File size: 2,373 Bytes
87fa9f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: apache-2.0
base_model: google-bert/bert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-all-deep
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-all-deep

This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8570
- Precision: 0.6195
- Recall: 0.7039
- F1: 0.6590
- Accuracy: 0.8148

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 363  | 0.5960          | 0.5756    | 0.6524 | 0.6116 | 0.8019   |
| 0.7348        | 2.0   | 726  | 0.5768          | 0.5826    | 0.6904 | 0.6319 | 0.8102   |
| 0.422         | 3.0   | 1089 | 0.5991          | 0.6155    | 0.6880 | 0.6497 | 0.8185   |
| 0.422         | 4.0   | 1452 | 0.6229          | 0.6145    | 0.7043 | 0.6564 | 0.8169   |
| 0.2916        | 5.0   | 1815 | 0.6857          | 0.6163    | 0.7080 | 0.6590 | 0.8159   |
| 0.2032        | 6.0   | 2178 | 0.7307          | 0.6277    | 0.6987 | 0.6613 | 0.8182   |
| 0.1531        | 7.0   | 2541 | 0.7933          | 0.6168    | 0.7103 | 0.6603 | 0.8132   |
| 0.1531        | 8.0   | 2904 | 0.8186          | 0.6238    | 0.6992 | 0.6594 | 0.8158   |
| 0.119         | 9.0   | 3267 | 0.8438          | 0.6159    | 0.7082 | 0.6589 | 0.8149   |
| 0.1           | 10.0  | 3630 | 0.8570          | 0.6195    | 0.7039 | 0.6590 | 0.8148   |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1