jialinselenasong commited on
Commit
87fa9f9
·
verified ·
1 Parent(s): fb03dce

Training complete

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google-bert/bert-base-cased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: bert-all-deep
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # bert-all-deep
20
+
21
+ This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.8570
24
+ - Precision: 0.6195
25
+ - Recall: 0.7039
26
+ - F1: 0.6590
27
+ - Accuracy: 0.8148
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 8
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 10
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | No log | 1.0 | 363 | 0.5960 | 0.5756 | 0.6524 | 0.6116 | 0.8019 |
59
+ | 0.7348 | 2.0 | 726 | 0.5768 | 0.5826 | 0.6904 | 0.6319 | 0.8102 |
60
+ | 0.422 | 3.0 | 1089 | 0.5991 | 0.6155 | 0.6880 | 0.6497 | 0.8185 |
61
+ | 0.422 | 4.0 | 1452 | 0.6229 | 0.6145 | 0.7043 | 0.6564 | 0.8169 |
62
+ | 0.2916 | 5.0 | 1815 | 0.6857 | 0.6163 | 0.7080 | 0.6590 | 0.8159 |
63
+ | 0.2032 | 6.0 | 2178 | 0.7307 | 0.6277 | 0.6987 | 0.6613 | 0.8182 |
64
+ | 0.1531 | 7.0 | 2541 | 0.7933 | 0.6168 | 0.7103 | 0.6603 | 0.8132 |
65
+ | 0.1531 | 8.0 | 2904 | 0.8186 | 0.6238 | 0.6992 | 0.6594 | 0.8158 |
66
+ | 0.119 | 9.0 | 3267 | 0.8438 | 0.6159 | 0.7082 | 0.6589 | 0.8149 |
67
+ | 0.1 | 10.0 | 3630 | 0.8570 | 0.6195 | 0.7039 | 0.6590 | 0.8148 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.40.1
73
+ - Pytorch 2.2.1+cu121
74
+ - Datasets 2.19.1
75
+ - Tokenizers 0.19.1