bert-all-deep / README.md
jialinselenasong's picture
Training complete
87fa9f9 verified
metadata
license: apache-2.0
base_model: google-bert/bert-base-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-all-deep
    results: []

bert-all-deep

This model is a fine-tuned version of google-bert/bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8570
  • Precision: 0.6195
  • Recall: 0.7039
  • F1: 0.6590
  • Accuracy: 0.8148

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 363 0.5960 0.5756 0.6524 0.6116 0.8019
0.7348 2.0 726 0.5768 0.5826 0.6904 0.6319 0.8102
0.422 3.0 1089 0.5991 0.6155 0.6880 0.6497 0.8185
0.422 4.0 1452 0.6229 0.6145 0.7043 0.6564 0.8169
0.2916 5.0 1815 0.6857 0.6163 0.7080 0.6590 0.8159
0.2032 6.0 2178 0.7307 0.6277 0.6987 0.6613 0.8182
0.1531 7.0 2541 0.7933 0.6168 0.7103 0.6603 0.8132
0.1531 8.0 2904 0.8186 0.6238 0.6992 0.6594 0.8158
0.119 9.0 3267 0.8438 0.6159 0.7082 0.6589 0.8149
0.1 10.0 3630 0.8570 0.6195 0.7039 0.6590 0.8148

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1