resul-ai commited on
Commit
8b74fb6
·
1 Parent(s): 4769364

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - f1
8
+ - precision
9
+ - recall
10
+ model-index:
11
+ - name: roberta-news-classifier
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # roberta-news-classifier
19
+
20
+ This model is a fine-tuned version of [burakaytan/roberta-base-turkish-uncased](https://huggingface.co/burakaytan/roberta-base-turkish-uncased) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.2394
23
+ - Accuracy: 0.9388
24
+ - F1: 0.9388
25
+ - Precision: 0.9388
26
+ - Recall: 0.9388
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 1e-05
46
+ - train_batch_size: 64
47
+ - eval_batch_size: 150
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - lr_scheduler_warmup_steps: 500
52
+ - num_epochs: 12
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
58
+ | 0.2929 | 1.0 | 62 | 0.2893 | 0.9316 | 0.9316 | 0.9316 | 0.9316 |
59
+ | 0.2775 | 2.0 | 124 | 0.2700 | 0.9337 | 0.9337 | 0.9337 | 0.9337 |
60
+ | 0.2554 | 3.0 | 186 | 0.2576 | 0.9286 | 0.9286 | 0.9286 | 0.9286 |
61
+ | 0.2198 | 4.0 | 248 | 0.2409 | 0.9286 | 0.9286 | 0.9286 | 0.9286 |
62
+ | 0.197 | 5.0 | 310 | 0.2324 | 0.9306 | 0.9306 | 0.9306 | 0.9306 |
63
+ | 0.1611 | 6.0 | 372 | 0.2254 | 0.9367 | 0.9367 | 0.9367 | 0.9367 |
64
+ | 0.1302 | 7.0 | 434 | 0.2204 | 0.9378 | 0.9378 | 0.9378 | 0.9378 |
65
+ | 0.1058 | 8.0 | 496 | 0.2238 | 0.9337 | 0.9337 | 0.9337 | 0.9337 |
66
+ | 0.0976 | 9.0 | 558 | 0.2295 | 0.9378 | 0.9378 | 0.9378 | 0.9378 |
67
+ | 0.0795 | 10.0 | 620 | 0.2299 | 0.9378 | 0.9378 | 0.9378 | 0.9378 |
68
+ | 0.0641 | 11.0 | 682 | 0.2394 | 0.9388 | 0.9388 | 0.9388 | 0.9388 |
69
+ | 0.0544 | 12.0 | 744 | 0.2392 | 0.9367 | 0.9367 | 0.9367 | 0.9367 |
70
+
71
+
72
+ ### Framework versions
73
+
74
+ - Transformers 4.24.0
75
+ - Pytorch 1.12.1+cu113
76
+ - Datasets 2.7.1
77
+ - Tokenizers 0.13.2