bert-all-deep / README.md
jialinselenasong's picture
Training complete
87fa9f9 verified
---
license: apache-2.0
base_model: google-bert/bert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-all-deep
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-all-deep
This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8570
- Precision: 0.6195
- Recall: 0.7039
- F1: 0.6590
- Accuracy: 0.8148
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 363 | 0.5960 | 0.5756 | 0.6524 | 0.6116 | 0.8019 |
| 0.7348 | 2.0 | 726 | 0.5768 | 0.5826 | 0.6904 | 0.6319 | 0.8102 |
| 0.422 | 3.0 | 1089 | 0.5991 | 0.6155 | 0.6880 | 0.6497 | 0.8185 |
| 0.422 | 4.0 | 1452 | 0.6229 | 0.6145 | 0.7043 | 0.6564 | 0.8169 |
| 0.2916 | 5.0 | 1815 | 0.6857 | 0.6163 | 0.7080 | 0.6590 | 0.8159 |
| 0.2032 | 6.0 | 2178 | 0.7307 | 0.6277 | 0.6987 | 0.6613 | 0.8182 |
| 0.1531 | 7.0 | 2541 | 0.7933 | 0.6168 | 0.7103 | 0.6603 | 0.8132 |
| 0.1531 | 8.0 | 2904 | 0.8186 | 0.6238 | 0.6992 | 0.6594 | 0.8158 |
| 0.119 | 9.0 | 3267 | 0.8438 | 0.6159 | 0.7082 | 0.6589 | 0.8149 |
| 0.1 | 10.0 | 3630 | 0.8570 | 0.6195 | 0.7039 | 0.6590 | 0.8148 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1