|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: roberta-news-classifier |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# roberta-news-classifier |
|
|
|
This model is a fine-tuned version of [burakaytan/roberta-base-turkish-uncased](https://huggingface.co/burakaytan/roberta-base-turkish-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2394 |
|
- Accuracy: 0.9388 |
|
- F1: 0.9388 |
|
- Precision: 0.9388 |
|
- Recall: 0.9388 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 150 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 12 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.2929 | 1.0 | 62 | 0.2893 | 0.9316 | 0.9316 | 0.9316 | 0.9316 | |
|
| 0.2775 | 2.0 | 124 | 0.2700 | 0.9337 | 0.9337 | 0.9337 | 0.9337 | |
|
| 0.2554 | 3.0 | 186 | 0.2576 | 0.9286 | 0.9286 | 0.9286 | 0.9286 | |
|
| 0.2198 | 4.0 | 248 | 0.2409 | 0.9286 | 0.9286 | 0.9286 | 0.9286 | |
|
| 0.197 | 5.0 | 310 | 0.2324 | 0.9306 | 0.9306 | 0.9306 | 0.9306 | |
|
| 0.1611 | 6.0 | 372 | 0.2254 | 0.9367 | 0.9367 | 0.9367 | 0.9367 | |
|
| 0.1302 | 7.0 | 434 | 0.2204 | 0.9378 | 0.9378 | 0.9378 | 0.9378 | |
|
| 0.1058 | 8.0 | 496 | 0.2238 | 0.9337 | 0.9337 | 0.9337 | 0.9337 | |
|
| 0.0976 | 9.0 | 558 | 0.2295 | 0.9378 | 0.9378 | 0.9378 | 0.9378 | |
|
| 0.0795 | 10.0 | 620 | 0.2299 | 0.9378 | 0.9378 | 0.9378 | 0.9378 | |
|
| 0.0641 | 11.0 | 682 | 0.2394 | 0.9388 | 0.9388 | 0.9388 | 0.9388 | |
|
| 0.0544 | 12.0 | 744 | 0.2392 | 0.9367 | 0.9367 | 0.9367 | 0.9367 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.24.0 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.7.1 |
|
- Tokenizers 0.13.2 |
|
|