
+ for line in response.split('\n'):
313
+ line = line.strip()
314
+ if not line:
315
+ continue
316
+
317
+ if line.startswith('[P'):
318
+ if current:
319
+ patterns.append(current)
320
+ current = None
321
+ elif line.startswith('Level:'):
322
+ level_str = line[6:].strip().lower()
323
+ try:
324
+ level = AnalogicalLevel(level_str)
325
+ current = AnalogicalPattern(
326
+ id=f"pattern_{len(patterns)}",
327
+ level=level,
328
+ features={},
329
+ relations=[],
330
+ constraints=[],
331
+ metadata={}
332
+ )
333
+ except ValueError:
334
+ logging.warning(f"Invalid analogical level: {level_str}")
335
+ elif current:
336
+ if line.startswith('Features:'):
337
+ try:
338
+ current.features = json.loads(line[9:].strip())
339
+ except:
340
+ current.features = {"raw": line[9:].strip()}
341
+ elif line.startswith('Relations:'):
342
+ relations = [r.strip() for r in line[10:].split(',')]
343
+ current.relations = [(r.split()[0], r.split()[1], r.split()[2])
344
+ for r in relations if len(r.split()) >= 3]
345
+ elif line.startswith('Constraints:'):
346
+ current.constraints = [c.strip() for c in line[12:].split(',')]
347
+
348
+ if current:
349
+ patterns.append(current)
350
+
351
+ return patterns
352
+
353
+ def _parse_matches(self, response: str) -> List[Dict[str, Any]]:
354
+ """Parse matches from response."""
355
+ matches = []
356
+ current = None
357
+
358
+ for line in response.split('\n'):
359
+ line = line.strip()
360
+ if not line:
361
+ continue
362
+
363
+ if line.startswith('[M'):
364
+ if current:
365
+ matches.append(current)
366
+ current = {
367
+ "source": "",
368
+ "similarity": 0.0,
369
+ "correspondences": [],
370
+ "transfer": []
371
+ }
372
+ elif current:
373
+ if line.startswith('Source:'):
374
+ current["source"] = line[7:].strip()
375
+ elif line.startswith('Similarity:'):
376
+ try:
377
+ current["similarity"] = float(line[11:].strip())
378
+ except:
379
+ pass
380
+ elif line.startswith('Correspondences:'):
381
+ current["correspondences"] = [c.strip() for c in line[16:].split(',')]
382
+ elif line.startswith('Transfer:'):
383
+ current["transfer"] = [t.strip() for t in line[9:].split(',')]
384
+
385
+ if current:
386
+ matches.append(current)
387
+
388
+ return matches
389
+
390
+ def _parse_mappings(self, response: str) -> List[AnalogicalMapping]:
391
+ """Parse mappings from response."""
392
+ mappings = []
393
+ current = None
394
+
395
+ for line in response.split('\n'):
396
+ line = line.strip()
397
+ if not line:
398
+ continue
399
+
400
+ if line.startswith('[Map'):
401
+ if current:
402
+ mappings.append(current)
403
+ current = None
404
+ elif line.startswith('Type:'):
405
+ type_str = line[5:].strip().lower()
406
+ try:
407
+ mapping_type = MappingType(type_str)
408
+ current = AnalogicalMapping(
409
+ id=f"mapping_{len(mappings)}",
410
+ type=mapping_type,
411
+ source_elements={},
412
+ target_elements={},
413
+ correspondences=[],
414
+ transformations=[],
415
+ confidence=0.0,
416
+ metadata={}
417
+ )
418
+ except ValueError:
419
+ logging.warning(f"Invalid mapping type: {type_str}")
420
+ elif current:
421
+ if line.startswith('Elements:'):
422
+ try:
423
+ elements = json.loads(line[9:].strip())
424
+ current.source_elements = elements.get("source", {})
425
+ current.target_elements = elements.get("target", {})
426
+ except:
427
+ pass
428
+ elif line.startswith('Correspondences:'):
429
+ pairs = [c.strip() for c in line[16:].split(',')]
430
+ for pair in pairs:
431
+ parts = pair.split(':')
432
+ if len(parts) >= 2:
433
+ source = parts[0].strip()
434
+ target = parts[1].strip()
435
+ strength = float(parts[2]) if len(parts) > 2 else 1.0
436
+ current.correspondences.append((source, target, strength))
437
+ elif line.startswith('Transformations:'):
438
+ try:
439
+ current.transformations = json.loads(line[16:].strip())
440
+ except:
441
+ current.transformations = [{"raw": line[16:].strip()}]
442
+ elif line.startswith('Confidence:'):
443
+ try:
444
+ current.confidence = float(line[11:].strip())
445
+ except:
446
+ pass
447
+
448
+ if current:
449
+ mappings.append(current)
450
+
451
+ return mappings
452
+
453
+ def _parse_solutions(self, response: str, mappings: List[AnalogicalMapping]) -> List[AnalogicalSolution]:
454
+ """Parse solutions from response."""
455
+ solutions = []
456
+ current = None
457
+
458
+ for line in response.split('\n'):
459
+ line = line.strip()
460
+ if not line:
461
+ continue
462
+
463
+ if line.startswith('[S'):
464
+ if current:
465
+ solutions.append(current)
466
+ current = None
467
+ mapping_idx = len(solutions)
468
+ if mapping_idx < len(mappings):
469
+ current = AnalogicalSolution(
470
+ id=f"solution_{len(solutions)}",
471
+ source_analogy="",
472
+ mapping=mappings[mapping_idx],
473
+ adaptation={},
474
+ inference={},
475
+ confidence=0.0,
476
+ validation={},
477
+ metadata={}
478
+ )
479
+ elif current:
480
+ if line.startswith('Inference:'):
481
+ try:
482
+ current.inference = json.loads(line[10:].strip())
483
+ except:
484
+ current.inference = {"conclusion": line[10:].strip()}
485
+ elif line.startswith('Adaptation:'):
486
+ try:
487
+ current.adaptation = json.loads(line[11:].strip())
488
+ except:
489
+ current.adaptation = {"steps": [line[11:].strip()]}
490
+ elif line.startswith('Validation:'):
491
+ try:
492
+ current.validation = json.loads(line[11:].strip())
493
+ except:
494
+ current.validation = {"criteria": [line[11:].strip()]}
495
+ elif line.startswith('Confidence:'):
496
+ try:
497
+ current.confidence = float(line[11:].strip())
498
+ except:
499
+ pass
500
+ elif line.startswith('Trace:'):
501
+ current.metadata["reasoning_trace"] = [t.strip() for t in line[6:].split(',')]
502
+
503
+ if current:
504
+ solutions.append(current)
505
+
506
+ return solutions
507
+
508
+ def _parse_selection(self, response: str) -> Dict[str, Any]:
509
+ """Parse solution selection from response."""
510
+ selection = {
511
+ "selected_id": None,
512
+ "confidence": 0.0,
513
+ "rationale": []
514
+ }
515
+
516
+ for line in response.split('\n'):
517
+ line = line.strip()
518
+ if line.startswith('Selection:'):
519
+ selection["selected_id"] = line[10:].strip()
520
+ elif line.startswith('Confidence:'):
521
+ try:
522
+ selection["confidence"] = float(line[11:].strip())
523
+ except:
524
+ pass
525
+ elif line.startswith('Rationale:'):
526
+ selection["rationale"] = [r.strip() for r in line[10:].split(',')]
527
+
528
+ return selection
529
+
530
+ def _pattern_to_dict(self, pattern: AnalogicalPattern) -> Dict[str, Any]:
531
+ """Convert pattern to dictionary for serialization."""
532
+ return {
533
+ "id": pattern.id,
534
+ "level": pattern.level.value,
535
+ "features": pattern.features,
536
+ "relations": pattern.relations,
537
+ "constraints": pattern.constraints,
538
+ "metadata": pattern.metadata
539
+ }
540
+
541
+ def _mapping_to_dict(self, mapping: AnalogicalMapping) -> Dict[str, Any]:
542
+ """Convert mapping to dictionary for serialization."""
543
+ return {
544
+ "id": mapping.id,
545
+ "type": mapping.type.value,
546
+ "source_elements": mapping.source_elements,
547
+ "target_elements": mapping.target_elements,
548
+ "correspondences": mapping.correspondences,
549
+ "transformations": mapping.transformations,
550
+ "confidence": mapping.confidence,
551
+ "metadata": mapping.metadata
552
+ }
553
+
554
+ def _solution_to_dict(self, solution: AnalogicalSolution) -> Dict[str, Any]:
555
+ """Convert solution to dictionary for serialization."""
556
+ return {
557
+ "id": solution.id,
558
+ "source_analogy": solution.source_analogy,
559
+ "mapping": self._mapping_to_dict(solution.mapping),
560
+ "adaptation": solution.adaptation,
561
+ "inference": solution.inference,
562
+ "confidence": solution.confidence,
563
+ "validation": solution.validation,
564
+ "metadata": solution.metadata
565
+ }
566
+
567
+ def get_pattern_statistics(self) -> Dict[str, Any]:
568
+ """Get statistics about pattern usage and effectiveness."""
569
+ return {
570
+ "total_patterns": len(self.patterns),
571
+ "level_distribution": defaultdict(int, {p.level.value: 1 for p in self.patterns.values()}),
572
+ "average_constraints": sum(len(p.constraints) for p in self.patterns.values()) / len(self.patterns) if self.patterns else 0,
573
+ "pattern_weights": dict(self.pattern_weights)
574
+ }
575
+
576
+ def get_mapping_statistics(self) -> Dict[str, Any]:
577
+ """Get statistics about mapping effectiveness."""
578
+ return {
579
+ "total_mappings": len(self.mappings),
580
+ "type_distribution": defaultdict(int, {m.type.value: 1 for m in self.mappings.values()}),
581
+ "average_confidence": sum(m.confidence for m in self.mappings.values()) / len(self.mappings) if self.mappings else 0,
582
+ "transformation_counts": defaultdict(int, {m.id: len(m.transformations) for m in self.mappings.values()})
583
+ }
584
+
585
+ def get_solution_statistics(self) -> Dict[str, Any]:
586
+ """Get statistics about solution quality."""
587
+ return {
588
+ "total_solutions": len(self.solutions),
589
+ "average_confidence": sum(s.confidence for s in self.solutions.values()) / len(self.solutions) if self.solutions else 0,
590
+ "adaptation_success_rate": sum(1 for h in self.adaptation_history if h["success"]) / len(self.adaptation_history) if self.adaptation_history else 0
591
+ }
592
+
593
+ def clear_knowledge_base(self):
594
+ """Clear the knowledge base."""
595
+ self.patterns.clear()
596
+ self.mappings.clear()
597
+ self.solutions.clear()
598
+ self.pattern_weights.clear()
599
+ self.success_history.clear()
600
+ self.adaptation_history.clear()
reasoning/base.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Base class for all reasoning strategies."""
2
+
3
+ from typing import Dict, Any
4
+
5
+ class ReasoningStrategy:
6
+ """Base class for reasoning strategies."""
7
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
8
+ """Apply reasoning strategy to query with context.
9
+
10
+ Args:
11
+ query: The query to reason about
12
+ context: Additional context for reasoning
13
+
14
+ Returns:
15
+ Dictionary containing reasoning results
16
+ """
17
+ raise NotImplementedError
reasoning/bayesian.py ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Bayesian reasoning implementation."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List
5
+ import json
6
+ import re
7
+ from datetime import datetime
8
+
9
+ from .base import ReasoningStrategy
10
+
11
+ class BayesianReasoning(ReasoningStrategy):
12
+ """Implements Bayesian reasoning for probabilistic analysis."""
13
+
14
+ def __init__(self, prior_weight: float = 0.3):
15
+ self.prior_weight = prior_weight
16
+
17
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
18
+ try:
19
+ # Generate hypotheses
20
+ hypotheses = await self._generate_hypotheses(query, context)
21
+
22
+ # Calculate prior probabilities
23
+ priors = await self._calculate_priors(hypotheses, context)
24
+
25
+ # Update with evidence
26
+ posteriors = await self._update_with_evidence(hypotheses, priors, context)
27
+
28
+ # Generate final analysis
29
+ analysis = await self._generate_analysis(posteriors, context)
30
+
31
+ return {
32
+ "success": True,
33
+ "answer": analysis["conclusion"],
34
+ "hypotheses": hypotheses,
35
+ "priors": priors,
36
+ "posteriors": posteriors,
37
+ "confidence": analysis["confidence"],
38
+ "reasoning_path": analysis["reasoning_path"]
39
+ }
40
+ except Exception as e:
41
+ return {"success": False, "error": str(e)}
42
+
43
+ async def _generate_hypotheses(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]:
44
+ prompt = f"""
45
+ Generate 3-4 hypotheses for this problem:
46
+ Query: {query}
47
+ Context: {json.dumps(context)}
48
+
49
+ For each hypothesis:
50
+ 1. [Statement]: Clear statement of the hypothesis
51
+ 2. [Assumptions]: Key assumptions made
52
+ 3. [Testability]: How it could be tested/verified
53
+
54
+ Format as:
55
+ [H1]
56
+ Statement: ...
57
+ Assumptions: ...
58
+ Testability: ...
59
+ """
60
+
61
+ response = await context["groq_api"].predict(prompt)
62
+ return self._parse_hypotheses(response["answer"])
63
+
64
+ async def _calculate_priors(self, hypotheses: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, float]:
65
+ prompt = f"""
66
+ Calculate prior probabilities for these hypotheses:
67
+ Context: {json.dumps(context)}
68
+
69
+ Hypotheses:
70
+ {json.dumps(hypotheses, indent=2)}
71
+
72
+ For each hypothesis, estimate its prior probability (0-1) based on:
73
+ 1. Alignment with known principles
74
+ 2. Historical precedent
75
+ 3. Domain expertise
76
+
77
+ Format: [H1]: 0.XX, [H2]: 0.XX, ...
78
+ """
79
+
80
+ response = await context["groq_api"].predict(prompt)
81
+ return self._parse_probabilities(response["answer"])
82
+
83
+ async def _update_with_evidence(self, hypotheses: List[Dict[str, Any]], priors: Dict[str, float],
84
+ context: Dict[str, Any]) -> Dict[str, float]:
85
+ prompt = f"""
86
+ Update probabilities with available evidence:
87
+ Context: {json.dumps(context)}
88
+
89
+ Hypotheses and Priors:
90
+ {json.dumps(list(zip(hypotheses, priors.values())), indent=2)}
91
+
92
+ Consider:
93
+ 1. How well each hypothesis explains the evidence
94
+ 2. Any new evidence from the context
95
+ 3. Potential conflicts or support between hypotheses
96
+
97
+ Format: [H1]: 0.XX, [H2]: 0.XX, ...
98
+ """
99
+
100
+ response = await context["groq_api"].predict(prompt)
101
+ return self._parse_probabilities(response["answer"])
102
+
103
+ async def _generate_analysis(self, posteriors: Dict[str, float], context: Dict[str, Any]) -> Dict[str, Any]:
104
+ prompt = f"""
105
+ Generate final Bayesian analysis:
106
+ Context: {json.dumps(context)}
107
+
108
+ Posterior Probabilities:
109
+ {json.dumps(posteriors, indent=2)}
110
+
111
+ Provide:
112
+ 1. Main conclusion based on highest probability hypotheses
113
+ 2. Confidence level (0-1)
114
+ 3. Key reasoning steps taken
115
+ """
116
+
117
+ response = await context["groq_api"].predict(prompt)
118
+ return self._parse_analysis(response["answer"])
119
+
120
+ def _parse_hypotheses(self, response: str) -> List[Dict[str, Any]]:
121
+ """Parse hypotheses from response."""
122
+ hypotheses = []
123
+ current = None
124
+
125
+ for line in response.split('\n'):
126
+ line = line.strip()
127
+ if not line:
128
+ continue
129
+
130
+ if line.startswith('[H'):
131
+ if current:
132
+ hypotheses.append(current)
133
+ current = {
134
+ "statement": "",
135
+ "assumptions": "",
136
+ "testability": ""
137
+ }
138
+ elif current:
139
+ if line.startswith('Statement:'):
140
+ current["statement"] = line[10:].strip()
141
+ elif line.startswith('Assumptions:'):
142
+ current["assumptions"] = line[12:].strip()
143
+ elif line.startswith('Testability:'):
144
+ current["testability"] = line[12:].strip()
145
+
146
+ if current:
147
+ hypotheses.append(current)
148
+
149
+ return hypotheses
150
+
151
+ def _parse_probabilities(self, response: str) -> Dict[str, float]:
152
+ """Parse probabilities from response."""
153
+ probs = {}
154
+ pattern = r'\[H(\d+)\]:\s*(0\.\d+)'
155
+
156
+ for match in re.finditer(pattern, response):
157
+ h_num = int(match.group(1))
158
+ prob = float(match.group(2))
159
+ probs[f"H{h_num}"] = prob
160
+
161
+ return probs
162
+
163
+ def _parse_analysis(self, response: str) -> Dict[str, Any]:
164
+ """Parse analysis from response."""
165
+ lines = response.split('\n')
166
+ analysis = {
167
+ "conclusion": "",
168
+ "confidence": 0.0,
169
+ "reasoning_path": []
170
+ }
171
+
172
+ for line in lines:
173
+ line = line.strip()
174
+ if not line:
175
+ continue
176
+
177
+ if line.startswith('Conclusion:'):
178
+ analysis["conclusion"] = line[11:].strip()
179
+ elif line.startswith('Confidence:'):
180
+ try:
181
+ analysis["confidence"] = float(line[11:].strip())
182
+ except:
183
+ analysis["confidence"] = 0.5
184
+ elif line.startswith('- '):
185
+ analysis["reasoning_path"].append(line[2:].strip())
186
+
187
+ return analysis
reasoning/chain_of_thought.py ADDED
@@ -0,0 +1,410 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Chain of Thought reasoning implementation with advanced features."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Tuple
5
+ import json
6
+ from dataclasses import dataclass
7
+ from enum import Enum
8
+
9
+ from .base import ReasoningStrategy
10
+
11
+ class ThoughtType(Enum):
12
+ """Types of thoughts in the chain."""
13
+ OBSERVATION = "observation"
14
+ ANALYSIS = "analysis"
15
+ HYPOTHESIS = "hypothesis"
16
+ VERIFICATION = "verification"
17
+ CONCLUSION = "conclusion"
18
+ REFLECTION = "reflection"
19
+ REFINEMENT = "refinement"
20
+
21
+ @dataclass
22
+ class Thought:
23
+ """Represents a single thought in the chain."""
24
+ type: ThoughtType
25
+ content: str
26
+ confidence: float
27
+ evidence: List[str]
28
+ alternatives: List[str]
29
+ next_steps: List[str]
30
+ metadata: Dict[str, Any]
31
+
32
+ class ChainOfThoughtStrategy(ReasoningStrategy):
33
+ """
34
+ Advanced Chain of Thought reasoning implementation with:
35
+ - Hierarchical thought chains
36
+ - Confidence scoring
37
+ - Alternative path exploration
38
+ - Self-reflection and refinement
39
+ - Evidence tracking
40
+ - Meta-learning capabilities
41
+ """
42
+
43
+ def __init__(self,
44
+ max_chain_length: int = 10,
45
+ min_confidence: float = 0.7,
46
+ exploration_breadth: int = 3,
47
+ enable_reflection: bool = True):
48
+ self.max_chain_length = max_chain_length
49
+ self.min_confidence = min_confidence
50
+ self.exploration_breadth = exploration_breadth
51
+ self.enable_reflection = enable_reflection
52
+ self.thought_history: List[Thought] = []
53
+
54
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
55
+ """Main reasoning method implementing chain of thought."""
56
+ try:
57
+ # Initialize reasoning chain
58
+ chain = await self._initialize_chain(query, context)
59
+
60
+ # Generate initial thoughts
61
+ thoughts = await self._generate_thoughts(query, context)
62
+
63
+ # Build thought chain
64
+ chain = await self._build_chain(thoughts, context)
65
+
66
+ # Reflect and refine
67
+ if self.enable_reflection:
68
+ chain = await self._reflect_and_refine(chain, context)
69
+
70
+ # Extract conclusion
71
+ conclusion = await self._extract_conclusion(chain, context)
72
+
73
+ # Update thought history
74
+ self.thought_history.extend(chain)
75
+
76
+ return {
77
+ "success": True,
78
+ "answer": conclusion["answer"],
79
+ "confidence": conclusion["confidence"],
80
+ "reasoning_chain": [self._thought_to_dict(t) for t in chain],
81
+ "alternatives": conclusion["alternatives"],
82
+ "evidence": conclusion["evidence"],
83
+ "meta_insights": conclusion["meta_insights"]
84
+ }
85
+ except Exception as e:
86
+ logging.error(f"Error in chain of thought reasoning: {str(e)}")
87
+ return {"success": False, "error": str(e)}
88
+
89
+ async def _initialize_chain(self, query: str, context: Dict[str, Any]) -> List[Thought]:
90
+ """Initialize the thought chain with observations."""
91
+ prompt = f"""
92
+ Initialize chain of thought for query:
93
+ Query: {query}
94
+ Context: {json.dumps(context)}
95
+
96
+ Provide initial observations:
97
+ 1. Key elements in query
98
+ 2. Relevant context factors
99
+ 3. Initial hypotheses
100
+ 4. Potential approaches
101
+
102
+ Format as:
103
+ [O1] Element: ... | Relevance: ... | Confidence: ...
104
+ [O2] Context: ... | Impact: ... | Confidence: ...
105
+ [O3] Hypothesis: ... | Support: ... | Confidence: ...
106
+ [O4] Approach: ... | Rationale: ... | Confidence: ...
107
+ """
108
+
109
+ response = await context["groq_api"].predict(prompt)
110
+ return self._parse_observations(response["answer"])
111
+
112
+ async def _generate_thoughts(self, query: str, context: Dict[str, Any]) -> List[Thought]:
113
+ """Generate candidate thoughts for the chain."""
114
+ prompt = f"""
115
+ Generate thoughts for query analysis:
116
+ Query: {query}
117
+ Context: {json.dumps(context)}
118
+
119
+ For each thought provide:
120
+ 1. [Type]: {" | ".join([t.value for t in ThoughtType])}
121
+ 2. [Content]: Main thought
122
+ 3. [Evidence]: Supporting evidence
123
+ 4. [Alternatives]: Alternative perspectives
124
+ 5. [Next]: Potential next steps
125
+ 6. [Confidence]: 0-1 score
126
+
127
+ Format as:
128
+ [T1]
129
+ Type: ...
130
+ Content: ...
131
+ Evidence: ...
132
+ Alternatives: ...
133
+ Next: ...
134
+ Confidence: ...
135
+ """
136
+
137
+ response = await context["groq_api"].predict(prompt)
138
+ return self._parse_thoughts(response["answer"])
139
+
140
+ async def _build_chain(self, thoughts: List[Thought], context: Dict[str, Any]) -> List[Thought]:
141
+ """Build coherent chain from candidate thoughts."""
142
+ prompt = f"""
143
+ Build coherent thought chain:
144
+ Thoughts: {json.dumps([self._thought_to_dict(t) for t in thoughts])}
145
+ Context: {json.dumps(context)}
146
+
147
+ For each step specify:
148
+ 1. Selected thought
149
+ 2. Reasoning for selection
150
+ 3. Connection to previous
151
+ 4. Expected impact
152
+
153
+ Format as:
154
+ [S1]
155
+ Thought: ...
156
+ Reason: ...
157
+ Connection: ...
158
+ Impact: ...
159
+ """
160
+
161
+ response = await context["groq_api"].predict(prompt)
162
+ return self._parse_chain(response["answer"], thoughts)
163
+
164
+ async def _reflect_and_refine(self, chain: List[Thought], context: Dict[str, Any]) -> List[Thought]:
165
+ """Reflect on and refine the thought chain."""
166
+ prompt = f"""
167
+ Reflect on thought chain:
168
+ Chain: {json.dumps([self._thought_to_dict(t) for t in chain])}
169
+ Context: {json.dumps(context)}
170
+
171
+ Analyze for:
172
+ 1. Logical gaps
173
+ 2. Weak assumptions
174
+ 3. Missing evidence
175
+ 4. Alternative perspectives
176
+
177
+ Suggest refinements:
178
+ 1. Additional thoughts
179
+ 2. Modified reasoning
180
+ 3. New connections
181
+ 4. Evidence needs
182
+
183
+ Format as:
184
+ [Analysis]
185
+ Gaps: ...
186
+ Assumptions: ...
187
+ Missing: ...
188
+ Alternatives: ...
189
+
190
+ [Refinements]
191
+ Thoughts: ...
192
+ Reasoning: ...
193
+ Connections: ...
194
+ Evidence: ...
195
+ """
196
+
197
+ response = await context["groq_api"].predict(prompt)
198
+ return self._apply_refinements(chain, response["answer"])
199
+
200
+ async def _extract_conclusion(self, chain: List[Thought], context: Dict[str, Any]) -> Dict[str, Any]:
201
+ """Extract final conclusion from thought chain."""
202
+ prompt = f"""
203
+ Extract conclusion from thought chain:
204
+ Chain: {json.dumps([self._thought_to_dict(t) for t in chain])}
205
+ Context: {json.dumps(context)}
206
+
207
+ Provide:
208
+ 1. Main conclusion
209
+ 2. Confidence level
210
+ 3. Supporting evidence
211
+ 4. Alternative conclusions
212
+ 5. Meta-insights gained
213
+ 6. Future considerations
214
+
215
+ Format as:
216
+ [Conclusion]
217
+ Answer: ...
218
+ Confidence: ...
219
+ Evidence: ...
220
+ Alternatives: ...
221
+
222
+ [Meta]
223
+ Insights: ...
224
+ Future: ...
225
+ """
226
+
227
+ response = await context["groq_api"].predict(prompt)
228
+ return self._parse_conclusion(response["answer"])
229
+
230
+ def _parse_observations(self, response: str) -> List[Thought]:
231
+ """Parse initial observations into thoughts."""
232
+ observations = []
233
+ lines = response.split('\n')
234
+
235
+ for line in lines:
236
+ if line.startswith('[O'):
237
+ parts = line.split('|')
238
+ if len(parts) >= 3:
239
+ main_part = parts[0].split(']')[1].strip()
240
+ key, content = main_part.split(':', 1)
241
+
242
+ evidence = [p.strip() for p in parts[1].split(':')[1].strip().split(',')]
243
+
244
+ try:
245
+ confidence = float(parts[2].split(':')[1].strip())
246
+ except:
247
+ confidence = 0.5
248
+
249
+ observations.append(Thought(
250
+ type=ThoughtType.OBSERVATION,
251
+ content=content.strip(),
252
+ confidence=confidence,
253
+ evidence=evidence,
254
+ alternatives=[],
255
+ next_steps=[],
256
+ metadata={"key": key}
257
+ ))
258
+
259
+ return observations
260
+
261
+ def _parse_thoughts(self, response: str) -> List[Thought]:
262
+ """Parse generated thoughts."""
263
+ thoughts = []
264
+ current = None
265
+
266
+ for line in response.split('\n'):
267
+ line = line.strip()
268
+ if not line:
269
+ continue
270
+
271
+ if line.startswith('[T'):
272
+ if current:
273
+ thoughts.append(current)
274
+ current = None
275
+ elif line.startswith('Type:'):
276
+ type_str = line[5:].strip()
277
+ try:
278
+ thought_type = ThoughtType(type_str.lower())
279
+ current = Thought(
280
+ type=thought_type,
281
+ content="",
282
+ confidence=0.0,
283
+ evidence=[],
284
+ alternatives=[],
285
+ next_steps=[],
286
+ metadata={}
287
+ )
288
+ except ValueError:
289
+ logging.warning(f"Invalid thought type: {type_str}")
290
+ elif current:
291
+ if line.startswith('Content:'):
292
+ current.content = line[8:].strip()
293
+ elif line.startswith('Evidence:'):
294
+ current.evidence = [e.strip() for e in line[9:].split(',')]
295
+ elif line.startswith('Alternatives:'):
296
+ current.alternatives = [a.strip() for a in line[13:].split(',')]
297
+ elif line.startswith('Next:'):
298
+ current.next_steps = [n.strip() for n in line[5:].split(',')]
299
+ elif line.startswith('Confidence:'):
300
+ try:
301
+ current.confidence = float(line[11:].strip())
302
+ except:
303
+ current.confidence = 0.5
304
+
305
+ if current:
306
+ thoughts.append(current)
307
+
308
+ return thoughts
309
+
310
+ def _parse_chain(self, response: str, thoughts: List[Thought]) -> List[Thought]:
311
+ """Parse and order thoughts into a chain."""
312
+ chain = []
313
+ thought_map = {self._thought_to_dict(t)["content"]: t for t in thoughts}
314
+
315
+ for line in response.split('\n'):
316
+ if line.startswith('Thought:'):
317
+ content = line[8:].strip()
318
+ if content in thought_map:
319
+ chain.append(thought_map[content])
320
+
321
+ return chain
322
+
323
+ def _apply_refinements(self, chain: List[Thought], response: str) -> List[Thought]:
324
+ """Apply refinements to thought chain."""
325
+ refined_chain = chain.copy()
326
+
327
+ # Parse refinements
328
+ sections = response.split('[')
329
+ for section in sections:
330
+ if section.startswith('Refinements]'):
331
+ lines = section.split('\n')[1:]
332
+ for line in lines:
333
+ if line.startswith('Thoughts:'):
334
+ new_thoughts = self._parse_refinement_thoughts(line[9:])
335
+ refined_chain.extend(new_thoughts)
336
+
337
+ return refined_chain
338
+
339
+ def _parse_refinement_thoughts(self, refinements: str) -> List[Thought]:
340
+ """Parse refinement thoughts."""
341
+ thoughts = []
342
+ for refinement in refinements.split(';'):
343
+ if refinement.strip():
344
+ thoughts.append(Thought(
345
+ type=ThoughtType.REFINEMENT,
346
+ content=refinement.strip(),
347
+ confidence=0.8, # Refinements typically have high confidence
348
+ evidence=[],
349
+ alternatives=[],
350
+ next_steps=[],
351
+ metadata={"refined": True}
352
+ ))
353
+ return thoughts
354
+
355
+ def _parse_conclusion(self, response: str) -> Dict[str, Any]:
356
+ """Parse final conclusion."""
357
+ conclusion = {
358
+ "answer": "",
359
+ "confidence": 0.0,
360
+ "evidence": [],
361
+ "alternatives": [],
362
+ "meta_insights": [],
363
+ "future_considerations": []
364
+ }
365
+
366
+ sections = response.split('[')
367
+ for section in sections:
368
+ if section.startswith('Conclusion]'):
369
+ lines = section.split('\n')[1:]
370
+ for line in lines:
371
+ if line.startswith('Answer:'):
372
+ conclusion["answer"] = line[7:].strip()
373
+ elif line.startswith('Confidence:'):
374
+ try:
375
+ conclusion["confidence"] = float(line[11:].strip())
376
+ except:
377
+ conclusion["confidence"] = 0.5
378
+ elif line.startswith('Evidence:'):
379
+ conclusion["evidence"] = [e.strip() for e in line[9:].split(',')]
380
+ elif line.startswith('Alternatives:'):
381
+ conclusion["alternatives"] = [a.strip() for a in line[13:].split(',')]
382
+ elif section.startswith('Meta]'):
383
+ lines = section.split('\n')[1:]
384
+ for line in lines:
385
+ if line.startswith('Insights:'):
386
+ conclusion["meta_insights"] = [i.strip() for i in line[9:].split(',')]
387
+ elif line.startswith('Future:'):
388
+ conclusion["future_considerations"] = [f.strip() for f in line[7:].split(',')]
389
+
390
+ return conclusion
391
+
392
+ def _thought_to_dict(self, thought: Thought) -> Dict[str, Any]:
393
+ """Convert thought to dictionary for serialization."""
394
+ return {
395
+ "type": thought.type.value,
396
+ "content": thought.content,
397
+ "confidence": thought.confidence,
398
+ "evidence": thought.evidence,
399
+ "alternatives": thought.alternatives,
400
+ "next_steps": thought.next_steps,
401
+ "metadata": thought.metadata
402
+ }
403
+
404
+ def get_thought_history(self) -> List[Dict[str, Any]]:
405
+ """Get the history of all thoughts processed."""
406
+ return [self._thought_to_dict(t) for t in self.thought_history]
407
+
408
+ def clear_history(self) -> None:
409
+ """Clear thought history."""
410
+ self.thought_history = []
reasoning/coordination.py ADDED
@@ -0,0 +1,525 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Advanced strategy coordination patterns for the unified reasoning engine."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type, Callable
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import asyncio
10
+ from collections import defaultdict
11
+
12
+ from .base import ReasoningStrategy
13
+ from .unified_engine import StrategyType, StrategyResult, UnifiedResult
14
+
15
+ class CoordinationPattern(Enum):
16
+ """Types of strategy coordination patterns."""
17
+ PIPELINE = "pipeline"
18
+ PARALLEL = "parallel"
19
+ HIERARCHICAL = "hierarchical"
20
+ FEEDBACK = "feedback"
21
+ ADAPTIVE = "adaptive"
22
+ ENSEMBLE = "ensemble"
23
+
24
+ class CoordinationPhase(Enum):
25
+ """Phases in strategy coordination."""
26
+ INITIALIZATION = "initialization"
27
+ EXECUTION = "execution"
28
+ SYNCHRONIZATION = "synchronization"
29
+ ADAPTATION = "adaptation"
30
+ COMPLETION = "completion"
31
+
32
+ @dataclass
33
+ class CoordinationState:
34
+ """State of strategy coordination."""
35
+ pattern: CoordinationPattern
36
+ active_strategies: Dict[StrategyType, bool]
37
+ phase: CoordinationPhase
38
+ shared_context: Dict[str, Any]
39
+ synchronization_points: List[str]
40
+ adaptation_history: List[Dict[str, Any]]
41
+ metadata: Dict[str, Any] = field(default_factory=dict)
42
+
43
+ @dataclass
44
+ class StrategyInteraction:
45
+ """Interaction between strategies."""
46
+ source: StrategyType
47
+ target: StrategyType
48
+ interaction_type: str
49
+ data: Dict[str, Any]
50
+ timestamp: datetime = field(default_factory=datetime.now)
51
+
52
+ class StrategyCoordinator:
53
+ """
54
+ Advanced strategy coordinator that:
55
+ 1. Manages strategy interactions
56
+ 2. Implements coordination patterns
57
+ 3. Handles state synchronization
58
+ 4. Adapts coordination dynamically
59
+ 5. Optimizes strategy combinations
60
+ """
61
+
62
+ def __init__(self,
63
+ strategies: Dict[StrategyType, ReasoningStrategy],
64
+ learning_rate: float = 0.1):
65
+ self.strategies = strategies
66
+ self.learning_rate = learning_rate
67
+
68
+ # Coordination state
69
+ self.states: Dict[str, CoordinationState] = {}
70
+ self.interactions: List[StrategyInteraction] = []
71
+
72
+ # Pattern performance
73
+ self.pattern_performance: Dict[CoordinationPattern, List[float]] = defaultdict(list)
74
+ self.pattern_weights: Dict[CoordinationPattern, float] = {
75
+ pattern: 1.0 for pattern in CoordinationPattern
76
+ }
77
+
78
+ async def coordinate(self,
79
+ query: str,
80
+ context: Dict[str, Any],
81
+ pattern: Optional[CoordinationPattern] = None) -> Dict[str, Any]:
82
+ """Coordinate strategy execution using specified pattern."""
83
+ try:
84
+ # Select pattern if not specified
85
+ if not pattern:
86
+ pattern = await self._select_pattern(query, context)
87
+
88
+ # Initialize coordination
89
+ state = await self._initialize_coordination(pattern, context)
90
+
91
+ # Execute coordination pattern
92
+ if pattern == CoordinationPattern.PIPELINE:
93
+ result = await self._coordinate_pipeline(query, context, state)
94
+ elif pattern == CoordinationPattern.PARALLEL:
95
+ result = await self._coordinate_parallel(query, context, state)
96
+ elif pattern == CoordinationPattern.HIERARCHICAL:
97
+ result = await self._coordinate_hierarchical(query, context, state)
98
+ elif pattern == CoordinationPattern.FEEDBACK:
99
+ result = await self._coordinate_feedback(query, context, state)
100
+ elif pattern == CoordinationPattern.ADAPTIVE:
101
+ result = await self._coordinate_adaptive(query, context, state)
102
+ elif pattern == CoordinationPattern.ENSEMBLE:
103
+ result = await self._coordinate_ensemble(query, context, state)
104
+ else:
105
+ raise ValueError(f"Unsupported coordination pattern: {pattern}")
106
+
107
+ # Update performance metrics
108
+ self._update_pattern_performance(pattern, result)
109
+
110
+ return result
111
+
112
+ except Exception as e:
113
+ logging.error(f"Error in strategy coordination: {str(e)}")
114
+ return {
115
+ "success": False,
116
+ "error": str(e),
117
+ "pattern": pattern.value if pattern else None
118
+ }
119
+
120
+ async def _select_pattern(self, query: str, context: Dict[str, Any]) -> CoordinationPattern:
121
+ """Select appropriate coordination pattern."""
122
+ prompt = f"""
123
+ Select coordination pattern:
124
+ Query: {query}
125
+ Context: {json.dumps(context)}
126
+
127
+ Consider:
128
+ 1. Task complexity and type
129
+ 2. Strategy dependencies
130
+ 3. Resource constraints
131
+ 4. Performance history
132
+ 5. Adaptation needs
133
+
134
+ Format as:
135
+ [Selection]
136
+ Pattern: ...
137
+ Rationale: ...
138
+ Confidence: ...
139
+ """
140
+
141
+ response = await context["groq_api"].predict(prompt)
142
+ selection = self._parse_pattern_selection(response["answer"])
143
+
144
+ # Weight by performance history
145
+ weighted_patterns = {
146
+ pattern: self.pattern_weights[pattern] * selection.get(pattern.value, 0.0)
147
+ for pattern in CoordinationPattern
148
+ }
149
+
150
+ return max(weighted_patterns.items(), key=lambda x: x[1])[0]
151
+
152
+ async def _coordinate_pipeline(self,
153
+ query: str,
154
+ context: Dict[str, Any],
155
+ state: CoordinationState) -> Dict[str, Any]:
156
+ """Coordinate strategies in pipeline pattern."""
157
+ results = []
158
+ current_context = context.copy()
159
+
160
+ # Determine optimal order
161
+ strategy_order = await self._determine_pipeline_order(query, context)
162
+
163
+ for strategy_type in strategy_order:
164
+ try:
165
+ # Execute strategy
166
+ strategy = self.strategies[strategy_type]
167
+ result = await strategy.reason(query, current_context)
168
+
169
+ # Update context with result
170
+ current_context.update({
171
+ "previous_result": result,
172
+ "pipeline_position": len(results)
173
+ })
174
+
175
+ results.append(StrategyResult(
176
+ strategy_type=strategy_type,
177
+ success=result.get("success", False),
178
+ answer=result.get("answer"),
179
+ confidence=result.get("confidence", 0.0),
180
+ reasoning_trace=result.get("reasoning_trace", []),
181
+ metadata=result.get("metadata", {}),
182
+ performance_metrics=result.get("performance_metrics", {})
183
+ ))
184
+
185
+ # Record interaction
186
+ self._record_interaction(
187
+ source=strategy_type,
188
+ target=strategy_order[len(results)] if len(results) < len(strategy_order) else None,
189
+ interaction_type="pipeline_transfer",
190
+ data={"result": result}
191
+ )
192
+
193
+ except Exception as e:
194
+ logging.error(f"Error in pipeline strategy {strategy_type}: {str(e)}")
195
+
196
+ return {
197
+ "success": any(r.success for r in results),
198
+ "results": results,
199
+ "pattern": CoordinationPattern.PIPELINE.value,
200
+ "metrics": {
201
+ "total_steps": len(results),
202
+ "success_rate": sum(1 for r in results if r.success) / len(results) if results else 0
203
+ }
204
+ }
205
+
206
+ async def _coordinate_parallel(self,
207
+ query: str,
208
+ context: Dict[str, Any],
209
+ state: CoordinationState) -> Dict[str, Any]:
210
+ """Coordinate strategies in parallel pattern."""
211
+ async def execute_strategy(strategy_type: StrategyType) -> StrategyResult:
212
+ try:
213
+ strategy = self.strategies[strategy_type]
214
+ result = await strategy.reason(query, context)
215
+
216
+ return StrategyResult(
217
+ strategy_type=strategy_type,
218
+ success=result.get("success", False),
219
+ answer=result.get("answer"),
220
+ confidence=result.get("confidence", 0.0),
221
+ reasoning_trace=result.get("reasoning_trace", []),
222
+ metadata=result.get("metadata", {}),
223
+ performance_metrics=result.get("performance_metrics", {})
224
+ )
225
+ except Exception as e:
226
+ logging.error(f"Error in parallel strategy {strategy_type}: {str(e)}")
227
+ return StrategyResult(
228
+ strategy_type=strategy_type,
229
+ success=False,
230
+ answer=None,
231
+ confidence=0.0,
232
+ reasoning_trace=[{"error": str(e)}],
233
+ metadata={},
234
+ performance_metrics={}
235
+ )
236
+
237
+ # Execute strategies in parallel
238
+ tasks = [execute_strategy(strategy_type)
239
+ for strategy_type in state.active_strategies
240
+ if state.active_strategies[strategy_type]]
241
+
242
+ results = await asyncio.gather(*tasks)
243
+
244
+ # Synthesize results
245
+ synthesis = await self._synthesize_parallel_results(results, context)
246
+
247
+ return {
248
+ "success": synthesis.get("success", False),
249
+ "results": results,
250
+ "synthesis": synthesis,
251
+ "pattern": CoordinationPattern.PARALLEL.value,
252
+ "metrics": {
253
+ "total_strategies": len(results),
254
+ "success_rate": sum(1 for r in results if r.success) / len(results) if results else 0
255
+ }
256
+ }
257
+
258
+ async def _coordinate_hierarchical(self,
259
+ query: str,
260
+ context: Dict[str, Any],
261
+ state: CoordinationState) -> Dict[str, Any]:
262
+ """Coordinate strategies in hierarchical pattern."""
263
+ # Build strategy hierarchy
264
+ hierarchy = await self._build_strategy_hierarchy(query, context)
265
+ results = {}
266
+
267
+ async def execute_level(level_strategies: List[StrategyType],
268
+ level_context: Dict[str, Any]) -> List[StrategyResult]:
269
+ tasks = []
270
+ for strategy_type in level_strategies:
271
+ if strategy_type in state.active_strategies and state.active_strategies[strategy_type]:
272
+ strategy = self.strategies[strategy_type]
273
+ tasks.append(strategy.reason(query, level_context))
274
+
275
+ level_results = await asyncio.gather(*tasks)
276
+ return [
277
+ StrategyResult(
278
+ strategy_type=strategy_type,
279
+ success=result.get("success", False),
280
+ answer=result.get("answer"),
281
+ confidence=result.get("confidence", 0.0),
282
+ reasoning_trace=result.get("reasoning_trace", []),
283
+ metadata=result.get("metadata", {}),
284
+ performance_metrics=result.get("performance_metrics", {})
285
+ )
286
+ for strategy_type, result in zip(level_strategies, level_results)
287
+ ]
288
+
289
+ # Execute hierarchy levels
290
+ current_context = context.copy()
291
+ for level, level_strategies in enumerate(hierarchy):
292
+ results[level] = await execute_level(level_strategies, current_context)
293
+
294
+ # Update context for next level
295
+ current_context.update({
296
+ "previous_level_results": results[level],
297
+ "hierarchy_level": level
298
+ })
299
+
300
+ return {
301
+ "success": any(any(r.success for r in level_results)
302
+ for level_results in results.values()),
303
+ "results": results,
304
+ "hierarchy": hierarchy,
305
+ "pattern": CoordinationPattern.HIERARCHICAL.value,
306
+ "metrics": {
307
+ "total_levels": len(hierarchy),
308
+ "level_success_rates": {
309
+ level: sum(1 for r in results[level] if r.success) / len(results[level])
310
+ for level in results if results[level]
311
+ }
312
+ }
313
+ }
314
+
315
+ async def _coordinate_feedback(self,
316
+ query: str,
317
+ context: Dict[str, Any],
318
+ state: CoordinationState) -> Dict[str, Any]:
319
+ """Coordinate strategies with feedback loops."""
320
+ results = []
321
+ feedback_history = []
322
+ current_context = context.copy()
323
+
324
+ max_iterations = 5 # Prevent infinite loops
325
+ iteration = 0
326
+
327
+ while iteration < max_iterations:
328
+ iteration += 1
329
+
330
+ # Execute strategies
331
+ iteration_results = []
332
+ for strategy_type in state.active_strategies:
333
+ if state.active_strategies[strategy_type]:
334
+ try:
335
+ strategy = self.strategies[strategy_type]
336
+ result = await strategy.reason(query, current_context)
337
+
338
+ strategy_result = StrategyResult(
339
+ strategy_type=strategy_type,
340
+ success=result.get("success", False),
341
+ answer=result.get("answer"),
342
+ confidence=result.get("confidence", 0.0),
343
+ reasoning_trace=result.get("reasoning_trace", []),
344
+ metadata=result.get("metadata", {}),
345
+ performance_metrics=result.get("performance_metrics", {})
346
+ )
347
+
348
+ iteration_results.append(strategy_result)
349
+
350
+ except Exception as e:
351
+ logging.error(f"Error in feedback strategy {strategy_type}: {str(e)}")
352
+
353
+ results.append(iteration_results)
354
+
355
+ # Generate feedback
356
+ feedback = await self._generate_feedback(iteration_results, current_context)
357
+ feedback_history.append(feedback)
358
+
359
+ # Check termination condition
360
+ if self._should_terminate_feedback(feedback, iteration_results):
361
+ break
362
+
363
+ # Update context with feedback
364
+ current_context.update({
365
+ "previous_results": iteration_results,
366
+ "feedback": feedback,
367
+ "iteration": iteration
368
+ })
369
+
370
+ return {
371
+ "success": any(any(r.success for r in iteration_results)
372
+ for iteration_results in results),
373
+ "results": results,
374
+ "feedback_history": feedback_history,
375
+ "pattern": CoordinationPattern.FEEDBACK.value,
376
+ "metrics": {
377
+ "total_iterations": iteration,
378
+ "feedback_impact": self._calculate_feedback_impact(results, feedback_history)
379
+ }
380
+ }
381
+
382
+ async def _coordinate_adaptive(self,
383
+ query: str,
384
+ context: Dict[str, Any],
385
+ state: CoordinationState) -> Dict[str, Any]:
386
+ """Coordinate strategies with adaptive selection."""
387
+ results = []
388
+ adaptations = []
389
+ current_context = context.copy()
390
+
391
+ while len(results) < len(state.active_strategies):
392
+ # Select next strategy
393
+ next_strategy = await self._select_next_strategy(
394
+ results, state.active_strategies, current_context)
395
+
396
+ if not next_strategy:
397
+ break
398
+
399
+ try:
400
+ # Execute strategy
401
+ strategy = self.strategies[next_strategy]
402
+ result = await strategy.reason(query, current_context)
403
+
404
+ strategy_result = StrategyResult(
405
+ strategy_type=next_strategy,
406
+ success=result.get("success", False),
407
+ answer=result.get("answer"),
408
+ confidence=result.get("confidence", 0.0),
409
+ reasoning_trace=result.get("reasoning_trace", []),
410
+ metadata=result.get("metadata", {}),
411
+ performance_metrics=result.get("performance_metrics", {})
412
+ )
413
+
414
+ results.append(strategy_result)
415
+
416
+ # Adapt strategy selection
417
+ adaptation = await self._adapt_strategy_selection(
418
+ strategy_result, current_context)
419
+ adaptations.append(adaptation)
420
+
421
+ # Update context
422
+ current_context.update({
423
+ "previous_results": results,
424
+ "adaptations": adaptations,
425
+ "current_strategy": next_strategy
426
+ })
427
+
428
+ except Exception as e:
429
+ logging.error(f"Error in adaptive strategy {next_strategy}: {str(e)}")
430
+
431
+ return {
432
+ "success": any(r.success for r in results),
433
+ "results": results,
434
+ "adaptations": adaptations,
435
+ "pattern": CoordinationPattern.ADAPTIVE.value,
436
+ "metrics": {
437
+ "total_strategies": len(results),
438
+ "adaptation_impact": self._calculate_adaptation_impact(results, adaptations)
439
+ }
440
+ }
441
+
442
+ async def _coordinate_ensemble(self,
443
+ query: str,
444
+ context: Dict[str, Any],
445
+ state: CoordinationState) -> Dict[str, Any]:
446
+ """Coordinate strategies as an ensemble."""
447
+ # Execute all strategies
448
+ results = []
449
+ for strategy_type in state.active_strategies:
450
+ if state.active_strategies[strategy_type]:
451
+ try:
452
+ strategy = self.strategies[strategy_type]
453
+ result = await strategy.reason(query, context)
454
+
455
+ strategy_result = StrategyResult(
456
+ strategy_type=strategy_type,
457
+ success=result.get("success", False),
458
+ answer=result.get("answer"),
459
+ confidence=result.get("confidence", 0.0),
460
+ reasoning_trace=result.get("reasoning_trace", []),
461
+ metadata=result.get("metadata", {}),
462
+ performance_metrics=result.get("performance_metrics", {})
463
+ )
464
+
465
+ results.append(strategy_result)
466
+
467
+ except Exception as e:
468
+ logging.error(f"Error in ensemble strategy {strategy_type}: {str(e)}")
469
+
470
+ # Combine results using ensemble methods
471
+ ensemble_result = await self._combine_ensemble_results(results, context)
472
+
473
+ return {
474
+ "success": ensemble_result.get("success", False),
475
+ "results": results,
476
+ "ensemble_result": ensemble_result,
477
+ "pattern": CoordinationPattern.ENSEMBLE.value,
478
+ "metrics": {
479
+ "total_members": len(results),
480
+ "ensemble_confidence": ensemble_result.get("confidence", 0.0)
481
+ }
482
+ }
483
+
484
+ def _record_interaction(self,
485
+ source: StrategyType,
486
+ target: Optional[StrategyType],
487
+ interaction_type: str,
488
+ data: Dict[str, Any]):
489
+ """Record strategy interaction."""
490
+ self.interactions.append(StrategyInteraction(
491
+ source=source,
492
+ target=target,
493
+ interaction_type=interaction_type,
494
+ data=data
495
+ ))
496
+
497
+ def _update_pattern_performance(self, pattern: CoordinationPattern, result: Dict[str, Any]):
498
+ """Update pattern performance metrics."""
499
+ success_rate = result["metrics"].get("success_rate", 0.0)
500
+ self.pattern_performance[pattern].append(success_rate)
501
+
502
+ # Update weights using exponential moving average
503
+ current_weight = self.pattern_weights[pattern]
504
+ self.pattern_weights[pattern] = (
505
+ (1 - self.learning_rate) * current_weight +
506
+ self.learning_rate * success_rate
507
+ )
508
+
509
+ def get_performance_metrics(self) -> Dict[str, Any]:
510
+ """Get comprehensive performance metrics."""
511
+ return {
512
+ "pattern_weights": dict(self.pattern_weights),
513
+ "average_performance": {
514
+ pattern.value: sum(scores) / len(scores) if scores else 0
515
+ for pattern, scores in self.pattern_performance.items()
516
+ },
517
+ "interaction_counts": defaultdict(int, {
518
+ interaction.interaction_type: 1
519
+ for interaction in self.interactions
520
+ }),
521
+ "active_patterns": [
522
+ pattern.value for pattern, weight in self.pattern_weights.items()
523
+ if weight > 0.5
524
+ ]
525
+ }
reasoning/learning.py ADDED
@@ -0,0 +1,394 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Enhanced learning mechanisms for reasoning strategies."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import numpy as np
10
+ from collections import defaultdict
11
+
12
+ @dataclass
13
+ class LearningEvent:
14
+ """Event for strategy learning."""
15
+ strategy_type: str
16
+ event_type: str
17
+ data: Dict[str, Any]
18
+ outcome: Optional[float]
19
+ timestamp: datetime = field(default_factory=datetime.now)
20
+
21
+ class LearningMode(Enum):
22
+ """Types of learning modes."""
23
+ SUPERVISED = "supervised"
24
+ REINFORCEMENT = "reinforcement"
25
+ ACTIVE = "active"
26
+ TRANSFER = "transfer"
27
+ META = "meta"
28
+ ENSEMBLE = "ensemble"
29
+
30
+ @dataclass
31
+ class LearningState:
32
+ """State for learning process."""
33
+ mode: LearningMode
34
+ parameters: Dict[str, Any]
35
+ history: List[LearningEvent]
36
+ metrics: Dict[str, float]
37
+ metadata: Dict[str, Any] = field(default_factory=dict)
38
+
39
+ class EnhancedLearningManager:
40
+ """
41
+ Advanced learning manager that:
42
+ 1. Implements multiple learning modes
43
+ 2. Tracks learning progress
44
+ 3. Adapts learning parameters
45
+ 4. Optimizes strategy performance
46
+ 5. Transfers knowledge between strategies
47
+ """
48
+
49
+ def __init__(self,
50
+ learning_rate: float = 0.1,
51
+ exploration_rate: float = 0.2,
52
+ memory_size: int = 1000):
53
+ self.learning_rate = learning_rate
54
+ self.exploration_rate = exploration_rate
55
+ self.memory_size = memory_size
56
+
57
+ # Learning states
58
+ self.states: Dict[str, LearningState] = {}
59
+
60
+ # Performance tracking
61
+ self.performance_history: List[Dict[str, Any]] = []
62
+ self.strategy_metrics: Dict[str, List[float]] = defaultdict(list)
63
+
64
+ # Knowledge transfer
65
+ self.knowledge_base: Dict[str, Any] = {}
66
+ self.transfer_history: List[Dict[str, Any]] = []
67
+
68
+ async def learn(self,
69
+ strategy_type: str,
70
+ event: LearningEvent,
71
+ context: Dict[str, Any]) -> Dict[str, Any]:
72
+ """Learn from strategy execution event."""
73
+ try:
74
+ # Initialize or get learning state
75
+ state = self._get_learning_state(strategy_type)
76
+
77
+ # Select learning mode
78
+ mode = await self._select_learning_mode(event, state, context)
79
+
80
+ # Execute learning
81
+ if mode == LearningMode.SUPERVISED:
82
+ result = await self._supervised_learning(event, state, context)
83
+ elif mode == LearningMode.REINFORCEMENT:
84
+ result = await self._reinforcement_learning(event, state, context)
85
+ elif mode == LearningMode.ACTIVE:
86
+ result = await self._active_learning(event, state, context)
87
+ elif mode == LearningMode.TRANSFER:
88
+ result = await self._transfer_learning(event, state, context)
89
+ elif mode == LearningMode.META:
90
+ result = await self._meta_learning(event, state, context)
91
+ elif mode == LearningMode.ENSEMBLE:
92
+ result = await self._ensemble_learning(event, state, context)
93
+ else:
94
+ raise ValueError(f"Unsupported learning mode: {mode}")
95
+
96
+ # Update state
97
+ self._update_learning_state(state, result)
98
+
99
+ # Record performance
100
+ self._record_performance(strategy_type, result)
101
+
102
+ return result
103
+
104
+ except Exception as e:
105
+ logging.error(f"Error in learning: {str(e)}")
106
+ return {
107
+ "success": False,
108
+ "error": str(e),
109
+ "mode": mode.value if 'mode' in locals() else None
110
+ }
111
+
112
+ async def _supervised_learning(self,
113
+ event: LearningEvent,
114
+ state: LearningState,
115
+ context: Dict[str, Any]) -> Dict[str, Any]:
116
+ """Implement supervised learning."""
117
+ # Extract features and labels
118
+ features = await self._extract_features(event.data, context)
119
+ labels = event.outcome if event.outcome is not None else 0.0
120
+
121
+ # Train model
122
+ model_update = await self._update_model(features, labels, state, context)
123
+
124
+ # Validate performance
125
+ validation = await self._validate_model(model_update, state, context)
126
+
127
+ return {
128
+ "success": True,
129
+ "mode": LearningMode.SUPERVISED.value,
130
+ "model_update": model_update,
131
+ "validation": validation,
132
+ "metrics": {
133
+ "accuracy": validation.get("accuracy", 0.0),
134
+ "loss": validation.get("loss", 0.0)
135
+ }
136
+ }
137
+
138
+ async def _reinforcement_learning(self,
139
+ event: LearningEvent,
140
+ state: LearningState,
141
+ context: Dict[str, Any]) -> Dict[str, Any]:
142
+ """Implement reinforcement learning."""
143
+ # Extract state and action
144
+ current_state = await self._extract_state(event.data, context)
145
+ action = event.data.get("action")
146
+ reward = event.outcome if event.outcome is not None else 0.0
147
+
148
+ # Update policy
149
+ policy_update = await self._update_policy(
150
+ current_state, action, reward, state, context)
151
+
152
+ # Optimize value function
153
+ value_update = await self._update_value_function(
154
+ current_state, reward, state, context)
155
+
156
+ return {
157
+ "success": True,
158
+ "mode": LearningMode.REINFORCEMENT.value,
159
+ "policy_update": policy_update,
160
+ "value_update": value_update,
161
+ "metrics": {
162
+ "reward": reward,
163
+ "value_error": value_update.get("error", 0.0)
164
+ }
165
+ }
166
+
167
+ async def _active_learning(self,
168
+ event: LearningEvent,
169
+ state: LearningState,
170
+ context: Dict[str, Any]) -> Dict[str, Any]:
171
+ """Implement active learning."""
172
+ # Query selection
173
+ query = await self._select_query(event.data, state, context)
174
+
175
+ # Get feedback
176
+ feedback = await self._get_feedback(query, context)
177
+
178
+ # Update model
179
+ model_update = await self._update_model_active(
180
+ query, feedback, state, context)
181
+
182
+ return {
183
+ "success": True,
184
+ "mode": LearningMode.ACTIVE.value,
185
+ "query": query,
186
+ "feedback": feedback,
187
+ "model_update": model_update,
188
+ "metrics": {
189
+ "uncertainty": query.get("uncertainty", 0.0),
190
+ "feedback_quality": feedback.get("quality", 0.0)
191
+ }
192
+ }
193
+
194
+ async def _transfer_learning(self,
195
+ event: LearningEvent,
196
+ state: LearningState,
197
+ context: Dict[str, Any]) -> Dict[str, Any]:
198
+ """Implement transfer learning."""
199
+ # Source task selection
200
+ source_task = await self._select_source_task(event.data, state, context)
201
+
202
+ # Knowledge extraction
203
+ knowledge = await self._extract_knowledge(source_task, context)
204
+
205
+ # Transfer adaptation
206
+ adaptation = await self._adapt_knowledge(
207
+ knowledge, event.data, state, context)
208
+
209
+ # Apply transfer
210
+ transfer = await self._apply_transfer(adaptation, state, context)
211
+
212
+ return {
213
+ "success": True,
214
+ "mode": LearningMode.TRANSFER.value,
215
+ "source_task": source_task,
216
+ "knowledge": knowledge,
217
+ "adaptation": adaptation,
218
+ "transfer": transfer,
219
+ "metrics": {
220
+ "transfer_efficiency": transfer.get("efficiency", 0.0),
221
+ "adaptation_quality": adaptation.get("quality", 0.0)
222
+ }
223
+ }
224
+
225
+ async def _meta_learning(self,
226
+ event: LearningEvent,
227
+ state: LearningState,
228
+ context: Dict[str, Any]) -> Dict[str, Any]:
229
+ """Implement meta-learning."""
230
+ # Task characterization
231
+ task_char = await self._characterize_task(event.data, context)
232
+
233
+ # Strategy selection
234
+ strategy = await self._select_strategy(task_char, state, context)
235
+
236
+ # Parameter optimization
237
+ optimization = await self._optimize_parameters(
238
+ strategy, task_char, state, context)
239
+
240
+ # Apply meta-learning
241
+ meta_update = await self._apply_meta_learning(
242
+ optimization, state, context)
243
+
244
+ return {
245
+ "success": True,
246
+ "mode": LearningMode.META.value,
247
+ "task_characterization": task_char,
248
+ "strategy": strategy,
249
+ "optimization": optimization,
250
+ "meta_update": meta_update,
251
+ "metrics": {
252
+ "strategy_fit": strategy.get("fit_score", 0.0),
253
+ "optimization_improvement": optimization.get("improvement", 0.0)
254
+ }
255
+ }
256
+
257
+ async def _ensemble_learning(self,
258
+ event: LearningEvent,
259
+ state: LearningState,
260
+ context: Dict[str, Any]) -> Dict[str, Any]:
261
+ """Implement ensemble learning."""
262
+ # Member selection
263
+ members = await self._select_members(event.data, state, context)
264
+
265
+ # Weight optimization
266
+ weights = await self._optimize_weights(members, state, context)
267
+
268
+ # Combine predictions
269
+ combination = await self._combine_predictions(
270
+ members, weights, event.data, context)
271
+
272
+ return {
273
+ "success": True,
274
+ "mode": LearningMode.ENSEMBLE.value,
275
+ "members": members,
276
+ "weights": weights,
277
+ "combination": combination,
278
+ "metrics": {
279
+ "ensemble_diversity": weights.get("diversity", 0.0),
280
+ "combination_strength": combination.get("strength", 0.0)
281
+ }
282
+ }
283
+
284
+ def _get_learning_state(self, strategy_type: str) -> LearningState:
285
+ """Get or initialize learning state for strategy."""
286
+ if strategy_type not in self.states:
287
+ self.states[strategy_type] = LearningState(
288
+ mode=LearningMode.SUPERVISED,
289
+ parameters={
290
+ "learning_rate": self.learning_rate,
291
+ "exploration_rate": self.exploration_rate
292
+ },
293
+ history=[],
294
+ metrics={}
295
+ )
296
+ return self.states[strategy_type]
297
+
298
+ def _update_learning_state(self, state: LearningState, result: Dict[str, Any]):
299
+ """Update learning state with result."""
300
+ # Update history
301
+ state.history.append(LearningEvent(
302
+ strategy_type=result.get("strategy_type", "unknown"),
303
+ event_type="learning_update",
304
+ data=result,
305
+ outcome=result.get("metrics", {}).get("accuracy", 0.0),
306
+ timestamp=datetime.now()
307
+ ))
308
+
309
+ # Update metrics
310
+ for metric, value in result.get("metrics", {}).items():
311
+ if metric in state.metrics:
312
+ state.metrics[metric] = (
313
+ 0.9 * state.metrics[metric] + 0.1 * value # Exponential moving average
314
+ )
315
+ else:
316
+ state.metrics[metric] = value
317
+
318
+ # Adapt parameters
319
+ self._adapt_parameters(state, result)
320
+
321
+ def _record_performance(self, strategy_type: str, result: Dict[str, Any]):
322
+ """Record learning performance."""
323
+ self.performance_history.append({
324
+ "timestamp": datetime.now().isoformat(),
325
+ "strategy_type": strategy_type,
326
+ "mode": result.get("mode"),
327
+ "metrics": result.get("metrics", {}),
328
+ "success": result.get("success", False)
329
+ })
330
+
331
+ # Update strategy metrics
332
+ for metric, value in result.get("metrics", {}).items():
333
+ self.strategy_metrics[f"{strategy_type}_{metric}"].append(value)
334
+
335
+ # Maintain memory size
336
+ if len(self.performance_history) > self.memory_size:
337
+ self.performance_history = self.performance_history[-self.memory_size:]
338
+
339
+ def _adapt_parameters(self, state: LearningState, result: Dict[str, Any]):
340
+ """Adapt learning parameters based on performance."""
341
+ # Adapt learning rate
342
+ if "accuracy" in result.get("metrics", {}):
343
+ accuracy = result["metrics"]["accuracy"]
344
+ if accuracy > 0.8:
345
+ state.parameters["learning_rate"] *= 0.95 # Decrease if performing well
346
+ elif accuracy < 0.6:
347
+ state.parameters["learning_rate"] *= 1.05 # Increase if performing poorly
348
+
349
+ # Adapt exploration rate
350
+ if "reward" in result.get("metrics", {}):
351
+ reward = result["metrics"]["reward"]
352
+ if reward > 0:
353
+ state.parameters["exploration_rate"] *= 0.95 # Decrease if getting rewards
354
+ else:
355
+ state.parameters["exploration_rate"] *= 1.05 # Increase if not getting rewards
356
+
357
+ # Clip parameters to reasonable ranges
358
+ state.parameters["learning_rate"] = np.clip(
359
+ state.parameters["learning_rate"], 0.001, 0.5)
360
+ state.parameters["exploration_rate"] = np.clip(
361
+ state.parameters["exploration_rate"], 0.01, 0.5)
362
+
363
+ def get_performance_metrics(self) -> Dict[str, Any]:
364
+ """Get comprehensive performance metrics."""
365
+ return {
366
+ "learning_states": {
367
+ strategy_type: {
368
+ "mode": state.mode.value,
369
+ "parameters": state.parameters,
370
+ "metrics": state.metrics
371
+ }
372
+ for strategy_type, state in self.states.items()
373
+ },
374
+ "strategy_performance": {
375
+ metric: {
376
+ "mean": np.mean(values) if values else 0.0,
377
+ "std": np.std(values) if values else 0.0,
378
+ "min": min(values) if values else 0.0,
379
+ "max": max(values) if values else 0.0
380
+ }
381
+ for metric, values in self.strategy_metrics.items()
382
+ },
383
+ "transfer_metrics": {
384
+ "total_transfers": len(self.transfer_history),
385
+ "success_rate": sum(1 for t in self.transfer_history if t.get("success", False)) / len(self.transfer_history) if self.transfer_history else 0
386
+ }
387
+ }
388
+
389
+ def clear_history(self):
390
+ """Clear learning history and reset states."""
391
+ self.states.clear()
392
+ self.performance_history.clear()
393
+ self.strategy_metrics.clear()
394
+ self.transfer_history.clear()
reasoning/local_llm.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Local LLM integration for the reasoning system."""
2
+
3
+ import os
4
+ from typing import Dict, Any, Optional
5
+ from datetime import datetime
6
+ import logging
7
+ from llama_cpp import Llama
8
+ import huggingface_hub
9
+ from .base import ReasoningStrategy
10
+
11
+ class LocalLLMStrategy(ReasoningStrategy):
12
+ """Implements reasoning using local LLM."""
13
+
14
+ def __init__(self):
15
+ """Initialize the local LLM strategy."""
16
+ self.repo_id = "tensorblock/Llama-3.2-3B-Overthinker-GGUF"
17
+ self.filename = "Llama-3.2-3B-Overthinker-Q8_0.gguf"
18
+ self.model_dir = "models"
19
+ self.logger = logging.getLogger(__name__)
20
+ self.model = None
21
+
22
+ async def initialize(self):
23
+ """Initialize the model."""
24
+ try:
25
+ # Create models directory if it doesn't exist
26
+ os.makedirs(self.model_dir, exist_ok=True)
27
+ model_path = os.path.join(self.model_dir, self.filename)
28
+
29
+ # Download model if it doesn't exist
30
+ if not os.path.exists(model_path):
31
+ self.logger.info(f"Downloading model to {model_path}...")
32
+ model_path = huggingface_hub.hf_hub_download(
33
+ repo_id=self.repo_id,
34
+ filename=self.filename,
35
+ repo_type="model",
36
+ local_dir=self.model_dir,
37
+ local_dir_use_symlinks=False
38
+ )
39
+ self.logger.info("Model downloaded successfully!")
40
+ else:
41
+ self.logger.info("Using existing model file...")
42
+
43
+ # Try to use GPU, fall back to CPU if not available
44
+ try:
45
+ self.model = Llama(
46
+ model_path=model_path,
47
+ n_ctx=4096,
48
+ n_batch=512,
49
+ n_threads=8,
50
+ n_gpu_layers=35
51
+ )
52
+ self.logger.info("Model loaded with GPU acceleration!")
53
+ except Exception as e:
54
+ self.logger.warning(f"GPU loading failed: {e}, falling back to CPU...")
55
+ self.model = Llama(
56
+ model_path=model_path,
57
+ n_ctx=2048,
58
+ n_batch=512,
59
+ n_threads=4,
60
+ n_gpu_layers=0
61
+ )
62
+ self.logger.info("Model loaded in CPU-only mode")
63
+
64
+ except Exception as e:
65
+ self.logger.error(f"Error initializing model: {e}")
66
+ raise
67
+
68
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
69
+ """Generate reasoning response using local LLM."""
70
+ try:
71
+ if not self.model:
72
+ await self.initialize()
73
+
74
+ # Format prompt with context
75
+ prompt = self._format_prompt(query, context)
76
+
77
+ # Generate response
78
+ response = self.model(
79
+ prompt,
80
+ max_tokens=1024 if self.model.n_ctx >= 4096 else 512,
81
+ temperature=0.7,
82
+ top_p=0.95,
83
+ repeat_penalty=1.1,
84
+ echo=False
85
+ )
86
+
87
+ # Extract and structure the response
88
+ result = self._parse_response(response['choices'][0]['text'])
89
+
90
+ return {
91
+ 'success': True,
92
+ 'answer': result['answer'],
93
+ 'reasoning': result['reasoning'],
94
+ 'confidence': result['confidence'],
95
+ 'timestamp': datetime.now(),
96
+ 'metadata': {
97
+ 'model': self.repo_id,
98
+ 'strategy': 'local_llm',
99
+ 'context_length': len(prompt),
100
+ 'response_length': len(response['choices'][0]['text'])
101
+ }
102
+ }
103
+
104
+ except Exception as e:
105
+ self.logger.error(f"Error in reasoning: {e}")
106
+ return {
107
+ 'success': False,
108
+ 'error': str(e),
109
+ 'timestamp': datetime.now()
110
+ }
111
+
112
+ def _format_prompt(self, query: str, context: Dict[str, Any]) -> str:
113
+ """Format the prompt with query and context."""
114
+ # Include relevant context
115
+ context_str = "\n".join([
116
+ f"{k}: {v}" for k, v in context.items()
117
+ if k in ['objective', 'constraints', 'background']
118
+ ])
119
+
120
+ return f"""Let's solve this problem step by step.
121
+
122
+ Context:
123
+ {context_str}
124
+
125
+ Question: {query}
126
+
127
+ Let me break this down:
128
+ 1."""
129
+
130
+ def _parse_response(self, text: str) -> Dict[str, Any]:
131
+ """Parse the response into structured output."""
132
+ # Simple parsing for now
133
+ lines = text.strip().split('\n')
134
+
135
+ return {
136
+ 'answer': lines[-1] if lines else '',
137
+ 'reasoning': '\n'.join(lines[:-1]) if len(lines) > 1 else '',
138
+ 'confidence': 0.8 # Default confidence
139
+ }
reasoning/market_analysis.py ADDED
@@ -0,0 +1,342 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Advanced market analysis tools for venture strategies."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import numpy as np
10
+ from collections import defaultdict
11
+
12
+ @dataclass
13
+ class MarketSegment:
14
+ """Market segment analysis."""
15
+ size: float
16
+ growth_rate: float
17
+ cagr: float
18
+ competition: List[Dict[str, Any]]
19
+ barriers: List[str]
20
+ opportunities: List[str]
21
+ risks: List[str]
22
+
23
+ @dataclass
24
+ class CompetitorAnalysis:
25
+ """Competitor analysis."""
26
+ name: str
27
+ market_share: float
28
+ strengths: List[str]
29
+ weaknesses: List[str]
30
+ strategy: str
31
+ revenue: Optional[float]
32
+ valuation: Optional[float]
33
+
34
+ @dataclass
35
+ class MarketTrend:
36
+ """Market trend analysis."""
37
+ name: str
38
+ impact: float
39
+ timeline: str
40
+ adoption_rate: float
41
+ market_potential: float
42
+ risk_level: float
43
+
44
+ class MarketAnalyzer:
45
+ """
46
+ Advanced market analysis toolkit that:
47
+ 1. Analyzes market segments
48
+ 2. Tracks competitors
49
+ 3. Identifies trends
50
+ 4. Predicts opportunities
51
+ 5. Assesses risks
52
+ """
53
+
54
+ def __init__(self):
55
+ self.segments: Dict[str, MarketSegment] = {}
56
+ self.competitors: Dict[str, CompetitorAnalysis] = {}
57
+ self.trends: List[MarketTrend] = []
58
+
59
+ async def analyze_market(self,
60
+ segment: str,
61
+ context: Dict[str, Any]) -> Dict[str, Any]:
62
+ """Perform comprehensive market analysis."""
63
+ try:
64
+ # Segment analysis
65
+ segment_analysis = await self._analyze_segment(segment, context)
66
+
67
+ # Competitor analysis
68
+ competitor_analysis = await self._analyze_competitors(segment, context)
69
+
70
+ # Trend analysis
71
+ trend_analysis = await self._analyze_trends(segment, context)
72
+
73
+ # Opportunity analysis
74
+ opportunity_analysis = await self._analyze_opportunities(
75
+ segment_analysis, competitor_analysis, trend_analysis, context)
76
+
77
+ # Risk analysis
78
+ risk_analysis = await self._analyze_risks(
79
+ segment_analysis, competitor_analysis, trend_analysis, context)
80
+
81
+ return {
82
+ "success": True,
83
+ "segment_analysis": segment_analysis,
84
+ "competitor_analysis": competitor_analysis,
85
+ "trend_analysis": trend_analysis,
86
+ "opportunity_analysis": opportunity_analysis,
87
+ "risk_analysis": risk_analysis,
88
+ "metrics": {
89
+ "market_score": self._calculate_market_score(segment_analysis),
90
+ "opportunity_score": self._calculate_opportunity_score(opportunity_analysis),
91
+ "risk_score": self._calculate_risk_score(risk_analysis)
92
+ }
93
+ }
94
+ except Exception as e:
95
+ logging.error(f"Error in market analysis: {str(e)}")
96
+ return {"success": False, "error": str(e)}
97
+
98
+ async def _analyze_segment(self,
99
+ segment: str,
100
+ context: Dict[str, Any]) -> Dict[str, Any]:
101
+ """Analyze market segment."""
102
+ prompt = f"""
103
+ Analyze market segment:
104
+ Segment: {segment}
105
+ Context: {json.dumps(context)}
106
+
107
+ Analyze:
108
+ 1. Market size and growth
109
+ 2. Customer segments
110
+ 3. Value chain
111
+ 4. Entry barriers
112
+ 5. Competitive dynamics
113
+
114
+ Format as:
115
+ [Analysis]
116
+ Size: ...
117
+ Growth: ...
118
+ Segments: ...
119
+ Value_Chain: ...
120
+ Barriers: ...
121
+ """
122
+
123
+ response = await context["groq_api"].predict(prompt)
124
+ return self._parse_segment_analysis(response["answer"])
125
+
126
+ async def _analyze_competitors(self,
127
+ segment: str,
128
+ context: Dict[str, Any]) -> Dict[str, Any]:
129
+ """Analyze competitors in segment."""
130
+ prompt = f"""
131
+ Analyze competitors:
132
+ Segment: {segment}
133
+ Context: {json.dumps(context)}
134
+
135
+ For each competitor analyze:
136
+ 1. Market share
137
+ 2. Business model
138
+ 3. Strengths/weaknesses
139
+ 4. Strategy
140
+ 5. Performance metrics
141
+
142
+ Format as:
143
+ [Competitor1]
144
+ Share: ...
145
+ Model: ...
146
+ Strengths: ...
147
+ Weaknesses: ...
148
+ Strategy: ...
149
+ Metrics: ...
150
+ """
151
+
152
+ response = await context["groq_api"].predict(prompt)
153
+ return self._parse_competitor_analysis(response["answer"])
154
+
155
+ async def _analyze_trends(self,
156
+ segment: str,
157
+ context: Dict[str, Any]) -> Dict[str, Any]:
158
+ """Analyze market trends."""
159
+ prompt = f"""
160
+ Analyze market trends:
161
+ Segment: {segment}
162
+ Context: {json.dumps(context)}
163
+
164
+ Analyze trends in:
165
+ 1. Technology
166
+ 2. Customer behavior
167
+ 3. Business models
168
+ 4. Regulation
169
+ 5. Market dynamics
170
+
171
+ Format as:
172
+ [Trend1]
173
+ Type: ...
174
+ Impact: ...
175
+ Timeline: ...
176
+ Adoption: ...
177
+ Potential: ...
178
+ """
179
+
180
+ response = await context["groq_api"].predict(prompt)
181
+ return self._parse_trend_analysis(response["answer"])
182
+
183
+ async def _analyze_opportunities(self,
184
+ segment_analysis: Dict[str, Any],
185
+ competitor_analysis: Dict[str, Any],
186
+ trend_analysis: Dict[str, Any],
187
+ context: Dict[str, Any]) -> Dict[str, Any]:
188
+ """Analyze market opportunities."""
189
+ prompt = f"""
190
+ Analyze market opportunities:
191
+ Segment: {json.dumps(segment_analysis)}
192
+ Competitors: {json.dumps(competitor_analysis)}
193
+ Trends: {json.dumps(trend_analysis)}
194
+ Context: {json.dumps(context)}
195
+
196
+ Identify opportunities in:
197
+ 1. Unmet needs
198
+ 2. Market gaps
199
+ 3. Innovation potential
200
+ 4. Scaling potential
201
+ 5. Value creation
202
+
203
+ Format as:
204
+ [Opportunity1]
205
+ Type: ...
206
+ Description: ...
207
+ Potential: ...
208
+ Requirements: ...
209
+ Timeline: ...
210
+ """
211
+
212
+ response = await context["groq_api"].predict(prompt)
213
+ return self._parse_opportunity_analysis(response["answer"])
214
+
215
+ async def _analyze_risks(self,
216
+ segment_analysis: Dict[str, Any],
217
+ competitor_analysis: Dict[str, Any],
218
+ trend_analysis: Dict[str, Any],
219
+ context: Dict[str, Any]) -> Dict[str, Any]:
220
+ """Analyze market risks."""
221
+ prompt = f"""
222
+ Analyze market risks:
223
+ Segment: {json.dumps(segment_analysis)}
224
+ Competitors: {json.dumps(competitor_analysis)}
225
+ Trends: {json.dumps(trend_analysis)}
226
+ Context: {json.dumps(context)}
227
+
228
+ Analyze risks in:
229
+ 1. Market dynamics
230
+ 2. Competition
231
+ 3. Technology
232
+ 4. Regulation
233
+ 5. Execution
234
+
235
+ Format as:
236
+ [Risk1]
237
+ Type: ...
238
+ Description: ...
239
+ Impact: ...
240
+ Probability: ...
241
+ Mitigation: ...
242
+ """
243
+
244
+ response = await context["groq_api"].predict(prompt)
245
+ return self._parse_risk_analysis(response["answer"])
246
+
247
+ def _calculate_market_score(self, analysis: Dict[str, Any]) -> float:
248
+ """Calculate market attractiveness score."""
249
+ weights = {
250
+ "size": 0.3,
251
+ "growth": 0.3,
252
+ "competition": 0.2,
253
+ "barriers": 0.1,
254
+ "dynamics": 0.1
255
+ }
256
+
257
+ scores = {
258
+ "size": min(analysis.get("size", 0) / 1e9, 1.0), # Normalize to 1B
259
+ "growth": min(analysis.get("growth", 0) / 30, 1.0), # Normalize to 30%
260
+ "competition": 1.0 - min(len(analysis.get("competitors", [])) / 10, 1.0),
261
+ "barriers": 1.0 - min(len(analysis.get("barriers", [])) / 5, 1.0),
262
+ "dynamics": analysis.get("dynamics_score", 0.5)
263
+ }
264
+
265
+ return sum(weights[k] * scores[k] for k in weights)
266
+
267
+ def _calculate_opportunity_score(self, analysis: Dict[str, Any]) -> float:
268
+ """Calculate opportunity attractiveness score."""
269
+ weights = {
270
+ "market_potential": 0.3,
271
+ "innovation_potential": 0.2,
272
+ "execution_feasibility": 0.2,
273
+ "competitive_advantage": 0.2,
274
+ "timing": 0.1
275
+ }
276
+
277
+ scores = {
278
+ "market_potential": analysis.get("market_potential", 0.5),
279
+ "innovation_potential": analysis.get("innovation_potential", 0.5),
280
+ "execution_feasibility": analysis.get("execution_feasibility", 0.5),
281
+ "competitive_advantage": analysis.get("competitive_advantage", 0.5),
282
+ "timing": analysis.get("timing_score", 0.5)
283
+ }
284
+
285
+ return sum(weights[k] * scores[k] for k in weights)
286
+
287
+ def _calculate_risk_score(self, analysis: Dict[str, Any]) -> float:
288
+ """Calculate risk level score."""
289
+ weights = {
290
+ "market_risk": 0.2,
291
+ "competition_risk": 0.2,
292
+ "technology_risk": 0.2,
293
+ "regulatory_risk": 0.2,
294
+ "execution_risk": 0.2
295
+ }
296
+
297
+ scores = {
298
+ "market_risk": analysis.get("market_risk", 0.5),
299
+ "competition_risk": analysis.get("competition_risk", 0.5),
300
+ "technology_risk": analysis.get("technology_risk", 0.5),
301
+ "regulatory_risk": analysis.get("regulatory_risk", 0.5),
302
+ "execution_risk": analysis.get("execution_risk", 0.5)
303
+ }
304
+
305
+ return sum(weights[k] * scores[k] for k in weights)
306
+
307
+ def get_market_insights(self) -> Dict[str, Any]:
308
+ """Get comprehensive market insights."""
309
+ return {
310
+ "segment_insights": {
311
+ segment: {
312
+ "size": s.size,
313
+ "growth_rate": s.growth_rate,
314
+ "cagr": s.cagr,
315
+ "opportunity_score": self._calculate_market_score({
316
+ "size": s.size,
317
+ "growth": s.growth_rate,
318
+ "competitors": s.competition,
319
+ "barriers": s.barriers
320
+ })
321
+ }
322
+ for segment, s in self.segments.items()
323
+ },
324
+ "competitor_insights": {
325
+ competitor: {
326
+ "market_share": c.market_share,
327
+ "strength_score": len(c.strengths) / (len(c.strengths) + len(c.weaknesses)),
328
+ "revenue": c.revenue,
329
+ "valuation": c.valuation
330
+ }
331
+ for competitor, c in self.competitors.items()
332
+ },
333
+ "trend_insights": [
334
+ {
335
+ "name": t.name,
336
+ "impact": t.impact,
337
+ "potential": t.market_potential,
338
+ "risk": t.risk_level
339
+ }
340
+ for t in self.trends
341
+ ]
342
+ }
reasoning/meta_learning.py ADDED
@@ -0,0 +1,412 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Meta-learning reasoning implementation with advanced adaptation capabilities."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Tuple, Callable
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from collections import defaultdict
9
+ import numpy as np
10
+ from datetime import datetime
11
+
12
+ from .base import ReasoningStrategy
13
+
14
+ class MetaFeatureType(Enum):
15
+ """Types of meta-features for learning."""
16
+ PROBLEM_STRUCTURE = "problem_structure"
17
+ SOLUTION_PATTERN = "solution_pattern"
18
+ REASONING_STYLE = "reasoning_style"
19
+ ERROR_PATTERN = "error_pattern"
20
+ PERFORMANCE_METRIC = "performance_metric"
21
+ ADAPTATION_SIGNAL = "adaptation_signal"
22
+
23
+ @dataclass
24
+ class MetaFeature:
25
+ """Represents a meta-feature for learning."""
26
+ type: MetaFeatureType
27
+ name: str
28
+ value: Any
29
+ confidence: float
30
+ timestamp: datetime
31
+ metadata: Dict[str, Any] = field(default_factory=dict)
32
+
33
+ @dataclass
34
+ class LearningEpisode:
35
+ """Represents a learning episode."""
36
+ id: str
37
+ query: str
38
+ features: List[MetaFeature]
39
+ outcome: Dict[str, Any]
40
+ performance: float
41
+ timestamp: datetime
42
+ metadata: Dict[str, Any] = field(default_factory=dict)
43
+
44
+ class MetaLearningStrategy(ReasoningStrategy):
45
+ """
46
+ Advanced Meta-Learning reasoning implementation with:
47
+ - Dynamic strategy adaptation
48
+ - Performance tracking
49
+ - Pattern recognition
50
+ - Automated optimization
51
+ - Cross-episode learning
52
+ """
53
+
54
+ def __init__(self,
55
+ learning_rate: float = 0.1,
56
+ memory_size: int = 1000,
57
+ adaptation_threshold: float = 0.7,
58
+ exploration_rate: float = 0.2):
59
+ self.learning_rate = learning_rate
60
+ self.memory_size = memory_size
61
+ self.adaptation_threshold = adaptation_threshold
62
+ self.exploration_rate = exploration_rate
63
+
64
+ # Learning components
65
+ self.episode_memory: List[LearningEpisode] = []
66
+ self.feature_patterns: Dict[str, Dict[str, float]] = defaultdict(lambda: defaultdict(float))
67
+ self.strategy_performance: Dict[str, List[float]] = defaultdict(list)
68
+ self.adaptation_history: List[Dict[str, Any]] = []
69
+
70
+ # Performance tracking
71
+ self.success_rate: float = 0.0
72
+ self.adaptation_rate: float = 0.0
73
+ self.exploration_count: int = 0
74
+
75
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
76
+ """Main reasoning method implementing meta-learning."""
77
+ try:
78
+ # Extract meta-features
79
+ features = await self._extract_meta_features(query, context)
80
+
81
+ # Select optimal strategy
82
+ strategy = await self._select_strategy(features, context)
83
+
84
+ # Apply strategy with adaptation
85
+ result = await self._apply_strategy(strategy, query, features, context)
86
+
87
+ # Learn from episode
88
+ episode = self._create_episode(query, features, result)
89
+ self._learn_from_episode(episode)
90
+
91
+ # Optimize performance
92
+ self._optimize_performance()
93
+
94
+ return {
95
+ "success": True,
96
+ "answer": result["answer"],
97
+ "confidence": result["confidence"],
98
+ "meta_features": [self._feature_to_dict(f) for f in features],
99
+ "selected_strategy": strategy,
100
+ "adaptations": result["adaptations"],
101
+ "performance_metrics": result["performance_metrics"],
102
+ "meta_insights": result["meta_insights"]
103
+ }
104
+ except Exception as e:
105
+ logging.error(f"Error in meta-learning reasoning: {str(e)}")
106
+ return {"success": False, "error": str(e)}
107
+
108
+ async def _extract_meta_features(self, query: str, context: Dict[str, Any]) -> List[MetaFeature]:
109
+ """Extract meta-features from query and context."""
110
+ prompt = f"""
111
+ Extract meta-features for learning:
112
+ Query: {query}
113
+ Context: {json.dumps(context)}
114
+
115
+ For each feature type:
116
+ 1. Problem Structure
117
+ 2. Solution Patterns
118
+ 3. Reasoning Style
119
+ 4. Error Patterns
120
+ 5. Performance Metrics
121
+ 6. Adaptation Signals
122
+
123
+ Format as:
124
+ [Type1]
125
+ Name: ...
126
+ Value: ...
127
+ Confidence: ...
128
+ Metadata: ...
129
+
130
+ [Type2]
131
+ ...
132
+ """
133
+
134
+ response = await context["groq_api"].predict(prompt)
135
+ return self._parse_meta_features(response["answer"])
136
+
137
+ async def _select_strategy(self, features: List[MetaFeature], context: Dict[str, Any]) -> str:
138
+ """Select optimal reasoning strategy based on meta-features."""
139
+ prompt = f"""
140
+ Select optimal reasoning strategy:
141
+ Features: {json.dumps([self._feature_to_dict(f) for f in features])}
142
+ Context: {json.dumps(context)}
143
+
144
+ Consider:
145
+ 1. Past performance patterns
146
+ 2. Feature relevance
147
+ 3. Adaptation potential
148
+ 4. Resource constraints
149
+
150
+ Format as:
151
+ [Selection]
152
+ Strategy: ...
153
+ Rationale: ...
154
+ Confidence: ...
155
+ Adaptations: ...
156
+ """
157
+
158
+ response = await context["groq_api"].predict(prompt)
159
+ return self._parse_strategy_selection(response["answer"])
160
+
161
+ async def _apply_strategy(self, strategy: str, query: str, features: List[MetaFeature], context: Dict[str, Any]) -> Dict[str, Any]:
162
+ """Apply selected strategy with dynamic adaptation."""
163
+ prompt = f"""
164
+ Apply strategy with meta-learning:
165
+ Strategy: {strategy}
166
+ Query: {query}
167
+ Features: {json.dumps([self._feature_to_dict(f) for f in features])}
168
+ Context: {json.dumps(context)}
169
+
170
+ Provide:
171
+ 1. Main reasoning steps
172
+ 2. Adaptation points
173
+ 3. Performance metrics
174
+ 4. Meta-insights
175
+
176
+ Format as:
177
+ [Application]
178
+ Steps: ...
179
+ Adaptations: ...
180
+ Metrics: ...
181
+ Insights: ...
182
+
183
+ [Result]
184
+ Answer: ...
185
+ Confidence: ...
186
+ """
187
+
188
+ response = await context["groq_api"].predict(prompt)
189
+ return self._parse_strategy_application(response["answer"])
190
+
191
+ def _create_episode(self, query: str, features: List[MetaFeature], result: Dict[str, Any]) -> LearningEpisode:
192
+ """Create a learning episode from the current interaction."""
193
+ return LearningEpisode(
194
+ id=f"episode_{len(self.episode_memory)}",
195
+ query=query,
196
+ features=features,
197
+ outcome=result,
198
+ performance=result.get("confidence", 0.0),
199
+ timestamp=datetime.now(),
200
+ metadata={
201
+ "adaptations": result.get("adaptations", []),
202
+ "metrics": result.get("performance_metrics", {})
203
+ }
204
+ )
205
+
206
+ def _learn_from_episode(self, episode: LearningEpisode):
207
+ """Learn from a completed episode."""
208
+ # Update episode memory
209
+ self.episode_memory.append(episode)
210
+ if len(self.episode_memory) > self.memory_size:
211
+ self.episode_memory.pop(0)
212
+
213
+ # Update feature patterns
214
+ for feature in episode.features:
215
+ pattern_key = f"{feature.type.value}:{feature.name}"
216
+ self.feature_patterns[pattern_key]["count"] += 1
217
+ self.feature_patterns[pattern_key]["success"] += episode.performance
218
+
219
+ # Update strategy performance
220
+ strategy = episode.metadata.get("selected_strategy", "default")
221
+ self.strategy_performance[strategy].append(episode.performance)
222
+
223
+ # Track adaptations
224
+ self.adaptation_history.append({
225
+ "timestamp": episode.timestamp,
226
+ "adaptations": episode.metadata.get("adaptations", []),
227
+ "performance": episode.performance
228
+ })
229
+
230
+ # Update performance metrics
231
+ self._update_performance_metrics(episode)
232
+
233
+ def _optimize_performance(self):
234
+ """Optimize meta-learning performance."""
235
+ # Adjust learning rate
236
+ recent_performance = [e.performance for e in self.episode_memory[-10:]]
237
+ if recent_performance:
238
+ avg_performance = sum(recent_performance) / len(recent_performance)
239
+ if avg_performance > 0.8:
240
+ self.learning_rate *= 0.9 # Reduce learning rate when performing well
241
+ elif avg_performance < 0.5:
242
+ self.learning_rate *= 1.1 # Increase learning rate when performing poorly
243
+
244
+ # Adjust exploration rate
245
+ self.exploration_rate = max(0.1, self.exploration_rate * 0.995) # Gradually reduce exploration
246
+
247
+ # Prune ineffective patterns
248
+ for pattern, stats in list(self.feature_patterns.items()):
249
+ if stats["count"] > 10 and stats["success"] / stats["count"] < 0.3:
250
+ del self.feature_patterns[pattern]
251
+
252
+ # Update adaptation threshold
253
+ recent_adaptations = [a["performance"] for a in self.adaptation_history[-10:]]
254
+ if recent_adaptations:
255
+ self.adaptation_threshold = sum(recent_adaptations) / len(recent_adaptations)
256
+
257
+ def _update_performance_metrics(self, episode: LearningEpisode):
258
+ """Update performance tracking metrics."""
259
+ # Update success rate
260
+ self.success_rate = (self.success_rate * len(self.episode_memory) + episode.performance) / (len(self.episode_memory) + 1)
261
+
262
+ # Update adaptation rate
263
+ adaptations = len(episode.metadata.get("adaptations", []))
264
+ self.adaptation_rate = (self.adaptation_rate * len(self.adaptation_history) + (adaptations > 0)) / (len(self.adaptation_history) + 1)
265
+
266
+ # Track exploration
267
+ if episode.metadata.get("exploration", False):
268
+ self.exploration_count += 1
269
+
270
+ def _parse_meta_features(self, response: str) -> List[MetaFeature]:
271
+ """Parse meta-features from response."""
272
+ features = []
273
+ current_type = None
274
+ current_feature = None
275
+
276
+ for line in response.split('\n'):
277
+ line = line.strip()
278
+ if not line:
279
+ continue
280
+
281
+ if line.startswith('[Type'):
282
+ if current_feature:
283
+ features.append(current_feature)
284
+ current_feature = None
285
+ try:
286
+ type_str = line[1:-1].lower()
287
+ current_type = MetaFeatureType(type_str)
288
+ except ValueError:
289
+ current_type = None
290
+ elif current_type and line.startswith('Name:'):
291
+ current_feature = MetaFeature(
292
+ type=current_type,
293
+ name=line[5:].strip(),
294
+ value=None,
295
+ confidence=0.0,
296
+ timestamp=datetime.now(),
297
+ metadata={}
298
+ )
299
+ elif current_feature:
300
+ if line.startswith('Value:'):
301
+ current_feature.value = line[6:].strip()
302
+ elif line.startswith('Confidence:'):
303
+ try:
304
+ current_feature.confidence = float(line[11:].strip())
305
+ except:
306
+ pass
307
+ elif line.startswith('Metadata:'):
308
+ try:
309
+ current_feature.metadata = json.loads(line[9:].strip())
310
+ except:
311
+ pass
312
+
313
+ if current_feature:
314
+ features.append(current_feature)
315
+
316
+ return features
317
+
318
+ def _parse_strategy_selection(self, response: str) -> str:
319
+ """Parse strategy selection from response."""
320
+ lines = response.split('\n')
321
+ strategy = "default"
322
+
323
+ for line in lines:
324
+ if line.startswith('Strategy:'):
325
+ strategy = line[9:].strip()
326
+ break
327
+
328
+ return strategy
329
+
330
+ def _parse_strategy_application(self, response: str) -> Dict[str, Any]:
331
+ """Parse strategy application results."""
332
+ result = {
333
+ "answer": "",
334
+ "confidence": 0.0,
335
+ "steps": [],
336
+ "adaptations": [],
337
+ "performance_metrics": {},
338
+ "meta_insights": []
339
+ }
340
+
341
+ section = None
342
+ for line in response.split('\n'):
343
+ line = line.strip()
344
+ if not line:
345
+ continue
346
+
347
+ if line.startswith('[Application]'):
348
+ section = "application"
349
+ elif line.startswith('[Result]'):
350
+ section = "result"
351
+ elif section == "application":
352
+ if line.startswith('Steps:'):
353
+ result["steps"] = [s.strip() for s in line[6:].split(',')]
354
+ elif line.startswith('Adaptations:'):
355
+ result["adaptations"] = [a.strip() for a in line[12:].split(',')]
356
+ elif line.startswith('Metrics:'):
357
+ try:
358
+ result["performance_metrics"] = json.loads(line[8:].strip())
359
+ except:
360
+ pass
361
+ elif line.startswith('Insights:'):
362
+ result["meta_insights"] = [i.strip() for i in line[9:].split(',')]
363
+ elif section == "result":
364
+ if line.startswith('Answer:'):
365
+ result["answer"] = line[7:].strip()
366
+ elif line.startswith('Confidence:'):
367
+ try:
368
+ result["confidence"] = float(line[11:].strip())
369
+ except:
370
+ result["confidence"] = 0.5
371
+
372
+ return result
373
+
374
+ def _feature_to_dict(self, feature: MetaFeature) -> Dict[str, Any]:
375
+ """Convert feature to dictionary for serialization."""
376
+ return {
377
+ "type": feature.type.value,
378
+ "name": feature.name,
379
+ "value": feature.value,
380
+ "confidence": feature.confidence,
381
+ "timestamp": feature.timestamp.isoformat(),
382
+ "metadata": feature.metadata
383
+ }
384
+
385
+ def get_performance_metrics(self) -> Dict[str, Any]:
386
+ """Get current performance metrics."""
387
+ return {
388
+ "success_rate": self.success_rate,
389
+ "adaptation_rate": self.adaptation_rate,
390
+ "exploration_count": self.exploration_count,
391
+ "episode_count": len(self.episode_memory),
392
+ "pattern_count": len(self.feature_patterns),
393
+ "learning_rate": self.learning_rate,
394
+ "exploration_rate": self.exploration_rate
395
+ }
396
+
397
+ def get_top_patterns(self, n: int = 10) -> List[Tuple[str, float]]:
398
+ """Get top performing patterns."""
399
+ pattern_scores = []
400
+ for pattern, stats in self.feature_patterns.items():
401
+ if stats["count"] > 0:
402
+ score = stats["success"] / stats["count"]
403
+ pattern_scores.append((pattern, score))
404
+
405
+ return sorted(pattern_scores, key=lambda x: x[1], reverse=True)[:n]
406
+
407
+ def clear_memory(self):
408
+ """Clear learning memory."""
409
+ self.episode_memory.clear()
410
+ self.feature_patterns.clear()
411
+ self.strategy_performance.clear()
412
+ self.adaptation_history.clear()
reasoning/monetization.py ADDED
@@ -0,0 +1,278 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Advanced monetization strategies for venture optimization."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import numpy as np
10
+ from collections import defaultdict
11
+
12
+ @dataclass
13
+ class MonetizationModel:
14
+ """Monetization model configuration."""
15
+ name: str
16
+ type: str
17
+ pricing_tiers: List[Dict[str, Any]]
18
+ features: List[str]
19
+ constraints: List[str]
20
+ metrics: Dict[str, float]
21
+
22
+ @dataclass
23
+ class RevenueStream:
24
+ """Revenue stream configuration."""
25
+ name: str
26
+ type: str
27
+ volume: float
28
+ unit_economics: Dict[str, float]
29
+ growth_rate: float
30
+ churn_rate: float
31
+
32
+ class MonetizationOptimizer:
33
+ """
34
+ Advanced monetization optimization that:
35
+ 1. Designs pricing models
36
+ 2. Optimizes revenue streams
37
+ 3. Maximizes customer value
38
+ 4. Reduces churn
39
+ 5. Increases lifetime value
40
+ """
41
+
42
+ def __init__(self):
43
+ self.models: Dict[str, MonetizationModel] = {}
44
+ self.streams: Dict[str, RevenueStream] = {}
45
+
46
+ async def optimize_monetization(self,
47
+ venture_type: str,
48
+ context: Dict[str, Any]) -> Dict[str, Any]:
49
+ """Optimize monetization strategy."""
50
+ try:
51
+ # Design models
52
+ models = await self._design_models(venture_type, context)
53
+
54
+ # Optimize pricing
55
+ pricing = await self._optimize_pricing(models, context)
56
+
57
+ # Revenue optimization
58
+ revenue = await self._optimize_revenue(pricing, context)
59
+
60
+ # Value optimization
61
+ value = await self._optimize_value(revenue, context)
62
+
63
+ # Performance projections
64
+ projections = await self._project_performance(value, context)
65
+
66
+ return {
67
+ "success": projections["annual_revenue"] >= 1_000_000,
68
+ "models": models,
69
+ "pricing": pricing,
70
+ "revenue": revenue,
71
+ "value": value,
72
+ "projections": projections
73
+ }
74
+ except Exception as e:
75
+ logging.error(f"Error in monetization optimization: {str(e)}")
76
+ return {"success": False, "error": str(e)}
77
+
78
+ async def _design_models(self,
79
+ venture_type: str,
80
+ context: Dict[str, Any]) -> Dict[str, Any]:
81
+ """Design monetization models."""
82
+ prompt = f"""
83
+ Design monetization models:
84
+ Venture: {venture_type}
85
+ Context: {json.dumps(context)}
86
+
87
+ Design models for:
88
+ 1. Subscription tiers
89
+ 2. Usage-based pricing
90
+ 3. Hybrid models
91
+ 4. Enterprise pricing
92
+ 5. Marketplace fees
93
+
94
+ Format as:
95
+ [Model1]
96
+ Name: ...
97
+ Type: ...
98
+ Tiers: ...
99
+ Features: ...
100
+ Constraints: ...
101
+ """
102
+
103
+ response = await context["groq_api"].predict(prompt)
104
+ return self._parse_model_design(response["answer"])
105
+
106
+ async def _optimize_pricing(self,
107
+ models: Dict[str, Any],
108
+ context: Dict[str, Any]) -> Dict[str, Any]:
109
+ """Optimize pricing strategy."""
110
+ prompt = f"""
111
+ Optimize pricing strategy:
112
+ Models: {json.dumps(models)}
113
+ Context: {json.dumps(context)}
114
+
115
+ Optimize for:
116
+ 1. Market positioning
117
+ 2. Value perception
118
+ 3. Competitive dynamics
119
+ 4. Customer segments
120
+ 5. Growth potential
121
+
122
+ Format as:
123
+ [Strategy1]
124
+ Model: ...
125
+ Positioning: ...
126
+ Value_Props: ...
127
+ Segments: ...
128
+ Growth: ...
129
+ """
130
+
131
+ response = await context["groq_api"].predict(prompt)
132
+ return self._parse_pricing_strategy(response["answer"])
133
+
134
+ async def _optimize_revenue(self,
135
+ pricing: Dict[str, Any],
136
+ context: Dict[str, Any]) -> Dict[str, Any]:
137
+ """Optimize revenue streams."""
138
+ prompt = f"""
139
+ Optimize revenue streams:
140
+ Pricing: {json.dumps(pricing)}
141
+ Context: {json.dumps(context)}
142
+
143
+ Optimize for:
144
+ 1. Revenue mix
145
+ 2. Growth drivers
146
+ 3. Retention factors
147
+ 4. Expansion potential
148
+ 5. Risk mitigation
149
+
150
+ Format as:
151
+ [Stream1]
152
+ Type: ...
153
+ Drivers: ...
154
+ Retention: ...
155
+ Expansion: ...
156
+ Risks: ...
157
+ """
158
+
159
+ response = await context["groq_api"].predict(prompt)
160
+ return self._parse_revenue_optimization(response["answer"])
161
+
162
+ async def _optimize_value(self,
163
+ revenue: Dict[str, Any],
164
+ context: Dict[str, Any]) -> Dict[str, Any]:
165
+ """Optimize customer value."""
166
+ prompt = f"""
167
+ Optimize customer value:
168
+ Revenue: {json.dumps(revenue)}
169
+ Context: {json.dumps(context)}
170
+
171
+ Optimize for:
172
+ 1. Acquisition cost
173
+ 2. Lifetime value
174
+ 3. Churn reduction
175
+ 4. Upsell potential
176
+ 5. Network effects
177
+
178
+ Format as:
179
+ [Value1]
180
+ Metric: ...
181
+ Strategy: ...
182
+ Potential: ...
183
+ Actions: ...
184
+ Timeline: ...
185
+ """
186
+
187
+ response = await context["groq_api"].predict(prompt)
188
+ return self._parse_value_optimization(response["answer"])
189
+
190
+ async def _project_performance(self,
191
+ value: Dict[str, Any],
192
+ context: Dict[str, Any]) -> Dict[str, Any]:
193
+ """Project monetization performance."""
194
+ prompt = f"""
195
+ Project performance:
196
+ Value: {json.dumps(value)}
197
+ Context: {json.dumps(context)}
198
+
199
+ Project:
200
+ 1. Revenue growth
201
+ 2. Customer metrics
202
+ 3. Unit economics
203
+ 4. Profitability
204
+ 5. Scale effects
205
+
206
+ Format as:
207
+ [Projections]
208
+ Revenue: ...
209
+ Metrics: ...
210
+ Economics: ...
211
+ Profit: ...
212
+ Scale: ...
213
+ """
214
+
215
+ response = await context["groq_api"].predict(prompt)
216
+ return self._parse_performance_projections(response["answer"])
217
+
218
+ def _calculate_revenue_potential(self, model: MonetizationModel) -> float:
219
+ """Calculate revenue potential for model."""
220
+ base_potential = sum(
221
+ tier.get("price", 0) * tier.get("volume", 0)
222
+ for tier in model.pricing_tiers
223
+ )
224
+
225
+ growth_factor = 1.0 + (model.metrics.get("growth_rate", 0) / 100)
226
+ retention_factor = 1.0 - (model.metrics.get("churn_rate", 0) / 100)
227
+
228
+ return base_potential * growth_factor * retention_factor
229
+
230
+ def _calculate_customer_ltv(self, stream: RevenueStream) -> float:
231
+ """Calculate customer lifetime value."""
232
+ monthly_revenue = stream.volume * stream.unit_economics.get("arpu", 0)
233
+ churn_rate = stream.churn_rate / 100
234
+ discount_rate = 0.1 # 10% annual discount rate
235
+
236
+ if churn_rate > 0:
237
+ ltv = monthly_revenue / churn_rate
238
+ else:
239
+ ltv = monthly_revenue * 12 # Assume 1 year if no churn
240
+
241
+ return ltv / (1 + discount_rate)
242
+
243
+ def get_monetization_metrics(self) -> Dict[str, Any]:
244
+ """Get comprehensive monetization metrics."""
245
+ return {
246
+ "model_metrics": {
247
+ model.name: {
248
+ "revenue_potential": self._calculate_revenue_potential(model),
249
+ "tier_count": len(model.pricing_tiers),
250
+ "feature_count": len(model.features),
251
+ "constraint_count": len(model.constraints)
252
+ }
253
+ for model in self.models.values()
254
+ },
255
+ "stream_metrics": {
256
+ stream.name: {
257
+ "monthly_revenue": stream.volume * stream.unit_economics.get("arpu", 0),
258
+ "ltv": self._calculate_customer_ltv(stream),
259
+ "growth_rate": stream.growth_rate,
260
+ "churn_rate": stream.churn_rate
261
+ }
262
+ for stream in self.streams.values()
263
+ },
264
+ "aggregate_metrics": {
265
+ "total_revenue_potential": sum(
266
+ self._calculate_revenue_potential(model)
267
+ for model in self.models.values()
268
+ ),
269
+ "average_ltv": np.mean([
270
+ self._calculate_customer_ltv(stream)
271
+ for stream in self.streams.values()
272
+ ]) if self.streams else 0,
273
+ "weighted_growth_rate": np.average(
274
+ [stream.growth_rate for stream in self.streams.values()],
275
+ weights=[stream.volume for stream in self.streams.values()]
276
+ ) if self.streams else 0
277
+ }
278
+ }
reasoning/multimodal.py ADDED
@@ -0,0 +1,268 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Multi-modal reasoning implementation."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List
5
+ import json
6
+
7
+ from .base import ReasoningStrategy
8
+
9
+ class MultiModalReasoning(ReasoningStrategy):
10
+ """Implements multi-modal reasoning across different types of information."""
11
+
12
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
13
+ try:
14
+ # Process different modalities
15
+ modalities = await self._process_modalities(query, context)
16
+
17
+ # Cross-modal alignment
18
+ alignment = await self._cross_modal_alignment(modalities, context)
19
+
20
+ # Integrated analysis
21
+ integration = await self._integrated_analysis(alignment, context)
22
+
23
+ # Generate unified response
24
+ response = await self._generate_response(integration, context)
25
+
26
+ return {
27
+ "success": True,
28
+ "answer": response["conclusion"],
29
+ "modalities": modalities,
30
+ "alignment": alignment,
31
+ "integration": integration,
32
+ "confidence": response["confidence"]
33
+ }
34
+ except Exception as e:
35
+ logging.error(f"Error in multi-modal reasoning: {str(e)}")
36
+ return {"success": False, "error": str(e)}
37
+
38
+ async def _process_modalities(self, query: str, context: Dict[str, Any]) -> Dict[str, List[Dict[str, Any]]]:
39
+ """Process query across different modalities."""
40
+ prompt = f"""
41
+ Process query across modalities:
42
+ Query: {query}
43
+ Context: {json.dumps(context)}
44
+
45
+ For each modality extract:
46
+ 1. [Type]: Modality type
47
+ 2. [Content]: Relevant content
48
+ 3. [Features]: Key features
49
+ 4. [Quality]: Content quality
50
+
51
+ Format as:
52
+ [M1]
53
+ Type: ...
54
+ Content: ...
55
+ Features: ...
56
+ Quality: ...
57
+ """
58
+
59
+ response = await context["groq_api"].predict(prompt)
60
+ return self._parse_modalities(response["answer"])
61
+
62
+ async def _cross_modal_alignment(self, modalities: Dict[str, List[Dict[str, Any]]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
63
+ """Align information across different modalities."""
64
+ try:
65
+ # Extract modality types
66
+ modal_types = list(modalities.keys())
67
+
68
+ # Initialize alignment results
69
+ alignments = []
70
+
71
+ # Process each modality pair
72
+ for i in range(len(modal_types)):
73
+ for j in range(i + 1, len(modal_types)):
74
+ type1, type2 = modal_types[i], modal_types[j]
75
+
76
+ # Get items from each modality
77
+ items1 = modalities[type1]
78
+ items2 = modalities[type2]
79
+
80
+ # Find alignments between items
81
+ for item1 in items1:
82
+ for item2 in items2:
83
+ similarity = self._calculate_similarity(item1, item2)
84
+ if similarity > 0.5: # Threshold for alignment
85
+ alignments.append({
86
+ "type1": type1,
87
+ "type2": type2,
88
+ "item1": item1,
89
+ "item2": item2,
90
+ "similarity": similarity
91
+ })
92
+
93
+ # Sort alignments by similarity
94
+ alignments.sort(key=lambda x: x["similarity"], reverse=True)
95
+
96
+ return alignments
97
+
98
+ except Exception as e:
99
+ logging.error(f"Error in cross-modal alignment: {str(e)}")
100
+ return []
101
+
102
+ def _calculate_similarity(self, item1: Dict[str, Any], item2: Dict[str, Any]) -> float:
103
+ """Calculate similarity between two items from different modalities."""
104
+ try:
105
+ # Extract content from items
106
+ content1 = str(item1.get("content", ""))
107
+ content2 = str(item2.get("content", ""))
108
+
109
+ # Calculate basic similarity (can be enhanced with more sophisticated methods)
110
+ common_words = set(content1.lower().split()) & set(content2.lower().split())
111
+ total_words = set(content1.lower().split()) | set(content2.lower().split())
112
+
113
+ if not total_words:
114
+ return 0.0
115
+
116
+ return len(common_words) / len(total_words)
117
+
118
+ except Exception as e:
119
+ logging.error(f"Error calculating similarity: {str(e)}")
120
+ return 0.0
121
+
122
+ async def _integrated_analysis(self, alignment: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
123
+ prompt = f"""
124
+ Perform integrated multi-modal analysis:
125
+ Alignment: {json.dumps(alignment)}
126
+ Context: {json.dumps(context)}
127
+
128
+ For each insight:
129
+ 1. [Insight]: Key finding
130
+ 2. [Sources]: Contributing modalities
131
+ 3. [Support]: Supporting evidence
132
+ 4. [Confidence]: Confidence level
133
+
134
+ Format as:
135
+ [I1]
136
+ Insight: ...
137
+ Sources: ...
138
+ Support: ...
139
+ Confidence: ...
140
+ """
141
+
142
+ response = await context["groq_api"].predict(prompt)
143
+ return self._parse_integration(response["answer"])
144
+
145
+ async def _generate_response(self, integration: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]:
146
+ prompt = f"""
147
+ Generate unified multi-modal response:
148
+ Integration: {json.dumps(integration)}
149
+ Context: {json.dumps(context)}
150
+
151
+ Provide:
152
+ 1. Main conclusion
153
+ 2. Modal contributions
154
+ 3. Integration benefits
155
+ 4. Confidence level (0-1)
156
+ """
157
+
158
+ response = await context["groq_api"].predict(prompt)
159
+ return self._parse_response(response["answer"])
160
+
161
+ def _parse_modalities(self, response: str) -> Dict[str, List[Dict[str, Any]]]:
162
+ """Parse modalities from response."""
163
+ modalities = {}
164
+ current_modality = None
165
+
166
+ for line in response.split('\n'):
167
+ line = line.strip()
168
+ if not line:
169
+ continue
170
+
171
+ if line.startswith('[M'):
172
+ if current_modality:
173
+ if current_modality["type"] not in modalities:
174
+ modalities[current_modality["type"]] = []
175
+ modalities[current_modality["type"]].append(current_modality)
176
+ current_modality = {
177
+ "type": "",
178
+ "content": "",
179
+ "features": "",
180
+ "quality": ""
181
+ }
182
+ elif current_modality:
183
+ if line.startswith('Type:'):
184
+ current_modality["type"] = line[5:].strip()
185
+ elif line.startswith('Content:'):
186
+ current_modality["content"] = line[8:].strip()
187
+ elif line.startswith('Features:'):
188
+ current_modality["features"] = line[9:].strip()
189
+ elif line.startswith('Quality:'):
190
+ current_modality["quality"] = line[8:].strip()
191
+
192
+ if current_modality:
193
+ if current_modality["type"] not in modalities:
194
+ modalities[current_modality["type"]] = []
195
+ modalities[current_modality["type"]].append(current_modality)
196
+
197
+ return modalities
198
+
199
+ def _parse_integration(self, response: str) -> List[Dict[str, Any]]:
200
+ """Parse integration from response."""
201
+ integration = []
202
+ current_insight = None
203
+
204
+ for line in response.split('\n'):
205
+ line = line.strip()
206
+ if not line:
207
+ continue
208
+
209
+ if line.startswith('[I'):
210
+ if current_insight:
211
+ integration.append(current_insight)
212
+ current_insight = {
213
+ "insight": "",
214
+ "sources": "",
215
+ "support": "",
216
+ "confidence": 0.0
217
+ }
218
+ elif current_insight:
219
+ if line.startswith('Insight:'):
220
+ current_insight["insight"] = line[8:].strip()
221
+ elif line.startswith('Sources:'):
222
+ current_insight["sources"] = line[8:].strip()
223
+ elif line.startswith('Support:'):
224
+ current_insight["support"] = line[8:].strip()
225
+ elif line.startswith('Confidence:'):
226
+ try:
227
+ current_insight["confidence"] = float(line[11:].strip())
228
+ except:
229
+ pass
230
+
231
+ if current_insight:
232
+ integration.append(current_insight)
233
+
234
+ return integration
235
+
236
+ def _parse_response(self, response: str) -> Dict[str, Any]:
237
+ """Parse response from response."""
238
+ response_dict = {
239
+ "conclusion": "",
240
+ "modal_contributions": [],
241
+ "integration_benefits": [],
242
+ "confidence": 0.0
243
+ }
244
+
245
+ mode = None
246
+ for line in response.split('\n'):
247
+ line = line.strip()
248
+ if not line:
249
+ continue
250
+
251
+ if line.startswith('Conclusion:'):
252
+ response_dict["conclusion"] = line[11:].strip()
253
+ elif line.startswith('Modal Contributions:'):
254
+ mode = "modal"
255
+ elif line.startswith('Integration Benefits:'):
256
+ mode = "integration"
257
+ elif line.startswith('Confidence:'):
258
+ try:
259
+ response_dict["confidence"] = float(line[11:].strip())
260
+ except:
261
+ response_dict["confidence"] = 0.5
262
+ mode = None
263
+ elif mode == "modal" and line.startswith('- '):
264
+ response_dict["modal_contributions"].append(line[2:].strip())
265
+ elif mode == "integration" and line.startswith('- '):
266
+ response_dict["integration_benefits"].append(line[2:].strip())
267
+
268
+ return response_dict
reasoning/neurosymbolic.py ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Neurosymbolic reasoning implementation."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Tuple
5
+ import json
6
+
7
+ from .base import ReasoningStrategy
8
+
9
+ class NeurosymbolicReasoning(ReasoningStrategy):
10
+ """Implements neurosymbolic reasoning combining neural and symbolic approaches."""
11
+
12
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
13
+ try:
14
+ # Neural processing
15
+ neural_features = await self._neural_processing(query, context)
16
+
17
+ # Symbolic reasoning
18
+ symbolic_rules = await self._symbolic_reasoning(neural_features, context)
19
+
20
+ # Integration
21
+ integrated = await self._neurosymbolic_integration(neural_features, symbolic_rules, context)
22
+
23
+ # Final inference
24
+ conclusion = await self._final_inference(integrated, context)
25
+
26
+ return {
27
+ "success": True,
28
+ "answer": conclusion["answer"],
29
+ "neural_features": neural_features,
30
+ "symbolic_rules": symbolic_rules,
31
+ "integrated_reasoning": integrated,
32
+ "confidence": conclusion["confidence"],
33
+ "explanation": conclusion["explanation"]
34
+ }
35
+ except Exception as e:
36
+ return {"success": False, "error": str(e)}
37
+
38
+ async def _neural_processing(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]:
39
+ prompt = f"""
40
+ Extract neural features from query:
41
+ Query: {query}
42
+ Context: {json.dumps(context)}
43
+
44
+ For each feature:
45
+ 1. [Type]: Feature type
46
+ 2. [Value]: Extracted value
47
+ 3. [Confidence]: Extraction confidence
48
+ 4. [Relations]: Related concepts
49
+
50
+ Format as:
51
+ [F1]
52
+ Type: ...
53
+ Value: ...
54
+ Confidence: ...
55
+ Relations: ...
56
+ """
57
+
58
+ response = await context["groq_api"].predict(prompt)
59
+ return self._parse_features(response["answer"])
60
+
61
+ async def _symbolic_reasoning(self, features: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
62
+ prompt = f"""
63
+ Generate symbolic rules from features:
64
+ Features: {json.dumps(features)}
65
+ Context: {json.dumps(context)}
66
+
67
+ For each rule:
68
+ 1. [Condition]: Rule condition
69
+ 2. [Implication]: What it implies
70
+ 3. [Certainty]: Rule certainty
71
+ 4. [Source]: Derivation source
72
+
73
+ Format as:
74
+ [R1]
75
+ Condition: ...
76
+ Implication: ...
77
+ Certainty: ...
78
+ Source: ...
79
+ """
80
+
81
+ response = await context["groq_api"].predict(prompt)
82
+ return self._parse_rules(response["answer"])
83
+
84
+ async def _neurosymbolic_integration(self, features: List[Dict[str, Any]], rules: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
85
+ prompt = f"""
86
+ Integrate neural and symbolic components:
87
+ Features: {json.dumps(features)}
88
+ Rules: {json.dumps(rules)}
89
+ Context: {json.dumps(context)}
90
+
91
+ For each integration:
92
+ 1. [Components]: What is being integrated
93
+ 2. [Method]: How they are combined
94
+ 3. [Result]: Integration outcome
95
+ 4. [Confidence]: Integration confidence
96
+
97
+ Format as:
98
+ [I1]
99
+ Components: ...
100
+ Method: ...
101
+ Result: ...
102
+ Confidence: ...
103
+ """
104
+
105
+ response = await context["groq_api"].predict(prompt)
106
+ return self._parse_integration(response["answer"])
107
+
108
+ async def _final_inference(self, integrated: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]:
109
+ prompt = f"""
110
+ Draw final conclusions from integrated reasoning:
111
+ Integrated: {json.dumps(integrated)}
112
+ Context: {json.dumps(context)}
113
+
114
+ Provide:
115
+ 1. Final answer/conclusion
116
+ 2. Confidence level (0-1)
117
+ 3. Explanation of reasoning
118
+ 4. Key factors considered
119
+ """
120
+
121
+ response = await context["groq_api"].predict(prompt)
122
+ return self._parse_conclusion(response["answer"])
123
+
124
+ def _parse_features(self, response: str) -> List[Dict[str, Any]]:
125
+ """Parse neural features from response."""
126
+ features = []
127
+ current = None
128
+
129
+ for line in response.split('\n'):
130
+ line = line.strip()
131
+ if not line:
132
+ continue
133
+
134
+ if line.startswith('[F'):
135
+ if current:
136
+ features.append(current)
137
+ current = {
138
+ "type": "",
139
+ "value": "",
140
+ "confidence": 0.0,
141
+ "relations": []
142
+ }
143
+ elif current:
144
+ if line.startswith('Type:'):
145
+ current["type"] = line[5:].strip()
146
+ elif line.startswith('Value:'):
147
+ current["value"] = line[6:].strip()
148
+ elif line.startswith('Confidence:'):
149
+ try:
150
+ current["confidence"] = float(line[11:].strip())
151
+ except:
152
+ pass
153
+ elif line.startswith('Relations:'):
154
+ current["relations"] = [r.strip() for r in line[10:].split(',')]
155
+
156
+ if current:
157
+ features.append(current)
158
+
159
+ return features
160
+
161
+ def _parse_rules(self, response: str) -> List[Dict[str, Any]]:
162
+ """Parse symbolic rules from response."""
163
+ rules = []
164
+ current = None
165
+
166
+ for line in response.split('\n'):
167
+ line = line.strip()
168
+ if not line:
169
+ continue
170
+
171
+ if line.startswith('[R'):
172
+ if current:
173
+ rules.append(current)
174
+ current = {
175
+ "condition": "",
176
+ "implication": "",
177
+ "certainty": 0.0,
178
+ "source": ""
179
+ }
180
+ elif current:
181
+ if line.startswith('Condition:'):
182
+ current["condition"] = line[10:].strip()
183
+ elif line.startswith('Implication:'):
184
+ current["implication"] = line[12:].strip()
185
+ elif line.startswith('Certainty:'):
186
+ try:
187
+ current["certainty"] = float(line[10:].strip())
188
+ except:
189
+ pass
190
+ elif line.startswith('Source:'):
191
+ current["source"] = line[7:].strip()
192
+
193
+ if current:
194
+ rules.append(current)
195
+
196
+ return rules
197
+
198
+ def _parse_integration(self, response: str) -> List[Dict[str, Any]]:
199
+ """Parse integration results from response."""
200
+ integrations = []
201
+ current = None
202
+
203
+ for line in response.split('\n'):
204
+ line = line.strip()
205
+ if not line:
206
+ continue
207
+
208
+ if line.startswith('[I'):
209
+ if current:
210
+ integrations.append(current)
211
+ current = {
212
+ "components": "",
213
+ "method": "",
214
+ "result": "",
215
+ "confidence": 0.0
216
+ }
217
+ elif current:
218
+ if line.startswith('Components:'):
219
+ current["components"] = line[11:].strip()
220
+ elif line.startswith('Method:'):
221
+ current["method"] = line[7:].strip()
222
+ elif line.startswith('Result:'):
223
+ current["result"] = line[7:].strip()
224
+ elif line.startswith('Confidence:'):
225
+ try:
226
+ current["confidence"] = float(line[11:].strip())
227
+ except:
228
+ pass
229
+
230
+ if current:
231
+ integrations.append(current)
232
+
233
+ return integrations
234
+
235
+ def _parse_conclusion(self, response: str) -> Dict[str, Any]:
236
+ """Parse final conclusion from response."""
237
+ conclusion = {
238
+ "answer": "",
239
+ "confidence": 0.0,
240
+ "explanation": "",
241
+ "factors": []
242
+ }
243
+
244
+ mode = None
245
+ for line in response.split('\n'):
246
+ line = line.strip()
247
+ if not line:
248
+ continue
249
+
250
+ if line.startswith('Answer:'):
251
+ conclusion["answer"] = line[7:].strip()
252
+ elif line.startswith('Confidence:'):
253
+ try:
254
+ conclusion["confidence"] = float(line[11:].strip())
255
+ except:
256
+ conclusion["confidence"] = 0.5
257
+ elif line.startswith('Explanation:'):
258
+ conclusion["explanation"] = line[12:].strip()
259
+ elif line.startswith('Factors:'):
260
+ mode = "factors"
261
+ elif mode == "factors" and line.startswith('- '):
262
+ conclusion["factors"].append(line[2:].strip())
263
+
264
+ return conclusion
reasoning/portfolio_optimization.py ADDED
@@ -0,0 +1,352 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Advanced portfolio optimization for venture strategies."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import numpy as np
10
+ from collections import defaultdict
11
+
12
+ @dataclass
13
+ class VentureMetrics:
14
+ """Venture performance metrics."""
15
+ revenue: float
16
+ profit: float
17
+ growth_rate: float
18
+ risk_score: float
19
+ resource_usage: Dict[str, float]
20
+ synergy_score: float
21
+
22
+ @dataclass
23
+ class ResourceAllocation:
24
+ """Resource allocation configuration."""
25
+ venture_id: str
26
+ resources: Dict[str, float]
27
+ constraints: List[str]
28
+ dependencies: List[str]
29
+ priority: float
30
+
31
+ class PortfolioOptimizer:
32
+ """
33
+ Advanced portfolio optimization that:
34
+ 1. Optimizes venture mix
35
+ 2. Allocates resources
36
+ 3. Manages risks
37
+ 4. Maximizes synergies
38
+ 5. Balances growth
39
+ """
40
+
41
+ def __init__(self):
42
+ self.ventures: Dict[str, VentureMetrics] = {}
43
+ self.allocations: Dict[str, ResourceAllocation] = {}
44
+
45
+ async def optimize_portfolio(self,
46
+ ventures: List[str],
47
+ context: Dict[str, Any]) -> Dict[str, Any]:
48
+ """Optimize venture portfolio."""
49
+ try:
50
+ # Analyze ventures
51
+ analysis = await self._analyze_ventures(ventures, context)
52
+
53
+ # Optimize allocation
54
+ allocation = await self._optimize_allocation(analysis, context)
55
+
56
+ # Risk optimization
57
+ risk = await self._optimize_risk(allocation, context)
58
+
59
+ # Synergy optimization
60
+ synergy = await self._optimize_synergies(risk, context)
61
+
62
+ # Performance projections
63
+ projections = await self._project_performance(synergy, context)
64
+
65
+ return {
66
+ "success": projections["annual_profit"] >= 1_000_000,
67
+ "analysis": analysis,
68
+ "allocation": allocation,
69
+ "risk": risk,
70
+ "synergy": synergy,
71
+ "projections": projections
72
+ }
73
+ except Exception as e:
74
+ logging.error(f"Error in portfolio optimization: {str(e)}")
75
+ return {"success": False, "error": str(e)}
76
+
77
+ async def _analyze_ventures(self,
78
+ ventures: List[str],
79
+ context: Dict[str, Any]) -> Dict[str, Any]:
80
+ """Analyze venture characteristics."""
81
+ prompt = f"""
82
+ Analyze ventures:
83
+ Ventures: {json.dumps(ventures)}
84
+ Context: {json.dumps(context)}
85
+
86
+ Analyze:
87
+ 1. Performance metrics
88
+ 2. Resource requirements
89
+ 3. Risk factors
90
+ 4. Growth potential
91
+ 5. Synergy opportunities
92
+
93
+ Format as:
94
+ [Venture1]
95
+ Metrics: ...
96
+ Resources: ...
97
+ Risks: ...
98
+ Growth: ...
99
+ Synergies: ...
100
+ """
101
+
102
+ response = await context["groq_api"].predict(prompt)
103
+ return self._parse_venture_analysis(response["answer"])
104
+
105
+ async def _optimize_allocation(self,
106
+ analysis: Dict[str, Any],
107
+ context: Dict[str, Any]) -> Dict[str, Any]:
108
+ """Optimize resource allocation."""
109
+ prompt = f"""
110
+ Optimize resource allocation:
111
+ Analysis: {json.dumps(analysis)}
112
+ Context: {json.dumps(context)}
113
+
114
+ Optimize for:
115
+ 1. Resource efficiency
116
+ 2. Growth potential
117
+ 3. Risk balance
118
+ 4. Synergy capture
119
+ 5. Constraint satisfaction
120
+
121
+ Format as:
122
+ [Allocation1]
123
+ Venture: ...
124
+ Resources: ...
125
+ Constraints: ...
126
+ Dependencies: ...
127
+ Priority: ...
128
+ """
129
+
130
+ response = await context["groq_api"].predict(prompt)
131
+ return self._parse_allocation_optimization(response["answer"])
132
+
133
+ async def _optimize_risk(self,
134
+ allocation: Dict[str, Any],
135
+ context: Dict[str, Any]) -> Dict[str, Any]:
136
+ """Optimize risk management."""
137
+ prompt = f"""
138
+ Optimize risk management:
139
+ Allocation: {json.dumps(allocation)}
140
+ Context: {json.dumps(context)}
141
+
142
+ Optimize for:
143
+ 1. Risk diversification
144
+ 2. Exposure limits
145
+ 3. Correlation management
146
+ 4. Hedging strategies
147
+ 5. Contingency planning
148
+
149
+ Format as:
150
+ [Risk1]
151
+ Type: ...
152
+ Exposure: ...
153
+ Mitigation: ...
154
+ Contingency: ...
155
+ Impact: ...
156
+ """
157
+
158
+ response = await context["groq_api"].predict(prompt)
159
+ return self._parse_risk_optimization(response["answer"])
160
+
161
+ async def _optimize_synergies(self,
162
+ risk: Dict[str, Any],
163
+ context: Dict[str, Any]) -> Dict[str, Any]:
164
+ """Optimize portfolio synergies."""
165
+ prompt = f"""
166
+ Optimize synergies:
167
+ Risk: {json.dumps(risk)}
168
+ Context: {json.dumps(context)}
169
+
170
+ Optimize for:
171
+ 1. Resource sharing
172
+ 2. Knowledge transfer
173
+ 3. Market leverage
174
+ 4. Technology reuse
175
+ 5. Customer cross-sell
176
+
177
+ Format as:
178
+ [Synergy1]
179
+ Type: ...
180
+ Ventures: ...
181
+ Potential: ...
182
+ Requirements: ...
183
+ Timeline: ...
184
+ """
185
+
186
+ response = await context["groq_api"].predict(prompt)
187
+ return self._parse_synergy_optimization(response["answer"])
188
+
189
+ async def _project_performance(self,
190
+ synergy: Dict[str, Any],
191
+ context: Dict[str, Any]) -> Dict[str, Any]:
192
+ """Project portfolio performance."""
193
+ prompt = f"""
194
+ Project performance:
195
+ Synergy: {json.dumps(synergy)}
196
+ Context: {json.dumps(context)}
197
+
198
+ Project:
199
+ 1. Revenue growth
200
+ 2. Profit margins
201
+ 3. Resource utilization
202
+ 4. Risk metrics
203
+ 5. Synergy capture
204
+
205
+ Format as:
206
+ [Projections]
207
+ Revenue: ...
208
+ Profit: ...
209
+ Resources: ...
210
+ Risk: ...
211
+ Synergies: ...
212
+ """
213
+
214
+ response = await context["groq_api"].predict(prompt)
215
+ return self._parse_performance_projections(response["answer"])
216
+
217
+ def _calculate_portfolio_metrics(self) -> Dict[str, float]:
218
+ """Calculate comprehensive portfolio metrics."""
219
+ if not self.ventures:
220
+ return {
221
+ "total_revenue": 0.0,
222
+ "total_profit": 0.0,
223
+ "avg_growth": 0.0,
224
+ "avg_risk": 0.0,
225
+ "resource_efficiency": 0.0,
226
+ "synergy_capture": 0.0
227
+ }
228
+
229
+ metrics = {
230
+ "total_revenue": sum(v.revenue for v in self.ventures.values()),
231
+ "total_profit": sum(v.profit for v in self.ventures.values()),
232
+ "avg_growth": np.mean([v.growth_rate for v in self.ventures.values()]),
233
+ "avg_risk": np.mean([v.risk_score for v in self.ventures.values()]),
234
+ "resource_efficiency": self._calculate_resource_efficiency(),
235
+ "synergy_capture": np.mean([v.synergy_score for v in self.ventures.values()])
236
+ }
237
+
238
+ return metrics
239
+
240
+ def _calculate_resource_efficiency(self) -> float:
241
+ """Calculate resource utilization efficiency."""
242
+ if not self.ventures or not self.allocations:
243
+ return 0.0
244
+
245
+ total_resources = defaultdict(float)
246
+ used_resources = defaultdict(float)
247
+
248
+ # Sum up total and used resources
249
+ for venture_id, allocation in self.allocations.items():
250
+ for resource, amount in allocation.resources.items():
251
+ total_resources[resource] += amount
252
+ if venture_id in self.ventures:
253
+ used_resources[resource] += (
254
+ amount * self.ventures[venture_id].resource_usage.get(resource, 0)
255
+ )
256
+
257
+ # Calculate efficiency for each resource
258
+ efficiencies = []
259
+ for resource in total_resources:
260
+ if total_resources[resource] > 0:
261
+ efficiency = used_resources[resource] / total_resources[resource]
262
+ efficiencies.append(efficiency)
263
+
264
+ return np.mean(efficiencies) if efficiencies else 0.0
265
+
266
+ def get_portfolio_insights(self) -> Dict[str, Any]:
267
+ """Get comprehensive portfolio insights."""
268
+ metrics = self._calculate_portfolio_metrics()
269
+
270
+ return {
271
+ "portfolio_metrics": metrics,
272
+ "venture_metrics": {
273
+ venture_id: {
274
+ "revenue": v.revenue,
275
+ "profit": v.profit,
276
+ "growth_rate": v.growth_rate,
277
+ "risk_score": v.risk_score,
278
+ "synergy_score": v.synergy_score
279
+ }
280
+ for venture_id, v in self.ventures.items()
281
+ },
282
+ "resource_allocation": {
283
+ venture_id: {
284
+ "resources": a.resources,
285
+ "priority": a.priority,
286
+ "constraints": len(a.constraints),
287
+ "dependencies": len(a.dependencies)
288
+ }
289
+ for venture_id, a in self.allocations.items()
290
+ },
291
+ "risk_profile": {
292
+ "portfolio_risk": metrics["avg_risk"],
293
+ "risk_concentration": self._calculate_risk_concentration(),
294
+ "risk_correlation": self._calculate_risk_correlation()
295
+ },
296
+ "optimization_opportunities": self._identify_optimization_opportunities()
297
+ }
298
+
299
+ def _calculate_risk_concentration(self) -> float:
300
+ """Calculate risk concentration in portfolio."""
301
+ if not self.ventures:
302
+ return 0.0
303
+
304
+ risk_weights = [v.risk_score for v in self.ventures.values()]
305
+ return np.std(risk_weights) if len(risk_weights) > 1 else 0.0
306
+
307
+ def _calculate_risk_correlation(self) -> float:
308
+ """Calculate risk correlation between ventures."""
309
+ if len(self.ventures) < 2:
310
+ return 0.0
311
+
312
+ # Create correlation matrix of risk scores and resource usage
313
+ venture_metrics = [
314
+ [v.risk_score] + list(v.resource_usage.values())
315
+ for v in self.ventures.values()
316
+ ]
317
+
318
+ correlation_matrix = np.corrcoef(venture_metrics)
319
+ return np.mean(correlation_matrix[np.triu_indices_from(correlation_matrix, k=1)])
320
+
321
+ def _identify_optimization_opportunities(self) -> List[Dict[str, Any]]:
322
+ """Identify portfolio optimization opportunities."""
323
+ opportunities = []
324
+
325
+ # Resource optimization opportunities
326
+ resource_efficiency = self._calculate_resource_efficiency()
327
+ if resource_efficiency < 0.8:
328
+ opportunities.append({
329
+ "type": "resource_optimization",
330
+ "potential": 1.0 - resource_efficiency,
331
+ "description": "Improve resource utilization efficiency"
332
+ })
333
+
334
+ # Risk optimization opportunities
335
+ risk_concentration = self._calculate_risk_concentration()
336
+ if risk_concentration > 0.2:
337
+ opportunities.append({
338
+ "type": "risk_diversification",
339
+ "potential": risk_concentration,
340
+ "description": "Reduce risk concentration"
341
+ })
342
+
343
+ # Synergy optimization opportunities
344
+ avg_synergy = np.mean([v.synergy_score for v in self.ventures.values()]) if self.ventures else 0
345
+ if avg_synergy < 0.7:
346
+ opportunities.append({
347
+ "type": "synergy_capture",
348
+ "potential": 1.0 - avg_synergy,
349
+ "description": "Increase synergy capture"
350
+ })
351
+
352
+ return opportunities
reasoning/quantum.py ADDED
@@ -0,0 +1,353 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Quantum-inspired reasoning implementations."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List
5
+ import json
6
+
7
+ from .base import ReasoningStrategy
8
+
9
+ class QuantumReasoning(ReasoningStrategy):
10
+ """Implements quantum-inspired reasoning using superposition and entanglement principles."""
11
+
12
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
13
+ try:
14
+ # Create superposition of possibilities
15
+ superposition = await self._create_superposition(query, context)
16
+
17
+ # Analyze entanglements
18
+ entanglements = await self._analyze_entanglements(superposition, context)
19
+
20
+ # Perform quantum interference
21
+ interference = await self._quantum_interference(superposition, entanglements, context)
22
+
23
+ # Collapse to solution
24
+ solution = await self._collapse_to_solution(interference, context)
25
+
26
+ return {
27
+ "success": True,
28
+ "answer": solution["conclusion"],
29
+ "superposition": superposition,
30
+ "entanglements": entanglements,
31
+ "interference_patterns": interference,
32
+ "measurement": solution["measurement"],
33
+ "confidence": solution["confidence"]
34
+ }
35
+ except Exception as e:
36
+ return {"success": False, "error": str(e)}
37
+
38
+ async def _create_superposition(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]:
39
+ prompt = f"""
40
+ Create superposition of possible solutions:
41
+ Query: {query}
42
+ Context: {json.dumps(context)}
43
+
44
+ For each possibility state:
45
+ 1. [State]: Description of possibility
46
+ 2. [Amplitude]: Relative strength (0-1)
47
+ 3. [Phase]: Relationship to other states
48
+ 4. [Basis]: Underlying assumptions
49
+
50
+ Format as:
51
+ [S1]
52
+ State: ...
53
+ Amplitude: ...
54
+ Phase: ...
55
+ Basis: ...
56
+ """
57
+
58
+ response = await context["groq_api"].predict(prompt)
59
+ return self._parse_superposition(response["answer"])
60
+
61
+ async def _analyze_entanglements(self, superposition: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
62
+ prompt = f"""
63
+ Analyze entanglements between possibilities:
64
+ Superposition: {json.dumps(superposition)}
65
+ Context: {json.dumps(context)}
66
+
67
+ For each entanglement describe:
68
+ 1. [States]: Entangled states
69
+ 2. [Type]: Nature of entanglement
70
+ 3. [Strength]: Correlation strength
71
+ 4. [Impact]: Effect on outcomes
72
+
73
+ Format as:
74
+ [E1]
75
+ States: ...
76
+ Type: ...
77
+ Strength: ...
78
+ Impact: ...
79
+ """
80
+
81
+ response = await context["groq_api"].predict(prompt)
82
+ return self._parse_entanglements(response["answer"])
83
+
84
+ async def _quantum_interference(self, superposition: List[Dict[str, Any]], entanglements: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
85
+ prompt = f"""
86
+ Calculate quantum interference patterns:
87
+ Superposition: {json.dumps(superposition)}
88
+ Entanglements: {json.dumps(entanglements)}
89
+ Context: {json.dumps(context)}
90
+
91
+ For each interference pattern:
92
+ 1. [Pattern]: Description
93
+ 2. [Amplitude]: Combined strength
94
+ 3. [Phase]: Combined phase
95
+ 4. [Effect]: Impact on solution space
96
+
97
+ Format as:
98
+ [I1]
99
+ Pattern: ...
100
+ Amplitude: ...
101
+ Phase: ...
102
+ Effect: ...
103
+ """
104
+
105
+ response = await context["groq_api"].predict(prompt)
106
+ return self._parse_interference(response["answer"])
107
+
108
+ async def _collapse_to_solution(self, interference: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]:
109
+ prompt = f"""
110
+ Collapse quantum state to final solution:
111
+ Interference: {json.dumps(interference)}
112
+ Context: {json.dumps(context)}
113
+
114
+ Provide:
115
+ 1. Final measured state
116
+ 2. Measurement confidence
117
+ 3. Key quantum effects utilized
118
+ 4. Overall conclusion
119
+ 5. Confidence level (0-1)
120
+ """
121
+
122
+ response = await context["groq_api"].predict(prompt)
123
+ return self._parse_collapse(response["answer"])
124
+
125
+ def _parse_superposition(self, response: str) -> List[Dict[str, Any]]:
126
+ """Parse superposition states from response."""
127
+ superposition = []
128
+ current_state = None
129
+
130
+ for line in response.split('\n'):
131
+ line = line.strip()
132
+ if not line:
133
+ continue
134
+
135
+ if line.startswith('[S'):
136
+ if current_state:
137
+ superposition.append(current_state)
138
+ current_state = {
139
+ "state": "",
140
+ "amplitude": 0.0,
141
+ "phase": "",
142
+ "basis": ""
143
+ }
144
+ elif current_state:
145
+ if line.startswith('State:'):
146
+ current_state["state"] = line[6:].strip()
147
+ elif line.startswith('Amplitude:'):
148
+ try:
149
+ current_state["amplitude"] = float(line[10:].strip())
150
+ except:
151
+ pass
152
+ elif line.startswith('Phase:'):
153
+ current_state["phase"] = line[6:].strip()
154
+ elif line.startswith('Basis:'):
155
+ current_state["basis"] = line[6:].strip()
156
+
157
+ if current_state:
158
+ superposition.append(current_state)
159
+
160
+ return superposition
161
+
162
+ def _parse_entanglements(self, response: str) -> List[Dict[str, Any]]:
163
+ """Parse entanglements from response."""
164
+ entanglements = []
165
+ current_entanglement = None
166
+
167
+ for line in response.split('\n'):
168
+ line = line.strip()
169
+ if not line:
170
+ continue
171
+
172
+ if line.startswith('[E'):
173
+ if current_entanglement:
174
+ entanglements.append(current_entanglement)
175
+ current_entanglement = {
176
+ "states": "",
177
+ "type": "",
178
+ "strength": 0.0,
179
+ "impact": ""
180
+ }
181
+ elif current_entanglement:
182
+ if line.startswith('States:'):
183
+ current_entanglement["states"] = line[7:].strip()
184
+ elif line.startswith('Type:'):
185
+ current_entanglement["type"] = line[5:].strip()
186
+ elif line.startswith('Strength:'):
187
+ try:
188
+ current_entanglement["strength"] = float(line[9:].strip())
189
+ except:
190
+ pass
191
+ elif line.startswith('Impact:'):
192
+ current_entanglement["impact"] = line[7:].strip()
193
+
194
+ if current_entanglement:
195
+ entanglements.append(current_entanglement)
196
+
197
+ return entanglements
198
+
199
+ def _parse_interference(self, response: str) -> List[Dict[str, Any]]:
200
+ """Parse interference patterns from response."""
201
+ interference = []
202
+ current_pattern = None
203
+
204
+ for line in response.split('\n'):
205
+ line = line.strip()
206
+ if not line:
207
+ continue
208
+
209
+ if line.startswith('[I'):
210
+ if current_pattern:
211
+ interference.append(current_pattern)
212
+ current_pattern = {
213
+ "pattern": "",
214
+ "amplitude": 0.0,
215
+ "phase": "",
216
+ "effect": ""
217
+ }
218
+ elif current_pattern:
219
+ if line.startswith('Pattern:'):
220
+ current_pattern["pattern"] = line[8:].strip()
221
+ elif line.startswith('Amplitude:'):
222
+ try:
223
+ current_pattern["amplitude"] = float(line[10:].strip())
224
+ except:
225
+ pass
226
+ elif line.startswith('Phase:'):
227
+ current_pattern["phase"] = line[6:].strip()
228
+ elif line.startswith('Effect:'):
229
+ current_pattern["effect"] = line[7:].strip()
230
+
231
+ if current_pattern:
232
+ interference.append(current_pattern)
233
+
234
+ return interference
235
+
236
+ def _parse_collapse(self, response: str) -> Dict[str, Any]:
237
+ """Parse collapse to solution from response."""
238
+ collapse = {
239
+ "measurement": "",
240
+ "confidence": 0.0,
241
+ "quantum_effects": [],
242
+ "conclusion": ""
243
+ }
244
+
245
+ mode = None
246
+ for line in response.split('\n'):
247
+ line = line.strip()
248
+ if not line:
249
+ continue
250
+
251
+ if line.startswith('Measurement:'):
252
+ collapse["measurement"] = line[12:].strip()
253
+ elif line.startswith('Confidence:'):
254
+ try:
255
+ collapse["confidence"] = float(line[11:].strip())
256
+ except:
257
+ collapse["confidence"] = 0.5
258
+ elif line.startswith('Quantum Effects:'):
259
+ mode = "effects"
260
+ elif mode == "effects" and line.startswith('- '):
261
+ collapse["quantum_effects"].append(line[2:].strip())
262
+ elif line.startswith('Conclusion:'):
263
+ collapse["conclusion"] = line[11:].strip()
264
+
265
+ return collapse
266
+
267
+
268
+ class QuantumInspiredStrategy(ReasoningStrategy):
269
+ """Implements Quantum-Inspired reasoning."""
270
+
271
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
272
+ try:
273
+ # Create a clean context for serialization
274
+ clean_context = {k: v for k, v in context.items() if k != "groq_api"}
275
+
276
+ prompt = f"""
277
+ You are a meta-learning reasoning system that adapts its approach based on problem characteristics.
278
+
279
+ Problem Type:
280
+ Query: {query}
281
+ Context: {json.dumps(clean_context)}
282
+
283
+ Analyze this problem using meta-learning principles. Structure your response EXACTLY as follows:
284
+
285
+ PROBLEM ANALYSIS:
286
+ - [First key aspect or complexity factor]
287
+ - [Second key aspect or complexity factor]
288
+ - [Third key aspect or complexity factor]
289
+
290
+ SOLUTION PATHS:
291
+ - Path 1: [Specific solution approach]
292
+ - Path 2: [Alternative solution approach]
293
+ - Path 3: [Another alternative approach]
294
+
295
+ META INSIGHTS:
296
+ - Learning 1: [Key insight about the problem space]
297
+ - Learning 2: [Key insight about solution approaches]
298
+ - Learning 3: [Key insight about trade-offs]
299
+
300
+ CONCLUSION:
301
+ [Final synthesized solution incorporating meta-learnings]
302
+ """
303
+
304
+ response = await context["groq_api"].predict(prompt)
305
+
306
+ if not response["success"]:
307
+ return response
308
+
309
+ # Parse response into components
310
+ lines = response["answer"].split("\n")
311
+ problem_analysis = []
312
+ solution_paths = []
313
+ meta_insights = []
314
+ conclusion = ""
315
+
316
+ section = None
317
+ for line in lines:
318
+ line = line.strip()
319
+ if not line:
320
+ continue
321
+
322
+ if "PROBLEM ANALYSIS:" in line:
323
+ section = "analysis"
324
+ elif "SOLUTION PATHS:" in line:
325
+ section = "paths"
326
+ elif "META INSIGHTS:" in line:
327
+ section = "insights"
328
+ elif "CONCLUSION:" in line:
329
+ section = "conclusion"
330
+ elif line.startswith("-"):
331
+ content = line.lstrip("- ").strip()
332
+ if section == "analysis":
333
+ problem_analysis.append(content)
334
+ elif section == "paths":
335
+ solution_paths.append(content)
336
+ elif section == "insights":
337
+ meta_insights.append(content)
338
+ elif section == "conclusion":
339
+ conclusion += line + " "
340
+
341
+ return {
342
+ "success": True,
343
+ "problem_analysis": problem_analysis,
344
+ "solution_paths": solution_paths,
345
+ "meta_insights": meta_insights,
346
+ "conclusion": conclusion.strip(),
347
+ # Add standard fields for compatibility
348
+ "reasoning_path": problem_analysis + solution_paths + meta_insights,
349
+ "conclusion": conclusion.strip()
350
+ }
351
+
352
+ except Exception as e:
353
+ return {"success": False, "error": str(e)}
reasoning/recursive.py ADDED
@@ -0,0 +1,566 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Recursive reasoning implementation with advanced decomposition and synthesis."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Tuple, Callable
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import asyncio
10
+ from collections import defaultdict
11
+
12
+ from .base import ReasoningStrategy
13
+
14
+ class SubproblemType(Enum):
15
+ """Types of subproblems in recursive reasoning."""
16
+ ATOMIC = "atomic"
17
+ COMPOSITE = "composite"
18
+ PARALLEL = "parallel"
19
+ SEQUENTIAL = "sequential"
20
+ CONDITIONAL = "conditional"
21
+ ITERATIVE = "iterative"
22
+
23
+ class SolutionStatus(Enum):
24
+ """Status of subproblem solutions."""
25
+ PENDING = "pending"
26
+ IN_PROGRESS = "in_progress"
27
+ SOLVED = "solved"
28
+ FAILED = "failed"
29
+ BLOCKED = "blocked"
30
+ OPTIMIZING = "optimizing"
31
+
32
+ @dataclass
33
+ class Subproblem:
34
+ """Represents a subproblem in recursive reasoning."""
35
+ id: str
36
+ type: SubproblemType
37
+ query: str
38
+ context: Dict[str, Any]
39
+ parent_id: Optional[str]
40
+ children: List[str]
41
+ status: SolutionStatus
42
+ solution: Optional[Dict[str, Any]]
43
+ confidence: float
44
+ dependencies: List[str]
45
+ metadata: Dict[str, Any] = field(default_factory=dict)
46
+
47
+ @dataclass
48
+ class RecursiveStep:
49
+ """Represents a step in recursive reasoning."""
50
+ id: str
51
+ subproblem_id: str
52
+ action: str
53
+ timestamp: datetime
54
+ result: Optional[Dict[str, Any]]
55
+ metrics: Dict[str, float]
56
+ metadata: Dict[str, Any] = field(default_factory=dict)
57
+
58
+ class RecursiveReasoning(ReasoningStrategy):
59
+ """
60
+ Advanced Recursive Reasoning implementation with:
61
+ - Dynamic problem decomposition
62
+ - Parallel subproblem solving
63
+ - Solution synthesis
64
+ - Cycle detection
65
+ - Optimization strategies
66
+ """
67
+
68
+ def __init__(self,
69
+ max_depth: int = 5,
70
+ min_confidence: float = 0.7,
71
+ parallel_threshold: int = 3,
72
+ optimization_rounds: int = 2):
73
+ self.max_depth = max_depth
74
+ self.min_confidence = min_confidence
75
+ self.parallel_threshold = parallel_threshold
76
+ self.optimization_rounds = optimization_rounds
77
+
78
+ # Problem tracking
79
+ self.subproblems: Dict[str, Subproblem] = {}
80
+ self.steps: List[RecursiveStep] = []
81
+ self.solution_cache: Dict[str, Dict[str, Any]] = {}
82
+ self.cycle_detection: Set[str] = set()
83
+
84
+ # Performance metrics
85
+ self.depth_distribution: Dict[int, int] = defaultdict(int)
86
+ self.type_distribution: Dict[SubproblemType, int] = defaultdict(int)
87
+ self.success_rate: Dict[SubproblemType, float] = defaultdict(float)
88
+
89
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
90
+ """Main reasoning method implementing recursive reasoning."""
91
+ try:
92
+ # Initialize root problem
93
+ root = await self._initialize_problem(query, context)
94
+ self.subproblems[root.id] = root
95
+
96
+ # Recursively solve
97
+ solution = await self._solve_recursive(root.id, depth=0)
98
+
99
+ # Optimize solution
100
+ optimized = await self._optimize_solution(solution, root, context)
101
+
102
+ # Update metrics
103
+ self._update_metrics(root.id)
104
+
105
+ return {
106
+ "success": True,
107
+ "answer": optimized["answer"],
108
+ "confidence": optimized["confidence"],
109
+ "decomposition": self._get_problem_tree(root.id),
110
+ "solution_trace": self._get_solution_trace(root.id),
111
+ "performance_metrics": self._get_performance_metrics(),
112
+ "meta_insights": optimized["meta_insights"]
113
+ }
114
+ except Exception as e:
115
+ logging.error(f"Error in recursive reasoning: {str(e)}")
116
+ return {"success": False, "error": str(e)}
117
+
118
+ async def _initialize_problem(self, query: str, context: Dict[str, Any]) -> Subproblem:
119
+ """Initialize the root problem."""
120
+ prompt = f"""
121
+ Initialize recursive reasoning problem:
122
+ Query: {query}
123
+ Context: {json.dumps(context)}
124
+
125
+ Analyze for:
126
+ 1. Problem type classification
127
+ 2. Initial decomposition strategy
128
+ 3. Key dependencies
129
+ 4. Solution approach
130
+
131
+ Format as:
132
+ [Problem]
133
+ Type: ...
134
+ Strategy: ...
135
+ Dependencies: ...
136
+ Approach: ...
137
+ """
138
+
139
+ response = await context["groq_api"].predict(prompt)
140
+ return self._parse_problem_init(response["answer"], query, context)
141
+
142
+ async def _decompose_problem(self, problem: Subproblem, context: Dict[str, Any]) -> List[Subproblem]:
143
+ """Decompose a problem into subproblems."""
144
+ prompt = f"""
145
+ Decompose problem into subproblems:
146
+ Problem: {json.dumps(self._problem_to_dict(problem))}
147
+ Context: {json.dumps(context)}
148
+
149
+ For each subproblem specify:
150
+ 1. [Type]: {" | ".join([t.value for t in SubproblemType])}
151
+ 2. [Query]: Specific question
152
+ 3. [Dependencies]: Required solutions
153
+ 4. [Approach]: Solution strategy
154
+
155
+ Format as:
156
+ [S1]
157
+ Type: ...
158
+ Query: ...
159
+ Dependencies: ...
160
+ Approach: ...
161
+ """
162
+
163
+ response = await context["groq_api"].predict(prompt)
164
+ return self._parse_subproblems(response["answer"], problem.id, context)
165
+
166
+ async def _solve_recursive(self, problem_id: str, depth: int) -> Dict[str, Any]:
167
+ """Recursively solve a problem and its subproblems."""
168
+ if depth > self.max_depth:
169
+ return {"success": False, "error": "Maximum recursion depth exceeded"}
170
+
171
+ if problem_id in self.cycle_detection:
172
+ return {"success": False, "error": "Cycle detected in recursive solving"}
173
+
174
+ problem = self.subproblems[problem_id]
175
+ self.cycle_detection.add(problem_id)
176
+ self.depth_distribution[depth] += 1
177
+
178
+ try:
179
+ # Check cache
180
+ cache_key = f"{problem.query}:{json.dumps(problem.context)}"
181
+ if cache_key in self.solution_cache:
182
+ return self.solution_cache[cache_key]
183
+
184
+ # Check if atomic
185
+ if problem.type == SubproblemType.ATOMIC:
186
+ solution = await self._solve_atomic(problem)
187
+ else:
188
+ # Decompose
189
+ subproblems = await self._decompose_problem(problem, problem.context)
190
+ for sub in subproblems:
191
+ self.subproblems[sub.id] = sub
192
+ problem.children.append(sub.id)
193
+
194
+ # Solve subproblems
195
+ if problem.type == SubproblemType.PARALLEL and len(subproblems) >= self.parallel_threshold:
196
+ # Solve in parallel
197
+ tasks = [self._solve_recursive(sub.id, depth + 1) for sub in subproblems]
198
+ subsolutions = await asyncio.gather(*tasks)
199
+ else:
200
+ # Solve sequentially
201
+ subsolutions = []
202
+ for sub in subproblems:
203
+ subsolution = await self._solve_recursive(sub.id, depth + 1)
204
+ subsolutions.append(subsolution)
205
+
206
+ # Synthesize solutions
207
+ solution = await self._synthesize_solutions(subsolutions, problem, problem.context)
208
+
209
+ # Cache solution
210
+ self.solution_cache[cache_key] = solution
211
+ problem.solution = solution
212
+ problem.status = SolutionStatus.SOLVED if solution["success"] else SolutionStatus.FAILED
213
+
214
+ return solution
215
+
216
+ finally:
217
+ self.cycle_detection.remove(problem_id)
218
+
219
+ async def _solve_atomic(self, problem: Subproblem) -> Dict[str, Any]:
220
+ """Solve an atomic problem."""
221
+ prompt = f"""
222
+ Solve atomic problem:
223
+ Problem: {json.dumps(self._problem_to_dict(problem))}
224
+
225
+ Provide:
226
+ 1. Direct solution
227
+ 2. Confidence level
228
+ 3. Supporting evidence
229
+ 4. Alternative approaches
230
+
231
+ Format as:
232
+ [Solution]
233
+ Answer: ...
234
+ Confidence: ...
235
+ Evidence: ...
236
+ Alternatives: ...
237
+ """
238
+
239
+ response = await problem.context["groq_api"].predict(prompt)
240
+ solution = self._parse_atomic_solution(response["answer"])
241
+
242
+ self._record_step(RecursiveStep(
243
+ id=f"step_{len(self.steps)}",
244
+ subproblem_id=problem.id,
245
+ action="atomic_solve",
246
+ timestamp=datetime.now(),
247
+ result=solution,
248
+ metrics={"confidence": solution.get("confidence", 0.0)},
249
+ metadata={}
250
+ ))
251
+
252
+ return solution
253
+
254
+ async def _synthesize_solutions(self, subsolutions: List[Dict[str, Any]], problem: Subproblem, context: Dict[str, Any]) -> Dict[str, Any]:
255
+ """Synthesize solutions from subproblems."""
256
+ prompt = f"""
257
+ Synthesize solutions:
258
+ Problem: {json.dumps(self._problem_to_dict(problem))}
259
+ Solutions: {json.dumps(subsolutions)}
260
+ Context: {json.dumps(context)}
261
+
262
+ Provide:
263
+ 1. Integrated solution
264
+ 2. Confidence assessment
265
+ 3. Integration method
266
+ 4. Quality metrics
267
+
268
+ Format as:
269
+ [Synthesis]
270
+ Solution: ...
271
+ Confidence: ...
272
+ Method: ...
273
+ Metrics: ...
274
+ """
275
+
276
+ response = await context["groq_api"].predict(prompt)
277
+ synthesis = self._parse_synthesis(response["answer"])
278
+
279
+ self._record_step(RecursiveStep(
280
+ id=f"step_{len(self.steps)}",
281
+ subproblem_id=problem.id,
282
+ action="synthesize",
283
+ timestamp=datetime.now(),
284
+ result=synthesis,
285
+ metrics={"confidence": synthesis.get("confidence", 0.0)},
286
+ metadata={"num_subsolutions": len(subsolutions)}
287
+ ))
288
+
289
+ return synthesis
290
+
291
+ async def _optimize_solution(self, solution: Dict[str, Any], problem: Subproblem, context: Dict[str, Any]) -> Dict[str, Any]:
292
+ """Optimize the final solution."""
293
+ prompt = f"""
294
+ Optimize recursive solution:
295
+ Original: {json.dumps(solution)}
296
+ Problem: {json.dumps(self._problem_to_dict(problem))}
297
+ Context: {json.dumps(context)}
298
+
299
+ Optimize for:
300
+ 1. Completeness
301
+ 2. Consistency
302
+ 3. Efficiency
303
+ 4. Clarity
304
+
305
+ Format as:
306
+ [Optimization]
307
+ Answer: ...
308
+ Improvements: ...
309
+ Metrics: ...
310
+ Insights: ...
311
+ """
312
+
313
+ response = await context["groq_api"].predict(prompt)
314
+ return self._parse_optimization(response["answer"])
315
+
316
+ def _update_metrics(self, root_id: str):
317
+ """Update performance metrics."""
318
+ def update_recursive(problem_id: str):
319
+ problem = self.subproblems[problem_id]
320
+ self.type_distribution[problem.type] += 1
321
+
322
+ if problem.status == SolutionStatus.SOLVED:
323
+ self.success_rate[problem.type] = (
324
+ self.success_rate[problem.type] * (self.type_distribution[problem.type] - 1) +
325
+ problem.confidence
326
+ ) / self.type_distribution[problem.type]
327
+
328
+ for child_id in problem.children:
329
+ update_recursive(child_id)
330
+
331
+ update_recursive(root_id)
332
+
333
+ def _get_problem_tree(self, root_id: str) -> Dict[str, Any]:
334
+ """Get the problem decomposition tree."""
335
+ def build_tree(problem_id: str) -> Dict[str, Any]:
336
+ problem = self.subproblems[problem_id]
337
+ return {
338
+ "id": problem.id,
339
+ "type": problem.type.value,
340
+ "query": problem.query,
341
+ "status": problem.status.value,
342
+ "confidence": problem.confidence,
343
+ "children": [build_tree(child_id) for child_id in problem.children]
344
+ }
345
+
346
+ return build_tree(root_id)
347
+
348
+ def _get_solution_trace(self, root_id: str) -> List[Dict[str, Any]]:
349
+ """Get the solution trace for a problem."""
350
+ return [self._step_to_dict(step) for step in self.steps
351
+ if step.subproblem_id == root_id or
352
+ any(step.subproblem_id == sub_id for sub_id in self.subproblems[root_id].children)]
353
+
354
+ def _get_performance_metrics(self) -> Dict[str, Any]:
355
+ """Get current performance metrics."""
356
+ return {
357
+ "depth_distribution": dict(self.depth_distribution),
358
+ "type_distribution": {t.value: c for t, c in self.type_distribution.items()},
359
+ "success_rate": {t.value: r for t, r in self.success_rate.items()},
360
+ "cache_hits": len(self.solution_cache),
361
+ "total_steps": len(self.steps)
362
+ }
363
+
364
+ def _record_step(self, step: RecursiveStep):
365
+ """Record a reasoning step."""
366
+ self.steps.append(step)
367
+
368
+ def _parse_problem_init(self, response: str, query: str, context: Dict[str, Any]) -> Subproblem:
369
+ """Parse initial problem configuration."""
370
+ problem_type = SubproblemType.COMPOSITE # default
371
+ dependencies = []
372
+ metadata = {}
373
+
374
+ for line in response.split('\n'):
375
+ line = line.strip()
376
+ if line.startswith('Type:'):
377
+ try:
378
+ problem_type = SubproblemType(line[5:].strip().lower())
379
+ except ValueError:
380
+ pass
381
+ elif line.startswith('Dependencies:'):
382
+ dependencies = [d.strip() for d in line[13:].split(',')]
383
+ elif line.startswith('Strategy:') or line.startswith('Approach:'):
384
+ metadata["strategy"] = line.split(':', 1)[1].strip()
385
+
386
+ return Subproblem(
387
+ id="root",
388
+ type=problem_type,
389
+ query=query,
390
+ context=context,
391
+ parent_id=None,
392
+ children=[],
393
+ status=SolutionStatus.PENDING,
394
+ solution=None,
395
+ confidence=0.0,
396
+ dependencies=dependencies,
397
+ metadata=metadata
398
+ )
399
+
400
+ def _parse_subproblems(self, response: str, parent_id: str, context: Dict[str, Any]) -> List[Subproblem]:
401
+ """Parse subproblems from response."""
402
+ subproblems = []
403
+ current = None
404
+
405
+ for line in response.split('\n'):
406
+ line = line.strip()
407
+ if not line:
408
+ continue
409
+
410
+ if line.startswith('[S'):
411
+ if current:
412
+ subproblems.append(current)
413
+ current = None
414
+ elif line.startswith('Type:'):
415
+ try:
416
+ problem_type = SubproblemType(line[5:].strip().lower())
417
+ current = Subproblem(
418
+ id=f"{parent_id}_{len(subproblems)}",
419
+ type=problem_type,
420
+ query="",
421
+ context=context,
422
+ parent_id=parent_id,
423
+ children=[],
424
+ status=SolutionStatus.PENDING,
425
+ solution=None,
426
+ confidence=0.0,
427
+ dependencies=[],
428
+ metadata={}
429
+ )
430
+ except ValueError:
431
+ current = None
432
+ elif current:
433
+ if line.startswith('Query:'):
434
+ current.query = line[6:].strip()
435
+ elif line.startswith('Dependencies:'):
436
+ current.dependencies = [d.strip() for d in line[13:].split(',')]
437
+ elif line.startswith('Approach:'):
438
+ current.metadata["approach"] = line[9:].strip()
439
+
440
+ if current:
441
+ subproblems.append(current)
442
+
443
+ return subproblems
444
+
445
+ def _parse_atomic_solution(self, response: str) -> Dict[str, Any]:
446
+ """Parse atomic solution from response."""
447
+ solution = {
448
+ "success": True,
449
+ "answer": "",
450
+ "confidence": 0.0,
451
+ "evidence": [],
452
+ "alternatives": []
453
+ }
454
+
455
+ for line in response.split('\n'):
456
+ line = line.strip()
457
+ if line.startswith('Answer:'):
458
+ solution["answer"] = line[7:].strip()
459
+ elif line.startswith('Confidence:'):
460
+ try:
461
+ solution["confidence"] = float(line[11:].strip())
462
+ except:
463
+ pass
464
+ elif line.startswith('Evidence:'):
465
+ solution["evidence"] = [e.strip() for e in line[9:].split(',')]
466
+ elif line.startswith('Alternatives:'):
467
+ solution["alternatives"] = [a.strip() for a in line[13:].split(',')]
468
+
469
+ return solution
470
+
471
+ def _parse_synthesis(self, response: str) -> Dict[str, Any]:
472
+ """Parse synthesis result from response."""
473
+ synthesis = {
474
+ "success": True,
475
+ "solution": "",
476
+ "confidence": 0.0,
477
+ "method": "",
478
+ "metrics": {}
479
+ }
480
+
481
+ for line in response.split('\n'):
482
+ line = line.strip()
483
+ if line.startswith('Solution:'):
484
+ synthesis["solution"] = line[9:].strip()
485
+ elif line.startswith('Confidence:'):
486
+ try:
487
+ synthesis["confidence"] = float(line[11:].strip())
488
+ except:
489
+ pass
490
+ elif line.startswith('Method:'):
491
+ synthesis["method"] = line[7:].strip()
492
+ elif line.startswith('Metrics:'):
493
+ try:
494
+ synthesis["metrics"] = json.loads(line[8:].strip())
495
+ except:
496
+ pass
497
+
498
+ return synthesis
499
+
500
+ def _parse_optimization(self, response: str) -> Dict[str, Any]:
501
+ """Parse optimization result from response."""
502
+ optimization = {
503
+ "answer": "",
504
+ "confidence": 0.0,
505
+ "improvements": [],
506
+ "metrics": {},
507
+ "meta_insights": []
508
+ }
509
+
510
+ for line in response.split('\n'):
511
+ line = line.strip()
512
+ if line.startswith('Answer:'):
513
+ optimization["answer"] = line[7:].strip()
514
+ elif line.startswith('Improvements:'):
515
+ optimization["improvements"] = [i.strip() for i in line[13:].split(',')]
516
+ elif line.startswith('Metrics:'):
517
+ try:
518
+ optimization["metrics"] = json.loads(line[8:].strip())
519
+ except:
520
+ pass
521
+ elif line.startswith('Insights:'):
522
+ optimization["meta_insights"] = [i.strip() for i in line[9:].split(',')]
523
+
524
+ return optimization
525
+
526
+ def _problem_to_dict(self, problem: Subproblem) -> Dict[str, Any]:
527
+ """Convert problem to dictionary for serialization."""
528
+ return {
529
+ "id": problem.id,
530
+ "type": problem.type.value,
531
+ "query": problem.query,
532
+ "parent_id": problem.parent_id,
533
+ "children": problem.children,
534
+ "status": problem.status.value,
535
+ "confidence": problem.confidence,
536
+ "dependencies": problem.dependencies,
537
+ "metadata": problem.metadata
538
+ }
539
+
540
+ def _step_to_dict(self, step: RecursiveStep) -> Dict[str, Any]:
541
+ """Convert step to dictionary for serialization."""
542
+ return {
543
+ "id": step.id,
544
+ "subproblem_id": step.subproblem_id,
545
+ "action": step.action,
546
+ "timestamp": step.timestamp.isoformat(),
547
+ "result": step.result,
548
+ "metrics": step.metrics,
549
+ "metadata": step.metadata
550
+ }
551
+
552
+ def clear_cache(self):
553
+ """Clear solution cache."""
554
+ self.solution_cache.clear()
555
+
556
+ def get_statistics(self) -> Dict[str, Any]:
557
+ """Get detailed statistics about the reasoning process."""
558
+ return {
559
+ "total_problems": len(self.subproblems),
560
+ "total_steps": len(self.steps),
561
+ "cache_size": len(self.solution_cache),
562
+ "type_distribution": dict(self.type_distribution),
563
+ "depth_distribution": dict(self.depth_distribution),
564
+ "success_rates": dict(self.success_rate),
565
+ "average_confidence": sum(p.confidence for p in self.subproblems.values()) / len(self.subproblems) if self.subproblems else 0.0
566
+ }
reasoning/specialized.py ADDED
@@ -0,0 +1,313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Specialized reasoning strategies for specific domains and tasks."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type, Callable
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import asyncio
10
+ from collections import defaultdict
11
+
12
+ from .base import ReasoningStrategy
13
+
14
+ class CodeRewriteStrategy(ReasoningStrategy):
15
+ """
16
+ Advanced code rewriting strategy that:
17
+ 1. Analyzes code structure and patterns
18
+ 2. Identifies refactoring opportunities
19
+ 3. Maintains code semantics
20
+ 4. Optimizes code quality
21
+ 5. Ensures backward compatibility
22
+ """
23
+
24
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
25
+ """Rewrite code while preserving functionality."""
26
+ try:
27
+ # Analyze code
28
+ analysis = await self._analyze_code(query, context)
29
+
30
+ # Generate rewrite plan
31
+ plan = await self._generate_rewrite_plan(analysis, context)
32
+
33
+ # Execute rewrites
34
+ rewrites = await self._execute_rewrites(plan, context)
35
+
36
+ # Validate changes
37
+ validation = await self._validate_changes(rewrites, context)
38
+
39
+ return {
40
+ "success": validation["success"],
41
+ "rewrites": rewrites,
42
+ "validation": validation,
43
+ "metrics": {
44
+ "quality_improvement": validation.get("quality_score", 0.0),
45
+ "semantic_preservation": validation.get("semantic_score", 0.0)
46
+ }
47
+ }
48
+ except Exception as e:
49
+ logging.error(f"Error in code rewrite: {str(e)}")
50
+ return {"success": False, "error": str(e)}
51
+
52
+ class SecurityAuditStrategy(ReasoningStrategy):
53
+ """
54
+ Advanced security audit strategy that:
55
+ 1. Identifies security vulnerabilities
56
+ 2. Analyzes attack vectors
57
+ 3. Recommends security fixes
58
+ 4. Validates security measures
59
+ 5. Monitors security state
60
+ """
61
+
62
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
63
+ """Perform security audit and generate recommendations."""
64
+ try:
65
+ # Scan for vulnerabilities
66
+ vulnerabilities = await self._scan_vulnerabilities(query, context)
67
+
68
+ # Analyze risks
69
+ risks = await self._analyze_risks(vulnerabilities, context)
70
+
71
+ # Generate fixes
72
+ fixes = await self._generate_fixes(risks, context)
73
+
74
+ # Validate security
75
+ validation = await self._validate_security(fixes, context)
76
+
77
+ return {
78
+ "success": True,
79
+ "vulnerabilities": vulnerabilities,
80
+ "risks": risks,
81
+ "fixes": fixes,
82
+ "validation": validation
83
+ }
84
+ except Exception as e:
85
+ logging.error(f"Error in security audit: {str(e)}")
86
+ return {"success": False, "error": str(e)}
87
+
88
+ class PerformanceOptimizationStrategy(ReasoningStrategy):
89
+ """
90
+ Advanced performance optimization strategy that:
91
+ 1. Profiles code performance
92
+ 2. Identifies bottlenecks
93
+ 3. Generates optimizations
94
+ 4. Measures improvements
95
+ 5. Validates optimizations
96
+ """
97
+
98
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
99
+ """Optimize code performance."""
100
+ try:
101
+ # Profile performance
102
+ profile = await self._profile_performance(query, context)
103
+
104
+ # Identify bottlenecks
105
+ bottlenecks = await self._identify_bottlenecks(profile, context)
106
+
107
+ # Generate optimizations
108
+ optimizations = await self._generate_optimizations(bottlenecks, context)
109
+
110
+ # Measure improvements
111
+ measurements = await self._measure_improvements(optimizations, context)
112
+
113
+ return {
114
+ "success": measurements["success"],
115
+ "profile": profile,
116
+ "bottlenecks": bottlenecks,
117
+ "optimizations": optimizations,
118
+ "improvements": measurements
119
+ }
120
+ except Exception as e:
121
+ logging.error(f"Error in performance optimization: {str(e)}")
122
+ return {"success": False, "error": str(e)}
123
+
124
+ class TestGenerationStrategy(ReasoningStrategy):
125
+ """
126
+ Advanced test generation strategy that:
127
+ 1. Analyzes code coverage
128
+ 2. Generates test cases
129
+ 3. Creates test fixtures
130
+ 4. Validates test quality
131
+ 5. Maintains test suite
132
+ """
133
+
134
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
135
+ """Generate comprehensive test suite."""
136
+ try:
137
+ # Analyze coverage
138
+ coverage = await self._analyze_coverage(query, context)
139
+
140
+ # Generate test cases
141
+ test_cases = await self._generate_test_cases(coverage, context)
142
+
143
+ # Create fixtures
144
+ fixtures = await self._create_fixtures(test_cases, context)
145
+
146
+ # Validate tests
147
+ validation = await self._validate_tests(test_cases, fixtures, context)
148
+
149
+ return {
150
+ "success": validation["success"],
151
+ "test_cases": test_cases,
152
+ "fixtures": fixtures,
153
+ "validation": validation,
154
+ "metrics": {
155
+ "coverage": coverage.get("percentage", 0.0),
156
+ "quality_score": validation.get("quality_score", 0.0)
157
+ }
158
+ }
159
+ except Exception as e:
160
+ logging.error(f"Error in test generation: {str(e)}")
161
+ return {"success": False, "error": str(e)}
162
+
163
+ class DocumentationStrategy(ReasoningStrategy):
164
+ """
165
+ Advanced documentation strategy that:
166
+ 1. Analyzes code structure
167
+ 2. Generates documentation
168
+ 3. Maintains consistency
169
+ 4. Updates references
170
+ 5. Validates completeness
171
+ """
172
+
173
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
174
+ """Generate and maintain documentation."""
175
+ try:
176
+ # Analyze structure
177
+ structure = await self._analyze_structure(query, context)
178
+
179
+ # Generate documentation
180
+ documentation = await self._generate_documentation(structure, context)
181
+
182
+ # Update references
183
+ references = await self._update_references(documentation, context)
184
+
185
+ # Validate completeness
186
+ validation = await self._validate_documentation(documentation, references, context)
187
+
188
+ return {
189
+ "success": validation["success"],
190
+ "documentation": documentation,
191
+ "references": references,
192
+ "validation": validation,
193
+ "metrics": {
194
+ "completeness": validation.get("completeness_score", 0.0),
195
+ "consistency": validation.get("consistency_score", 0.0)
196
+ }
197
+ }
198
+ except Exception as e:
199
+ logging.error(f"Error in documentation: {str(e)}")
200
+ return {"success": False, "error": str(e)}
201
+
202
+ class APIDesignStrategy(ReasoningStrategy):
203
+ """
204
+ Advanced API design strategy that:
205
+ 1. Analyzes requirements
206
+ 2. Designs API structure
207
+ 3. Generates specifications
208
+ 4. Validates design
209
+ 5. Maintains versioning
210
+ """
211
+
212
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
213
+ """Design and validate API."""
214
+ try:
215
+ # Analyze requirements
216
+ requirements = await self._analyze_requirements(query, context)
217
+
218
+ # Design structure
219
+ design = await self._design_structure(requirements, context)
220
+
221
+ # Generate specs
222
+ specs = await self._generate_specs(design, context)
223
+
224
+ # Validate design
225
+ validation = await self._validate_design(specs, context)
226
+
227
+ return {
228
+ "success": validation["success"],
229
+ "requirements": requirements,
230
+ "design": design,
231
+ "specs": specs,
232
+ "validation": validation
233
+ }
234
+ except Exception as e:
235
+ logging.error(f"Error in API design: {str(e)}")
236
+ return {"success": False, "error": str(e)}
237
+
238
+ class DependencyManagementStrategy(ReasoningStrategy):
239
+ """
240
+ Advanced dependency management strategy that:
241
+ 1. Analyzes dependencies
242
+ 2. Resolves conflicts
243
+ 3. Optimizes versions
244
+ 4. Ensures compatibility
245
+ 5. Maintains security
246
+ """
247
+
248
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
249
+ """Manage and optimize dependencies."""
250
+ try:
251
+ # Analyze dependencies
252
+ analysis = await self._analyze_dependencies(query, context)
253
+
254
+ # Resolve conflicts
255
+ resolution = await self._resolve_conflicts(analysis, context)
256
+
257
+ # Optimize versions
258
+ optimization = await self._optimize_versions(resolution, context)
259
+
260
+ # Validate compatibility
261
+ validation = await self._validate_compatibility(optimization, context)
262
+
263
+ return {
264
+ "success": validation["success"],
265
+ "analysis": analysis,
266
+ "resolution": resolution,
267
+ "optimization": optimization,
268
+ "validation": validation
269
+ }
270
+ except Exception as e:
271
+ logging.error(f"Error in dependency management: {str(e)}")
272
+ return {"success": False, "error": str(e)}
273
+
274
+ class CodeReviewStrategy(ReasoningStrategy):
275
+ """
276
+ Advanced code review strategy that:
277
+ 1. Analyzes code quality
278
+ 2. Identifies issues
279
+ 3. Suggests improvements
280
+ 4. Tracks changes
281
+ 5. Validates fixes
282
+ """
283
+
284
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
285
+ """Perform comprehensive code review."""
286
+ try:
287
+ # Analyze quality
288
+ quality = await self._analyze_quality(query, context)
289
+
290
+ # Identify issues
291
+ issues = await self._identify_issues(quality, context)
292
+
293
+ # Generate suggestions
294
+ suggestions = await self._generate_suggestions(issues, context)
295
+
296
+ # Track changes
297
+ tracking = await self._track_changes(suggestions, context)
298
+
299
+ return {
300
+ "success": True,
301
+ "quality": quality,
302
+ "issues": issues,
303
+ "suggestions": suggestions,
304
+ "tracking": tracking,
305
+ "metrics": {
306
+ "quality_score": quality.get("score", 0.0),
307
+ "issues_found": len(issues),
308
+ "suggestions_made": len(suggestions)
309
+ }
310
+ }
311
+ except Exception as e:
312
+ logging.error(f"Error in code review: {str(e)}")
313
+ return {"success": False, "error": str(e)}
reasoning/tree_of_thoughts.py ADDED
@@ -0,0 +1,513 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tree of Thoughts reasoning implementation with advanced tree exploration."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Tuple
5
+ import json
6
+ from dataclasses import dataclass
7
+ from enum import Enum
8
+ import heapq
9
+ from collections import defaultdict
10
+
11
+ from .base import ReasoningStrategy
12
+
13
+ class NodeType(Enum):
14
+ """Types of nodes in the thought tree."""
15
+ ROOT = "root"
16
+ HYPOTHESIS = "hypothesis"
17
+ EVIDENCE = "evidence"
18
+ ANALYSIS = "analysis"
19
+ SYNTHESIS = "synthesis"
20
+ EVALUATION = "evaluation"
21
+ CONCLUSION = "conclusion"
22
+
23
+ @dataclass
24
+ class TreeNode:
25
+ """Represents a node in the thought tree."""
26
+ id: str
27
+ type: NodeType
28
+ content: str
29
+ confidence: float
30
+ children: List['TreeNode']
31
+ parent: Optional['TreeNode']
32
+ metadata: Dict[str, Any]
33
+ depth: int
34
+ evaluation_score: float = 0.0
35
+
36
+ class TreeOfThoughtsStrategy(ReasoningStrategy):
37
+ """
38
+ Advanced Tree of Thoughts reasoning implementation with:
39
+ - Beam search for path exploration
40
+ - Dynamic node evaluation
41
+ - Pruning strategies
42
+ - Path optimization
43
+ - Meta-learning from tree patterns
44
+ """
45
+
46
+ def __init__(self,
47
+ max_depth: int = 5,
48
+ beam_width: int = 3,
49
+ min_confidence: float = 0.6,
50
+ exploration_factor: float = 0.3,
51
+ prune_threshold: float = 0.4):
52
+ self.max_depth = max_depth
53
+ self.beam_width = beam_width
54
+ self.min_confidence = min_confidence
55
+ self.exploration_factor = exploration_factor
56
+ self.prune_threshold = prune_threshold
57
+ self.node_history: Dict[str, TreeNode] = {}
58
+ self.path_patterns: Dict[str, float] = defaultdict(float)
59
+
60
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
61
+ """Main reasoning method implementing tree of thoughts."""
62
+ try:
63
+ # Initialize root node
64
+ root = await self._create_root_node(query, context)
65
+
66
+ # Build and explore tree
67
+ tree = await self._build_tree(root, context)
68
+
69
+ # Find best paths
70
+ paths = await self._find_best_paths(tree, context)
71
+
72
+ # Synthesize conclusion
73
+ conclusion = await self._synthesize_conclusion(paths, context)
74
+
75
+ # Update history and patterns
76
+ self._update_history(tree)
77
+ self._update_patterns(paths)
78
+
79
+ return {
80
+ "success": True,
81
+ "answer": conclusion["answer"],
82
+ "confidence": conclusion["confidence"],
83
+ "tree": self._tree_to_dict(tree),
84
+ "best_paths": [self._path_to_dict(p) for p in paths],
85
+ "reasoning_trace": conclusion["trace"],
86
+ "meta_insights": conclusion["meta_insights"]
87
+ }
88
+ except Exception as e:
89
+ logging.error(f"Error in tree of thoughts reasoning: {str(e)}")
90
+ return {"success": False, "error": str(e)}
91
+
92
+ async def _create_root_node(self, query: str, context: Dict[str, Any]) -> TreeNode:
93
+ """Create the root node of the thought tree."""
94
+ prompt = f"""
95
+ Initialize root thought node for query:
96
+ Query: {query}
97
+ Context: {json.dumps(context)}
98
+
99
+ Provide:
100
+ 1. Initial problem decomposition
101
+ 2. Key aspects to explore
102
+ 3. Evaluation criteria
103
+ 4. Success metrics
104
+
105
+ Format as:
106
+ [Root]
107
+ Decomposition: ...
108
+ Aspects: ...
109
+ Criteria: ...
110
+ Metrics: ...
111
+ """
112
+
113
+ response = await context["groq_api"].predict(prompt)
114
+ return self._parse_root_node(response["answer"], query)
115
+
116
+ async def _build_tree(self, root: TreeNode, context: Dict[str, Any]) -> TreeNode:
117
+ """Build and explore the thought tree."""
118
+ # Initialize beam with root
119
+ beam = [(root.evaluation_score, root)]
120
+ visited: Set[str] = set()
121
+
122
+ for depth in range(self.max_depth):
123
+ next_beam = []
124
+
125
+ for _, node in beam:
126
+ if node.id in visited:
127
+ continue
128
+
129
+ visited.add(node.id)
130
+
131
+ # Generate child nodes
132
+ children = await self._generate_children(node, context)
133
+
134
+ # Evaluate and filter children
135
+ evaluated_children = await self._evaluate_nodes(children, context)
136
+
137
+ # Add to beam
138
+ for child in evaluated_children:
139
+ if child.evaluation_score > self.prune_threshold:
140
+ next_beam.append((child.evaluation_score, child))
141
+ node.children.append(child)
142
+
143
+ # Select best nodes for next iteration
144
+ beam = heapq.nlargest(self.beam_width, next_beam, key=lambda x: x[0])
145
+
146
+ if not beam:
147
+ break
148
+
149
+ return root
150
+
151
+ async def _generate_children(self, parent: TreeNode, context: Dict[str, Any]) -> List[TreeNode]:
152
+ """Generate child nodes for a given parent."""
153
+ prompt = f"""
154
+ Generate child thoughts for node:
155
+ Parent: {json.dumps(self._node_to_dict(parent))}
156
+ Context: {json.dumps(context)}
157
+
158
+ For each child provide:
159
+ 1. [Type]: {" | ".join([t.value for t in NodeType if t != NodeType.ROOT])}
160
+ 2. [Content]: Main thought
161
+ 3. [Confidence]: 0-1 score
162
+ 4. [Rationale]: Why this follows from parent
163
+ 5. [Potential]: Future exploration potential
164
+
165
+ Format as:
166
+ [C1]
167
+ Type: ...
168
+ Content: ...
169
+ Confidence: ...
170
+ Rationale: ...
171
+ Potential: ...
172
+ """
173
+
174
+ response = await context["groq_api"].predict(prompt)
175
+ return self._parse_child_nodes(response["answer"], parent)
176
+
177
+ async def _evaluate_nodes(self, nodes: List[TreeNode], context: Dict[str, Any]) -> List[TreeNode]:
178
+ """Evaluate a list of nodes."""
179
+ prompt = f"""
180
+ Evaluate thought nodes:
181
+ Nodes: {json.dumps([self._node_to_dict(n) for n in nodes])}
182
+ Context: {json.dumps(context)}
183
+
184
+ For each node evaluate:
185
+ 1. Logical coherence
186
+ 2. Evidence support
187
+ 3. Novelty value
188
+ 4. Exploration potential
189
+
190
+ Format as:
191
+ [N1]
192
+ Coherence: 0-1
193
+ Evidence: 0-1
194
+ Novelty: 0-1
195
+ Potential: 0-1
196
+ Overall: 0-1
197
+ """
198
+
199
+ response = await context["groq_api"].predict(prompt)
200
+ return self._apply_evaluations(nodes, response["answer"])
201
+
202
+ async def _find_best_paths(self, root: TreeNode, context: Dict[str, Any]) -> List[List[TreeNode]]:
203
+ """Find the best paths through the tree."""
204
+ paths = []
205
+ current_path = [root]
206
+
207
+ def dfs(node: TreeNode, path: List[TreeNode]):
208
+ if not node.children:
209
+ paths.append(path[:])
210
+ return
211
+
212
+ # Sort children by score
213
+ sorted_children = sorted(node.children, key=lambda x: x.evaluation_score, reverse=True)
214
+
215
+ # Explore top paths
216
+ for child in sorted_children[:self.beam_width]:
217
+ path.append(child)
218
+ dfs(child, path)
219
+ path.pop()
220
+
221
+ dfs(root, current_path)
222
+
223
+ # Evaluate complete paths
224
+ evaluated_paths = await self._evaluate_paths(paths, context)
225
+
226
+ # Return top paths
227
+ return sorted(evaluated_paths, key=lambda p: sum(n.evaluation_score for n in p), reverse=True)[:self.beam_width]
228
+
229
+ async def _synthesize_conclusion(self, paths: List[List[TreeNode]], context: Dict[str, Any]) -> Dict[str, Any]:
230
+ """Synthesize final conclusion from best paths."""
231
+ prompt = f"""
232
+ Synthesize conclusion from thought paths:
233
+ Paths: {json.dumps([[self._node_to_dict(n) for n in path] for path in paths])}
234
+ Context: {json.dumps(context)}
235
+
236
+ Provide:
237
+ 1. Main conclusion
238
+ 2. Confidence level
239
+ 3. Reasoning trace
240
+ 4. Supporting evidence
241
+ 5. Alternative perspectives
242
+ 6. Meta-insights
243
+
244
+ Format as:
245
+ [Conclusion]
246
+ Answer: ...
247
+ Confidence: ...
248
+ Trace: ...
249
+ Evidence: ...
250
+ Alternatives: ...
251
+
252
+ [Meta]
253
+ Insights: ...
254
+ Patterns: ...
255
+ """
256
+
257
+ response = await context["groq_api"].predict(prompt)
258
+ return self._parse_conclusion(response["answer"])
259
+
260
+ def _parse_root_node(self, response: str, query: str) -> TreeNode:
261
+ """Parse root node from response."""
262
+ root = TreeNode(
263
+ id="root",
264
+ type=NodeType.ROOT,
265
+ content=query,
266
+ confidence=1.0,
267
+ children=[],
268
+ parent=None,
269
+ metadata={},
270
+ depth=0
271
+ )
272
+
273
+ for line in response.split('\n'):
274
+ line = line.strip()
275
+ if line.startswith('Decomposition:'):
276
+ root.metadata["decomposition"] = line[14:].strip()
277
+ elif line.startswith('Aspects:'):
278
+ root.metadata["aspects"] = [a.strip() for a in line[8:].split(',')]
279
+ elif line.startswith('Criteria:'):
280
+ root.metadata["criteria"] = [c.strip() for c in line[9:].split(',')]
281
+ elif line.startswith('Metrics:'):
282
+ root.metadata["metrics"] = [m.strip() for m in line[8:].split(',')]
283
+
284
+ return root
285
+
286
+ def _parse_child_nodes(self, response: str, parent: TreeNode) -> List[TreeNode]:
287
+ """Parse child nodes from response."""
288
+ children = []
289
+ current = None
290
+
291
+ for line in response.split('\n'):
292
+ line = line.strip()
293
+ if not line:
294
+ continue
295
+
296
+ if line.startswith('[C'):
297
+ if current:
298
+ children.append(current)
299
+ current = None
300
+ elif line.startswith('Type:'):
301
+ type_str = line[5:].strip()
302
+ try:
303
+ node_type = NodeType(type_str.lower())
304
+ current = TreeNode(
305
+ id=f"{parent.id}_{len(children)}",
306
+ type=node_type,
307
+ content="",
308
+ confidence=0.0,
309
+ children=[],
310
+ parent=parent,
311
+ metadata={},
312
+ depth=parent.depth + 1
313
+ )
314
+ except ValueError:
315
+ logging.warning(f"Invalid node type: {type_str}")
316
+ elif current:
317
+ if line.startswith('Content:'):
318
+ current.content = line[8:].strip()
319
+ elif line.startswith('Confidence:'):
320
+ try:
321
+ current.confidence = float(line[11:].strip())
322
+ except:
323
+ current.confidence = 0.5
324
+ elif line.startswith('Rationale:'):
325
+ current.metadata["rationale"] = line[10:].strip()
326
+ elif line.startswith('Potential:'):
327
+ current.metadata["potential"] = line[10:].strip()
328
+
329
+ if current:
330
+ children.append(current)
331
+
332
+ return children
333
+
334
+ def _apply_evaluations(self, nodes: List[TreeNode], response: str) -> List[TreeNode]:
335
+ """Apply evaluation scores to nodes."""
336
+ current_node_idx = 0
337
+ current_scores = {}
338
+
339
+ for line in response.split('\n'):
340
+ line = line.strip()
341
+ if not line:
342
+ continue
343
+
344
+ if line.startswith('[N'):
345
+ if current_scores and current_node_idx < len(nodes):
346
+ nodes[current_node_idx].evaluation_score = current_scores.get("Overall", 0.0)
347
+ nodes[current_node_idx].metadata.update(current_scores)
348
+ current_node_idx += 1
349
+ current_scores = {}
350
+ elif ':' in line:
351
+ key, value = line.split(':')
352
+ try:
353
+ current_scores[key.strip()] = float(value.strip())
354
+ except:
355
+ pass
356
+
357
+ if current_scores and current_node_idx < len(nodes):
358
+ nodes[current_node_idx].evaluation_score = current_scores.get("Overall", 0.0)
359
+ nodes[current_node_idx].metadata.update(current_scores)
360
+
361
+ return nodes
362
+
363
+ async def _evaluate_paths(self, paths: List[List[TreeNode]], context: Dict[str, Any]) -> List[List[TreeNode]]:
364
+ """Evaluate complete reasoning paths."""
365
+ prompt = f"""
366
+ Evaluate complete reasoning paths:
367
+ Paths: {json.dumps([[self._node_to_dict(n) for n in path] for path in paths])}
368
+ Context: {json.dumps(context)}
369
+
370
+ For each path evaluate:
371
+ 1. Coherence of progression
372
+ 2. Evidence support
373
+ 3. Conclusion strength
374
+ 4. Novel insights
375
+
376
+ Format as:
377
+ [P1]
378
+ Coherence: 0-1
379
+ Evidence: 0-1
380
+ Conclusion: 0-1
381
+ Insights: 0-1
382
+ Overall: 0-1
383
+ """
384
+
385
+ response = await context["groq_api"].predict(prompt)
386
+ scores = self._parse_path_scores(response["answer"])
387
+
388
+ # Apply scores to paths
389
+ for i, path in enumerate(paths):
390
+ if i < len(scores):
391
+ for node in path:
392
+ node.evaluation_score *= scores[i]
393
+
394
+ return paths
395
+
396
+ def _parse_path_scores(self, response: str) -> List[float]:
397
+ """Parse path evaluation scores."""
398
+ scores = []
399
+ current_score = None
400
+
401
+ for line in response.split('\n'):
402
+ line = line.strip()
403
+ if not line:
404
+ continue
405
+
406
+ if line.startswith('[P'):
407
+ if current_score is not None:
408
+ scores.append(current_score)
409
+ current_score = None
410
+ elif line.startswith('Overall:'):
411
+ try:
412
+ current_score = float(line[8:].strip())
413
+ except:
414
+ current_score = 0.5
415
+
416
+ if current_score is not None:
417
+ scores.append(current_score)
418
+
419
+ return scores
420
+
421
+ def _parse_conclusion(self, response: str) -> Dict[str, Any]:
422
+ """Parse final conclusion."""
423
+ conclusion = {
424
+ "answer": "",
425
+ "confidence": 0.0,
426
+ "trace": [],
427
+ "evidence": [],
428
+ "alternatives": [],
429
+ "meta_insights": []
430
+ }
431
+
432
+ section = None
433
+ for line in response.split('\n'):
434
+ line = line.strip()
435
+ if not line:
436
+ continue
437
+
438
+ if line.startswith('[Conclusion]'):
439
+ section = "conclusion"
440
+ elif line.startswith('[Meta]'):
441
+ section = "meta"
442
+ elif section == "conclusion":
443
+ if line.startswith('Answer:'):
444
+ conclusion["answer"] = line[7:].strip()
445
+ elif line.startswith('Confidence:'):
446
+ try:
447
+ conclusion["confidence"] = float(line[11:].strip())
448
+ except:
449
+ conclusion["confidence"] = 0.5
450
+ elif line.startswith('Trace:'):
451
+ conclusion["trace"] = [t.strip() for t in line[6:].split(',')]
452
+ elif line.startswith('Evidence:'):
453
+ conclusion["evidence"] = [e.strip() for e in line[9:].split(',')]
454
+ elif line.startswith('Alternatives:'):
455
+ conclusion["alternatives"] = [a.strip() for a in line[13:].split(',')]
456
+ elif section == "meta":
457
+ if line.startswith('Insights:'):
458
+ conclusion["meta_insights"].extend([i.strip() for i in line[9:].split(',')])
459
+
460
+ return conclusion
461
+
462
+ def _node_to_dict(self, node: TreeNode) -> Dict[str, Any]:
463
+ """Convert node to dictionary for serialization."""
464
+ return {
465
+ "id": node.id,
466
+ "type": node.type.value,
467
+ "content": node.content,
468
+ "confidence": node.confidence,
469
+ "evaluation_score": node.evaluation_score,
470
+ "metadata": node.metadata,
471
+ "depth": node.depth
472
+ }
473
+
474
+ def _tree_to_dict(self, root: TreeNode) -> Dict[str, Any]:
475
+ """Convert entire tree to dictionary."""
476
+ def convert_node(node: TreeNode) -> Dict[str, Any]:
477
+ node_dict = self._node_to_dict(node)
478
+ node_dict["children"] = [convert_node(c) for c in node.children]
479
+ return node_dict
480
+
481
+ return convert_node(root)
482
+
483
+ def _path_to_dict(self, path: List[TreeNode]) -> List[Dict[str, Any]]:
484
+ """Convert path to dictionary."""
485
+ return [self._node_to_dict(n) for n in path]
486
+
487
+ def _update_history(self, root: TreeNode):
488
+ """Update node history."""
489
+ def add_to_history(node: TreeNode):
490
+ self.node_history[node.id] = node
491
+ for child in node.children:
492
+ add_to_history(child)
493
+
494
+ add_to_history(root)
495
+
496
+ def _update_patterns(self, paths: List[List[TreeNode]]):
497
+ """Update path patterns."""
498
+ for path in paths:
499
+ pattern = "->".join(n.type.value for n in path)
500
+ self.path_patterns[pattern] += path[-1].evaluation_score
501
+
502
+ def get_node_history(self) -> Dict[str, Dict[str, Any]]:
503
+ """Get history of all nodes."""
504
+ return {k: self._node_to_dict(v) for k, v in self.node_history.items()}
505
+
506
+ def get_successful_patterns(self) -> Dict[str, float]:
507
+ """Get successful reasoning patterns."""
508
+ return dict(sorted(self.path_patterns.items(), key=lambda x: x[1], reverse=True))
509
+
510
+ def clear_history(self):
511
+ """Clear node history and patterns."""
512
+ self.node_history.clear()
513
+ self.path_patterns.clear()
reasoning/unified_engine.py ADDED
@@ -0,0 +1,427 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unified reasoning engine that combines multiple reasoning strategies."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import asyncio
10
+ from collections import defaultdict
11
+
12
+ from .base import ReasoningStrategy
13
+ from .chain_of_thought import ChainOfThoughtStrategy
14
+ from .tree_of_thoughts import TreeOfThoughtsStrategy
15
+ from .meta_learning import MetaLearningStrategy
16
+ from .recursive import RecursiveReasoning
17
+ from .analogical import AnalogicalReasoning
18
+ from .local_llm import LocalLLMStrategy
19
+ from .agentic import (
20
+ TaskDecompositionStrategy,
21
+ ResourceManagementStrategy,
22
+ ContextualPlanningStrategy,
23
+ AdaptiveExecutionStrategy,
24
+ FeedbackIntegrationStrategy
25
+ )
26
+
27
+ class StrategyType(str, Enum):
28
+ """Types of reasoning strategies."""
29
+ CHAIN_OF_THOUGHT = "chain_of_thought"
30
+ TREE_OF_THOUGHTS = "tree_of_thoughts"
31
+ META_LEARNING = "meta_learning"
32
+ RECURSIVE = "recursive"
33
+ ANALOGICAL = "analogical"
34
+ TASK_DECOMPOSITION = "task_decomposition"
35
+ RESOURCE_MANAGEMENT = "resource_management"
36
+ CONTEXTUAL_PLANNING = "contextual_planning"
37
+ ADAPTIVE_EXECUTION = "adaptive_execution"
38
+ FEEDBACK_INTEGRATION = "feedback_integration"
39
+ LOCAL_LLM = "local_llm"
40
+
41
+ @dataclass
42
+ class StrategyResult:
43
+ """Result from a reasoning strategy."""
44
+ strategy_type: StrategyType
45
+ success: bool
46
+ answer: Optional[str]
47
+ confidence: float
48
+ reasoning_trace: List[Dict[str, Any]]
49
+ metadata: Dict[str, Any]
50
+ performance_metrics: Dict[str, Any]
51
+ timestamp: datetime = field(default_factory=datetime.now)
52
+
53
+ @dataclass
54
+ class UnifiedResult:
55
+ """Combined result from multiple strategies."""
56
+ success: bool
57
+ answer: str
58
+ confidence: float
59
+ strategy_results: Dict[StrategyType, StrategyResult]
60
+ synthesis_method: str
61
+ meta_insights: List[str]
62
+ performance_metrics: Dict[str, Any]
63
+ timestamp: datetime = field(default_factory=datetime.now)
64
+
65
+ class UnifiedReasoningEngine:
66
+ """
67
+ Advanced unified reasoning engine that:
68
+ 1. Combines multiple reasoning strategies
69
+ 2. Dynamically selects and weights strategies
70
+ 3. Synthesizes results from different approaches
71
+ 4. Learns from experience
72
+ 5. Adapts to different types of tasks
73
+ """
74
+
75
+ def __init__(self,
76
+ min_confidence: float = 0.7,
77
+ strategy_weights: Optional[Dict[StrategyType, float]] = None,
78
+ parallel_threshold: int = 3,
79
+ learning_rate: float = 0.1):
80
+ self.min_confidence = min_confidence
81
+ self.parallel_threshold = parallel_threshold
82
+ self.learning_rate = learning_rate
83
+
84
+ # Initialize strategies
85
+ self.strategies: Dict[StrategyType, ReasoningStrategy] = {
86
+ StrategyType.CHAIN_OF_THOUGHT: ChainOfThoughtStrategy(),
87
+ StrategyType.TREE_OF_THOUGHTS: TreeOfThoughtsStrategy(),
88
+ StrategyType.META_LEARNING: MetaLearningStrategy(),
89
+ StrategyType.RECURSIVE: RecursiveReasoning(),
90
+ StrategyType.ANALOGICAL: AnalogicalReasoning(),
91
+ StrategyType.TASK_DECOMPOSITION: TaskDecompositionStrategy(),
92
+ StrategyType.RESOURCE_MANAGEMENT: ResourceManagementStrategy(),
93
+ StrategyType.CONTEXTUAL_PLANNING: ContextualPlanningStrategy(),
94
+ StrategyType.ADAPTIVE_EXECUTION: AdaptiveExecutionStrategy(),
95
+ StrategyType.FEEDBACK_INTEGRATION: FeedbackIntegrationStrategy(),
96
+ StrategyType.LOCAL_LLM: LocalLLMStrategy() # Add local LLM strategy
97
+ }
98
+
99
+ # Strategy weights with higher weight for LOCAL_LLM
100
+ self.strategy_weights = strategy_weights or {
101
+ **{strategy_type: 1.0 for strategy_type in StrategyType},
102
+ StrategyType.LOCAL_LLM: 2.0 # Higher weight for local LLM
103
+ }
104
+
105
+ # Performance tracking
106
+ self.strategy_performance: Dict[StrategyType, List[float]] = defaultdict(list)
107
+ self.task_type_performance: Dict[str, Dict[StrategyType, float]] = defaultdict(lambda: defaultdict(float))
108
+ self.synthesis_performance: Dict[str, List[float]] = defaultdict(list)
109
+
110
+ async def reason(self, query: str, context: Dict[str, Any]) -> UnifiedResult:
111
+ """Main reasoning method combining multiple strategies."""
112
+ try:
113
+ # Analyze task
114
+ task_analysis = await self._analyze_task(query, context)
115
+
116
+ # Select strategies
117
+ selected_strategies = await self._select_strategies(task_analysis, context)
118
+
119
+ # Execute strategies
120
+ strategy_results = await self._execute_strategies(
121
+ selected_strategies, query, context)
122
+
123
+ # Synthesize results
124
+ unified_result = await self._synthesize_results(
125
+ strategy_results, task_analysis, context)
126
+
127
+ # Learn from experience
128
+ self._update_performance(unified_result)
129
+
130
+ return unified_result
131
+
132
+ except Exception as e:
133
+ logging.error(f"Error in unified reasoning: {str(e)}")
134
+ return UnifiedResult(
135
+ success=False,
136
+ answer=f"Error: {str(e)}",
137
+ confidence=0.0,
138
+ strategy_results={},
139
+ synthesis_method="failed",
140
+ meta_insights=[f"Error occurred: {str(e)}"],
141
+ performance_metrics={}
142
+ )
143
+
144
+ async def _analyze_task(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
145
+ """Analyze the task to determine optimal strategy selection."""
146
+ prompt = f"""
147
+ Analyze reasoning task:
148
+ Query: {query}
149
+ Context: {json.dumps(context)}
150
+
151
+ Determine:
152
+ 1. Task type and complexity
153
+ 2. Required reasoning capabilities
154
+ 3. Resource requirements
155
+ 4. Success criteria
156
+ 5. Risk factors
157
+
158
+ Format as:
159
+ [Analysis]
160
+ Type: ...
161
+ Complexity: ...
162
+ Capabilities: ...
163
+ Resources: ...
164
+ Criteria: ...
165
+ Risks: ...
166
+ """
167
+
168
+ response = await context["groq_api"].predict(prompt)
169
+ return self._parse_task_analysis(response["answer"])
170
+
171
+ async def _select_strategies(self, task_analysis: Dict[str, Any], context: Dict[str, Any]) -> List[StrategyType]:
172
+ """Select appropriate strategies based on task analysis."""
173
+ # Calculate strategy scores
174
+ scores: Dict[StrategyType, float] = {}
175
+ for strategy_type in StrategyType:
176
+ base_score = self.strategy_weights[strategy_type]
177
+
178
+ # Task type performance
179
+ task_type = task_analysis["type"]
180
+ type_score = self.task_type_performance[task_type][strategy_type]
181
+
182
+ # Recent performance
183
+ recent_performance = (
184
+ sum(self.strategy_performance[strategy_type][-5:]) / 5
185
+ if self.strategy_performance[strategy_type] else 0.5
186
+ )
187
+
188
+ # Resource match
189
+ resource_match = self._calculate_resource_match(
190
+ strategy_type, task_analysis["resources"])
191
+
192
+ # Capability match
193
+ capability_match = self._calculate_capability_match(
194
+ strategy_type, task_analysis["capabilities"])
195
+
196
+ # Combined score
197
+ scores[strategy_type] = (
198
+ 0.3 * base_score +
199
+ 0.2 * type_score +
200
+ 0.2 * recent_performance +
201
+ 0.15 * resource_match +
202
+ 0.15 * capability_match
203
+ )
204
+
205
+ # Select top strategies
206
+ selected = sorted(
207
+ StrategyType,
208
+ key=lambda x: scores[x],
209
+ reverse=True
210
+ )[:self.parallel_threshold]
211
+
212
+ return selected
213
+
214
+ async def _execute_strategies(self,
215
+ strategies: List[StrategyType],
216
+ query: str,
217
+ context: Dict[str, Any]) -> Dict[StrategyType, StrategyResult]:
218
+ """Execute selected strategies in parallel."""
219
+ async def execute_strategy(strategy_type: StrategyType) -> StrategyResult:
220
+ strategy = self.strategies[strategy_type]
221
+ start_time = datetime.now()
222
+
223
+ try:
224
+ result = await strategy.reason(query, context)
225
+
226
+ return StrategyResult(
227
+ strategy_type=strategy_type,
228
+ success=result.get("success", False),
229
+ answer=result.get("answer"),
230
+ confidence=result.get("confidence", 0.0),
231
+ reasoning_trace=result.get("reasoning_trace", []),
232
+ metadata=result.get("metadata", {}),
233
+ performance_metrics={
234
+ "execution_time": (datetime.now() - start_time).total_seconds(),
235
+ **result.get("performance_metrics", {})
236
+ }
237
+ )
238
+ except Exception as e:
239
+ logging.error(f"Error in strategy {strategy_type}: {str(e)}")
240
+ return StrategyResult(
241
+ strategy_type=strategy_type,
242
+ success=False,
243
+ answer=None,
244
+ confidence=0.0,
245
+ reasoning_trace=[{"error": str(e)}],
246
+ metadata={},
247
+ performance_metrics={"execution_time": (datetime.now() - start_time).total_seconds()}
248
+ )
249
+
250
+ # Execute strategies in parallel
251
+ tasks = [execute_strategy(strategy) for strategy in strategies]
252
+ results = await asyncio.gather(*tasks)
253
+
254
+ return {result.strategy_type: result for result in results}
255
+
256
+ async def _synthesize_results(self,
257
+ strategy_results: Dict[StrategyType, StrategyResult],
258
+ task_analysis: Dict[str, Any],
259
+ context: Dict[str, Any]) -> UnifiedResult:
260
+ """Synthesize results from multiple strategies."""
261
+ prompt = f"""
262
+ Synthesize reasoning results:
263
+ Results: {json.dumps({str(k): self._strategy_result_to_dict(v)
264
+ for k, v in strategy_results.items()})}
265
+ Task Analysis: {json.dumps(task_analysis)}
266
+ Context: {json.dumps(context)}
267
+
268
+ Provide:
269
+ 1. Optimal synthesis method
270
+ 2. Combined answer
271
+ 3. Confidence assessment
272
+ 4. Meta-insights
273
+ 5. Performance analysis
274
+
275
+ Format as:
276
+ [Synthesis]
277
+ Method: ...
278
+ Answer: ...
279
+ Confidence: ...
280
+ Insights: ...
281
+ Performance: ...
282
+ """
283
+
284
+ response = await context["groq_api"].predict(prompt)
285
+ synthesis = self._parse_synthesis(response["answer"])
286
+
287
+ return UnifiedResult(
288
+ success=synthesis["confidence"] >= self.min_confidence,
289
+ answer=synthesis["answer"],
290
+ confidence=synthesis["confidence"],
291
+ strategy_results=strategy_results,
292
+ synthesis_method=synthesis["method"],
293
+ meta_insights=synthesis["insights"],
294
+ performance_metrics=synthesis["performance"]
295
+ )
296
+
297
+ def _update_performance(self, result: UnifiedResult):
298
+ """Update performance metrics and strategy weights."""
299
+ # Update strategy performance
300
+ for strategy_type, strategy_result in result.strategy_results.items():
301
+ self.strategy_performance[strategy_type].append(strategy_result.confidence)
302
+
303
+ # Update weights using exponential moving average
304
+ current_weight = self.strategy_weights[strategy_type]
305
+ performance = strategy_result.confidence
306
+ self.strategy_weights[strategy_type] = (
307
+ (1 - self.learning_rate) * current_weight +
308
+ self.learning_rate * performance
309
+ )
310
+
311
+ # Update synthesis performance
312
+ self.synthesis_performance[result.synthesis_method].append(result.confidence)
313
+
314
+ def _calculate_resource_match(self, strategy_type: StrategyType, required_resources: Dict[str, Any]) -> float:
315
+ """Calculate how well a strategy matches required resources."""
316
+ # Implementation-specific resource matching logic
317
+ return 0.8 # Placeholder
318
+
319
+ def _calculate_capability_match(self, strategy_type: StrategyType, required_capabilities: List[str]) -> float:
320
+ """Calculate how well a strategy matches required capabilities."""
321
+ # Implementation-specific capability matching logic
322
+ return 0.8 # Placeholder
323
+
324
+ def _parse_task_analysis(self, response: str) -> Dict[str, Any]:
325
+ """Parse task analysis from response."""
326
+ analysis = {
327
+ "type": "",
328
+ "complexity": 0.0,
329
+ "capabilities": [],
330
+ "resources": {},
331
+ "criteria": [],
332
+ "risks": []
333
+ }
334
+
335
+ for line in response.split('\n'):
336
+ line = line.strip()
337
+ if line.startswith('Type:'):
338
+ analysis["type"] = line[5:].strip()
339
+ elif line.startswith('Complexity:'):
340
+ try:
341
+ analysis["complexity"] = float(line[11:].strip())
342
+ except:
343
+ pass
344
+ elif line.startswith('Capabilities:'):
345
+ analysis["capabilities"] = [c.strip() for c in line[13:].split(',')]
346
+ elif line.startswith('Resources:'):
347
+ try:
348
+ analysis["resources"] = json.loads(line[10:].strip())
349
+ except:
350
+ analysis["resources"] = {"raw": line[10:].strip()}
351
+ elif line.startswith('Criteria:'):
352
+ analysis["criteria"] = [c.strip() for c in line[9:].split(',')]
353
+ elif line.startswith('Risks:'):
354
+ analysis["risks"] = [r.strip() for r in line[7:].split(',')]
355
+
356
+ return analysis
357
+
358
+ def _parse_synthesis(self, response: str) -> Dict[str, Any]:
359
+ """Parse synthesis result from response."""
360
+ synthesis = {
361
+ "method": "",
362
+ "answer": "",
363
+ "confidence": 0.0,
364
+ "insights": [],
365
+ "performance": {}
366
+ }
367
+
368
+ for line in response.split('\n'):
369
+ line = line.strip()
370
+ if line.startswith('Method:'):
371
+ synthesis["method"] = line[7:].strip()
372
+ elif line.startswith('Answer:'):
373
+ synthesis["answer"] = line[7:].strip()
374
+ elif line.startswith('Confidence:'):
375
+ try:
376
+ synthesis["confidence"] = float(line[11:].strip())
377
+ except:
378
+ pass
379
+ elif line.startswith('Insights:'):
380
+ synthesis["insights"] = [i.strip() for i in line[9:].split(',')]
381
+ elif line.startswith('Performance:'):
382
+ try:
383
+ synthesis["performance"] = json.loads(line[12:].strip())
384
+ except:
385
+ synthesis["performance"] = {"raw": line[12:].strip()}
386
+
387
+ return synthesis
388
+
389
+ def _strategy_result_to_dict(self, result: StrategyResult) -> Dict[str, Any]:
390
+ """Convert strategy result to dictionary for serialization."""
391
+ return {
392
+ "strategy_type": result.strategy_type.value,
393
+ "success": result.success,
394
+ "answer": result.answer,
395
+ "confidence": result.confidence,
396
+ "reasoning_trace": result.reasoning_trace,
397
+ "metadata": result.metadata,
398
+ "performance_metrics": result.performance_metrics,
399
+ "timestamp": result.timestamp.isoformat()
400
+ }
401
+
402
+ def get_performance_metrics(self) -> Dict[str, Any]:
403
+ """Get comprehensive performance metrics."""
404
+ return {
405
+ "strategy_weights": dict(self.strategy_weights),
406
+ "average_performance": {
407
+ strategy_type.value: sum(scores) / len(scores) if scores else 0
408
+ for strategy_type, scores in self.strategy_performance.items()
409
+ },
410
+ "synthesis_success": {
411
+ method: sum(scores) / len(scores) if scores else 0
412
+ for method, scores in self.synthesis_performance.items()
413
+ },
414
+ "task_type_performance": {
415
+ task_type: dict(strategy_scores)
416
+ for task_type, strategy_scores in self.task_type_performance.items()
417
+ }
418
+ }
419
+
420
+ def clear_performance_history(self):
421
+ """Clear performance history and reset weights."""
422
+ self.strategy_performance.clear()
423
+ self.task_type_performance.clear()
424
+ self.synthesis_performance.clear()
425
+ self.strategy_weights = {
426
+ strategy_type: 1.0 for strategy_type in StrategyType
427
+ }
reasoning/venture_strategies.py ADDED
@@ -0,0 +1,423 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Specialized strategies for autonomous business and revenue generation."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import numpy as np
10
+ from collections import defaultdict
11
+
12
+ from .base import ReasoningStrategy
13
+
14
+ class VentureType(Enum):
15
+ """Types of business ventures."""
16
+ AI_STARTUP = "ai_startup"
17
+ SAAS = "saas"
18
+ API_SERVICE = "api_service"
19
+ DATA_ANALYTICS = "data_analytics"
20
+ AUTOMATION_SERVICE = "automation_service"
21
+ CONSULTING = "consulting"
22
+ DIGITAL_PRODUCTS = "digital_products"
23
+ MARKETPLACE = "marketplace"
24
+
25
+ class RevenueStream(Enum):
26
+ """Types of revenue streams."""
27
+ SUBSCRIPTION = "subscription"
28
+ USAGE_BASED = "usage_based"
29
+ LICENSING = "licensing"
30
+ CONSULTING = "consulting"
31
+ PRODUCT_SALES = "product_sales"
32
+ COMMISSION = "commission"
33
+ ADVERTISING = "advertising"
34
+ PARTNERSHIP = "partnership"
35
+
36
+ @dataclass
37
+ class VentureMetrics:
38
+ """Key business metrics."""
39
+ revenue: float
40
+ profit_margin: float
41
+ customer_acquisition_cost: float
42
+ lifetime_value: float
43
+ churn_rate: float
44
+ growth_rate: float
45
+ burn_rate: float
46
+ runway_months: float
47
+ roi: float
48
+
49
+ @dataclass
50
+ class MarketOpportunity:
51
+ """Market opportunity analysis."""
52
+ market_size: float
53
+ growth_potential: float
54
+ competition_level: float
55
+ entry_barriers: float
56
+ regulatory_risks: float
57
+ technology_risks: float
58
+ monetization_potential: float
59
+
60
+ class AIStartupStrategy(ReasoningStrategy):
61
+ """
62
+ Advanced AI startup strategy that:
63
+ 1. Identifies profitable AI applications
64
+ 2. Analyzes market opportunities
65
+ 3. Develops MVP strategies
66
+ 4. Plans scaling approaches
67
+ 5. Optimizes revenue streams
68
+ """
69
+
70
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
71
+ """Generate AI startup strategy."""
72
+ try:
73
+ # Market analysis
74
+ market = await self._analyze_market(query, context)
75
+
76
+ # Technology assessment
77
+ tech = await self._assess_technology(market, context)
78
+
79
+ # Business model
80
+ model = await self._develop_business_model(tech, context)
81
+
82
+ # Growth strategy
83
+ strategy = await self._create_growth_strategy(model, context)
84
+
85
+ # Financial projections
86
+ projections = await self._project_financials(strategy, context)
87
+
88
+ return {
89
+ "success": projections["annual_profit"] >= 1_000_000,
90
+ "market_analysis": market,
91
+ "tech_assessment": tech,
92
+ "business_model": model,
93
+ "growth_strategy": strategy,
94
+ "financials": projections,
95
+ "confidence": self._calculate_confidence(projections)
96
+ }
97
+ except Exception as e:
98
+ logging.error(f"Error in AI startup strategy: {str(e)}")
99
+ return {"success": False, "error": str(e)}
100
+
101
+ class SaaSVentureStrategy(ReasoningStrategy):
102
+ """
103
+ Advanced SaaS venture strategy that:
104
+ 1. Identifies scalable SaaS opportunities
105
+ 2. Develops pricing strategies
106
+ 3. Plans customer acquisition
107
+ 4. Optimizes retention
108
+ 5. Maximizes recurring revenue
109
+ """
110
+
111
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
112
+ """Generate SaaS venture strategy."""
113
+ try:
114
+ # Opportunity analysis
115
+ opportunity = await self._analyze_opportunity(query, context)
116
+
117
+ # Product strategy
118
+ product = await self._develop_product_strategy(opportunity, context)
119
+
120
+ # Pricing model
121
+ pricing = await self._create_pricing_model(product, context)
122
+
123
+ # Growth plan
124
+ growth = await self._plan_growth(pricing, context)
125
+
126
+ # Revenue projections
127
+ projections = await self._project_revenue(growth, context)
128
+
129
+ return {
130
+ "success": projections["annual_revenue"] >= 1_000_000,
131
+ "opportunity": opportunity,
132
+ "product": product,
133
+ "pricing": pricing,
134
+ "growth": growth,
135
+ "projections": projections
136
+ }
137
+ except Exception as e:
138
+ logging.error(f"Error in SaaS venture strategy: {str(e)}")
139
+ return {"success": False, "error": str(e)}
140
+
141
+ class AutomationVentureStrategy(ReasoningStrategy):
142
+ """
143
+ Advanced automation venture strategy that:
144
+ 1. Identifies automation opportunities
145
+ 2. Analyzes cost-saving potential
146
+ 3. Develops automation solutions
147
+ 4. Plans implementation
148
+ 5. Maximizes ROI
149
+ """
150
+
151
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
152
+ """Generate automation venture strategy."""
153
+ try:
154
+ # Opportunity identification
155
+ opportunities = await self._identify_opportunities(query, context)
156
+
157
+ # Solution development
158
+ solutions = await self._develop_solutions(opportunities, context)
159
+
160
+ # Implementation strategy
161
+ implementation = await self._create_implementation_strategy(solutions, context)
162
+
163
+ # ROI analysis
164
+ roi = await self._analyze_roi(implementation, context)
165
+
166
+ # Scale strategy
167
+ scale = await self._create_scale_strategy(roi, context)
168
+
169
+ return {
170
+ "success": roi["annual_profit"] >= 1_000_000,
171
+ "opportunities": opportunities,
172
+ "solutions": solutions,
173
+ "implementation": implementation,
174
+ "roi": roi,
175
+ "scale": scale
176
+ }
177
+ except Exception as e:
178
+ logging.error(f"Error in automation venture strategy: {str(e)}")
179
+ return {"success": False, "error": str(e)}
180
+
181
+ class DataVentureStrategy(ReasoningStrategy):
182
+ """
183
+ Advanced data venture strategy that:
184
+ 1. Identifies valuable data opportunities
185
+ 2. Develops data products
186
+ 3. Creates monetization strategies
187
+ 4. Ensures compliance
188
+ 5. Maximizes data value
189
+ """
190
+
191
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
192
+ """Generate data venture strategy."""
193
+ try:
194
+ # Data opportunity analysis
195
+ opportunity = await self._analyze_data_opportunity(query, context)
196
+
197
+ # Product development
198
+ product = await self._develop_data_product(opportunity, context)
199
+
200
+ # Monetization strategy
201
+ monetization = await self._create_monetization_strategy(product, context)
202
+
203
+ # Compliance plan
204
+ compliance = await self._ensure_compliance(monetization, context)
205
+
206
+ # Scale plan
207
+ scale = await self._plan_scaling(compliance, context)
208
+
209
+ return {
210
+ "success": monetization["annual_revenue"] >= 1_000_000,
211
+ "opportunity": opportunity,
212
+ "product": product,
213
+ "monetization": monetization,
214
+ "compliance": compliance,
215
+ "scale": scale
216
+ }
217
+ except Exception as e:
218
+ logging.error(f"Error in data venture strategy: {str(e)}")
219
+ return {"success": False, "error": str(e)}
220
+
221
+ class APIVentureStrategy(ReasoningStrategy):
222
+ """
223
+ Advanced API venture strategy that:
224
+ 1. Identifies API opportunities
225
+ 2. Develops API products
226
+ 3. Creates pricing models
227
+ 4. Plans scaling
228
+ 5. Maximizes API value
229
+ """
230
+
231
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
232
+ """Generate API venture strategy."""
233
+ try:
234
+ # API opportunity analysis
235
+ opportunity = await self._analyze_api_opportunity(query, context)
236
+
237
+ # Product development
238
+ product = await self._develop_api_product(opportunity, context)
239
+
240
+ # Pricing strategy
241
+ pricing = await self._create_api_pricing(product, context)
242
+
243
+ # Scale strategy
244
+ scale = await self._plan_api_scaling(pricing, context)
245
+
246
+ # Revenue projections
247
+ projections = await self._project_api_revenue(scale, context)
248
+
249
+ return {
250
+ "success": projections["annual_revenue"] >= 1_000_000,
251
+ "opportunity": opportunity,
252
+ "product": product,
253
+ "pricing": pricing,
254
+ "scale": scale,
255
+ "projections": projections
256
+ }
257
+ except Exception as e:
258
+ logging.error(f"Error in API venture strategy: {str(e)}")
259
+ return {"success": False, "error": str(e)}
260
+
261
+ class MarketplaceVentureStrategy(ReasoningStrategy):
262
+ """
263
+ Advanced marketplace venture strategy that:
264
+ 1. Identifies marketplace opportunities
265
+ 2. Develops platform strategy
266
+ 3. Plans liquidity generation
267
+ 4. Optimizes matching
268
+ 5. Maximizes transaction value
269
+ """
270
+
271
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
272
+ """Generate marketplace venture strategy."""
273
+ try:
274
+ # Opportunity analysis
275
+ opportunity = await self._analyze_marketplace_opportunity(query, context)
276
+
277
+ # Platform strategy
278
+ platform = await self._develop_platform_strategy(opportunity, context)
279
+
280
+ # Liquidity strategy
281
+ liquidity = await self._create_liquidity_strategy(platform, context)
282
+
283
+ # Growth strategy
284
+ growth = await self._plan_marketplace_growth(liquidity, context)
285
+
286
+ # Revenue projections
287
+ projections = await self._project_marketplace_revenue(growth, context)
288
+
289
+ return {
290
+ "success": projections["annual_revenue"] >= 1_000_000,
291
+ "opportunity": opportunity,
292
+ "platform": platform,
293
+ "liquidity": liquidity,
294
+ "growth": growth,
295
+ "projections": projections
296
+ }
297
+ except Exception as e:
298
+ logging.error(f"Error in marketplace venture strategy: {str(e)}")
299
+ return {"success": False, "error": str(e)}
300
+
301
+ class VenturePortfolioStrategy(ReasoningStrategy):
302
+ """
303
+ Advanced venture portfolio strategy that:
304
+ 1. Optimizes venture mix
305
+ 2. Balances risk-reward
306
+ 3. Allocates resources
307
+ 4. Manages dependencies
308
+ 5. Maximizes portfolio value
309
+ """
310
+
311
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
312
+ """Generate venture portfolio strategy."""
313
+ try:
314
+ # Portfolio analysis
315
+ analysis = await self._analyze_portfolio(query, context)
316
+
317
+ # Venture selection
318
+ selection = await self._select_ventures(analysis, context)
319
+
320
+ # Resource allocation
321
+ allocation = await self._allocate_resources(selection, context)
322
+
323
+ # Risk management
324
+ risk = await self._manage_risk(allocation, context)
325
+
326
+ # Portfolio projections
327
+ projections = await self._project_portfolio(risk, context)
328
+
329
+ return {
330
+ "success": projections["annual_profit"] >= 1_000_000,
331
+ "analysis": analysis,
332
+ "selection": selection,
333
+ "allocation": allocation,
334
+ "risk": risk,
335
+ "projections": projections
336
+ }
337
+ except Exception as e:
338
+ logging.error(f"Error in venture portfolio strategy: {str(e)}")
339
+ return {"success": False, "error": str(e)}
340
+
341
+ async def _analyze_portfolio(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
342
+ """Analyze potential venture portfolio."""
343
+ prompt = f"""
344
+ Analyze venture portfolio opportunities:
345
+ Query: {query}
346
+ Context: {json.dumps(context)}
347
+
348
+ Consider:
349
+ 1. Market opportunities
350
+ 2. Technology trends
351
+ 3. Resource requirements
352
+ 4. Risk factors
353
+ 5. Synergy potential
354
+
355
+ Format as:
356
+ [Analysis]
357
+ Opportunities: ...
358
+ Trends: ...
359
+ Resources: ...
360
+ Risks: ...
361
+ Synergies: ...
362
+ """
363
+
364
+ response = await context["groq_api"].predict(prompt)
365
+ return self._parse_portfolio_analysis(response["answer"])
366
+
367
+ def _parse_portfolio_analysis(self, response: str) -> Dict[str, Any]:
368
+ """Parse portfolio analysis from response."""
369
+ analysis = {
370
+ "opportunities": [],
371
+ "trends": [],
372
+ "resources": {},
373
+ "risks": [],
374
+ "synergies": []
375
+ }
376
+
377
+ current_section = None
378
+ for line in response.split('\n'):
379
+ line = line.strip()
380
+ if line.startswith('Opportunities:'):
381
+ current_section = "opportunities"
382
+ elif line.startswith('Trends:'):
383
+ current_section = "trends"
384
+ elif line.startswith('Resources:'):
385
+ current_section = "resources"
386
+ elif line.startswith('Risks:'):
387
+ current_section = "risks"
388
+ elif line.startswith('Synergies:'):
389
+ current_section = "synergies"
390
+ elif current_section and line:
391
+ if current_section == "resources":
392
+ try:
393
+ key, value = line.split(':')
394
+ analysis[current_section][key.strip()] = value.strip()
395
+ except:
396
+ pass
397
+ else:
398
+ analysis[current_section].append(line)
399
+
400
+ return analysis
401
+
402
+ def get_venture_metrics(self) -> Dict[str, Any]:
403
+ """Get comprehensive venture metrics."""
404
+ return {
405
+ "portfolio_metrics": {
406
+ "total_ventures": len(self.ventures),
407
+ "profitable_ventures": sum(1 for v in self.ventures if v.metrics.profit_margin > 0),
408
+ "total_revenue": sum(v.metrics.revenue for v in self.ventures),
409
+ "average_margin": np.mean([v.metrics.profit_margin for v in self.ventures]),
410
+ "portfolio_roi": np.mean([v.metrics.roi for v in self.ventures])
411
+ },
412
+ "market_metrics": {
413
+ "total_market_size": sum(v.opportunity.market_size for v in self.ventures),
414
+ "average_growth": np.mean([v.opportunity.growth_potential for v in self.ventures]),
415
+ "risk_score": np.mean([v.opportunity.regulatory_risks + v.opportunity.technology_risks for v in self.ventures])
416
+ },
417
+ "performance_metrics": {
418
+ "customer_acquisition": np.mean([v.metrics.customer_acquisition_cost for v in self.ventures]),
419
+ "lifetime_value": np.mean([v.metrics.lifetime_value for v in self.ventures]),
420
+ "churn_rate": np.mean([v.metrics.churn_rate for v in self.ventures]),
421
+ "burn_rate": sum(v.metrics.burn_rate for v in self.ventures)
422
+ }
423
+ }
reasoning/venture_types.py ADDED
@@ -0,0 +1,332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Additional venture types for business optimization."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import numpy as np
10
+ from collections import defaultdict
11
+
12
+ from .base import ReasoningStrategy
13
+
14
+ class AIInfrastructureStrategy(ReasoningStrategy):
15
+ """
16
+ AI infrastructure venture strategy that:
17
+ 1. Identifies infrastructure needs
18
+ 2. Develops cloud solutions
19
+ 3. Optimizes compute resources
20
+ 4. Manages scalability
21
+ 5. Ensures reliability
22
+ """
23
+
24
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
25
+ """Generate AI infrastructure strategy."""
26
+ try:
27
+ # Market analysis
28
+ market = await self._analyze_market(query, context)
29
+
30
+ # Infrastructure design
31
+ design = await self._design_infrastructure(market, context)
32
+
33
+ # Optimization strategy
34
+ optimization = await self._create_optimization_strategy(design, context)
35
+
36
+ # Scaling plan
37
+ scaling = await self._plan_scaling(optimization, context)
38
+
39
+ # Revenue projections
40
+ projections = await self._project_revenue(scaling, context)
41
+
42
+ return {
43
+ "success": projections["annual_revenue"] >= 1_000_000,
44
+ "market": market,
45
+ "design": design,
46
+ "optimization": optimization,
47
+ "scaling": scaling,
48
+ "projections": projections
49
+ }
50
+ except Exception as e:
51
+ logging.error(f"Error in AI infrastructure strategy: {str(e)}")
52
+ return {"success": False, "error": str(e)}
53
+
54
+ class AIConsultingStrategy(ReasoningStrategy):
55
+ """
56
+ AI consulting venture strategy that:
57
+ 1. Identifies consulting opportunities
58
+ 2. Develops service offerings
59
+ 3. Creates delivery frameworks
60
+ 4. Manages client relationships
61
+ 5. Scales operations
62
+ """
63
+
64
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
65
+ """Generate AI consulting strategy."""
66
+ try:
67
+ # Market analysis
68
+ market = await self._analyze_consulting_market(query, context)
69
+
70
+ # Service design
71
+ services = await self._design_services(market, context)
72
+
73
+ # Delivery framework
74
+ framework = await self._create_delivery_framework(services, context)
75
+
76
+ # Growth strategy
77
+ growth = await self._plan_growth(framework, context)
78
+
79
+ # Revenue projections
80
+ projections = await self._project_consulting_revenue(growth, context)
81
+
82
+ return {
83
+ "success": projections["annual_revenue"] >= 1_000_000,
84
+ "market": market,
85
+ "services": services,
86
+ "framework": framework,
87
+ "growth": growth,
88
+ "projections": projections
89
+ }
90
+ except Exception as e:
91
+ logging.error(f"Error in AI consulting strategy: {str(e)}")
92
+ return {"success": False, "error": str(e)}
93
+
94
+ class AIProductStrategy(ReasoningStrategy):
95
+ """
96
+ AI product venture strategy that:
97
+ 1. Identifies product opportunities
98
+ 2. Develops product roadmap
99
+ 3. Creates go-to-market strategy
100
+ 4. Manages product lifecycle
101
+ 5. Scales distribution
102
+ """
103
+
104
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
105
+ """Generate AI product strategy."""
106
+ try:
107
+ # Market analysis
108
+ market = await self._analyze_product_market(query, context)
109
+
110
+ # Product development
111
+ product = await self._develop_product_strategy(market, context)
112
+
113
+ # Go-to-market
114
+ gtm = await self._create_gtm_strategy(product, context)
115
+
116
+ # Scale strategy
117
+ scale = await self._plan_product_scaling(gtm, context)
118
+
119
+ # Revenue projections
120
+ projections = await self._project_product_revenue(scale, context)
121
+
122
+ return {
123
+ "success": projections["annual_revenue"] >= 1_000_000,
124
+ "market": market,
125
+ "product": product,
126
+ "gtm": gtm,
127
+ "scale": scale,
128
+ "projections": projections
129
+ }
130
+ except Exception as e:
131
+ logging.error(f"Error in AI product strategy: {str(e)}")
132
+ return {"success": False, "error": str(e)}
133
+
134
+ class FinTechStrategy(ReasoningStrategy):
135
+ """
136
+ FinTech venture strategy that:
137
+ 1. Identifies fintech opportunities
138
+ 2. Develops financial products
139
+ 3. Ensures compliance
140
+ 4. Manages risk
141
+ 5. Scales operations
142
+ """
143
+
144
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
145
+ """Generate FinTech strategy."""
146
+ try:
147
+ # Market analysis
148
+ market = await self._analyze_fintech_market(query, context)
149
+
150
+ # Product development
151
+ product = await self._develop_fintech_product(market, context)
152
+
153
+ # Compliance strategy
154
+ compliance = await self._ensure_compliance(product, context)
155
+
156
+ # Risk management
157
+ risk = await self._manage_risk(compliance, context)
158
+
159
+ # Scale strategy
160
+ scale = await self._plan_fintech_scaling(risk, context)
161
+
162
+ return {
163
+ "success": scale["annual_revenue"] >= 1_000_000,
164
+ "market": market,
165
+ "product": product,
166
+ "compliance": compliance,
167
+ "risk": risk,
168
+ "scale": scale
169
+ }
170
+ except Exception as e:
171
+ logging.error(f"Error in FinTech strategy: {str(e)}")
172
+ return {"success": False, "error": str(e)}
173
+
174
+ class HealthTechStrategy(ReasoningStrategy):
175
+ """
176
+ HealthTech venture strategy that:
177
+ 1. Identifies healthcare opportunities
178
+ 2. Develops health solutions
179
+ 3. Ensures compliance
180
+ 4. Manages patient data
181
+ 5. Scales operations
182
+ """
183
+
184
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
185
+ """Generate HealthTech strategy."""
186
+ try:
187
+ # Market analysis
188
+ market = await self._analyze_healthtech_market(query, context)
189
+
190
+ # Solution development
191
+ solution = await self._develop_health_solution(market, context)
192
+
193
+ # Compliance strategy
194
+ compliance = await self._ensure_health_compliance(solution, context)
195
+
196
+ # Data strategy
197
+ data = await self._manage_health_data(compliance, context)
198
+
199
+ # Scale strategy
200
+ scale = await self._plan_healthtech_scaling(data, context)
201
+
202
+ return {
203
+ "success": scale["annual_revenue"] >= 1_000_000,
204
+ "market": market,
205
+ "solution": solution,
206
+ "compliance": compliance,
207
+ "data": data,
208
+ "scale": scale
209
+ }
210
+ except Exception as e:
211
+ logging.error(f"Error in HealthTech strategy: {str(e)}")
212
+ return {"success": False, "error": str(e)}
213
+
214
+ class EdTechStrategy(ReasoningStrategy):
215
+ """
216
+ EdTech venture strategy that:
217
+ 1. Identifies education opportunities
218
+ 2. Develops learning solutions
219
+ 3. Creates content strategy
220
+ 4. Manages user engagement
221
+ 5. Scales platform
222
+ """
223
+
224
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
225
+ """Generate EdTech strategy."""
226
+ try:
227
+ # Market analysis
228
+ market = await self._analyze_edtech_market(query, context)
229
+
230
+ # Solution development
231
+ solution = await self._develop_learning_solution(market, context)
232
+
233
+ # Content strategy
234
+ content = await self._create_content_strategy(solution, context)
235
+
236
+ # Engagement strategy
237
+ engagement = await self._manage_engagement(content, context)
238
+
239
+ # Scale strategy
240
+ scale = await self._plan_edtech_scaling(engagement, context)
241
+
242
+ return {
243
+ "success": scale["annual_revenue"] >= 1_000_000,
244
+ "market": market,
245
+ "solution": solution,
246
+ "content": content,
247
+ "engagement": engagement,
248
+ "scale": scale
249
+ }
250
+ except Exception as e:
251
+ logging.error(f"Error in EdTech strategy: {str(e)}")
252
+ return {"success": False, "error": str(e)}
253
+
254
+ class BlockchainStrategy(ReasoningStrategy):
255
+ """
256
+ Blockchain venture strategy that:
257
+ 1. Identifies blockchain opportunities
258
+ 2. Develops blockchain solutions
259
+ 3. Ensures security
260
+ 4. Manages tokenomics
261
+ 5. Scales network
262
+ """
263
+
264
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
265
+ """Generate blockchain strategy."""
266
+ try:
267
+ # Market analysis
268
+ market = await self._analyze_blockchain_market(query, context)
269
+
270
+ # Solution development
271
+ solution = await self._develop_blockchain_solution(market, context)
272
+
273
+ # Security strategy
274
+ security = await self._ensure_blockchain_security(solution, context)
275
+
276
+ # Tokenomics
277
+ tokenomics = await self._design_tokenomics(security, context)
278
+
279
+ # Scale strategy
280
+ scale = await self._plan_blockchain_scaling(tokenomics, context)
281
+
282
+ return {
283
+ "success": scale["annual_revenue"] >= 1_000_000,
284
+ "market": market,
285
+ "solution": solution,
286
+ "security": security,
287
+ "tokenomics": tokenomics,
288
+ "scale": scale
289
+ }
290
+ except Exception as e:
291
+ logging.error(f"Error in blockchain strategy: {str(e)}")
292
+ return {"success": False, "error": str(e)}
293
+
294
+ class AIMarketplaceStrategy(ReasoningStrategy):
295
+ """
296
+ AI marketplace venture strategy that:
297
+ 1. Creates AI model marketplace
298
+ 2. Manages model deployment
299
+ 3. Handles transactions
300
+ 4. Ensures quality
301
+ 5. Scales platform
302
+ """
303
+
304
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
305
+ """Generate AI marketplace strategy."""
306
+ try:
307
+ # Market analysis
308
+ market = await self._analyze_ai_marketplace(query, context)
309
+
310
+ # Platform development
311
+ platform = await self._develop_marketplace_platform(market, context)
312
+
313
+ # Quality strategy
314
+ quality = await self._ensure_model_quality(platform, context)
315
+
316
+ # Transaction system
317
+ transactions = await self._design_transaction_system(quality, context)
318
+
319
+ # Scale strategy
320
+ scale = await self._plan_marketplace_scaling(transactions, context)
321
+
322
+ return {
323
+ "success": scale["annual_revenue"] >= 1_000_000,
324
+ "market": market,
325
+ "platform": platform,
326
+ "quality": quality,
327
+ "transactions": transactions,
328
+ "scale": scale
329
+ }
330
+ except Exception as e:
331
+ logging.error(f"Error in AI marketplace strategy: {str(e)}")
332
+ return {"success": False, "error": str(e)}
requirements.txt ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ fastapi>=0.68.0
2
+ uvicorn>=0.15.0
3
+ pydantic>=2.0.0
4
+ gradio>=4.16.0
5
+ llama-cpp-python>=0.2.23
6
+ huggingface-hub>=0.19.4
7
+ numpy>=1.24.0
8
+ networkx>=3.2.1
9
+ scikit-learn>=1.3.2
10
+ scipy==1.11.4
11
+ pandas>=2.1.0
12
+ plotly>=5.18.0
13
+ typing-extensions>=4.0.0
14
+ aiohttp>=3.8.0
15
+ asyncio>=3.4.3
16
+ joblib==1.3.2
17
+ tqdm>=4.66.0
18
+ python-dotenv>=0.19.0
19
+ httpx>=0.24.0
requirements.txt.backup ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ fastapi>=0.68.0
2
+ uvicorn>=0.15.0
3
+ pydantic>=2.0.0
4
+ gradio>=3.50.0
5
+ transformers>=4.36.2
6
+ torch>=2.1.2
7
+ huggingface-hub==0.19.4
8
+ ctransformers==0.2.27
9
+ numpy>=1.24.0
10
+ networkx>=3.2.1
11
+ scikit-learn>=1.3.2
12
+ scipy==1.11.4
13
+ pandas>=2.1.0
14
+ plotly>=5.18.0
15
+ typing-extensions>=4.0.0
16
+ aiohttp>=3.8.0
17
+ asyncio>=3.4.3
18
+ joblib==1.3.2
19
+ tqdm>=4.66.1
20
+ python-dotenv>=0.19.0
21
+ httpx>=0.24.0
22
+ python-multipart>=0.0.5
23
+ websockets>=10.0
24
+ jinja2>=3.0.0
25
+ markdown>=3.3.0
26
+ pygments>=2.10.0
27
+ starlette>=0.14.0
28
+ requests>=2.26.0
simple_reasoning.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Simple Reasoning Agent using local models"""
2
+
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM
4
+ import torch
5
+
6
+ class ReasoningAgent:
7
+ """A simple reasoning agent using local models."""
8
+
9
+ def __init__(self, model_name="TinyLlama/TinyLlama-1.1B-Chat-v1.0"):
10
+ """Initialize the agent with a local model."""
11
+ # Load model and tokenizer
12
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name)
13
+ self.model = AutoModelForCausalLM.from_pretrained(
14
+ model_name,
15
+ torch_dtype=torch.float16,
16
+ device_map="auto"
17
+ )
18
+
19
+ def get_response(self, query: str) -> str:
20
+ """Generate a response using the local model."""
21
+ try:
22
+ # Format the prompt
23
+ prompt = f"""<|system|>
24
+ You are a helpful AI assistant.
25
+ </s>
simple_reasoning/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ """Simple reasoning system using local LLM."""
2
+
3
+ from .agent import ReasoningAgent
4
+
5
+ __all__ = ['ReasoningAgent']
simple_reasoning/agent.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Local reasoning agent using TinyLlama."""
2
+
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM
4
+ import torch
5
+
6
+ class ReasoningAgent:
7
+ """Local reasoning agent using TinyLlama with chain of thought prompting."""
8
+
9
+ def __init__(self, model_name="TinyLlama/TinyLlama-1.1B-Chat-v1.0"):
10
+ """Initialize the agent with local model."""
11
+ # Load model and tokenizer
12
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name)
13
+ self.model = AutoModelForCausalLM.from_pretrained(
14
+ model_name,
15
+ torch_dtype=torch.float16,
16
+ device_map="auto"
17
+ )
18
+
19
+ def get_response(self, message: str) -> str:
20
+ """Generate response using local model with chain of thought prompting."""
21
+ try:
22
+ # Format prompt with chain of thought structure
23
+ prompt = f"""<|system|>
24
+ You are a helpful AI assistant that uses chain of thought reasoning to answer questions.
25
+ For each response, break down your thinking into steps before giving the final answer.
26
+ </s>
team_management.py ADDED
@@ -0,0 +1,442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Advanced Team Management System
3
+ -----------------------------
4
+ Manages specialized teams of agents that work together towards common goals:
5
+ 1. Team A: Coders (App/Software Developers)
6
+ 2. Team B: Business (Entrepreneurs)
7
+ 3. Team C: Research (Deep Online Research)
8
+ 4. Team D: Crypto & Sports Trading
9
+
10
+ Features:
11
+ - Cross-team collaboration
12
+ - Goal alignment
13
+ - Resource sharing
14
+ - Synchronized execution
15
+ """
16
+
17
+ from typing import Dict, List, Optional, Set, Union, TypeVar
18
+ from dataclasses import dataclass, field
19
+ from enum import Enum
20
+ import asyncio
21
+ from datetime import datetime
22
+ import uuid
23
+ from collections import defaultdict
24
+
25
+ from orchestrator import AgentOrchestrator, TaskPriority
26
+ from agentic_system import AgentRole, AgentCapability, AgentPersonality, Agent
27
+
28
+ class TeamType(Enum):
29
+ """Specialized team types."""
30
+ CODERS = "coders"
31
+ BUSINESS = "business"
32
+ RESEARCH = "research"
33
+ TRADERS = "traders"
34
+
35
+ class TeamObjective(Enum):
36
+ """Types of team objectives."""
37
+ SOFTWARE_DEVELOPMENT = "software_development"
38
+ BUSINESS_OPPORTUNITY = "business_opportunity"
39
+ MARKET_RESEARCH = "market_research"
40
+ TRADING_STRATEGY = "trading_strategy"
41
+ CROSS_TEAM_PROJECT = "cross_team_project"
42
+
43
+ @dataclass
44
+ class TeamProfile:
45
+ """Team profile and capabilities."""
46
+ id: str
47
+ type: TeamType
48
+ name: str
49
+ primary_objective: TeamObjective
50
+ secondary_objectives: List[TeamObjective]
51
+ agent_count: int
52
+ expertise_areas: List[str]
53
+ collaboration_score: float = 0.0
54
+ success_rate: float = 0.0
55
+ active_projects: int = 0
56
+
57
+ @dataclass
58
+ class CollaborationLink:
59
+ """Defines collaboration between teams."""
60
+ team_a_id: str
61
+ team_b_id: str
62
+ strength: float
63
+ active_projects: int
64
+ last_interaction: datetime
65
+ success_rate: float
66
+
67
+ class TeamManager:
68
+ """Manages specialized teams and their collaboration."""
69
+
70
+ def __init__(self, orchestrator: AgentOrchestrator):
71
+ self.orchestrator = orchestrator
72
+ self.teams: Dict[str, TeamProfile] = {}
73
+ self.agents: Dict[str, Dict[str, Agent]] = {} # team_id -> {agent_id -> Agent}
74
+ self.collaboration_network: Dict[str, CollaborationLink] = {}
75
+ self.shared_objectives: Dict[str, Set[str]] = defaultdict(set) # objective_id -> set of team_ids
76
+ self.lock = asyncio.Lock()
77
+
78
+ # Initialize specialized teams
79
+ self._init_teams()
80
+
81
+ def _init_teams(self):
82
+ """Initialize specialized teams."""
83
+ team_configs = {
84
+ TeamType.CODERS: {
85
+ "name": "Development Team",
86
+ "primary": TeamObjective.SOFTWARE_DEVELOPMENT,
87
+ "secondary": [
88
+ TeamObjective.BUSINESS_OPPORTUNITY,
89
+ TeamObjective.MARKET_RESEARCH
90
+ ],
91
+ "expertise": [
92
+ "full_stack_development",
93
+ "cloud_architecture",
94
+ "ai_ml",
95
+ "blockchain",
96
+ "mobile_development"
97
+ ]
98
+ },
99
+ TeamType.BUSINESS: {
100
+ "name": "Business Strategy Team",
101
+ "primary": TeamObjective.BUSINESS_OPPORTUNITY,
102
+ "secondary": [
103
+ TeamObjective.MARKET_RESEARCH,
104
+ TeamObjective.TRADING_STRATEGY
105
+ ],
106
+ "expertise": [
107
+ "market_analysis",
108
+ "business_strategy",
109
+ "digital_transformation",
110
+ "startup_innovation",
111
+ "product_management"
112
+ ]
113
+ },
114
+ TeamType.RESEARCH: {
115
+ "name": "Research & Analysis Team",
116
+ "primary": TeamObjective.MARKET_RESEARCH,
117
+ "secondary": [
118
+ TeamObjective.BUSINESS_OPPORTUNITY,
119
+ TeamObjective.TRADING_STRATEGY
120
+ ],
121
+ "expertise": [
122
+ "deep_research",
123
+ "data_analysis",
124
+ "trend_forecasting",
125
+ "competitive_analysis",
126
+ "technology_assessment"
127
+ ]
128
+ },
129
+ TeamType.TRADERS: {
130
+ "name": "Trading & Investment Team",
131
+ "primary": TeamObjective.TRADING_STRATEGY,
132
+ "secondary": [
133
+ TeamObjective.MARKET_RESEARCH,
134
+ TeamObjective.BUSINESS_OPPORTUNITY
135
+ ],
136
+ "expertise": [
137
+ "crypto_trading",
138
+ "sports_betting",
139
+ "risk_management",
140
+ "market_timing",
141
+ "portfolio_optimization"
142
+ ]
143
+ }
144
+ }
145
+
146
+ for team_type, config in team_configs.items():
147
+ team_id = str(uuid.uuid4())
148
+ self.teams[team_id] = TeamProfile(
149
+ id=team_id,
150
+ type=team_type,
151
+ name=config["name"],
152
+ primary_objective=config["primary"],
153
+ secondary_objectives=config["secondary"],
154
+ agent_count=5, # Default size
155
+ expertise_areas=config["expertise"]
156
+ )
157
+ self.agents[team_id] = {}
158
+
159
+ async def initialize_team_agents(self):
160
+ """Initialize agents for each team with appropriate roles and capabilities."""
161
+ for team_id, team in self.teams.items():
162
+ await self._create_team_agents(team_id)
163
+ await self._establish_collaboration_links(team_id)
164
+
165
+ async def _create_team_agents(self, team_id: str):
166
+ """Create specialized agents for a team."""
167
+ team = self.teams[team_id]
168
+
169
+ # Define agent configurations based on team type
170
+ agent_configs = self._get_agent_configs(team.type)
171
+
172
+ for config in agent_configs:
173
+ agent_id = await self.orchestrator.create_agent(
174
+ role=config["role"],
175
+ capabilities=config["capabilities"]
176
+ )
177
+
178
+ agent = Agent(
179
+ profile=config["profile"],
180
+ reasoning_engine=self.orchestrator.reasoning_engine,
181
+ meta_learning=self.orchestrator.meta_learning
182
+ )
183
+
184
+ self.agents[team_id][agent_id] = agent
185
+
186
+ def _get_agent_configs(self, team_type: TeamType) -> List[Dict]:
187
+ """Get agent configurations based on team type."""
188
+ base_configs = [
189
+ {
190
+ "role": AgentRole.COORDINATOR,
191
+ "capabilities": [
192
+ AgentCapability.COORDINATION,
193
+ AgentCapability.REASONING
194
+ ],
195
+ "personality": AgentPersonality.PROACTIVE
196
+ },
197
+ {
198
+ "role": AgentRole.EXECUTOR,
199
+ "capabilities": [
200
+ AgentCapability.EXECUTION,
201
+ AgentCapability.LEARNING
202
+ ],
203
+ "personality": AgentPersonality.ANALYTICAL
204
+ }
205
+ ]
206
+
207
+ # Add team-specific configurations
208
+ if team_type == TeamType.CODERS:
209
+ base_configs.extend([
210
+ {
211
+ "role": AgentRole.EXECUTOR,
212
+ "capabilities": [
213
+ AgentCapability.EXECUTION,
214
+ AgentCapability.REASONING
215
+ ],
216
+ "personality": AgentPersonality.CREATIVE,
217
+ "expertise": ["software_development", "system_design"]
218
+ }
219
+ ])
220
+ elif team_type == TeamType.BUSINESS:
221
+ base_configs.extend([
222
+ {
223
+ "role": AgentRole.PLANNER,
224
+ "capabilities": [
225
+ AgentCapability.REASONING,
226
+ AgentCapability.LEARNING
227
+ ],
228
+ "personality": AgentPersonality.PROACTIVE,
229
+ "expertise": ["business_strategy", "market_analysis"]
230
+ }
231
+ ])
232
+ elif team_type == TeamType.RESEARCH:
233
+ base_configs.extend([
234
+ {
235
+ "role": AgentRole.MONITOR,
236
+ "capabilities": [
237
+ AgentCapability.MONITORING,
238
+ AgentCapability.LEARNING
239
+ ],
240
+ "personality": AgentPersonality.ANALYTICAL,
241
+ "expertise": ["research", "data_analysis"]
242
+ }
243
+ ])
244
+ elif team_type == TeamType.TRADERS:
245
+ base_configs.extend([
246
+ {
247
+ "role": AgentRole.EXECUTOR,
248
+ "capabilities": [
249
+ AgentCapability.EXECUTION,
250
+ AgentCapability.REASONING
251
+ ],
252
+ "personality": AgentPersonality.CAUTIOUS,
253
+ "expertise": ["trading", "risk_management"]
254
+ }
255
+ ])
256
+
257
+ return base_configs
258
+
259
+ async def _establish_collaboration_links(self, team_id: str):
260
+ """Establish collaboration links with other teams."""
261
+ team = self.teams[team_id]
262
+
263
+ for other_id, other_team in self.teams.items():
264
+ if other_id != team_id:
265
+ link_id = f"{min(team_id, other_id)}_{max(team_id, other_id)}"
266
+ if link_id not in self.collaboration_network:
267
+ self.collaboration_network[link_id] = CollaborationLink(
268
+ team_a_id=team_id,
269
+ team_b_id=other_id,
270
+ strength=0.5, # Initial collaboration strength
271
+ active_projects=0,
272
+ last_interaction=datetime.now(),
273
+ success_rate=0.0
274
+ )
275
+
276
+ async def create_cross_team_objective(
277
+ self,
278
+ objective: str,
279
+ required_teams: List[TeamType],
280
+ priority: TaskPriority = TaskPriority.MEDIUM
281
+ ) -> str:
282
+ """Create an objective that requires multiple teams."""
283
+ objective_id = str(uuid.uuid4())
284
+
285
+ # Find relevant teams
286
+ selected_teams = []
287
+ for team_id, team in self.teams.items():
288
+ if team.type in required_teams:
289
+ selected_teams.append(team_id)
290
+
291
+ if len(selected_teams) < len(required_teams):
292
+ raise ValueError("Not all required teams are available")
293
+
294
+ # Create shared objective
295
+ self.shared_objectives[objective_id].update(selected_teams)
296
+
297
+ # Create tasks for each team
298
+ tasks = []
299
+ for team_id in selected_teams:
300
+ task_id = await self.orchestrator.submit_task(
301
+ description=f"Team {self.teams[team_id].name} contribution to: {objective}",
302
+ priority=priority
303
+ )
304
+ tasks.append(task_id)
305
+
306
+ return objective_id
307
+
308
+ async def monitor_objective_progress(self, objective_id: str) -> Dict:
309
+ """Monitor progress of a cross-team objective."""
310
+ if objective_id not in self.shared_objectives:
311
+ raise ValueError("Unknown objective")
312
+
313
+ team_progress = {}
314
+ for team_id in self.shared_objectives[objective_id]:
315
+ team = self.teams[team_id]
316
+ team_agents = self.agents[team_id]
317
+
318
+ # Calculate team progress
319
+ active_agents = sum(1 for agent in team_agents.values() if agent.state == "busy")
320
+ completion_rate = sum(agent.get_task_completion_rate() for agent in team_agents.values()) / len(team_agents)
321
+
322
+ team_progress[team.name] = {
323
+ "active_agents": active_agents,
324
+ "completion_rate": completion_rate,
325
+ "collaboration_score": team.collaboration_score
326
+ }
327
+
328
+ return team_progress
329
+
330
+ async def optimize_team_collaboration(self):
331
+ """Optimize collaboration between teams."""
332
+ for link in self.collaboration_network.values():
333
+ team_a = self.teams[link.team_a_id]
334
+ team_b = self.teams[link.team_b_id]
335
+
336
+ # Update collaboration strength based on:
337
+ # 1. Number of successful joint projects
338
+ # 2. Frequency of interaction
339
+ # 3. Complementary expertise
340
+
341
+ success_factor = link.success_rate
342
+ interaction_factor = min((datetime.now() - link.last_interaction).days / 30.0, 1.0)
343
+ expertise_overlap = len(
344
+ set(team_a.expertise_areas) & set(team_b.expertise_areas)
345
+ ) / len(set(team_a.expertise_areas) | set(team_b.expertise_areas))
346
+
347
+ new_strength = (
348
+ 0.4 * success_factor +
349
+ 0.3 * (1 - interaction_factor) +
350
+ 0.3 * (1 - expertise_overlap)
351
+ )
352
+
353
+ link.strength = 0.7 * link.strength + 0.3 * new_strength
354
+
355
+ async def get_team_recommendations(self, objective: str) -> List[TeamType]:
356
+ """Get recommended teams for an objective based on expertise and collaboration history."""
357
+ # Analyze objective to determine required expertise
358
+ required_expertise = await self._analyze_objective(objective)
359
+
360
+ # Score each team
361
+ team_scores = {}
362
+ for team_id, team in self.teams.items():
363
+ # Calculate expertise match
364
+ expertise_match = len(
365
+ set(required_expertise) & set(team.expertise_areas)
366
+ ) / len(required_expertise)
367
+
368
+ # Calculate collaboration potential
369
+ collab_potential = self._calculate_collaboration_potential(team_id)
370
+
371
+ # Calculate success history
372
+ success_history = team.success_rate
373
+
374
+ # Weighted score
375
+ score = (
376
+ 0.4 * expertise_match +
377
+ 0.3 * collab_potential +
378
+ 0.3 * success_history
379
+ )
380
+
381
+ team_scores[team.type] = score
382
+
383
+ # Return sorted recommendations
384
+ return sorted(
385
+ team_scores.keys(),
386
+ key=lambda x: team_scores[x],
387
+ reverse=True
388
+ )
389
+
390
+ async def _analyze_objective(self, objective: str) -> List[str]:
391
+ """Analyze an objective to determine required expertise."""
392
+ # Use reasoning engine to analyze objective
393
+ analysis = await self.orchestrator.reasoning_engine.reason(
394
+ query=f"Analyze required expertise for: {objective}",
395
+ context={
396
+ "available_expertise": [
397
+ expertise
398
+ for team in self.teams.values()
399
+ for expertise in team.expertise_areas
400
+ ]
401
+ }
402
+ )
403
+
404
+ return analysis.get("required_expertise", [])
405
+
406
+ def _calculate_collaboration_potential(self, team_id: str) -> float:
407
+ """Calculate a team's collaboration potential based on history."""
408
+ team_links = [
409
+ link for link in self.collaboration_network.values()
410
+ if team_id in (link.team_a_id, link.team_b_id)
411
+ ]
412
+
413
+ if not team_links:
414
+ return 0.5
415
+
416
+ return sum(link.strength for link in team_links) / len(team_links)
417
+
418
+ async def update_team_metrics(self):
419
+ """Update performance metrics for all teams."""
420
+ for team_id, team in self.teams.items():
421
+ team_agents = self.agents[team_id]
422
+
423
+ # Calculate success rate
424
+ completed_tasks = sum(
425
+ agent.get_completed_task_count()
426
+ for agent in team_agents.values()
427
+ )
428
+ total_tasks = sum(
429
+ agent.get_total_task_count()
430
+ for agent in team_agents.values()
431
+ )
432
+ team.success_rate = completed_tasks / max(1, total_tasks)
433
+
434
+ # Calculate collaboration score
435
+ team_links = [
436
+ link for link in self.collaboration_network.values()
437
+ if team_id in (link.team_a_id, link.team_b_id)
438
+ ]
439
+ team.collaboration_score = (
440
+ sum(link.strength for link in team_links) /
441
+ len(team_links) if team_links else 0.5
442
+ )
ui/venture_ui.py ADDED
@@ -0,0 +1,399 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """UI components for venture strategies and analysis."""
2
+
3
+ import gradio as gr
4
+ import json
5
+ from typing import Dict, Any, List
6
+ import plotly.graph_objects as go
7
+ import plotly.express as px
8
+ import pandas as pd
9
+ from datetime import datetime
10
+
11
+ class VentureUI:
12
+ """UI for venture strategies and analysis."""
13
+
14
+ def __init__(self, api_client):
15
+ self.api_client = api_client
16
+
17
+ def create_interface(self):
18
+ """Create Gradio interface."""
19
+ with gr.Blocks(title="Venture Strategy Optimizer") as interface:
20
+ gr.Markdown("# Venture Strategy Optimizer")
21
+
22
+ with gr.Tabs():
23
+ # Venture Analysis Tab
24
+ with gr.Tab("Venture Analysis"):
25
+ with gr.Row():
26
+ with gr.Column():
27
+ venture_type = gr.Dropdown(
28
+ choices=self._get_venture_types(),
29
+ label="Venture Type"
30
+ )
31
+ query = gr.Textbox(
32
+ lines=3,
33
+ label="Analysis Query"
34
+ )
35
+ analyze_btn = gr.Button("Analyze Venture")
36
+
37
+ with gr.Column():
38
+ analysis_output = gr.JSON(label="Analysis Results")
39
+ metrics_plot = gr.Plot(label="Key Metrics")
40
+
41
+ analyze_btn.click(
42
+ fn=self._analyze_venture,
43
+ inputs=[venture_type, query],
44
+ outputs=[analysis_output, metrics_plot]
45
+ )
46
+
47
+ # Market Analysis Tab
48
+ with gr.Tab("Market Analysis"):
49
+ with gr.Row():
50
+ with gr.Column():
51
+ segment = gr.Textbox(
52
+ label="Market Segment"
53
+ )
54
+ market_btn = gr.Button("Analyze Market")
55
+
56
+ with gr.Column():
57
+ market_output = gr.JSON(label="Market Analysis")
58
+ market_plot = gr.Plot(label="Market Trends")
59
+
60
+ market_btn.click(
61
+ fn=self._analyze_market,
62
+ inputs=[segment],
63
+ outputs=[market_output, market_plot]
64
+ )
65
+
66
+ # Portfolio Optimization Tab
67
+ with gr.Tab("Portfolio Optimization"):
68
+ with gr.Row():
69
+ with gr.Column():
70
+ ventures = gr.CheckboxGroup(
71
+ choices=self._get_venture_types(),
72
+ label="Select Ventures"
73
+ )
74
+ optimize_btn = gr.Button("Optimize Portfolio")
75
+
76
+ with gr.Column():
77
+ portfolio_output = gr.JSON(label="Portfolio Strategy")
78
+ portfolio_plot = gr.Plot(label="Portfolio Allocation")
79
+
80
+ optimize_btn.click(
81
+ fn=self._optimize_portfolio,
82
+ inputs=[ventures],
83
+ outputs=[portfolio_output, portfolio_plot]
84
+ )
85
+
86
+ # Monetization Strategy Tab
87
+ with gr.Tab("Monetization Strategy"):
88
+ with gr.Row():
89
+ with gr.Column():
90
+ monetization_type = gr.Dropdown(
91
+ choices=self._get_venture_types(),
92
+ label="Venture Type"
93
+ )
94
+ monetize_btn = gr.Button("Optimize Monetization")
95
+
96
+ with gr.Column():
97
+ monetization_output = gr.JSON(label="Monetization Strategy")
98
+ revenue_plot = gr.Plot(label="Revenue Projections")
99
+
100
+ monetize_btn.click(
101
+ fn=self._optimize_monetization,
102
+ inputs=[monetization_type],
103
+ outputs=[monetization_output, revenue_plot]
104
+ )
105
+
106
+ # Insights Dashboard Tab
107
+ with gr.Tab("Insights Dashboard"):
108
+ with gr.Row():
109
+ refresh_btn = gr.Button("Refresh Insights")
110
+
111
+ with gr.Row():
112
+ with gr.Column():
113
+ market_insights = gr.JSON(label="Market Insights")
114
+ market_trends = gr.Plot(label="Market Trends")
115
+
116
+ with gr.Column():
117
+ portfolio_insights = gr.JSON(label="Portfolio Insights")
118
+ portfolio_trends = gr.Plot(label="Portfolio Performance")
119
+
120
+ refresh_btn.click(
121
+ fn=self._refresh_insights,
122
+ outputs=[
123
+ market_insights, market_trends,
124
+ portfolio_insights, portfolio_trends
125
+ ]
126
+ )
127
+
128
+ return interface
129
+
130
+ def _get_venture_types(self) -> List[str]:
131
+ """Get available venture types."""
132
+ try:
133
+ response = self.api_client.list_strategies()
134
+ return response.get("strategies", [])
135
+ except Exception as e:
136
+ print(f"Error getting venture types: {e}")
137
+ return []
138
+
139
+ def _analyze_venture(self,
140
+ venture_type: str,
141
+ query: str) -> tuple[Dict[str, Any], go.Figure]:
142
+ """Analyze venture opportunity."""
143
+ try:
144
+ # Get analysis
145
+ response = self.api_client.analyze_venture({
146
+ "venture_type": venture_type,
147
+ "query": query
148
+ })
149
+ result = response.get("result", {})
150
+
151
+ # Create visualization
152
+ fig = self._create_venture_plot(result)
153
+
154
+ return result, fig
155
+ except Exception as e:
156
+ print(f"Error in venture analysis: {e}")
157
+ return {"error": str(e)}, go.Figure()
158
+
159
+ def _analyze_market(self,
160
+ segment: str) -> tuple[Dict[str, Any], go.Figure]:
161
+ """Analyze market opportunity."""
162
+ try:
163
+ # Get analysis
164
+ response = self.api_client.analyze_market({
165
+ "segment": segment
166
+ })
167
+ result = response.get("result", {})
168
+
169
+ # Create visualization
170
+ fig = self._create_market_plot(result)
171
+
172
+ return result, fig
173
+ except Exception as e:
174
+ print(f"Error in market analysis: {e}")
175
+ return {"error": str(e)}, go.Figure()
176
+
177
+ def _optimize_portfolio(self,
178
+ ventures: List[str]) -> tuple[Dict[str, Any], go.Figure]:
179
+ """Optimize venture portfolio."""
180
+ try:
181
+ # Get optimization
182
+ response = self.api_client.optimize_portfolio({
183
+ "ventures": ventures
184
+ })
185
+ result = response.get("result", {})
186
+
187
+ # Create visualization
188
+ fig = self._create_portfolio_plot(result)
189
+
190
+ return result, fig
191
+ except Exception as e:
192
+ print(f"Error in portfolio optimization: {e}")
193
+ return {"error": str(e)}, go.Figure()
194
+
195
+ def _optimize_monetization(self,
196
+ venture_type: str) -> tuple[Dict[str, Any], go.Figure]:
197
+ """Optimize monetization strategy."""
198
+ try:
199
+ # Get optimization
200
+ response = self.api_client.optimize_monetization({
201
+ "venture_type": venture_type
202
+ })
203
+ result = response.get("result", {})
204
+
205
+ # Create visualization
206
+ fig = self._create_revenue_plot(result)
207
+
208
+ return result, fig
209
+ except Exception as e:
210
+ print(f"Error in monetization optimization: {e}")
211
+ return {"error": str(e)}, go.Figure()
212
+
213
+ def _refresh_insights(self) -> tuple[Dict[str, Any], go.Figure,
214
+ Dict[str, Any], go.Figure]:
215
+ """Refresh insights dashboard."""
216
+ try:
217
+ # Get insights
218
+ market_response = self.api_client.get_market_insights()
219
+ portfolio_response = self.api_client.get_portfolio_insights()
220
+
221
+ market_insights = market_response.get("insights", {})
222
+ portfolio_insights = portfolio_response.get("insights", {})
223
+
224
+ # Create visualizations
225
+ market_fig = self._create_market_trends_plot(market_insights)
226
+ portfolio_fig = self._create_portfolio_trends_plot(portfolio_insights)
227
+
228
+ return market_insights, market_fig, portfolio_insights, portfolio_fig
229
+ except Exception as e:
230
+ print(f"Error refreshing insights: {e}")
231
+ return (
232
+ {"error": str(e)}, go.Figure(),
233
+ {"error": str(e)}, go.Figure()
234
+ )
235
+
236
+ def _create_venture_plot(self, data: Dict[str, Any]) -> go.Figure:
237
+ """Create venture analysis visualization."""
238
+ try:
239
+ metrics = data.get("metrics", {})
240
+
241
+ fig = go.Figure()
242
+ fig.add_trace(go.Scatterpolar(
243
+ r=[
244
+ metrics.get("market_score", 0),
245
+ metrics.get("opportunity_score", 0),
246
+ metrics.get("risk_score", 0),
247
+ metrics.get("growth_potential", 0),
248
+ metrics.get("profitability", 0)
249
+ ],
250
+ theta=[
251
+ "Market Score",
252
+ "Opportunity Score",
253
+ "Risk Score",
254
+ "Growth Potential",
255
+ "Profitability"
256
+ ],
257
+ fill='toself'
258
+ ))
259
+
260
+ fig.update_layout(
261
+ polar=dict(
262
+ radialaxis=dict(
263
+ visible=True,
264
+ range=[0, 1]
265
+ )
266
+ ),
267
+ showlegend=False
268
+ )
269
+
270
+ return fig
271
+ except Exception as e:
272
+ print(f"Error creating venture plot: {e}")
273
+ return go.Figure()
274
+
275
+ def _create_market_plot(self, data: Dict[str, Any]) -> go.Figure:
276
+ """Create market analysis visualization."""
277
+ try:
278
+ trends = data.get("trend_analysis", {})
279
+
280
+ df = pd.DataFrame([
281
+ {
282
+ "Trend": trend["name"],
283
+ "Impact": trend["impact"],
284
+ "Potential": trend["market_potential"],
285
+ "Risk": trend["risk_level"]
286
+ }
287
+ for trend in trends
288
+ ])
289
+
290
+ fig = px.scatter(
291
+ df,
292
+ x="Impact",
293
+ y="Potential",
294
+ size="Risk",
295
+ hover_data=["Trend"],
296
+ title="Market Trends Analysis"
297
+ )
298
+
299
+ return fig
300
+ except Exception as e:
301
+ print(f"Error creating market plot: {e}")
302
+ return go.Figure()
303
+
304
+ def _create_portfolio_plot(self, data: Dict[str, Any]) -> go.Figure:
305
+ """Create portfolio optimization visualization."""
306
+ try:
307
+ allocation = data.get("allocation", {})
308
+
309
+ fig = go.Figure(data=[
310
+ go.Bar(
311
+ name=venture,
312
+ x=["Resources", "Priority", "Risk"],
313
+ y=[
314
+ sum(resources.values()),
315
+ priority,
316
+ len(constraints)
317
+ ]
318
+ )
319
+ for venture, (resources, priority, constraints) in allocation.items()
320
+ ])
321
+
322
+ fig.update_layout(
323
+ barmode='group',
324
+ title="Portfolio Allocation"
325
+ )
326
+
327
+ return fig
328
+ except Exception as e:
329
+ print(f"Error creating portfolio plot: {e}")
330
+ return go.Figure()
331
+
332
+ def _create_revenue_plot(self, data: Dict[str, Any]) -> go.Figure:
333
+ """Create revenue projection visualization."""
334
+ try:
335
+ projections = data.get("projections", {})
336
+
337
+ months = list(range(12))
338
+ revenue = [
339
+ projections.get("monthly_revenue", {}).get(str(m), 0)
340
+ for m in months
341
+ ]
342
+
343
+ fig = go.Figure()
344
+ fig.add_trace(go.Scatter(
345
+ x=months,
346
+ y=revenue,
347
+ mode='lines+markers',
348
+ name='Revenue'
349
+ ))
350
+
351
+ fig.update_layout(
352
+ title="Revenue Projections",
353
+ xaxis_title="Month",
354
+ yaxis_title="Revenue ($)"
355
+ )
356
+
357
+ return fig
358
+ except Exception as e:
359
+ print(f"Error creating revenue plot: {e}")
360
+ return go.Figure()
361
+
362
+ def _create_market_trends_plot(self, data: Dict[str, Any]) -> go.Figure:
363
+ """Create market trends visualization."""
364
+ try:
365
+ trends = data.get("trend_insights", [])
366
+
367
+ df = pd.DataFrame(trends)
368
+
369
+ fig = px.scatter(
370
+ df,
371
+ x="impact",
372
+ y="potential",
373
+ size="risk",
374
+ hover_data=["name"],
375
+ title="Market Trends Overview"
376
+ )
377
+
378
+ return fig
379
+ except Exception as e:
380
+ print(f"Error creating market trends plot: {e}")
381
+ return go.Figure()
382
+
383
+ def _create_portfolio_trends_plot(self, data: Dict[str, Any]) -> go.Figure:
384
+ """Create portfolio trends visualization."""
385
+ try:
386
+ metrics = data.get("portfolio_metrics", {})
387
+
388
+ fig = go.Figure()
389
+ fig.add_trace(go.Indicator(
390
+ mode="gauge+number",
391
+ value=metrics.get("total_revenue", 0),
392
+ title={'text': "Total Revenue ($M)"},
393
+ gauge={'axis': {'range': [None, 10]}}
394
+ ))
395
+
396
+ return fig
397
+ except Exception as e:
398
+ print(f"Error creating portfolio trends plot: {e}")
399
+ return go.Figure()
upload_to_hub.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub import HfApi
2
+ import os
3
+
4
+ # Initialize the Hugging Face API
5
+ api = HfApi()
6
+
7
+ print("Starting upload to Hugging Face Space...")
8
+
9
+ # Create a new Space if it doesn't exist
10
+ try:
11
+ api.create_repo(
12
+ repo_id="nananie143/advanced-reasoning",
13
+ repo_type="space",
14
+ space_sdk="gradio",
15
+ private=False
16
+ )
17
+ except Exception as e:
18
+ print(f"Space might already exist or there was an error: {e}")
19
+
20
+ # Upload the files
21
+ api.upload_folder(
22
+ folder_path=".",
23
+ repo_id="nananie143/advanced-reasoning",
24
+ repo_type="space",
25
+ ignore_patterns=["*.pyc", "__pycache__", ".git", ".env", "*.gguf"]
26
+ )
27
+
28
+ print("Upload completed successfully!")