update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- f1
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
model-index:
|
11 |
+
- name: roberta-news-classifier
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# roberta-news-classifier
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [burakaytan/roberta-base-turkish-uncased](https://huggingface.co/burakaytan/roberta-base-turkish-uncased) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.2394
|
23 |
+
- Accuracy: 0.9388
|
24 |
+
- F1: 0.9388
|
25 |
+
- Precision: 0.9388
|
26 |
+
- Recall: 0.9388
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 1e-05
|
46 |
+
- train_batch_size: 64
|
47 |
+
- eval_batch_size: 150
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- lr_scheduler_warmup_steps: 500
|
52 |
+
- num_epochs: 12
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
58 |
+
| 0.2929 | 1.0 | 62 | 0.2893 | 0.9316 | 0.9316 | 0.9316 | 0.9316 |
|
59 |
+
| 0.2775 | 2.0 | 124 | 0.2700 | 0.9337 | 0.9337 | 0.9337 | 0.9337 |
|
60 |
+
| 0.2554 | 3.0 | 186 | 0.2576 | 0.9286 | 0.9286 | 0.9286 | 0.9286 |
|
61 |
+
| 0.2198 | 4.0 | 248 | 0.2409 | 0.9286 | 0.9286 | 0.9286 | 0.9286 |
|
62 |
+
| 0.197 | 5.0 | 310 | 0.2324 | 0.9306 | 0.9306 | 0.9306 | 0.9306 |
|
63 |
+
| 0.1611 | 6.0 | 372 | 0.2254 | 0.9367 | 0.9367 | 0.9367 | 0.9367 |
|
64 |
+
| 0.1302 | 7.0 | 434 | 0.2204 | 0.9378 | 0.9378 | 0.9378 | 0.9378 |
|
65 |
+
| 0.1058 | 8.0 | 496 | 0.2238 | 0.9337 | 0.9337 | 0.9337 | 0.9337 |
|
66 |
+
| 0.0976 | 9.0 | 558 | 0.2295 | 0.9378 | 0.9378 | 0.9378 | 0.9378 |
|
67 |
+
| 0.0795 | 10.0 | 620 | 0.2299 | 0.9378 | 0.9378 | 0.9378 | 0.9378 |
|
68 |
+
| 0.0641 | 11.0 | 682 | 0.2394 | 0.9388 | 0.9388 | 0.9388 | 0.9388 |
|
69 |
+
| 0.0544 | 12.0 | 744 | 0.2392 | 0.9367 | 0.9367 | 0.9367 | 0.9367 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.24.0
|
75 |
+
- Pytorch 1.12.1+cu113
|
76 |
+
- Datasets 2.7.1
|
77 |
+
- Tokenizers 0.13.2
|