Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- meta_learning.py +1 -1
- quantum_learning.py +235 -0
meta_learning.py
CHANGED
|
@@ -11,7 +11,7 @@ import logging
|
|
| 11 |
from datetime import datetime
|
| 12 |
from enum import Enum
|
| 13 |
import json
|
| 14 |
-
from
|
| 15 |
|
| 16 |
class LearningStrategy(Enum):
|
| 17 |
GRADIENT_BASED = "gradient_based"
|
|
|
|
| 11 |
from datetime import datetime
|
| 12 |
from enum import Enum
|
| 13 |
import json
|
| 14 |
+
from quantum_learning import QuantumLearningSystem, Pattern, PatternType
|
| 15 |
|
| 16 |
class LearningStrategy(Enum):
|
| 17 |
GRADIENT_BASED = "gradient_based"
|
quantum_learning.py
ADDED
|
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Quantum Learning System
|
| 3 |
+
---------------------
|
| 4 |
+
Implements quantum-inspired learning algorithms for enhanced pattern recognition
|
| 5 |
+
and optimization.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
from typing import Dict, Any, List, Optional, Tuple
|
| 9 |
+
from dataclasses import dataclass, field
|
| 10 |
+
from enum import Enum
|
| 11 |
+
import numpy as np
|
| 12 |
+
from datetime import datetime
|
| 13 |
+
|
| 14 |
+
class PatternType(Enum):
|
| 15 |
+
"""Types of quantum learning patterns."""
|
| 16 |
+
SUPERPOSITION = "superposition"
|
| 17 |
+
ENTANGLEMENT = "entanglement"
|
| 18 |
+
INTERFERENCE = "interference"
|
| 19 |
+
TUNNELING = "tunneling"
|
| 20 |
+
ANNEALING = "annealing"
|
| 21 |
+
|
| 22 |
+
@dataclass
|
| 23 |
+
class Pattern:
|
| 24 |
+
"""Quantum pattern representation."""
|
| 25 |
+
type: PatternType
|
| 26 |
+
amplitude: complex
|
| 27 |
+
phase: float
|
| 28 |
+
entanglement_partners: List[str]
|
| 29 |
+
interference_score: float
|
| 30 |
+
metadata: Dict[str, Any] = field(default_factory=dict)
|
| 31 |
+
timestamp: datetime = field(default_factory=datetime.now)
|
| 32 |
+
|
| 33 |
+
class QuantumLearningSystem:
|
| 34 |
+
"""
|
| 35 |
+
Advanced quantum-inspired learning system that:
|
| 36 |
+
1. Uses quantum superposition for parallel pattern matching
|
| 37 |
+
2. Leverages quantum entanglement for correlated learning
|
| 38 |
+
3. Applies quantum interference for optimization
|
| 39 |
+
4. Implements quantum tunneling for escaping local optima
|
| 40 |
+
5. Uses quantum annealing for global optimization
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
def __init__(self,
|
| 44 |
+
num_qubits: int = 8,
|
| 45 |
+
entanglement_strength: float = 0.5,
|
| 46 |
+
interference_threshold: float = 0.3,
|
| 47 |
+
tunneling_rate: float = 0.1,
|
| 48 |
+
annealing_schedule: Optional[Dict[str, Any]] = None):
|
| 49 |
+
"""Initialize quantum learning system."""
|
| 50 |
+
self.num_qubits = num_qubits
|
| 51 |
+
self.entanglement_strength = entanglement_strength
|
| 52 |
+
self.interference_threshold = interference_threshold
|
| 53 |
+
self.tunneling_rate = tunneling_rate
|
| 54 |
+
self.annealing_schedule = annealing_schedule or {
|
| 55 |
+
"initial_temp": 10.0,
|
| 56 |
+
"final_temp": 0.1,
|
| 57 |
+
"cooling_rate": 0.95
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
# Initialize quantum state
|
| 61 |
+
self.state = np.zeros((2**num_qubits,), dtype=complex)
|
| 62 |
+
self.state[0] = 1.0 # Initialize to |0⟩ state
|
| 63 |
+
|
| 64 |
+
# Pattern storage
|
| 65 |
+
self.patterns: Dict[str, Pattern] = {}
|
| 66 |
+
self.entanglement_graph: Dict[str, List[str]] = {}
|
| 67 |
+
|
| 68 |
+
# Performance tracking
|
| 69 |
+
self.interference_history: List[float] = []
|
| 70 |
+
self.tunneling_events: List[Dict[str, Any]] = []
|
| 71 |
+
self.optimization_trace: List[float] = []
|
| 72 |
+
|
| 73 |
+
def create_superposition(self, patterns: List[Pattern]) -> np.ndarray:
|
| 74 |
+
"""Create quantum superposition of patterns."""
|
| 75 |
+
n_patterns = len(patterns)
|
| 76 |
+
amplitude = 1.0 / np.sqrt(n_patterns)
|
| 77 |
+
|
| 78 |
+
superposition = np.zeros_like(self.state)
|
| 79 |
+
for i, pattern in enumerate(patterns):
|
| 80 |
+
# Convert pattern to quantum state
|
| 81 |
+
pattern_state = self._pattern_to_quantum_state(pattern)
|
| 82 |
+
# Add to superposition with equal amplitude
|
| 83 |
+
superposition += amplitude * pattern_state
|
| 84 |
+
|
| 85 |
+
return superposition
|
| 86 |
+
|
| 87 |
+
def apply_entanglement(self, pattern1: Pattern, pattern2: Pattern) -> Tuple[Pattern, Pattern]:
|
| 88 |
+
"""Apply quantum entanglement between patterns."""
|
| 89 |
+
# Create entanglement between patterns
|
| 90 |
+
if self.entanglement_strength > np.random.random():
|
| 91 |
+
pattern1.entanglement_partners.append(pattern2.type.value)
|
| 92 |
+
pattern2.entanglement_partners.append(pattern1.type.value)
|
| 93 |
+
|
| 94 |
+
# Update entanglement graph
|
| 95 |
+
self.entanglement_graph.setdefault(pattern1.type.value, []).append(pattern2.type.value)
|
| 96 |
+
self.entanglement_graph.setdefault(pattern2.type.value, []).append(pattern1.type.value)
|
| 97 |
+
|
| 98 |
+
# Modify pattern properties based on entanglement
|
| 99 |
+
shared_phase = (pattern1.phase + pattern2.phase) / 2
|
| 100 |
+
pattern1.phase = pattern2.phase = shared_phase
|
| 101 |
+
|
| 102 |
+
return pattern1, pattern2
|
| 103 |
+
|
| 104 |
+
def measure_interference(self, patterns: List[Pattern]) -> float:
|
| 105 |
+
"""Measure quantum interference between patterns."""
|
| 106 |
+
total_interference = 0.0
|
| 107 |
+
|
| 108 |
+
for i, p1 in enumerate(patterns):
|
| 109 |
+
for p2 in patterns[i+1:]:
|
| 110 |
+
# Calculate interference based on phase difference
|
| 111 |
+
phase_diff = abs(p1.phase - p2.phase)
|
| 112 |
+
interference = np.cos(phase_diff) * abs(p1.amplitude * p2.amplitude)
|
| 113 |
+
|
| 114 |
+
# Update interference scores
|
| 115 |
+
p1.interference_score = p2.interference_score = interference
|
| 116 |
+
total_interference += interference
|
| 117 |
+
|
| 118 |
+
self.interference_history.append(total_interference)
|
| 119 |
+
return total_interference
|
| 120 |
+
|
| 121 |
+
def quantum_tunneling(self, pattern: Pattern, energy_landscape: Dict[str, float]) -> Pattern:
|
| 122 |
+
"""Apply quantum tunneling to escape local optima."""
|
| 123 |
+
current_energy = energy_landscape.get(pattern.type.value, float('inf'))
|
| 124 |
+
|
| 125 |
+
# Attempt tunneling with probability based on tunneling rate
|
| 126 |
+
if np.random.random() < self.tunneling_rate:
|
| 127 |
+
# Find neighboring states
|
| 128 |
+
neighbors = self._find_neighboring_states(pattern)
|
| 129 |
+
|
| 130 |
+
for neighbor in neighbors:
|
| 131 |
+
neighbor_energy = energy_landscape.get(neighbor.type.value, float('inf'))
|
| 132 |
+
|
| 133 |
+
# Tunnel if found lower energy state
|
| 134 |
+
if neighbor_energy < current_energy:
|
| 135 |
+
self.tunneling_events.append({
|
| 136 |
+
"from_state": pattern.type.value,
|
| 137 |
+
"to_state": neighbor.type.value,
|
| 138 |
+
"energy_delta": neighbor_energy - current_energy,
|
| 139 |
+
"timestamp": datetime.now().isoformat()
|
| 140 |
+
})
|
| 141 |
+
return neighbor
|
| 142 |
+
|
| 143 |
+
return pattern
|
| 144 |
+
|
| 145 |
+
def quantum_annealing(self,
|
| 146 |
+
initial_pattern: Pattern,
|
| 147 |
+
cost_function: callable,
|
| 148 |
+
num_steps: int = 1000) -> Pattern:
|
| 149 |
+
"""Perform quantum annealing optimization."""
|
| 150 |
+
current_pattern = initial_pattern
|
| 151 |
+
current_cost = cost_function(current_pattern)
|
| 152 |
+
temperature = self.annealing_schedule["initial_temp"]
|
| 153 |
+
|
| 154 |
+
for step in range(num_steps):
|
| 155 |
+
# Generate neighbor pattern
|
| 156 |
+
neighbor = self._generate_neighbor_pattern(current_pattern)
|
| 157 |
+
neighbor_cost = cost_function(neighbor)
|
| 158 |
+
|
| 159 |
+
# Calculate acceptance probability
|
| 160 |
+
delta_cost = neighbor_cost - current_cost
|
| 161 |
+
if delta_cost < 0 or np.random.random() < np.exp(-delta_cost / temperature):
|
| 162 |
+
current_pattern = neighbor
|
| 163 |
+
current_cost = neighbor_cost
|
| 164 |
+
|
| 165 |
+
# Update temperature
|
| 166 |
+
temperature *= self.annealing_schedule["cooling_rate"]
|
| 167 |
+
self.optimization_trace.append(current_cost)
|
| 168 |
+
|
| 169 |
+
# Stop if temperature is too low
|
| 170 |
+
if temperature < self.annealing_schedule["final_temp"]:
|
| 171 |
+
break
|
| 172 |
+
|
| 173 |
+
return current_pattern
|
| 174 |
+
|
| 175 |
+
def _pattern_to_quantum_state(self, pattern: Pattern) -> np.ndarray:
|
| 176 |
+
"""Convert pattern to quantum state representation."""
|
| 177 |
+
# Create basis state based on pattern type
|
| 178 |
+
basis_state = np.zeros_like(self.state)
|
| 179 |
+
state_index = hash(pattern.type.value) % (2**self.num_qubits)
|
| 180 |
+
basis_state[state_index] = 1.0
|
| 181 |
+
|
| 182 |
+
# Apply amplitude and phase
|
| 183 |
+
return pattern.amplitude * np.exp(1j * pattern.phase) * basis_state
|
| 184 |
+
|
| 185 |
+
def _find_neighboring_states(self, pattern: Pattern) -> List[Pattern]:
|
| 186 |
+
"""Find neighboring quantum states for tunneling."""
|
| 187 |
+
neighbors = []
|
| 188 |
+
current_type_index = list(PatternType).index(pattern.type)
|
| 189 |
+
|
| 190 |
+
# Consider adjacent pattern types as neighbors
|
| 191 |
+
for i in [-1, 1]:
|
| 192 |
+
try:
|
| 193 |
+
neighbor_type = list(PatternType)[current_type_index + i]
|
| 194 |
+
neighbor = Pattern(
|
| 195 |
+
type=neighbor_type,
|
| 196 |
+
amplitude=pattern.amplitude,
|
| 197 |
+
phase=pattern.phase + np.random.normal(0, 0.1),
|
| 198 |
+
entanglement_partners=pattern.entanglement_partners.copy(),
|
| 199 |
+
interference_score=pattern.interference_score
|
| 200 |
+
)
|
| 201 |
+
neighbors.append(neighbor)
|
| 202 |
+
except IndexError:
|
| 203 |
+
continue
|
| 204 |
+
|
| 205 |
+
return neighbors
|
| 206 |
+
|
| 207 |
+
def _generate_neighbor_pattern(self, pattern: Pattern) -> Pattern:
|
| 208 |
+
"""Generate neighboring pattern for annealing."""
|
| 209 |
+
return Pattern(
|
| 210 |
+
type=pattern.type,
|
| 211 |
+
amplitude=pattern.amplitude + np.random.normal(0, 0.1),
|
| 212 |
+
phase=pattern.phase + np.random.normal(0, 0.1),
|
| 213 |
+
entanglement_partners=pattern.entanglement_partners.copy(),
|
| 214 |
+
interference_score=pattern.interference_score,
|
| 215 |
+
metadata=pattern.metadata.copy()
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
def get_optimization_statistics(self) -> Dict[str, Any]:
|
| 219 |
+
"""Get statistics about the optimization process."""
|
| 220 |
+
return {
|
| 221 |
+
"interference_history": self.interference_history,
|
| 222 |
+
"tunneling_events": self.tunneling_events,
|
| 223 |
+
"optimization_trace": self.optimization_trace,
|
| 224 |
+
"entanglement_graph": self.entanglement_graph
|
| 225 |
+
}
|
| 226 |
+
|
| 227 |
+
def reset_system(self):
|
| 228 |
+
"""Reset the quantum learning system."""
|
| 229 |
+
self.state = np.zeros((2**self.num_qubits,), dtype=complex)
|
| 230 |
+
self.state[0] = 1.0
|
| 231 |
+
self.patterns.clear()
|
| 232 |
+
self.entanglement_graph.clear()
|
| 233 |
+
self.interference_history.clear()
|
| 234 |
+
self.tunneling_events.clear()
|
| 235 |
+
self.optimization_trace.clear()
|