File size: 2,588 Bytes
8b74fb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: roberta-news-classifier
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-news-classifier

This model is a fine-tuned version of [burakaytan/roberta-base-turkish-uncased](https://huggingface.co/burakaytan/roberta-base-turkish-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2394
- Accuracy: 0.9388
- F1: 0.9388
- Precision: 0.9388
- Recall: 0.9388

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 150
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 12

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.2929        | 1.0   | 62   | 0.2893          | 0.9316   | 0.9316 | 0.9316    | 0.9316 |
| 0.2775        | 2.0   | 124  | 0.2700          | 0.9337   | 0.9337 | 0.9337    | 0.9337 |
| 0.2554        | 3.0   | 186  | 0.2576          | 0.9286   | 0.9286 | 0.9286    | 0.9286 |
| 0.2198        | 4.0   | 248  | 0.2409          | 0.9286   | 0.9286 | 0.9286    | 0.9286 |
| 0.197         | 5.0   | 310  | 0.2324          | 0.9306   | 0.9306 | 0.9306    | 0.9306 |
| 0.1611        | 6.0   | 372  | 0.2254          | 0.9367   | 0.9367 | 0.9367    | 0.9367 |
| 0.1302        | 7.0   | 434  | 0.2204          | 0.9378   | 0.9378 | 0.9378    | 0.9378 |
| 0.1058        | 8.0   | 496  | 0.2238          | 0.9337   | 0.9337 | 0.9337    | 0.9337 |
| 0.0976        | 9.0   | 558  | 0.2295          | 0.9378   | 0.9378 | 0.9378    | 0.9378 |
| 0.0795        | 10.0  | 620  | 0.2299          | 0.9378   | 0.9378 | 0.9378    | 0.9378 |
| 0.0641        | 11.0  | 682  | 0.2394          | 0.9388   | 0.9388 | 0.9388    | 0.9388 |
| 0.0544        | 12.0  | 744  | 0.2392          | 0.9367   | 0.9367 | 0.9367    | 0.9367 |


### Framework versions

- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2