resul-ai's picture
update model card README.md
8b74fb6
|
raw
history blame
2.59 kB
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: roberta-news-classifier
    results: []

roberta-news-classifier

This model is a fine-tuned version of burakaytan/roberta-base-turkish-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2394
  • Accuracy: 0.9388
  • F1: 0.9388
  • Precision: 0.9388
  • Recall: 0.9388

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 150
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.2929 1.0 62 0.2893 0.9316 0.9316 0.9316 0.9316
0.2775 2.0 124 0.2700 0.9337 0.9337 0.9337 0.9337
0.2554 3.0 186 0.2576 0.9286 0.9286 0.9286 0.9286
0.2198 4.0 248 0.2409 0.9286 0.9286 0.9286 0.9286
0.197 5.0 310 0.2324 0.9306 0.9306 0.9306 0.9306
0.1611 6.0 372 0.2254 0.9367 0.9367 0.9367 0.9367
0.1302 7.0 434 0.2204 0.9378 0.9378 0.9378 0.9378
0.1058 8.0 496 0.2238 0.9337 0.9337 0.9337 0.9337
0.0976 9.0 558 0.2295 0.9378 0.9378 0.9378 0.9378
0.0795 10.0 620 0.2299 0.9378 0.9378 0.9378 0.9378
0.0641 11.0 682 0.2394 0.9388 0.9388 0.9388 0.9388
0.0544 12.0 744 0.2392 0.9367 0.9367 0.9367 0.9367

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.12.1+cu113
  • Datasets 2.7.1
  • Tokenizers 0.13.2