code
stringlengths
114
1.05M
path
stringlengths
3
312
quality_prob
float64
0.5
0.99
learning_prob
float64
0.2
1
filename
stringlengths
3
168
kind
stringclasses
1 value
The MIT License (MIT)<br> Copyright (c) 2017 Massachusetts Institute of Technology<br> Author: Cody Rude<br> This software has been created in projects supported by the US National<br> Science Foundation and NASA (PI: Pankratius)<br> Permission is hereby granted, free of charge, to any person obtaining a copy<br> of this software and associated documentation files (the "Software"), to deal<br> in the Software without restriction, including without limitation the rights<br> to use, copy, modify, merge, publish, distribute, sublicense, and/or sell<br> copies of the Software, and to permit persons to whom the Software is<br> furnished to do so, subject to the following conditions:<br> The above copyright notice and this permission notice shall be included in<br> all copies or substantial portions of the Software.<br> THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR<br> IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,<br> FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE<br> AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER<br> LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,<br> OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN<br> THE SOFTWARE.<br> ``` %matplotlib inline import matplotlib.pyplot as plt plt.rcParams['figure.dpi'] = 150 from skdaccess.framework.param_class import * from skdaccess.geo.wyoming_sounding.cache import DataFetcher ``` Create a data fetcher ``` sdf = DataFetcher(station_number='72493', year=2014, month=5, day_start=30, day_end=30, start_hour=12, end_hour=12) ``` Access data ``` dw = sdf.output() label, data = next(dw.getIterator()) data.head() plt.figure(figsize=(5,3.75)) plt.plot(data['TEMP'],data['HGHT']); plt.ylabel('Height'); plt.xlabel('Temperature'); ```
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/examples/Demo_Wyoming_Sounding.ipynb
0.456168
0.615232
Demo_Wyoming_Sounding.ipynb
pypi
The MIT License (MIT)<br> Copyright (c) 2018 Massachusetts Institute of Technology<br> Author: Cody Rude<br> This software has been created in projects supported by the US National<br> Science Foundation and NASA (PI: Pankratius)<br> Permission is hereby granted, free of charge, to any person obtaining a copy<br> of this software and associated documentation files (the "Software"), to deal<br> in the Software without restriction, including without limitation the rights<br> to use, copy, modify, merge, publish, distribute, sublicense, and/or sell<br> copies of the Software, and to permit persons to whom the Software is<br> furnished to do so, subject to the following conditions:<br> The above copyright notice and this permission notice shall be included in<br> all copies or substantial portions of the Software.<br> THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR<br> IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,<br> FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE<br> AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER<br> LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,<br> OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN<br> THE SOFTWARE.<br> ``` %matplotlib inline import matplotlib.pyplot as plt plt.rcParams['figure.dpi'] = 150 import pandas as pd # LA Traffic count data between 2014-01-14 and 2014-01-16 # Source: https://data.lacity.org/A-Livable-and-Sustainable-City/LADOT-Traffic-Counts-Summary/94wu-3ps3 from skdaccess.engineering.la.traffic_counts.stream import DataFetcher as TrafficDF from skdaccess.framework.param_class import * # Create traffic count data fetcher # Note, use paramter app_token to supply an application token to prevent throttling # See: https://dev.socrata.com/docs/app-tokens.html traffic_df = TrafficDF(start_time='2014-01-14', end_time='2014-01-16') # Create a data wapper traffic_dw = traffic_df.output() # Retrieve results label, data = next(traffic_dw.getIterator()) # Select rows with east bound traffic on 2014-01-14 date = pd.to_datetime('2014-01-14') cut_data = data[data.count_date == date] cut_data = cut_data[cut_data.e_b != 0] # Create plot plt.title('East Bound on {}'.format(date.strftime('%Y-%m-%d'))); plt.ylabel('Count'); tick_labels = cut_data.primary_street + ' and ' + cut_data.cross_street plt.bar(x=range(1,4), height=cut_data.e_b, tick_label=tick_labels); plt.xticks(rotation=15); ```
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/examples/Demo_Traffic_Counts.ipynb
0.737158
0.582135
Demo_Traffic_Counts.ipynb
pypi
The MIT License (MIT)<br> Copyright (c) 2016,2017 Massachusetts Institute of Technology<br> Author: Cody Rude<br> This software has been created in projects supported by the US National<br> Science Foundation and NASA (PI: Pankratius)<br> Permission is hereby granted, free of charge, to any person obtaining a copy<br> of this software and associated documentation files (the "Software"), to deal<br> in the Software without restriction, including without limitation the rights<br> to use, copy, modify, merge, publish, distribute, sublicense, and/or sell<br> copies of the Software, and to permit persons to whom the Software is<br> furnished to do so, subject to the following conditions:<br> The above copyright notice and this permission notice shall be included in<br> all copies or substantial portions of the Software.<br> THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR<br> IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,<br> FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE<br> AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER<br> LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,<br> OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN<br> THE SOFTWARE.<br> ``` %matplotlib notebook import matplotlib.pyplot as plt ``` Voyager mission data Data is retrieved from the Space Physics Data Facility https://spdf.gsfc.nasa.gov/ ``` from skdaccess.astro.voyager import DataFetcher df = DataFetcher(1980,1981,spacecraft='voyager1') df.getMetadataFiles() dw = df.output() it = dw.getIterator() label, data = next(it) plt.plot(data.loc[data['BT']<900,'BT'],'.'); plt.title(label) plt.ylabel(dw.info(label)['BT']['MEANING'] + '\n' + dw.info(label)['BT']['UNITS/COMMENTS']) plt.xticks(rotation=20); ```
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/examples/Demo_Voyager.ipynb
0.402862
0.563738
Demo_Voyager.ipynb
pypi
The MIT License (MIT)<br> Copyright (c) 2016,2017 Massachusetts Institute of Technology<br> Authors: Justin Li, Cody Rude<br> This software has been created in projects supported by the US National<br> Science Foundation and NASA (PI: Pankratius)<br> Permission is hereby granted, free of charge, to any person obtaining a copy<br> of this software and associated documentation files (the "Software"), to deal<br> in the Software without restriction, including without limitation the rights<br> to use, copy, modify, merge, publish, distribute, sublicense, and/or sell<br> copies of the Software, and to permit persons to whom the Software is<br> furnished to do so, subject to the following conditions:<br> The above copyright notice and this permission notice shall be included in<br> all copies or substantial portions of the Software.<br> THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR<br> IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,<br> FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE<br> AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER<br> LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,<br> OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN<br> THE SOFTWARE.<br> ``` %matplotlib notebook import matplotlib.pyplot as plt # USGS Groundwater Data - 129 Monitoring Wells in CA between 2010 and 2014 # Source: http://water.usgs.gov/ogw/ # Returns depth to water level in meters from skdaccess.geo.groundwater import DataFetcher as GW_DF from skdaccess.framework.param_class import * groundwater_fetcher = GW_DF([AutoList([323313117033902])], start_date='2010-01-01',end_date='2014-01-01') groundwater_data = groundwater_fetcher.output().get() # returns a pandas data panel # Plotting Well Number 323313117033902 plt.figure(); plt.plot(groundwater_data[323313117033902]['Median Depth to Water']); plt.tight_layout() ```
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/examples/Demo_Groundwater.ipynb
0.719581
0.530784
Demo_Groundwater.ipynb
pypi
The MIT License (MIT)<br> Copyright (c) 2017 Massachusetts Institute of Technology<br> Author: Cody Rude<br> This software has been created in projects supported by the US National<br> Science Foundation and NASA (PI: Pankratius)<br> Permission is hereby granted, free of charge, to any person obtaining a copy<br> of this software and associated documentation files (the "Software"), to deal<br> in the Software without restriction, including without limitation the rights<br> to use, copy, modify, merge, publish, distribute, sublicense, and/or sell<br> copies of the Software, and to permit persons to whom the Software is<br> furnished to do so, subject to the following conditions:<br> The above copyright notice and this permission notice shall be included in<br> all copies or substantial portions of the Software.<br> THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR<br> IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,<br> FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE<br> AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER<br> LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,<br> OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN<br> THE SOFTWARE.<br> ``` %matplotlib notebook import matplotlib.pyplot as plt ``` Geomagnetic data from the USGS The results presented in this document rely on data collected at magnetic observatories operated by the U.S. Geological Survey (USGS, geomag.usgs.gov). ``` from skdaccess.framework.param_class import * from skdaccess.geo.magnetometer import DataFetcher geomag_df = DataFetcher([AutoList(['BOU'])], start_time='2015-11-01',end_time=('2015-11-02')) dw = geomag_df.output() label, data = next(dw.getIterator()) plt.plot(data['X']); plt.ylabel('nT'); plt.title('X'); plt.xticks(rotation=15); ```
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/examples/Demo_Magnetometer.ipynb
0.515132
0.599514
Demo_Magnetometer.ipynb
pypi
The MIT License (MIT)<br> Copyright (c) 2016,2017 Massachusetts Institute of Technology<br> Authors: Justin Li, Cody Rude<br> This software has been created in projects supported by the US National<br> Science Foundation and NASA (PI: Pankratius)<br> Permission is hereby granted, free of charge, to any person obtaining a copy<br> of this software and associated documentation files (the "Software"), to deal<br> in the Software without restriction, including without limitation the rights<br> to use, copy, modify, merge, publish, distribute, sublicense, and/or sell<br> copies of the Software, and to permit persons to whom the Software is<br> furnished to do so, subject to the following conditions:<br> The above copyright notice and this permission notice shall be included in<br> all copies or substantial portions of the Software.<br> THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR<br> IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,<br> FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE<br> AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER<br> LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,<br> OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN<br> THE SOFTWARE.<br> ``` %matplotlib notebook import matplotlib.pyplot as plt # Kepler Exoplanet Light Curve Time Series # Source: http://keplerscience.arc.nasa.gov # Light curve in relative flux versus phase from skdaccess.astro.kepler import DataFetcher as Kepler_DF from skdaccess.utilities.kepler_util import normalize from skdaccess.framework.param_class import * import numpy as np kepler_fetcher = Kepler_DF([AutoList(['009941662'])]) kepler_data = kepler_fetcher.output().get() normalize(kepler_data['009941662']) kepler_data['009941662'].head() plt.figure(figsize=(8,4)); data = kepler_data['009941662'].iloc[0:1000] plt.plot(np.array(data['TIME']) % 1.7636, data['PDCSAP_FLUX'],'.'); plt.tight_layout(); ```
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/examples/Demo_Kepler.ipynb
0.749821
0.565539
Demo_Kepler.ipynb
pypi
The MIT License (MIT)<br> Copyright (c) 2018 Massachusetts Institute of Technology<br> Author: Cody Rude<br> This software has been created in projects supported by the US National<br> Science Foundation and NASA (PI: Pankratius)<br> Permission is hereby granted, free of charge, to any person obtaining a copy<br> of this software and associated documentation files (the "Software"), to deal<br> in the Software without restriction, including without limitation the rights<br> to use, copy, modify, merge, publish, distribute, sublicense, and/or sell<br> copies of the Software, and to permit persons to whom the Software is<br> furnished to do so, subject to the following conditions:<br> The above copyright notice and this permission notice shall be included in<br> all copies or substantial portions of the Software.<br> THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR<br> IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,<br> FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE<br> AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER<br> LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,<br> OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN<br> THE SOFTWARE.<br> Setup plotting libraries ``` %matplotlib inline import matplotlib.pyplot as plt plt.rcParams['figure.dpi'] = 150 ``` Import data fetcher ``` from skdaccess.framework.param_class import * from skdaccess.astro.spectra.stream import DataFetcher ``` Specify list of SDSS spectra URLs to retrieve ``` ap_spectra_url = AutoList([ 'https://dr14.sdss.org/sas/dr14/eboss/spectro/redux/v5_10_0/spectra/lite/4055/spec-4055-55359-0596.fits', ]) ``` Create data fetcher ``` df = DataFetcher([ap_spectra_url]) ``` Access data and metadata ``` dw = df.output() label, data = next(dw.getIterator()) header = dw.info(label) ``` Plot spectra ``` plt.plot(10**data['loglam'], data['flux']); plt.title(label.split('/')[-1]); plt.ylabel('Flux ({})'.format(header['BUNIT'])); plt.xlabel('Wavelength (Ångströms)'); ```
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/examples/Demo_SDSS_Spectra.ipynb
0.4436
0.642713
Demo_SDSS_Spectra.ipynb
pypi
# """@package DataClass # Provides base data classes inherited by the specific data fetchers # """ # Standard library imports import os import pathlib from glob import glob from urllib import request, parse import shutil from collections import OrderedDict import warnings from urllib.request import HTTPPasswordMgrWithDefaultRealm from urllib.request import HTTPBasicAuthHandler from urllib.request import HTTPCookieProcessor from urllib.request import build_opener, install_opener, urlopen from io import BytesIO from http.cookiejar import CookieJar import fcntl import struct # Compatability imports for standard library from six.moves import configparser from six.moves.configparser import NoOptionError, NoSectionError # 3rd party imports from tqdm import tqdm from skimage.io import imread from astropy.io import fits from atomicwrites import atomic_write import requests class DataFetcherBase(object): ''' Base class for all data fetchers ''' def __init__(self, ap_paramList=[], verbose=False): ''' Initialize data fetcher with parameter list @param ap_paramList: List of parameters @param verbose: Output extra information ''' self.ap_paramList = ap_paramList self.verbose = verbose def output(self): ''' Output data wrapper @return Datawrapper ''' pass def perturb(self): '''Perturb parameters''' for param in self.ap_paramList: param.perturb() def reset(self): '''Set all parameters to initial value''' for param in self.ap_paramList: param.reset() def __str__(self): ''' Generate string description''' return str( [ str(item) for item in self.ap_paramList ] ) def getMetadata(self): ''' Return metadata about Data Fetcher @return metadata of object. ''' return str(self) def getConfig(): ''' Retrieve skdaccess configuration @return configParser.ConfigParser object of configuration ''' config_location = os.path.join(os.path.expanduser('~'), '.skdaccess.conf') conf = configparser.ConfigParser() conf.read(config_location) return conf def getConfigItem(section, key): """ Retrieve skdaccess configuration item @param section: Section of configuration item @param key: Configuration key value @return Requested configuration item or None if it doesn't exist """ conf = DataFetcherBase.getConfig() if section in conf: return conf.get(section, key, fallback=None) else: return None def writeConfigItem(section, key, value): """ Retrieve skdaccess configuration item @param section: Section of configuration item @param key: Configuration key value @param value: Value to be written @return Requested configuration item or None if it doesn't exist """ conf = DataFetcherBase.getConfig() if section not in conf: conf.add_section(section) conf.set(section, key, value) DataFetcherBase.writeConfig(conf) def writeConfig(conf): ''' Write config to disk @param conf: configparser.ConfigParser object ''' config_location = os.path.join(os.path.expanduser('~'), '.skdaccess.conf') config_handle = open(config_location, "w") conf.write(config_handle) config_handle.close() def multirun_enabled(self): ''' Returns whether or not this data fetcher is multirun enabled. @return Boolean indicating whether or not this data fetcher is multirun enabled ''' pass def verbose_print(self, *args, **kwargs): """ Print statement if verbose flag is set @param *args: Arguments to pass to print @param **kwargs: Keyword arguments to pass to print """ if self.verbose: print(*args, **kwargs) class DataFetcherLocal(DataFetcherBase): ''' Data fetcher base class for use when storing data locally''' def getDataLocation(data_name): ''' Get the location of data set @param data_name: Name of data set @return string of data location, None if not found ''' data_name = str.lower(data_name) conf = DataFetcherLocal.getConfig() try: return conf.get(data_name, 'data_location') except (NoOptionError, NoSectionError): # If it doesn't exist, create a new one # Check if an alternate root has been defined try: data_location = os.path.join(conf.get('skdaccess', 'root'), data_name) except (NoOptionError, NoSectionError): data_location = os.path.join(os.path.expanduser('~'), '.skdaccess', data_name) # Make directory and set location os.makedirs(data_location, exist_ok=True) DataFetcherLocal.setDataLocation(data_name, data_location) return data_location def setDataLocation(data_name, location, key='data_location'): ''' Set the location of a data set @param data_name: Name of data set @param location: Location of data set @param key: Key of configuration option ''' conf = DataFetcherLocal.getConfig() if not conf.has_section(data_name): conf.add_section(data_name) conf.set(data_name, key, location) DataFetcherLocal.writeConfig(conf) class DataFetcherStorage(DataFetcherLocal): ''' Data fetcher base class for use when entire data set is downloaded''' @classmethod def downloadFullDataset(cls, out_file, use_file=None): ''' Abstract function used to download full data set @param out_file: output file name @param use_file: Use previously downloaded data @return Absolute path of parsed data ''' pass def multirun_enabled(self): ''' Returns whether or not this data fetcher is multirun enabled. @return Boolean indicating whether or not this data fetcher is multirun enabled ''' return True class DataFetcherStream(DataFetcherBase): ''' Data fetcher base class for downloading data into memory ''' def retrieveOnlineData(self, data_specification): ''' Method for downloading data into memory @param data_specification: Url list of data to be retrieved @return Retrieved data ''' # Dictionary to store results data_dict = OrderedDict() metadata_dict = OrderedDict() # Parse data for url in data_specification: # Get http data type with urlopen(url) as url_access: content_type = url_access.info().get_content_type() # Access fits file if content_type == 'application/fits': # Do not want caching to avoid issues when running multiple pipelines bytes_data = BytesIO(url_access.read()) with warnings.catch_warnings(), fits.open(bytes_data, cache=False) as hdu_list: warnings.simplefilter("ignore", fits.verify.VerifyWarning) # Need to fix header otherwise astropy can fail to read data hdu_list.verify('fix') data_dict[url] = hdu_list[1].data metadata_dict[url] = hdu_list[1].header # Access jpg file elif content_type == 'image/jpeg': data_dict[url] = imread(url) metadata_dict[url] = None # Throw warning if content_type not understood else: raise RuntimeError('Did not understand content type: ' + content_type) return metadata_dict, data_dict def multirun_enabled(self): ''' Returns whether or not this data fetcher is multirun enabled. @return Boolean indicating whether or not this data fetcher is multirun enabled ''' return True class DataFetcherCache(DataFetcherLocal): ''' Data fetcher base class for downloading data and caching results on hard disk ''' def checkIfDataExists(self, in_file_name): ''' Checks if the file exists on the filesystem and the file is not empty @param in_file_name: Input filename to test @return True if data exists and False otherwise ''' try: with open(in_file_name, 'rb') as read_file: rv = fcntl.fcntl(read_file, fcntl.LOCK_SH) first_byte = read_file.read(1) if len(first_byte) == 0: return False else: return True except FileNotFoundError: return False def cacheData(self, keyname, online_path_list, username=None, password=None, authentication_url=None, cookiejar = None, use_requests=False, use_progress_bar=True): ''' Download and store specified data to local disk @param keyname: Name of dataset in configuration file @param online_path_list: List of urls to data @param username: Username for accessing online resources @param password: Password for accessing online resources @param authentication_url: The url used for authentication (unused when use_requests=True) @param cookiejar: The cookiejar that stores credentials (unused when use_requests=True) @param use_requests: Use the requests library instead of the standard library for accessing resources @param use_progress_bar: Use a progress bar to show number of items downloaded @return List of downloaded file locations ''' def parseURL(data_location, in_path): ''' This function takes the file path of saved data and determines what url created it. @param data_location: Absolute path to root directory whose path is not part of the url @param path: Path to object that will be used to generate a url @return ParseResult of url generated from in_path ''' data_location_parts = len(pathlib.Path(data_location).parts[:]) path = pathlib.Path(in_path) access_type = path.parts[data_location_parts] if access_type != 'file': access_type += '://' else: access_type += ':///' url_path = pathlib.Path(*path.parts[data_location_parts+1:]).as_posix() return parse.urlparse(access_type+url_path) def generatePath(data_location, parsed_url): ''' This function takes a parsed url (ParseResult) and generates the filepath to where the data should be stored stored @param data_location: Location where data is stored @param parsed_url: ParseResult generated from url @return Local path to file ''' if parsed_url.query == '': return os.path.join(data_location, parsed_url.scheme,parsed_url.netloc, parsed_url.path[1:]) else: return os.path.join(data_location, parsed_url.scheme,parsed_url.netloc, parsed_url.path[1:] + '?' + parsed_url.query) # Get absolute path to data directory data_location = DataFetcherCache.getDataLocation(keyname) # If it doesn't exist, create a new one if data_location == None: data_location = os.path.join(os.path.expanduser('~'), '.skdaccess',keyname) os.makedirs(data_location, exist_ok=True) DataFetcherCache.setDataLocation(keyname, data_location) # Get currently downloaded files downloaded_full_file_paths = [filename for filename in glob(os.path.join(data_location,'**'), recursive=True) if os.path.isfile(filename)] # Remove files empty files downloaded_full_file_paths = [filename for filename in downloaded_full_file_paths if self.checkIfDataExists(filename)] # Convert filenames to urls downloaded_parsed_urls = set(parseURL(data_location, file_path) for file_path in downloaded_full_file_paths) # Determine which files are missing parsed_http_paths = [parse.urlparse(online_path) for online_path in online_path_list] missing_files = list(set(parsed_http_paths).difference(downloaded_parsed_urls)) missing_files.sort() # Download missing files if len(missing_files) > 0: # Sanity check on input options if use_requests == True and authentication_url != None: raise ValueError('Cannot use an authentication url with requests') # Setup connection (non requests) if not use_requests: # Deal with password protected urls # This method comes from # https://wiki.earthdata.nasa.gov/display/EL/How+To+Access+Data+With+Python if username != None or password != None: password_manager = HTTPPasswordMgrWithDefaultRealm() if authentication_url == None: authentication_url = [parsed_url.geturl() for parsed_url in missing_files] password_manager.add_password(None, authentication_url, username, password) handler = HTTPBasicAuthHandler(password_manager) # If no cookiejar was given, create a new one if cookiejar == None: cookiejar = CookieJar() cookie_processor = HTTPCookieProcessor(cookiejar) install_opener(build_opener(cookie_processor, handler)) # Use a cookie with no username or password elif cookiejar != None: cookie_processor = HTTPCookieProcessor(cookiejar) install_opener(build_opener(cookie_processor)) if use_progress_bar: missing_files_loop = tqdm(missing_files) else: missing_files_loop = missing_files for parsed_url in missing_files_loop: out_filename = generatePath(data_location, parsed_url) os.makedirs(os.path.split(out_filename)[0],exist_ok=True) with open(out_filename, 'a+b') as lockfile: fcntl.lockf(lockfile, fcntl.LOCK_EX) lockfile.seek(0) if len(lockfile.read(1)) == 0: with atomic_write(out_filename, mode='wb', overwrite=True) as data_file: if not use_requests: shutil.copyfileobj(urlopen(parsed_url.geturl()), data_file) else: if username != None or password != None: # This method to download password protected data comes from # https://wiki.earthdata.nasa.gov/display/EL/How+To+Access+Data+With+Python with requests.Session() as session: initial_request = session.request('get',parsed_url.geturl()) r = session.get(initial_request.url, auth=(username,password), stream=True) if r.status_code == 401: raise RuntimeError("Authorization Denied") shutil.copyfileobj(r.raw, data_file, 1024*1024*10) else: with requests.Session() as session: r = session.get(parsed_url.geturl(), stream=True) shutil.copyfileobj(r.raw, data_file, 1024*1024*10) # Return a list of file locations for parsing return [generatePath(data_location, parsed_url) for parsed_url in parsed_http_paths] def multirun_enabled(self): ''' Returns whether or not this data fetcher is multirun enabled. @return Boolean indicating whether or not this data fetcher is multirun enabled ''' return False def getHDFStorage(self, keyname): """ Retrieve a Pandas HDF Store for a dataset @param keyname: Key name of HDF store @return Pandas HDF Store """ data_location = DataFetcherCache.getDataLocation(keyname) if data_location == None: data_location = os.path.join(os.path.expanduser('~'),'.skdaccess',keyname) os.makedirs(data_location, exist_ok=True) data_location = os.path.join(data_location, keyname + '_data.h5') DataFetcher.setDataLocation(keyname, data_location) return pd.HDFStore(data_location) class DataWrapperBase(object): ''' Base class for wrapping data for use in DiscoveryPipeline ''' def __init__(self, obj_wrap, run_id = -1, meta_data = None): ''' Construct wrapper from input data. @param obj_wrap: Data to be wrapped @param run_id: ID of the run @param meta_data: Metadata to store with data ''' self.data = obj_wrap self.results = dict() self.constants = dict() self.run_id = run_id self.meta_data = meta_data def update(self, obj): ''' Updated wrapped data @param obj: New data for wrapper ''' self.data = obj def updateMetadata(self, new_metadata): ''' Update metadata @param new_metadata: New metadata ''' self.meta_data = new_metadata def get(self): ''' Retrieve stored data. @return Stored data ''' return self.data def getResults(self): ''' Retrieve accumulated results, if any. @return store results ''' return self.results def addResult(self,rkey,rres): ''' Add a result to the data wrapper @param rkey: Result key @param rres: Result ''' self.results[rkey] = rres def reset(self): ''' Reset data back to original state ''' self.results = dict() def info(self, key=None): ''' Get information about data wrapper @return The stored metadata ''' if key==None: return self.meta_data else: return self.meta_data[key] def getIterator(self): ''' Get an iterator to the data @return iterator to data ''' pass def __len__(self): ''' Get length of wrapped data @return length of wrapped data ''' return len(self.data) def getRunID(self): ''' Get the Run ID @return run_id ''' return self.run_id class SeriesWrapper(DataWrapperBase): ''' Data wrapper for series data using a data panel ''' def __init__(self, obj_wrap, data_names, error_names = None, meta_data = None, run_id = -1): ''' Initialize Series Wrapper @param obj_wrap: Pandas data panel to wrap @param data_names: List of data column names @param error_names: List of error column names @param meta_data: Metadata @param run_id: ID of run ''' self.data_names = data_names self.error_names = error_names super(SeriesWrapper, self).__init__(obj_wrap, run_id, meta_data) def getIterator(self): ''' Get an iterator to the data @return Iterator (label, data, errors) that will cycle over data and error names ''' if self.error_names != None: for frame in self.data.minor_axis: for data_index,error_index in zip(self.data_names, self.error_names): yield data_index, self.data.loc[data_index, :, frame], self.data.loc[error_index, :, frame] else: for frame in self.data.minor_axis: for data_index in self.data_names: yield data_index, self.data.loc[data_index, :, frame], None def getIndices(self): ''' Get the indicies of the data @return index of data ''' return (list(self.data.minor_axis), self.data_names) def getLength(self): ''' Get total number of series that the iterate will loop over @return Number of series iterator will traverse over ''' return self.data.shape[2]*len(self.data_names) class SeriesDictionaryWrapper(SeriesWrapper): ''' Data wrapper for series data using a dictionary of data frames ''' def getIterator(self): ''' Get an iterator to the data @return Iterator (label, data, errors) that will cycle over data and error names ''' if self.error_names != None: for frame in self.data.keys(): for data_index,error_index in zip(self.data_names, self.error_names): yield data_index, self.data[frame].loc[:, data_index], self.data[frame].loc[:, error_index] else: for frame in self.data.keys(): for data_index in self.data_names: yield data_index, self.data[frame].loc[:, data_index], None def getIndices(self): ''' Get the indices of the data @return index of data ''' return (list(self.data.keys()), self.data_names) def getLength(self): ''' Get total number of series that the iterate will loop over @return Number of series iterator will traverse over ''' return len(self.data) * len(self.data_names) class TableWrapper(DataWrapperBase): ''' Data wrapper for table data using an ordered dictionary ''' def __init__(self, obj_wrap, run_id = -1, meta_data = None, default_columns = None, default_error_columns = None): ''' Construct object from input data. @param obj_wrap: Data to be wrapped @param run_id: ID of the run @param meta_data: Metadata to store with data @param default_columns: Default columns for pipeline items @param default_error_columns: Default error columns for pipeline items ''' self.default_columns = default_columns self.default_error_columns = default_error_columns super(TableWrapper, self).__init__(obj_wrap, run_id, meta_data) def getIterator(self): ''' Iterator access to data. @return iterator to (label, data frame) from Dictionary ''' for label,frame in self.data.items(): yield label,frame def getLength(self): ''' Get number of data frames @return Number of data frames ''' return len(self.data) def updateData(self, label, index, column_names, new_data): ''' Update wrapped data @param label: Data label @param index: Index of data to update @param column_names: Names of columns to update @param new_data: Data to replace the old data ''' self.data[label].loc[index, column_names] = new_data def addColumn(self, label, column_names, new_data): ''' Add new column to data @param label: Data label @param column_names: Names of columns to update @param new_data: New data to add ''' self.data[label].loc[:,column_names] = new_data def getDefaultColumns(self): ''' Get the default columns of data @return List of default columns ''' return self.default_columns def getDefaultErrorColumns(self): ''' Get the default error columns of data @return List of default error columns ''' return self.default_error_columns def removeFrames(self,label_list): ''' Remove Data Frames from wrapper @param label_list: List of labels to remove ''' for label in label_list: del self.data[label] def updateFrames(self,label_list,frame_list): ''' Update data frames @param label_list: List of labels to update @param frame_list: List of updated frames ''' for label, frame in zip(label_list, frame_list): self.data[label] = frame class ImageWrapper(DataWrapperBase): ''' Wrapper for image data ''' def getIterator(self): ''' Get an iterator to the data @return Iterator yielding (label, image_data) ''' return iter(self.data.items()) def updateData(self, label, new_data): ''' Change image @param label: Label of data to be changed @param new_data: New data to replace old data ''' self.data[label] = new_data def deleteData(self, label): ''' Delete image @param label: Delete image with label ''' del self.data[label] class XArrayWrapper(DataWrapperBase): ''' Wrapper for xarrays ''' def __init__(self, obj_wrap, index_list, run_id = -1 ): self.index_list = index_list super(XArrayWrapper, self).__init__(obj_wrap, run_id) def getIterator(self): ''' Get an iterator that iterators over the index @return iterator to data ''' for index in self.index_list: yield index, self.data[index] def info(self, key=None): ''' Get information about xarray data wrapper @return The stored metadata ''' if key==None: return self.data.attrs else: return self.data[key].attrs
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/framework/data_class.py
0.676299
0.154759
data_class.py
pypi
# """@package AlgoParam # Provides tunable parameter classes for use in the Computer-Aided Discovery pipeline. # """ import random import itertools class AutoParam: ''' Defines a tunable parameter class inherited by specific subclasses AutoParam class and subclass work on a single value. functions: perturb value and reset to initial value ''' def __init__(self, val_init): ''' Initialize an AutoParam object. @param val_init: Value for parameter ''' self.val = val_init self.val_init = val_init def perturb(self): ''' Perturb paramter. This class doesn't change the value. ''' self.val = self.val def reset(self): ''' Reset value to initial value ''' self.val = self.val_init def __str__(self): ''' String representation of class @return String of current value ''' return str(self.val) def __call__(self): ''' Retrieves current value of the parameter @return Current value of the parameter ''' return self.val class AutoParamMinMax(AutoParam): ''' A tunable parameter with min and max ranges, perturbs to a random value in range. It can optionally choose either the min or the max after n perturbs ''' def __init__(self, val_init, val_min, val_max, decimals=0, extreme=0): ''' Construct AutoParamMinMax object @param val_init: Initial value for parameter @param val_min: Minimum value for param @param val_max: Maximum value for parameter @param decimals: Number of decimals to include in the random number @param extreme: Either the maximum or minimum is chosen every extreme number of iterations. Using a value of one will be an extreme value every time. Using a value of zero will always choose a random value. ''' self.val = val_init self.val_init = val_init self.val_min = val_min self.val_max = val_max self.n = 0 self.n_max = extreme self.decimals = decimals def perturb(self): ''' Peturb the paramter by choosing a random value between val_min and val_max. Will choose a random number with precision specified by decimals. Will optionally pick the min or the max value after a specified number of perturb calls ''' if self.n == self.n_max - 1: # Choose and extreme value self.val = random.sample([self.val_min, self.val_max], 1)[0] self.n = 0 else: if self.decimals == 0: self.val = random.randint(self.val_min,self.val_max) else: self.val = random.random() * (self.val_max - self.val_min + 10**-self.decimals) + (self.val_min - 0.5 * 10**-self.decimals) self.val = round(self.val, ndigits=self.decimals) if self.n_max > 0: self.n += 1 def reset(self): ''' Reset to initial value ''' self.n = 0 self.val = self.val_init class AutoParamList(AutoParam): ''' A tunable parameter with a specified list of choices that can be randomly selected via perturb ''' def __init__(self, val_init, val_list): ''' Construct an AutoParamList object @param val_init: initial value for the parameter @param val_list: List of possible variants for the parameter ''' self.val = val_init self.val_init = val_init self.val_list = val_list def perturb(self): ''' Randomly select a value from val_list ''' self.val = random.choice(self.val_list) def reset(self): ''' Reset the list to the default value ''' self.val = self.val_init class AutoParamListCycle(AutoParam): ''' Cycles through a list of paramters ''' def __init__(self, val_list): ''' Construct an AutoParamListCycle @param val_list: List of possible variants for the parameter ''' self.val = val_list[0] self.val_list = val_list self.current_index = 0 def perturb(self): ''' Select the next value from the list of parameters. ''' if self.current_index >= len(self.val_list) - 1: self.current_index = 0 else: self.current_index += 1 self.val = self.val_list[self.current_index] def reset(self): ''' Reset the list to the default values ''' self.val = self.val_list[0] self.current_index = 0 ### Starting list perturber class AutoList(object): ''' Specifies a list for returning selections of lists, as opposed to a single element ''' def __init__(self, val_list): ''' Construct a AutoList object @param val_list: List of parameters ''' self.val_init = val_list self.val_list = val_list def val(self): ''' Retrieves current list of parameters. @return List of current parameters ''' return self.val_list def perturb(self): ''' This class doesn't change the list when being perturbed ''' self.val_list = self.val_list def reset(self): ''' Reset current list to initial list ''' self.val_list = self.val_init def getAllOptions(self): ''' Get all possible options @return List that contains every option that could possibly be selected ''' return self.val_init def __str__(self): ''' String representation of class. @return String containing all parmaters in list ''' return '[' + ', '.join([str(val) for val in self.val_list]) + ']' return str(self.val_list) def __len__(self): ''' Retrieves the length of parameters contained in the list @return Number of elements in the list ''' return len(self.val_list) def __getitem__(self, ii): ''' Retrieves item from list @param ii: Index of item to be retrieved @return Item at index ii ''' return self.val_list[ii] def __setitem__(self, ii, val): ''' Set a value in the list. @param ii: Index of list to be set @param val: Input value ''' self.val_list[ii] = val def __call__(self): ''' Retrieve current list @return Current list ''' return self.val_list class AutoListSubset(AutoList): ''' An AutoList perturber that creates random subsets of a list. List can be empty ''' def perturb(self): ''' Peturb the list by selecting a random subset of the initial list ''' # randomly index list elements to be kept index = [random.randint(0,1) for r in range(len(self.val_init))] # update list and keep list values where index is 1 self.val_list = list(itertools.compress(self.val_init, index)) class AutoListPermute(AutoList): ''' A perturber that permutes a list ''' def perturb(self): ''' Randomly permutes the initial list ''' random.shuffle(self.val_list) #shuffles in place and updates at same time class AutoListRemove(AutoList): ''' Removes a different single element from the initial list at each perturb call ''' def __init__(self, val_list): ''' Construct a AutoList_Cycle object @param val_list: Initial list of parameters. ''' self.n = -1 super(AutoListRemove, self).__init__(val_list) def perturb(self): ''' Systematically change which item is absent from the list ''' self.n = self.n + 1 if self.n >= len(self.val_init): self.n = 0 index = [1 for i in range(len(self.val_init))] index[self.n] = 0 self.val_list = list(itertools.compress(self.val_init, index)) def reset(self): ''' Reset the list to its initial value ''' self.n = -1 self.val_list = self.val_init class AutoListCycle(AutoList): ''' An Autolist that cycles through different lists ''' def __init__(self, list_val_list): ''' Construct a AutoList_Cycle object @param list_val_list: List of different lists to cycle through ''' self.list_val_list = list_val_list self.val_list = self.list_val_list[0] self.index = 0 def perturb(self): ''' Select next list from list of lists ''' if self.index < len(self.list_val_list) - 1: self.index += 1 else: self.index = 0 self.val_list = self.list_val_list[self.index] def reset(self): ''' Resets to the first list in the list of lists ''' self.index = 0 self.val_list = self.list_val_list[self.index] def getAllOptions(self): ''' Get elements that could possibly be called @return List of all possible elements ''' all_options = [] for option_list in list_val_list: all_options += option_list return all_options
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/framework/param_class.py
0.754282
0.432423
param_class.py
pypi
import argparse import os from skdaccess.astro.kepler import DataFetcher as KDF from skdaccess.geo.pbo import DataFetcher as PBODF from skdaccess.geo.groundwater import DataFetcher as WDF from skdaccess.geo.grace import DataFetcher as GRACEDF from skdaccess.geo.gldas import DataFetcher as GLDASDF def skdaccess_script(): '''This funcion defines a script for downloading data''' parser = argparse.ArgumentParser(description='The Sci-kit Data Access (skdaccess) package is a tool for integrating various scientific data sets into the Python environment using a common interface. This script can download different scientific data sets for offline analysis.') parser.add_argument('data_set', help='Name of data set', nargs='?') parser.add_argument('-l','--list', dest='list_bool', help='List data sets', action='store_true') parser.add_argument('-i','--input', dest='local_data', help='Use LOCAL_DATA that has already been downloaded') parser.add_argument('-c','--check',dest='check_bool', help='Print data location for data set', action='store_true') args = parser.parse_args() if args.list_bool: print("This utility can install one of the following data sets:") print() print('\tPBO - Plate Boundary Observatory GPS Time Series ') print('\tGRACE - Monthly Mass Grids') print('\tGLDAS - Monthly estimates from GDLAS model in same resolution as GRACE') print('\tGroundwater - Ground water daily values from across the US') parser.exit(1) elif args.data_set is None: parser.print_help() parser.exit(1) elif args.check_bool: config = PBODF.getConfig() location = config.get(str.lower(args.data_set), 'data_location',fallback=None) if location == None: print('No data location available for ' + str.lower(args.data_set)) else: print('The data is located at: ' + location) parser.exit(1) if str.lower(args.data_set) == 'pbo': PBODF.downloadFullDataset(use_file=args.local_data) elif str.lower(args.data_set) == 'grace': GRACEDF.downloadFullDataset(use_file=args.local_data) elif str.lower(args.data_set) == 'gldas': GLDASDF.downloadFullDataset(use_file=args.local_data) elif str.lower(args.data_set) == 'groundwater': WDF.downloadFullDataset(use_file=args.local_data) else: print('Data set not understood')
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/bin/skdaccess.py
0.400867
0.327615
skdaccess.py
pypi
# Skdaccess imports from skdaccess.framework.data_class import DataFetcherStream, TableWrapper from skdaccess.framework.param_class import * from skdaccess.utilities.mahali_util import convert_date from pkg_resources import resource_filename # Standard library imports from glob import glob import shutil import os import json from collections import OrderedDict # 3rd part imports from six.moves.urllib.request import urlopen from tqdm import tqdm import pandas as pd import numpy as np class DataFetcher(DataFetcherStream): ''' Data Fetcher for Mahali temperature data ''' def __init__(self, ap_paramList=[], start_date=None, end_date=None): ''' Initialize Mahali temperature data fetcher @param ap_paramList[stations]: Autolist of stations (Defaults to all stations) @param start_date: Starting date for seelcting data (Defaults to beginning of available data) @param end_date: Ending date for selecting data (Defaults to end of available data) ''' if start_date == None: self.start_date = pd.to_datetime('2015271', format='%Y%j') else: self.start_date = convert_date(start_date) if end_date == None: self.end_date = pd.to_datetime('2015315', format='%Y%j') else: self.end_date = convert_date(end_date) if len(ap_paramList) == 0: station_list = [ 'mh02', 'mh03', 'mh04', 'mh05', 'mh06', 'mh07', 'mh08', 'mh09', 'mh13', ] ap_paramList = [ AutoList(station_list) ] super(DataFetcher, self).__init__(ap_paramList) def retrieveOnlineData(self, data_specification): ''' Load data in from a remote source @param data_specification: Pandas dataframe containing the columns 'station', 'date', and 'filename' @return Ordered dictionary for each station (key) which cointains a pandas data frame of the temperature ''' # Location of data depot url = 'http://apollo.haystack.mit.edu/mahali-data/' locations = ( url + 'metadata/' + data_specification['station'] + '/logs/sensor/' + data_specification['date'].apply(lambda x: x.strftime('%Y%j')) + '/' + data_specification['filename'] ).tolist() # Data will go into this dictionary as {station: [(time, measurement), (time2, measurement2), ...]} all_temperature_data = OrderedDict() # Parse jsonl files for station, location in zip(data_specification['station'], locations): with urlopen(location) as this_json_file: # Encased in a try/except because of lines full of junk # (e.g. the last line of metadata/mh02/logs/sensor/2015277/sensor@2015-10-04T225240Z_1443999160.jsonl) try: for line in this_json_file: line_data = json.loads(line) this_time = pd.to_datetime(line_data['time']) this_temp = float(line_data["event_data"]["data"]) # If data for that station already exists try: all_temperature_data[station].append([this_time, this_temp]) # If there's no existing entry for that station except KeyError: all_temperature_data[station] = [ [this_time, this_temp] ] except ValueError: pass for station in all_temperature_data.keys(): all_temperature_data[station] = pd.DataFrame(all_temperature_data[station], columns=['Time','Temperature']).set_index('Time') return all_temperature_data def output(self): ''' Generate data wrapper for Mahali temperatures @return Mahali temperature data wrapper ''' # Function to extract date from filename (only month/day/year, no hours/minutes/seconds) def toDateTime(in_filename): return pd.to_datetime(pd.to_datetime(in_filename[7:25]).strftime('%Y-%m-%d')) # Read in file list: mahali_temperature_info = resource_filename('skdaccess', os.path.join('support','mahali_temperature_info.txt')) filenames = pd.read_csv(mahali_temperature_info,header=None, names=('station','filename'), skipinitialspace=True) # Create a columns of dates filenames['date'] = filenames['filename'].apply(toDateTime) # Need to grab day before as data can spill over adjusted_start_date = self.start_date - pd.to_timedelta('1d') adjusted_end_date = self.end_date + pd.to_timedelta('1d') station_list = self.ap_paramList[0]() # Get data for each selected station one day before until one day afte requested date index_to_retrieve = np.logical_and.reduce([filenames.loc[:, 'station'].apply(lambda x: x in station_list), filenames.loc[:, 'date'] >= adjusted_start_date, filenames.loc[:, 'date'] <= self.end_date]) all_temperature_data = self.retrieveOnlineData(filenames[index_to_retrieve]) # Due to data spillover, cut each data frame in dictionary for station in all_temperature_data.keys(): all_temperature_data[station] = all_temperature_data[station].loc[adjusted_start_date:adjusted_end_date] # Return table wrapper of data return TableWrapper(all_temperature_data, default_columns = ['Temperature'])
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/geo/mahali/temperature/data_fetcher.py
0.639061
0.311453
data_fetcher.py
pypi
# Skdaccess imports from skdaccess.framework.data_class import DataFetcherCache, TableWrapper from skdaccess.framework.param_class import * from pkg_resources import resource_filename from skdaccess.utilities.mahali_util import convert_date, parseIonoFile from skdaccess.utilities.support import retrieveCommonDatesHDF # Standard library imports from urllib import parse from collections import OrderedDict from collections import defaultdict from itertools import repeat # 3rd party imports from tqdm import tqdm import pandas as pd class DataFetcher(DataFetcherCache): ''' Data Fetcher for Mahali Data ''' def __init__(self, ap_paramList=[], start_date=None, end_date=None): ''' Initialize Mahali Data Fetcher @param ap_paramList[stations]: Autolist of stations (Defaults to all stations) @param start_date: Starting date for seelcting data (Defaults to beginning of available data) @param end_date: Ending date for selecting data (Defaults to end of available data) ''' # Get start date if start_date == None: self.start_date = pd.to_datetime('2015275', format='%Y%j') else: self.start_date = convert_date(start_date) # Get end date if end_date == None: self.end_date = pd.to_datetime('2015307', format='%Y%j') else: self.end_date = convert_date(end_date) self.date_range = pd.date_range(self.start_date, self.end_date) # Set station list if none is given if len(ap_paramList) == 0: station_list = [ 'mh02', 'mh03', 'mh04', 'mh05', 'mh06', 'mh07', 'mh08', 'mh09', 'mh13', ] ap_paramList = [ AutoList(station_list) ] super(DataFetcher, self).__init__(ap_paramList) def output(self): ''' Generate data wrapper for Mahali tec data @return Mahali data wrapper ''' def generatePath(base_url, station, in_date): ''' Generate path to file based on station, date, and base url @param base_url: Base url to put in front of generated url @param station: Name of station @param in_date: Date of data to create path for @return The url for the station data ''' year = in_date.strftime('%Y') day = in_date.strftime('%j') date = in_date.strftime('%Y%m%d') path = 'tec/{year}/{day}/{station}-{date}.iono.gz'.format(year=year, day=day, station=station, date=date) return parse.urljoin(base_url, path) # Get station lists station_list = self.ap_paramList[0]() # Retrieve dates containing data for station list available_data_dict = retrieveCommonDatesHDF('mahali_tec_info.hdf', station_list, self.date_range) # Location of data base_url = 'http://apollo.haystack.mit.edu/mahali-data/' url_list = [] # Generate url list for station, dates in available_data_dict.items(): url_list += list(map(generatePath, repeat(base_url), repeat(station), dates)) # Cache data file_list = self.cacheData('mahali_tec', url_list) # Dictionary to hold parsed data parsed_data_dict = defaultdict(list) # Parse data for filename in file_list: station = filename[-21:-17] parsed_data_dict[station].append(parseIonoFile(filename)) # combine data frames for each station into a single combined_data_dict = OrderedDict() for station,data in parsed_data_dict.items(): combined_data_dict[station] = pd.concat(data) # Return data wrapper return TableWrapper(combined_data_dict, default_columns=['vertical_tec'])
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/geo/mahali/tec/data_fetcher.py
0.604983
0.224034
data_fetcher.py
pypi
# """@package GRACE # Provides classes for accessing GRACE data. # """ # mithagi required Base imports from skdaccess.framework.data_class import DataFetcherStorage, TableWrapper from skdaccess.utilities.grace_util import readTellusData, getStartEndDate # standard library imports import re from ftplib import FTP import os import glob from collections import OrderedDict from configparser import NoSectionError, NoOptionError from glob import glob from math import floor # 3rd party package imports import pandas as pd import numpy as np from tqdm import tqdm class DataFetcher(DataFetcherStorage): ''' Data Fetcher for GRACE data ''' def __init__(self, ap_paramList, start_date = None, end_date = None): ''' Construct a Grace Data Fetcher @param ap_paramList[geo_point]: AutoList of geographic location tuples (lat,lon) @param start_date: Beginning date @param end_date: Ending date ''' self.start_date = start_date self.end_date = end_date super(DataFetcher, self).__init__(ap_paramList) def output(self): ''' Create data wrapper of grace data for specified geopoints. @return Grace Data Wrapper ''' conf = DataFetcher.getConfig() try: data_location = conf.get('grace', 'data_location') csr_filename = conf.get('grace', 'csr_filename') jpl_filename = conf.get('grace', 'jpl_filename') gfz_filename = conf.get('grace', 'gfz_filename') scale_factor_filename = conf.get('grace', 'scale_factor_filename') except (NoOptionError, NoSectionError) as exc: print('No data information available, please run: skdaccess grace') raise exc geo_point_list = self.ap_paramList[0]() csr_data, csr_meta, lat_bounds, lon_bounds = readTellusData(os.path.join(data_location, csr_filename), geo_point_list, 'lat','lon', 'lwe_thickness', 'CSR','time') jpl_data, jpl_meta, = readTellusData(os.path.join(data_location, jpl_filename), geo_point_list, 'lat','lon', 'lwe_thickness', 'JPL','time', lat_bounds=lat_bounds, lon_bounds=lon_bounds)[:2] gfz_data, gfz_meta, = readTellusData(os.path.join(data_location, gfz_filename), geo_point_list, 'lat','lon', 'lwe_thickness', 'GFZ','time', lat_bounds=lat_bounds, lon_bounds=lon_bounds)[:2] scale_factor_data, scale_factor_meta, = readTellusData(os.path.join(data_location, scale_factor_filename), geo_point_list, 'Latitude', 'Longitude', 'SCALE_FACTOR', lat_bounds=lat_bounds, lon_bounds=lon_bounds)[:2] leakage_error_data, leakage_error_meta, = readTellusData(os.path.join(data_location, scale_factor_filename), geo_point_list, 'Latitude', 'Longitude', 'LEAKAGE_ERROR', lat_bounds=lat_bounds, lon_bounds=lon_bounds)[:2] measurement_error_data, measurement_error_meta, = readTellusData(os.path.join(data_location, scale_factor_filename), geo_point_list, 'Latitude', 'Longitude', 'MEASUREMENT_ERROR', lat_bounds=lat_bounds, lon_bounds=lon_bounds)[:2] # Get appropriate time range start_date = self.start_date end_date = self.end_date def getMaskedValue(in_value): ''' Retrieve the value if not masked, otherwise return np.nan @param in_value: Input value to check @return input value or nan ''' if np.ma.is_masked(in_value): return np.nan else: return in_value if start_date == None or end_date == None: csr_start_date, csr_end_date = getStartEndDate(csr_data) jpl_start_date, jpl_end_date = getStartEndDate(jpl_data) gfz_start_date, gfz_end_date = getStartEndDate(gfz_data) if start_date == None: start_date = np.min([csr_start_date, jpl_start_date, gfz_start_date]) if end_date == None: end_date = np.max([csr_end_date, jpl_end_date, gfz_end_date]) data_dict = OrderedDict() metadata_dict = OrderedDict() for (csr_label, csr_frame), (jpl_label, jpl_frame), (gfz_label, gfz_frame) in zip(csr_data.items(), jpl_data.items(), gfz_data.items()): data = pd.concat([csr_frame.loc[start_date:end_date], jpl_frame.loc[start_date:end_date], gfz_frame.loc[start_date:end_date]], axis=1) data.index.name = 'Date' label = csr_label metadata_dict[label] = pd.Series({'scale_factor' : getMaskedValue(scale_factor_data[csr_label]), 'measurement_error' : getMaskedValue(measurement_error_data[csr_label]), 'leakage_error' : getMaskedValue(leakage_error_data[csr_label])}) data_dict[label] = data metadata_frame = pd.DataFrame.from_dict(metadata_dict) return(TableWrapper(data_dict,meta_data = metadata_frame,default_columns=['CSR','JPL','GFZ'])) def __str__(self): ''' String representation of data fetcher @return String listing the name and geopoint of data fetcher ''' return 'Grace Data Fetcher' + super(DataFetcher, self).__str__() @classmethod def downloadFullDataset(cls, out_file = 'grace.h5', use_file = None): ''' Download and parse data from the Gravity Recovery and Climate Experiment. @param out_file: Output filename for parsed data @param use_file: Directory of already downloaded data. If None, data will be downloaded. @return Absolute path of parsed data ''' # Get date of grace data from filename def setConfigFile(filename): if re.search('SCALE_FACTOR', filename): DataFetcher.setDataLocation('grace', filename, key='scale_factor_filename') elif re.search('CSR', filename): DataFetcher.setDataLocation('grace', filename, key='csr_filename') elif re.search('GFZ', filename): DataFetcher.setDataLocation('grace', filename, key='gfz_filename') elif re.search('JPL', filename): DataFetcher.setDataLocation('grace', filename, key='jpl_filename') else: return False return True if use_file is None: print("Downloading GRACE Land Mass Data") ftp = FTP("podaac-ftp.jpl.nasa.gov") ftp.login() ftp.cwd('/allData/tellus/L3/land_mass/RL05/netcdf') dir_list = list(ftp.nlst('')) file_list = [file for file in dir_list if re.search('.nc$', file)] for filename in tqdm(file_list): status = setConfigFile(filename) if status == False: print("Uknown file:", filename) continue ftp.retrbinary('RETR ' + filename, open(filename, 'wb').write) ftp.quit() DataFetcher.setDataLocation('grace', os.path.abspath('./')) else: files = glob(os.path.join(use_file, '*.nc')) for filename in files: status = setConfigFile(filename) if status == False: print('Unknown file') DataFetcher.setDataLocation('grace', os.path.abspath(use_file))
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/geo/grace/data_fetcher.py
0.594904
0.174235
data_fetcher.py
pypi
# Standard library imports from collections import OrderedDict # mithagi required Base imports from skdaccess.framework.data_class import DataFetcherCache, TableWrapper from skdaccess.utilities.grace_util import readTellusData # 3rd party imports import pandas as pd from netCDF4 import Dataset class DataFetcher(DataFetcherCache): ''' Data Fetcher for GRACE mascon data ''' def __init__(self, ap_paramList, start_date = None, end_date = None): ''' Construct a GRACE mascon Data Fetcher @param ap_paramList[geo_point]: AutoList of geographic location tuples (lat,lon) @param start_date: Beginning date @param end_date: Ending date ''' self.start_date = start_date self.end_date = end_date self.mascon_url = 'ftp://podaac.jpl.nasa.gov/allData/tellus/L3/mascon/RL05/JPL/CRI/netcdf/GRCTellus.JPL.200204_201706.GLO.RL05M_1.MSCNv02CRIv02.nc' self.scale_factor_url = 'ftp://podaac.jpl.nasa.gov/allData/tellus/L3/mascon/RL05/JPL/CRI/netcdf/CLM4.SCALE_FACTOR.JPL.MSCNv01CRIv01.nc' self.mascon_placement_url = 'ftp://podaac.jpl.nasa.gov/allData/tellus/L3/mascon/RL05/JPL/CRI/netcdf/JPL_MSCNv01_PLACEMENT.nc' super(DataFetcher, self).__init__(ap_paramList) def output(self): ''' Create a datawrapper containing GRACE mascon data @return Table Datawrapper containing Mascon GRACE data ''' geo_point_list = self.ap_paramList[0]() file_list = self.cacheData('mascon', [self.mascon_url, self.scale_factor_url]) data, metadata, lat_bounds, lon_bounds = readTellusData(file_list[0], geo_point_list,'lat','lon','lwe_thickness', 'EWD', time_name='time', lat_bounds_name='lat_bounds', lon_bounds_name='lon_bounds') unc_data, unc_metadata = readTellusData(file_list[0], geo_point_list,'lat','lon','uncertainty', 'EWD_Error', time_name='time', lat_bounds=lat_bounds, lon_bounds=lon_bounds)[:2] scale_data, scale_metadata = readTellusData(file_list[1], geo_point_list, 'lat', 'lon', 'scale_factor', lat_bounds=lat_bounds, lon_bounds=lon_bounds)[:2] for data_name in data.keys(): data[data_name] = pd.concat([data[data_name], unc_data[data_name]], axis=1) metadata[data_name]['scale_factor'] = scale_data[data_name] if self.start_date != None or self.end_date != None: for label in data.keys(): if self.start_date != None: data[label] = data[label][self.start_date:] if self.end_date != None: data[label] = data[label][:self.end_date] return TableWrapper(data, meta_data=metadata, default_columns=['Equivalent Water Thickness'], default_error_columns=['EWT Uncertainty']) def getMasconPlacement(self): ''' Retrieve mascon placement data @return Mascon data, Mascon metadata ''' file_list = self.cacheData('mascon', [self.mascon_placement_url]) placement = Dataset('JPL_MSCNv01_PLACEMENT.nc') mascon_data = OrderedDict() mascon_meta = OrderedDict() for label, data in placement.variables.items(): mascon_data[label] = data[:] mascon_meta = OrderedDict() for meta_label in data.ncattrs(): mascon_meta[meta_label] = data.getncattr(meta_label) return mascon_data, mascon_meta
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/geo/grace/mascon/cache/data_fetcher.py
0.579043
0.184988
data_fetcher.py
pypi
# Standard library imports from collections import OrderedDict import os # skdaccess imports from skdaccess.framework.data_class import DataFetcherCache, ImageWrapper from skdaccess.utilities.image_util import SplineLatLon from skdaccess.utilities.uavsar_util import readUAVSARMetadata # 3rd party imports import numpy as np class DataFetcher(DataFetcherCache): ''' Data Fetcher for UAVSAR data ''' def __init__(self, slc_url_list, metadata_url_list, llh_url, memmap): ''' Initialize UAVSAR data fetcher @param slc_url_list: List of slc urls @param metadata_url_list: List of metadata urls @param llh_url: Latitude Longitude Height url @param memmap: Open files using a memory map ''' self.slc_url_list = slc_url_list self.metadata_url_list = metadata_url_list self.llh_url = llh_url self.memmap = memmap super(DataFetcher, self).__init__() def _parseFilename(self, in_filename): ''' Retrive information about UAVSAR data from filename @param in_filename: Input filename @return information obtained from filename ''' filename = os.path.basename(in_filename) filename_info = OrderedDict() extension = filename[-3:] split_filename = filename[:-4].split('_') filename_info['site name'] = split_filename[0] filename_info['line ID'] = split_filename[1] if extension == 'llh': filename_info['stack number'] = split_filename[2] filename_info['baseline correction'] = split_filename[3] filename_info['segment number'] = split_filename[4] filename_info['downsample factor'] = split_filename[5] if extension == 'slc': filename_info['flight ID'] = split_filename[2] filename_info['data take counter'] = split_filename[3] filename_info['acquisition date'] = split_filename[4] filename_info['band'] = split_filename[5][0] filename_info['steering'] = split_filename[5][1:4] filename_info['polarization'] = split_filename[5][4:] filename_info['stack_version'] = split_filename[6] filename_info['baseline correction'] = split_filename[7] filename_info['segment number'] = split_filename[8] filename_info['downsample factor'] = split_filename[9] filename_info['extension'] = extension return filename_info def _readUAVSARData(self, filename, metadata, memmap = False): ''' Load UAVSAR data @param filename: Input filename @param metadata: UAVSAR metadata @param memeap: Open file using a memory map @return numpy array of data ''' filename_info = self._parseFilename(filename) cols = metadata[filename_info['extension'] + '_' + filename_info['segment number'][1] + '_' + filename_info['downsample factor'] + ' Columns'] rows = metadata[filename_info['extension'] + '_' + filename_info['segment number'][1] + '_' + filename_info['downsample factor'] + ' Rows'] if filename_info['extension'] == 'slc': dtype = np.dtype('<c8') elif filename_info['extension'] == 'llh': dtype = np.dtype([('Latitude','<f4'), ('Longitude','<f4'), ('Height','<f4')]) if memmap == True: return np.memmap(filename, dtype=dtype, mode='r', shape=(rows,cols)), filename_info else: return np.fromfile(filename, dtype=dtype).reshape(rows,cols), filename_info def output(self): ''' Output data as a data wrapper @return Imagewrapper of data ''' llh_filename = self.cacheData('uavsar', [self.llh_url]) filename_list = self.cacheData('uavsar', self.slc_url_list) metadata_filename_list = self.cacheData('uavsar', self.metadata_url_list) llh,llh_info = self._readUAVSARData(llh_filename[0], readUAVSARMetadata(metadata_filename_list[0])) metadata_dict = OrderedDict() data_dict = OrderedDict() for filename, metadata_filename in zip(filename_list, metadata_filename_list): filename_key = os.path.basename(filename) metadata_dict[filename_key] = OrderedDict() data_metadata = readUAVSARMetadata(metadata_filename) data, data_filename_info = self._readUAVSARData(filename, data_metadata, self.memmap) metadata_dict[filename_key]['filename_info'] = data_filename_info metadata_dict[filename_key]['metadata'] = data_metadata metadata_dict[filename_key]['Latitude'] = llh['Latitude'] metadata_dict[filename_key]['Longitude'] = llh['Longitude'] metadata_dict[filename_key]['Height'] = llh['Height'] data_dict[filename_key] = data return ImageWrapper(data_dict, meta_data = metadata_dict)
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/geo/uavsar/cache/data_fetcher.py
0.627837
0.21684
data_fetcher.py
pypi
# Scikit Data Access imports from skdaccess.framework.data_class import DataFetcherStream, TableWrapper from skdaccess.utilities.sounding_util import SoundingParser, generateQueries # 3rd party imports import pandas as pd import numpy as np from six.moves.urllib.request import urlopen # Standard library imports from collections import OrderedDict class DataFetcher(DataFetcherStream): ''' DataFetcher for retrieving Wyoming Sounding data ''' def __init__(self, station_number, year, month, day_start, day_end, start_hour = 0, end_hour = 12): ''' Initialize Data Fetcher @param station_number: Station number @param year: Input year @param month: Input month (Integer for a single month, or a list of integers for multiple months) @param day_start: First day of the month to include @param day_end: Last day of the month to include @param start_hour: Starting hour (may be either 0 or 12) @param end_hour: Ending hour (may be either 0 or 12) ''' self.station_number = station_number if np.isscalar(year): self.year_list = [year] else: self.year_list = year if np.isscalar(month): self.month_list = [month] else: self.month_list = month self.day_start = day_start self.day_end = day_end self.start_hour = start_hour self.end_hour = end_hour super(DataFetcher, self).__init__() def output(self, shared_lock = None, shared_list = None): ''' Generate data wrapper @return Wyoming sounding data in a data wrapper ''' full_results_dict = OrderedDict() full_meta_dict = OrderedDict() for query_url in generateQueries(self.station_number, self.year_list, self.month_list, self.day_start, self.day_end, self.start_hour, self.end_hour): with urlopen(query_url) as in_data: sp = SoundingParser() sp.feed(in_data.read().decode()) for key, data in sp.data_dict.items(): full_results_dict[key] = data for key, data in sp.metadata_dict.items(): full_meta_dict[key] = data return TableWrapper(obj_wrap = full_results_dict, meta_data = full_meta_dict)
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/geo/wyoming_sounding/stream/data_fetcher.py
0.765111
0.416619
data_fetcher.py
pypi
# Scikit Data Access imports from skdaccess.framework.data_class import DataFetcherCache, TableWrapper from skdaccess.utilities.sounding_util import SoundingParser, generateQueries from skdaccess.utilities.support import convertToStr # 3rd party imports import pandas as pd import numpy as np from six.moves.urllib.parse import urlencode from six.moves.urllib.request import urlopen # Standard library imports from collections import OrderedDict from calendar import monthrange class DataFetcher(DataFetcherCache): ''' DataFetcher for retrieving Wyoming Sounding data ''' def __init__(self, station_number, year, month, day_start, day_end, start_hour = 0, end_hour = 12): ''' Initialize Data Fetcher @param station_number: Station number @param year: Input year @param month: Input month (Integer for a single month, or a list of integers for multiple months) @param day_start: First day of the month to include @param day_end: Last day of the month to include @param start_hour: Starting hour (may be either 0 or 12) @param end_hour: Ending hour (may be either 0 or 12) ''' self.station_number = station_number if np.isscalar(year): self.year_list = [year] else: self.year_list = year if np.isscalar(month): self.month_list = [month] else: self.month_list = month self.day_start = day_start self.day_end = day_end self.start_hour = start_hour self.end_hour = end_hour super(DataFetcher, self).__init__() def output(self): ''' Generate data wrapper @return Wyoming sounding data in a data wrapper ''' url_list = generateQueries(self.station_number, self.year_list, self.month_list, 1, 31, 0, 12) file_list = self.cacheData('wyoming_sounding', url_list) full_data_dict = OrderedDict() full_meta_dict = OrderedDict() for filename in file_list: with open(filename, 'r') as sounding_data: sp = SoundingParser() sp.feed(sounding_data.read()) for label, data in sp.data_dict.items(): data_date = pd.to_datetime(sp.metadata_dict[label]['metadata']['Observation time'], format='%y%m%d/%H%M') data_hour = int(data_date.strftime('%H')) data_day = int(data_date.strftime('%d')) if data_day >= int(self.day_start) and \ data_day <= int(self.day_end) and \ data_hour >= int(self.start_hour) and \ data_hour <= int(self.end_hour): full_data_dict[label] = data full_meta_dict[label] = sp.metadata_dict[label] return TableWrapper(obj_wrap = full_data_dict, meta_data = full_meta_dict)
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/geo/wyoming_sounding/cache/data_fetcher.py
0.762336
0.409221
data_fetcher.py
pypi
# Scikit Data Access imports from skdaccess.framework.data_class import DataFetcherCache, ImageWrapper from skdaccess.utilities.support import convertToStr from skdaccess.utilities.sentinel_1_util import parseSatelliteData # 3rd party imports import pandas as pd import numpy as np from osgeo import gdal # Standard library imports from collections import OrderedDict from calendar import monthrange from zipfile import ZipFile import xml.etree.ElementTree as ET from scipy.constants import c import os class DataFetcher(DataFetcherCache): ''' DataFetcher for retrieving Sentinel SLC data ''' def __init__(self, url_list, satellite_url_list, username, password, swath, polarization = 'VV', local_paths=False, verbose=True): ''' Initialize Sentinel Data Fetcher @param url_list: List of urls of SLC data @param satellite_url_list: List of satellite urls @param username: Username for downloading data @param password: Password for downloading data @param swath: Swath number (1, 2, or 3) @param polarization: Polarization of data to retrieve @param local_paths: locations are local paths, not urls @param verbose: Print additional information ''' self.url_list = url_list self.satellite_url_list = satellite_url_list self.swath = swath self.username = username self.password = password self.polarization = polarization self.local_paths = local_paths super(DataFetcher, self).__init__(verbose=verbose) def output(self): ''' Generate data wrapper @return Sentinel SLC data in a data wrapper ''' # Check that the number of images matches the number of orbit files num_images = len(self.url_list) if num_images != len(self.satellite_url_list): raise ValueError('Different number of slc and satellite urls') if not self.local_paths: self.verbose_print('Retrieving SLC data', flush=True) file_list = self.cacheData('sentinel_1', self.url_list, self.username, self.password, use_requests=True, use_progress_bar=self.verbose) self.verbose_print('Retrieving orbit files', flush=True) satellite_file_list = self.cacheData('sentinel_1', self.satellite_url_list, self.username, self.password, use_requests=True, use_progress_bar=self.verbose) self.verbose_print('All files retrieved', flush=True) else: file_list = self.url_list satellite_file_list = self.satellite_url_list metadata = OrderedDict() data_dict = OrderedDict() for index, (filepath, satellite_filepath) in enumerate(zip(file_list, satellite_file_list)): filename = os.path.split(filepath)[1] filename_unzipped = filename[:-3] + 'SAFE' gdal_path = '/vsizip/' + os.path.join(filepath, filename_unzipped) + ':IW' + convertToStr(self.swath) + '_' + self.polarization dataset = gdal.Open('SENTINEL1_DS:' + gdal_path) metadata_filename = os.path.split(dataset.GetFileList()[1])[-1] metadata[filename] = OrderedDict() with ZipFile(filepath, 'r') as zipped_file: metadata[filename]['Tree'] = ET.parse(zipped_file.open(os.path.join(filename_unzipped, 'annotation', metadata_filename))) radar_freq = float(metadata[filename]['Tree'].find('generalAnnotation/productInformation/radarFrequency').text) radar_lambda = c/radar_freq metadata[filename]['Wavelength'] = radar_lambda metadata[filename]['Orbit'] = parseSatelliteData(satellite_filepath) # Currently a bug when reading in data using Sentinel-1 Driver # Directly reading the tif file to avoid issues # data_dict[filename] = dataset.ReadAsArray() data_dict[filename] = gdal.Open(dataset.GetFileList()[2]).ReadAsArray() return ImageWrapper(data_dict, meta_data=metadata)
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/geo/sentinel_1/cache/data_fetcher.py
0.685002
0.364976
data_fetcher.py
pypi
# """@package GLDAS # Provides classes for accessing GLDAS data. # """ # mithagi required Base imports from skdaccess.framework.data_class import DataFetcherStorage, TableWrapper from skdaccess.utilities.grace_util import readTellusData, getStartEndDate # Standard library imports import os from ftplib import FTP import re from collections import OrderedDict # 3rd party package imports import pandas as pd import numpy as np class DataFetcher(DataFetcherStorage): ''' Data Fetcher for GLDAS data ''' def __init__(self, ap_paramList, start_date = None, end_date = None, resample = False): ''' Construct a GLDAS Data Fetcher @param ap_paramList[geo_point]: Autolist of Geographic location tuples @param start_date: Beginning date @param end_date: Ending date @param resample: Resample the data to daily resolution, leaving NaN's in days without data (Default True) ''' self.start_date = start_date self.end_date = end_date self.resample = resample super(DataFetcher, self).__init__(ap_paramList) def output(self): ''' Create data wrapper of GLDAS data for specified geopoint. @return GLDAS Data Wrapper ''' data_file = DataFetcher.getDataLocation('gldas') if data_file is None: print("No data available") return None geo_point_list = self.ap_paramList[0]() gldas_data_name = 'Equivalent Water Thickness (cm)' full_data, metadata = readTellusData(data_file, geo_point_list, 'Latitude','Longitude', 'Water_Thickness', gldas_data_name, 'Time')[:2] # Get appropriate time range if self.start_date == None or self.end_date == None: start_date, end_date = getStartEndDate(full_data) if self.start_date != None: start_date = self.start_date elif type(self.start_date) == str: start_date = pd.to_datetime(self.start_date) if self.end_date != None: end_date = self.end_date elif type(self.end_date) == str: end_date == pd.to_datetime(self.end_date) for label in full_data.keys(): full_data[label] = full_data[label][start_date:end_date] gldas_unc = pd.Series(np.ones(len(full_data[label]),dtype=np.float) * np.nan, index=full_data[label].index,name="Uncertainty") full_data[label] = pd.concat([full_data[label], gldas_unc], axis=1) if self.resample == True: full_data[label] = full_data[label].reindex(pd.date_range(start_date, end_date)) return(TableWrapper(full_data, default_columns = ['Equivalent Water Thickness (cm)'], default_error_columns=['Uncertainty'])) @classmethod def downloadFullDataset(cls, out_file=None, use_file=None): ''' Download GLDAS data @param out_file: Output filename for parsed data @param use_file: Directory of downloaded data. If None, data will be downloaded. @return Absolute path of parsed data ''' # No post processing for this data is necessary. If local data is # specified, just set its location. if use_file != None: print('Setting data location for local data') return os.path.abspath(use_file) # If no local data, download data from server print("Downloading GLDAS Land Mass Data") ftp = FTP("podaac-ftp.jpl.nasa.gov") ftp.login() ftp.cwd('allData/tellus/L3/gldas_monthly/netcdf/') dir_list = list(ftp.nlst('')) file_list = [file for file in dir_list if re.search('.nc$', file)] if len(file_list) > 1: raise ValueError('Too many files found in GLDAS directory') if out_file == None: out_file = file_list[0] ftp.retrbinary('RETR ' + file_list[0], open(''+out_file, 'wb').write) cls.setDataLocation('gldas', os.path.abspath(file_list[0])) def __str__(self): ''' String representation of data fetcher @return String listing the name and geopoint of data fetcher ''' return 'GLDAS Data Fetcher' + super(DataFetcher, self).__str__()
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/geo/gldas/data_fetcher.py
0.623721
0.325735
data_fetcher.py
pypi
# """@package Groundwater # Provides classes for accessing Groundwater data. # """ # mithagi required Base imports from skdaccess.framework.data_class import DataFetcherStorage, TableWrapper, SeriesWrapper # Python Standard Library from collections import OrderedDict import re import os from six.moves.urllib.error import HTTPError from six.moves.urllib.request import urlopen from shutil import copyfileobj from io import StringIO # 3rd party package imports import pandas as pd import numpy as np class DataFetcher(DataFetcherStorage): ''' Generates Data Wrappers of groundwater measurements taken in the US ''' def __init__(self, ap_paramList = [], start_date = None, end_date = None, cutoff=0.75): ''' Construct a Groundwater Data Fetcher @param ap_paramList[LowerLat]: Autoparam Lower latitude @param ap_paramList[UpperLat]: Autoparam Upper latitude @param ap_paramList[LeftLon]: Autoparam Left longitude @param ap_paramList[RightLon]: Autoparam Right longitude @param start_date: Starting date (defualt: None) @param end_date: Ending date (default: None) @param cutoff: Required amount of data for each station ''' self.start_date = pd.to_datetime(start_date) self.end_date = pd.to_datetime(end_date) self.ap_paramList = ap_paramList self.cutoff = cutoff def output(self): ''' Fetch Groundwater Data Wrapper @return Groundwater Data Wrapper ''' meta_data = DataFetcher.getStationMetadata() data_file = DataFetcher.getDataLocation('groundwater') if data_file is None: print("No data available") return None if len(self.ap_paramList) == 1: station_list = self.ap_paramList[0]() elif len(self.ap_paramList) == 4: llat = self.ap_paramList[0]() ulat = self.ap_paramList[1]() llon = self.ap_paramList[2]() rlon = self.ap_paramList[3]() station_index = np.logical_and.reduce([meta_data.Lat > llat, meta_data.Lat < ulat, meta_data.Lon > llon, meta_data.Lon < rlon]) cut_metadata = meta_data[station_index] station_list = cut_metadata[cut_metadata['Data Available'] == 1].index.tolist() else: station_list = None data_dict = OrderedDict() store = pd.HDFStore(data_file, 'r') if station_list == None: stations = [str(site) for site in meta_data[meta_data['Data Available']==1].index] else: stations = station_list for station in stations: if self.start_date != None and self.end_date != None: data = store['USGS' + str(station)].reindex(pd.date_range(self.start_date, self.end_date)) else: data = store['USGS' + str(station)] if len(data.dropna()) / len(data) >= self.cutoff: data_dict[int(station)] = data store.close() return(TableWrapper(data_dict, meta_data=meta_data, default_columns=['Median Depth to Water'])) def __str__(self): ''' String representation of data fetcher @return string describing data fetcher ''' return 'Ground Water Data Fetcher' + super(DataFetcher, self).__str__() def getStationMetadata(): ''' Retrieve metadata on groundwater wells @return pandas dataframe with groundwater well information ''' data_file = DataFetcher.getDataLocation('groundwater') if data_file is None: print('Dataset not available') return None store = pd.HDFStore(data_file,'r') meta_data = store['meta_data'] store.close() return meta_data @classmethod def downloadFullDataset(cls, out_file = 'gw.h5', use_file = None): ''' Download and parse US groundwater data provided by USGS @param out_file: Output filename for parsed data @param use_file: Specify the directory where the data is. If None, the function will download the data @return Absolute path of parsed data ''' # Function that converts a string to a float def convert_to_float(x): try: return np.float(x) except: return np.nan # Function to test if a string can # be converted to a float def is_valid_number(x): try: test = np.float(x) return True except: return False # Returns 'No comment' for strings that # can be interpreted as a float, # and returns the string if it can't # be interpreted as a float def comment(x): try: test = np.float(x) return 'No comment' except: return x # Abbreviations of all 50 states state_list = ['AL', 'AK', 'AZ', 'AR', 'CA', 'CO', 'CT', 'DE', 'FL', 'GA', 'HI', 'ID', 'IL', 'IN', 'IA', 'KS', 'KY', 'LA', 'ME', 'MD', 'MA', 'MI', 'MN', 'MS', 'MO', 'MT', 'NE', 'NV', 'NH', 'NJ', 'NM', 'NY', 'NC', 'ND', 'OH', 'OK', 'OR', 'PA', 'RI', 'SC', 'SD', 'TN', 'TX', 'UT', 'VT', 'VA', 'WA', 'WV', 'WI', 'WY'] full_meta_data = None # temporary data storage data_dict = OrderedDict() data_filename_list = [] metadata_filename_list = [] for state in state_list: data_filename = state + '_gw_data.rdb' metadata_filename = state + '_gw_metadata.rdb' if use_file is None: print("Downloading", state, "data") data_file = open(data_filename, 'wb') metadata_file = open(metadata_filename, 'wb') try: # Download data copyfileobj(urlopen('http://waterservices.usgs.gov/nwis/dv/?format=rdb&stateCd=' + state + '&startDT=1800-01-01&endDT=2020-12-31&statCd=00003,00008&parameterCd=72019&siteType=GW'), data_file) data_file.close() # Download meta data copyfileobj(urlopen('http://waterservices.usgs.gov/nwis/site/?format=rdb&stateCd=' + state + '&startDT=1800-01-01&endDT=2020-12-31&parameterCd=72019&siteType=GW&hasDataTypeCd=dv'), metadata_file) except HTTPError: print('No data for', state) finally: data_file.close() metadata_file.close() else: data_filename = use_file + data_filename metadata_filename = use_file + metadata_filename # store data filename and metadata filename data_filename_list.append(data_filename) metadata_filename_list.append(metadata_filename) for data_filename, metadata_filename, state_abbrev in zip(data_filename_list, metadata_filename_list, state_list): print("Processing ", state_abbrev, ': ', data_filename, sep='') #Read metadata meta_data = pd.read_table(metadata_filename, skiprows=31, names = ['Agency', 'Site Number', 'Site Name', 'Site Type', 'Lat', 'Lon', 'LatLon Accuracy', 'LatLon Datum', 'Altitude', 'Altitude Accuracy', 'Altitude Datum', 'Hydrologic Code'], index_col=1, dtype={'Hydrologic Code': "object"}) meta_data['Data Available'] = int(0) meta_data['State'] = state_abbrev full_lines = open(data_filename).read().splitlines() # Get the line number of the header lines header_nums = [] for line_num, line in enumerate(full_lines): if re.match('agency_cd', line): header_nums.append(line_num) # temporary storage for combine type type_dict = OrderedDict() # Read in all the data based on the header lines for header_num in header_nums: # Check to make sure there is valid data if len(full_lines[header_num].split()) < 5: print('No median or averages available for', data_filename) continue start = header_num+2 end = len(full_lines) for line_num, line in enumerate(full_lines[start:],start): if line[0] == '#': end = line_num break # If both median and average present if len(full_lines[header_num].split()) > 5: in_data = pd.read_table(StringIO('\n'.join(full_lines[start:end])), header=None, names=['Agency','Site ID','Date','Mean Depth to Water','Mean Quality', 'Median Depth to Water', 'Median Quality'], index_col=2, parse_dates=True) in_data.loc[:,'Mean Comment'] = in_data.loc[:,'Mean Depth to Water'].apply(comment) in_data.loc[:,'Median Comment'] = in_data.loc[:,'Median Depth to Water'].apply(comment) in_data.loc[:,'Mean Depth to Water'] = in_data.loc[:,'Mean Depth to Water'].apply(convert_to_float) in_data.loc[:,'Median Depth to Water'] = in_data.loc[:,'Median Depth to Water'].apply(convert_to_float) # All the data is either median or mean else: if full_lines[header_num].split()[3][-5:] == '00008': data_name = 'Median Depth to Water' comment_name = 'Median Comment' quality_name = 'Median Quality' elif full_lines[header_num].split()[3][-5:] == '00003': data_name = 'Mean Depth to Water' comment_name = 'Mean Comment' quality_name = 'Mean Quality' else: raise ValueError('Data type not understood') in_data = pd.read_table(StringIO('\n'.join(full_lines[start:end])), header=None, names=['Agency','Site ID','Date', data_name, quality_name], index_col=2, parse_dates=True) in_data.loc[:,comment_name] = in_data.loc[:, data_name].apply(comment) in_data.loc[:,data_name] = in_data.loc[:, data_name].apply(convert_to_float) # Data has been read in, now determine # combine type and store results in # data_dict and type_dict site_id = in_data.ix[0,'Site ID'] in_data.drop('Site ID', 1,inplace=True) data_dict[site_id] = in_data meta_data.loc[site_id, 'Data Available'] = 1 if not data_dict: print('No valid wells for', data_filename) continue full_meta_data = pd.concat([full_meta_data, meta_data]) store = pd.HDFStore(out_file, complevel=5, complib='blosc') for site,data in data_dict.items(): store.put('USGS' + str(site), data, format='table') store.put('meta_data',full_meta_data,format='table') store.close() DataFetcher.setDataLocation('groundwater', os.path.abspath(out_file))
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/geo/groundwater/data_fetcher.py
0.658747
0.354377
data_fetcher.py
pypi
# Scikit Data Access imports from skdaccess.framework.data_class import DataFetcherCache, ImageWrapper from skdaccess.utilities.support import convertToStr from skdaccess.utilities.image_util import AffineGlobalCoords, convertBinCentersToEdges # 3rd party imports import pandas as pd import numpy as np import gdal from pkg_resources import resource_filename # Standard library imports from collections import OrderedDict from calendar import monthrange from zipfile import ZipFile import os class DataFetcher(DataFetcherCache): ''' DataFetcher for retrieving data from the Shuttle Radar Topography Mission ''' def __init__(self, lat_tile_start, lat_tile_end, lon_tile_start, lon_tile_end, username, password, arcsecond_sampling = 1, mask_water = True, store_geolocation_grids=False): ''' Initialize Data Fetcher @param lat_tile_start: Latitude of the southwest corner of the starting tile @param lat_tile_end: Latitude of the southwset corner of the last tile @param lon_tile_start: Longitude of the southwest corner of the starting tile @param lon_tile_end: Longitude of the southwest corner of the last tile @param username: NASA Earth Data username @param password: NASA Earth Data Password @param arcsecond_sampling: Sample spacing of the SRTM data, either 1 arc- second or 3 arc-seconds @param mask_water: True if the water bodies should be masked, false otherwise @param store_geolocation_grids: Store grids of latitude and longitude in the metadata ''' assert arcsecond_sampling == 1 or arcsecond_sampling == 3, "Sampling should be 1 or 3 arc-seconds" self.lat_tile_start = lat_tile_start self.lat_tile_end = lat_tile_end self.lon_tile_start = lon_tile_start self.lon_tile_end = lon_tile_end self.username = username self.password = password self.arcsecond_sampling = arcsecond_sampling self.mask_water = mask_water self.store_geolocation_grids = store_geolocation_grids self._missing_data_projection = '\n'.join([ 'GEOGCS["WGS 84",', ' DATUM["WGS_1984",', ' SPHEROID["WGS 84",6378137,298.257223563,', ' AUTHORITY["EPSG","7030"]],', ' AUTHORITY["EPSG","6326"]],', ' PRIMEM["Greenwich",0,', ' AUTHORITY["EPSG","8901"]],', ' UNIT["degree",0.0174532925199433,', ' AUTHORITY["EPSG","9122"]],', ' AUTHORITY["EPSG","4326"]]' ]) super(DataFetcher, self).__init__() def output(self): ''' Generate SRTM data wrapper @return SRTM Image Wrapper ''' lat_tile_array = np.arange(self.lat_tile_start, self.lat_tile_end+1) lon_tile_array = np.arange(self.lon_tile_start, self.lon_tile_end+1) lat_grid,lon_grid = np.meshgrid(lat_tile_array, lon_tile_array) lat_grid = lat_grid.ravel() lon_grid = lon_grid.ravel() filename_root = '.SRTMGL1.' base_url = 'https://e4ftl01.cr.usgs.gov/MEASURES/' folder_root = 'SRTMGL1.003/2000.02.11/' if self.arcsecond_sampling == 3: filename_root = '.SRTMGL3.' folder_root = 'SRTMGL3.003/2000.02.11/' base_url += folder_root filename_list = [] for lat, lon in zip(lat_grid, lon_grid): if lat < 0: lat_label = 'S' lat = np.abs(lat) else: lat_label = 'N' if lon < 0: lon_label = 'W' lon = np.abs(lon) else: lon_label = 'E' filename_list.append(lat_label + convertToStr(lat, 2) + lon_label + convertToStr(lon, 3) + filename_root + 'hgt.zip') if self.mask_water == True: filename_list.append(lat_label + convertToStr(lat, 2) + lon_label + convertToStr(lon, 3) + filename_root + 'num.zip') # Read in list of available data srtm_list_filename = 'srtm_gl1.txt' if self.arcsecond_sampling == 3: srtm_list_filename = 'srtm_gl3.txt' srtm_support_filename = resource_filename('skdaccess', os.path.join('support',srtm_list_filename)) available_file_list = open(srtm_support_filename).readlines() available_file_list = [filename.strip() for filename in available_file_list] requested_files = pd.DataFrame({'Filename' : filename_list}) requested_files['Valid'] = [ '.'.join(filename.split('.')[0:-2]) in available_file_list for filename in filename_list ] valid_filename_list = requested_files.loc[ requested_files['Valid']==True, 'Filename'].tolist() url_list = [base_url + filename for filename in valid_filename_list] downloaded_file_list = self.cacheData('srtm', url_list, self.username, self.password, 'https://urs.earthdata.nasa.gov') requested_files.loc[ requested_files['Valid']==True, 'Full Path'] = downloaded_file_list def getCoordinates(filename): ''' Determine the longitude and latitude of the lowerleft corner of the input filename @param in_filename: Input SRTM filename @return Latitude of southwest corner, Longitude of southwest corner ''' lat_start = int(filename[1:3]) if filename[0] == 'S': lat_start *= -1 lon_start = int(filename[4:7]) if filename[3] == 'W': lon_start *= -1 return lat_start, lon_start data_dict = OrderedDict() metadata_dict = OrderedDict() array_shape = (3601,3601) if self.arcsecond_sampling == 3: array_shape = (1201,1201) file_slice = slice(None) water_value = 0 if self.mask_water == True: file_slice = slice(0, -1, 2) water_value = np.nan for i in requested_files.index[file_slice]: hgt_full_path = requested_files.at[i, 'Full Path'] hgt_filename = requested_files.at[i, 'Filename'] label = hgt_filename[:7] lat_start, lon_start = getCoordinates(hgt_filename) metadata_dict[label] = OrderedDict() x_res = 1.0 / (array_shape[0]-1) y_res = 1.0 / (array_shape[1]-1) extents = [ lon_start - x_res / 2, lon_start + 1 + x_res / 2, lat_start - y_res / 2, lat_start + 1 + y_res / 2 ] if requested_files.at[i, 'Valid']: masked_dem_data = np.ones(array_shape) if self.mask_water == True and requested_files.at[i + 1, 'Valid']: num_full_path = requested_files.at[i + 1, 'Full Path'] num_filename = requested_files.at[i + 1, 'Full Path'] zipped_num_data = ZipFile(num_full_path) zipped_num_full_path = zipped_num_data.infolist()[0].filename num_data = np.frombuffer(zipped_num_data.open(zipped_num_full_path).read(), np.dtype('uint8')).reshape(array_shape) masked_dem_data[(num_data == 1) | (num_data == 2)] = water_value i += 1 zipped_hgt_data = ZipFile(hgt_full_path) dem_dataset = gdal.Open(hgt_full_path, gdal.GA_ReadOnly) dem_data = dem_dataset.ReadAsArray() masked_dem_data *= dem_data metadata_dict[label]['WKT'] = dem_dataset.GetProjection() metadata_dict[label]['GeoTransform'] = dem_dataset.GetGeoTransform() else: geo_transform = [] geo_transform.append(extents[0]) geo_transform.append(x_res) geo_transform.append(0) geo_transform.append(extents[-1]) geo_transform.append(0) geo_transform.append(-y_res) metadata_dict[label]['WKT'] = self._missing_data_projection metadata_dict[label]['GeoTransform'] = geo_transform masked_dem_data = np.full(shape=array_shape, fill_value=water_value) i += 1 data_dict[label] = masked_dem_data metadata_dict[label]['Geolocation'] = AffineGlobalCoords(metadata_dict[label]['GeoTransform'], center_pixels=True) metadata_dict[label]['extents'] = extents if self.store_geolocation_grids: lat_coords, lon_coords = np.meshgrid(np.linspace(lat_start+1, lat_start, array_shape[0]), np.linspace(lon_start, lon_start+1, array_shape[1]), indexing = 'ij') metadata_dict[label]['Latitude'] = lat_coords metadata_dict[label]['Longitude'] = lon_coords return ImageWrapper(obj_wrap = data_dict, meta_data = metadata_dict)
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/geo/srtm/cache/data_fetcher.py
0.724675
0.480052
data_fetcher.py
pypi
# """@package MODIS data # Provides classes for accessing MODIS data. # """ # Standard library imports from collections import OrderedDict from pathlib import Path from shutil import copyfileobj import os import re # 3rd party package imports import pandas as pd from six.moves.urllib.request import urlopen import numpy as np # mithagi imports from skdaccess.framework.data_class import DataFetcherStream, ImageWrapper from skdaccess.utilities.modis_util import getImageType, createGrid, getFileURLs, readMODISData, getFileURLs, getFileIDs from tqdm import tqdm class DataFetcher(DataFetcherStream): ''' Data Fetcher for MODIS data ''' def __init__(self, ap_paramList, modis_platform, modis_id, variable_list, start_date, end_date, daynightboth = 'D', grid=None, grid_fill = np.nan, use_long_name=False): ''' Construct Data Fetcher object @param ap_paramList[lat]: Search latitude @param ap_paramList[lon]: Search longitude @param modis_platform: Platform (Either "Terra" or "Aqua") @param modis_id: Product string (e.g. '06_L2') @param variable_list: List of variables to fetch @param start_date: Starting date @param end_date: Ending date @param daynightboth: Use daytime data ('D'), nighttime data ('N') or both ('B') @param grid: Further divide each image into a multiple grids of size (y,x) @param grid_fill: Fill value to use when creating gridded data @param use_long_name: Use long names for metadata instead of variable name ''' self.modis_id = modis_id self.variable_list = variable_list self.start_date = start_date self.end_date = end_date self.daynightboth = daynightboth self.grid = grid self.grid_fill = grid_fill self.use_long_name = use_long_name if modis_platform.lower() == 'terra': self.modis_platform = 'MOD' elif modis_platform.lower() == 'aqua': self.modis_platform = 'MYD' else: raise ValueError('Did not understand modis platform') self.modis_identifier = self.modis_platform + modis_id super(DataFetcher, self).__init__(ap_paramList) def output(self): ''' Generate data wrapper @return data wrapper of MODIS data ''' # Determine latitude and longitude for # output lat = self.ap_paramList[0]() lon = self.ap_paramList[1]() start_date = self.start_date end_date = self.end_date time = self.daynightboth file_ids = getFileIDs(self.modis_identifier, start_date, end_date, lat, lon, time) file_urls = getFileURLs(file_ids) # For streaming, need to use opendap urls url_header = 'http://ladsweb.modaps.eosdis.nasa.gov/opendap/' opendap_urls = [ url_header + re.search('allData.*$',url).group(0) for url in file_urls ] # This function reads data and returns a wrapper return readMODISData(opendap_urls, self.variable_list, grid=self.grid, grid_fill = self.grid_fill, use_long_name = self.use_long_name, platform = self.modis_platform, product_id = self.modis_id)
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/geo/modis/stream/data_fetcher.py
0.767864
0.331052
data_fetcher.py
pypi
# """@package MODIS data # Provides classes for accessing MODIS data. # """ # Standard library imports from collections import OrderedDict from pathlib import Path from shutil import copyfileobj import os import re import fcntl # 3rd party package imports import numpy as np import pandas as pd from six.moves.urllib.request import urlopen # mithagi imports from skdaccess.framework.data_class import DataFetcherCache, ImageWrapper from skdaccess.utilities.modis_util import getImageType, createGrid, getFileURLs, readMODISData, getFileURLs, getFileIDs from tqdm import tqdm class DataFetcher(DataFetcherCache): ''' Data Fetcher for MODIS data ''' def __init__(self, ap_paramList, modis_platform, modis_id, variable_list, start_date, end_date, daynightboth = 'D', grid=None, grid_fill = np.nan, use_long_name=False): ''' Construct Data Fetcher object @param ap_paramList[lat]: Search latitude @param ap_paramList[lon]: Search longitude @param modis_platform: Platform (Either "Terra" or "Aqua") @param modis_id: Product string (e.g. '06_L2') @param variable_list: List of variables to fetch @param start_date: Starting date @param end_date: Ending date @param daynightboth: Use daytime data ('D'), nighttime data ('N') or both ('B') @param grid: Further divide each image into a multiple grids of size (y,x) @param grid_fill: Fill value to use when creating gridded data @param use_long_name: Use long names for metadata instead of variable name ''' self.modis_id = modis_id self.variable_list = variable_list self.start_date = start_date self.end_date = end_date self.daynightboth = daynightboth self.grid = grid self.grid_fill = grid_fill self.use_long_name = use_long_name if modis_platform.lower() == 'terra': self.modis_platform = 'MOD' elif modis_platform.lower() == 'aqua': self.modis_platform = 'MYD' else: raise ValueError('Did not understand modis platform') self.modis_identifier = self.modis_platform + modis_id super(DataFetcher, self).__init__(ap_paramList) def find_data(self, fileid_list, file_object): ''' Finds files previously downloaded files associated with fileids @param fileid_list: List of file id's @param file_object: File object to read from @return Pandas series of file locaitons indexed by file id ''' file_locations = [] try: metadata = pd.read_csv(file_object, index_col=0) for fileid in fileid_list: if fileid in metadata.index: file_locations.append(metadata.loc[fileid,'filename']) else: file_locations.append(None) except pd.errors.EmptyDataError: file_locations = [ None for i in range(len(fileid_list)) ] return pd.Series(file_locations, index=fileid_list) def cacheData(self, data_specification): ''' Download MODIS data @param data_specification: List of file IDs to cache ''' file_ids = data_specification def download_data(missing_metadata, file_object): try: metadata = pd.read_csv(file_object, index_col=0) except pd.errors.EmptyDataError: metadata = pd.DataFrame(columns=["filename"]) metadata.index.name = 'fileid' fileid_list = list(missing_metadata.index) file_urls = getFileURLs(fileid_list) filename_list = [] for fileid, fileurl in tqdm(zip(fileid_list, file_urls), total=len(fileid_list)): filename = re.search('[^/]*$', fileurl).group() data_file = open(os.path.join(data_location,filename), 'wb') copyfileobj(urlopen(fileurl), data_file) data_file.close() metadata.loc[fileid] = filename filename_list.append(filename) file_object.seek(0) file_object.truncate() metadata.to_csv(file_object) for fileid, filename in zip(fileid_list, filename_list): missing_metadata.loc[fileid] = filename return missing_metadata data_location = DataFetcher.getDataLocation('modis') metadata_location = os.path.join(data_location, 'metadata.csv') with open(metadata_location, 'a+') as metadata_file: fcntl.lockf(metadata_file, fcntl.LOCK_EX) metadata_file.seek(0) file_names = self.find_data(file_ids, metadata_file) metadata_file.seek(0) missing = file_names[pd.isnull(file_names)] if len(missing) > 0: downloaded = download_data(missing, metadata_file) def output(self): ''' Generate data wrapper @return data wrapper of MODIS data ''' # Determine latitude and longitude for # output lat = self.ap_paramList[0]() lon = self.ap_paramList[1]() start_date = self.start_date end_date = self.end_date time = self.daynightboth file_ids = getFileIDs(self.modis_identifier, start_date, end_date, lat, lon, time) self.cacheData(file_ids) data_location = DataFetcher.getDataLocation('modis') with open(os.path.join(data_location,'metadata.csv'), 'a+') as file_object: fcntl.lockf(file_object, fcntl.LOCK_SH) file_object.seek(0) file_list = self.find_data(file_ids, file_object) # Location of data files data_location = DataFetcher.getDataLocation('modis') # Generate list containing full paths to data files file_locations = [] for filename in file_list: file_locations.append(os.path.join(data_location, filename)) # This function reads data and returns a wrapper return readMODISData(file_locations, self.variable_list, grid=self.grid, grid_fill = self.grid_fill, use_long_name = self.use_long_name, platform = self.modis_platform, product_id = self.modis_id)
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/geo/modis/cache/data_fetcher.py
0.635222
0.297948
data_fetcher.py
pypi
from skdaccess.framework.data_class import DataFetcherStorage, TableWrapper from collections import OrderedDict import pandas as pd import numpy as np import pyproj class DataFetcher(DataFetcherStorage): ''' Fetches data for the Interactive Multisensor Snow and Ice Mapping System Daily Northern Hemisphere Snow and Ice Analysis ''' def __init__(self, coordinate_dict, start_date, end_date): ''' Intializes the Data Fetcher @param coordinate_dict: Dictionary of locations where the names are the keys and the items are lists containing the latitude and longitude are the values @param start_date: Starting date @param end_date: Ending date ''' super(DataFetcher, self).__init__([]) self.coordinate_dict = coordinate_dict self.start_date = start_date self.end_date = end_date def output(self): ''' Fetch snow coverage data for coordinates @return Data wrapper for snow coverage ''' data_file = DataFetcher.getDataLocation('imsdnhs') if data_file is None: print("No data available") return None store = pd.HDFStore(data_file) # Projection information x_start = -12288000.0 x_end = 12288000.0 y_start = 12288000.0 y_end = -12288000.0 x_dim = 6144 y_dim = 6144 x_inc = (x_end - x_start) / x_dim y_inc = (y_end - y_start) / y_dim proj = pyproj.Proj('+proj=stere +lat_0=90 +lat_ts=60 +lon_0=-80 +k=1 +x_0=0 +y_0=0 +ellps=WGS84 +datum=WGS84 +units=m +no_defs') # Function that determines the x,y image coordinate for a # given (latitude, longitude) pair def convertToXY(lat, lon): ux, uy = proj(lon,lat) x = np.round(((ux - x_start) / x_inc) - 0.5).astype(np.int) y = np.round(((uy - y_start) / y_inc) - 0.5).astype(np.int) return (x,y) label_list = [] lat_array = np.zeros(len(self.coordinate_dict),dtype=np.float) lon_array = np.zeros(len(self.coordinate_dict),dtype=np.float) for i, (label, coordinates) in enumerate(self.coordinate_dict.items()): label_list.append(label) lat_array[i] = coordinates[0] lon_array[i] = coordinates[1] x_array,y_array = convertToXY(lat_array, lon_array) # # Forming a complex number to remove duplicate # # coordinates # complex_array = np.unique(x_array * 1j * y_array) # x_array = complex_array.real # y_array = complex_array.imag data_dict = OrderedDict() for label,x,y in zip(label_list, x_array,y_array): data_dict[label] = pd.DataFrame({'Snow': store['y_' + str(y).zfill(4)].loc[:,x].reindex(pd.date_range(pd.to_datetime(self.start_date), pd.to_datetime(self.end_date)),fill_value=-1)}) return TableWrapper(data_dict, default_columns = ['Snow'])
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/geo/imsdnhs/data_fetcher.py
0.812904
0.499756
data_fetcher.py
pypi
# skdaccess imports from skdaccess.framework.data_class import DataFetcherStream, TableWrapper # Standard library imports from collections import OrderedDict import os # 3rd party imports import pandas as pd from geomagio.edge import EdgeFactory from obspy.core import UTCDateTime from pkg_resources import resource_filename class DataFetcher(DataFetcherStream): ''' Data fetcher for USGS geomagnetic observatories ''' def __init__(self, ap_paramList, start_time, end_time, interval = 'minute', channels=('X','Y','Z','F'), data_type = 'variation'): ''' Geomagnetism Data fetcher constructor @param ap_paramList[AutoList]: AutoList of Observatory names @param start_time: Starting time @param end_time: Ending time @param interval: Time resolution @param channels: Data channels @param data_type = Data type ''' self.start_time = start_time self.end_time = end_time self.interval = interval self.channels = channels self.data_type = data_type super(DataFetcher,self).__init__(ap_paramList) def output(self): ''' Generate data wrapper for USGS geomagnetic data @return geomagnetic data wrapper ''' observatory_list = self.ap_paramList[0]() # USGS Edge server base_url = 'cwbpub.cr.usgs.gov' factory = EdgeFactory(host=base_url, port=2060) data_dict = OrderedDict() for observatory in observatory_list: ret_data = factory.get_timeseries( observatory=observatory, interval=self.interval, type=self.data_type, channels=self.channels, starttime=UTCDateTime(self.start_time), endtime=UTCDateTime(self.end_time)) obs_data = OrderedDict() for label, trace in zip(self.channels, ret_data): time = pd.to_datetime(trace.stats['starttime'].datetime) + pd.to_timedelta(trace.times(),unit='s') obs_data[label] = pd.Series(trace.data,time) data_dict[observatory] = pd.DataFrame(obs_data) return TableWrapper(data_dict, default_columns=self.channels) def getDataMetadata(): ''' Get data metadata @return Pandas dataframe containing station latitude and longitude coordinates ''' meta_data_path = resource_filename('skdaccess',os.path.join('support','usgs_geomagnetism_observatories.txt')) return pd.read_csv(meta_data_path, header=None, names=('Observatory','Lat','Lon')).set_index('Observatory')
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/geo/magnetometer/data_fetcher.py
0.805861
0.261693
data_fetcher.py
pypi
# Standard library imports from itertools import combinations from collections import OrderedDict # Scikit Data Access imports from .image_util import convertBinCentersToEdges # 3rd part imports import pandas as pd import numpy as np from netCDF4 import Dataset, num2date def averageDates(dates, round_nearest_day = False): ''' Compute the average of a pandas series of timestamps @param dates: Pandas series of pandas datetime objects @param round_nearest_day: Round to the nearest day @return Average of dates ''' start = dates.min() newdate = (dates - start).mean() + start if round_nearest_day: newdate = newdate.round('D') return newdate def dateMismatch(dates, days=10): ''' Check if dates are not within a certain number of days of each other @param dates: Iterable container of pandas timestamps @param days: Number of days @return true if they are not with 10 days, false otherwise ''' for combo in combinations(dates,2): if np.abs(combo[0] - combo[1]) > pd.to_timedelta(days, 'D'): return True return False def computeEWD(grace_data, scale_factor, round_nearest_day=False): ''' Compute scale corrected equivalent water depth Equivalent water depth by averaging results from GFZ, CSR, and JPL, and then applying the scale factor @param grace_data: Data frame containing grace data @param scale_factor: Scale factor to apply @param round_nearest_day: Round dates to nearest day @return Equivalent water depth determined by applying the scale factor to the average GFZ, JPL and CSR. ''' def cutMissingData(in_data, reverse=False): ''' Removes data from the beginning (or ending if reverse=True) so that data exists for all 3 sources (GFZ, JPL, and CSR). This function is necessary as not all sources may get cut when a starting and ending date is specified. @param in_data: Input grace data @param reverse: Remove data from end instead of beginning @return Tuple containing modified in_data, the last cut date ''' last_cut_date = None if reverse==True: index = in_data.index[::-1] else: index = in_data.index for date in index: cut = in_data.loc[date-pd.to_timedelta('10D'):date+pd.to_timedelta('10D')] if min(len(cut['CSR'].dropna()), len(cut['GFZ'].dropna()), len(cut['JPL'].dropna())) == 0: if reverse: in_data = in_data.iloc[:-1] else: in_data = in_data.iloc[1:] last_cut_date = date else: break return in_data,last_cut_date # Check if there is no valid data if len(grace_data['CSR'].dropna()) + len(grace_data['GFZ'].dropna()) + len(grace_data['JPL'].dropna()) == 0: if round_nearest_day == True: return pd.Series(np.nan, index=grace_data.index.round('D')) else: return pd.Series(np.nan, index=grace_data.index) # Find all months that have different dates supplied by GFZ, JPL, and CSR offsets = grace_data[grace_data.isnull().any(axis=1)] # Starting and ending months if they don't have valid data for all 3 data sets offsets,cut_date1 = cutMissingData(offsets) offsets,cut_date2 = cutMissingData(offsets, reverse=True) # If beginning data has been cut, update data accordingly if cut_date1 != None: index_location = np.argwhere(grace_data.index == cut_date1)[0][0] new_index = grace_data.index[index_location+1] grace_data = grace_data.loc[new_index:] # If ending data has been cut, update data accordingly if cut_date2 != None: index_location = np.argwhere(grace_data.index == cut_date2)[0][0] new_index = grace_data.index[index_location-1] grace_data = grace_data.loc[:new_index] # Get all valid data for JPL, GFZ, and CSR csr = offsets['CSR'].dropna() gfz = offsets['GFZ'].dropna() jpl = offsets['JPL'].dropna() new_index = [] new_measurements = [] # Iterate over all data with offset dates and combine them for (c_i, c_v), (g_i,g_v), (j_i, j_v) in zip(csr.iteritems(), gfz.iteritems(), jpl.iteritems()): # Check if the dates are within 10 days of each other dates = pd.Series([c_i,g_i,j_i]) if dateMismatch(dates): raise ValueError('Different dates are not within 10 days of each other') # Determine new index and average value of data new_index.append(averageDates(dates, round_nearest_day)) new_measurements.append(np.mean([c_v, g_v, j_v])) # Create series from averaged results fixed_means = pd.Series(data = new_measurements, index=new_index) fixed_means.index.name = 'Date' # Averaging results from non mimsatched days ewt = grace_data.dropna().mean(axis=1) # If requested, round dates to nearest day if round_nearest_day: ewt_index = ewt.index.round('D') else: ewt_index = ewt.index # Reset ewt index ewt = pd.Series(ewt.as_matrix(),index = ewt_index) # Combined data with mismatched days with data # without mismatched days ewt = pd.concat([ewt, fixed_means]) ewt.sort_index(inplace=True) # Apply scale factor ewt = ewt * scale_factor # Return results return ewt def readTellusData(filename, lat_lon_list, lat_name, lon_name, data_name, data_label=None, time_name=None, lat_bounds_name=None, lon_bounds_name=None, uncertainty_name = None, lat_bounds=None, lon_bounds = None): ''' This function reads in netcdf data provided by GRACE Tellus @param filename: Name of file to read in @param lat_lon_list: List of latitude, longitude tuples that are to be read @param data_label: Label for data @param lat_name: Name of latitude data @param lon_name: Name of longitude data @param data_name: Name of data product @param time_name: Name of time data @param lat_bounds_name: Name of latitude boundaries @param lon_bounds_name: Name of longitude boundaries @param uncertainty_name: Name of uncertainty in data set @param lat_bounds: Latitude bounds @param lon_bounds: Longitude bounds @return dictionary containing data and dictionary containing latitude and longitude ''' def findBin(in_value, in_bounds): search = np.logical_and(in_value >= in_bounds[:,0], in_value < in_bounds[:,1]) if np.sum(search) == 1: return np.argmax(search) elif in_value == in_bounds[-1]: return len(in_bounds)-1 else: raise RuntimeError("Value not found") if data_label == None and time_name != None: raise RuntimeError("Need to specify data label when time data is used") if lat_bounds is None and lon_bounds is not None or \ lat_bounds is not None and lon_bounds is None: raise ValueError('Must specify both lat_bounds and lon_bounds, or neither of them') nc = Dataset(filename, 'r') lat_data = nc[lat_name][:] lon_data = nc[lon_name][:] data = nc[data_name][:] if lat_bounds is None: if lat_bounds_name == None and lon_bounds_name == None: lat_edges = convertBinCentersToEdges(lat_data) lon_edges = convertBinCentersToEdges(lon_data) lat_bounds = np.stack([lat_edges[:-1], lat_edges[1:]], axis=1) lon_bounds = np.stack([lon_edges[:-1], lon_edges[1:]], axis=1) else: lat_bounds = nc[lat_bounds_name][:] lon_bounds = nc[lon_bounds_name][:] if time_name != None: time = nc[time_name] date_index = pd.to_datetime(num2date(time[:],units=time.units,calendar=time.calendar)) if uncertainty_name != None: uncertainty = nc[uncertainty_name][:] data_dict = OrderedDict() meta_dict = OrderedDict() for lat, lon in lat_lon_list: # Convert lontitude to 0-360 orig_lon = lon if lon < 0: lon += 360. lat_bin = findBin(lat, lat_bounds) lon_bin = findBin(lon, lon_bounds) label = str(lat) + ', ' + str(orig_lon) if time_name != None and uncertainty_name != None: frame_data_dict = OrderedDict() frame_data_dict[data_label] = data[:,lat_bin, lon_bin] frame_data_dict['Uncertainty'] = uncertainty[:,lat_bin, lon_bin] data_dict[label] = pd.DataFrame(frame_data_dict, index=date_index) elif time_name != None and uncertainty_name == None: data_dict[label] = pd.DataFrame({data_label : data[:, lat_bin, lon_bin]}, index=date_index) else: data_dict[label] = data[lat_bin, lon_bin] meta_dict[label] = OrderedDict() meta_dict[label]['Lat'] = lat meta_dict[label]['Lon'] = orig_lon return data_dict, meta_dict, lat_bounds, lon_bounds def getStartEndDate(in_data): label, data = next(in_data.items()) start_date = in_data.index[0] end_date = in_data.index[-1] return start_date, end_date
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/utilities/grace_util.py
0.750095
0.600657
grace_util.py
pypi
# Standard library imports from collections import OrderedDict import os # 3rd party import import pandas as pd from pkg_resources import resource_filename from tqdm import tqdm def retrieveCommonDatesHDF(support_data_filename, key_list, in_date_list): ''' Get a list of all dates that have data available @param support_data_filename: Filename of support data @param key_list: List of keys in HDF file @param in_date_list: Input date list to check @return dictionary of dates with data ''' valid_dates = OrderedDict() support_full_path = resource_filename('skdaccess',os.path.join('support',support_data_filename)) for key in key_list: try: available_dates = pd.read_hdf(support_full_path, key) except KeyError: print('Unknown station:',key) common_dates = list(set(in_date_list).intersection(set(available_dates))) common_dates.sort() valid_dates[key] = common_dates return valid_dates def progress_bar(in_iterable, total=None, enabled=True): ''' Progess bar using tqdm @param in_iterable: Input iterable @param total: Total number of elements @param enabled: Enable progress bar ''' if enabled==True: return tqdm(in_iterable, total=total) else: return in_iterable def convertToStr(in_value, zfill=0): ''' If input is a number, convert to a string with zero paddding. Otherwise, just return the string. @input in_value: Input string or number @zfill: Amount of zero padding @return zero padded number as a string, or original string ''' if isinstance(in_value, str): return in_value else: return str(in_value).zfill(zfill) def join_string(part1, part2, concatenation_string = 'AND', seperator=' '): """ Join two strings together using a concatenation string Handles the case where either part1 or part2 are an empty string @param part1: First string @param part2: Second string @param concatenation_string: String used to join part1 and part2 @param seperator: Seperator used to between each part and the concatenation string @return A single string that consists of the part1 and part2 joined together using a concatenation string """ if part1 == '': return part2 elif part2 == '': return part1 if part1[-1] == seperator: sep1 = '' else: sep1 = seperator if part2[0] == seperator: sep2 = '' else: sep2 = ' ' return part1 + sep1 + concatenation_string + sep2 + part2
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/utilities/support.py
0.698638
0.334236
support.py
pypi
# 3rd party imports import numpy as np from xml.dom import minidom from six.moves.urllib.request import urlopen from osgeo import gdal # Standard library imports from collections import OrderedDict import sys import re def query_yes_no(question, default = "yes"): ''' Ask a yes/no question via raw_input() and return the answer Written by Trent Mick under the MIT license, see: https://code.activestate.com/recipes/577058-query-yesno/ @param question: A string that is presented to the user @param default: The presumed answer if the user just hits <Enter>. It must be "yes" (the default), "no" or None (meaning an answer is required of the user) @return The "answer", i.e., either "yes" or "no" ''' valid = {"yes":"yes", "y":"yes", "ye":"yes", "no":"no", "n":"no"} if default == None: prompt = " [y/n] " elif default == "yes": prompt = " [Y/n] " elif default == "no": prompt = " [y/N] " else: raise ValueError("invalid default answer: '%s'" % default) while 1: sys.stdout.write(question + prompt) choice = input().lower() if default is not None and choice == '': return default elif choice in valid.keys(): return valid[choice] else: sys.stdout.write("Please respond with 'yes' or 'no' "\ "(or 'y' or 'n').\n") def get_query_url(target, mission, instrument, product_type, western_lon, eastern_lon, min_lat, max_lat, min_ob_time, max_ob_time, product_id, query_type, output, results, number_product_limit, result_offset_number): ''' Build the query URL using ODE REST interface Adapted from the Orbital Data Explorer (ODE) REST Interface Manual @param target: Aimed planetary body, i.e., Mars, Mercury, Moon, Phobos, or Venus @param mission: Aimed mission, e.g., MGS or MRO @param instrument: Aimed instrument from the mission, e.g., HIRISE or CRISM @param product_type: Type of product to look for, e.g., DTM or RDRV11 @param western_lon: Western longitude to look for the data, from 0 to 360 @param eastern_lon: Eastern longitude to look for the data, from 0 to 360 @param min_lat: Minimal latitude to look for the data, from -90 to 90 @param max_lat: Maximal latitude to look for the data, from -90 to 90 @param min_ob_time: Minimal observation time in (even partial) UTC format, e.g., '2017-03-01' @param max_ob_time: Maximal observation time in (even partial) UTC format, e.g., '2017-03-01' @param product_id: PDS Product Id to look for, with wildcards (*) allowed @param query_type: File type to look for, i.e., Product, Browse, Derived, or Referenced @param output: Return format for product queries or error messages, i.e, XML or JSON @param results: Type of files to look for, i.e., c: count of products; o: ODE Product ID; p: PDS product identifies; m: product metadata; f: product files; b: browse image; t: thumbnail image; l: complete PDS label; x: single product footprint @param number_product_limit: Maximal number of products to return (100 at most) @param result_offset_number: Offset the return products, to go beyond the limit of 100 returned products @return Query URL ''' ODE_REST_base_url = "http://oderest.rsl.wustl.edu/live2/?" target = 'target=' + target mission = '&ihid=' + mission instrument = '&iid=' + instrument product_type = '&pt=' + product_type if western_lon is not None: western_lon = '&westernlon=' + str(western_lon) else: western_lon = '' if eastern_lon is not None: eastern_lon = '&easternlon=' + str(eastern_lon) else: eastern_lon = '' if min_lat is not None: min_lat = '&minlat=' + str(min_lat) else: min_lat = '' if max_lat is not None: max_lat = '&maxlat=' + str(max_lat) else: max_lat = '' if min_ob_time != '': min_ob_time = '&mincreationtime=' + min_ob_time if max_ob_time != '': max_ob_time = '&maxcreationtime=' + max_ob_time if product_id != '': product_id = '&productid=' + product_id if query_type != '': query_type = '&query=' + query_type if results != '': results = '&results=' + results if output != '': output = '&output=' + output if number_product_limit != '': number_product_limit = '&limit=' + str(number_product_limit) if result_offset_number != '': result_offset_number = '&offset=' + str(result_offset_number) # Concatenate the REST request return ODE_REST_base_url + target + mission + instrument + product_type \ + western_lon + eastern_lon + min_lat + max_lat + min_ob_time \ + max_ob_time + query_type + results + output + number_product_limit \ + result_offset_number + product_id def get_files_urls(query_url, file_name = '*', print_info = False): ''' Retrieve the files' URLs based on a query from ODE REST interface Adapted from the Orbital Data Explorer (ODE) REST Interface Manual @param query_url: URL resulting from the query of ODE @param file_name: File name to look for, with wildcards (*) allowed @param print_info: Print the files that will be downloaded @return List of URLs ''' url = urlopen(query_url) query_results = url.read() xml_results = minidom.parseString(query_results) url.close() error = xml_results.getElementsByTagName('Error') if len(error) > 0: print('\nError:', error[0].firstChild.data) return None limit_file_types = 'Product' file_name = file_name.replace('*', '.') products = xml_results.getElementsByTagName('Product') file_urls = OrderedDict() for product in products: product_files = product.getElementsByTagName('Product_file') product_id = product.getElementsByTagName('pdsid')[0] if print_info == True: print('\nProduct ID:', product_id.firstChild.data) for product_file in product_files: file_type = product_file.getElementsByTagName('Type')[0] file_url = product_file.getElementsByTagName('URL')[0] file_description = product_file.getElementsByTagName('Description')[0] local_filename = file_url.firstChild.data.split('/')[-1] local_file_extension = local_filename.split('.')[-1] if re.search(file_name, local_filename) is not None: # Restriction on the file type to download if len(limit_file_types) > 0: # If match, get the URL if file_type.firstChild.data == limit_file_types: file_urls[file_url.firstChild.data] = (product_id.firstChild.data, file_description.firstChild.data) if print_info == True: print('File name:', file_url.firstChild.data.split('/')[-1]) print('Description:', file_description.firstChild.data) # No restriction on the file type to download else: file_urls[file_url.firstChild.data] = (product_id.firstChild.data, file_description.firstChild.data) if print_info == True: print('File name:', file_url.firstChild.data.split('/')[-1]) print('Description:', file_description.firstChild.data) return file_urls def query_files_urls(target, mission, instrument, product_type, western_lon, eastern_lon, min_lat, max_lat, min_ob_time, max_ob_time, product_id, file_name, number_product_limit, result_offset_number): ''' Retrieve the URL locations based on a query using ODE REST interface @param target: Aimed planetary body, i.e., Mars, Mercury, Moon, Phobos, or Venus @param mission: Aimed mission, e.g., MGS or MRO @param instrument: Aimed instrument from the mission, e.g., HIRISE or CRISM @param product_type: Type of product to look for, e.g., DTM or RDRV11 @param western_lon: Western longitude to look for the data, from 0 to 360 @param eastern_lon: Eastern longitude to look for the data, from 0 to 360 @param min_lat: Minimal latitude to look for the data, from -90 to 90 @param max_lat: Maximal latitude to look for the data, from -90 to 90 @param min_ob_time: Minimal observation time in (even partial) UTC format, e.g., '2017-03-01' @param max_ob_time: Maximal observation time in (even partial) UTC format, e.g., '2017-03-01' @param product_id: PDS Product Id to look for, with wildcards (*) allowed @param file_name: File name to look for, with wildcards (*) allowed @param number_product_limit: Maximal number of products to return (100 at most) @param result_offset_number: Offset the return products, to go beyond the limit of 100 returned products @return List of URL locations ''' # Returns a list of products with selected product metadata that meet the query parameters query_type = 'product' # Controls the return format for product queries or error messages output = 'XML' # For each product found return the product files and IDS results = 'fp' query_url = get_query_url(target, mission, instrument, product_type, western_lon, eastern_lon, min_lat, max_lat, min_ob_time, max_ob_time, product_id, query_type, output, results, number_product_limit, result_offset_number) print('Query URL:', query_url) print('\nFiles that will be downloaded (if not previously downloaded):') file_urls = get_files_urls(query_url, file_name, print_info = True) if file_urls is None: return OrderedDict() elif len(file_urls) > 0: should_continue = query_yes_no('\nDo you want to proceed?') if should_continue == "no": return OrderedDict() else: print('\nNo file found') return file_urls def correct_CRISM_label(label_file_location): ''' Correct CRISM label file and allow GDAL to read it properly. Necessary for Targeted Reduced Data Record (TRDR) data Adapted from https://github.com/jlaura/crism/blob/master/csas.py @param label_file_location: Local address of the current label @return Local address of the new label ''' new_label_file_location = label_file_location if '_fixed' not in new_label_file_location: new_label_file_location = '.'.join(label_file_location.split('.')[:-1]) \ + '_fixed.' + label_file_location.split('.')[-1] new_label_file = open(new_label_file_location, 'w') for line in open(label_file_location, 'r'): if "OBJECT = FILE" in line: line = "/* OBJECT = FILE */\n" if "LINES" in line: lines = int(line.split("=")[1]) if "LINE_SAMPLES" in line: samples = int(line.split("=")[1]) new_label_file.write(line) new_label_file.close() return new_label_file_location def correct_file_name_case_in_label(label_file_location, other_file_locations): ''' Correct a label file if the case of the related data file(s) is incorrect and GDAL cannot read it properly @param label_file_location: Local address of the current label @param other_file_locations: Other files that were downloaded with the label file @return Local address of the new label ''' label_file_name = '_'.join('.'.join(label_file_location.split('/')[-1].split('.')[:-1]).split('_')[:-1]) insensitive_lalels = [] for file_location in other_file_locations: file_name = '.'.join(file_location.split('/')[-1].split('.')[:-1]) if (file_location != label_file_location and file_name == label_file_name): insensitive_lalel = re.compile(re.escape(file_location.split('/')[-1]), re.IGNORECASE) insensitive_lalels.append((insensitive_lalel, file_location.split('/')[-1])) with open(label_file_location, 'r') as file: label_file = file.read() for insensitive_lalel, sensitive_lalel in insensitive_lalels: label_file = insensitive_lalel.sub(sensitive_lalel, label_file) new_label_file_location = label_file_location if '_fixed' not in new_label_file_location: new_label_file_location = '.'.join(label_file_location.split('.')[:-1]) \ + '_fixed.' + label_file_location.split('.')[-1] with open(new_label_file_location, 'w') as file: file.write(label_file) return new_label_file_location def correct_label_file(label_file_location, other_file_locations = []): ''' Correct a label file if GDAL cannot open the corresponding data file @param label_file_location: Local address of the current label @param other_file_locations: Other files that were downloaded with the label file @return Local address of the new label ''' # Correction not limited to CRISM data, in case other data had similar issues new_label_file_location = correct_CRISM_label(label_file_location) return correct_file_name_case_in_label(new_label_file_location, other_file_locations) def get_raster_array(gdal_raster, remove_ndv = True): ''' Get a NumPy array from a raster opened with GDAL @param gdal_raster: A raster opened with GDAL @param remove_ndv: Replace the no-data value as mentionned in the label by np.nan @return The array ''' assert gdal_raster is not None, 'No raster available' number_of_bands = gdal_raster.RasterCount raster_array = gdal_raster.ReadAsArray().astype(np.float) for i_band in range(number_of_bands): raster_band = gdal_raster.GetRasterBand(i_band + 1) no_data_value = raster_band.GetNoDataValue() if no_data_value is not None and remove_ndv == True: if number_of_bands > 1: raster_array[i_band, :, :][raster_array[i_band, :, :] == no_data_value] = np.nan else: raster_array[raster_array == no_data_value] = np.nan scale = raster_band.GetScale() if scale is None: scale = 1. offset = raster_band.GetOffset() if offset is None: offset = 0. if number_of_bands > 1: raster_array[i_band, :, :] = raster_array[i_band, :, :]*scale + offset else: raster_array = raster_array*scale + offset return raster_array def get_raster_extent(gdal_raster): ''' Get the extent of a raster opened with GDAL @param gdal_raster: A raster opened with GDAL @return The raster extent ''' assert gdal_raster is not None, 'No raster available' raster_x_size = gdal_raster.RasterXSize raster_y_size = gdal_raster.RasterYSize geotransform = gdal_raster.GetGeoTransform() xmin = geotransform[0] ymax = geotransform[3] xmax = xmin + geotransform[1]*raster_x_size ymin = ymax + geotransform[5]*raster_y_size return (xmin, xmax, ymin, ymax)
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/utilities/ode_util.py
0.499512
0.29471
ode_util.py
pypi
# Standard library imports from collections import OrderedDict from html.parser import HTMLParser from io import StringIO import re from calendar import monthrange # 3rd party imports import pandas as pd from six.moves.urllib.parse import urlencode # Package imports from .support import convertToStr class SoundingParser(HTMLParser): ''' This class parses Wyoming Sounding data ''' def __init__(self): ''' Initialize SoundingParser ''' self.data_dict = OrderedDict() self.metadata_dict = OrderedDict() self.label = None self.in_pre_tag = False self.in_header = False self.read_data = True super(SoundingParser, self).__init__() def handle_starttag(self, tag, attrs): ''' Function called everytime a start tag is encountered @param tag: Starting tag @param attrs: Tag attributes ''' if tag == 'pre': self.in_pre_tag = True elif re.match('h[0-9]*', tag): self.in_header = True def handle_endtag(self, tag): ''' Function called everytime an end tag is encountered @param tag: Ending tag ''' if tag == 'pre': self.in_pre_tag = False elif re.match('h[0-9]*', tag): self.in_header = False def handle_data(self, data): ''' Function to parse data between \<pre\> tags @param data: Input data ''' if self.in_pre_tag == True and self.read_data == True: self.data_dict[self.label] = pd.read_fwf(StringIO(data), widths=[7,7,7,7,7,7,7,7,7,7,7], header=0, skiprows=[0,1,3,4]) split_data = data.split('\n') headings = split_data[2].split() units = split_data[3].split() self.metadata_dict[self.label] = OrderedDict() self.metadata_dict[self.label]['units'] = [(heading, unit) for heading, unit in zip(headings, units)] self.read_data = False self.tmp = data elif self.in_pre_tag == True and self.read_data == False: station_metadata_dict = OrderedDict() for line in data.splitlines(): if line != '': metadata = line.split(':') station_metadata_dict[metadata[0].strip()] = metadata[1].strip() self.metadata_dict[self.label]['metadata'] = station_metadata_dict self.read_data = True elif self.read_data == True and self.in_header == True: self.label = data.strip() def generateQueries(station_number, year_list, month_list, day_start, day_end, start_hour, end_hour): ''' Generate url queries for sounding data @param station_number: Input station number @param year_list: Input years as a list @param month_list: Input month as a list @param day_start: Starting day @param day_end: Ending day @param start_hour: Starting hour @param end_hour: Ending hour @return list of urls containing requested data ''' url_query_list = [] base_url = 'http://weather.uwyo.edu/cgi-bin/sounding?' for year in year_list: for month in month_list: day_start = min(day_start, monthrange(year, month)[1]) day_end = min(day_end, monthrange(year, month)[1]) start_time = convertToStr(day_start,2) + convertToStr(start_hour,2) end_time = convertToStr(day_end,2) + convertToStr(end_hour,2) query = OrderedDict() query['region'] = 'naconf' query['TYPE'] = 'TEXT:LIST' query['YEAR'] = convertToStr(year, 0) query['MONTH'] = convertToStr(month, 2) query['FROM'] = start_time query['TO'] = end_time query['STNM'] = convertToStr(station_number, 5) url_query_list.append(base_url + urlencode(query)) return url_query_list
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/utilities/sounding_util.py
0.716318
0.270739
sounding_util.py
pypi
import numpy as np from scipy.interpolate import RectBivariateSpline class SplineLatLon(object): ''' Holds a 2d spline for interpolating lat/lon grid ''' def __init__(self, lat_func=None, lon_func=None, lat_grid=None, lon_grid=None, x_points=None, y_points=None, lat_extents=None, lon_extents=None, y_num_pixels=None, x_num_pixels=None, x_offset=0, y_offset=0, interp_type='grid'): ''' Initialize SplineLatLon with premade lat/lon functions or information about the latitude and longitude @param lat_func: Latitude spline function @param lon_func: Longitude spline function @param lat_grid: Latitude grid @param lon_grid: Longitude grid @param x_points: 1d array of x coordinates @param y_points: 1d array of y coordinates @param lon_extents: Extent of data in longitude @param lat_extents: Extent of data in latitude @param y_num_pixels: Number of y coordinates @param x_num_pixels: Number of x coordinates @param x_offset: Offset in the x coordinate @param y_offset: Offset in the y coordinate @param interp_type: Interpolate type. Currently only 'grid' type is supported ''' if lat_extents is not None and lon_extents is not None and \ y_num_pixels is not None and x_num_pixels is not None and \ lat_grid is None and lon_grid is None: lat_pixel_size = (lat_extents[1] - lat_extents[0]) / y_num_pixels lon_pixel_size = (lon_extents[1] - lon_extents[0]) / x_num_pixels lat_coords = np.linspace(lat_extents[0] + 0.5*lat_pixel_size, lat_extents[1] - 0.5*lat_pixel_size, num=y_num_pixels, endpoint=True) lon_coords = np.linspace(lon_extents[0] + 0.5*lon_pixel_size, lon_extents[1] - 0.5*lon_pixel_size, num=x_num_pixels, endpoint=True) lon_grid, lat_grid = np.meshgrid(lon_coords, lat_coords) if lat_func != None and lon_func != None: self.lat_func = lat_func self.lon_func = lon_func elif lat_grid is not None and lon_grid is not None: if x_points==None and y_points==None: if interp_type == 'grid': x_points = np.arange(lat_grid.shape[1]) y_points = np.arange(lat_grid.shape[0]) elif 'coords': x_points, y_points = np.meshpoints(np.arange(lat_grid.shape[1]), np.arange(lat_grid.shape[0])) else: raise NotImplemented('Only interp_type grid is implemented') elif (x_points is None and y_points is not None) or (x_points is not None and y_points is not None): raise RuntimeError('Either both x and y points must be specified or neither of them') if interp_type=='grid': self.lat_func = RectBivariateSpline(y_points, x_points, lat_grid) self.lon_func = RectBivariateSpline(y_points, x_points, lon_grid) else: raise NotImplemented('Only interp_type grid is implemented') self.x_offset = x_offset self.y_offset = y_offset def __call__(self, y, x): ''' Convert pixel coordinates to lat/lon @param y: y coordinate @param x: x coordinate @return (lat, lon) ''' ret_lat = self.lat_func(y+self.y_offset,x+self.x_offset, grid=False) ret_lon = self.lon_func(y+self.y_offset,x+self.x_offset, grid=False) if np.isscalar(y) and np.isscalar(x): ret_lat = ret_lat.item() ret_lon = ret_lon.item() return ret_lat, ret_lon def SplineGeolocation(object): ''' This class holds splines to convert between 2d cartesian and geodetic coordinates ''' def __init__(self, lat_spline, lon_spline, x_spline, y_spline, x_offset=0, y_offset=0): self.x_offset = x_offset self.y_offset = y_offset self.lat_spline = lat_spline self.lon_spline = lon_spline self.x_spline = x_spline self.y_spline = y_spline def _accessSpline(self, *args, spline_function): ''' Access values from a spline. @param *args: Input arguments for spline function @param spline_function: Spline function used for interpolation @return interpolated values from the spline ''' ret_val = spline_function(*args, grid=False) if np.alltrue([np.isscalar([arg for arg in args])]): ret_val = ret_val.item() else: return ret_val class LinearGeolocation(object): ''' This class provides functions to convert between pixel and geodetic coordinates Assumes a linear relationship between pixel and geodetic coordinates ''' def __init__(self, data, extents, x_offset=0, y_offset=0, flip_y=False): ''' Initialize Linear Geolocation object @param data: Numpy 2d data @param extents: Latitude and longitude extents @param x_offset: Pixel offset in x @param y_offset: Pixel offset in y @param flip_y: The y axis has been flipped so that increasing y values are decreasing in latitude ''' self.flip_y = flip_y self.lon_extents = extents[:2] self.lat_extents = extents[2:] self.lat_pixel_size = (self.lat_extents[1] - self.lat_extents[0]) / data.shape[0] self.lon_pixel_size = (self.lon_extents[1] - self.lon_extents[0]) / data.shape[1] self.start_lat = self.lat_pixel_size / 2 + self.lat_extents[0] self.start_lon = self.lon_pixel_size / 2 + self.lon_extents[0] self.x_offset = x_offset self.y_offset = y_offset self.len_x = data.shape[1] self.len_y = data.shape[0] def getLatLon(self, y, x): ''' Retrive the latitude and longitude from pixel coordinates @param y: The y pixel @param x: The x pixel @return (latitude, longitude) of the pixel coordinate ''' if self.flip_y: y_coord = (self.len_y - y - 1) + self.y_offset else: y_coord = y + self.y_offset lat = self.start_lat + y_coord * self.lat_pixel_size lon = self.start_lon + (x + self.x_offset) * self.lon_pixel_size return lat, lon def getYX(self, lat, lon): ''' Retrive the pixel coordinates from the latitude and longitude @param lat: The Latitude @param lon: The Longitude @return (y, x) pixel coordinates of the input latitude and longitude ''' y = (lat - self.start_lat) / self.lat_pixel_size - self.y_offset x = (lon - self.start_lon) / self.lon_pixel_size - self.x_offset if self.flip_y: y = self.len_y - y - 1 return y, x def getExtents(self): ''' Retrieve the extents of the data @return (minimum_longitude, maximum_longitude, minimum_latitude, maximum_latitude) ''' return self.lon_extents + self.lat_extents def getExtentsFromCentersPlateCarree(westmost_pixel_lon, eastmost_pixel_lon, southmost_pixel_lat, northmost_pixel_lat, lon_grid_spacing, lat_grid_spacing): ''' Given the centers and grid spacing, return the extents of data using assuming Plate Caree @param westmost_pixel_lon: West most pixel coordinate @param eastmost_pixel_lon: East most pixel coordinate @param southmost_pixel_lat: South most pixel coordinate @param northmost_pixel_lon: North most pixel coordinate @return The starting longitude, ending longitude, starting latitude, and ending latitude ''' start_lon = westmost_pixel_lon - lon_grid_spacing/2 end_lon = eastmost_pixel_lon + lon_grid_spacing/2 start_lat = southmost_pixel_lat - lat_grid_spacing/2 end_lat = northmost_pixel_lat + lat_grid_spacing/2 return (start_lon, end_lon, start_lat, end_lat) def convertBinCentersToEdges(bin_centers, dtype = None): ''' Calculate edges of a set of bins from their centers @param bin_centers: Array of bin centers @param dtype: Data type of array used to store bin edges @return bin_edges ''' if dtype is None: dtype == bin_centers.dtype centers_length = len(bin_centers) edges = np.zeros(centers_length + 1, dtype=dtype) edges[1:centers_length] = (bin_centers[:-1] + bin_centers[1:]) / 2 edges[0] = 2*bin_centers[0] - edges[1] edges[-1] = 2*bin_centers[-1] - edges[-2] return edges class AffineGlobalCoords(object): ''' Convert between projected and pixel coordinates using an affine transformation ''' def __init__(self, aff_coeffs, center_pixels=False): ''' Initialize Global Coords Object @param aff_coeffs: Affine coefficients @param center_pixels: Apply offsets so that integer values refer to the center of the pixel and not the edge ''' self._aff_coeffs = aff_coeffs if center_pixels: self._x_offset = 0.5 self._y_offset = 0.5 else: self._x_offset = 0.0 self._y_offset = 0.0 def getProjectedYX(self, y_array, x_array): ''' Convert pixel coordinates to projected coordinates @param y_array: Input y pixel coordinates @param x_array: Input x pixel coordinates @return projected y coordinates, projected x coordinates ''' y = y_array + self._y_offset x = x_array + self._x_offset return (self._aff_coeffs[3] + self._aff_coeffs[4]*x + self._aff_coeffs[5]*y, self._aff_coeffs[0] + self._aff_coeffs[1]*x + self._aff_coeffs[2]*y) def getPixelYX(self, y_proj, x_proj): ''' Convert from projected coordinates to pixel coordinates @param y_proj: Input projected y coordinates @param x_proj: Input projected x coordinates @return y pixel coordinates, x pixel coordinates ''' c0 = self._aff_coeffs[0] c1 = self._aff_coeffs[1] c2 = self._aff_coeffs[2] c3 = self._aff_coeffs[3] c4 = self._aff_coeffs[4] c5 = self._aff_coeffs[5] y = (c4*(c0-x_proj) + c1*y_proj - c1*c3) / (c1*c5 - c2*c4) x = -(c5 * (c0 - x_proj) + c2*y_proj - c2*c3) / (c1*c5 - c2*c4) return y - self._y_offset, x - self._x_offset def getGeoTransform(extents, x_size, y_size, y_flipped=True): """ Get 6 geotransform coefficients from the extents of an image and its shape Assumes origin is in the upper left and the x pixel coordinate does not depend on y projected coordinate, and the y pixl coordinate doesn't depend on the x projected coordinate @param extents: Image extents (x_min, x_max, y_min, y_max) @param x_size: Number of x pixels @param y_size: Number of y pixels @param y_flipped: The y pixel coordinates are flipped relative to the projected coordinates @return list containing the 6 affine transformation coordinates """ x_res = (extents[1] - extents[0]) / x_size y_res = (extents[3] - extents[2]) / y_size geo_transform = [] geo_transform.append(extents[0]) geo_transform.append(x_res) geo_transform.append(0) geo_transform.append(extents[-1]) geo_transform.append(0) geo_transform.append(y_res) if y_flipped == True: geo_transform[-1] *= -1 return geo_transform
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/utilities/image_util.py
0.808294
0.504822
image_util.py
pypi
# """@package pbo_util # Tools for working with PBO GPS data, including reference frame stabilization code # """ import numpy as np import pandas as pd import warnings from datetime import datetime from .support import progress_bar def getStationCoords( pbo_info, station_list): ''' Get the station coordinates for a list of stations @param pbo_info: PBO Metadata @param station_list: List of stations @return list of tuples containing lat, lon coordinates of stations ''' coord_list = [] for station in station_list: lat = pbo_info[station]['refNEU'][0] lon = pbo_info[station]['refNEU'][1]-360 coord_list.append( (lat,lon)) return coord_list def getLatLonRange(pbo_info, station_list): ''' Retrive the range of latitude and longitude occupied by a set of stations @param pbo_info: PBO Metadata @param station_list: List of stations @return list containg two tuples, lat_range and lon_range ''' coord_list = getStationCoords(pbo_info, station_list) lat_list = [] lon_list = [] for coord in coord_list: lat_list.append(coord[0]) lon_list.append(coord[1]) lat_range = (np.min(lat_list), np.max(lat_list)) lon_range = (np.min(lon_list), np.max(lon_list)) return [lat_range, lon_range] def getROIstations(geo_point,radiusParam,data,header): ''' This function returns the 4ID station codes for the stations in a region The region of interest is defined by the geographic coordinate and a window size @param geo_point: The geographic (lat,lon) coordinate of interest @param radiusParam: An overloaded radius of interest [km] or latitude and longitude window [deg] around the geo_point @param data: Stabilized (or unstabilized) data generated from the data fetcher or out of stab_sys @param header: Header dictionary with stations metadata keyed by their 4ID code. This is output with the data. @return station_list, list of site 4ID codes in the specified geographic region ''' ccPos = (geo_point[0]*np.pi/180, geo_point[1]*np.pi/180) if np.isscalar(radiusParam): station_list = [] for ii in header.keys(): coord = (header[ii]['refNEU'][0]*np.pi/180,(header[ii]['refNEU'][1]-360)*np.pi/180) dist = 6371*2*np.arcsin(np.sqrt(np.sin((ccPos[0]-coord[0])/2)**2+np.cos(ccPos[0])*np.cos(coord[0])*np.sin((ccPos[1]-coord[1])/2)**2)) if np.abs(dist) < radiusParam: station_list.append(header[ii]['4ID']) else: # overloaded radiusParam term to be radius or lat/lon window size latWin = radiusParam[0]/2 lonWin = radiusParam[1]/2 station_list = [] try: for ii in header.keys(): coord = (header[ii]['refNEU'][0],(header[ii]['refNEU'][1]-360)) if (geo_point[0]-latWin)<=coord[0]<=(geo_point[0]+latWin) and (geo_point[1]-lonWin)<=coord[1]<=(geo_point[1]+lonWin): station_list.append(header[ii]['4ID']) except: station_list = None return station_list def stab_sys(data_iterator,metadata,stab_min_NE=.0005,stab_min_U=.005,sigsc=2, errProp=1): ''' Stabilize GPS data to a region The stab_sys function is a Python implemention of the Helmhert 7-parameter transformation, used to correct for common mode error. This builds on Prof Herring's stab_sys function in his tscon Fortran code. It uses a SVD approach to estimating the rotation matrix gathered from 'Computing Helmert Transformations' by G.A. Watson as well as its references. Note that units should be in meters, that is in the format from the level 2 processed UNAVCO pos files @param data_iterator: Expects an iterator that returns label, pandas dataframe @param metadata: Metadata that contains 'refXYZ' and 'refNEU' @param stab_min_NE: Optional minimum horizontal covariance parameter @param stab_min_U: Optional minimum vertical covariance parameter @param sigsc: Optional scaling factor for determining cutoff bounds for non stable sites @param errProp: Propagate errors through the transformation @return smSet, a reduced size dictionary of the data (in mm) for the sites in the specified geographic region, smHdr, a reduced size dictionary of the headers for the sites in the region ''' # grabs all of the relevant data into labeled matrices smTestFlag = 0; numSites = 0; smSet = []; smHdr = []; smNEUcov = []; #grab specified sites from the given list of data, or defaults to using all of the sites for ii, pddata in data_iterator: # requires the minimum amount of data to be present # resamples these stations to daily if smTestFlag == 0: # grabbing position changes and the NEU change uncertainty # instead of positions ([2,3,4] and [11,12,13]) # --> had to put the factor of 1000 back in from raw stab processing smXYZ = pddata.loc[:,['X','Y','Z']] - metadata[ii]['refXYZ'] smNEU = pddata.loc[:,['dN','dE','dU']] smNEcov = np.sqrt(pddata.loc[:,'Sn']**2 + pddata.loc[:,'Se']**2) smUcov = pddata.loc[:,'Su']**2 smTestFlag = 1 else: smXYZ = np.concatenate((smXYZ.T,(pddata.loc[:,['X','Y','Z']] - metadata[ii]['refXYZ']).T)).T smNEU = np.concatenate((smNEU.T,pddata.loc[:,['dN','dE','dU']].T)).T smNEcov = np.vstack((smNEcov,np.sqrt(pddata.loc[:,'Sn']**2 + pddata.loc[:,'Se']**2))) smUcov = np.vstack((smUcov,pddata.loc[:,'Su']**2)) if errProp==1: smNEUcov.append(np.array(pddata.loc[:,['Sn','Se','Su','Rne','Rnu','Reu']])) # also keep the headers numSites += 1 smSet.append(pddata) smHdr.append(metadata[ii]) # grab the datelen from the last data chunk datelen = len(pddata) if numSites <= 1: # no or only 1 stations return dict(), dict() else: # do stabilization smNEcov = smNEcov.T smUcov = smUcov.T smNEUcov = np.array(smNEUcov) # minimum tolerances, number of sigma cutoff defined in input sNEtol = np.nanmax(np.vstack(((np.nanmedian(smNEcov,axis=1)-np.nanmin(smNEcov,axis=1)).T,np.ones((datelen,))*stab_min_NE)),axis=0) sUtol = np.nanmax(np.vstack(((np.nanmedian(smUcov,axis=1)-np.nanmin(smUcov,axis=1)).T,np.ones((datelen,))*stab_min_U)),axis=0) stable_site_idx = (np.nan_to_num(smNEcov-np.tile(np.nanmin(smNEcov,axis=1),(numSites,1)).T)<(sigsc*np.tile(sNEtol,(numSites,1)).T)) stable_site_idx *= (np.nan_to_num(smUcov-np.tile(np.nanmin(smUcov,axis=1),(numSites,1)).T)<(sigsc*np.tile(sUtol,(numSites,1)).T)) if np.min(np.sum(stable_site_idx,axis=1)<3): warnings.warn('Fewer than 3 stabilization sites in part of this interval') # compute the parameters for each time step stable_site_idx = np.repeat(stable_site_idx,3,axis=1) stable_site_idx[pd.isnull(smXYZ)] = False for ii in range(datelen): # cut out the nans for stable sites xyz = smXYZ[ii,stable_site_idx[ii,:]] xyz = np.reshape(xyz,[int(len(xyz)/3),3]) neu = smNEU[ii,stable_site_idx[ii,:]] neu = np.reshape(neu,[int(len(neu)/3),3]) # find mean and also remove it from the data xyzm = np.mean(xyz,axis=0) xyz = xyz - xyzm neum = np.mean(neu,axis=0) neu = neu - neum # using an SVD method instead U,s,V = np.linalg.linalg.svd(np.dot(xyz.T,neu)) R=np.dot(U,V) sc = (np.sum(np.diag(np.dot(neu,np.dot(R.T,xyz.T)))))/(np.sum(np.diag(np.dot(xyz,xyz.T)))) t = neum - sc*np.dot(xyzm,R) # looping over all sites to apply stabilization, including "stable" sites # no need to remove nans as transformed nans still nan xyz = smXYZ[ii,pd.isnull(smXYZ[ii,:])==False] xyz = np.reshape(xyz,[int(len(xyz)/3),3]) smNEU[ii,pd.isnull(smXYZ[ii,:])==False] = np.reshape(np.dot(xyz,R)*sc + t,[len(xyz)*3,]) # do error propagation if errProp==1: propagateErrors(R,sc,smNEUcov[:,ii,:]) # fit back into the panda format overall data set, replaces original NEU, changes to mm units for jj in range(len(smSet)): smSet[jj].loc[:,['dN','dE','dU']] = smNEU[:,jj*3:(jj+1)*3]*1000 # the "covariances" put back in also now in mm units if errProp==1: smSet[jj].loc[:,['Sn','Se','Su','Rne','Rnu','Reu']] = smNEUcov[jj,:,:] # returns the corrected data and the relevant headers as dictionaries, and the transformation's 7-parameters smSet_dict = dict(); smHdr_dict = dict() for ii in range(len(smHdr)): smSet_dict[smHdr[ii]['4ID']] = smSet[ii] smHdr_dict[smHdr[ii]['4ID']] = smHdr[ii] return smSet_dict, smHdr_dict def propagateErrors(R,sc,stationCovs): ''' Propagate GPS errors By writing out the R*E*R.T equations... to calculate the new covariance matrix without needing to form the matrix first as an intermediate step. Modifies covariance matrix in place @param R: Rotation matrix @param sc: Scaling value @param stationCovs: Station Covariances ''' oldCs = stationCovs.copy() # need to make a copy to get the std & correlations to covariances oldCs[:,3] *= oldCs[:,0]*oldCs[:,1] oldCs[:,4] *= oldCs[:,0]*oldCs[:,2] oldCs[:,5] *= oldCs[:,1]*oldCs[:,2] oldCs[:,0] = oldCs[:,0]**2 oldCs[:,1] = oldCs[:,1]**2 oldCs[:,2] = oldCs[:,2]**2 # calculate the modified covariances and reformat back to std and correlations stationCovs[:,0] = np.sqrt((sc**2)*np.dot(oldCs,[R[0,0]**2,R[0,1]**2,R[0,2]**2, 2*R[0,0]*R[0,1],2*R[0,0]*R[0,2],2*R[0,1]*R[0,2]])) stationCovs[:,1] = np.sqrt((sc**2)*np.dot(oldCs,[R[0,1]**2,R[1,1]**2,R[1,2]**2, 2*R[0,1]*R[1,1],2*R[0,1]*R[1,2],2*R[1,1]*R[1,2]])) stationCovs[:,2] = np.sqrt((sc**2)*np.dot(oldCs,[R[0,2]**2,R[1,2]**2,R[2,2]**2, 2*R[0,2]*R[1,2],2*R[0,2]*R[2,2],2*R[1,2]*R[2,2]])) stationCovs[:,3] = (sc**2)*np.dot(oldCs,[R[0,0]*R[0,1],R[0,1]*R[1,1],R[0,2]*R[1,2], R[0,1]**2+R[0,0]*R[1,1],R[0,1]*R[0,2]+R[0,0]*R[1,2], R[0,2]*R[1,1]+R[0,1]*R[1,2]])/(stationCovs[:,0]*stationCovs[:,1]) stationCovs[:,4] = (sc**2)*np.dot(oldCs,[R[0,0]*R[0,2],R[0,1]*R[1,2],R[0,2]*R[2,2], R[0,0]*R[1,2]+R[0,1]*R[0,2],R[0,0]*R[2,2]+R[0,2]**2, R[0,1]*R[2,2]+R[0,2]*R[1,2]])/(stationCovs[:,0]*stationCovs[:,2]) stationCovs[:,5] = (sc**2)*np.dot(oldCs,[R[0,2]*R[0,1],R[1,2]*R[1,1],R[1,2]*R[2,2], R[0,1]*R[1,2]+R[0,2]*R[1,1],R[0,1]*R[2,2]+R[0,2]*R[1,2], R[2,2]*R[1,1]+R[1,2]**2])/(stationCovs[:,1]*stationCovs[:,2]) oldCs[:,0:3] *= 1000 def nostab_sys(allH,allD,timerng,indx=1,mdyratio=.7, use_progress_bar = True, index_date_only=False): ''' Do not apply stabilization and simply returns stations after checking for sufficient amount of data @param allH: a dictionary of all of the headers of all sites loaded from the data directory @param allD: a dictionary of all of the panda format data of all of the corresponding sites @param timerng: an array with two string elements, describing the starting and ending dates @param indx: a list of site 4ID's indicating stations in the relevant geographic location, or 1 for all sites @param mdyratio: optional parameter for the minimum required ratio of data to determine if a sitef is kept for further analysis @param use_progress_bar: Display a progress bar @param index_date_only: When creating an index for the data, use date (not the time) only @return smSet, a reduced size dictionary of the data (in meters) for the sites in the specified geographic region and smHdr, a reduced size dictionary of the headers for the sites in the region ''' # grabs all of the relevant data into labeled matrices numSites = 0; smSet = []; smHdr = []; datelen = pd.date_range(start=timerng[0],end=timerng[1],freq='D').shape[0] # needs the specified ratio of data to be present for further use. or number of days if mdyratio > 1: mindays = mdyratio else: mindays = ((pd.to_datetime(timerng[1]) - pd.to_datetime(timerng[0]))/pd.to_timedelta(1,'D'))*mdyratio #grab specified sites from the given list of data, or defaults to using all of the sites if indx == 1: indx = list(allH.keys()) for ii in progress_bar(indx,enabled = use_progress_bar): if index_date_only: pddata = allD['data_' + ii][timerng[0]:timerng[1]] else: pddata = allD['data_' + ii] jd_conversion = 2400000.5 pddata[pddata.index.name] = pddata.index pddata = pddata[[pddata.index.name] + pddata.columns.tolist()[:-1]] pddata.index = pd.to_datetime(pddata['JJJJJ.JJJJ'] + jd_conversion, unit='D', origin='julian') pddata.index.name = 'Date' pddata = pddata[timerng[0]:timerng[1]] dCheck = pddata[timerng[0]:timerng[1]].shape[0] if dCheck>mindays: # requires the minimum amount of data to be present # resamples these stations to daily if pddata.shape[0] < datelen: pddata = pddata.reindex(pd.date_range(start=timerng[0],end=timerng[1],freq='D')) else: pddata = pddata.reindex(pd.date_range(start=pddata.index[0],end=pddata.index[-1],freq='D')) # also keep the headers numSites += 1 smSet.append(pddata) smHdr.append(allH[ii]) # returns the data and the relevant headers as dictionaries, and the transformation's 7-parameters smSet_dict = dict(); smHdr_dict = dict() for ii in range(len(smHdr)): smSet_dict[smHdr[ii]['4ID']] = smSet[ii] smHdr_dict[smHdr[ii]['4ID']] = smHdr[ii] return smSet_dict, smHdr_dict def removeAntennaOffset(antenna_offsets, data, window_start = pd.to_timedelta('4D'), window_end=pd.to_timedelta('4D'),min_diff=0.005, debug=False): ''' Remove offsets caused by changes in antennas @param antenna_offsets: Pandas series of dates describing when the antenna changes were made @param data: Input GPS data @param window_start: Starting time before and after event to use for calculating offset @param window_end: Ending time before and after event to use before calculating offset @param min_diff: Minimum difference before and after offset to for applying correction @param debug: Enable debug output @return GPS data with the offsets removed ''' if antenna_offsets is None: return data data_copy = data.copy() for full_offset in antenna_offsets: # truncate date offset = pd.to_datetime(pd.datetime(full_offset.year, full_offset.month, full_offset.day)) if offset > (data.index[0] + window_end): before = data_copy.loc[(offset - window_end) - window_start : offset-window_start] after = data_copy.loc[offset + window_start : (offset + window_end) + window_start] if min(len(after.dropna()),len(before.dropna())) > 0: if np.abs(np.nanmedian(before) - np.nanmedian(after)) >= min_diff: if debug == True: print('fixing',offset, end=': ') print(np.nanmedian(before)*1e3, np.nanmedian(after)*1e3) data_copy.loc[offset:] = data_copy.loc[offset:] + (np.nanmedian(before) - np.nanmedian(after)) if not pd.isnull(data_copy.loc[offset]): data_copy.loc[offset] = np.nanmedian(pd.concat([before, data_copy.loc[offset + window_start : (offset + window_end) + window_start]])) return data_copy
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/utilities/pbo_util.py
0.550849
0.622631
pbo_util.py
pypi
# Scikit Data Access imports from .image_util import AffineGlobalCoords, getGeoTransform # 3rd party imports import numpy as np def merge_srtm_tiles(srtm_tiles, lon_min, lon_max, lat_min, lat_max): ''' Merge the tiles retrieved from the Shuttle Radar Topography Mission data using a DataFetcher @param srtm_tiles: The tiles to merge, contained in an ImageWrapper @param lon_min: Minimal longitude used in the DataFectcher @param lon_max: Maximal longitude used in the DataFectcher @param lat_min: Minimal latitude used in the DataFectcher @param lon_min: Maximal latitude used in the DataFectcher @return A NumPy array with the merged tiles and its extent in longitude and latitude ''' tile = list(srtm_tiles.data.keys())[0] tile_width = srtm_tiles.data[tile].shape[1] tile_height = srtm_tiles.data[tile].shape[0] number_tile_y = abs(lat_max - lat_min) number_tile_x = abs(lon_max - lon_min) topography = np.empty((tile_height*number_tile_y - (number_tile_y - 1), tile_width*number_tile_x - (number_tile_x - 1))) tile_index = 0 i_factor = 0 j_factor = number_tile_y - 1 for i in range(0, number_tile_x): for j in range(number_tile_y, 0, -1): tile = list(srtm_tiles.data.keys())[tile_index] topography[(j - 1)*tile_height - j_factor:j*tile_height - j_factor, i*tile_width - i_factor:(i + 1)*tile_width - i_factor] = srtm_tiles.data[tile] tile_index += 1 j_factor -= 1 i_factor += 1 j_factor = number_tile_y - 1 pixel_lon_size = (lon_max - lon_min)/(topography.shape[1] - 1) pixel_lat_size = (lat_max - lat_min)/(topography.shape[0] - 1) topography_extent = (lon_min - 0.5*pixel_lon_size, lon_max + 0.5*pixel_lon_size, lat_min - 0.5*pixel_lat_size, lat_max + 0.5*pixel_lat_size) return topography, topography_extent def getSRTMLatLon(lat_min, lat_max, lon_min, lon_max): ''' Retrieve parameters that encompass area when creating SRTM data fetcher. @param lat_min: Minimum latitude @param lat_max: Maximum latitude @param lon_min: Minimum longitude @param lon_max: Maximum longitude @return (starting_latitude, ending_latitude, starting_longitude, ending_longitude) ''' start_lat = int(np.floor(lat_min)) start_lon = int(np.floor(lon_min)) end_lat = int(np.floor(lat_max)) end_lon = int(np.floor(lon_max)) return start_lat, end_lat, start_lon, end_lon def getSRTMData(srtmdw, lat_start,lat_end, lon_start,lon_end): ''' Select SRTM data in a latitude/longitude box @param srtmdw: SRTM data wrapper @param lat_start: Starting latiude @param lat_end: Ending latiude @param lon_start: Starting longitude @param lon_end: Ending longitude @param flip_y: Flip the y axis so that increasing y pixels are increasing in latitude @return Tuple containing the cut data, new extents, and a affine geotransform coefficients ''' tiles = getSRTMLatLon(lat_start, lat_end, lon_start, lon_end) srtm_data, srtm_extents = merge_srtm_tiles(srtmdw, tiles[2],tiles[3]+1, tiles[0], tiles[1]+1) full_geotransform = getGeoTransform(srtm_extents, srtm_data.shape[1], srtm_data.shape[0]) full_geo = AffineGlobalCoords(full_geotransform) start_y, start_x = np.floor(full_geo.getPixelYX(lat_end,lon_start)).astype(np.int) end_y, end_x = np.ceil(full_geo.getPixelYX(lat_start,lon_end)).astype(np.int) cut_data = srtm_data[start_y:end_y, start_x:end_x] cut_proj_y_start, cut_proj_x_start = full_geo.getProjectedYX(end_y, start_x) cut_proj_y_end, cut_proj_x_end = full_geo.getProjectedYX(start_y, end_x) cut_extents = [ cut_proj_x_start, cut_proj_x_end, cut_proj_y_start, cut_proj_y_end ] cut_geotransform = full_geotransform.copy() cut_geotransform[0] = cut_extents[0] cut_geotransform[3] = cut_extents[-1] return cut_data, cut_extents, cut_geotransform
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/utilities/srtm_util.py
0.747339
0.696604
srtm_util.py
pypi
# Standard library imports from collections import OrderedDict from io import StringIO # Scikit Data Access imports from skdaccess.framework.data_class import DataFetcherStream, TableWrapper # Third party imports from six.moves.urllib.parse import urlencode from six.moves.urllib.request import urlopen import pandas as pd class DataFetcher(DataFetcherStream): """ Class for handling data requests to data.lacity.org """ def __init__(self, endpoint, parameters, label, verbose=False, app_token = None, **pandas_kwargs): """ Initialize Data Fetcher for accessing data.lacity.org @param endpoint: Data endpoint string @param parameters: Parameters to use when retrieving dta @param label: Label of pandas dataframe @param verbose: Print out extra information @param app_token: Application token to use to avoid throttling issues @param date_columns @param pandas_kwargs: Any additional key word arguments are passed to pandas.read_csv """ self.base_url = 'https://data.lacity.org/resource/' self.base_url_and_endpoint = self.base_url + endpoint + '.csv?' self.parameters = parameters self.label = label self.app_token = app_token self.pandas_kwargs = pandas_kwargs if '$$app_token' in parameters: raise RuntimeError("Use app_token option in constructor instead of manually " + "adding it into the the parameters") if app_token != None: self.parameters['$$app_token'] = app_token super(DataFetcher, self).__init__([], verbose) def output(self): """ Retrieve data from data.lacity.org @return Table wrapper of containing specified data """ data_dict = OrderedDict() url_query = self.base_url_and_endpoint + urlencode(self.parameters) with urlopen(url_query) as remote_resource: raw_string = remote_resource.read().decode() string_data = StringIO(raw_string) data_dict[self.label] = pd.read_csv(string_data, **self.pandas_kwargs) return TableWrapper(data_dict)
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/engineering/la/generic/stream.py
0.868297
0.274864
stream.py
pypi
# Standard library imports from collections import OrderedDict from getpass import getpass # Scikit Data Access from skdaccess.framework.data_class import DataFetcherStream, TableWrapper # Third party packages import pandas as pd from alpha_vantage.timeseries import TimeSeries class DataFetcher(DataFetcherStream): """ Data Fetcher for retrieving stock data """ def __init__(self, ap_paramList, data_type, start_date=None, end_date=None, interval=None): """ @param ap_paramList[stock_symbol_list]: AutoList of stock symbols @param data_type: Type of data to retrieve (daily, daily_adjusted, intraday, monthly, monthly_adjusted, weekly, weekly_adjusted) @param start_date: Starting date @param end_date: Ending date @param interval: Interval for intraday (1min, 5min, 15min, 30min, 60min) @return: Table data wrapper of stock data """ self.data_type = data_type self.start_date = start_date self.end_date = end_date self.interval = interval self.possible_intervals = ('1min', '5min', '15min', '30min', '60min') self.possible_data_types = ("daily", "daily_adjusted", "intraday", "monthly", "monthly_adjusted", "weekly", "weekly_adjusted") if interval not in self.possible_intervals and data_type == 'intraday': raise RuntimeError('Did not understand interval: "' + str(interval) + '" to use with intraday data type') elif interval is not None and data_type != 'intraday': raise RuntimeError('interval is only used with data type intraday') api_key = DataFetcher.getConfigItem('stocks', 'api_key') write_key = False while api_key is None or api_key == "": api_key = getpass(prompt='Alpha Vantage API key') write_key = True if write_key: DataFetcher.writeConfigItem('stocks','api_key', api_key) super(DataFetcher, self).__init__(ap_paramList) def output(self): """ Retrieve stock data @return TableWrapper of stock data """ stock_symbols = self.ap_paramList[0]() timeseries_retriever = TimeSeries(key=DataFetcher.getConfigItem('stocks','api_key'), output_format='pandas', indexing_type = 'date') data_dict = OrderedDict() metadata_dict = OrderedDict() for symbol in stock_symbols: # Extract data if self.data_type == 'daily': data, metadata = timeseries_retriever.get_daily(symbol, outputsize='full') elif self.data_type == 'daily_adjusted': data, metadata = timeseries_retriever.get_daily_adjusted(symbol, outputsize='full') elif self.data_type == 'monthly': data, metadata = timeseries_retriever.get_monthly(symbol) elif self.data_type == 'monthly_adjusted': data, metadata = timeseries_retriever.get_monthly_adjusted(symbol) elif self.data_type == 'weekly': data, metadata = timeseries_retriever.get_weekly(symbol) elif self.data_type == 'weekly_adjusted': data, metadata = timeseries_retriever.get_weekly_adjusted(symbol) elif self.data_type == 'intraday': data, metadata = timeseries_retriever.get_weekly_adjusted(symbol, self.interval, outputsize='full') # Convert index to pandas datetime if self.data_type == 'intraday': data.index = pd.to_datetime(data.index).tz_localize(metadata['6. Time Zone']) else: data.index = pd.to_datetime(data.index) data_dict[symbol] = data[self.start_date:self.end_date] metadata_dict[symbol] = metadata return TableWrapper(data_dict, meta_data = metadata_dict)
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/finance/timeseries/stream.py
0.795022
0.336658
stream.py
pypi
# Scikit Data Access imports from skdaccess.framework.data_class import DataFetcherCache, ImageWrapper from skdaccess.utilities.ode_util import * # 3rd party imports import pandas as pd import numpy as np from osgeo import gdal # Standard library imports from collections import OrderedDict import os class DataFetcher(DataFetcherCache): ''' Data Fetcher from the Orbital Data Explorer (ODE) ''' def __init__(self, target, mission, instrument, product_type, western_lon = None, eastern_lon = None, min_lat = None, max_lat = None, min_ob_time = '', max_ob_time = '', product_id = '', file_name = '*', number_product_limit = 10, result_offset_number = 0, remove_ndv = True): ''' Construct Data Fetcher object For more information about the different fields and the possible values, see the manual of ODE REST interface at http://oderest.rsl.wustl.edu @param target: Aimed planetary body, i.e., Mars, Mercury, Moon, Phobos, or Venus @param mission: Aimed mission, e.g., MGS or MRO @param instrument: Aimed instrument from the mission, e.g., HIRISE or CRISM @param product_type: Type of product to look for, e.g., DTM or RDRV11 @param western_lon: Western longitude to look for the data, from 0 to 360 @param eastern_lon: Eastern longitude to look for the data, from 0 to 360 @param min_lat: Minimal latitude to look for the data, from -90 to 90 @param max_lat: Maximal latitude to look for the data, from -90 to 90 @param min_ob_time: Minimal observation time in (even partial) UTC format, e.g., '2017-03-01' @param max_ob_time: Maximal observation time in (even partial) UTC format, e.g., '2017-03-01' @param product_id: PDS Product ID to look for, with wildcards (*) allowed @param file_name: File name to look for, with wildcards (*) allowed @param number_product_limit: Maximal number of products to return (ODE allows 100 at most) @param result_offset_number: Offset the return products, to go beyond the limit of 100 returned products @param remove_ndv: Replace the no-data value as mentionned in the label by np.nan ''' assert western_lon is None or 0. <= western_lon <= 360., 'Western longitude is not between 0 and 360 degrees' assert eastern_lon is None or 0. <= eastern_lon <= 360., 'Eastern longitude is not between 0 and 360 degrees' assert min_lat is None or -90. <= min_lat <= 90., 'Minimal latitude is not between -90 and 90 degrees' assert max_lat is None or -90. <= max_lat <= 90., 'Maximal latitude is not between -90 and 90 degrees' assert 1 <= number_product_limit <= 100, 'Number of product limit must be between 1 and 100' self.target = target self.mission = mission self.instrument = instrument self.product_type = product_type self.western_lon = western_lon self.eastern_lon = eastern_lon self.min_lat = min_lat self.max_lat = max_lat self.min_ob_time = min_ob_time self.max_ob_time = max_ob_time self.product_id = product_id self.file_name = file_name self.number_product_limit = number_product_limit self.result_offset_number = result_offset_number self.remove_ndv = remove_ndv def output(self): ''' Generate data wrapper from ODE data ''' file_urls = query_files_urls(self.target, self.mission, self.instrument, self.product_type, self.western_lon, self.eastern_lon, self.min_lat, self.max_lat, self.min_ob_time, self.max_ob_time, self.product_id, self.file_name, self.number_product_limit, self.result_offset_number) downloaded_files = self.cacheData('ode', file_urls.keys()) # Gather the data and meta-data data_dict = OrderedDict() metadata_dict = OrderedDict() unopened_files = [] opened_files = [] unlabeled_files = [] for file, key in zip(downloaded_files, file_urls.keys()): file_description = file_urls.get(key)[1] if 'LABEL' in file_description or 'IMG' in file_description: label = file.split('/')[-1] product = file_urls.get(key)[0] if metadata_dict.get(product, None) is None: data_dict[product] = OrderedDict() metadata_dict[product] = OrderedDict() metadata_dict[product]['Unopened files'] = [] raster = gdal.Open(file) # Try to correct the label file if raster is None: new_label_file = correct_label_file(file, downloaded_files) raster = gdal.Open(new_label_file) if raster is not None: print('File', label, 'has been corrected') # If the file still cannot be opened, deal with it later if raster is None: unopened_files.append((file, product)) # Otherwise, put the data in a NumPy array and get the meta-data else: opened_files.append((file, product)) raster_array = get_raster_array(raster, remove_ndv = self.remove_ndv) data_dict[product][label] = raster_array metadata_dict[product][label] = OrderedDict() metadata_dict[product][label]['Geotransform'] = raster.GetGeoTransform() metadata_dict[product][label]['Projection'] = raster.GetProjection() metadata_dict[product][label]['Pixel sizes'] = (raster.GetGeoTransform()[1], raster.GetGeoTransform()[5]) metadata_dict[product][label]['Extent'] = get_raster_extent(raster) # Close the data raster = None else: label = file.split('/')[-1] product = file_urls.get(key)[0] unlabeled_files.append((file, product)) # Put the unopened files' local address with the meta-data, so that the # user can decide what to do with them. It implies to look for the # companion files of the label files that could not be opened. for file, product in unopened_files: companion_files = [file] print('File', file.split('/')[-1], 'could not be opened') for file_2, product_2 in unlabeled_files: if (product_2 == product and '.'.join(file_2.split('/')[-1].split('.')[:-1]) == '.'.join(file.split('/')[-1].split('.')[:-1])): companion_files.append(file_2) print('File', file_2.split('/')[-1], 'could not be opened') metadata_dict[product]['Unopened files'].append(companion_files) for file, product in unlabeled_files: companion_files = [] for file_2, product_2 in opened_files + unopened_files: if (product_2 == product and '.'.join(file_2.split('/')[-1].split('.')[:-1]) == '.'.join(file.split('/')[-1].split('.')[:-1])): companion_files.append(file_2) if len(companion_files) == 0: print('File', file.split('/')[-1], 'could not be opened') metadata_dict[product]['Unopened files'].append([file]) return ImageWrapper(obj_wrap = data_dict, meta_data = metadata_dict)
/scikit-dataaccess-1.9.17.tar.gz/scikit-dataaccess-1.9.17/skdaccess/planetary/ode/cache/data_fetcher.py
0.670285
0.476641
data_fetcher.py
pypi
from __future__ import annotations from typing import Any, Literal, Tuple, overload import numpy as np from sklearn.utils import Bunch from tensorflow.keras.datasets import ( boston_housing, cifar10, cifar100, fashion_mnist, imdb, mnist, reuters, ) DATASETS = { "boston_housing": boston_housing.load_data, "cifar10": cifar10.load_data, "cifar100": cifar100.load_data, "fashion_mnist": fashion_mnist.load_data, "imdb": imdb.load_data, "mnist": mnist.load_data, "reuters": reuters.load_data, } @overload def fetch( name: str, *, return_X_y: Literal[False] = False, **kwargs: Any, ) -> Bunch: pass @overload def fetch( name: str, *, return_X_y: Literal[True], **kwargs: Any, ) -> Tuple[np.typing.NDArray[float], np.typing.NDArray[int]]: pass def fetch( name: str, *, return_X_y: bool = False, **kwargs: Any, ) -> Bunch | Tuple[np.typing.NDArray[float], np.typing.NDArray[int]]: """ Fetch Keras dataset. Fetch a Keras dataset by name. More info at https://keras.io/datasets. Parameters ---------- name : string Dataset name. return_X_y : bool, default=False If True, returns ``(data, target)`` instead of a Bunch object. **kwargs : dict Optional key-value arguments. See https://keras.io/datasets. Returns ------- data : Bunch Dictionary-like object with all the data and metadata. (data, target) : tuple if ``return_X_y`` is True """ (X_train, y_train), (X_test, y_test) = DATASETS[name](**kwargs) if len(X_train.shape) > 2: name = name + " " + str(X_train.shape[1:]) + " shaped" X_max = np.iinfo(X_train[0][0].dtype).max n_features = np.prod(X_train.shape[1:]) X_train = X_train.reshape([X_train.shape[0], n_features]) / X_max X_test = X_test.reshape([X_test.shape[0], n_features]) / X_max X = np.concatenate((X_train, X_test)) y = np.concatenate((y_train, y_test)) if return_X_y: return X, y return Bunch( data=X, target=y, train_indices=list(range(len(X_train))), validation_indices=[], test_indices=list(range(len(X_train), len(X))), inner_cv=None, outer_cv=None, DESCR=name, )
/scikit_datasets-0.2.4-py3-none-any.whl/skdatasets/repositories/keras.py
0.914582
0.451689
keras.py
pypi
from __future__ import annotations import os from typing import Final, Literal, Sequence, Tuple, overload import numpy as np import scipy as sp from sklearn.datasets import load_svmlight_file, load_svmlight_files from sklearn.model_selection import PredefinedSplit from sklearn.utils import Bunch from .base import DatasetNotFoundError, fetch_file BASE_URL: Final = "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets" COLLECTIONS: Final = frozenset( ( "binary", "multiclass", "regression", "string", ) ) def _fetch_partition( collection: str, name: str, partition: str, data_home: str | None = None, ) -> str | None: """Fetch dataset partition.""" subfolder = os.path.join("libsvm", collection) dataname = name.replace("/", "-") url = f"{BASE_URL}/{collection}/{name}{partition}" for data_url in (f"{url}.bz2", url): try: return os.fspath( fetch_file( dataname, urlname=data_url, subfolder=subfolder, data_home=data_home, ), ) except DatasetNotFoundError: pass return None def _load( collection: str, name: str, data_home: str | None = None, ) -> Tuple[ np.typing.NDArray[float], np.typing.NDArray[int | float], Sequence[int], Sequence[int], Sequence[int], PredefinedSplit, ]: """Load dataset.""" filename = _fetch_partition(collection, name, "", data_home) filename_tr = _fetch_partition(collection, name, ".tr", data_home) filename_val = _fetch_partition(collection, name, ".val", data_home) filename_t = _fetch_partition(collection, name, ".t", data_home) filename_r = _fetch_partition(collection, name, ".r", data_home) if ( (filename_tr is not None) and (filename_val is not None) and (filename_t is not None) ): _, _, X_tr, y_tr, X_val, y_val, X_test, y_test = load_svmlight_files( [ filename, filename_tr, filename_val, filename_t, ] ) cv = PredefinedSplit([-1] * X_tr.shape[0] + [0] * X_val.shape[0]) X = sp.sparse.vstack((X_tr, X_val, X_test)) y = np.hstack((y_tr, y_val, y_test)) # Compute indices train_indices = list(range(X_tr.shape[0])) validation_indices = list( range( X_tr.shape[0], X_tr.shape[0] + X_val.shape[0], ) ) test_indices = list(range(X_tr.shape[0] + X_val.shape[0], X.shape[0])) elif (filename_tr is not None) and (filename_val is not None): _, _, X_tr, y_tr, X_val, y_val = load_svmlight_files( [ filename, filename_tr, filename_val, ] ) cv = PredefinedSplit([-1] * X_tr.shape[0] + [0] * X_val.shape[0]) X = sp.sparse.vstack((X_tr, X_val)) y = np.hstack((y_tr, y_val)) # Compute indices train_indices = list(range(X_tr.shape[0])) validation_indices = list(range(X_tr.shape[0], X.shape[0])) test_indices = [] elif (filename_t is not None) and (filename_r is not None): X_tr, y_tr, X_test, y_test, X_remaining, y_remaining = load_svmlight_files( [ filename, filename_t, filename_r, ] ) X = sp.sparse.vstack((X_tr, X_test, X_remaining)) y = np.hstack((y_tr, y_test, y_remaining)) # Compute indices train_indices = list(range(X_tr.shape[0])) validation_indices = [] test_indices = list( range( X_tr.shape[0], X_tr.shape[0] + X_test.shape[0], ), ) cv = None elif filename_t is not None: X_tr, y_tr, X_test, y_test = load_svmlight_files( [ filename, filename_t, ] ) X = sp.sparse.vstack((X_tr, X_test)) y = np.hstack((y_tr, y_test)) # Compute indices train_indices = list(range(X_tr.shape[0])) validation_indices = [] test_indices = list(range(X_tr.shape[0], X.shape[0])) cv = None else: X, y = load_svmlight_file(filename) # Compute indices train_indices = [] validation_indices = [] test_indices = [] cv = None return X, y, train_indices, validation_indices, test_indices, cv @overload def fetch( collection: str, name: str, *, data_home: str | None = None, return_X_y: Literal[False] = False, ) -> Bunch: pass @overload def fetch( collection: str, name: str, *, data_home: str | None = None, return_X_y: Literal[True], ) -> Tuple[np.typing.NDArray[float], np.typing.NDArray[int | float]]: pass def fetch( collection: str, name: str, *, data_home: str | None = None, return_X_y: bool = False, ) -> Bunch | Tuple[np.typing.NDArray[float], np.typing.NDArray[int | float]]: """ Fetch LIBSVM dataset. Fetch a LIBSVM dataset by collection and name. More info at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets. Parameters ---------- collection : string Collection name. name : string Dataset name. data_home : string or None, default None Specify another download and cache folder for the data sets. By default all scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders. return_X_y : bool, default=False If True, returns ``(data, target)`` instead of a Bunch object. Returns ------- data : Bunch Dictionary-like object with all the data and metadata. (data, target) : tuple if ``return_X_y`` is True """ if collection not in COLLECTIONS: raise Exception("Avaliable collections are " + str(list(COLLECTIONS))) X, y, train_indices, validation_indices, test_indices, cv = _load( collection, name, data_home=data_home, ) if return_X_y: return X, y return Bunch( data=X, target=y, train_indices=train_indices, validation_indices=validation_indices, test_indices=test_indices, inner_cv=cv, outer_cv=None, DESCR=name, )
/scikit_datasets-0.2.4-py3-none-any.whl/skdatasets/repositories/libsvm.py
0.873134
0.375392
libsvm.py
pypi
from __future__ import annotations import io import os from pathlib import Path from types import MappingProxyType from typing import ( AbstractSet, Any, Final, Iterator, Literal, Optional, Sequence, Tuple, Union, overload, ) from zipfile import ZipFile import numpy as np import pandas as pd from sklearn.utils import Bunch from .base import fetch_file BASE_URL = "http://sci2s.ugr.es/keel" COLLECTIONS: Final = frozenset( ( "classification", "missing", "imbalanced", "multiInstance", "multilabel", "textClassification", "classNoise", "attributeNoise", "semisupervised", "regression", "timeseries", "unsupervised", "lowQuality", ) ) # WTFs IMBALANCED_URLS: Final = ( "keel-dataset/datasets/imbalanced/imb_IRhigherThan9", "keel-dataset/datasets/imbalanced/imb_IRhigherThan9p1", "keel-dataset/datasets/imbalanced/imb_IRhigherThan9p2", "keel-dataset/datasets/imbalanced/imb_IRhigherThan9p3", "dataset/data/imbalanced", "keel-dataset/datasets/imbalanced/imb_noisyBordExamples", "keel-dataset/datasets/imbalanced/preprocessed", ) IRREGULAR_DESCR_IMBALANCED_URLS: Final = ( "keel-dataset/datasets/imbalanced/imb_IRhigherThan9", "keel-dataset/datasets/imbalanced/imb_IRhigherThan9p1", "keel-dataset/datasets/imbalanced/imb_IRhigherThan9p2", "keel-dataset/datasets/imbalanced/imb_IRhigherThan9p3", ) INCORRECT_DESCR_IMBALANCED_URLS: Final = MappingProxyType( {"semisupervised": "classification"}, ) class KeelOuterCV(object): """Iterable over already separated CV partitions of the dataset.""" def __init__( self, Xs: Sequence[np.typing.NDArray[float]], ys: Sequence[np.typing.NDArray[Union[int, float]]], Xs_test: Sequence[np.typing.NDArray[float]], ys_test: Sequence[np.typing.NDArray[Union[int, float]]], ) -> None: self.Xs = Xs self.ys = ys self.Xs_test = Xs_test self.ys_test = ys_test def __iter__( self, ) -> Iterator[ Tuple[ np.typing.NDArray[float], np.typing.NDArray[Union[int, float]], np.typing.NDArray[float], np.typing.NDArray[Union[int, float]], ] ]: return zip(self.Xs, self.ys, self.Xs_test, self.ys_test) def _load_Xy( zipfile: Path, csvfile: str, sep: str = ",", header: Optional[int] = None, engine: str = "python", na_values: AbstractSet[str] = frozenset(("?")), **kwargs: Any, ) -> Tuple[np.typing.NDArray[float], np.typing.NDArray[Union[int, float]]]: """Load a zipped csv file with target in the last column.""" with ZipFile(zipfile) as z: with z.open(csvfile) as c: s = io.StringIO(c.read().decode(encoding="utf8")) data = pd.read_csv( s, sep=sep, header=header, engine=engine, na_values=na_values, **kwargs, ) data.columns = data.columns.astype(str) X = pd.get_dummies(data.iloc[:, :-1]) y = pd.factorize(data.iloc[:, -1].tolist(), sort=True)[0] return X, y def _load_descr( collection: str, name: str, data_home: Optional[str] = None, ) -> Tuple[int, str]: """Load a dataset description.""" subfolder = os.path.join("keel", collection) filename = name + "-names.txt" if collection == "imbalanced": for url in IMBALANCED_URLS: if url in IRREGULAR_DESCR_IMBALANCED_URLS: url = BASE_URL + "/" + url + "/" + "names" + "/" + filename else: url = BASE_URL + "/" + url + "/" + filename try: f = fetch_file( dataname=name, urlname=url, subfolder=subfolder, data_home=data_home, ) break except Exception: pass else: collection = ( INCORRECT_DESCR_IMBALANCED_URLS[collection] if collection in INCORRECT_DESCR_IMBALANCED_URLS else collection ) url = f"{BASE_URL}/dataset/data/{collection}/{filename}" f = fetch_file( dataname=name, urlname=url, subfolder=subfolder, data_home=data_home, ) with open(f) as rst_file: fdescr = rst_file.read() nattrs = fdescr.count("@attribute") return nattrs, fdescr def _fetch_keel_zip( collection: str, name: str, filename: str, data_home: Optional[str] = None, ) -> Path: """Fetch Keel dataset zip file.""" subfolder = os.path.join("keel", collection) if collection == "imbalanced": for url in IMBALANCED_URLS: url = BASE_URL + "/" + url + "/" + filename try: return fetch_file( dataname=name, urlname=url, subfolder=subfolder, data_home=data_home, ) except Exception: pass else: url = f"{BASE_URL}/dataset/data/{collection}/{filename}" return fetch_file( dataname=name, urlname=url, subfolder=subfolder, data_home=data_home, ) raise ValueError("Dataset not found") def _load_folds( collection: str, name: str, nfolds: Literal[None, 1, 5, 10], dobscv: bool, nattrs: int, data_home: Optional[str] = None, ) -> Tuple[ np.typing.NDArray[float], np.typing.NDArray[Union[int, float]], Optional[KeelOuterCV], ]: """Load a dataset folds.""" filename = name + ".zip" f = _fetch_keel_zip(collection, name, filename, data_home=data_home) X, y = _load_Xy(f, name + ".dat", skiprows=nattrs + 4) cv = None if nfolds in (5, 10): fold = "dobscv" if dobscv else "fold" filename = name + "-" + str(nfolds) + "-" + fold + ".zip" f = _fetch_keel_zip(collection, name, filename, data_home=data_home) Xs = [] ys = [] Xs_test = [] ys_test = [] for i in range(nfolds): if dobscv: # Zipfiles always use fordward slashes, even in Windows. _name = f"{name}/{name}-{nfolds}dobscv-{i + 1}" else: _name = f"{name}-{nfolds}-{i + 1}" X_fold, y_fold = _load_Xy(f, _name + "tra.dat", skiprows=nattrs + 4) X_test_fold, y_test_fold = _load_Xy( f, _name + "tst.dat", skiprows=nattrs + 4, ) Xs.append(X_fold) ys.append(y_fold) Xs_test.append(X_test_fold) ys_test.append(y_test_fold) cv = KeelOuterCV(Xs, ys, Xs_test, ys_test) return X, y, cv @overload def fetch( collection: str, name: str, data_home: Optional[str] = None, nfolds: Literal[None, 1, 5, 10] = None, dobscv: bool = False, *, return_X_y: Literal[False] = False, ) -> Bunch: pass @overload def fetch( collection: str, name: str, data_home: Optional[str] = None, nfolds: Literal[None, 1, 5, 10] = None, dobscv: bool = False, *, return_X_y: Literal[True], ) -> Tuple[np.typing.NDArray[float], np.typing.NDArray[Union[int, float]]]: pass def fetch( collection: str, name: str, data_home: Optional[str] = None, nfolds: Literal[None, 1, 5, 10] = None, dobscv: bool = False, *, return_X_y: bool = False, ) -> Union[ Bunch, Tuple[np.typing.NDArray[float], np.typing.NDArray[Union[int, float]]], ]: """ Fetch Keel dataset. Fetch a Keel dataset by collection and name. More info at http://sci2s.ugr.es/keel. Parameters ---------- collection : string Collection name. name : string Dataset name. data_home : string or None, default None Specify another download and cache folder for the data sets. By default all scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders. nfolds : int, default=None Number of folds. Depending on the dataset, valid values are {None, 1, 5, 10}. dobscv : bool, default=False If folds are in {5, 10}, indicates that the cv folds are distribution optimally balanced stratified. Only available for some datasets. return_X_y : bool, default=False If True, returns ``(data, target)`` instead of a Bunch object. kwargs : dict Optional key-value arguments Returns ------- data : Bunch Dictionary-like object with all the data and metadata. (data, target) : tuple if ``return_X_y`` is True """ if collection not in COLLECTIONS: raise ValueError("Avaliable collections are " + str(list(COLLECTIONS))) nattrs, DESCR = _load_descr(collection, name, data_home=data_home) X, y, cv = _load_folds( collection, name, nfolds, dobscv, nattrs, data_home=data_home, ) if return_X_y: return X, y return Bunch( data=X, target=y, train_indices=[], validation_indices=[], test_indices=[], inner_cv=None, outer_cv=cv, DESCR=DESCR, )
/scikit_datasets-0.2.4-py3-none-any.whl/skdatasets/repositories/keel.py
0.714827
0.330714
keel.py
pypi
import numpy as np from sklearn.utils import Bunch from .base import fetch_zip DESCR = """ The AneuRisk data set is based on a set of three-dimensional angiographic images taken from 65 subjects, hospitalized at Niguarda Ca’ Granda Hospital (Milan), who were suspected of being affected by cerebral aneurysms. Out of these 65 subjects, 33 subjects have an aneurysm at or after the terminal bifurcation of the ICA (“Upper” group), 25 subjects have an aneurysm along the ICA (“Lower” group), and 7 subjects were not found any visible aneurysm during the angiography (“No-aneurysm” group). For more information see: http://ecm2.mathcs.emory.edu/aneuriskdata/files/ReadMe_AneuRisk-website_2012-05.pdf """ def fetch(name="Aneurisk65", *, data_home=None, return_X_y=False): if name != "Aneurisk65": raise ValueError(f"Unknown dataset {name}") n_samples = 65 url = ( "http://ecm2.mathcs.emory.edu/aneuriskdata/files/Carotid-data_MBI_workshop.zip" ) dataset_path = fetch_zip( dataname=name, urlname=url, subfolder="aneurisk", data_home=data_home, ) patient_dtype = [ ("patient", np.int_), ("code", "U8"), ("type", "U1"), ("aneurysm location", np.float_), ("left_right", "U2"), ] functions_dtype = [ ("curvilinear abscissa", np.object_), ("MISR", np.object_), ("X0 observed", np.object_), ("Y0 observed", np.object_), ("Z0 observed", np.object_), ("X0 observed FKS", np.object_), ("Y0 observed FKS", np.object_), ("Z0 observed FKS", np.object_), ("X0 observed FKS reflected", np.object_), ("X1 observed FKS", np.object_), ("Y1 observed FKS", np.object_), ("Z1 observed FKS", np.object_), ("X1 observed FKS reflected", np.object_), ("X2 observed FKS", np.object_), ("Y2 observed FKS", np.object_), ("Z2 observed FKS", np.object_), ("X2 observed FKS reflected", np.object_), ("Curvature FKS", np.object_), ] complete_dtype = patient_dtype + functions_dtype X = np.zeros(shape=n_samples, dtype=complete_dtype) X[[p[0] for p in patient_dtype]] = np.genfromtxt( dataset_path / "Patients.txt", dtype=patient_dtype, skip_header=1, missing_values=("NA",), ) for i in range(n_samples): file = f"Rawdata_FKS_{i + 1}.txt" functions = np.genfromtxt( dataset_path / file, skip_header=1, ) for j, (f_name, _) in enumerate(functions_dtype): X[i][f_name] = functions[:, j] X = np.array(X.tolist(), dtype=np.object_) if return_X_y: return X, None return Bunch( data=X, target=None, train_indices=[], validation_indices=[], test_indices=[], name=name, DESCR=DESCR, feature_names=[t[0] for t in complete_dtype], )
/scikit_datasets-0.2.4-py3-none-any.whl/skdatasets/repositories/aneurisk.py
0.645232
0.555857
aneurisk.py
pypi
import time from datetime import date, timedelta import numpy as np from sklearn.utils import Bunch from forex_python.bitcoin import BtcConverter from forex_python.converter import CurrencyRates def _fetch(get_rate, start=date(2015, 1, 1), end=date.today()): """Fetch dataset.""" data = [] delta = end - start for d in range(delta.days + 1): day = start + timedelta(days=d) rate = get_rate(day) data.append(rate) return np.asarray(data).reshape((-1, 1)) def _load_bitcoin(start=date(2015, 1, 1), end=date.today(), currency="EUR"): """Load bitcoin dataset""" btcc = BtcConverter() def get_rate(day): return btcc.get_previous_price(currency, day) return _fetch(get_rate, start=start, end=end) def _load_forex( start=date(2015, 1, 1), end=date.today(), currency_1="USD", currency_2="EUR" ): """Load forex dataset.""" cr = CurrencyRates() def get_rate(day): time.sleep(0.1) return cr.get_rate(currency_1, currency_2, day) return _fetch(get_rate, start=start, end=end) def fetch( start=date(2015, 1, 1), end=date.today(), currency_1="USD", currency_2="EUR", return_X_y=False, ): """Fetch Forex datasets. Fetches the ECB Forex and Coindesk Bitcoin datasets. More info at http://forex-python.readthedocs.io. Parameters ---------- start : date, default=2015-01-01 Initial date. end : date, default=today Final date. currency_1 : str, default='USD' Currency 1. currency_2 : str, default='EUR' Currency 2. return_X_y : bool, default=False If True, returns ``(data, target)`` instead of a Bunch object. Returns ------- data : Bunch Dictionary-like object with all the data and metadata. (data, target) : tuple if ``return_X_y`` is True """ if currency_1 == "BTC": X = _load_bitcoin(start=start, end=end, currency=currency_2) descr = "BTC-" + str(currency_2) elif currency_2 == "BTC": X = _load_bitcoin(start=start, end=end, currency=currency_1) descr = "BTC-" + str(currency_1) else: X = _load_forex( start=start, end=end, currency_1=currency_1, currency_2=currency_2 ) descr = str(currency_1) + "-" + str(currency_2) descr = descr + start.strftime("%Y-%m-%d") + "-" + end.strftime("%Y-%m-%d") if return_X_y: return X, None return Bunch( data=X, target=None, train_indices=[], validation_indices=[], test_indices=[], inner_cv=None, outer_cv=None, DESCR=descr, )
/scikit_datasets-0.2.4-py3-none-any.whl/skdatasets/repositories/forex.py
0.883538
0.363195
forex.py
pypi
from __future__ import annotations import ast import math import re import urllib from html.parser import HTMLParser from pathlib import Path from typing import ( Any, Final, List, Literal, Mapping, Sequence, Tuple, overload, ) import numpy as np import pandas as pd import wfdb.io from sklearn.utils import Bunch from skdatasets.repositories.base import dataset_from_dataframe from .base import DatasetNotFoundError, fetch_zip BASE_URL: Final = "https://physionet.org/static/published-projects" INFO_STRING_SEMICOLONS_ONE_STR: Final = r"(\S*): (\S*)\s*" INFO_STRING_SEMICOLONS_SEVERAL_REGEX: Final = re.compile( rf"(?:{INFO_STRING_SEMICOLONS_ONE_STR})+", ) INFO_STRING_SEMICOLONS_ONE_REGEX: Final = re.compile( INFO_STRING_SEMICOLONS_ONE_STR, ) class _ZipNameHTMLParser(HTMLParser): """Class for parsing the zip name in PhysioNet directory listing.""" def __init__(self, *, convert_charrefs: bool = True) -> None: super().__init__(convert_charrefs=convert_charrefs) self.zip_name: str | None = None def handle_starttag( self, tag: str, attrs: List[Tuple[str, str | None]], ) -> None: if tag == "a": for attr in attrs: if attr[0] == "href" and attr[1] and attr[1].endswith(".zip"): self.zip_name = attr[1] def _get_zip_name_online(dataset_name: str) -> str: """Get the zip name of the dataset.""" parser = _ZipNameHTMLParser() url_request = urllib.request.Request(url=f"{BASE_URL}/{dataset_name}") try: with urllib.request.urlopen(url_request) as url_file: url_content = url_file.read().decode("utf-8") except urllib.error.HTTPError as e: if e.code == 404: raise DatasetNotFoundError(dataset_name) from e raise parser.feed(url_content) if parser.zip_name is None: raise ValueError(f"No zip file found for dataset '{dataset_name}'") return parser.zip_name def _parse_info_string_value(value: str) -> Any: if value.lower() == "nan": return math.nan try: value = ast.literal_eval(value) except Exception: pass return value def _get_info_strings(comments: Sequence[str]) -> Mapping[str, Any]: info_strings_semicolons = {} info_strings_spaces = {} for comment in comments: if comment[0] not in {"-", "#"}: if re.fullmatch(INFO_STRING_SEMICOLONS_SEVERAL_REGEX, comment): for result in re.finditer( INFO_STRING_SEMICOLONS_ONE_REGEX, comment, ): key = result.group(1) if key[0] == "<" and key[-1] == ">": key = key[1:-1] info_strings_semicolons[key] = _parse_info_string_value( result.group(2) ) else: split = comment.rsplit(maxsplit=1) if len(split) == 2: key, value = split info_strings_spaces[key] = _parse_info_string_value(value) if info_strings_semicolons: return info_strings_semicolons # Check for absurd things in spaces if len(info_strings_spaces) == 1 or any( key.count(" ") > 3 for key in info_strings_spaces ): return {} return info_strings_spaces def _join_info_dicts( dicts: Sequence[Mapping[str, Any]], ) -> Mapping[str, np.typing.NDArray[Any]]: joined = {} n_keys = len(dicts[0]) if not all(len(d) == n_keys for d in dicts): return {} for key in dicts[0]: joined[key] = np.array([d[key] for d in dicts]) return joined def _constant_attrs(register: wfdb.Record) -> Sequence[Any]: return (register.n_sig, register.sig_name, register.units, register.fs) @overload def fetch( name: str, *, data_home: str | None = None, return_X_y: Literal[False] = False, as_frame: bool = False, target_column: str | Sequence[str] | None = None, ) -> Bunch: pass @overload def fetch( name: str, *, data_home: str | None = None, return_X_y: Literal[True], as_frame: Literal[False] = False, target_column: None = None, ) -> Tuple[np.typing.NDArray[Any], None]: pass @overload def fetch( name: str, *, data_home: str | None = None, return_X_y: Literal[True], as_frame: Literal[False] = False, target_column: str | Sequence[str], ) -> Tuple[np.typing.NDArray[Any], np.typing.NDArray[Any]]: pass @overload def fetch( name: str, *, data_home: str | None = None, return_X_y: Literal[True], as_frame: Literal[True], target_column: None = None, ) -> Tuple[pd.DataFrame, None]: pass @overload def fetch( name: str, *, data_home: str | None = None, return_X_y: Literal[True], as_frame: Literal[True], target_column: str, ) -> Tuple[pd.DataFrame, pd.Series]: pass @overload def fetch( name: str, *, data_home: str | None = None, return_X_y: Literal[True], as_frame: Literal[True], target_column: Sequence[str], ) -> Tuple[pd.DataFrame, pd.DataFrame]: pass def fetch( name: str, *, data_home: str | None = None, return_X_y: bool = False, as_frame: bool = False, target_column: str | Sequence[str] | None = None, ) -> ( Bunch | Tuple[np.typing.NDArray[Any], np.typing.NDArray[Any] | None] | Tuple[pd.DataFrame, pd.Series | pd.DataFrame | None] ): zip_name = _get_zip_name_online(name) path = fetch_zip( dataname=name, urlname=f"{BASE_URL}/{name}/{zip_name}", subfolder="physionet", data_home=data_home, ) subpath = path / Path(zip_name).stem if subpath.exists(): path = subpath with open(path / "RECORDS") as records_file: records = [ wfdb.io.rdrecord(str(path / record_name.rstrip("\n"))) for record_name in records_file ] info_strings = [_get_info_strings(r.comments) for r in records] info = _join_info_dicts(info_strings) assert all(_constant_attrs(r) == _constant_attrs(records[0]) for r in records) data = { "signal": [r.p_signal for r in records], } dataframe = pd.DataFrame( {**info, **data}, index=[r.record_name for r in records], ) dataframe["signal"].attrs.update( sig_name=records[0].sig_name, units=records[0].units, fs=records[0].fs, ) return dataset_from_dataframe( dataframe, return_X_y=return_X_y, as_frame=as_frame, target_column=target_column, )
/scikit_datasets-0.2.4-py3-none-any.whl/skdatasets/repositories/physionet.py
0.786828
0.208038
physionet.py
pypi
from __future__ import annotations from pathlib import Path from typing import Final, Literal, Optional, Sequence, Tuple, Union, overload import numpy as np import scipy.io.arff from sklearn.utils import Bunch from .base import fetch_zip as _fetch_zip BASE_URL: Final = "https://www.timeseriesclassification.com/aeon-toolkit/" def _target_conversion( target: np.typing.NDArray[Union[int, str]], ) -> Tuple[np.typing.NDArray[int], Sequence[str]]: try: target_data = target.astype(int) target_names = np.unique(target_data).astype(str).tolist() except ValueError: target_names = np.unique(target).tolist() target_data = np.searchsorted(target_names, target) return target_data, target_names def data_to_matrix( struct_array: np.typing.NDArray[object], ) -> np.typing.NDArray[float]: fields = struct_array.dtype.fields assert fields if len(fields.items()) == 1 and list(fields.items())[0][1][0] == np.dtype( np.object_ ): attribute = struct_array[list(fields.items())[0][0]] n_instances = len(attribute) n_curves = len(attribute[0]) n_points = len(attribute[0][0]) attribute_new = np.zeros(n_instances, dtype=np.object_) for i in range(n_instances): transformed_matrix = np.zeros((n_curves, n_points)) for j in range(n_curves): for k in range(n_points): transformed_matrix[j][k] = attribute[i][j][k] attribute_new[i] = transformed_matrix return attribute_new else: return np.array(struct_array.tolist()) @overload def fetch( name: str, *, data_home: Optional[str] = None, return_X_y: Literal[False] = False, ) -> Bunch: pass @overload def fetch( name: str, *, data_home: Optional[str] = None, return_X_y: Literal[True], ) -> Tuple[np.typing.NDArray[float], np.typing.NDArray[int]]: pass def fetch( name: str, *, data_home: Optional[str] = None, return_X_y: bool = False, ) -> Union[Bunch, Tuple[np.typing.NDArray[float], np.typing.NDArray[int]], ]: """ Fetch UCR dataset. Fetch a UCR dataset by name. More info at http://www.timeseriesclassification.com/. Parameters ---------- name : string Dataset name. data_home : string or None, default None Specify another download and cache folder for the data sets. By default all scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders. return_X_y : bool, default=False If True, returns ``(data, target)`` instead of a Bunch object. Returns ------- data : Bunch Dictionary-like object with all the data and metadata. (data, target) : tuple if ``return_X_y`` is True """ url = BASE_URL + name data_path = _fetch_zip( name, urlname=url + ".zip", subfolder="ucr", data_home=data_home, ) description_filenames = [name, name + "Description", name + "_Info"] path_file_descr: Optional[Path] for f in description_filenames: path_file_descr = (data_path / f).with_suffix(".txt") if path_file_descr.exists(): break else: # No description is found path_file_descr = None path_file_train = (data_path / (name + "_TRAIN")).with_suffix(".arff") path_file_test = (data_path / (name + "_TEST")).with_suffix(".arff") DESCR = ( path_file_descr.read_text( errors="surrogateescape") if path_file_descr else "" ) train = scipy.io.arff.loadarff(path_file_train) test = scipy.io.arff.loadarff(path_file_test) dataset_name = train[1].name column_names = np.array(train[1].names()) target_column_name = column_names[-1] feature_names = column_names[column_names != target_column_name].tolist() target_column = train[0][target_column_name].astype(str) test_target_column = test[0][target_column_name].astype(str) y_train, target_names = _target_conversion(target_column) y_test, target_names_test = _target_conversion(test_target_column) assert target_names == target_names_test X_train = data_to_matrix(train[0][feature_names]) X_test = data_to_matrix(test[0][feature_names]) X = np.concatenate((X_train, X_test)) y = np.concatenate((y_train, y_test)) if return_X_y: return X, y return Bunch( data=X, target=y, train_indices=list(range(len(X_train))), validation_indices=[], test_indices=list(range(len(X_train), len(X))), name=dataset_name, DESCR=DESCR, feature_names=feature_names, target_names=target_names, )
/scikit_datasets-0.2.4-py3-none-any.whl/skdatasets/repositories/ucr.py
0.902603
0.418637
ucr.py
pypi
from __future__ import annotations from pathlib import Path from typing import Any, Literal, Optional, Tuple, Union, overload import numpy as np from sklearn.preprocessing import OrdinalEncoder from sklearn.utils import Bunch from .base import fetch_file BASE_URL = "https://archive.ics.uci.edu/ml/machine-learning-databases" def _load_csv( fname: Path, **kwargs: Any, ) -> Tuple[np.typing.NDArray[float], np.typing.NDArray[Union[float, int, str]],]: """Load a csv with targets in the last column and features in the rest.""" data = np.genfromtxt( fname, dtype=str, delimiter=",", encoding=None, **kwargs, ) X = data[:, :-1] try: X = X.astype(float) except ValueError: pass y = data[:, -1] return X, y def _fetch( name: str, data_home: Optional[str] = None, ) -> Tuple[ np.typing.NDArray[float], np.typing.NDArray[Union[float, int]], Optional[np.typing.NDArray[float]], Optional[np.typing.NDArray[Union[float, int]]], str, np.typing.NDArray[str], ]: """Fetch dataset.""" subfolder = "uci" filename_str = name + ".data" url = BASE_URL + "/" + name + "/" + filename_str filename = fetch_file( dataname=name, urlname=url, subfolder=subfolder, data_home=data_home, ) X, y = _load_csv(filename) target_names = None ordinal_encoder = OrdinalEncoder(dtype=np.int64) if y.dtype.type is np.str_: y = ordinal_encoder.fit_transform(y.reshape(-1, 1))[:, 0] target_names = ordinal_encoder.categories_[0] try: filename_str = name + ".test" url = BASE_URL + "/" + name + "/" + filename_str filename = fetch_file( dataname=name, urlname=url, subfolder=subfolder, data_home=data_home, ) X_test: Optional[np.typing.NDArray[float]] y_test: Optional[np.typing.NDArray[Union[float, int, str]]] X_test, y_test = _load_csv(filename) if y.dtype.type is np.str_: y_test = ordinal_encoder.transform(y_test.reshape(-1, 1))[:, 0] except Exception: X_test = None y_test = None try: filename_str = name + ".names" url = BASE_URL + "/" + name + "/" + filename_str filename = fetch_file( dataname=name, urlname=url, subfolder=subfolder, data_home=data_home, ) except Exception: filename_str = name + ".info" url = BASE_URL + "/" + name + "/" + filename_str filename = fetch_file( dataname=name, urlname=url, subfolder=subfolder, data_home=data_home, ) with open(filename) as rst_file: fdescr = rst_file.read() return X, y, X_test, y_test, fdescr, target_names @overload def fetch( name: str, data_home: Optional[str] = None, *, return_X_y: Literal[False] = False, ) -> Bunch: pass @overload def fetch( name: str, data_home: Optional[str] = None, *, return_X_y: Literal[True], ) -> Tuple[np.typing.NDArray[float], np.typing.NDArray[float]]: pass def fetch( name: str, data_home: Optional[str] = None, *, return_X_y: bool = False, ) -> Union[Bunch, Tuple[np.typing.NDArray[float], np.typing.NDArray[float]],]: """ Fetch UCI dataset. Fetch a UCI dataset by name. More info at https://archive.ics.uci.edu/ml/datasets.html. Parameters ---------- name : string Dataset name. data_home : string or None, default None Specify another download and cache folder for the data sets. By default all scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders. return_X_y : bool, default=False If True, returns ``(data, target)`` instead of a Bunch object. Returns ------- data : Bunch Dictionary-like object with all the data and metadata. (data, target) : tuple if ``return_X_y`` is True """ X_train, y_train, X_test, y_test, DESCR, target_names = _fetch( name, data_home=data_home, ) if X_test is None or y_test is None: X = X_train y = y_train train_indices = None test_indices = None else: X = np.concatenate((X_train, X_test)) y = np.concatenate((y_train, y_test)) train_indices = list(range(len(X_train))) test_indices = list(range(len(X_train), len(X))) if return_X_y: return X, y return Bunch( data=X, target=y, train_indices=train_indices, validation_indices=[], test_indices=test_indices, inner_cv=None, outer_cv=None, DESCR=DESCR, target_names=target_names, )
/scikit_datasets-0.2.4-py3-none-any.whl/skdatasets/repositories/uci.py
0.903451
0.347094
uci.py
pypi
from __future__ import annotations import os import pathlib import re import urllib import warnings from distutils.version import LooseVersion from html.parser import HTMLParser from pathlib import Path from typing import ( Any, Final, List, Literal, Mapping, Sequence, Tuple, TypedDict, overload, ) import numpy as np import pandas as pd from sklearn.datasets import get_data_home from sklearn.utils import Bunch import rdata from .base import DatasetNotFoundError, fetch_tgz as _fetch_tgz CRAN_URL: Final = "https://CRAN.R-project.org" class _LatestVersionHTMLParser(HTMLParser): """Class for parsing the version in the CRAN package information page.""" def __init__(self, *, convert_charrefs: bool = True) -> None: super().__init__(convert_charrefs=convert_charrefs) self.last_is_version = False self.version: str | None = None self.version_regex = re.compile("(?i).*version.*") self.handling_td = False def handle_starttag( self, tag: str, attrs: List[Tuple[str, str | None]], ) -> None: if tag == "td": self.handling_td = True def handle_endtag(self, tag: str) -> None: self.handling_td = False def handle_data(self, data: str) -> None: if self.handling_td: if self.last_is_version: self.version = data self.last_is_version = False elif self.version_regex.match(data): self.last_is_version = True def _get_latest_version_online(package_name: str, dataset_name: str) -> str: """Get the latest version of the package from CRAN.""" parser = _LatestVersionHTMLParser() url_request = urllib.request.Request( url=f"{CRAN_URL}/package={package_name}", ) try: with urllib.request.urlopen(url_request) as url_file: url_content = url_file.read().decode("utf-8") except urllib.error.HTTPError as e: if e.code == 404: raise DatasetNotFoundError(f"{package_name}/{dataset_name}") from e raise parser.feed(url_content) if parser.version is None: raise ValueError(f"Version of package {package_name} not found") return parser.version def _get_latest_version_offline(package_name: str) -> str | None: """ Get the latest downloaded version of the package. Returns None if not found. """ home = pathlib.Path(get_data_home()) # Should allow providing data home? downloaded_packages = tuple(home.glob(package_name + "_*.tar.gz")) if downloaded_packages: versions = [ LooseVersion(p.name[(len(package_name) + 1) : -len(".tar.gz")]) for p in downloaded_packages ] versions.sort() latest_version = versions[-1] return str(latest_version) return None def _get_version( package_name: str, *, dataset_name: str, version: str | None = None, ) -> str: """ Get the version of the package. If the version is specified, return it. Otherwise, try to find the last version online. If offline, try to find the downloaded version, if any. """ if version is None: try: version = _get_latest_version_online( package_name, dataset_name=dataset_name, ) except (urllib.error.URLError, DatasetNotFoundError): version = _get_latest_version_offline(package_name) if version is None: raise return version def _get_urls( package_name: str, *, dataset_name: str, version: str | None = None, ) -> Sequence[str]: version = _get_version(package_name, dataset_name=dataset_name, version=version) filename = f"{package_name}_{version}.tar.gz" latest_url = f"{CRAN_URL}/src/contrib/{filename}" archive_url = f"{CRAN_URL}/src/contrib/Archive/{package_name}/{filename}" return (latest_url, archive_url) def _download_package_data( package_name: str, *, dataset_name: str = "*", package_url: str | None = None, version: str | None = None, folder_name: str | None = None, subdir: str | None = None, ) -> Path: if package_url is None: url_list = _get_urls( package_name, dataset_name=dataset_name, version=version, ) else: url_list = (package_url,) if folder_name is None: folder_name = os.path.basename(url_list[0]) if subdir is None: subdir = "data" for i, url in enumerate(url_list): try: directory = _fetch_tgz(folder_name, url, subfolder="cran") break except Exception: # If it is the last url, reraise if i >= len(url_list) - 1: raise data_path = directory / package_name / subdir return data_path def fetch_dataset( dataset_name: str, package_name: str, *, package_url: str | None = None, version: str | None = None, folder_name: str | None = None, subdir: str | None = None, converter: rdata.conversion.Converter | None = None, ) -> Mapping[str, Any]: """ Fetch an R dataset. Only .rda datasets in community packages can be downloaded for now. R datasets do not have a fixed structure, so this function does not attempt to force one. Parameters ---------- dataset_name: string Name of the dataset, including extension if any. package_name: string Name of the R package where this dataset resides. package_url: string Package url. If `None` it tries to obtain it from the package name. version: string If `package_url` is not specified, the version of the package to download. By default is the latest one. folder_name: string Name of the folder where the downloaded package is stored. By default, is the last component of `package_url`. subdir: string Subdirectory of the package containing the datasets. By default is 'data'. converter: rdata.conversion.Converter Object used to translate R objects into Python objects. Returns ------- data: dict Dictionary-like object with all the data and metadata. """ if converter is None: converter = rdata.conversion.SimpleConverter() data_path = _download_package_data( package_name, dataset_name=dataset_name, package_url=package_url, version=version, folder_name=folder_name, subdir=subdir, ) file_path = data_path / dataset_name if not file_path.suffix: possible_names = list(data_path.glob(dataset_name + ".*")) if len(possible_names) != 1: raise FileNotFoundError( f"Dataset {dataset_name} not found in " f"package {package_name}", ) file_path = data_path / possible_names[0] parsed = rdata.parser.parse_file(file_path) return converter.convert(parsed) def fetch_package( package_name: str, *, package_url: str | None = None, version: str | None = None, folder_name: str | None = None, subdir: str | None = None, converter: rdata.conversion.Converter | None = None, ignore_errors: bool = False, ) -> Mapping[str, Any]: """ Fetch all datasets from a R package. Only .rda datasets in community packages can be downloaded for now. R datasets do not have a fixed structure, so this function does not attempt to force one. Parameters ---------- package_name: string Name of the R package. package_url: string Package url. If `None` it tries to obtain it from the package name. version: string If `package_url` is not specified, the version of the package to download. By default is the latest one. folder_name: string Name of the folder where the downloaded package is stored. By default, is the last component of `package_url`. subdir: string Subdirectory of the package containing the datasets. By default is 'data'. converter: rdata.conversion.Converter Object used to translate R objects into Python objects. ignore_errors: boolean If True, ignore the datasets producing errors and return the remaining ones. Returns ------- data: dict Dictionary-like object with all the data and metadata. """ if converter is None: converter = rdata.conversion.SimpleConverter() data_path = _download_package_data( package_name, package_url=package_url, version=version, folder_name=folder_name, subdir=subdir, ) if not data_path.exists(): return {} all_datasets = {} for dataset in data_path.iterdir(): if dataset.suffix.lower() in [".rda", ".rdata"]: try: parsed = rdata.parser.parse_file(dataset) converted = converter.convert(parsed) all_datasets.update(converted) except Exception: if not ignore_errors: raise else: warnings.warn( f"Error loading dataset {dataset.name}", stacklevel=2, ) return all_datasets class _DatasetArguments(TypedDict): load_args: Tuple[Sequence[Any], Mapping[str, Any]] sklearn_args: Tuple[Sequence[Any], Mapping[str, Any]] datasets: Mapping[str, _DatasetArguments] = { "geyser": { "load_args": (["geyser.rda", "MASS"], {}), "sklearn_args": ([], {"target_name": "waiting"}), }, } def _to_sklearn( dataset: Mapping[str, Any], *, target_name: str, ) -> Bunch: """Transform R datasets to Sklearn format, if possible""" assert len(dataset.keys()) == 1 name = tuple(dataset.keys())[0] obj = dataset[name] if isinstance(obj, pd.DataFrame): feature_names = list(obj.keys()) feature_names.remove(target_name) X = pd.get_dummies(obj[feature_names]).values y = obj[target_name].values else: raise ValueError( "Dataset not automatically convertible to Sklearn format", ) return Bunch( data=X, target=y, train_indices=[], validation_indices=[], test_indices=[], inner_cv=None, outer_cv=None, target_names=target_name, feature_names=feature_names, ) @overload def fetch( name: str, *, return_X_y: Literal[False] = False, ) -> Bunch: pass @overload def fetch( name: str, *, return_X_y: Literal[True], ) -> Tuple[np.typing.NDArray[float], np.typing.NDArray[Any]]: pass def fetch( name: str, *, return_X_y: bool = False, ) -> Bunch | Tuple[np.typing.NDArray[float], np.typing.NDArray[Any]]: """ Load a dataset. Parameters ---------- name : string Dataset name. return_X_y : bool, default=False If True, returns ``(data, target)`` instead of a Bunch object. Returns ------- data : Bunch Dictionary-like object with all the data and metadata. (data, target) : tuple if ``return_X_y`` is True """ load_args = datasets[name]["load_args"] dataset = fetch_dataset(*load_args[0], **load_args[1]) sklearn_args = datasets[name]["sklearn_args"] sklearn_dataset = _to_sklearn(dataset, *sklearn_args[0], **sklearn_args[1]) if return_X_y: return sklearn_dataset.data, sklearn_dataset.target return sklearn_dataset
/scikit_datasets-0.2.4-py3-none-any.whl/skdatasets/repositories/cran.py
0.818845
0.176636
cran.py
pypi
from sklearn.datasets import ( fetch_20newsgroups, fetch_20newsgroups_vectorized, fetch_california_housing, fetch_covtype, fetch_kddcup99, fetch_lfw_pairs, fetch_lfw_people, fetch_olivetti_faces, fetch_rcv1, load_breast_cancer, load_diabetes, load_digits, load_iris, load_linnerud, load_wine, make_biclusters, make_blobs, make_checkerboard, make_circles, make_classification, make_friedman1, make_friedman2, make_friedman3, make_gaussian_quantiles, make_hastie_10_2, make_low_rank_matrix, make_moons, make_multilabel_classification, make_regression, make_s_curve, make_sparse_coded_signal, make_sparse_spd_matrix, make_sparse_uncorrelated, make_spd_matrix, make_swiss_roll, ) DATASETS = { "20newsgroups": fetch_20newsgroups, "20newsgroups_vectorized": fetch_20newsgroups_vectorized, "biclusters": make_biclusters, "blobs": make_blobs, "breast_cancer": load_breast_cancer, "california_housing": fetch_california_housing, "checkerboard": make_checkerboard, "circles": make_circles, "classification": make_classification, "covtype": fetch_covtype, "diabetes": load_diabetes, "digits": load_digits, "friedman1": make_friedman1, "friedman2": make_friedman2, "friedman3": make_friedman3, "gaussian_quantiles": make_gaussian_quantiles, "hastie_10_2": make_hastie_10_2, "iris": load_iris, "kddcup99": fetch_kddcup99, "lfw_people": fetch_lfw_people, "lfw_pairs": fetch_lfw_pairs, "linnerud": load_linnerud, "low_rank_matrix": make_low_rank_matrix, "moons": make_moons, "multilabel_classification": make_multilabel_classification, "olivetti_faces": fetch_olivetti_faces, "rcv1": fetch_rcv1, "regression": make_regression, "s_curve": make_s_curve, "sparse_coded_signal": make_sparse_coded_signal, "sparse_spd_matrix": make_sparse_spd_matrix, "sparse_uncorrelated": make_sparse_uncorrelated, "spd_matrix": make_spd_matrix, "swiss_roll": make_swiss_roll, "wine": load_wine, } def fetch(name, *, return_X_y=False, **kwargs): """Fetch Scikit-learn dataset. Fetch a Scikit-learn dataset by name. More info at http://scikit-learn.org/stable/datasets/index.html. Parameters ---------- name : string Dataset name. return_X_y : bool, default=False If True, returns ``(data, target)`` instead of a Bunch object. **kwargs : dict Optional key-value arguments. See scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets. Returns ------- data : Bunch Dictionary-like object with all the data and metadata. (data, target) : tuple if ``return_X_y`` is True """ if return_X_y: kwargs["return_X_y"] = True data = DATASETS[name](**kwargs) if not return_X_y: data.train_indices = [] data.validation_indices = [] data.test_indices = [] data.inner_cv = None data.outer_cv = None return data
/scikit_datasets-0.2.4-py3-none-any.whl/skdatasets/repositories/sklearn.py
0.826991
0.603026
sklearn.py
pypi
from __future__ import annotations import hashlib from pathlib import Path from typing import ( Final, Iterator, Literal, Optional, Sequence, Tuple, Union, overload, ) import numpy as np from scipy.io import loadmat from sklearn.utils import Bunch from .base import fetch_file DATASETS: Final = frozenset( ( "banana", "breast_cancer", "diabetis", "flare_solar", "german", "heart", "image", "ringnorm", "splice", "thyroid", "titanic", "twonorm", "waveform", ) ) class RaetschOuterCV(object): """Iterable over already separated CV partitions of the dataset.""" def __init__( self, X: np.typing.NDArray[float], y: np.typing.NDArray[Union[int, float]], train_splits: Sequence[np.typing.NDArray[int]], test_splits: Sequence[np.typing.NDArray[int]], ) -> None: self.X = X self.y = y self.train_splits = train_splits self.test_splits = test_splits def __iter__( self, ) -> Iterator[ Tuple[ np.typing.NDArray[float], np.typing.NDArray[Union[int, float]], np.typing.NDArray[float], np.typing.NDArray[Union[int, float]], ] ]: return ( (self.X[tr - 1], self.y[tr - 1], self.X[ts - 1], self.y[ts - 1]) for tr, ts in zip(self.train_splits, self.test_splits) ) def _fetch_remote(data_home: Optional[str] = None) -> Path: """ Helper function to download the remote dataset into path. Fetch the remote dataset, save into path using remote's filename and ensure its integrity based on the SHA256 Checksum of the downloaded file. Parameters ---------- dirname : string Directory to save the file to. Returns ------- file_path: string Full path of the created file. """ file_path = fetch_file( "raetsch", "https://github.com/tdiethe/gunnar_raetsch_benchmark_datasets" "/raw/master/benchmarks.mat", data_home=data_home, ) sha256hash = hashlib.sha256() with open(file_path, "rb") as f: while True: buffer = f.read(8192) if not buffer: break sha256hash.update(buffer) checksum = sha256hash.hexdigest() remote_checksum = "47c19e4bc4716edc4077cfa5ea61edf4d02af4ec51a0ecfe035626ae8b561c75" if remote_checksum != checksum: raise IOError( f"{file_path} has an SHA256 checksum ({checksum}) differing " f"from expected ({remote_checksum}), file may be corrupted.", ) return file_path @overload def fetch( name: str, data_home: Optional[str] = None, *, return_X_y: Literal[False] = False, ) -> Bunch: pass @overload def fetch( name: str, data_home: Optional[str] = None, *, return_X_y: Literal[True], ) -> Tuple[np.typing.NDArray[float], np.typing.NDArray[Union[int, float]]]: pass def fetch( name: str, data_home: Optional[str] = None, *, return_X_y: bool = False, ) -> Union[ Bunch, Tuple[np.typing.NDArray[float], np.typing.NDArray[Union[int, float]]], ]: """Fetch Gunnar Raetsch's dataset. Fetch a Gunnar Raetsch's benchmark dataset by name. Availabe datasets are 'banana', 'breast_cancer', 'diabetis', 'flare_solar', 'german', 'heart', 'image', 'ringnorm', 'splice', 'thyroid', 'titanic', 'twonorm' and 'waveform'. More info at https://github.com/tdiethe/gunnar_raetsch_benchmark_datasets. Parameters ---------- name : string Dataset name. data_home : string or None, default None Specify another download and cache folder for the data sets. By default all scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders. return_X_y : bool, default=False If True, returns ``(data, target)`` instead of a Bunch object. Returns ------- data : Bunch Dictionary-like object with all the data and metadata. (data, target) : tuple if ``return_X_y`` is True """ if name not in DATASETS: raise Exception("Avaliable datasets are " + str(list(DATASETS))) filename = _fetch_remote(data_home=data_home) X, y, train_splits, test_splits = loadmat(filename)[name][0][0] if len(y.shape) == 2 and y.shape[1] == 1: y = y.ravel() cv = RaetschOuterCV(X, y, train_splits, test_splits) if return_X_y: return X, y return Bunch( data=X, target=y, train_indices=[], validation_indices=[], test_indices=[], inner_cv=None, outer_cv=cv, DESCR=name, )
/scikit_datasets-0.2.4-py3-none-any.whl/skdatasets/repositories/raetsch.py
0.942573
0.394551
raetsch.py
pypi
from __future__ import annotations import itertools as it from dataclasses import dataclass from functools import reduce from typing import Any, Callable, Literal, Mapping, Optional, Sequence, Tuple import numpy as np import pandas as pd from scipy.stats import ( friedmanchisquare, kruskal, mannwhitneyu, rankdata, wilcoxon, ) from scipy.stats.stats import ttest_ind_from_stats, ttest_rel from statsmodels.sandbox.stats.multicomp import multipletests CorrectionLike = Literal[ None, "bonferroni", "sidak", "holm-sidak", "holm", "simes-hochberg", "hommel", "fdr_bh", "fdr_by", "fdr_tsbh", "fdr_tsbky", ] MultitestLike = Literal["kruskal", "friedmanchisquare"] TestLike = Literal["mannwhitneyu", "wilcoxon"] @dataclass class SummaryRow: values: np.typing.NDArray[Any] greater_is_better: bool | None = None @dataclass class ScoreCell: mean: float std: float | None rank: int significant: bool def average_rank( ranks: np.typing.NDArray[np.integer[Any]], **kwargs: Any, ) -> SummaryRow: """Compute rank averages.""" return SummaryRow( values=np.mean(ranks, axis=0), greater_is_better=False, ) def average_mean_score( means: np.typing.NDArray[np.floating[Any]], greater_is_better: bool, **kwargs: Any, ) -> SummaryRow: """Compute score mean averages.""" return SummaryRow( values=np.mean(means, axis=0), greater_is_better=greater_is_better, ) def _is_significant( scores1: np.typing.NDArray[np.floating[Any]], scores2: np.typing.NDArray[np.floating[Any]], mean1: np.typing.NDArray[np.floating[Any]], mean2: np.typing.NDArray[np.floating[Any]], std1: np.typing.NDArray[np.floating[Any]], std2: np.typing.NDArray[np.floating[Any]], *, nobs: int | None = None, two_sided: bool = True, paired_test: bool = False, significancy_level: float = 0.05, ) -> bool: alternative = "two-sided" if two_sided else "greater" if paired_test: assert scores1.ndim == 1 assert scores2.ndim == 1 _, pvalue = ttest_rel( scores1, scores2, axis=-1, alternative=alternative, ) else: assert nobs _, pvalue = ttest_ind_from_stats( mean1=mean1, std1=std1, nobs1=nobs, mean2=mean2, std2=std2, nobs2=nobs, equal_var=False, alternative=alternative, ) return pvalue < significancy_level def _all_significants( scores: np.typing.NDArray[np.floating[Any]], means: np.typing.NDArray[np.floating[Any]], stds: np.typing.NDArray[np.floating[Any]] | None, ranks: np.typing.NDArray[np.integer[Any]], *, nobs: int | None = None, two_sided: bool = True, paired_test: bool = False, significancy_level: float = 0, ) -> np.typing.NDArray[np.bool_]: significant_matrix = np.zeros_like(ranks, dtype=np.bool_) if stds is None or significancy_level <= 0: return significant_matrix for row, (scores_row, mean_row, std_row, rank_row) in enumerate( zip(scores, means, stds, ranks), ): for column, (scores1, mean1, std1, rank1) in enumerate( zip(scores_row, mean_row, std_row, rank_row), ): # Compare every element with all the ones with immediate below rank # It must be significantly better than all of them index2 = np.flatnonzero(rank_row == (rank1 + 1)) is_significant = len(index2) > 0 and all( _is_significant( scores1, scores_row[idx], mean1, mean_row[idx], std1, std_row[idx], nobs=nobs, two_sided=two_sided, paired_test=paired_test, significancy_level=significancy_level, ) for idx in index2 ) if is_significant: significant_matrix[row, column] = True return significant_matrix def _set_style_classes( table: pd.DataFrame, *, all_ranks: np.typing.NDArray[np.integer[Any]], significants: np.typing.NDArray[np.bool_], n_summary_rows: int, ) -> pd.io.formats.style.Styler: rank_class_names = np.char.add( "rank", all_ranks.astype(str), ) is_summary_row = np.zeros_like(all_ranks, dtype=np.bool_) is_summary_row[-n_summary_rows:, :] = True summary_rows_class_name = np.char.multiply( "summary", is_summary_row.astype(int), ) significant_class_name = np.char.multiply( "significant", np.insert( significants, (len(significants),) * n_summary_rows, 0, axis=0, ).astype(int), ) styler = table.style.set_td_classes( pd.DataFrame( reduce( np.char.add, ( rank_class_names, " ", summary_rows_class_name, " ", significant_class_name, ), ), index=table.index, columns=table.columns, ), ) return styler def _set_style_formatter( styler: pd.io.formats.style.Styler, *, precision: int, show_rank: bool = True, ) -> pd.io.formats.style.Styler: def _formatter( data: object, ) -> str: if isinstance(data, str): return data elif isinstance(data, int): return str(int) elif isinstance(data, float): return f"{data:.{precision}f}" elif isinstance(data, ScoreCell): str_repr = f"{data.mean:.{precision}f}" if data.std is not None: str_repr += f" ± {data.std:.{precision}f}" if show_rank: precision_rank = 0 if isinstance(data.rank, int) else precision str_repr += f" ({data.rank:.{precision_rank}f})" return str_repr else: return "" return styler.format( _formatter, ) def _set_default_style_html( styler: pd.io.formats.style.Styler, *, n_summary_rows: int, ) -> pd.io.formats.style.Styler: last_rows_mask = np.zeros(len(styler.data), dtype=int) last_rows_mask[-n_summary_rows:] = 1 styler = styler.set_table_styles( [ { "selector": ".summary", "props": [("font-style", "italic")], }, { "selector": ".rank1", "props": [("font-weight", "bold")], }, { "selector": ".rank2", "props": [("text-decoration", "underline")], }, { "selector": ".significant::after", "props": [ ("content", '"*"'), ("width", "0px"), ("display", "inline-block"), ], }, { "selector": ".col_heading", "props": [("font-weight", "bold")], }, ], ) styler = styler.apply_index( lambda _: np.char.multiply( "font-style: italic; font-weight: bold", last_rows_mask, ), axis=0, ) styler = styler.apply_index( lambda idx: ["font-weight: bold"] * len(idx), axis=1, ) return styler def _set_style_from_class( styler: pd.io.formats.style.Styler, class_name: str, style: str, ) -> pd.io.formats.style.Styler: style_matrix = np.full(styler.data.shape, style) for row in range(style_matrix.shape[0]): for column in range(style_matrix.shape[1]): classes = styler.cell_context.get( (row, column), "", ).split() if class_name not in classes: style_matrix[row, column] = "" return styler.apply(lambda x: style_matrix, axis=None) def _set_default_style_latex( styler: pd.io.formats.style.Styler, *, n_summary_rows: int, ) -> pd.io.formats.style.Styler: last_rows_mask = np.zeros(len(styler.data), dtype=int) last_rows_mask[-n_summary_rows:] = 1 styler.set_table_styles( [ { "selector": r"newcommand{\summary}", "props": r":[1]{\textit{#1}};", }, { "selector": r"newcommand{\significant}", "props": r":[1]{#1*};", }, { "selector": r"newcommand{\rank}", "props": ( r":[2]{\ifnum#1=1 \textbf{#2} \else " r"\ifnum#1=2 \underline{#2} \else #2 \fi\fi};" ), }, ], overwrite=False, ) for rank in range(1, styler.data.shape[1] + 1): styler = _set_style_from_class( styler, f"rank{rank}", f"rank{{{rank}}}:--rwrap; ", ) for class_name in ("summary", "significant"): styler = _set_style_from_class( styler, class_name, f"{class_name}:--rwrap; ", ) styler = styler.apply_index( lambda _: np.char.multiply( "textbf:--rwrap;summary:--rwrap;", last_rows_mask, ), axis=0, ) styler = styler.apply_index( lambda idx: ["textbf:--rwrap"] * len(idx), axis=1, ) return styler def _set_default_style( styler: pd.io.formats.style.Styler, *, n_summary_rows: int, default_style: Literal["html", "latex", None], ) -> pd.io.formats.style.Styler: if default_style == "html": styler = _set_default_style_html( styler, n_summary_rows=n_summary_rows, ) elif default_style == "latex": styler = _set_default_style_latex( styler, n_summary_rows=n_summary_rows, ) return styler def scores_table( scores: np.typing.ArrayLike, stds: np.typing.ArrayLike | None = None, *, datasets: Sequence[str], estimators: Sequence[str], nobs: int | None = None, greater_is_better: bool = True, method: Literal["average", "min", "max", "dense", "ordinal"] = "min", significancy_level: float = 0, paired_test: bool = False, two_sided: bool = True, default_style: Literal["html", "latex", None] = "html", precision: int = 2, show_rank: bool = True, summary_rows: Sequence[Tuple[str, Callable[..., SummaryRow]]] = ( ("Average rank", average_rank), ), ) -> pd.io.formats.style.Styler: """ Scores table. Prints a table where each row represents a dataset and each column represents an estimator. Parameters ---------- scores: array-like Matrix of scores where each column represents a model. Either the full matrix with all experiment results or the matrix with the mean scores can be passed. stds: array-like, default=None Matrix of standard deviations where each column represents a model. If ``scores`` is the full matrix with all results this is automatically computed from it and should not be passed. datasets: sequence of :external:class:`str` List of dataset names. estimators: sequence of :external:class:`str` List of estimator names. nobs: :external:class:`int` Number of repetitions of the experiments. Used only for computing significances when ``scores`` is not the full matrix. greater_is_better: boolean, default=True Whether a greater score is better (score) or worse (loss). method: {'average', 'min', 'max', 'dense', 'ordinal'}, default='average' Method used to solve ties. significancy_level: :external:class:`float`, default=0 Significancy level for considerin a result significant. If nonzero, significancy is calculated using a t-test. In that case, if ``paired_test`` is ``True``, ``scores`` should be the full matrix and a paired test is performed. Otherwise, the t-test assumes independence, and either ``scores`` should be the full matrix or ``nobs`` should be passed. paired_test: :external:class:`bool`, default=False Whether to perform a paired test or a test assuming independence. If ``True``, ``scores`` should be the full matrix. Otherwise, either ``scores`` should be the full matrix or ``nobs`` should be passed. two_sided: :external:class:`bool`, default=True Whether to perform a two sided t-test or a one sided t-test. default_style: {'html', 'latex', None}, default='html' Default style for the table. Use ``None`` for no style. Note that the CSS classes and textual formatting are always set. precision: :external:class:`int` Number of decimals used for floating point numbers. summary_rows: sequence List of (name, callable) tuples for additional summary rows. By default, the rank average is computed. Returns ------- table: array-like Table of mean and standard deviation of each estimator-dataset pair. A ranking of estimators is also generated. """ scores = np.asanyarray(scores) stds = None if stds is None else np.asanyarray(stds) assert scores.ndim in {2, 3} means = scores if scores.ndim == 2 else np.mean(scores, axis=-1) if scores.ndim == 3: assert stds is None assert nobs is None stds = np.std(scores, axis=-1) nobs = scores.shape[-1] ranks = np.asarray( [ rankdata(-m, method=method) if greater_is_better else rankdata(m, method=method) for m in means.round(precision) ] ) significants = _all_significants( scores, means, stds, ranks, nobs=nobs, two_sided=two_sided, paired_test=paired_test, significancy_level=significancy_level, ) table = pd.DataFrame(data=means, index=datasets, columns=estimators) for i, d in enumerate(datasets): for j, e in enumerate(estimators): table.loc[d, e] = ScoreCell( mean=means[i, j], std=None if stds is None else stds[i, j], rank=int(ranks[i, j]), significant=significants[i, j], ) # Create additional summary rows additional_ranks = [] for name, summary_fun in summary_rows: row = summary_fun( scores=scores, means=means, stds=stds, ranks=ranks, greater_is_better=greater_is_better, ) table.loc[name] = row.values if row.greater_is_better is None: additional_ranks.append(np.full(len(row.values), -1)) else: additional_ranks.append( rankdata(-row.values, method=method) if row.greater_is_better else rankdata(row.values, method=method), ) styler = _set_style_classes( table, all_ranks=np.vstack([ranks] + additional_ranks), significants=significants, n_summary_rows=len(summary_rows), ) styler = _set_style_formatter( styler, precision=precision, show_rank=show_rank, ) return _set_default_style( styler, n_summary_rows=len(summary_rows), default_style=default_style, ) def hypotheses_table( samples: np.typing.ArrayLike, models: Sequence[str], *, alpha: float = 0.05, multitest: Optional[MultitestLike] = None, test: TestLike = "wilcoxon", correction: CorrectionLike = None, multitest_args: Optional[Mapping[str, Any]] = None, test_args: Optional[Mapping[str, Any]] = None, ) -> Tuple[Optional[pd.DataFrame], Optional[pd.DataFrame]]: """ Hypotheses table. Prints a hypothesis table with a selected test and correction. Parameters ---------- samples: array-like Matrix of samples where each column represent a model. models: array-like Model names. alpha: float in [0, 1], default=0.05 Significance level. multitest: {'kruskal', 'friedmanchisquare'}, default=None Ranking multitest used. test: {'mannwhitneyu', 'wilcoxon'}, default='wilcoxon' Ranking test used. correction: {'bonferroni', 'sidak', 'holm-sidak', 'holm', \ 'simes-hochberg', 'hommel', 'fdr_bh', 'fdr_by', 'fdr_tsbh', \ 'fdr_tsbky'}, default=None Method used to adjust the p-values. multitest_args: dict Optional ranking test arguments. test_args: dict Optional ranking test arguments. Returns ------- multitest_table: array-like Table of p-value and rejection/non-rejection for the multitest hypothesis. test_table: array-like Table of p-values and rejection/non-rejection for each test hypothesis. """ if multitest_args is None: multitest_args = {} if test_args is None: test_args = {} samples = np.asanyarray(samples) versus = list(it.combinations(range(len(models)), 2)) comparisons = [ f"{models[first]} vs {models[second]}" for first, second in versus ] multitests = { "kruskal": kruskal, "friedmanchisquare": friedmanchisquare, } tests = { "mannwhitneyu": mannwhitneyu, "wilcoxon": wilcoxon, } multitest_table = None if multitest is not None: multitest_table = pd.DataFrame( index=[multitest], columns=["p-value", "Hypothesis"], ) _, pvalue = multitests[multitest]( *samples.T, **multitest_args, ) reject_str = "Rejected" if pvalue <= alpha else "Not rejected" multitest_table.loc[multitest] = ["{0:.2f}".format(pvalue), reject_str] # If the multitest does not detect a significative difference, # the individual tests are not meaningful, so skip them. if pvalue > alpha: return multitest_table, None pvalues = [ tests[test]( samples[:, first], samples[:, second], **test_args, )[1] for first, second in versus ] if correction is not None: reject_bool, pvalues, _, _ = multipletests( pvalues, alpha, method=correction, ) reject = ["Rejected" if r else "Not rejected" for r in reject_bool] else: reject = [ "Rejected" if pvalue <= alpha else "Not rejected" for pvalue in pvalues ] data = [("{0:.2f}".format(p), r) for p, r in zip(pvalues, reject)] test_table = pd.DataFrame( data, index=comparisons, columns=["p-value", "Hypothesis"], ) return multitest_table, test_table
/scikit_datasets-0.2.4-py3-none-any.whl/skdatasets/utils/scores.py
0.914295
0.377311
scores.py
pypi
from __future__ import annotations import itertools from contextlib import contextmanager from dataclasses import dataclass from time import perf_counter, sleep from typing import ( Any, Callable, Dict, Iterable, Iterator, List, Literal, Mapping, Protocol, Sequence, Tuple, TypeVar, Union, ) from warnings import warn import numpy as np from sacred import Experiment, Ingredient from sacred.observers import FileStorageObserver, MongoObserver, RunObserver from sklearn.base import BaseEstimator, is_classifier from sklearn.metrics import check_scoring from sklearn.model_selection import check_cv from sklearn.utils import Bunch from incense import ExperimentLoader, FileSystemExperimentLoader from incense.experiment import FileSystemExperiment SelfType = TypeVar("SelfType") class DataLike(Protocol): def __getitem__( self: SelfType, key: np.typing.NDArray[int], ) -> SelfType: pass def __len__(self) -> int: pass DataType = TypeVar("DataType", bound=DataLike, contravariant=True) TargetType = TypeVar("TargetType", bound=DataLike) IndicesType = Tuple[np.typing.NDArray[int], np.typing.NDArray[int]] ExplicitSplitType = Tuple[ np.typing.NDArray[float], np.typing.NDArray[Union[float, int]], np.typing.NDArray[float], np.typing.NDArray[Union[float, int]], ] ConfigLike = Union[ Mapping[str, Any], str, ] ScorerLike = Union[ str, Callable[[BaseEstimator, DataType, TargetType], float], None, ] class EstimatorProtocol(Protocol[DataType, TargetType]): def fit(self: SelfType, X: DataType, y: TargetType) -> SelfType: pass def predict(self, X: DataType) -> TargetType: pass class CVSplitter(Protocol): def split( self, X: np.typing.NDArray[float], y: None = None, groups: None = None, ) -> Iterable[IndicesType]: pass def get_n_splits( self, X: np.typing.NDArray[float], y: None = None, groups: None = None, ) -> int: pass CVLike = Union[ CVSplitter, Iterable[IndicesType], int, None, ] EstimatorLike = Union[ EstimatorProtocol[Any, Any], Callable[..., EstimatorProtocol[Any, Any]], Tuple[Callable[..., EstimatorProtocol[Any, Any]], ConfigLike], ] DatasetLike = Union[ Bunch, Callable[..., Bunch], Tuple[Callable[..., Bunch], ConfigLike], ] @dataclass class ScoresInfo: r""" Class containing the scores of several related experiments. Attributes ---------- dataset_names : Sequence of :external:class:`str` Name of the datasets, with the same order in which are present in the rows of the scores. estimator_names : Sequence of :external:class:`str` Name of the estimators, with the same order in which are present in the columns of the scores. scores : :external:class:`numpy.ndarray` Test scores. It has size ``n_datasets`` :math:`\times` ``n_estimators`` :math:`\times` ``n_partitions``. scores_mean : :external:class:`numpy.ndarray` Test score means. It has size ``n_datasets`` :math:`\times` ``n_estimators``. scores_std : :external:class:`numpy.ndarray` Test score standard deviations. It has size ``n_datasets`` :math:`\times` ``n_estimators``. See Also -------- fetch_scores """ dataset_names: Sequence[str] estimator_names: Sequence[str] scores: np.typing.NDArray[float] scores_mean: np.typing.NDArray[float] scores_std: np.typing.NDArray[float] def _append_info(experiment: Experiment, name: str, value: Any) -> None: info_list = experiment.info.get(name, []) info_list.append(value) experiment.info[name] = info_list @contextmanager def _add_timing(experiment: Experiment, name: str) -> Iterator[None]: initial_time = perf_counter() try: yield None finally: final_time = perf_counter() elapsed_time = final_time - initial_time _append_info(experiment, name, elapsed_time) def _iterate_outer_cv( outer_cv: CVLike | Iterable[Tuple[DataType, TargetType, DataType, TargetType]], estimator: EstimatorProtocol[DataType, TargetType], X: DataType, y: TargetType, ) -> Iterable[Tuple[DataType, TargetType, DataType, TargetType]]: """Iterate over multiple partitions.""" if isinstance(outer_cv, Iterable): outer_cv, cv_copy = itertools.tee(outer_cv) if len(next(cv_copy)) == 4: yield from outer_cv cv = check_cv(outer_cv, y, classifier=is_classifier(estimator)) yield from ( (X[train], y[train], X[test], y[test]) for train, test in cv.split(X, y) ) def _benchmark_from_data( experiment: Experiment, *, estimator: BaseEstimator, X_train: DataType, y_train: TargetType, X_test: DataType, y_test: TargetType, scoring: ScorerLike[DataType, TargetType] = None, save_estimator: bool = False, save_train: bool = False, ) -> None: scoring_fun = check_scoring(estimator, scoring) with _add_timing(experiment, "fit_time"): estimator.fit(X_train, y_train) if save_estimator: _append_info(experiment, "fitted_estimator", estimator) best_params = getattr(estimator, "best_params_", None) if best_params: _append_info(experiment, "search_best_params", best_params) best_score = getattr(estimator, "best_score_", None) if best_params: _append_info(experiment, "search_best_score", best_score) with _add_timing(experiment, "score_time"): test_score = scoring_fun(estimator, X_test, y_test) _append_info(experiment, "test_score", float(test_score)) if save_train: train_score = scoring_fun(estimator, X_train, y_train) _append_info(experiment, "train_score", float(train_score)) for output in ("transform", "predict"): method = getattr(estimator, output, None) if method is not None: with _add_timing(experiment, f"{output}_time"): _append_info(experiment, f"{output}", method(X_test)) def _compute_means(experiment: Experiment) -> None: experiment.info["score_mean"] = float(np.nanmean(experiment.info["test_score"])) experiment.info["score_std"] = float(np.nanstd(experiment.info["test_score"])) def _benchmark_one( experiment: Experiment, *, estimator: BaseEstimator, data: Bunch, scoring: ScorerLike[DataType, TargetType] = None, save_estimator: bool = False, save_train: bool = False, ) -> None: """Use only one predefined partition.""" X = data.data y = data.target train_indices = getattr(data, "train_indices", []) validation_indices = getattr(data, "validation_indices", []) test_indices = getattr(data, "test_indices", []) X_train_val = X[train_indices + validation_indices] if train_indices else X y_train_val = y[train_indices + validation_indices] if train_indices else y X_test = X[test_indices] y_test = y[test_indices] _benchmark_from_data( experiment=experiment, estimator=estimator, X_train=X_train_val, y_train=y_train_val, X_test=X_test, y_test=y_test, scoring=scoring, save_estimator=save_estimator, save_train=save_train, ) _compute_means(experiment) def _benchmark_partitions( experiment: Experiment, *, estimator: BaseEstimator, data: Bunch, scoring: ScorerLike[DataType, TargetType] = None, save_estimator: bool = False, save_train: bool = False, outer_cv: CVLike | Literal["dataset"] = None, ) -> None: """Use several partitions.""" outer_cv = data.outer_cv if outer_cv == "dataset" else outer_cv for X_train, y_train, X_test, y_test in _iterate_outer_cv( outer_cv=outer_cv, estimator=estimator, X=data.data, y=data.target, ): _benchmark_from_data( experiment=experiment, estimator=estimator, X_train=X_train, y_train=y_train, X_test=X_test, y_test=y_test, scoring=scoring, save_estimator=save_estimator, save_train=save_train, ) _compute_means(experiment) def _benchmark( experiment: Experiment, *, estimator: BaseEstimator, data: Bunch, scoring: ScorerLike[DataType, TargetType] = None, save_estimator: bool = False, save_train: bool = False, outer_cv: CVLike | Literal[False, "dataset"] = None, ) -> None: """Run the experiment.""" if outer_cv is False: _benchmark_one( experiment=experiment, estimator=estimator, data=data, scoring=scoring, save_estimator=save_estimator, save_train=save_train, ) else: _benchmark_partitions( experiment=experiment, estimator=estimator, data=data, scoring=scoring, save_estimator=save_estimator, save_train=save_train, outer_cv=outer_cv, ) def experiment( dataset: Callable[..., Bunch], estimator: Callable[..., BaseEstimator], *, scoring: ScorerLike[DataType, TargetType] = None, save_estimator: bool = False, save_train: bool = False, ) -> Experiment: """ Prepare a Scikit-learn experiment as a Sacred experiment. Prepare a Scikit-learn experiment indicating a dataset and an estimator and return it as a Sacred experiment. Parameters ---------- dataset : function Dataset fetch function. Might receive any argument. Must return a :external:class:`sklearn.utils.Bunch` with ``data``, ``target`` (might be ``None``), ``inner_cv`` (might be ``None``) and ``outer_cv`` (might be ``None``). estimator : function Estimator initialization function. Might receive any keyword argument. Must return an initialized sklearn-compatible estimator. Returns ------- experiment : Experiment Sacred experiment, ready to be run. """ dataset_ingredient = Ingredient("dataset") dataset = dataset_ingredient.capture(dataset) estimator_ingredient = Ingredient("estimator") estimator = estimator_ingredient.capture(estimator) experiment = Experiment( ingredients=( dataset_ingredient, estimator_ingredient, ), ) @experiment.main def run() -> None: """Run the experiment.""" data = dataset() # Metaparameter search cv = getattr(data, "inner_cv", None) try: e = estimator(cv=cv) except TypeError as exception: warn(f"The estimator does not accept cv: {exception}") e = estimator() # Model assessment _benchmark( experiment=experiment, estimator=e, data=data, scoring=scoring, save_estimator=save_estimator, save_train=save_train, ) # Ensure that everything is in the info dict at the end # See https://github.com/IDSIA/sacred/issues/830 sleep(experiment.current_run.beat_interval + 1) return experiment def _get_estimator_function( experiment: Experiment, estimator: EstimatorLike, ) -> Callable[..., EstimatorProtocol[Any, Any]]: if hasattr(estimator, "fit"): def estimator_function() -> EstimatorProtocol: return estimator else: estimator_function = estimator return experiment.capture(estimator_function) def _get_dataset_function( experiment: Experiment, dataset: DatasetLike, ) -> Callable[..., Bunch]: if callable(dataset): dataset_function = dataset else: def dataset_function() -> Bunch: return dataset return experiment.capture(dataset_function) def _create_one_experiment( *, estimator_name: str, estimator: EstimatorLike, dataset_name: str, dataset: DatasetLike, storage: RunObserver, config: ConfigLike, inner_cv: CVLike | Literal[False, "dataset"] = None, outer_cv: CVLike | Literal[False, "dataset"] = None, scoring: ScorerLike[DataType, TargetType] = None, save_estimator: bool = False, save_train: bool = False, ) -> Experiment: experiment = Experiment() experiment.add_config(config) experiment.add_config({"estimator_name": estimator_name}) if isinstance(estimator, tuple): estimator, estimator_config = estimator experiment.add_config(estimator_config) experiment.add_config({"dataset_name": dataset_name}) if isinstance(dataset, tuple): dataset, dataset_config = dataset experiment.add_config(dataset_config) experiment.observers.append(storage) estimator_function = _get_estimator_function(experiment, estimator) dataset_function = _get_dataset_function(experiment, dataset) @experiment.main def run() -> None: """Run the experiment.""" dataset = dataset_function() # Metaparameter search cv = dataset.inner_cv if inner_cv == "dataset" else inner_cv estimator = estimator_function() if hasattr(estimator, "cv") and cv is not False: estimator.cv = cv # Model assessment _benchmark( experiment=experiment, estimator=estimator, data=dataset, scoring=scoring, save_estimator=save_estimator, save_train=save_train, outer_cv=outer_cv, ) return experiment def create_experiments( *, datasets: Mapping[str, DatasetLike], estimators: Mapping[str, EstimatorLike], storage: RunObserver | str, config: ConfigLike | None = None, inner_cv: CVLike | Literal[False, "dataset"] = False, outer_cv: CVLike | Literal[False, "dataset"] = None, scoring: ScorerLike[DataType, TargetType] = None, save_estimator: bool = False, save_train: bool = False, ) -> Sequence[Experiment]: """ Create several Sacred experiments. It receives a set of estimators and datasets, and create Sacred experiment objects for them. Parameters ---------- datasets : Mapping Mapping where each key is the name for a dataset and each value is either: * A :external:class:`sklearn.utils.Bunch` with the fields explained in :doc:`/structure`. Only ``data`` and ``target`` are mandatory. * A function receiving arbitrary config values and returning a :external:class:`sklearn.utils.Bunch` object like the one explained above. * A tuple with such a function and additional configuration (either a mapping or a filename). estimators : Mapping Mapping where each key is the name for a estimator and each value is either: * A scikit-learn compatible estimator. * A function receiving arbitrary config values and returning a scikit-learn compatible estimator. * A tuple with such a function and additional configuration (either a mapping or a filename). storage : :external:class:`sacred.observers.RunObserver` or :class:`str` Where the experiments will be stored. Either a Sacred observer, for example to store in a Mongo database, or the name of a directory, to use a file observer. config : Mapping, :class:`str` or ``None``, default ``None`` A mapping or filename with additional configuration for the experiment. inner_cv : CV-like object, ``"datasets"`` or ``False``, default ``False`` For estimators that perform cross validation (they have a ``cv`` parameter) this sets the cross validation strategy, as follows: * If ``False`` the original value of ``cv`` is unchanged. * If ``"dataset"``, the :external:class:`sklearn.utils.Bunch` objects for the datasets must have a ``inner_cv`` attribute, which will be the one used. * Otherwise, ``cv`` is changed to this value. outer_cv : CV-like object, ``"datasets"`` or ``False``, default ``None`` The strategy used to evaluate different partitions of the data, as follows: * If ``False`` use only one partition: the one specified in the dataset. Thus the :external:class:`sklearn.utils.Bunch` objects for the datasets should have defined at least a train and a test partition. * If ``"dataset"``, the :external:class:`sklearn.utils.Bunch` objects for the datasets must have a ``outer_cv`` attribute, which will be the one used. * Otherwise, this will be passed to :external:func:`sklearn.model_selection.check_cv` and the resulting cross validator will be used to define the partitions. scoring : string, callable or ``None``, default ``None`` Scoring method used to measure the performance of the estimator. If a callable, it should have the signature `scorer(estimator, X, y)`. If ``None`` it uses the ``scorer`` method of the estimator. save_estimator : bool, default ``False`` Whether to save the fitted estimator. This is useful for debugging and for obtaining extra information in some cases, but for some estimators it could consume much storage. save_train : bool, default ``False`` If ``True``, compute and store also the score over the train data. Returns ------- experiments : Sequence of :external:class:`sacred.Experiment` Sequence of Sacred experiments, ready to be run. See Also -------- run_experiments fetch_scores """ if isinstance(storage, str): storage = FileStorageObserver(storage) if config is None: config = {} return [ _create_one_experiment( estimator_name=estimator_name, estimator=estimator, dataset_name=dataset_name, dataset=dataset, storage=storage, config=config, inner_cv=inner_cv, outer_cv=outer_cv, scoring=scoring, save_estimator=save_estimator, save_train=save_train, ) for estimator_name, estimator in estimators.items() for dataset_name, dataset in datasets.items() ] def run_experiments( experiments: Sequence[Experiment], ) -> Sequence[int]: """ Run Sacred experiments. Parameters ---------- experiments : Sequence of :external:class:`sacred.Experiment` Sequence of Sacred experiments to be run. Returns ------- ids : Sequence of :external:class:`int` Sequence of identifiers for each experiment. See Also -------- create_experiments fetch_scores """ return [e.run()._id for e in experiments] def _loader_from_observer( storage: RunObserver | str, ) -> ExperimentLoader | FileSystemExperimentLoader: if isinstance(storage, str): return FileSystemExperimentLoader(storage) elif isinstance(storage, FileStorageObserver): return FileSystemExperimentLoader(storage.basedir) elif isinstance(storage, MongoObserver): database = storage.runs.database client = database.client url, port = list( client.topology_description.server_descriptions().keys(), )[0] return ExperimentLoader( mongo_uri=f"mongodb://{url}:{port}/", db_name=database.name, unpickle=False, ) raise ValueError(f"Observer {storage} is not supported.") def _get_experiments( *, storage: RunObserver | str, ids: Sequence[int] | None = None, dataset_names: Sequence[str] | None = None, estimator_names: Sequence[str] | None = None, ) -> Sequence[Experiment]: loader = _loader_from_observer(storage) if ( (ids, dataset_names, estimator_names) == (None, None, None) or isinstance(loader, FileSystemExperimentLoader) and ids is None ): find_all_fun = getattr( loader, "find_all", lambda: [ FileSystemExperiment.from_run_dir(run_dir) for run_dir in loader._runs_dir.iterdir() ], ) experiments = find_all_fun() elif (dataset_names, estimator_names) == (None, None) or isinstance( loader, FileSystemExperimentLoader ): load_ids_fun = getattr( loader, "find_by_ids", lambda id_seq: [ loader.find_by_id(experiment_id) for experiment_id in id_seq ], ) experiments = load_ids_fun(ids) else: conditions: List[ Mapping[ str, Mapping[str, Sequence[Any]], ] ] = [] if ids is not None: conditions.append({"_id": {"$in": ids}}) if estimator_names is not None: conditions.append({"config.estimator_name": {"$in": estimator_names}}) if dataset_names is not None: conditions.append({"config.dataset_name": {"$in": dataset_names}}) query = {"$and": conditions} experiments = loader.find(query) if isinstance(loader, FileSystemExperimentLoader): # Filter experiments by dataset and estimator names experiments = [ e for e in experiments if ( ( estimator_names is None or e.config["estimator_name"] in estimator_names ) and (dataset_names is None or e.config["dataset_name"] in dataset_names) ) ] return experiments def fetch_scores( *, storage: RunObserver | str, ids: Sequence[int] | None = None, dataset_names: Sequence[str] | None = None, estimator_names: Sequence[str] | None = None, ) -> ScoresInfo: """ Fetch scores from Sacred experiments. By default, it retrieves every experiment. The parameters ``ids``, ``estimator_names`` and ``dataset_names`` can be used to restrict the number of experiments returned. Parameters ---------- storage : :external:class:`sacred.observers.RunObserver` or :class:`str` Where the experiments are stored. Either a Sacred observer, for example for a Mongo database, or the name of a directory, to use a file observer. ids : Sequence of :external:class:`int` or ``None``, default ``None`` If not ``None``, return only experiments whose id is contained in the sequence. dataset_names : Sequence of :class:`str` or ``None``, default ``None`` If not ``None``, return only experiments whose dataset names are contained in the sequence. The order of the names is also the one used for datasets when combining the results. estimator_names : Sequence of :class:`str` or ``None``, default ``None`` If not ``None``, return only experiments whose estimator names are contained in the sequence. The order of the names is also the one used for estimators when combining the results. Returns ------- info : :class:`ScoresInfo` Class containing information about experiments scores. See Also -------- run_experiments fetch_scores """ experiments = _get_experiments( storage=storage, ids=ids, dataset_names=dataset_names, estimator_names=estimator_names, ) dict_experiments: Dict[ str, Dict[str, Tuple[np.typing.NDArray[float], float, float]], ] = {} estimator_list = [] dataset_list = [] nobs = 0 for experiment in experiments: estimator_name = experiment.config["estimator_name"] if estimator_name not in estimator_list: estimator_list.append(estimator_name) dataset_name = experiment.config["dataset_name"] if dataset_name not in dataset_list: dataset_list.append(dataset_name) scores = experiment.info.get("test_score", np.array([])) score_mean = experiment.info.get("score_mean", np.nan) score_std = experiment.info.get("score_std", np.nan) nobs = max(nobs, len(scores)) assert np.isnan(score_mean) or score_mean == np.mean(scores) assert np.isnan(score_std) or score_std == np.std(scores) if estimator_name not in dict_experiments: dict_experiments[estimator_name] = {} if dataset_name in dict_experiments[estimator_name]: raise ValueError( f"Repeated experiment: ({estimator_name}, {dataset_name})", ) dict_experiments[estimator_name][dataset_name] = ( scores, score_mean, score_std, ) estimator_names = ( tuple(estimator_list) if estimator_names is None else estimator_names ) dataset_names = tuple(dataset_list) if dataset_names is None else dataset_names matrix_shape = (len(dataset_names), len(estimator_names)) scores = np.full(matrix_shape + (nobs,), np.nan) scores_mean = np.full(matrix_shape, np.nan) scores_std = np.full(matrix_shape, np.nan) for i, dataset_name in enumerate(dataset_names): for j, estimator_name in enumerate(estimator_names): dict_estimator = dict_experiments.get(estimator_name, {}) s, mean, std = dict_estimator.get( dataset_name, (np.array([]), np.nan, np.nan), ) if len(s) == nobs: scores[i, j] = s scores_mean[i, j] = mean scores_std[i, j] = std scores = np.array(scores.tolist()) return ScoresInfo( dataset_names=dataset_names, estimator_names=estimator_names, scores=scores, scores_mean=scores_mean, scores_std=scores_std, )
/scikit_datasets-0.2.4-py3-none-any.whl/skdatasets/utils/experiment.py
0.889939
0.398699
experiment.py
pypi
"""This module contains base classes for quickly building solvers.""" from __future__ import annotations from typing import Callable, List from skdecide.builders.solver.policy import DeterministicPolicies from skdecide.core import D, autocast_all, autocastable from skdecide.domains import Domain __all__ = ["Solver", "DeterministicPolicySolver"] # MAIN BASE CLASS class Solver: """This is the highest level solver class (inheriting top-level class for each mandatory solver characteristic). This helper class can be used as the main base class for solvers. Typical use: ```python class MySolver(Solver, ...) ``` with "..." replaced when needed by a number of classes from following domain characteristics (the ones in parentheses are optional): - **(assessability)**: Utilities -> QValues - **(policy)**: Policies -> UncertainPolicies -> DeterministicPolicies - **(restorability)**: Restorable """ T_domain = Domain @classmethod def get_domain_requirements(cls) -> List[type]: """Get domain requirements for this solver class to be applicable. Domain requirements are classes from the #skdecide.builders.domain package that the domain needs to inherit from. # Returns A list of classes to inherit from. """ return cls._get_domain_requirements() @classmethod def _get_domain_requirements(cls) -> List[type]: """Get domain requirements for this solver class to be applicable. Domain requirements are classes from the #skdecide.builders.domain package that the domain needs to inherit from. # Returns A list of classes to inherit from. """ def is_domain_builder( cls, ): # detected by having only single-'base class' ancestors until root remove_ancestors = [] while True: bases = cls.__bases__ if len(bases) == 0: return True, remove_ancestors elif len(bases) == 1: cls = bases[0] remove_ancestors.append(cls) else: return False, [] i = 0 sorted_ancestors = list(cls.T_domain.__mro__[:-1]) while i < len(sorted_ancestors): ancestor = sorted_ancestors[i] is_builder, remove_ancestors = is_domain_builder(ancestor) if is_builder: sorted_ancestors = [ a for a in sorted_ancestors if a not in remove_ancestors ] i += 1 else: sorted_ancestors.remove(ancestor) return sorted_ancestors @classmethod def check_domain(cls, domain: Domain) -> bool: """Check whether a domain is compliant with this solver type. By default, #Solver.check_domain() provides some boilerplate code and internally calls #Solver._check_domain_additional() (which returns True by default but can be overridden to define specific checks in addition to the "domain requirements"). The boilerplate code automatically checks whether all domain requirements are met. # Parameters domain: The domain to check. # Returns True if the domain is compliant with the solver type (False otherwise). """ return cls._check_domain(domain) @classmethod def _check_domain(cls, domain: Domain) -> bool: """Check whether a domain is compliant with this solver type. By default, #Solver._check_domain() provides some boilerplate code and internally calls #Solver._check_domain_additional() (which returns True by default but can be overridden to define specific checks in addition to the "domain requirements"). The boilerplate code automatically checks whether all domain requirements are met. # Parameters domain: The domain to check. # Returns True if the domain is compliant with the solver type (False otherwise). """ check_requirements = all( isinstance(domain, req) for req in cls._get_domain_requirements() ) return check_requirements and cls._check_domain_additional(domain) @classmethod def _check_domain_additional(cls, domain: D) -> bool: """Check whether the given domain is compliant with the specific requirements of this solver type (i.e. the ones in addition to "domain requirements"). This is a helper function called by default from #Solver._check_domain(). It focuses on specific checks, as opposed to taking also into account the domain requirements for the latter. # Parameters domain: The domain to check. # Returns True if the domain is compliant with the specific requirements of this solver type (False otherwise). """ return True def reset(self) -> None: """Reset whatever is needed on this solver before running a new episode. This function does nothing by default but can be overridden if needed (e.g. to reset the hidden state of a LSTM policy network, which carries information about past observations seen in the previous episode). """ return self._reset() def _reset(self) -> None: """Reset whatever is needed on this solver before running a new episode. This function does nothing by default but can be overridden if needed (e.g. to reset the hidden state of a LSTM policy network, which carries information about past observations seen in the previous episode). """ pass def solve(self, domain_factory: Callable[[], Domain]) -> None: """Run the solving process. By default, #Solver.solve() provides some boilerplate code and internally calls #Solver._solve(). The boilerplate code transforms the domain factory to auto-cast the new domains to the level expected by the solver. # Parameters domain_factory: A callable with no argument returning the domain to solve (can be just a domain class). !!! tip The nature of the solutions produced here depends on other solver's characteristics like #policy and #assessibility. """ return self._solve(domain_factory) def _solve(self, domain_factory: Callable[[], Domain]) -> None: """Run the solving process. By default, #Solver._solve() provides some boilerplate code and internally calls #Solver._solve_domain(). The boilerplate code transforms the domain factory to auto-cast the new domains to the level expected by the solver. # Parameters domain_factory: A callable with no argument returning the domain to solve (can be just a domain class). !!! tip The nature of the solutions produced here depends on other solver's characteristics like #policy and #assessibility. """ def cast_domain_factory(): domain = domain_factory() autocast_all(domain, domain, self.T_domain) return domain return self._solve_domain(cast_domain_factory) def _solve_domain(self, domain_factory: Callable[[], D]) -> None: """Run the solving process. This is a helper function called by default from #Solver._solve(), the difference being that the domain factory here returns domains auto-cast to the level expected by the solver. # Parameters domain_factory: A callable with no argument returning the domain to solve (auto-cast to expected level). !!! tip The nature of the solutions produced here depends on other solver's characteristics like #policy and #assessibility. """ raise NotImplementedError @autocastable def solve_from(self, memory: D.T_memory[D.T_state]) -> None: """Run the solving process from a given state. !!! tip Create the domain first by calling the @Solver.reset() method # Parameters memory: The source memory (state or history) of the transition. !!! tip The nature of the solutions produced here depends on other solver's characteristics like #policy and #assessibility. """ return self._solve_from(memory) def _solve_from(self, memory: D.T_memory[D.T_state]) -> None: """Run the solving process from a given state. !!! tip Create the domain first by calling the @Solver.reset() method # Parameters memory: The source memory (state or history) of the transition. !!! tip The nature of the solutions produced here depends on other solver's characteristics like #policy and #assessibility. """ pass def _initialize(self): """Runs long-lasting initialization code here, or code to be executed at the entering of a 'with' context statement. """ pass def _cleanup(self): """Runs cleanup code here, or code to be executed at the exit of a 'with' context statement. """ pass def __enter__(self): """Allow for calling the solver within a 'with' context statement. Note that some solvers require such context statements to properly clean their status before exiting the Python interpreter, thus it is a good habit to always call solvers within a 'with' statement. """ self._initialize() return self def __exit__(self, type, value, tb): """Allow for calling the solver within a 'with' context statement. Note that some solvers require such context statements to properly clean their status before exiting the Python interpreter, thus it is a good habit to always call solvers within a 'with' statement. """ self._cleanup() # ALTERNATE BASE CLASSES (for typical combinations) class DeterministicPolicySolver(Solver, DeterministicPolicies): """This is a typical deterministic policy solver class. This helper class can be used as an alternate base class for domains, inheriting the following: - Solver - DeterministicPolicies Typical use: ```python class MySolver(DeterministicPolicySolver) ``` !!! tip It is also possible to refine any alternate base class, like for instance: ```python class MySolver(DeterministicPolicySolver, QValues) ``` """ pass
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/solvers.py
0.966851
0.709538
solvers.py
pypi
"""This module contains base classes for quickly building domains.""" from __future__ import annotations import logging import os import tempfile from typing import Callable, NewType, Optional # Following import is required to make Enum objects serializable # (useful when multiprocessing and pickling domains that use Enum classes) import dill from pathos.helpers import mp from pynng import Push0 dill.settings["byref"] = True from skdecide.builders.domain.agent import MultiAgent, SingleAgent from skdecide.builders.domain.concurrency import Parallel, Sequential from skdecide.builders.domain.dynamics import ( DeterministicTransitions, EnumerableTransitions, Environment, Simulation, ) from skdecide.builders.domain.events import Actions, Events from skdecide.builders.domain.goals import Goals from skdecide.builders.domain.initialization import ( DeterministicInitialized, Initializable, UncertainInitialized, ) from skdecide.builders.domain.memory import History, Markovian from skdecide.builders.domain.observability import ( FullyObservable, PartiallyObservable, TransformedObservable, ) from skdecide.builders.domain.value import PositiveCosts, Rewards from skdecide.core import autocast_all if ( False ): # trick to avoid circular import & IDE error ("Unresolved reference 'Solver'") from skdecide.solvers import Solver __all__ = [ "Domain", "RLDomain", "MultiAgentRLDomain", "StatelessSimulatorDomain", "MDPDomain", "POMDPDomain", "GoalMDPDomain", "GoalPOMDPDomain", "DeterministicPlanningDomain", ] logger = logging.getLogger("skdecide.domains") logger.setLevel(logging.INFO) if not len(logger.handlers): ch = logging.StreamHandler() # create formatter and add it to the handlers formatter = logging.Formatter( "%(asctime)s | %(name)s | %(levelname)s | %(message)s" ) ch.setFormatter(formatter) # add the handlers to the logger logger.addHandler(ch) logger.propagate = False # MAIN BASE CLASS class Domain( MultiAgent, Parallel, Environment, Events, History, PartiallyObservable, Rewards ): """This is the highest level domain class (inheriting top-level class for each mandatory domain characteristic). This helper class can be used as the main base class for domains. Typical use: ```python class D(Domain, ...) ``` with "..." replaced when needed by a number of classes from following domain characteristics (the ones in parentheses are optional): - **agent**: MultiAgent -> SingleAgent - **concurrency**: Parallel -> Sequential - **(constraints)**: Constrained - **dynamics**: Environment -> Simulation -> UncertainTransitions -> EnumerableTransitions -> DeterministicTransitions - **events**: Events -> Actions -> UnrestrictedActions - **(goals)**: Goals - **(initialization)**: Initializable -> UncertainInitialized -> DeterministicInitialized - **memory**: History -> FiniteHistory -> Markovian -> Memoryless - **observability**: PartiallyObservable -> TransformedObservable -> FullyObservable - **(renderability)**: Renderable - **value**: Rewards -> PositiveCosts """ T_state = NewType("T_state", object) T_observation = NewType("T_observation", object) T_event = NewType("T_event", object) T_value = NewType("T_value", object) T_predicate = NewType("T_predicate", object) T_info = NewType("T_info", object) @classmethod def solve_with( cls, solver: Solver, domain_factory: Optional[Callable[[], Domain]] = None, load_path: Optional[str] = None, ) -> Solver: """Solve the domain with a new or loaded solver and return it auto-cast to the level of the domain. By default, #Solver.check_domain() provides some boilerplate code and internally calls #Solver._check_domain_additional() (which returns True by default but can be overridden to define specific checks in addition to the "domain requirements"). The boilerplate code automatically checks whether all domain requirements are met. # Parameters solver: The solver. domain_factory: A callable with no argument returning the domain to solve (factory is the domain class if None). load_path: The path to restore the solver state from (if None, the solving process will be launched instead). # Returns The new solver (auto-cast to the level of the domain). """ if domain_factory is None: domain_factory = cls if load_path is not None: # TODO: avoid repeating this code somehow (identical in solver.solve(...))? Is factory necessary (vs cls)? def cast_domain_factory(): domain = domain_factory() autocast_all(domain, domain, solver.T_domain) return domain solver.load(load_path, cast_domain_factory) else: solver.solve(domain_factory) autocast_all(solver, solver.T_domain, cls) return solver # ALTERNATE BASE CLASSES (for typical combinations) class RLDomain( Domain, SingleAgent, Sequential, Environment, Actions, Initializable, Markovian, TransformedObservable, Rewards, ): """This is a typical Reinforcement Learning domain class. This helper class can be used as an alternate base class for domains, inheriting the following: - Domain - SingleAgent - Sequential - Environment - Actions - Initializable - Markovian - TransformedObservable - Rewards Typical use: ```python class D(RLDomain) ``` !!! tip It is also possible to refine any alternate base class, like for instance: ```python class D(RLDomain, FullyObservable) ``` """ pass class MultiAgentRLDomain( Domain, MultiAgent, Sequential, Environment, Actions, Initializable, Markovian, TransformedObservable, Rewards, ): """This is a typical multi-agent Reinforcement Learning domain class. This helper class can be used as an alternate base class for domains, inheriting the following: - Domain - MultiAgent - Sequential - Environment - Actions - Initializable - Markovian - TransformedObservable - Rewards Typical use: ```python class D(RLDomain) ``` !!! tip It is also possible to refine any alternate base class, like for instance: ```python class D(RLDomain, FullyObservable) ``` """ pass class StatelessSimulatorDomain( Domain, SingleAgent, Sequential, Simulation, Actions, Markovian, TransformedObservable, Rewards, ): """This is a typical stateless simulator domain class. This helper class can be used as an alternate base class for domains, inheriting the following: - Domain - SingleAgent - Sequential - Simulation - Actions - Markovian - TransformedObservable - Rewards Typical use: ```python class D(StatelessSimulatorDomain) ``` !!! tip It is also possible to refine any alternate base class, like for instance: ```python class D(RLDomain, FullyObservable) ``` """ pass class MDPDomain( Domain, SingleAgent, Sequential, EnumerableTransitions, Actions, DeterministicInitialized, Markovian, FullyObservable, Rewards, ): """This is a typical Markov Decision Process domain class. This helper class can be used as an alternate base class for domains, inheriting the following: - Domain - SingleAgent - Sequential - EnumerableTransitions - Actions - DeterministicInitialized - Markovian - FullyObservable - Rewards Typical use: ```python class D(MDPDomain) ``` !!! tip It is also possible to refine any alternate base class, like for instance: ```python class D(RLDomain, FullyObservable) ``` """ pass class POMDPDomain( Domain, SingleAgent, Sequential, EnumerableTransitions, Actions, UncertainInitialized, Markovian, PartiallyObservable, Rewards, ): """This is a typical Partially Observable Markov Decision Process domain class. This helper class can be used as an alternate base class for domains, inheriting the following: - Domain - SingleAgent - Sequential - EnumerableTransitions - Actions - UncertainInitialized - Markovian - PartiallyObservable - Rewards Typical use: ```python class D(POMDPDomain) ``` !!! tip It is also possible to refine any alternate base class, like for instance: ```python class D(RLDomain, FullyObservable) ``` """ pass class GoalMDPDomain( Domain, SingleAgent, Sequential, EnumerableTransitions, Actions, Goals, DeterministicInitialized, Markovian, FullyObservable, PositiveCosts, ): """This is a typical Goal Markov Decision Process domain class. This helper class can be used as an alternate base class for domains, inheriting the following: - Domain - SingleAgent - Sequential - EnumerableTransitions - Actions - Goals - DeterministicInitialized - Markovian - FullyObservable - PositiveCosts Typical use: ```python class D(GoalMDPDomain) ``` !!! tip It is also possible to refine any alternate base class, like for instance: ```python class D(RLDomain, FullyObservable) ``` """ pass class GoalPOMDPDomain( Domain, SingleAgent, Sequential, EnumerableTransitions, Actions, Goals, UncertainInitialized, Markovian, PartiallyObservable, PositiveCosts, ): """This is a typical Goal Partially Observable Markov Decision Process domain class. This helper class can be used as an alternate base class for domains, inheriting the following: - Domain - SingleAgent - Sequential - EnumerableTransitions - Actions - Goals - UncertainInitialized - Markovian - PartiallyObservable - PositiveCosts Typical use: ```python class D(GoalPOMDPDomain) ``` !!! tip It is also possible to refine any alternate base class, like for instance: ```python class D(RLDomain, FullyObservable) ``` """ pass class DeterministicPlanningDomain( Domain, SingleAgent, Sequential, DeterministicTransitions, Actions, Goals, DeterministicInitialized, Markovian, FullyObservable, PositiveCosts, ): """This is a typical deterministic planning domain class. This helper class can be used as an alternate base class for domains, inheriting the following: - Domain - SingleAgent - Sequential - DeterministicTransitions - Actions - Goals - DeterministicInitialized - Markovian - FullyObservable - PositiveCosts Typical use: ```python class D(DeterministicPlanningDomain) ``` !!! tip It is also possible to refine any alternate base class, like for instance: ```python class D(RLDomain, FullyObservable) ``` """ pass class ParallelDomain: """Base class for creating and launching n domains in separate processes. Each domain listens for incoming domain requests. Each request can indicate which domain should serve it, otherwise the first available domain i is chosen and its id is returned to the incoming request. """ def __init__( self, domain_factory, lambdas=None, nb_domains=os.cpu_count(), ipc_notify=False ): self._domain_factory = domain_factory self._lambdas = lambdas self._active_domains = mp.Array( "b", [False for i in range(nb_domains)], lock=True ) self._initializations = [ mp.Value("b", False, lock=True) for i in range(nb_domains) ] self._conditions = [mp.Condition() for i in range(nb_domains)] self._temp_connections = [None] * nb_domains self._ipc_connections = [None] * nb_domains self._processes = [None] * nb_domains self._ipc_notify = ipc_notify def open_ipc_connection(self, i): self._temp_connections[i] = tempfile.NamedTemporaryFile(delete=True) self._ipc_connections[i] = "ipc://" + self._temp_connections[i].name + ".ipc" def close_ipc_connection(self, i): self._temp_connections[i].close() self._ipc_connections[i] = None def _launch_processes(self): raise NotImplementedError def close(self): raise NotImplementedError def __enter__(self): self._launch_processes() return self def __exit__(self, type, value, tb): self.close() def launch(self, i, name, *args): raise NotImplementedError def get_proc_connections(self): # process connections for use in python raise NotImplementedError def get_ipc_connections(self): # inter-process connections for use with C++ return self._ipc_connections def get_parallel_capacity(self): return self.nb_domains() def nb_domains(self): return len(self._processes) def wake_up_domain(self, i=None): if i is None: while True: for j, v in enumerate(self._active_domains): if not v: self._active_domains[j] = True return j else: self._active_domains[i] = True return i def reset(self, i=None): return self.launch(i, "reset") def get_initial_state_distribution(self, i=None): return self.launch(i, "get_initial_state_distribution") def get_initial_state(self, i=None): return self.launch(i, "get_initial_state") def get_observation_space(self, i=None): return self.launch(i, "get_observation_space") def is_observation(self, observation, i=None): return self.launch(i, "is_observation", observation) def get_observation_distribution(self, state, action, i=None): return self.launch(i, "get_observation_distribution", state, action) def get_observation(self, state, action, i=None): return self.launch(i, "get_observation", state, action) def get_enabled_events(self, memory, i=None): return self.launch(i, "get_enabled_events", memory) def is_enabled_event(self, event, memory, i=None): return self.launch(i, "is_enabled_event", event, memory) def get_action_space(self, i=None): return self.launch(i, "get_action_space") def is_action(self, event, i=None): return self.launch(i, "is_action", event) def get_applicable_actions(self, memory, i=None): return self.launch(i, "get_applicable_actions", memory) def is_applicable_action(self, action, memory, i=None): return self.launch(i, "is_applicable_action", action, memory) def step(self, action, i=None): return self.launch(i, "step", action) def sample(self, memory, action, i=None): return self.launch(i, "sample", memory, action) def get_next_state_distribution(self, memory, action, i=None): return self.launch(i, "get_next_state_distribution", memory, action) def get_next_state(self, memory, action, i=None): return self.launch(i, "get_next_state", memory, action) def get_transition_value(self, memory, action, next_state, i=None): return self.launch(i, "get_transition_value", memory, action, next_state) def is_transition_value_dependent_on_next_state(self, i=None): return self.launch(i, "is_transition_value_dependent_on_next_state") def get_goals(self, i=None): return self.launch(i, "get_goals") def is_goal(self, observation, i=None): return self.launch(i, "is_goal", observation) def is_terminal(self, state, i=None): return self.launch(i, "is_terminal", state) def check_value(self, value, i=None): return self.launch(i, "check_value", value) def render(self, memory, i=None): return self.launch(i, "render", memory) # Call a lambda function (usually involves the original domain) def call(self, i, lambda_id, *args): return self.launch(i, lambda_id, *args) # The original sequential domain may have methods we don't know def __getattr__(self, name): def method(*args, i=None): return self.launch(i, name, *args) return method # Bypass __getattr_.method() when serializing the class. # Required on Windows when spawning the main process. def __getstate__(self): d = self.__dict__.copy() del d["_temp_connections"] # we cannot serialize a file return d # Bypass __getattr_.method() when serializing the class. # Required on Windows when spawning the main process. def __setstate__(self, state): self.__dict__ = state # TODO: reopen the temp connection from _ipc_connections def _launch_domain_server_( domain_factory, lambdas, i, job_results, conn, init, cond, ipc_conn, logger ): domain = domain_factory() if ipc_conn is not None: pusher = Push0() pusher.dial(ipc_conn) with cond: init.value = True cond.notify_all() # inform the parent process that we are ready to process requests while True: job = conn.recv() job_results[i] = None if job is None: if ipc_conn is not None: pusher.close() conn.close() break else: try: if isinstance(job[0], str): # job[0] is a domain class' method r = getattr(domain, job[0])(*job[1]) else: # job[0] is a lambda function r = lambdas[job[0]](domain, *job[1]) job_results[i] = r if ipc_conn is not None: pusher.send(b"0") # send success conn.send("0") # send success except Exception as e: logger.error(rf"/!\ Unable to perform job {job[0]}: {e}") if ipc_conn is not None: pusher.send(str(e).encode(encoding="UTF-8")) # send error message else: conn.send(str(e)) # send failure (!= 0) class PipeParallelDomain(ParallelDomain): """This class can be used to create and launch n domains in separate processes. Each domain listens for incoming domain requests. Each request can indicate which domain should serve it, otherwise the first available domain i is chosen and its id is returned to the incoming request. """ def __init__( self, domain_factory, lambdas=None, nb_domains=os.cpu_count(), ipc_notify=False ): super().__init__(domain_factory, lambdas, nb_domains, ipc_notify) self._manager = mp.Manager() self._waiting_jobs = [None] * nb_domains self._job_results = self._manager.list([None for i in range(nb_domains)]) logger.info(rf"Using {nb_domains} parallel piped domains") def get_proc_connections(self): return self._waiting_jobs def launch(self, i, function, *args): if not any(self._processes): self._launch_processes() try: mi = self.wake_up_domain(i) self._waiting_jobs[mi].send((function, args)) return mi except Exception as e: if isinstance(function, str): logger.error(rf"/!\ Unable to launch job {function}: {e}") else: logger.error(rf"/!\ Unable to launch job lambdas[{function}]: {e}") def get_result(self, i): self._waiting_jobs[i].recv() r = self._job_results[i] self._job_results[i] = None self._active_domains[i] = False return r def _launch_processes(self): for i in range(len(self._job_results)): self.open_ipc_connection(i) pparent, pchild = mp.Pipe() self._waiting_jobs[i] = pparent self._processes[i] = mp.Process( target=_launch_domain_server_, args=[ self._domain_factory, self._lambdas, i, self._job_results, pchild, self._initializations[i], self._conditions[i], self._ipc_connections[i] if self._ipc_notify else None, logger, ], ) self._processes[i].start() # Waits for all jobs to be launched and waiting each for requests for i in range(len(self._job_results)): with self._conditions[i]: self._conditions[i].wait_for( lambda: bool(self._initializations[i].value) == True ) def close(self): for i in range(len(self._job_results)): self._initializations[i].value = False self._waiting_jobs[i].send(None) self._processes[i].join() self._processes[i].close() self._waiting_jobs[i].close() self._processes[i] = None self.close_ipc_connection(i) def _shm_launch_domain_server_( domain_factory, lambdas, i, shm_proxy, shm_registers, shm_types, shm_sizes, rsize, shm_arrays, shm_lambdas, shm_names, shm_params, init, activation, done, cond, ipc_conn, logger, ): domain = domain_factory() if ipc_conn is not None: pusher = Push0() pusher.dial(ipc_conn) with cond: init.value = True cond.notify_all() # inform the parent process that we are ready to process requests def get_string(s): for i, c in enumerate(s): if c == b"\x00": return s[:i].decode() return s.decode() while True: with cond: cond.wait_for(lambda: bool(activation.value) == True) activation.value = False if int(shm_lambdas[i].value) == -1 and shm_names[i][0] == b"\x00": if ipc_conn is not None: pusher.close() break else: try: job_args = [] for p in shm_params[i]: if p >= 0: sz = shm_sizes[shm_types[p].__name__] if sz > 1: si = (i * rsize) + p job_args.append( shm_proxy.decode( shm_types[p], shm_arrays[si : (si + sz)] ) ) else: job_args.append( shm_proxy.decode( shm_types[p], shm_arrays[(i * rsize) + p] ) ) else: break # no more args if ( int(shm_lambdas[i].value) == -1 ): # we are working with a domain class' method result = getattr(domain, get_string(shm_names[i]))(*job_args) else: # we are working with a lambda function result = lambdas[int(shm_lambdas[i].value)](domain, *job_args) shm_params[i][:] = [-1] * len(shm_params[i]) if type(result) is not tuple: result = (result,) if result[0] is not None: type_counters = {} for j, r in enumerate(result): res_name = type(r).__name__ (start, end) = shm_registers[res_name] if res_name in type_counters: type_counters[res_name] += 1 k = type_counters[res_name] if k >= end: raise IndexError( """No more available register for type {}. Please increase the number of registers for that type.""".format( res_name ) ) else: type_counters[res_name] = start k = start shm_params[i][j] = k sz = shm_sizes[res_name] if sz > 1: si = (i * rsize) + k shm_proxy.encode(r, shm_arrays[si : (si + sz)]) else: shm_proxy.encode(r, shm_arrays[(i * rsize) + k]) if ipc_conn is not None: pusher.send(b"0") # send success except Exception as e: if int(shm_lambdas[i].value) == -1: logger.error( rf"/!\ Unable to perform job {get_string(shm_names[i])}: {e}" ) else: logger.error( rf"/!\ Unable to perform job {int(shm_lambdas[i].value)}: {e}" ) if ipc_conn is not None: pusher.send(str(e).encode(encoding="UTF-8")) # send error message with cond: done.value = True cond.notify_all() # send finished status (no success nor failure information) class ShmParallelDomain(ParallelDomain): """This class can be used to create and launch n domains in separate processes with shared memory between the Python processes. Each domain listens for incoming domain requests. Each request can indicate which domain should serve it, otherwise the first available domain is chosen and its id is returned to the incoming request. """ def __init__( self, domain_factory, shm_proxy, lambdas=None, nb_domains=os.cpu_count(), ipc_notify=False, ): super().__init__(domain_factory, lambdas, nb_domains, ipc_notify) self._activations = [mp.Value("b", False, lock=True) for i in range(nb_domains)] self._dones = [mp.Value("b", False, lock=True) for i in range(nb_domains)] self._shm_proxy = shm_proxy self._shm_registers = ( {} ) # Maps from registered method parameter types to vectorized array ranges self._shm_types = {} # Maps from register index to type self._shm_sizes = ( {} ) # Maps from register method parameter types to number of arrays encoding each type self._shm_arrays = [] # Methods' vectorized parameters self._rsize = 0 # Total size of the register (updated below) self._shm_lambdas = [None] * nb_domains # Vectorized lambdas' ids self._shm_names = [None] * nb_domains # Vectorized methods' names self._shm_params = [ None ] * nb_domains # Indices of methods' vectorized parameters for i in range(nb_domains): j = 0 for r in shm_proxy.register(): for k in range(r[1]): m = shm_proxy.initialize(r[0]) if type(m) == list or type(m) == tuple: if ( i == 0 and k == 0 ): # do it once for all the domains and redundant initializers self._shm_sizes[r[0].__name__] = len(m) self._shm_registers[r[0].__name__] = ( j, j + (r[1] * len(m)), ) self._shm_types.update( { kk: r[0] for kk in range(j, j + (r[1] * len(m)), len(m)) } ) self._rsize += r[1] * len(m) self._shm_arrays.extend(m) j += len(m) else: if ( i == 0 and k == 0 ): # do it once for all the domains and redundant initializers self._shm_sizes[r[0].__name__] = 1 self._shm_registers[r[0].__name__] = (j, j + r[1]) self._shm_types.update( {kk: r[0] for kk in range(j, j + r[1])} ) self._rsize += r[1] self._shm_arrays.append(m) j += 1 self._shm_lambdas[i] = mp.Value("i", -1, lock=True) self._shm_names[i] = mp.Array("c", bytearray(100)) self._shm_params[i] = mp.Array( "i", [-1] * sum(r[1] for r in shm_proxy.register()) ) logger.info(rf"Using {nb_domains} parallel shared memory domains") def get_proc_connections(self): return (self._activations, self._conditions) def launch(self, i, function, *args): if not any(self._processes): self._launch_processes() try: mi = self.wake_up_domain(i) if isinstance(function, str): # function is a domain class' method self._shm_lambdas[mi].value = -1 self._shm_names[mi][:] = bytearray( function, encoding="utf-8" ) + bytearray(len(self._shm_names[mi]) - len(function)) else: # function is a lambda id self._shm_lambdas[mi].value = int(function) self._shm_names[mi][:] = bytearray( len(self._shm_names[mi]) ) # reset with null bytes self._shm_params[mi][:] = [-1] * len(self._shm_params[mi]) type_counters = {} for j, a in enumerate(args): arg_name = type(a).__name__ (start, end) = self._shm_registers[arg_name] if arg_name in type_counters: type_counters[arg_name] += self._shm_sizes[arg_name] k = type_counters[arg_name] if k >= end: raise IndexError( """No more available register for type {}. Please increase the number of registers for that type.""".format( arg_name ) ) else: type_counters[arg_name] = start k = start self._shm_params[mi][j] = k sz = self._shm_sizes[arg_name] if sz > 1: si = (mi * self._rsize) + k self._shm_proxy.encode(a, self._shm_arrays[si : (si + sz)]) else: self._shm_proxy.encode(a, self._shm_arrays[(mi * self._rsize) + k]) with self._conditions[mi]: self._activations[mi].value = True self._conditions[mi].notify_all() return mi except Exception as e: if isinstance(function, str): logger.error(rf"/!\ Unable to launch job {function}: {e}") else: logger.error(rf"/!\ Unable to launch job lambdas[{function}]: {e}") def get_result(self, i): with self._conditions[i]: self._conditions[i].wait_for(lambda: bool(self._dones[i].value) == True) self._dones[i].value = False results = [] for r in self._shm_params[i]: if r >= 0: sz = self._shm_sizes[self._shm_types[r].__name__] if sz > 1: si = (i * self._rsize) + r results.append( self._shm_proxy.decode( self._shm_types[r], self._shm_arrays[si : (si + sz)] ) ) else: results.append( self._shm_proxy.decode( self._shm_types[r], self._shm_arrays[(i * self._rsize) + r] ) ) else: break # no more params self._active_domains[i] = False return results if len(results) > 1 else results[0] if len(results) > 0 else None def _launch_processes(self): for i in range(len(self._processes)): self.open_ipc_connection(i) self._processes[i] = mp.Process( target=_shm_launch_domain_server_, args=[ self._domain_factory, self._lambdas, i, self._shm_proxy.copy(), dict(self._shm_registers), dict(self._shm_types), dict(self._shm_sizes), self._rsize, list(self._shm_arrays), list(self._shm_lambdas), list(self._shm_names), list(self._shm_params), self._initializations[i], self._activations[i], self._dones[i], self._conditions[i], self._ipc_connections[i] if self._ipc_notify else None, logger, ], ) self._processes[i].start() # Waits for all jobs to be launched and waiting each for requests for i in range(len(self._processes)): with self._conditions[i]: self._conditions[i].wait_for( lambda: bool(self._initializations[i].value) == True ) def close(self): for i in range(len(self._processes)): self._initializations[i].value = False self._shm_lambdas[i].value = -1 self._shm_names[i][:] = bytearray( len(self._shm_names[i]) ) # reset with null bytes self._shm_params[i][:] = [-1] * len(self._shm_params[i]) with self._conditions[i]: self._activations[i].value = True self._conditions[i].notify_all() self._processes[i].join() self._processes[i].close() self._processes[i] = None self.close_ipc_connection(i)
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/domains.py
0.904049
0.572932
domains.py
pypi
from __future__ import annotations from skdecide.core import D, Value, autocastable __all__ = ["Rewards", "PositiveCosts"] class Rewards: """A domain must inherit this class if it sends rewards (positive and/or negative).""" @autocastable def check_value(self, value: Value[D.T_value]) -> bool: """Check that a value is compliant with its reward specification. !!! tip This function returns always True by default because any kind of reward should be accepted at this level. # Parameters value: The value to check. # Returns True if the value is compliant (False otherwise). """ return self._check_value(value) def _check_value(self, value: Value[D.T_value]) -> bool: """Check that a value is compliant with its reward specification. !!! tip This function returns always True by default because any kind of reward should be accepted at this level. # Parameters value: The value to check. # Returns True if the value is compliant (False otherwise). """ return True class PositiveCosts(Rewards): """A domain must inherit this class if it sends only positive costs (i.e. negative rewards). Having only positive costs is a required assumption for certain solvers to work, such as classical planners. """ def _check_value(self, value: Value[D.T_value]) -> bool: """Check that a value is compliant with its cost specification (must be positive). !!! tip This function calls #PositiveCost._is_positive() to determine if a value is positive (can be overridden for advanced value types). # Parameters value: The value to check. # Returns True if the value is compliant (False otherwise). """ return self._is_positive(value.cost) def _is_positive(self, cost: D.T_value) -> bool: """Determine if a value is positive (can be overridden for advanced value types). # Parameters cost: The cost to evaluate. # Returns True if the cost is positive (False otherwise). """ return cost >= 0
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/builders/domain/value.py
0.930836
0.498352
value.py
pypi
from __future__ import annotations import functools from skdecide.core import D, Distribution, SingleValueDistribution, autocastable __all__ = ["Initializable", "UncertainInitialized", "DeterministicInitialized"] class Initializable: """A domain must inherit this class if it can be initialized.""" @autocastable def reset(self) -> D.T_agent[D.T_observation]: """Reset the state of the environment and return an initial observation. By default, #Initializable.reset() provides some boilerplate code and internally calls #Initializable._reset() (which returns an initial state). The boilerplate code automatically stores the initial state into the #_memory attribute and samples a corresponding observation. # Returns An initial observation. """ return self._reset() def _reset(self) -> D.T_agent[D.T_observation]: """Reset the state of the environment and return an initial observation. By default, #Initializable._reset() provides some boilerplate code and internally calls #Initializable._state_reset() (which returns an initial state). The boilerplate code automatically stores the initial state into the #_memory attribute and samples a corresponding observation. # Returns An initial observation. """ initial_state = self._state_reset() self._memory = self._init_memory(initial_state) initial_observation = self._get_observation_distribution(initial_state).sample() return initial_observation def _state_reset(self) -> D.T_state: """Reset the state of the environment and return an initial state. This is a helper function called by default from #Initializable._reset(). It focuses on the state level, as opposed to the observation one for the latter. # Returns An initial state. """ raise NotImplementedError class UncertainInitialized(Initializable): """A domain must inherit this class if its states are initialized according to a probability distribution known as white-box.""" def _state_reset(self) -> D.T_state: initial_state = self._get_initial_state_distribution().sample() return initial_state @autocastable def get_initial_state_distribution(self) -> Distribution[D.T_state]: """Get the (cached) probability distribution of initial states. By default, #UncertainInitialized.get_initial_state_distribution() internally calls #UncertainInitialized._get_initial_state_distribution_() the first time and automatically caches its value to make future calls more efficient (since the initial state distribution is assumed to be constant). # Returns The probability distribution of initial states. """ return self._get_initial_state_distribution() @functools.lru_cache() def _get_initial_state_distribution(self) -> Distribution[D.T_state]: """Get the (cached) probability distribution of initial states. By default, #UncertainInitialized._get_initial_state_distribution() internally calls #UncertainInitialized._get_initial_state_distribution_() the first time and automatically caches its value to make future calls more efficient (since the initial state distribution is assumed to be constant). # Returns The probability distribution of initial states. """ return self._get_initial_state_distribution_() def _get_initial_state_distribution_(self) -> Distribution[D.T_state]: """Get the probability distribution of initial states. This is a helper function called by default from #UncertainInitialized._get_initial_state_distribution(), the difference being that the result is not cached here. !!! tip The underscore at the end of this function's name is a convention to remind that its result should be constant. # Returns The probability distribution of initial states. """ raise NotImplementedError class DeterministicInitialized(UncertainInitialized): """A domain must inherit this class if it has a deterministic initial state known as white-box.""" def _get_initial_state_distribution_(self) -> Distribution[D.T_state]: return SingleValueDistribution(self._get_initial_state()) @autocastable def get_initial_state(self) -> D.T_state: """Get the (cached) initial state. By default, #DeterministicInitialized.get_initial_state() internally calls #DeterministicInitialized._get_initial_state_() the first time and automatically caches its value to make future calls more efficient (since the initial state is assumed to be constant). # Returns The initial state. """ return self._get_initial_state() @functools.lru_cache() def _get_initial_state(self) -> D.T_state: """Get the (cached) initial state. By default, #DeterministicInitialized._get_initial_state() internally calls #DeterministicInitialized._get_initial_state_() the first time and automatically caches its value to make future calls more efficient (since the initial state is assumed to be constant). # Returns The initial state. """ return self._get_initial_state_() def _get_initial_state_(self) -> D.T_state: """Get the initial state. This is a helper function called by default from #DeterministicInitialized._get_initial_state(), the difference being that the result is not cached here. # Returns The initial state. """ raise NotImplementedError
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/builders/domain/initialization.py
0.933363
0.682818
initialization.py
pypi
from __future__ import annotations import functools from typing import Optional, Union from skdecide.core import D, Memory __all__ = ["History", "FiniteHistory", "Markovian", "Memoryless"] class History: """A domain must inherit this class if its full state history must be stored to compute its dynamics (non-Markovian domain).""" _memory: D.T_memory[D.T_state] T_memory = Memory def _init_memory(self, state: Optional[D.T_state] = None) -> D.T_memory[D.T_state]: """Initialize memory (possibly with a state) according to its specification and return it. This function is automatically called by #Initializable._reset() to reinitialize the internal memory whenever the domain is used as an environment. # Parameters state: An optional state to initialize the memory with (typically the initial state). # Returns The new initialized memory. """ content = [state] if state is not None else [] return Memory(content, maxlen=self._get_memory_maxlen()) def _get_memory_maxlen(self) -> Optional[int]: """Get the memory max length (or None if unbounded). !!! tip This function returns always None by default because the memory length is unbounded at this level. # Returns The memory max length (or None if unbounded). """ return None class FiniteHistory(History): """A domain must inherit this class if the last N states must be stored to compute its dynamics (Markovian domain of order N). N is specified by the return value of the #FiniteHistory._get_memory_maxlen() function. """ T_memory = Memory @functools.lru_cache() def _get_memory_maxlen(self) -> int: """Get the (cached) memory max length. By default, #FiniteHistory._get_memory_maxlen() internally calls #FiniteHistory._get_memory_maxlen_() the first time and automatically caches its value to make future calls more efficient (since the memory max length is assumed to be constant). # Returns The memory max length. """ return self._get_memory_maxlen_() def _get_memory_maxlen_(self) -> int: """Get the memory max length. This is a helper function called by default from #FiniteHistory._get_memory_maxlen(), the difference being that the result is not cached here. !!! tip The underscore at the end of this function's name is a convention to remind that its result should be constant. # Returns The memory max length. """ raise NotImplementedError class Markovian(FiniteHistory): """A domain must inherit this class if only its last state must be stored to compute its dynamics (pure Markovian domain).""" T_memory = Union def _init_memory(self, state: Optional[D.T_state] = None) -> D.T_memory[D.T_state]: return state def _get_memory_maxlen_(self) -> int: return 1 class Memoryless(Markovian): """A domain must inherit this class if it does not require any previous state(s) to be stored to compute its dynamics. A dice roll simulator is an example of memoryless domain (next states are independent of previous ones). !!! tip Whenever an existing domain (environment, simulator...) needs to be wrapped instead of implemented fully in scikit-decide (e.g. compiled ATARI games), Memoryless can be used because the domain memory (if any) would be handled externally. """ T_memory = Union def _init_memory(self, state: Optional[D.T_state] = None) -> D.T_memory[D.T_state]: return None def _get_memory_maxlen_(self) -> int: return 0
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/builders/domain/memory.py
0.94688
0.39946
memory.py
pypi
from __future__ import annotations import functools from typing import Optional from skdecide.core import ( D, DiscreteDistribution, Distribution, EnvironmentOutcome, SingleValueDistribution, TransitionOutcome, Value, autocastable, ) __all__ = [ "Environment", "Simulation", "UncertainTransitions", "EnumerableTransitions", "DeterministicTransitions", ] class Environment: """A domain must inherit this class if agents interact with it like a black-box environment. Black-box environment examples include: the real world, compiled ATARI games, etc. !!! tip Environment domains are typically stateful: they must keep the current state or history in their memory to compute next steps (automatically done by default in the #_memory attribute). """ @autocastable def step( self, action: D.T_agent[D.T_concurrency[D.T_event]] ) -> EnvironmentOutcome[ D.T_agent[D.T_observation], D.T_agent[Value[D.T_value]], D.T_agent[D.T_predicate], D.T_agent[D.T_info], ]: """Run one step of the environment's dynamics. By default, #Environment.step() provides some boilerplate code and internally calls #Environment._step() (which returns a transition outcome). The boilerplate code automatically stores next state into the #_memory attribute and samples a corresponding observation. !!! tip Whenever an existing environment needs to be wrapped instead of implemented fully in scikit-decide (e.g. compiled ATARI games), it is recommended to overwrite #Environment.step() to call the external environment and not use the #Environment._step() helper function. !!! warning Before calling #Environment.step() the first time or when the end of an episode is reached, #Initializable.reset() must be called to reset the environment's state. # Parameters action: The action taken in the current memory (state or history) triggering the transition. # Returns The environment outcome of this step. """ return self._step(action) def _step( self, action: D.T_agent[D.T_concurrency[D.T_event]] ) -> EnvironmentOutcome[ D.T_agent[D.T_observation], D.T_agent[Value[D.T_value]], D.T_agent[D.T_predicate], D.T_agent[D.T_info], ]: """Run one step of the environment's dynamics. By default, #Environment._step() provides some boilerplate code and internally calls #Environment._state_step() (which returns a transition outcome). The boilerplate code automatically stores next state into the #_memory attribute and samples a corresponding observation. !!! tip Whenever an existing environment needs to be wrapped instead of implemented fully in scikit-decide (e.g. compiled ATARI games), it is recommended to overwrite #Environment._step() to call the external environment and not use the #Environment._state_step() helper function. !!! warning Before calling #Environment._step() the first time or when the end of an episode is reached, #Initializable._reset() must be called to reset the environment's state. # Parameters action: The action taken in the current memory (state or history) triggering the transition. # Returns The environment outcome of this step. """ transition_outcome = self._state_step(action) next_state = transition_outcome.state observation = self._get_observation_distribution(next_state, action).sample() if self._get_memory_maxlen() == 1: self._memory = next_state elif self._get_memory_maxlen() > 1: self._memory.append(next_state) return EnvironmentOutcome( observation, transition_outcome.value, transition_outcome.termination, transition_outcome.info, ) def _state_step( self, action: D.T_agent[D.T_concurrency[D.T_event]] ) -> TransitionOutcome[ D.T_state, D.T_agent[Value[D.T_value]], D.T_agent[D.T_predicate], D.T_agent[D.T_info], ]: """Compute one step of the transition's dynamics. This is a helper function called by default from #Environment._step(). It focuses on the state level, as opposed to the observation one for the latter. # Parameters action: The action taken in the current memory (state or history) triggering the transition. # Returns The transition outcome of this step. """ raise NotImplementedError class Simulation(Environment): """A domain must inherit this class if agents interact with it like a simulation. Compared to pure environment domains, simulation ones have the additional ability to sample transitions from any given state. !!! tip Simulation domains are typically stateless: they do not need to store the current state or history in memory since it is usually passed as parameter of their functions. By default, they only become stateful whenever they are used as environments (e.g. via #Initializable.reset() and #Environment.step() functions). """ def _state_step( self, action: D.T_agent[D.T_concurrency[D.T_event]] ) -> TransitionOutcome[ D.T_state, D.T_agent[Value[D.T_value]], D.T_agent[D.T_predicate], D.T_agent[D.T_info], ]: return self._state_sample(self._memory, action) @autocastable def set_memory(self, memory: D.T_memory[D.T_state]) -> None: """Set internal memory attribute #_memory to given one. This can be useful to set a specific "starting point" before doing a rollout with successive #Environment.step() calls. # Parameters memory: The memory to set internally. # Example ```python # Set simulation_domain memory to my_state (assuming Markovian domain) simulation_domain.set_memory(my_state) # Start a 100-steps rollout from here (applying my_action at every step) for _ in range(100): simulation_domain.step(my_action) ``` """ return self._set_memory(memory) def _set_memory(self, memory: D.T_memory[D.T_state]) -> None: """Set internal memory attribute #_memory to given one. This can be useful to set a specific "starting point" before doing a rollout with successive #Environment._step() calls. # Parameters memory: The memory to set internally. # Example ```python # Set simulation_domain memory to my_state (assuming Markovian domain) simulation_domain._set_memory(my_state) # Start a 100-steps rollout from here (applying my_action at every step) for _ in range(100): simulation_domain._step(my_action) ``` """ self._memory = memory @autocastable def sample( self, memory: D.T_memory[D.T_state], action: D.T_agent[D.T_concurrency[D.T_event]], ) -> EnvironmentOutcome[ D.T_agent[D.T_observation], D.T_agent[Value[D.T_value]], D.T_agent[D.T_predicate], D.T_agent[D.T_info], ]: """Sample one transition of the simulator's dynamics. By default, #Simulation.sample() provides some boilerplate code and internally calls #Simulation._sample() (which returns a transition outcome). The boilerplate code automatically samples an observation corresponding to the sampled next state. !!! tip Whenever an existing simulator needs to be wrapped instead of implemented fully in scikit-decide (e.g. a simulator), it is recommended to overwrite #Simulation.sample() to call the external simulator and not use the #Simulation._sample() helper function. # Parameters memory: The source memory (state or history) of the transition. action: The action taken in the given memory (state or history) triggering the transition. # Returns The environment outcome of the sampled transition. """ return self._sample(memory, action) def _sample( self, memory: D.T_memory[D.T_state], action: D.T_agent[D.T_concurrency[D.T_event]], ) -> EnvironmentOutcome[ D.T_agent[D.T_observation], D.T_agent[Value[D.T_value]], D.T_agent[D.T_predicate], D.T_agent[D.T_info], ]: """Sample one transition of the simulator's dynamics. By default, #Simulation._sample() provides some boilerplate code and internally calls #Simulation._state_sample() (which returns a transition outcome). The boilerplate code automatically samples an observation corresponding to the sampled next state. !!! tip Whenever an existing simulator needs to be wrapped instead of implemented fully in scikit-decide (e.g. a simulator), it is recommended to overwrite #Simulation._sample() to call the external simulator and not use the #Simulation._state_sample() helper function. # Parameters memory: The source memory (state or history) of the transition. action: The action taken in the given memory (state or history) triggering the transition. # Returns The environment outcome of the sampled transition. """ transition_outcome = self._state_sample(memory, action) next_state = transition_outcome.state observation = self._get_observation_distribution(next_state, action).sample() return EnvironmentOutcome( observation, transition_outcome.value, transition_outcome.termination, transition_outcome.info, ) def _state_sample( self, memory: D.T_memory[D.T_state], action: D.T_agent[D.T_concurrency[D.T_event]], ) -> TransitionOutcome[ D.T_state, D.T_agent[Value[D.T_value]], D.T_agent[D.T_predicate], D.T_agent[D.T_info], ]: """Compute one sample of the transition's dynamics. This is a helper function called by default from #Simulation._sample(). It focuses on the state level, as opposed to the observation one for the latter. # Parameters memory: The source memory (state or history) of the transition. action: The action taken in the given memory (state or history) triggering the transition. # Returns The transition outcome of the sampled transition. """ raise NotImplementedError class UncertainTransitions(Simulation): """A domain must inherit this class if its dynamics is uncertain and provided as a white-box model. Compared to pure simulation domains, uncertain transition ones provide in addition the full probability distribution of next states given a memory and action. !!! tip Uncertain transition domains are typically stateless: they do not need to store the current state or history in memory since it is usually passed as parameter of their functions. By default, they only become stateful whenever they are used as environments (e.g. via #Initializable.reset() and #Environment.step() functions). """ def _state_sample( self, memory: D.T_memory[D.T_state], action: D.T_agent[D.T_concurrency[D.T_event]], ) -> TransitionOutcome[ D.T_state, D.T_agent[Value[D.T_value]], D.T_agent[D.T_predicate], D.T_agent[D.T_info], ]: next_state = self._get_next_state_distribution(memory, action).sample() value = self._get_transition_value(memory, action, next_state) # Termination could be inferred using get_next_state_distribution based on next_state, # but would introduce multiple constraints on class definitions termination = self._is_terminal(next_state) return TransitionOutcome(next_state, value, termination, None) @autocastable def get_next_state_distribution( self, memory: D.T_memory[D.T_state], action: D.T_agent[D.T_concurrency[D.T_event]], ) -> Distribution[D.T_state]: """Get the probability distribution of next state given a memory and action. # Parameters memory: The source memory (state or history) of the transition. action: The action taken in the given memory (state or history) triggering the transition. # Returns The probability distribution of next state. """ return self._get_next_state_distribution(memory, action) def _get_next_state_distribution( self, memory: D.T_memory[D.T_state], action: D.T_agent[D.T_concurrency[D.T_event]], ) -> Distribution[D.T_state]: """Get the probability distribution of next state given a memory and action. # Parameters memory: The source memory (state or history) of the transition. action: The action taken in the given memory (state or history) triggering the transition. # Returns The probability distribution of next state. """ raise NotImplementedError @autocastable def get_transition_value( self, memory: D.T_memory[D.T_state], action: D.T_agent[D.T_concurrency[D.T_event]], next_state: Optional[D.T_state] = None, ) -> D.T_agent[Value[D.T_value]]: """Get the value (reward or cost) of a transition. The transition to consider is defined by the function parameters. !!! tip If this function never depends on the next_state parameter for its computation, it is recommended to indicate it by overriding #UncertainTransitions._is_transition_value_dependent_on_next_state_() to return False. This information can then be exploited by solvers to avoid computing next state to evaluate a transition value (more efficient). # Parameters memory: The source memory (state or history) of the transition. action: The action taken in the given memory (state or history) triggering the transition. next_state: The next state in which the transition ends (if needed for the computation). # Returns The transition value (reward or cost). """ return self._get_transition_value(memory, action, next_state) def _get_transition_value( self, memory: D.T_memory[D.T_state], action: D.T_agent[D.T_concurrency[D.T_event]], next_state: Optional[D.T_state] = None, ) -> D.T_agent[Value[D.T_value]]: """Get the value (reward or cost) of a transition. The transition to consider is defined by the function parameters. !!! tip If this function never depends on the next_state parameter for its computation, it is recommended to indicate it by overriding #UncertainTransitions._is_transition_value_dependent_on_next_state_() to return False. This information can then be exploited by solvers to avoid computing next state to evaluate a transition value (more efficient). # Parameters memory: The source memory (state or history) of the transition. action: The action taken in the given memory (state or history) triggering the transition. next_state: The next state in which the transition ends (if needed for the computation). # Returns The transition value (reward or cost). """ raise NotImplementedError @autocastable def is_transition_value_dependent_on_next_state(self) -> bool: """Indicate whether get_transition_value() requires the next_state parameter for its computation (cached). By default, #UncertainTransitions.is_transition_value_dependent_on_next_state() internally calls #UncertainTransitions._is_transition_value_dependent_on_next_state_() the first time and automatically caches its value to make future calls more efficient (since the returned value is assumed to be constant). # Returns True if the transition value computation depends on next_state (False otherwise). """ return self._is_transition_value_dependent_on_next_state() @functools.lru_cache() def _is_transition_value_dependent_on_next_state(self) -> bool: """Indicate whether _get_transition_value() requires the next_state parameter for its computation (cached). By default, #UncertainTransitions._is_transition_value_dependent_on_next_state() internally calls #UncertainTransitions._is_transition_value_dependent_on_next_state_() the first time and automatically caches its value to make future calls more efficient (since the returned value is assumed to be constant). # Returns True if the transition value computation depends on next_state (False otherwise). """ return self._is_transition_value_dependent_on_next_state_() def _is_transition_value_dependent_on_next_state_(self) -> bool: """Indicate whether _get_transition_value() requires the next_state parameter for its computation. This is a helper function called by default from #UncertainTransitions._is_transition_value_dependent_on_next_state(), the difference being that the result is not cached here. !!! tip The underscore at the end of this function's name is a convention to remind that its result should be constant. # Returns True if the transition value computation depends on next_state (False otherwise). """ return True @autocastable def is_terminal(self, state: D.T_state) -> D.T_agent[D.T_predicate]: """Indicate whether a state is terminal. A terminal state is a state with no outgoing transition (except to itself with value 0). # Parameters state: The state to consider. # Returns True if the state is terminal (False otherwise). """ return self._is_terminal(state) def _is_terminal(self, state: D.T_state) -> D.T_agent[D.T_predicate]: """Indicate whether a state is terminal. A terminal state is a state with no outgoing transition (except to itself with value 0). # Parameters state: The state to consider. # Returns True if the state is terminal (False otherwise). """ raise NotImplementedError class EnumerableTransitions(UncertainTransitions): """A domain must inherit this class if its dynamics is uncertain (with enumerable transitions) and provided as a white-box model. Compared to pure uncertain transition domains, enumerable transition ones guarantee that all probability distributions of next state are discrete. !!! tip Enumerable transition domains are typically stateless: they do not need to store the current state or history in memory since it is usually passed as parameter of their functions. By default, they only become stateful whenever they are used as environments (e.g. via #Initializable.reset() and #Environment.step() functions). """ @autocastable def get_next_state_distribution( self, memory: D.T_memory[D.T_state], action: D.T_agent[D.T_concurrency[D.T_event]], ) -> DiscreteDistribution[D.T_state]: """Get the discrete probability distribution of next state given a memory and action. !!! tip In the Markovian case (memory only holds last state $s$), given an action $a$, this function can be mathematically represented by $P(S'|s, a)$, where $S'$ is the next state random variable. # Parameters memory: The source memory (state or history) of the transition. action: The action taken in the given memory (state or history) triggering the transition. # Returns The discrete probability distribution of next state. """ return self._get_next_state_distribution(memory, action) def _get_next_state_distribution( self, memory: D.T_memory[D.T_state], action: D.T_agent[D.T_concurrency[D.T_event]], ) -> DiscreteDistribution[D.T_state]: """Get the discrete probability distribution of next state given a memory and action. !!! tip In the Markovian case (memory only holds last state $s$), given an action $a$, this function can be mathematically represented by $P(S'|s, a)$, where $S'$ is the next state random variable. # Parameters memory: The source memory (state or history) of the transition. action: The action taken in the given memory (state or history) triggering the transition. # Returns The discrete probability distribution of next state. """ raise NotImplementedError class DeterministicTransitions(EnumerableTransitions): """A domain must inherit this class if its dynamics is deterministic and provided as a white-box model. Compared to pure enumerable transition domains, deterministic transition ones guarantee that there is only one next state for a given source memory (state or history) and action. !!! tip Deterministic transition domains are typically stateless: they do not need to store the current state or history in memory since it is usually passed as parameter of their functions. By default, they only become stateful whenever they are used as environments (e.g. via #Initializable.reset() and #Environment.step() functions). """ def _get_next_state_distribution( self, memory: D.T_memory[D.T_state], action: D.T_agent[D.T_concurrency[D.T_event]], ) -> SingleValueDistribution[D.T_state]: return SingleValueDistribution(self._get_next_state(memory, action)) @autocastable def get_next_state( self, memory: D.T_memory[D.T_state], action: D.T_agent[D.T_concurrency[D.T_event]], ) -> D.T_state: """Get the next state given a memory and action. # Parameters memory: The source memory (state or history) of the transition. action: The action taken in the given memory (state or history) triggering the transition. # Returns The deterministic next state. """ return self._get_next_state(memory, action) def _get_next_state( self, memory: D.T_memory[D.T_state], action: D.T_agent[D.T_concurrency[D.T_event]], ) -> D.T_state: """Get the next state given a memory and action. # Parameters memory: The source memory (state or history) of the transition. action: The action taken in the given memory (state or history) triggering the transition. # Returns The deterministic next state. """ raise NotImplementedError
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/builders/domain/dynamics.py
0.947442
0.725235
dynamics.py
pypi
from __future__ import annotations import functools from typing import Union from skdecide.core import D, Space, autocastable __all__ = ["Goals"] class Goals: """A domain must inherit this class if it has formalized goals.""" @autocastable def get_goals(self) -> D.T_agent[Space[D.T_observation]]: """Get the (cached) domain goals space (finite or infinite set). By default, #Goals.get_goals() internally calls #Goals._get_goals_() the first time and automatically caches its value to make future calls more efficient (since the goals space is assumed to be constant). !!! warning Goal states are assumed to be fully observable (i.e. observation = state) so that there is never uncertainty about whether the goal has been reached or not. This assumption guarantees that any policy that does not reach the goal with certainty incurs in infinite expected cost. - *Geffner, 2013: A Concise Introduction to Models and Methods for Automated Planning* # Returns The goals space. """ return self._get_goals() @functools.lru_cache() def _get_goals(self) -> D.T_agent[Space[D.T_observation]]: """Get the (cached) domain goals space (finite or infinite set). By default, #Goals._get_goals() internally calls #Goals._get_goals_() the first time and automatically caches its value to make future calls more efficient (since the goals space is assumed to be constant). !!! warning Goal states are assumed to be fully observable (i.e. observation = state) so that there is never uncertainty about whether the goal has been reached or not. This assumption guarantees that any policy that does not reach the goal with certainty incurs in infinite expected cost. - *Geffner, 2013: A Concise Introduction to Models and Methods for Automated Planning* # Returns The goals space. """ return self._get_goals_() def _get_goals_(self) -> D.T_agent[Space[D.T_observation]]: """Get the domain goals space (finite or infinite set). This is a helper function called by default from #Goals._get_goals(), the difference being that the result is not cached here. !!! tip The underscore at the end of this function's name is a convention to remind that its result should be constant. # Returns The goals space. """ raise NotImplementedError @autocastable def is_goal( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_predicate]: """Indicate whether an observation belongs to the goals. !!! tip By default, this function is implemented using the #skdecide.core.Space.contains() function on the domain goals space provided by #Goals.get_goals(), but it can be overridden for faster implementations. # Parameters observation: The observation to consider. # Returns True if the observation is a goal (False otherwise). """ return self._is_goal(observation) def _is_goal( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_predicate]: """Indicate whether an observation belongs to the goals. !!! tip By default, this function is implemented using the #skdecide.core.Space.contains() function on the domain goals space provided by #Goals._get_goals(), but it can be overridden for faster implementations. # Parameters observation: The observation to consider. # Returns True if the observation is a goal (False otherwise). """ goals = self._get_goals() if self.T_agent == Union: return goals.contains(observation) else: # StrDict return {k: goals[k].contains(v) for k, v in observation.items()}
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/builders/domain/goals.py
0.951605
0.457016
goals.py
pypi
from __future__ import annotations from typing import Any, Optional from skdecide.core import D, autocastable __all__ = ["Renderable"] class Renderable: """A domain must inherit this class if it can be rendered with any kind of visualization.""" @autocastable def render( self, memory: Optional[D.T_memory[D.T_state]] = None, **kwargs: Any ) -> Any: """Compute a visual render of the given memory (state or history), or the internal one if omitted. By default, #Renderable.render() provides some boilerplate code and internally calls #Renderable._render(). The boilerplate code automatically passes the #_memory attribute instead of the memory parameter whenever the latter is None. # Parameters memory: The memory to consider (if None, the internal memory attribute #_memory is used instead). # Returns A render (e.g. image) or nothing (if the function handles the display directly). """ return self._render(memory, **kwargs) def _render( self, memory: Optional[D.T_memory[D.T_state]] = None, **kwargs: Any ) -> Any: """Compute a visual render of the given memory (state or history), or the internal one if omitted. By default, #Renderable._render() provides some boilerplate code and internally calls #Renderable._render_from(). The boilerplate code automatically passes the #_memory attribute instead of the memory parameter whenever the latter is None. # Parameters memory: The memory to consider (if None, the internal memory attribute #_memory is used instead). # Returns A render (e.g. image) or nothing (if the function handles the display directly). """ if memory is None: memory = self._memory return self._render_from(memory, **kwargs) def _render_from(self, memory: D.T_memory[D.T_state], **kwargs: Any) -> Any: """Compute a visual render of the given memory (state or history). This is a helper function called by default from #Renderable._render(), the difference being that the memory parameter is mandatory here. # Parameters memory: The memory to consider. # Returns A render (e.g. image) or nothing (if the function handles the display directly). """ raise NotImplementedError
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/builders/domain/renderability.py
0.945362
0.528716
renderability.py
pypi
from __future__ import annotations import functools from typing import List from skdecide.core import Constraint, D, autocastable __all__ = ["Constrained"] class Constrained: """A domain must inherit this class if it has constraints.""" @autocastable def get_constraints( self, ) -> List[ Constraint[ D.T_memory[D.T_state], D.T_agent[D.T_concurrency[D.T_event]], D.T_state ] ]: """Get the (cached) domain constraints. By default, #Constrained.get_constraints() internally calls #Constrained._get_constraints_() the first time and automatically caches its value to make future calls more efficient (since the list of constraints is assumed to be constant). # Returns The list of constraints. """ return self._get_constraints() @functools.lru_cache() def _get_constraints( self, ) -> List[ Constraint[ D.T_memory[D.T_state], D.T_agent[D.T_concurrency[D.T_event]], D.T_state ] ]: """Get the (cached) domain constraints. By default, #Constrained._get_constraints() internally calls #Constrained._get_constraints_() the first time and automatically caches its value to make future calls more efficient (since the list of constraints is assumed to be constant). # Returns The list of constraints. """ return self._get_constraints_() def _get_constraints_( self, ) -> List[ Constraint[ D.T_memory[D.T_state], D.T_agent[D.T_concurrency[D.T_event]], D.T_state ] ]: """Get the domain constraints. This is a helper function called by default from #Constrained.get_constraints(), the difference being that the result is not cached here. !!! tip The underscore at the end of this function's name is a convention to remind that its result should be constant. # Returns The list of constraints. """ raise NotImplementedError
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/builders/domain/constraints.py
0.911695
0.377369
constraints.py
pypi
from __future__ import annotations import functools from typing import Optional, Union from skdecide.core import D, Distribution, SingleValueDistribution, Space, autocastable __all__ = ["PartiallyObservable", "TransformedObservable", "FullyObservable"] class PartiallyObservable: """A domain must inherit this class if it is partially observable. "Partially observable" means that the observation provided to the agent is computed from (but generally not equal to) the internal state of the domain. Additionally, according to literature, a partially observable domain must provide the probability distribution of the observation given a state and action. """ @autocastable def get_observation_space(self) -> D.T_agent[Space[D.T_observation]]: """Get the (cached) observation space (finite or infinite set). By default, #PartiallyObservable.get_observation_space() internally calls #PartiallyObservable._get_observation_space_() the first time and automatically caches its value to make future calls more efficient (since the observation space is assumed to be constant). # Returns The observation space. """ return self._get_observation_space() @functools.lru_cache() def _get_observation_space(self) -> D.T_agent[Space[D.T_observation]]: """Get the (cached) observation space (finite or infinite set). By default, #PartiallyObservable._get_observation_space() internally calls #PartiallyObservable._get_observation_space_() the first time and automatically caches its value to make future calls more efficient (since the observation space is assumed to be constant). # Returns The observation space. """ return self._get_observation_space_() def _get_observation_space_(self) -> D.T_agent[Space[D.T_observation]]: """Get the observation space (finite or infinite set). This is a helper function called by default from #PartiallyObservable._get_observation_space(), the difference being that the result is not cached here. !!! tip The underscore at the end of this function's name is a convention to remind that its result should be constant. # Returns The observation space. """ raise NotImplementedError @autocastable def is_observation(self, observation: D.T_agent[D.T_observation]) -> bool: """Check that an observation indeed belongs to the domain observation space. !!! tip By default, this function is implemented using the #skdecide.core.Space.contains() function on the domain observation space provided by #PartiallyObservable.get_observation_space(), but it can be overridden for faster implementations. # Parameters observation: The observation to consider. # Returns True if the observation belongs to the domain observation space (False otherwise). """ return self._is_observation(observation) def _is_observation(self, observation: D.T_agent[D.T_observation]) -> bool: """Check that an observation indeed belongs to the domain observation space. !!! tip By default, this function is implemented using the #skdecide.core.Space.contains() function on the domain observation space provided by #PartiallyObservable._get_observation_space(), but it can be overridden for faster implementations. # Parameters observation: The observation to consider. # Returns True if the observation belongs to the domain observation space (False otherwise). """ observation_space = self._get_observation_space() if self.T_agent == Union: return observation_space.contains(observation) else: # StrDict return all(observation_space[k].contains(v) for k, v in observation.items()) @autocastable def get_observation_distribution( self, state: D.T_state, action: Optional[D.T_agent[D.T_concurrency[D.T_event]]] = None, ) -> Distribution[D.T_agent[D.T_observation]]: """Get the probability distribution of the observation given a state and action. In mathematical terms (discrete case), given an action $a$, this function represents: $P(O|s, a)$, where $O$ is the random variable of the observation. # Parameters state: The state to be observed. action: The last applied action (or None if the state is an initial state). # Returns The probability distribution of the observation. """ return self._get_observation_distribution(state, action) def _get_observation_distribution( self, state: D.T_state, action: Optional[D.T_agent[D.T_concurrency[D.T_event]]] = None, ) -> Distribution[D.T_agent[D.T_observation]]: """Get the probability distribution of the observation given a state and action. In mathematical terms (discrete case), given an action $a$, this function represents: $P(O|s, a)$, where $O$ is the random variable of the observation. # Parameters state: The state to be observed. action: The last applied action (or None if the state is an initial state). # Returns The probability distribution of the observation. """ raise NotImplementedError class TransformedObservable(PartiallyObservable): """A domain must inherit this class if it is transformed observable. "Transformed observable" means that the observation provided to the agent is deterministically computed from (but generally not equal to) the internal state of the domain. """ def _get_observation_distribution( self, state: D.T_state, action: Optional[D.T_agent[D.T_concurrency[D.T_event]]] = None, ) -> Distribution[D.T_agent[D.T_observation]]: return SingleValueDistribution(self._get_observation(state, action)) @autocastable def get_observation( self, state: D.T_state, action: Optional[D.T_agent[D.T_concurrency[D.T_event]]] = None, ) -> D.T_agent[D.T_observation]: """Get the deterministic observation given a state and action. # Parameters state: The state to be observed. action: The last applied action (or None if the state is an initial state). # Returns The probability distribution of the observation. """ return self._get_observation(state, action) def _get_observation( self, state: D.T_state, action: Optional[D.T_agent[D.T_concurrency[D.T_event]]] = None, ) -> D.T_agent[D.T_observation]: """Get the deterministic observation given a state and action. # Parameters state: The state to be observed. action: The last applied action (or None if the state is an initial state). # Returns The probability distribution of the observation. """ raise NotImplementedError class FullyObservable(TransformedObservable): """A domain must inherit this class if it is fully observable. "Fully observable" means that the observation provided to the agent is equal to the internal state of the domain. !!! warning In the case of fully observable domains, make sure that the observation type D.T_observation is equal to the state type D.T_state. """ def _get_observation( self, state: D.T_state, action: Optional[D.T_agent[D.T_concurrency[D.T_event]]] = None, ) -> D.T_agent[D.T_observation]: return state
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/builders/domain/observability.py
0.965576
0.744122
observability.py
pypi
from __future__ import annotations from enum import Enum from typing import Dict, List, Optional, Union __all__ = [ "UncertainResourceAvailabilityChanges", "DeterministicResourceAvailabilityChanges", "WithoutResourceAvailabilityChange", ] class UncertainResourceAvailabilityChanges: """A domain must inherit this class if the availability of its resource vary in an uncertain way over time.""" def _sample_quantity_resource(self, resource: str, time: int, **kwargs) -> int: """Sample an amount of resource availability (int) for the given resource (either resource type or resource unit) at the given time. This number should be the sum of the number of resource available at time t and the number of resource of this type consumed so far).""" raise NotImplementedError def sample_quantity_resource(self, resource: str, time: int, **kwargs) -> int: """Sample an amount of resource availability (int) for the given resource (either resource type or resource unit) at the given time. This number should be the sum of the number of resource available at time t and the number of resource of this type consumed so far).""" return self._sample_quantity_resource(resource=resource, time=time, **kwargs) def check_unique_resource_names( self, ) -> bool: # TODO: How to enforce a call to this function when initialising a domain ? """Return True if there are no duplicates in resource names across both resource types and resource units name lists.""" list1 = self.get_resource_types_names() + self.get_resource_units_names() list2 = list(set(list1)) check_1 = len(list1) == len(list2) # no duplicated names check_2 = len(list2) > 0 # at least one resource return check_1 and check_2 class DeterministicResourceAvailabilityChanges(UncertainResourceAvailabilityChanges): """A domain must inherit this class if the availability of its resource vary in a deterministic way over time.""" def _get_quantity_resource(self, resource: str, time: int, **kwargs) -> int: """Return the resource availability (int) for the given resource (either resource type or resource unit) at the given time.""" raise NotImplementedError def get_quantity_resource(self, resource: str, time: int, **kwargs) -> int: """Return the resource availability (int) for the given resource (either resource type or resource unit) at the given time.""" return self._get_quantity_resource(resource=resource, time=time, **kwargs) def _sample_quantity_resource(self, resource: str, time: int, **kwargs) -> int: """Sample an amount of resource availability (int) for the given resource (either resource type or resource unit) at the given time. This number should be the sum of the number of resource available at time t and the number of resource of this type consumed so far).""" return self.get_quantity_resource(resource, time, **kwargs) class WithoutResourceAvailabilityChange(DeterministicResourceAvailabilityChanges): """A domain must inherit this class if the availability of its resource does not vary over time.""" def _get_original_quantity_resource(self, resource: str, **kwargs) -> int: """Return the resource availability (int) for the given resource (either resource type or resource unit).""" raise NotImplementedError def get_original_quantity_resource(self, resource: str, **kwargs) -> int: """Return the resource availability (int) for the given resource (either resource type or resource unit).""" return self._get_original_quantity_resource(resource=resource, **kwargs) def _get_quantity_resource(self, resource: str, time: int, **kwargs) -> int: """Return the resource availability (int) for the given resource (either resource type or resource unit) at the given time.""" return self.get_original_quantity_resource(resource) def _sample_quantity_resource(self, resource: str, time: int, **kwargs) -> int: """Sample an amount of resource availability (int) for the given resource (either resource type or resource unit) at the given time. This number should be the sum of the number of resource available at time t and the number of resource of this type consumed so far).""" return self.get_original_quantity_resource(resource)
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/builders/domain/scheduling/resource_availability.py
0.89282
0.245548
resource_availability.py
pypi
from __future__ import annotations from typing import Dict __all__ = [ "TimeWindow", "ClassicTimeWindow", "StartFromOnlyTimeWindow", "StartBeforeOnlyTimeWindow", "EndFromOnlyTimeWindow", "EndBeforeOnlyTimeWindow", "StartTimeWindow", "EndTimeWindow", "EmptyTimeWindow", "WithTimeWindow", "WithoutTimeWindow", ] class TimeWindow: """Defines a time window with earliest start, latest start, earliest end and latest end only.""" def __init__( self, earliest_start: int, latest_start: int, earliest_end: int, latest_end: int, max_horizon: int, ) -> None: self.earliest_start = earliest_start self.latest_start = latest_start self.earliest_end = earliest_end self.latest_end = latest_end class ClassicTimeWindow(TimeWindow): """Defines a time window with earliest start and latest end only.""" def __init__(self, earliest_start: int, latest_end: int, max_horizon: int) -> None: self.earliest_start = earliest_start self.latest_start = max_horizon self.earliest_end = 0 self.latest_end = latest_end class StartFromOnlyTimeWindow(TimeWindow): """Defines a time window with an earliest start only.""" def __init__(self, earliest_start: int, max_horizon: int) -> None: self.earliest_start = earliest_start self.latest_start = max_horizon self.earliest_end = 0 self.latest_end = max_horizon class StartBeforeOnlyTimeWindow(TimeWindow): """Defines a time window with an latest start only.""" def __init__(self, latest_start: int, max_horizon: int) -> None: self.earliest_start = 0 self.latest_start = latest_start self.earliest_end = 0 self.latest_end = max_horizon class EndFromOnlyTimeWindow(TimeWindow): """Defines a time window with an earliest end only.""" def __init__(self, earliest_end: int, max_horizon: int) -> None: self.earliest_start = 0 self.latest_start = max_horizon self.earliest_end = earliest_end self.latest_end = max_horizon class EndBeforeOnlyTimeWindow(TimeWindow): """Defines a time window with a latest end only.""" def __init__(self, latest_end: int, max_horizon: int) -> None: self.earliest_start = 0 self.latest_start = max_horizon self.earliest_end = 0 self.latest_end = latest_end class StartTimeWindow(TimeWindow): """Defines a time window with an earliest start and a latest start only.""" def __init__( self, earliest_start: int, latest_start: int, max_horizon: int ) -> None: self.earliest_start = earliest_start self.latest_start = latest_start self.earliest_end = 0 self.latest_end = max_horizon class EndTimeWindow(TimeWindow): """Defines a time window with an earliest end and a latest end only.""" def __init__(self, earliest_end: int, latest_end: int, max_horizon: int) -> None: self.earliest_start = 0 self.latest_start = max_horizon self.earliest_end = earliest_end self.latest_end = latest_end class EmptyTimeWindow(TimeWindow): """Defines an empty time window.""" def __init__(self, max_horizon: int) -> None: self.earliest_start = 0 self.latest_start = max_horizon self.earliest_end = 0 self.latest_end = max_horizon class WithTimeWindow: """A domain must inherit this class if some tasks have time windows defined.""" def get_time_window(self) -> Dict[int, TimeWindow]: """ Return a dictionary where the key is the id of a task (int) and the value is a TimeWindow object. Note that the max time horizon needs to be provided to the TimeWindow constructors e.g. { 1: TimeWindow(10, 15, 20, 30, self.get_max_horizon()) 2: EmptyTimeWindow(self.get_max_horizon()) 3: EndTimeWindow(20, 25, self.get_max_horizon()) 4: EndBeforeOnlyTimeWindow(40, self.get_max_horizon()) } # Returns A dictionary of TimeWindow objects. """ return self._get_time_window() def _get_time_window(self) -> Dict[int, TimeWindow]: """ Return a dictionary where the key is the id of a task (int) and the value is a TimeWindow object. Note that the max time horizon needs to be provided to the TimeWindow constructors e.g. { 1: TimeWindow(10, 15, 20, 30, self.get_max_horizon()) 2: EmptyTimeWindow(self.get_max_horizon()) 3: EndTimeWindow(20, 25, self.get_max_horizon()) 4: EndBeforeOnlyTimeWindow(40, self.get_max_horizon()) } # Returns A dictionary of TimeWindow objects. """ raise NotImplementedError class WithoutTimeWindow(WithTimeWindow): """A domain must inherit this class if none of the tasks have restrictions on start times or end times.""" def _get_time_window(self) -> Dict[int, TimeWindow]: """ Return a dictionary where the key is the id of a task (int) and the value is a dictionary of EmptyTimeWindow object. # Returns A dictionary of TimeWindow objects. """ ids = self.get_tasks_ids() the_dict = {} for id in ids: the_dict[id] = EmptyTimeWindow(self.get_max_horizon()) return the_dict
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/builders/domain/scheduling/time_windows.py
0.957338
0.345547
time_windows.py
pypi
from __future__ import annotations from typing import Dict, Optional from skdecide.core import DiscreteDistribution, Distribution __all__ = [ "SimulatedTaskDuration", "UncertainMultivariateTaskDuration", "UncertainUnivariateTaskDuration", "UncertainBoundedTaskDuration", "UniformBoundedTaskDuration", "EnumerableTaskDuration", "DeterministicTaskDuration", ] class SimulatedTaskDuration: """A domain must inherit this class if the task duration requires sampling from a simulation.""" # TODO, this can be challenged.. for uncertain domain (with adistribution, you want to sample a different value each time. # that 's why i override this sample_task_duration in below level. def sample_task_duration( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0 ) -> int: """Sample, store and return task duration for the given task in the given mode.""" if task not in self.sampled_durations: self.sampled_durations[task] = {} if mode not in self.sampled_durations[task]: self.sampled_durations[task][mode] = {} if progress_from not in self.sampled_durations[task][mode]: self.sampled_durations[task][mode][ progress_from ] = self._sample_task_duration(task, mode, progress_from) return self.sampled_durations[task][mode][progress_from] def _sample_task_duration( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0 ) -> int: """Return a task duration for the given task in the given mode.""" raise NotImplementedError def get_latest_sampled_duration( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0 ): if task in self.sampled_durations: if mode in self.sampled_durations[task]: if progress_from in self.sampled_durations[task][mode]: return self.sampled_durations[task][mode][progress_from] return self.sample_task_duration(task, mode, progress_from) # TODO: Can we currently model multivariate distribution with the Distribution object ? class UncertainMultivariateTaskDuration(SimulatedTaskDuration): """A domain must inherit this class if the task duration is uncertain and follows a know multivariate distribution.""" def sample_task_duration( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0 ) -> int: """Return a task duration for the given task in the given mode, sampled from the underlying multiivariate distribution.""" return self._sample_task_duration( task=task, mode=mode, progress_from=progress_from ) def _sample_task_duration( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0 ) -> int: """Return a task duration for the given task in the given mode, sampled from the underlying multiivariate distribution.""" return self.get_task_duration_distribution(task, mode).sample() def get_task_duration_distribution( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0, multivariate_settings: Optional[Dict[str, int]] = None, ) -> Distribution: """Return the multivariate Distribution of the duration of the given task in the given mode. Multivariate seetings need to be provided.""" return self._get_task_duration_distribution( task, mode, progress_from, multivariate_settings ) def _get_task_duration_distribution( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0, multivariate_settings: Optional[Dict[str, int]] = None, ) -> Distribution: """Return the multivariate Distribution of the duration of the given task in the given mode. Multivariate seetings need to be provided.""" raise NotImplementedError class UncertainUnivariateTaskDuration(UncertainMultivariateTaskDuration): """A domain must inherit this class if the task duration is uncertain and follows a know univariate distribution.""" def _sample_task_duration( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0 ) -> int: """Return a task duration for the given task in the given mode, sampled from the underlying univariate distribution.""" return self.get_task_duration_distribution(task, mode).sample() def _get_task_duration_distribution( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0, multivariate_settings: Optional[Dict[str, int]] = None, ) -> Distribution: # TODO, problem here i think """Return the univariate Distribution of the duration of the given task in the given mode.""" raise NotImplementedError class UncertainBoundedTaskDuration(UncertainUnivariateTaskDuration): """A domain must inherit this class if the task duration is known to be between a lower and upper bound and follows a known distribution between these bounds.""" def _sample_task_duration( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0 ) -> int: """Return a task duration for the given task in the given mode, sampled from the underlying univariate bounded distribution.""" return self.get_task_duration_distribution(task, mode).sample() def _get_task_duration_distribution( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0, multivariate_settings: Optional[Dict[str, int]] = None, ) -> DiscreteDistribution: """Return the Distribution of the duration of the given task in the given mode. The distribution returns values beween the defined lower and upper bounds.""" raise NotImplementedError def get_task_duration_upper_bound( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0 ) -> int: """Return the upper bound for the task duration of the given task in the given mode.""" return self._get_task_duration_upper_bound(task, mode, progress_from) def _get_task_duration_upper_bound( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0 ) -> int: """Return the upper bound for the task duration of the given task in the given mode.""" raise NotImplementedError def get_task_duration_lower_bound( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0 ) -> int: """Return the lower bound for the task duration of the given task in the given mode.""" return self._get_task_duration_lower_bound(task, mode, progress_from) def _get_task_duration_lower_bound( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0 ) -> int: """Return the lower bound for the task duration of the given task in the given mode.""" raise NotImplementedError class UniformBoundedTaskDuration(UncertainBoundedTaskDuration): """A domain must inherit this class if the task duration is known to be between a lower and upper bound and follows a uniform distribution between these bounds.""" def _sample_task_duration( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0 ) -> int: """Return a task duration for the given task in the given mode, sampled from the underlying univariate uniform bounded distribution.""" return self.get_task_duration_distribution(task, mode).sample() def _get_task_duration_distribution( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0, multivariate_settings: Optional[Dict[str, int]] = None, ) -> DiscreteDistribution: """Return the Distribution of the duration of the given task in the given mode. The distribution is uniform between the defined lower and upper bounds.""" lb = self.get_task_duration_lower_bound(task, mode) ub = self.get_task_duration_upper_bound(task, mode) n_vals = ub - lb + 1 p = 1.0 / float(n_vals) values = [(x, p) for x in range(lb, ub + 1)] return DiscreteDistribution(values) def _get_task_duration_upper_bound( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0 ) -> int: """Return the upper bound for the task duration of the given task in the given mode.""" raise NotImplementedError def _get_task_duration_lower_bound( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0 ) -> int: """Return the lower bound for the task duration of the given task in the given mode.""" raise NotImplementedError class EnumerableTaskDuration(UncertainBoundedTaskDuration): """A domain must inherit this class if the task duration for each task is enumerable.""" def _sample_task_duration( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0 ) -> int: """Return a task duration for the given task in the given mode.""" return self.get_task_duration_distribution(task, mode).sample() def _get_task_duration_distribution( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0, multivariate_settings: Optional[Dict[str, int]] = None, ) -> DiscreteDistribution: """Return the Distribution of the duration of the given task in the given mode. as an Enumerable.""" raise NotImplementedError def _get_task_duration_upper_bound( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0 ) -> int: """Return the upper bound for the task duration of the given task in the given mode.""" duration_vals = [ x[0] for x in self.get_task_duration_distribution(task, mode).get_values() ] return max(duration_vals) def _get_task_duration_lower_bound( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0 ) -> int: """Return the lower bound for the task duration of the given task in the given mode.""" duration_vals = [ x[0] for x in self.get_task_duration_distribution(task, mode).get_values() ] return min(duration_vals) class DeterministicTaskDuration(EnumerableTaskDuration): """A domain must inherit this class if the task durations are known and deterministic.""" def _sample_task_duration( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0 ) -> int: """Return a task duration for the given task in the given mode.""" return self.get_task_duration(task, mode, progress_from) def get_task_duration( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0 ) -> int: """Return the fixed deterministic task duration of the given task in the given mode.""" return self._get_task_duration(task, mode, progress_from) def _get_task_duration( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0 ) -> int: """Return the fixed deterministic task duration of the given task in the given mode.""" raise NotImplementedError def _get_task_duration_distribution( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0, multivariate_settings: Optional[Dict[str, int]] = None, ): """Return the Distribution of the duration of the given task in the given mode. Because the duration is deterministic, the distribution always returns the same duration.""" return DiscreteDistribution([(self.get_task_duration(task, mode), 1)]) def _get_task_duration_upper_bound( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0 ) -> int: """Return the upper bound for the task duration of the given task in the given mode.""" return self.get_task_duration(task, mode) def _get_task_duration_lower_bound( self, task: int, mode: Optional[int] = 1, progress_from: Optional[float] = 0.0 ) -> int: """Return the lower bound for the task duration of the given task in the given mode.""" return self.get_task_duration(task, mode)
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/builders/domain/scheduling/task_duration.py
0.860925
0.385751
task_duration.py
pypi
from __future__ import annotations from typing import Dict from skdecide.builders.domain.scheduling.scheduling_domains_modelling import State __all__ = ["MixedRenewable", "RenewableOnly"] class MixedRenewable: """A domain must inherit this class if the resource available are non-renewable and renewable.""" def get_resource_renewability(self) -> Dict[str, bool]: """ Return a dictionary where the key is a resource name (string) and the value whether this resource is renewable (True) or not (False).""" return self._get_resource_renewability() def _get_resource_renewability(self) -> Dict[str, bool]: """ Return a dictionary where the key is a resource name (string) and the value whether this resource is renewable (True) or not (False).""" raise NotImplementedError def is_renewable(self, resource: str): return self.get_resource_renewability()[resource] def all_tasks_possible(self, state: State) -> bool: """Return a True is for each task there is at least one mode in which the task can be executed, given the resource configuration in the state provided as argument. Returns False otherwise. If this function returns False, the scheduling problem is unsolvable from this state. This is to cope with the use of non-renable resources that may lead to state from which a task will not be possible anymore.""" resource_types_names = self.get_resource_types_names() resource_not_renewable = set( res for res, renewable in self.get_resource_renewability().items() if res in resource_types_names and not renewable ) modes_details = self.get_tasks_modes() remaining_tasks = ( state.task_ids.difference(state.tasks_complete) .difference(state.tasks_progress) .difference(state.tasks_unsatisfiable) ) for task_id in remaining_tasks: for mode_consumption in modes_details[task_id].values(): for res in resource_not_renewable: need = mode_consumption.get_resource_need(res) avail = state.resource_availability[res] - state.resource_used[res] if avail - need < 0: break else: # The else-clause runs if loop completes normally, which means # that we found a mode for which all resources are available, and # we can exit from the loop on modes. break else: # This task is not possible return False return True class RenewableOnly(MixedRenewable): """A domain must inherit this class if the resource available are ALL renewable.""" def _get_resource_renewability(self) -> Dict[str, bool]: """Return a dictionary where the key is a resource name (string) and the value whether this resource is renewable (True) or not (False).""" names = ( self.get_resource_types_names() + self.get_resource_units_names() ) # comes from resource_handling... renewability = {} for name in names: renewability[name] = True return renewability def is_renewable(self, resource: str): return True
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/builders/domain/scheduling/resource_renewability.py
0.888777
0.32662
resource_renewability.py
pypi
from __future__ import annotations from typing import Dict, List __all__ = [ "WithModeCosts", "WithoutModeCosts", "WithResourceCosts", "WithoutResourceCosts", ] class WithModeCosts: """A domain must inherit this class if there are some mode costs to consider.""" def _get_mode_costs( self, ) -> Dict[ int, Dict[int, float] ]: # TODO: To be handled by domain (in transition cost) """ Return a nested dictionary where the first key is the id of a task (int), the second key the id of a mode and the value indicates the cost of execution the task in the mode.""" raise NotImplementedError def get_mode_costs( self, ) -> Dict[ int, Dict[int, float] ]: # TODO: To be handled by domain (in transition cost) """ Return a nested dictionary where the first key is the id of a task (int), the second key the id of a mode and the value indicates the cost of execution the task in the mode.""" return self._get_mode_costs() class WithoutModeCosts(WithModeCosts): """A domain must inherit this class if there are no mode cost to consider.""" def _get_mode_costs(self) -> Dict[int, Dict[int, float]]: cost_dict = {} for task_id, modes in self.get_tasks_modes().items(): cost_dict[task_id] = {mode_id: 0.0 for mode_id in modes} return cost_dict class WithResourceCosts: """A domain must inherit this class if there are some resource costs to consider.""" def _get_resource_cost_per_time_unit( self, ) -> Dict[str, float]: # TODO: To be handled by domain (in transition cost) """ Return a dictionary where the key is the name of a resource (str) and the value indicates the cost of using this resource per time unit.""" raise NotImplementedError def get_resource_cost_per_time_unit( self, ) -> Dict[str, float]: # TODO: To be handled by domain (in transition cost) """ Return a dictionary where the key is the name of a resource (str) and the value indicates the cost of using this resource per time unit.""" return self._get_resource_cost_per_time_unit() class WithoutResourceCosts(WithResourceCosts): """A domain must inherit this class if there are no resource cost to consider.""" def _get_resource_cost_per_time_unit(self) -> Dict[str, float]: cost_dict = {} for res in self.get_resource_types_names(): cost_dict[res] = 0.0 for res in self.get_resource_units_names(): cost_dict[res] = 0.0 return cost_dict
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/builders/domain/scheduling/resource_costs.py
0.745306
0.420481
resource_costs.py
pypi
from __future__ import annotations from typing import Any, Dict, List __all__ = [ "WithResourceTypes", "WithoutResourceTypes", "WithResourceUnits", "SingleResourceUnit", "WithoutResourceUnit", ] class WithResourceTypes: """A domain must inherit this class if some of its resources are resource types.""" def get_resource_types_names(self) -> List[str]: """Return the names (string) of all resource types as a list.""" return self._get_resource_types_names() def _get_resource_types_names(self) -> List[str]: """Return the names (string) of all resource types as a list.""" raise NotImplementedError class WithoutResourceTypes(WithResourceTypes): """A domain must inherit this class if it only uses resource types.""" def _get_resource_types_names(self) -> List[str]: """Return the names (string) of all resource types as a list.""" return [] class WithResourceUnits: """A domain must inherit this class if some of its resources are resource units.""" def get_resource_units_names(self) -> List[str]: """Return the names (string) of all resource units as a list.""" return self._get_resource_units_names() def _get_resource_units_names(self) -> List[str]: """Return the names (string) of all resource units as a list.""" raise NotImplementedError def get_resource_type_for_unit(self) -> Dict[str, str]: """Return a dictionary where the key is a resource unit name and the value a resource type name. An empty dictionary can be used if there are no resource unit matching a resource type.""" return self._get_resource_type_for_unit() def _get_resource_type_for_unit(self) -> Dict[str, str]: """Return a dictionary where the key is a resource unit name and the value a resource type name. An empty dictionary can be used if there are no resource unit matching a resource type.""" raise NotImplementedError class SingleResourceUnit(WithResourceUnits): """A domain must inherit this class if there is no allocation to be done (i.e. there is a single resource).""" def _get_resource_units_names(self) -> List[str]: return ["single_resource"] def _get_resource_type_for_unit(self) -> Dict[str, str]: return {} class WithoutResourceUnit(SingleResourceUnit): """A domain must inherit this class if it only uses resource types.""" def _get_resource_units_names(self) -> List[str]: return [] def _get_resource_type_for_unit(self) -> Dict[str, str]: return {}
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/builders/domain/scheduling/resource_type.py
0.939255
0.240579
resource_type.py
pypi
from __future__ import annotations from typing import Dict __all__ = [ "TimeLag", "MinimumOnlyTimeLag", "MaximumOnlyTimeLag", "WithTimeLag", "WithoutTimeLag", ] class TimeLag: """Defines a time lag with both a minimum time lag and maximum time lag.""" def __init__(self, minimum_time_lag, maximum_time_lags): self.minimum_time_lag = minimum_time_lag self.maximum_time_lags = maximum_time_lags class MinimumOnlyTimeLag(TimeLag): """Defines a minimum time lag.""" def __init__(self, minimum_time_lag): self.minimum_time_lag = minimum_time_lag self.maximum_time_lags = self.get_max_horizon() class MaximumOnlyTimeLag(TimeLag): """Defines a maximum time lag.""" def __init__(self, maximum_time_lags): self.minimum_time_lag = 0 self.maximum_time_lags = maximum_time_lags class WithTimeLag: """A domain must inherit this class if there are minimum and maximum time lags between some of its tasks.""" def get_time_lags(self) -> Dict[int, Dict[int, TimeLag]]: """ Return nested dictionaries where the first key is the id of a task (int) and the second key is the id of another task (int). The value is a TimeLag object containing the MINIMUM and MAXIMUM time (int) that needs to separate the end of the first task to the start of the second task. e.g. { 12:{ 15: TimeLag(5, 10), 16: TimeLag(5, 20), 17: MinimumOnlyTimeLag(5), 18: MaximumOnlyTimeLag(15), } } # Returns A dictionary of TimeLag objects. """ return self._get_time_lags() def _get_time_lags(self) -> Dict[int, Dict[int, TimeLag]]: """ Return nested dictionaries where the first key is the id of a task (int) and the second key is the id of another task (int). The value is a TimeLag object containing the MINIMUM and MAXIMUM time (int) that needs to separate the end of the first task to the start of the second task. e.g. { 12:{ 15: TimeLag(5, 10), 16: TimeLag(5, 20), 17: MinimumOnlyTimeLag(5), 18: MaximumOnlyTimeLag(15), } } # Returns A dictionary of TimeLag objects. """ raise NotImplementedError class WithoutTimeLag(WithTimeLag): """A domain must inherit this class if there is no required time lag between its tasks.""" def _get_time_lags(self) -> Dict[int, Dict[int, TimeLag]]: """ Return nested dictionaries where the first key is the id of a task (int) and the second key is the id of another task (int). The value is a TimeLag object containing the MINIMUM and MAXIMUM time (int) that needs to separate the end of the first task to the start of the second task.""" return {}
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/builders/domain/scheduling/time_lag.py
0.967194
0.50531
time_lag.py
pypi
from __future__ import annotations from typing import Any, Dict, Hashable, List, Tuple import networkx as nx class Graph: def __init__( self, nodes: List[Tuple[Hashable, Dict[str, Any]]], edges: List[Tuple[Hashable, Hashable, Dict[str, Any]]], undirected=True, ): self.nodes = nodes self.edges = edges self.undirected = undirected self.neighbors_dict = {} self.predecessors_dict = {} self.edges_infos_dict = {} self.nodes_infos_dict = {} self.build_nodes_infos_dict() self.build_edges() self.nodes_name = sorted(self.nodes_infos_dict) self.graph_nx = self.to_networkx() def get_edges(self): return self.edges_infos_dict.keys() def get_nodes(self): return self.nodes_name def build_nodes_infos_dict(self): for n, d in self.nodes: self.nodes_infos_dict[n] = d def build_edges(self): for n1, n2, d in self.edges: self.edges_infos_dict[(n1, n2)] = d if n2 not in self.predecessors_dict: self.predecessors_dict[n2] = set() if n1 not in self.neighbors_dict: self.neighbors_dict[n1] = set() self.predecessors_dict[n2].add(n1) self.neighbors_dict[n1].add(n2) if self.undirected: if n1 not in self.predecessors_dict: self.predecessors_dict[n1] = set() if n2 not in self.neighbors_dict: self.neighbors_dict[n2] = set() self.predecessors_dict[n1].add(n2) self.neighbors_dict[n2].add(n1) self.edges_infos_dict[(n2, n1)] = d def get_neighbors(self, node): return self.neighbors_dict.get(node, []) def get_predecessors(self, node): return self.predecessors_dict.get(node, []) def get_attr_node(self, node, attr): return self.nodes_infos_dict.get(node, {}).get(attr, None) def get_attr_edge(self, node1, node2, attr): return self.edges_infos_dict.get((node1, node2), {}).get(attr, None) def to_networkx(self): graph_nx = nx.DiGraph() if not self.undirected else nx.Graph() graph_nx.add_nodes_from(self.nodes) graph_nx.add_edges_from(self.edges) return graph_nx def check_loop(self): try: cycles = nx.find_cycle(self.graph_nx, orientation="original") except: cycles = None return cycles def precedessors_nodes(self, n): return nx.algorithms.ancestors(self.graph_nx, n) def ancestors_map(self): return { n: nx.algorithms.ancestors(self.graph_nx, n) for n in self.graph_nx.nodes() } def descendants_map(self): return { n: nx.algorithms.descendants(self.graph_nx, n) for n in self.graph_nx.nodes() } def successors_map(self): return {n: list(nx.neighbors(self.graph_nx, n)) for n in self.graph_nx.nodes()} def predecessors_map(self): return {n: list(self.graph_nx.predecessors(n)) for n in self.graph_nx.nodes()} if __name__ == "__main__": nodes = [(0, {"name": 0}), (1, {"name": 1})] edges = [(0, 1, {"weight": 1.1}), (1, 0, {"weight": 2})] graph = Graph(nodes, edges, False) graph_nx = graph.to_networkx() print(graph.get_attr_edge(0, 1, "weight")) print(graph.get_attr_edge(1, 0, "weight")) print(graph.get_attr_edge(0, 0, "weight")) # None print(graph_nx.size()) print(nx.number_of_nodes(graph_nx), nx.number_of_edges(graph_nx)) print(graph_nx[0][1]["weight"]) print(graph_nx[1][0]["weight"])
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/builders/domain/scheduling/graph_toolbox.py
0.823648
0.305024
graph_toolbox.py
pypi
from __future__ import annotations from typing import Any, Dict, List, Set __all__ = ["WithResourceSkills", "WithoutResourceSkills"] class WithResourceSkills: """A domain must inherit this class if its resources (either resource types or resource units) have different set of skills.""" def get_skills_names(self) -> Set[str]: """Return a list of all skill names as a list of str. Skill names are defined in the 2 dictionaries returned by the get_all_resources_skills and get_all_tasks_skills functions.""" all_names = set() skill_dict = self.get_all_resources_skills() for key1 in skill_dict.keys(): for key2 in skill_dict[key1].keys(): all_names.add(key2) skill_dict = self.get_all_tasks_skills() for key1 in skill_dict.keys(): for mode in skill_dict[key1].keys(): for key2 in skill_dict[key1][mode].keys(): all_names.add(key2) return all_names def get_all_resources_skills(self) -> Dict[str, Dict[str, Any]]: """Return a nested dictionary where the first key is the name of a resource type or resource unit and the second key is the name of a skill. The value defines the details of the skill. E.g. {unit: {skill: (detail of skill)}}""" return self._get_all_resources_skills() def _get_all_resources_skills(self) -> Dict[str, Dict[str, Any]]: """Return a nested dictionary where the first key is the name of a resource type or resource unit and the second key is the name of a skill. The value defines the details of the skill. E.g. {unit: {skill: (detail of skill)}}""" raise NotImplementedError def get_skills_of_resource(self, resource: str) -> Dict[str, Any]: """Return the skills of a given resource""" return self.get_all_resources_skills()[resource] def get_all_tasks_skills(self) -> Dict[int, Dict[int, Dict[str, Any]]]: """Return a nested dictionary where the first key is the name of a task and the second key is the name of a skill. The value defines the details of the skill. E.g. {task: {skill: (detail of skill)}}""" return self._get_all_tasks_skills() def _get_all_tasks_skills(self) -> Dict[int, Dict[int, Dict[str, Any]]]: """Return a nested dictionary where the first key is the name of a task and the second key is the name of a skill. The value defines the details of the skill. E.g. {task: {skill: (detail of skill)}}""" raise NotImplementedError def get_skills_of_task(self, task: int, mode: int) -> Dict[str, Any]: """Return the skill requirements for a given task""" return { s: self.get_all_tasks_skills()[task][mode][s] for s in self.get_all_tasks_skills()[task][mode] if self.get_all_tasks_skills()[task][mode][s] > 0 } def find_one_ressource_to_do_one_task(self, task: int, mode: int) -> List[str]: """ For the common case when it is possible to do the task by one resource unit. For general case, it might just return no possible ressource unit. """ skill_of_task = self.get_skills_of_task(task, mode) resources = [] if len(skill_of_task) == 0: return [None] for resource in self.get_all_resources_skills(): if all( self.get_skills_of_resource(resource=resource).get(s, 0) >= skill_of_task[s] for s in skill_of_task ): resources += [resource] # print("Ressources ", resources, " can do the task") return resources def check_if_skills_are_fulfilled( self, task: int, mode: int, resource_used: Dict[str, int] ): skill_of_task = self.get_skills_of_task(task, mode) if len(skill_of_task) == 0: return True # No need of skills here. skills = {s: 0 for s in skill_of_task} for r in resource_used: skill_of_ressource = self.get_skills_of_resource(resource=r) for s in skill_of_ressource: if s in skills: skills[s] += skill_of_ressource[s] # print("Ressource used : ", skills) # print("Skills required", skill_of_task) return all(skills[s] >= skill_of_task[s] for s in skill_of_task) class WithoutResourceSkills(WithResourceSkills): """A domain must inherit this class if no resources skills have to be considered.""" def _get_all_resources_skills(self) -> Dict[str, Dict[str, Any]]: """Return a nested dictionary where the first key is the name of a resource type or resource unit and the second key is the name of a skill. The value defines the details of the skill. E.g. {unit: {skill: (detail of skill)}}""" return {} def get_skills_of_resource(self, resource: str) -> Dict[str, Any]: """Return the skills of a given resource""" return {} def _get_all_tasks_skills(self) -> Dict[int, Dict[str, Any]]: """Return a nested dictionary where the first key is the name of a task and the second key is the name of a skill. The value defines the details of the skill. E.g. {task: {skill: (detail of skill)}}""" return {} def get_skills_of_task(self, task: int, mode: int) -> Dict[str, Any]: """Return the skill requirements for a given task""" return {} def check_if_skills_are_fulfilled( self, task: int, mode: int, resource_used: Dict[str, int] ): return True
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/builders/domain/scheduling/skills.py
0.861436
0.378402
skills.py
pypi
from __future__ import annotations from typing import Dict, List from skdecide.builders.domain.scheduling.graph_toolbox import Graph from skdecide.builders.domain.scheduling.scheduling_domains_modelling import State __all__ = ["WithPrecedence", "WithoutPrecedence"] class WithPrecedence: """A domain must inherit this class if there exist some predecence constraints between tasks.""" def _get_successors(self) -> Dict[int, List[int]]: """Return the successors of the tasks. Successors are given as a list for a task given as a key.""" raise NotImplementedError def get_successors(self) -> Dict[int, List[int]]: """Return the successors of the tasks. Successors are given as a list for a task given as a key.""" return self._get_successors() def _get_successors_task(self, task_id: int) -> List[int]: return self.get_successors()[task_id] def get_successors_task(self, task_id: int) -> List[int]: return self._get_successors_task(task_id=task_id) def _get_predecessors(self) -> Dict[int, List[int]]: """Return the predecessors of the task. Successors are given as a list for a task given as a key.""" return self.graph.predecessors_map() def get_predecessors(self) -> Dict[int, List[int]]: """Return the predecessors of the task. Successors are given as a list for a task given as a key.""" return self._get_predecessors() def _get_predecessors_task(self, task_id: int) -> List[int]: return self.get_predecessors()[task_id] def get_predecessors_task(self, task_id: int) -> List[int]: return self._get_predecessors_task(task_id=task_id) def compute_graph(self): task_ids = self.get_tasks_ids() successors = self.get_successors() mode_details = self.get_tasks_modes() nodes = [ ( n, { mode: self.sample_task_duration(task=n, mode=mode) for mode in mode_details[n] }, ) for n in task_ids ] edges = [] for n in successors: for succ in successors[n]: edges += [(n, succ, {})] return Graph(nodes, edges, False) def _task_modes_possible_to_launch(self, state: State): mode_details = self.get_tasks_modes() return [ (n, mode) for n in state.tasks_remaining for mode in mode_details[n] if all(m in state.tasks_complete for m in self.ancestors[n]) ] def task_modes_possible_to_launch(self, state: State): return self._task_modes_possible_to_launch(state=state) def _task_possible_to_launch_precedence(self, state: State): return [ n for n in state.tasks_remaining if all(m in state.tasks_complete for m in self.ancestors[n]) ] def task_possible_to_launch_precedence(self, state: State): return self._task_possible_to_launch_precedence(state=state) class WithoutPrecedence(WithPrecedence): """A domain must inherit this class if there are no predecence constraints between tasks.""" def _get_successors(self) -> Dict[int, List[int]]: """Return the successors of the tasks. Successors are given as a list for a task given as a key.""" ids = self.get_tasks_ids() succ = {} for id in ids: succ[id] = [] return succ def _get_predecessors(self) -> Dict[int, List[int]]: """Return the successors of the tasks. Successors are given as a list for a task given as a key.""" ids = self.get_tasks_ids() prec = {} for id in ids: prec[id] = [] return prec
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/builders/domain/scheduling/precedence.py
0.919308
0.443841
precedence.py
pypi
from __future__ import annotations from skdecide.core import D, autocastable __all__ = ["Utilities", "QValues"] class Utilities: """A solver must inherit this class if it can provide the utility function (i.e. value function).""" @autocastable def get_utility(self, observation: D.T_agent[D.T_observation]) -> D.T_value: """Get the estimated on-policy utility of the given observation. In mathematical terms, for a fully observable domain, this function estimates: $$V^\\pi(s)=\\underset{\\tau\\sim\\pi}{\\mathbb{E}}[R(\\tau)|s_0=s]$$ where $\\pi$ is the current policy, any $\\tau=(s_0,a_0, s_1, a_1, ...)$ represents a trajectory sampled from the policy, $R(\\tau)$ is the return (cumulative reward) and $s_0$ the initial state for the trajectories. # Parameters observation: The observation to consider. # Returns The estimated on-policy utility of the given observation. """ return self._get_utility(observation) def _get_utility(self, observation: D.T_agent[D.T_observation]) -> D.T_value: """Get the estimated on-policy utility of the given observation. In mathematical terms, for a fully observable domain, this function estimates: $$V^\\pi(s)=\\underset{\\tau\\sim\\pi}{\\mathbb{E}}[R(\\tau)|s_0=s]$$ where $\\pi$ is the current policy, any $\\tau=(s_0,a_0, s_1, a_1, ...)$ represents a trajectory sampled from the policy, $R(\\tau)$ is the return (cumulative reward) and $s_0$ the initial state for the trajectories. # Parameters observation: The observation to consider. # Returns The estimated on-policy utility of the given observation. """ raise NotImplementedError class QValues(Utilities): """A solver must inherit this class if it can provide the Q function (i.e. action-value function).""" @autocastable def get_q_value( self, observation: D.T_agent[D.T_observation], action: D.T_agent[D.T_concurrency[D.T_event]], ) -> D.T_value: """Get the estimated on-policy Q value of the given observation and action. In mathematical terms, for a fully observable domain, this function estimates: $$Q^\\pi(s,a)=\\underset{\\tau\\sim\\pi}{\\mathbb{E}}[R(\\tau)|s_0=s,a_0=a]$$ where $\\pi$ is the current policy, any $\\tau=(s_0,a_0, s_1, a_1, ...)$ represents a trajectory sampled from the policy, $R(\\tau)$ is the return (cumulative reward) and $s_0$/$a_0$ the initial state/action for the trajectories. # Parameters observation: The observation to consider. action: The action to consider. # Returns The estimated on-policy Q value of the given observation and action. """ return self._get_q_value(observation, action) def _get_q_value( self, observation: D.T_agent[D.T_observation], action: D.T_agent[D.T_concurrency[D.T_event]], ) -> D.T_value: """Get the estimated on-policy Q value of the given observation and action. In mathematical terms, for a fully observable domain, this function estimates: $$Q^\\pi(s,a)=\\underset{\\tau\\sim\\pi}{\\mathbb{E}}[R(\\tau)|s_0=s,a_0=a]$$ where $\\pi$ is the current policy, any $\\tau=(s_0,a_0, s_1, a_1, ...)$ represents a trajectory sampled from the policy, $R(\\tau)$ is the return (cumulative reward) and $s_0$/$a_0$ the initial state/action for the trajectories. # Parameters observation: The observation to consider. action: The action to consider. # Returns The estimated on-policy Q value of the given observation and action. """ raise NotImplementedError
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/builders/solver/assessability.py
0.950365
0.947088
assessability.py
pypi
from __future__ import annotations from typing import Callable, List from skdecide.domains import Domain, PipeParallelDomain, ShmParallelDomain __all__ = ["ParallelSolver"] class ParallelSolver: """A solver must inherit this class if it wants to call several cloned parallel domains in separate concurrent processes. The solver is meant to be called either within a 'with' context statement, or to be cleaned up using the close() method. """ def __init__( self, domain_factory: Callable[[], Domain], parallel: bool = False, shared_memory_proxy=None, ): """Creates a parallelizable solver # Parameters domain_factory: A callable with no argument returning the domain to solve (factory is the domain class if None). parallel: True if the solver is run in parallel mode. shared_memory_proxy: Shared memory proxy to use if not None, otherwise run piped parallel domains. """ self._domain_factory = domain_factory self._parallel = parallel self._shared_memory_proxy = shared_memory_proxy self._domain = None self._lambdas = [] # to define in the inherited class! self._ipc_notify = False # to define in the inherited class! def _initialize(self): """Launches the parallel domains. This method requires to have previously recorded the self._domain_factory (e.g. after calling _init_solve), the set of lambda functions passed to the solver's constructor (e.g. heuristic lambda for heuristic-based solvers), and whether the parallel domain jobs should notify their status via the IPC protocol (required when interacting with other programming languages like C++) """ if self._parallel: if self._shared_memory_proxy is None: self._domain = PipeParallelDomain( self._domain_factory, lambdas=self._lambdas, ipc_notify=self._ipc_notify, ) else: self._domain = ShmParallelDomain( self._domain_factory, self._shared_memory_proxy, lambdas=self._lambdas, ipc_notify=self._ipc_notify, ) # Launch parallel domains before created the algorithm object # otherwise spawning new processes (the default on Windows) # will fail trying to pickle the C++ underlying algorithm self._domain._launch_processes() else: self._domain = self._domain_factory() def close(self): """Joins the parallel domains' processes. Not calling this method (or not using the 'with' context statement) results in the solver forever waiting for the domain processes to exit. """ if self._domain is not None and self._parallel: self._domain.close() self._domain = None def _cleanup(self): self.close() def get_domain(self): """ Returns the domain, optionally creating a parallel domain if not already created. """ if self._domain is None: self._initialize() return self._domain def call_domain_method(self, name, *args): """Calls a parallel domain's method. This is the only way to get a domain method for a parallel domain. """ if self._parallel: process_id = getattr(self._domain, name)(*args) return self._domain.get_result(process_id) else: return getattr(self._domain, name)(*args)
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/builders/solver/parallelability.py
0.91462
0.193738
parallelability.py
pypi
from __future__ import annotations from skdecide.core import D, Distribution, SingleValueDistribution, autocastable __all__ = ["Policies", "UncertainPolicies", "DeterministicPolicies"] class Policies: """A solver must inherit this class if it computes a stochastic policy as part of the solving process.""" @autocastable def sample_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: """Sample an action for the given observation (from the solver's current policy). # Parameters observation: The observation for which an action must be sampled. # Returns The sampled action. """ return self._sample_action(observation) def _sample_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: """Sample an action for the given observation (from the solver's current policy). # Parameters observation: The observation for which an action must be sampled. # Returns The sampled action. """ raise NotImplementedError @autocastable def is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: """Check whether the solver's current policy is defined for the given observation. # Parameters observation: The observation to consider. # Returns True if the policy is defined for the given observation memory (False otherwise). """ return self._is_policy_defined_for(observation) def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: """Check whether the solver's current policy is defined for the given observation. # Parameters observation: The observation to consider. # Returns True if the policy is defined for the given observation memory (False otherwise). """ raise NotImplementedError class UncertainPolicies(Policies): """A solver must inherit this class if it computes a stochastic policy (providing next action distribution explicitly) as part of the solving process.""" def _sample_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: return self._get_next_action_distribution(observation).sample() @autocastable def get_next_action_distribution( self, observation: D.T_agent[D.T_observation] ) -> Distribution[D.T_agent[D.T_concurrency[D.T_event]]]: """Get the probabilistic distribution of next action for the given observation (from the solver's current policy). # Parameters observation: The observation to consider. # Returns The probabilistic distribution of next action. """ return self._get_next_action_distribution(observation) def _get_next_action_distribution( self, observation: D.T_agent[D.T_observation] ) -> Distribution[D.T_agent[D.T_concurrency[D.T_event]]]: """Get the probabilistic distribution of next action for the given observation (from the solver's current policy). # Parameters observation: The observation to consider. # Returns The probabilistic distribution of next action. """ raise NotImplementedError class DeterministicPolicies(UncertainPolicies): """A solver must inherit this class if it computes a deterministic policy as part of the solving process.""" def _get_next_action_distribution( self, observation: D.T_agent[D.T_observation] ) -> Distribution[D.T_agent[D.T_concurrency[D.T_event]]]: return SingleValueDistribution(self._get_next_action(observation)) @autocastable def get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: """Get the next deterministic action (from the solver's current policy). # Parameters observation: The observation for which next action is requested. # Returns The next deterministic action. """ return self._get_next_action(observation) def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: """Get the next deterministic action (from the solver's current policy). # Parameters observation: The observation for which next action is requested. # Returns The next deterministic action. """ raise NotImplementedError
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/builders/solver/policy.py
0.960324
0.778334
policy.py
pypi
from __future__ import annotations from enum import Enum from typing import NamedTuple, Optional from skdecide import DeterministicPlanningDomain, Space, Value from skdecide.builders.domain import UnrestrictedActions from skdecide.hub.space.gym import EnumSpace, ListSpace, MultiDiscreteSpace class State(NamedTuple): x: int y: int class Action(Enum): up = 0 down = 1 left = 2 right = 3 class D(DeterministicPlanningDomain, UnrestrictedActions): T_state = State # Type of states T_observation = T_state # Type of observations T_event = Action # Type of events T_value = float # Type of transition values (rewards or costs) T_predicate = bool # Type of logical checks T_info = ( None # Type of additional information given as part of an environment outcome ) class SimpleGridWorld(D): def __init__(self, num_cols=10, num_rows=10): self.num_cols = num_cols self.num_rows = num_rows def _get_next_state( self, memory: D.T_memory[D.T_state], action: D.T_agent[D.T_concurrency[D.T_event]], ) -> D.T_state: if action == Action.left: next_state = State(max(memory.x - 1, 0), memory.y) if action == Action.right: next_state = State(min(memory.x + 1, self.num_cols - 1), memory.y) if action == Action.up: next_state = State(memory.x, max(memory.y - 1, 0)) if action == Action.down: next_state = State(memory.x, min(memory.y + 1, self.num_rows - 1)) return next_state def _get_transition_value( self, memory: D.T_memory[D.T_state], action: D.T_agent[D.T_concurrency[D.T_event]], next_state: Optional[D.T_state] = None, ) -> D.T_agent[Value[D.T_value]]: if next_state.x == memory.x and next_state.y == memory.y: cost = 2 # big penalty when hitting a wall else: cost = abs(next_state.x - memory.x) + abs( next_state.y - memory.y ) # every move costs 1 return Value(cost=cost) def _is_terminal(self, state: D.T_state) -> D.T_agent[D.T_predicate]: return self._is_goal(state) def _get_action_space_(self) -> D.T_agent[Space[D.T_event]]: return EnumSpace(Action) def _get_goals_(self) -> D.T_agent[Space[D.T_observation]]: return ListSpace([State(x=self.num_cols - 1, y=self.num_rows - 1)]) def _get_initial_state_(self) -> D.T_state: return State(x=0, y=0) def _get_observation_space_(self) -> D.T_agent[Space[D.T_observation]]: return MultiDiscreteSpace([self.num_cols, self.num_rows])
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/domain/simple_grid_world/simple_grid_world.py
0.9306
0.472075
simple_grid_world.py
pypi
# Original code by Patrik Haslum from __future__ import annotations from typing import NamedTuple, Optional, Tuple from skdecide import DiscreteDistribution, Distribution, GoalPOMDPDomain, Space, Value from skdecide.builders.domain import ( DeterministicTransitions, TransformedObservable, UnrestrictedActions, ) from skdecide.hub.space.gym import ListSpace, MultiDiscreteSpace Row = Tuple[int] # a row of code pegs (solution or guess) class Score(NamedTuple): total_bulls: int total_cows: int class State(NamedTuple): solution: Row score: Score class D( GoalPOMDPDomain, DeterministicTransitions, UnrestrictedActions, TransformedObservable, ): T_state = State # Type of states T_observation = Score # Type of observations T_event = Row # Type of events (a row guess in this case) T_value = int # Type of transition values (costs) T_predicate = bool # Type of logical checks T_info = ( None # Type of additional information given as part of an environment outcome ) class MasterMind(D): def __init__(self, n_colours=2, n_positions=2): self._n_colours = n_colours self._n_positions = n_positions self._h_solutions = self._list_hidden_solutions() def _get_next_state( self, memory: D.T_memory[D.T_state], action: D.T_agent[D.T_concurrency[D.T_event]], ) -> D.T_state: # Input is a state and an action; output is a next state. if ( action is None ): # TODO: handle this option on algo side rather than domain; here action should never be None return memory else: return State(memory.solution, self._calc_score(memory, action)) def _get_transition_value( self, memory: D.T_memory[D.T_state], action: D.T_agent[D.T_concurrency[D.T_event]], next_state: Optional[D.T_state] = None, ) -> D.T_agent[Value[D.T_value]]: return Value(cost=1) # Overridden to help some solvers compute more efficiently (not mandatory, but good practice) def _is_transition_value_dependent_on_next_state_(self) -> bool: return False def _is_terminal(self, state: D.T_state) -> D.T_agent[D.T_predicate]: return self._is_goal(state.score) def _get_action_space_(self) -> D.T_agent[Space[D.T_event]]: # Return the possible actions (guesses) as an enumerable space return ListSpace(self._h_solutions) def _get_goals_(self) -> D.T_agent[Space[D.T_observation]]: # Return the space of goal OBSERVATIONS return ListSpace([Score(total_bulls=self._n_positions, total_cows=0)]) def _get_initial_state_distribution_(self) -> Distribution[D.T_state]: # Return a uniform distribution over all initial states n = len(self._h_solutions) return DiscreteDistribution( [(State(solution=s, score=Score(0, 0)), 1 / n) for s in self._h_solutions] ) def _get_observation( self, state: D.T_state, action: Optional[D.T_agent[D.T_concurrency[D.T_event]]] = None, ) -> D.T_agent[D.T_observation]: # `action` is the last applied action (or None if the state is an initial state) # `state` is the state to observe (that resulted from applying the action) if action is None: return Score(0, 0) return self._calc_score(state, action) def _get_observation_space_(self) -> D.T_agent[Space[D.T_observation]]: return MultiDiscreteSpace([self._n_positions + 1, self._n_positions + 1]) def _list_hidden_solutions(self): """Return a list of all possible hidden solutions (n_colours ** n_positions).""" h_solutions = [tuple()] for i in range(self._n_positions): h_solutions = [ s + (c,) for s in h_solutions for c in range(self._n_colours) ] return h_solutions def _calc_score(self, state, guess): """Compute the score of a guess.""" solution = state.solution bulls = [False for _ in range(len(guess))] for i in range(len(guess)): if guess[i] == solution[i]: bulls[i] = True cows = [False for _ in range(len(guess))] for i in range(len(guess)): if guess[i] != solution[i]: for j in range(len(guess)): if guess[i] == solution[j] and not bulls[j] and not cows[j]: cows[j] = True break return Score(total_bulls=sum(bulls), total_cows=sum(cows)) if __name__ == "__main__": from skdecide.utils import rollout domain = MasterMind(3, 3) rollout( domain, max_steps=1000, outcome_formatter=lambda o: f"{o.observation} - cost: {o.value.cost:.2f}", )
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/domain/mastermind/mastermind.py
0.864239
0.430088
mastermind.py
pypi
from __future__ import annotations from enum import Enum from typing import NamedTuple, Optional from skdecide import Domain, Space, TransitionOutcome, Value from skdecide.builders.domain import * from skdecide.hub.space.gym import EnumSpace class Move(Enum): rock = 0 paper = 1 scissors = 2 class State(NamedTuple): num_move: int class D( Domain, MultiAgent, Sequential, Environment, UnrestrictedActions, Initializable, Markovian, TransformedObservable, Rewards, ): T_state = State # Type of states T_observation = Move # Type of observations T_event = Move # Type of events T_value = int # Type of transition values (rewards or costs) T_predicate = bool # Type of logical checks T_info = ( None # Type of additional information given as part of an environment outcome ) class RockPaperScissors(D): def __init__(self, max_moves: int = 10): self._max_moves = max_moves def _state_step( self, action: D.T_agent[D.T_concurrency[D.T_event]] ) -> TransitionOutcome[ D.T_state, D.T_agent[Value[D.T_value]], D.T_agent[D.T_predicate], D.T_agent[D.T_info], ]: # Get players' moves move1, move2 = action["player1"], action["player2"] # Compute rewards r1, r2 = { (Move.rock, Move.rock): (0, 0), (Move.rock, Move.paper): (-1, 1), (Move.rock, Move.scissors): (1, -1), (Move.paper, Move.rock): (1, -1), (Move.paper, Move.paper): (0, 0), (Move.paper, Move.scissors): (-1, 1), (Move.scissors, Move.rock): (-1, 1), (Move.scissors, Move.paper): (1, -1), (Move.scissors, Move.scissors): (0, 0), }[move1, move2] # Compute num_move increment last_state = self._memory num_move = last_state.num_move + 1 return TransitionOutcome( state=State(num_move=num_move), value={"player1": Value(reward=r1), "player2": Value(reward=r2)}, termination=(num_move >= self._max_moves), ) def _get_action_space_(self) -> D.T_agent[Space[D.T_event]]: return {"player1": EnumSpace(Move), "player2": EnumSpace(Move)} def _state_reset(self) -> D.T_state: return State(num_move=0) def _get_observation( self, state: D.T_state, action: Optional[D.T_agent[D.T_concurrency[D.T_event]]] = None, ) -> D.T_agent[D.T_observation]: # The observation is simply the last opponent move (or Move.rock initially by default) obs1 = action["player2"] if action is not None else Move.rock obs2 = action["player1"] if action is not None else Move.rock return {"player1": obs1, "player2": obs2} def _get_observation_space_(self) -> D.T_agent[Space[D.T_observation]]: return {"player1": EnumSpace(Move), "player2": EnumSpace(Move)} if __name__ == "__main__": from skdecide.utils import rollout domain = RockPaperScissors() rollout( domain, action_formatter=lambda a: str({k: v.name for k, v in a.items()}), outcome_formatter=lambda o: f"{ {k: v.name for k, v in o.observation.items()} }" f" - rewards: { {k: v.reward for k, v in o.value.items()} }", )
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/domain/rock_paper_scissors/rock_paper_scissors.py
0.951986
0.344526
rock_paper_scissors.py
pypi
from __future__ import annotations from copy import deepcopy from enum import Enum from typing import Any, NamedTuple, Optional import matplotlib.pyplot as plt from skdecide import DeterministicPlanningDomain, Space, Value from skdecide.builders.domain import Renderable, UnrestrictedActions from skdecide.hub.space.gym import EnumSpace, ListSpace, MultiDiscreteSpace DEFAULT_MAZE = """ +-+-+-+-+o+-+-+-+-+-+ | | | | + + + +-+-+-+ +-+ + + | | | | | | | | + +-+-+ +-+ + + + +-+ | | | | | | | + + + + + + + +-+ +-+ | | | | | | +-+-+-+-+-+-+-+ +-+ + | | | | + +-+-+-+-+ + +-+-+ + | | | | + + + +-+ +-+ +-+-+-+ | | | | | | + +-+-+ + +-+ + +-+ + | | | | | | | | +-+ +-+ + + + +-+ + + | | | | | | | + +-+ +-+-+-+-+ + + + | | | | | +-+-+-+-+-+x+-+-+-+-+ """ class State(NamedTuple): x: int y: int class Action(Enum): up = 0 down = 1 left = 2 right = 3 class D(DeterministicPlanningDomain, UnrestrictedActions, Renderable): T_state = State # Type of states T_observation = T_state # Type of observations T_event = Action # Type of events T_value = float # Type of transition values (rewards or costs) T_predicate = bool # Type of logical checks T_info = ( None # Type of additional information given as part of an environment outcome ) class Maze(D): def __init__(self, maze_str: str = DEFAULT_MAZE): maze = [] for y, line in enumerate(maze_str.strip().split("\n")): line = line.rstrip() row = [] for x, c in enumerate(line): if c in {" ", "o", "x"}: row.append(1) # spaces are 1s if c == "o": self._start = State(x, y) if c == "x": self._goal = State(x, y) else: row.append(0) # walls are 0s maze.append(row) # self._render_maze = deepcopy(self._maze) self._maze = maze self._num_cols = len(maze[0]) self._num_rows = len(maze) self._ax = None self._image = None def _get_next_state( self, memory: D.T_memory[D.T_state], action: D.T_agent[D.T_concurrency[D.T_event]], ) -> D.T_state: if action == Action.left: next_state = State(memory.x - 1, memory.y) if action == Action.right: next_state = State(memory.x + 1, memory.y) if action == Action.up: next_state = State(memory.x, memory.y - 1) if action == Action.down: next_state = State(memory.x, memory.y + 1) # If candidate next state is valid if ( 0 <= next_state.x < self._num_cols and 0 <= next_state.y < self._num_rows and self._maze[next_state.y][next_state.x] == 1 ): return next_state else: return memory def _get_transition_value( self, memory: D.T_memory[D.T_state], action: D.T_agent[D.T_concurrency[D.T_event]], next_state: Optional[D.T_state] = None, ) -> D.T_agent[Value[D.T_value]]: if next_state.x == memory.x and next_state.y == memory.y: cost = 2 # big penalty when hitting a wall else: cost = abs(next_state.x - memory.x) + abs( next_state.y - memory.y ) # every move costs 1 return Value(cost=cost) def _is_terminal(self, state: D.T_state) -> D.T_agent[D.T_predicate]: return self._is_goal(state) def _get_action_space_(self) -> D.T_agent[Space[D.T_event]]: return EnumSpace(Action) def _get_goals_(self) -> D.T_agent[Space[D.T_observation]]: return ListSpace([self._goal]) def _get_initial_state_(self) -> D.T_state: return self._start def _get_observation_space_(self) -> D.T_agent[Space[D.T_observation]]: return MultiDiscreteSpace([self._num_cols, self._num_rows]) def _render_from(self, memory: D.T_memory[D.T_state], **kwargs: Any) -> Any: if self._ax is None: # fig = plt.gcf() fig, ax = plt.subplots(1) # ax = plt.axes() ax.set_aspect("equal") # set the x and y axes to the same scale plt.xticks([]) # remove the tick marks by setting to an empty list plt.yticks([]) # remove the tick marks by setting to an empty list ax.invert_yaxis() # invert the y-axis so the first row of data is at the top self._ax = ax plt.ion() maze = deepcopy(self._maze) maze[self._goal.y][self._goal.x] = 0.7 maze[memory.y][memory.x] = 0.3 if self._image is None: self._image = self._ax.imshow(maze) else: self._image.set_data(maze) # self._ax.pcolormesh(maze) # plt.draw() plt.pause(0.001)
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/domain/maze/maze.py
0.890065
0.342709
maze.py
pypi
from __future__ import annotations import random from enum import Enum from typing import Callable import networkx as nx import numpy as np from skdecide.builders.domain.scheduling.scheduling_domains import SchedulingDomain from skdecide.builders.domain.scheduling.scheduling_domains_modelling import ( SchedulingAction, SchedulingActionEnum, State, ) from skdecide.solvers import DeterministicPolicies, Solver D = SchedulingDomain class GreedyChoice(Enum): MOST_SUCCESSORS = 1 SAMPLE_MOST_SUCCESSORS = 2 FASTEST = 3 TOTALLY_RANDOM = 4 class PilePolicy(Solver, DeterministicPolicies): T_domain = D def __init__(self, greedy_method: GreedyChoice = GreedyChoice.MOST_SUCCESSORS): self.greedy_method = greedy_method def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self.domain = domain_factory() self.graph = self.domain.graph self.nx_graph: nx.DiGraph = self.graph.to_networkx() self.successors_map = {} self.predecessors_map = {} # successors = nx.dfs_successors(self.nx_graph, 1, self.n_jobs+2) self.successors = { n: list(nx.algorithms.descendants(self.nx_graph, n)) for n in self.nx_graph.nodes() } self.source = 1 for k in self.successors: self.successors_map[k] = { "succs": self.successors[k], "nb": len(self.successors[k]), } self.predecessors = { n: list(nx.algorithms.ancestors(self.nx_graph, n)) for n in self.nx_graph.nodes() } for k in self.predecessors: self.predecessors_map[k] = { "succs": self.predecessors[k], "nb": len(self.predecessors[k]), } def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: s: State = observation predecessors = { n: nx.algorithms.ancestors(self.nx_graph, n) for n in self.nx_graph.nodes() } for k in predecessors: self.predecessors_map[k] = { "succs": predecessors[k], "nb": len(predecessors[k]), } greedy_choice = self.greedy_method possible_task_to_launch = self.domain.task_possible_to_launch_precedence( state=s ) possible_task_to_launch = [ t for t in possible_task_to_launch if self.domain.check_if_action_can_be_started( state=s, action=SchedulingAction( task=t, action=SchedulingActionEnum.START, time_progress=False, mode=1, ), )[0] ] if len(possible_task_to_launch) > 0: if greedy_choice == GreedyChoice.MOST_SUCCESSORS: next_activity = max( possible_task_to_launch, key=lambda x: self.successors_map[x]["nb"] ) if greedy_choice == GreedyChoice.SAMPLE_MOST_SUCCESSORS: prob = np.array( [ self.successors_map[possible_task_to_launch[i]]["nb"] for i in range(len(possible_task_to_launch)) ] ) s = np.sum(prob) if s != 0: prob = prob / s else: prob = ( 1.0 / len(possible_task_to_launch) * np.ones((len(possible_task_to_launch))) ) next_activity = np.random.choice( np.arange(0, len(possible_task_to_launch)), size=1, p=prob )[0] next_activity = possible_task_to_launch[next_activity] if greedy_choice == GreedyChoice.FASTEST: next_activity = min( possible_task_to_launch, key=lambda x: self.domain.sample_task_duration(x, 1, 0.0), ) if greedy_choice == GreedyChoice.TOTALLY_RANDOM: next_activity = random.choice(possible_task_to_launch) return SchedulingAction( task=next_activity, mode=1, action=SchedulingActionEnum.START, time_progress=False, ) else: return SchedulingAction( task=None, mode=1, action=SchedulingActionEnum.TIME_PR, time_progress=True, ) def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return True
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/pile_policy/pile_policy.py
0.750187
0.239816
pile_policy.py
pypi
from __future__ import annotations from enum import Enum from typing import Any, Callable, Dict, Union from discrete_optimization.rcpsp.rcpsp_model import ( MultiModeRCPSPModel, RCPSPModel, RCPSPModelCalendar, RCPSPSolution, SingleModeRCPSPModel, ) from discrete_optimization.rcpsp_multiskill.rcpsp_multiskill import ( MS_RCPSPModel, MS_RCPSPSolution, MS_RCPSPSolution_Variant, ) from skdecide.builders.domain.scheduling.scheduling_domains import SchedulingDomain from skdecide.hub.solver.do_solver.sk_to_do_binding import build_do_domain from skdecide.hub.solver.sgs_policies.sgs_policies import ( BasePolicyMethod, PolicyMethodParams, PolicyRCPSP, ) from skdecide.solvers import DeterministicPolicies, Solver class D(SchedulingDomain): pass class SolvingMethod(Enum): PILE = 0 GA = 1 LS = 2 LP = 3 CP = 4 LNS_LP = 5 LNS_CP = 6 LNS_CP_CALENDAR = 7 # New algorithm, similar to lns, adding iterativelyu constraint to fulfill calendar constraints.. def build_solver(solving_method: SolvingMethod, do_domain): if isinstance(do_domain, (RCPSPModelCalendar, RCPSPModel, MultiModeRCPSPModel)): from discrete_optimization.rcpsp.rcpsp_solvers import ( look_for_solver, solvers_map, ) available = look_for_solver(do_domain) solving_method_to_str = { SolvingMethod.PILE: "greedy", SolvingMethod.GA: "ga", SolvingMethod.LS: "ls", SolvingMethod.LP: "lp", SolvingMethod.CP: "cp", SolvingMethod.LNS_LP: "lns-lp", SolvingMethod.LNS_CP: "lns-cp", SolvingMethod.LNS_CP_CALENDAR: "lns-cp-calendar", } smap = [ (av, solvers_map[av]) for av in available if solvers_map[av][0] == solving_method_to_str[solving_method] ] if len(smap) > 0: return smap[0] if isinstance(do_domain, (MS_RCPSPModel, MS_RCPSPModel, MultiModeRCPSPModel)): from discrete_optimization.rcpsp_multiskill.rcpsp_multiskill_solvers import ( look_for_solver, solvers_map, ) available = look_for_solver(do_domain) solving_method_to_str = { SolvingMethod.PILE: "greedy", SolvingMethod.GA: "ga", SolvingMethod.LS: "ls", SolvingMethod.LP: "lp", SolvingMethod.CP: "cp", SolvingMethod.LNS_LP: "lns-lp", SolvingMethod.LNS_CP: "lns-cp", SolvingMethod.LNS_CP_CALENDAR: "lns-cp-calendar", } smap = [ (av, solvers_map[av]) for av in available if solvers_map[av][0] == solving_method_to_str[solving_method] ] if len(smap) > 0: return smap[0] return None def from_solution_to_policy( solution: Union[RCPSPSolution, MS_RCPSPSolution, MS_RCPSPSolution_Variant], domain, policy_method_params: PolicyMethodParams, ): permutation_task = None modes_dictionnary = None schedule = None resource_allocation = None resource_allocation_priority = None if isinstance(solution, RCPSPSolution): permutation_task = sorted( solution.rcpsp_schedule, key=lambda x: (solution.rcpsp_schedule[x]["start_time"], x), ) schedule = solution.rcpsp_schedule modes_dictionnary = {} # set modes for start and end (dummy) jobs modes_dictionnary[1] = 1 modes_dictionnary[solution.problem.n_jobs_non_dummy + 2] = 1 for i in range(len(solution.rcpsp_modes)): modes_dictionnary[i + 2] = solution.rcpsp_modes[i] elif isinstance(solution, MS_RCPSPSolution): permutation_task = sorted( solution.schedule, key=lambda x: (solution.schedule[x]["start_time"], x) ) schedule = solution.schedule employees = sorted(domain.get_resource_units_names()) resource_allocation = { task: [ employees[i] for i in solution.employee_usage[task].keys() ] # warning here... for task in solution.employee_usage } if isinstance(solution, MS_RCPSPSolution_Variant): resource_allocation_priority = solution.priority_worker_per_task modes_dictionnary = {} # set modes for start and end (dummy) jobs modes_dictionnary[1] = 1 modes_dictionnary[solution.problem.n_jobs_non_dummy + 2] = 1 for i in range(len(solution.modes_vector)): modes_dictionnary[i + 2] = solution.modes_vector[i] else: modes_dictionnary = solution.modes return PolicyRCPSP( domain=domain, policy_method_params=policy_method_params, permutation_task=permutation_task, modes_dictionnary=modes_dictionnary, schedule=schedule, resource_allocation=resource_allocation, resource_allocation_priority=resource_allocation_priority, ) class DOSolver(Solver, DeterministicPolicies): T_domain = D def __init__( self, policy_method_params: PolicyMethodParams, method: SolvingMethod = SolvingMethod.PILE, dict_params: Dict[Any, Any] = None, ): self.method = method self.policy_method_params = policy_method_params self.dict_params = dict_params if self.dict_params is None: self.dict_params = {} def get_available_methods(self, domain: SchedulingDomain): do_domain = build_do_domain(domain) if isinstance(do_domain, (MS_RCPSPModel)): from discrete_optimization.rcpsp_multiskill.rcpsp_multiskill_solvers import ( look_for_solver, solvers_map, ) available = look_for_solver(do_domain) elif isinstance( do_domain, (SingleModeRCPSPModel, RCPSPModel, MultiModeRCPSPModel) ): from discrete_optimization.rcpsp.rcpsp_solvers import ( look_for_solver, solvers_map, ) available = look_for_solver(do_domain) smap = [(av, solvers_map[av]) for av in available] return smap def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self.domain = domain_factory() self.do_domain = build_do_domain(self.domain) solvers = build_solver(solving_method=self.method, do_domain=self.do_domain) solver_class = solvers[0] key, params = solvers[1] for k in params: if k not in self.dict_params: self.dict_params[k] = params[k] self.solver = solver_class(self.do_domain, **self.dict_params) if hasattr(self.solver, "init_model") and callable(self.solver.init_model): self.solver.init_model(**self.dict_params) result_storage = self.solver.solve(**self.dict_params) best_solution: RCPSPSolution = result_storage.get_best_solution() assert best_solution is not None fits = self.do_domain.evaluate(best_solution) self.best_solution = best_solution self.policy_object = from_solution_to_policy( solution=best_solution, domain=self.domain, policy_method_params=self.policy_method_params, ) def get_external_policy(self) -> PolicyRCPSP: return self.policy_object def compute_external_policy(self, policy_method_params: PolicyMethodParams): return from_solution_to_policy( solution=self.best_solution, domain=self.domain, policy_method_params=policy_method_params, ) def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: return self.policy_object.get_next_action(observation=observation) def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return self.policy_object.is_policy_defined_for(observation=observation)
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/do_solver/do_solver_scheduling.py
0.8308
0.173656
do_solver_scheduling.py
pypi
from __future__ import annotations import os import sys from typing import Callable, Dict, Optional, Tuple from skdecide import Domain, Solver, hub from skdecide.builders.domain import ( Actions, EnumerableTransitions, FullyObservable, Goals, Markovian, PositiveCosts, Sequential, SingleAgent, ) from skdecide.builders.solver import DeterministicPolicies, ParallelSolver, Utilities from skdecide.core import Value record_sys_path = sys.path skdecide_cpp_extension_lib_path = os.path.abspath(hub.__path__[0]) if skdecide_cpp_extension_lib_path not in sys.path: sys.path.append(skdecide_cpp_extension_lib_path) try: from __skdecide_hub_cpp import _ILAOStarSolver_ as ilaostar_solver # TODO: remove Markovian req? class D( Domain, SingleAgent, Sequential, EnumerableTransitions, Actions, Goals, Markovian, FullyObservable, PositiveCosts, ): pass class ILAOstar(ParallelSolver, Solver, DeterministicPolicies, Utilities): T_domain = D def __init__( self, domain_factory: Callable[[], Domain], heuristic: Optional[ Callable[[Domain, D.T_state], D.T_agent[Value[D.T_value]]] ] = None, discount: float = 1.0, epsilon: float = 0.001, parallel: bool = False, shared_memory_proxy=None, debug_logs: bool = False, ) -> None: ParallelSolver.__init__( self, domain_factory=domain_factory, parallel=parallel, shared_memory_proxy=shared_memory_proxy, ) self._solver = None self._discount = discount self._epsilon = epsilon self._debug_logs = debug_logs if heuristic is None: self._heuristic = lambda d, s: Value(cost=0) else: self._heuristic = heuristic self._lambdas = [self._heuristic] self._ipc_notify = True def close(self): """Joins the parallel domains' processes. Not calling this method (or not using the 'with' context statement) results in the solver forever waiting for the domain processes to exit. """ if self._parallel: self._solver.close() ParallelSolver.close(self) def _init_solve(self, domain_factory: Callable[[], Domain]) -> None: self._domain_factory = domain_factory self._solver = ilaostar_solver( domain=self.get_domain(), goal_checker=lambda d, s: d.is_goal(s), heuristic=lambda d, s: self._heuristic(d, s) if not self._parallel else d.call(None, 0, s), discount=self._discount, epsilon=self._epsilon, parallel=self._parallel, debug_logs=self._debug_logs, ) self._solver.clear() def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self._init_solve(domain_factory) def _solve_from(self, memory: D.T_memory[D.T_state]) -> None: self._solver.solve(memory) def _is_solution_defined_for( self, observation: D.T_agent[D.T_observation] ) -> bool: return self._solver.is_solution_defined_for(observation) def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: if not self._is_solution_defined_for(observation): self._solve_from(observation) return self._solver.get_next_action(observation) def _get_utility(self, observation: D.T_agent[D.T_observation]) -> D.T_value: return self._solver.get_utility(observation) def get_nb_of_explored_states(self) -> int: return self._solver.get_nb_of_explored_states() def best_solution_graph_size(self) -> int: return self._solver.best_solution_graph_size() def get_policy( self, ) -> Dict[ D.T_agent[D.T_observation], Tuple[D.T_agent[D.T_concurrency[D.T_event]], float], ]: return self._solver.get_policy() except ImportError: sys.path = record_sys_path print( 'Scikit-decide C++ hub library not found. Please check it is installed in "skdecide/hub".' ) raise
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/ilaostar/ilaostar.py
0.58676
0.150559
ilaostar.py
pypi
from __future__ import annotations from heapq import heappop, heappush from itertools import count from typing import Any, Dict, Tuple from skdecide import D, DeterministicPlanningDomain, GoalMDPDomain, MDPDomain, Memory from skdecide.hub.solver.graph_explorer.GraphDomain import ( GraphDomain, GraphDomainUncertain, ) from skdecide.hub.solver.graph_explorer.GraphExploration import GraphExploration # WARNING : adapted for the scheduling domains. class DFSExploration(GraphExploration): def __init__( self, domain: GoalMDPDomain, score_function=None, max_edges=None, max_nodes=None, max_path=None, ): self.domain = domain self.score_function = score_function self.c = count() if score_function is None: self.score_function = lambda s: (next(self.c)) self.max_edges = max_edges self.max_nodes = max_nodes self.max_path = max_path def build_graph_domain(self, init_state: Any = None) -> GraphDomainUncertain: if init_state is None: initial_state = self.domain.get_initial_state() else: initial_state = init_state stack = [(self.score_function(initial_state), initial_state)] domain = self.domain goal_states = set() terminal_states = set() num_s = 0 state_to_ind = {} nb_states = 1 nb_edges = 0 result = {initial_state} next_state_map: Dict[ D.T_state, Dict[D.T_event, Dict[D.T_state, Tuple[float, float]]] ] = {} state_terminal: Dict[D.T_state, bool] = {} state_goal: Dict[D.T_state, bool] = {} state_terminal[initial_state] = self.domain.is_terminal(initial_state) state_goal[initial_state] = self.domain.is_goal(initial_state) while len(stack) > 0: if not len(result) % 100 and len(result) > nb_states: print("Expanded {} states.".format(len(result))) nb_states = len(result) tuple, s = heappop(stack) if s not in state_to_ind: state_to_ind[s] = num_s num_s += 1 if domain.is_terminal(s): terminal_states.add(s) if domain.is_goal(s): goal_states.add(s) if domain.is_goal(s) or domain.is_terminal(s): continue actions = domain.get_applicable_actions(s).get_elements() for action in actions: successors = domain.get_next_state_distribution(s, action).get_values() for succ, prob in successors: if s not in next_state_map: next_state_map[s] = {} if action not in next_state_map[s]: next_state_map[s][action] = {} if prob != 0 and succ not in result: nb_states += 1 nb_edges += 1 result.add(succ) heappush(stack, (self.score_function(succ), succ)) cost = domain.get_transition_value(s, action, succ) next_state_map[s][action][succ] = (prob, cost.cost) state_goal[succ] = domain.is_goal(succ) state_terminal[succ] = domain.is_terminal(succ) if (nb_states > self.max_nodes) or (nb_edges > self.max_edges): break return GraphDomainUncertain( next_state_map=next_state_map, state_terminal=state_terminal, state_goal=state_goal, )
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/graph_explorer/DFS_Uncertain_Exploration.py
0.634543
0.247498
DFS_Uncertain_Exploration.py
pypi
from __future__ import annotations from typing import Any from skdecide import DeterministicPlanningDomain, Memory from skdecide.hub.solver.graph_explorer.GraphDomain import GraphDomain from skdecide.hub.solver.graph_explorer.GraphExploration import GraphExploration class FullSpaceExploration(GraphExploration): def __init__( self, domain: DeterministicPlanningDomain, max_edges=None, max_nodes=None, max_path=None, ): self.domain = domain self.max_edges = max_edges self.max_nodes = max_nodes self.max_path = max_path def build_graph_domain(self, init_state: Any = None) -> GraphDomain: next_state_map = {} next_state_attributes = {} if init_state is None: init_state = self.domain.get_initial_state() stack = [(init_state, [init_state])] nb_nodes = 1 nb_edges = 0 nb_path = 0 next_state_map[init_state] = {} next_state_attributes[init_state] = {} while stack: (vertex, path) = stack.pop() actions = self.domain.get_applicable_actions(vertex).get_elements() for action in actions: next = self.domain.get_next_state(vertex, action) if next not in next_state_map: next_state_map[next] = {} next_state_attributes[next] = {} nb_nodes += 1 if action not in next_state_map[vertex]: nb_edges += 1 next_state_map[vertex][action] = next next_state_attributes[vertex][action] = { "cost": self.domain.get_transition_value( Memory([vertex]), action, next ).cost, "reward": self.domain.get_transition_value( Memory([vertex]), action, next ).reward, } if self.domain.is_goal(next): nb_path += 1 else: if next not in next_state_map: stack.append((next, path + [next])) if ( nb_path > self.max_path or (nb_nodes > self.max_nodes and nb_path >= 1) or (nb_edges > self.max_edges and nb_path >= 1) ): break return GraphDomain(next_state_map, next_state_attributes, None, None) def reachable_states(self, s0: Any): """Computes all states reachable from s0.""" result = {s0} stack = [s0] domain = self._domain while len(stack) > 0: if not len(result) % 100: print("Expanded {} states.".format(len(result))) s = stack.pop() if domain.is_terminal(s): continue # Add successors actions = domain.get_applicable_actions(s).get_elements() for action in actions: successors = domain.get_next_state_distribution(s, action).get_values() for succ, prob in successors: if prob != 0 and succ not in result: result.add(succ) stack.append(succ) return result
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/graph_explorer/FullSpaceExploration.py
0.71413
0.256203
FullSpaceExploration.py
pypi
from __future__ import annotations from typing import Any from skdecide import DeterministicPlanningDomain, Memory from skdecide.hub.solver.graph_explorer.GraphDomain import GraphDomain from skdecide.hub.solver.graph_explorer.GraphExploration import GraphExploration class DFSExploration(GraphExploration): def __init__( self, domain: DeterministicPlanningDomain, max_edges=None, max_nodes=None, max_path=None, ): self.domain = domain self.max_edges = max_edges self.max_nodes = max_nodes self.max_path = max_path def build_graph_domain( self, init_state: Any = None, transition_extractor=None, verbose=True ) -> GraphDomain: if transition_extractor is None: transition_extractor = lambda s, a, s_prime: { "cost": self.domain.get_transition_value(s, a, s_prime).cost } next_state_map = {} next_state_attributes = {} if init_state is None: init_state = self.domain.get_initial_state() stack = [(init_state, [init_state])] nb_nodes = 1 nb_edges = 0 nb_path = 0 next_state_map[init_state] = {} next_state_attributes[init_state] = {} paths_dict = {} while stack: (vertex, path) = stack.pop() actions = self.domain.get_applicable_actions(vertex).get_elements() for action in actions: next = self.domain.get_next_state(Memory([vertex]), action) if action not in next_state_map[vertex]: nb_edges += 1 else: continue next_state_map[vertex][action] = next next_state_attributes[vertex][action] = transition_extractor( vertex, action, next ) if self.domain.is_goal(next): nb_path += 1 if verbose: print(nb_path, " / ", self.max_path) print("nodes ", nb_nodes, " / ", self.max_nodes) print("edges ", nb_edges, " / ", self.max_edges) else: if next not in next_state_map: stack.append((next, path + [next])) paths_dict[next] = set(tuple(path + [next])) # else: # if tuple(path+[next]) not in paths_dict[next]: # stack.append((next, path + [next])) # paths_dict[next].add(tuple(path + [next])) if next not in next_state_map: next_state_map[next] = {} next_state_attributes[next] = {} nb_nodes += 1 if ( nb_path > self.max_path or (nb_nodes > self.max_nodes and nb_path >= 1) or (nb_edges > self.max_edges and nb_path >= 1) ): break return GraphDomain(next_state_map, next_state_attributes, None, None)
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/graph_explorer/DFSExploration.py
0.516595
0.205296
DFSExploration.py
pypi
from __future__ import annotations import os import sys from typing import Any, Callable, Dict, List, Tuple from skdecide import Domain, Solver, hub from skdecide.builders.domain import ( Actions, DeterministicInitialized, Environment, FullyObservable, Markovian, Rewards, Sequential, SingleAgent, ) from skdecide.builders.solver import DeterministicPolicies, ParallelSolver, Utilities record_sys_path = sys.path skdecide_cpp_extension_lib_path = os.path.abspath(hub.__path__[0]) if skdecide_cpp_extension_lib_path not in sys.path: sys.path.append(skdecide_cpp_extension_lib_path) try: from __skdecide_hub_cpp import _RIWSolver_ as riw_solver class D( Domain, SingleAgent, Sequential, Environment, Actions, DeterministicInitialized, Markovian, FullyObservable, Rewards, ): # TODO: check why DeterministicInitialized & PositiveCosts/Rewards? pass class RIW(ParallelSolver, Solver, DeterministicPolicies, Utilities): T_domain = D def __init__( self, domain_factory: Callable[[], Domain], state_features: Callable[[Domain, D.T_state], Any], use_state_feature_hash: bool = False, use_simulation_domain: bool = False, time_budget: int = 3600000, rollout_budget: int = 100000, max_depth: int = 1000, exploration: float = 0.25, epsilon_moving_average_window: int = 100, epsilon: float = 0.001, discount: float = 1.0, online_node_garbage: bool = False, continuous_planning: bool = True, parallel: bool = False, shared_memory_proxy=None, debug_logs: bool = False, watchdog: Callable[[int, int, float, float], bool] = None, ) -> None: ParallelSolver.__init__( self, domain_factory=domain_factory, parallel=parallel, shared_memory_proxy=shared_memory_proxy, ) self._solver = None self._domain = None self._state_features = state_features self._use_state_feature_hash = use_state_feature_hash self._use_simulation_domain = use_simulation_domain self._time_budget = time_budget self._rollout_budget = rollout_budget self._max_depth = max_depth self._exploration = exploration self._epsilon_moving_average_window = epsilon_moving_average_window self._epsilon = epsilon self._discount = discount self._online_node_garbage = online_node_garbage self._continuous_planning = continuous_planning self._debug_logs = debug_logs if watchdog is None: self._watchdog = ( lambda elapsed_time, number_rollouts, best_value, epsilon_moving_average: True ) else: self._watchdog = watchdog self._lambdas = [self._state_features] self._ipc_notify = True def close(self): """Joins the parallel domains' processes. Not calling this method (or not using the 'with' context statement) results in the solver forever waiting for the domain processes to exit. """ if self._parallel: self._solver.close() ParallelSolver.close(self) def _init_solve(self, domain_factory: Callable[[], D]) -> None: self._domain_factory = domain_factory self._solver = riw_solver( domain=self.get_domain(), state_features=lambda d, s, i=None: self._state_features(d, s) if not self._parallel else d.call(i, 0, s), use_state_feature_hash=self._use_state_feature_hash, use_simulation_domain=self._use_simulation_domain, time_budget=self._time_budget, rollout_budget=self._rollout_budget, max_depth=self._max_depth, exploration=self._exploration, epsilon_moving_average_window=self._epsilon_moving_average_window, epsilon=self._epsilon, discount=self._discount, online_node_garbage=self._online_node_garbage, parallel=self._parallel, debug_logs=self._debug_logs, watchdog=self._watchdog, ) self._solver.clear() def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self._init_solve(domain_factory) def _solve_from(self, memory: D.T_memory[D.T_state]) -> None: self._solver.solve(memory) def _is_solution_defined_for( self, observation: D.T_agent[D.T_observation] ) -> bool: return self._solver.is_solution_defined_for(observation) def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: if self._continuous_planning or not self._is_solution_defined_for( observation ): self._solve_from(observation) action = self._solver.get_next_action(observation) if action is None: print( "\x1b[3;33;40m" + "No best action found in observation " + str(observation) + ", applying random action" + "\x1b[0m" ) return self.call_domain_method("get_action_space").sample() else: return action def _reset(self) -> None: self._solver.clear() def _get_utility(self, observation: D.T_agent[D.T_observation]) -> D.T_value: return self._solver.get_utility(observation) def get_nb_of_explored_states(self) -> int: return self._solver.get_nb_of_explored_states() def get_nb_of_pruned_states(self) -> int: return self._solver.get_nb_of_pruned_states() def get_nb_rollouts(self) -> int: return self._solver.get_nb_rollouts() def get_policy( self, ) -> Dict[ D.T_agent[D.T_observation], Tuple[D.T_agent[D.T_concurrency[D.T_event]], float], ]: return self._solver.get_policy() def get_action_prefix(self) -> List[D.T_agent[D.T_observation]]: return self._solver.get_action_prefix() except ImportError: sys.path = record_sys_path print( 'Scikit-decide C++ hub library not found. Please check it is installed in "skdecide/hub".' ) raise
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/riw/riw.py
0.556641
0.173849
riw.py
pypi
from __future__ import annotations from typing import Callable, Optional from skdecide import Domain, Solver, Value from skdecide.builders.domain import ( Actions, DeterministicTransitions, FullyObservable, Goals, Markovian, PositiveCosts, Sequential, SingleAgent, ) from skdecide.builders.solver import DeterministicPolicies, Utilities class D( Domain, SingleAgent, Sequential, DeterministicTransitions, Actions, Goals, Markovian, FullyObservable, PositiveCosts, ): pass class LRTAstar(Solver, DeterministicPolicies, Utilities): T_domain = D def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: return self._policy.get(observation, None) def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return observation is self._policy def _get_utility(self, observation: D.T_agent[D.T_observation]) -> D.T_value: if observation not in self.values: return self._heuristic(self._domain, observation).cost return self.values[observation] def __init__( self, from_state: Optional[D.T_state] = None, heuristic: Optional[ Callable[[Domain, D.T_state], D.T_agent[Value[D.T_value]]] ] = None, weight: float = 1.0, verbose: bool = False, max_iter=5000, max_depth=200, ) -> None: self._from_state = from_state self._heuristic = ( (lambda _, __: Value(cost=0.0)) if heuristic is None else heuristic ) self._weight = weight self.max_iter = max_iter self.max_depth = max_depth self._plan = [] self.values = {} self._verbose = verbose self.heuristic_changed = False self._policy = {} def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self._domain = domain_factory() self.values = {} iteration = 0 best_cost = float("inf") if self._from_state is None: # get initial observation from domain (assuming DeterministicInitialized) from_observation = self._domain.get_initial_state() else: from_observation = self._from_state # best_path = None while True: print(from_observation) dead_end, cumulated_cost, current_roll, list_action = self.doTrial( from_observation ) if self._verbose: print( "iter ", iteration, "/", self.max_iter, " : dead end, ", dead_end, " cost : ", cumulated_cost, ) if not dead_end and cumulated_cost < best_cost: best_cost = cumulated_cost # best_path = current_roll for k in range(len(current_roll)): self._policy[current_roll[k][0]] = current_roll[k][1]["action"] if not self.heuristic_changed: print(self.heuristic_changed) return iteration += 1 if iteration > self.max_iter: return def doTrial(self, from_observation: D.T_agent[D.T_observation]): list_action = [] current_state = from_observation depth = 0 dead_end = False cumulated_reward = 0.0 current_roll = [current_state] current_roll_and_action = [] self.heuristic_changed = False while (not self._domain.is_goal(current_state)) and (depth < self.max_depth): next_action = None next_state = None best_estimated_cost = float("inf") applicable_actions = self._domain.get_applicable_actions(current_state) for action in applicable_actions.get_elements(): st = self._domain.get_next_state(current_state, action) r = self._domain.get_transition_value(current_state, action, st).cost if st in current_roll: continue if st not in self.values: self.values[st] = self._heuristic(self._domain, st).cost if r + self.values[st] < best_estimated_cost: next_state = st next_action = action best_estimated_cost = r + self.values[st] if next_action is None: self.values[current_state] = float("inf") dead_end = True self.heuristic_changed = True break else: if (not current_state in self.values) or ( self.values[current_state] != best_estimated_cost ): self.heuristic_changed = True self.values[current_state] = best_estimated_cost cumulated_reward += best_estimated_cost - ( self.values[next_state] if next_state in self.values else self._heuristic(self._domain, next_state).cost ) list_action.append(next_action) current_roll_and_action.append((current_state, {"action": next_action})) current_state = next_state depth += 1 current_roll.append(current_state) current_roll_and_action.append((current_state, {"action": None})) cumulated_reward += self.values[current_state] return dead_end, cumulated_reward, current_roll_and_action, list_action
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/lrtastar/lrtastar.py
0.754237
0.342929
lrtastar.py
pypi
from __future__ import annotations from enum import Enum from functools import partial from typing import Dict, List, Optional, Union from skdecide.builders.domain.scheduling.scheduling_domains import ( D, MultiModeRCPSP, SchedulingDomain, SingleModeRCPSP, ) from skdecide.builders.domain.scheduling.scheduling_domains_modelling import ( SchedulingAction, SchedulingActionEnum, State, ) from skdecide.builders.solver.policy import DeterministicPolicies class BasePolicyMethod(Enum): FOLLOW_GANTT = 0 SGS_PRECEDENCE = 1 SGS_READY = 2 SGS_STRICT = 3 SGS_TIME_FREEDOM = 4 SGS_INDEX_FREEDOM = 5 PILE = 6 class PolicyMethodParams: def __init__( self, base_policy_method: BasePolicyMethod, delta_time_freedom=10, delta_index_freedom=10, ): self.base_policy_method = base_policy_method self.delta_time_freedom = delta_time_freedom self.delta_index_freedom = delta_index_freedom class PolicyRCPSP(DeterministicPolicies): T_domain = D def __init__( self, domain: SchedulingDomain, policy_method_params: PolicyMethodParams, permutation_task: List[int], modes_dictionnary: Dict[int, int], schedule: Optional[ Dict[int, Dict[str, int]] ] = None, # {id: {"start_time":, "end_time"}} resource_allocation: Optional[Dict[int, List[str]]] = None, resource_allocation_priority: Optional[Dict[int, List[str]]] = None, ): self.domain = domain self.policy_method_params = policy_method_params self.permutation_task = permutation_task self.modes_dictionnary = modes_dictionnary self.schedule = schedule self.store_start_date = {} if self.schedule is not None: for task_id in self.schedule: start_date = self.schedule[task_id]["start_time"] if start_date not in self.store_start_date: self.store_start_date[start_date] = set() self.store_start_date[start_date].add(task_id) self.resource_allocation = resource_allocation self.resource_allocation_priority = resource_allocation_priority self.build_function() def reset(self): pass def build_function(self): func = partial( map_method_to_function[self.policy_method_params.base_policy_method], policy_rcpsp=self, check_if_applicable=False, domain_sk_decide=self.domain, delta_time_freedom=self.policy_method_params.delta_time_freedom, delta_index_freedom=self.policy_method_params.delta_index_freedom, ) self.func = func def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: return self.func(state=observation) def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return True def action_in_applicable_actions( domain_sk_decide, observation: D.T_agent[D.T_observation], the_action: SchedulingAction, ): return domain_sk_decide.check_if_action_can_be_started(observation, the_action) def next_action_follow_static_gantt( policy_rcpsp: PolicyRCPSP, state: State, check_if_applicable: bool = False, **kwargs ): obs: State = state t = obs.t ongoing_task = obs.tasks_ongoing complete_task = obs.tasks_complete possible_task_to_launch = policy_rcpsp.domain.task_possible_to_launch_precedence( state=state ) the_action = SchedulingAction( task=None, action=SchedulingActionEnum.TIME_PR, mode=None, time_progress=True, resource_unit_names=None, ) if t in policy_rcpsp.store_start_date: tasks = [ task for task in policy_rcpsp.store_start_date[t] if task not in ongoing_task and task not in complete_task and task in possible_task_to_launch ] if len(tasks) > 0: the_action = SchedulingAction( task=tasks[0], action=SchedulingActionEnum.START, mode=policy_rcpsp.modes_dictionnary[tasks[0]], time_progress=False, resource_unit_names=None, ) if policy_rcpsp.resource_allocation is not None: if tasks[0] in policy_rcpsp.resource_allocation: the_action.resource_unit_names = policy_rcpsp.resource_allocation[ tasks[0] ] if True: action_available = action_in_applicable_actions( policy_rcpsp.domain, state, the_action ) if not action_available[0]: the_action = SchedulingAction( task=None, action=SchedulingActionEnum.TIME_PR, mode=None, time_progress=True, resource_unit_names=None, ) return the_action def next_action_sgs_first_task_precedence_ready( policy_rcpsp: PolicyRCPSP, state: State, check_if_applicable: bool = False, **kwargs ): obs: State = state next_task_to_launch = None possible_task_to_launch = policy_rcpsp.domain.task_possible_to_launch_precedence( state=state ) tasks_remaining = set(state.tasks_remaining) sorted_task_not_done = sorted( [ (index, policy_rcpsp.permutation_task[index]) for index in range(len(policy_rcpsp.permutation_task)) if policy_rcpsp.permutation_task[index] in tasks_remaining ], key=lambda x: x[0], ) for i in range(len(sorted_task_not_done)): task = sorted_task_not_done[i][1] if task in possible_task_to_launch: next_task_to_launch = task break if next_task_to_launch is not None: if policy_rcpsp.schedule is not None: original_time_start_task = policy_rcpsp.schedule[next_task_to_launch][ "start_time" ] other_tasks_same_time = [ task_id for ind, task_id in sorted_task_not_done if task_id != next_task_to_launch and policy_rcpsp.schedule[task_id]["start_time"] == original_time_start_task and task_id in possible_task_to_launch ] else: other_tasks_same_time = [] tasks_of_interest = [next_task_to_launch] + other_tasks_same_time the_action = None for tinterest in tasks_of_interest: the_action = SchedulingAction( task=tinterest, action=SchedulingActionEnum.START, mode=policy_rcpsp.modes_dictionnary[tinterest], time_progress=False, resource_unit_names=None, ) if policy_rcpsp.resource_allocation is not None: if tinterest in policy_rcpsp.resource_allocation: the_action.resource_unit_names = policy_rcpsp.resource_allocation[ tinterest ] applicable = action_in_applicable_actions( domain_sk_decide=policy_rcpsp.domain, observation=state, the_action=the_action, ) if applicable[0]: break else: the_action = None if the_action is None: the_action = SchedulingAction( task=None, action=SchedulingActionEnum.TIME_PR, mode=None, time_progress=True, resource_unit_names=None, ) return the_action else: return SchedulingAction( task=None, action=SchedulingActionEnum.TIME_PR, mode=None, time_progress=True, resource_unit_names=None, ) def next_action_sgs_first_task_ready( policy_rcpsp: PolicyRCPSP, state: State, check_if_applicable: bool = False, domain_sk_decide: Union[MultiModeRCPSP, SingleModeRCPSP] = None, **kwargs, ): obs: State = state t = obs.t tasks_remaining = set(state.tasks_remaining) sorted_task_not_done = sorted( [ (index, policy_rcpsp.permutation_task[index]) for index in range(len(policy_rcpsp.permutation_task)) if policy_rcpsp.permutation_task[index] in tasks_remaining ], key=lambda x: x[0], ) next_task_to_launch = None possible_task_to_launch = policy_rcpsp.domain.task_possible_to_launch_precedence( state=state ) for i in range(len(sorted_task_not_done)): task = sorted_task_not_done[i][1] if task not in possible_task_to_launch: continue the_action = SchedulingAction( task=task, action=SchedulingActionEnum.START, mode=policy_rcpsp.modes_dictionnary[task], time_progress=False, resource_unit_names=None, ) if policy_rcpsp.resource_allocation is not None: if task in policy_rcpsp.resource_allocation: the_action.resource_unit_names = policy_rcpsp.resource_allocation[task] action_available = action_in_applicable_actions( policy_rcpsp.domain, state, the_action ) if action_available[0]: return the_action the_action = SchedulingAction( task=None, action=SchedulingActionEnum.TIME_PR, mode=None, time_progress=True, resource_unit_names=None, ) return the_action def next_action_sgs_strict( policy_rcpsp: PolicyRCPSP, state: State, check_if_applicable: bool = False, domain_sk_decide: Union[MultiModeRCPSP, SingleModeRCPSP] = None, **kwargs, ): obs: State = state t = obs.t possible_task_to_launch = policy_rcpsp.domain.task_possible_to_launch_precedence( state=state ) tasks_remaining = set(state.tasks_remaining) sorted_task_not_done = sorted( [ (index, policy_rcpsp.permutation_task[index]) for index in range(len(policy_rcpsp.permutation_task)) if policy_rcpsp.permutation_task[index] in tasks_remaining and policy_rcpsp.permutation_task[index] in possible_task_to_launch ], key=lambda x: x[0], ) the_action = None if len(sorted_task_not_done) > 0: other_tasks_same_time = [sorted_task_not_done[0][1]] if policy_rcpsp.schedule is not None: scheduled_time = policy_rcpsp.schedule[sorted_task_not_done[0][1]][ "start_time" ] other_tasks_same_time = [ task_id for ind, task_id in sorted_task_not_done if policy_rcpsp.schedule[task_id]["start_time"] == scheduled_time ] for tinterest in other_tasks_same_time: the_action = SchedulingAction( task=tinterest, action=SchedulingActionEnum.START, mode=policy_rcpsp.modes_dictionnary[tinterest], time_progress=False, resource_unit_names=None, ) # start_tasks=[tinterest], advance_time=False) if policy_rcpsp.resource_allocation is not None: if tinterest in policy_rcpsp.resource_allocation: the_action.resource_unit_names = policy_rcpsp.resource_allocation[ tinterest ] applicable = action_in_applicable_actions( policy_rcpsp.domain, observation=state, the_action=the_action ) if applicable[0]: break else: the_action = None if the_action is None: the_action = SchedulingAction( task=None, action=SchedulingActionEnum.TIME_PR, mode=None, time_progress=True, resource_unit_names=None, ) return the_action def next_action_sgs_time_freedom( policy_rcpsp: PolicyRCPSP, state: State, check_if_applicable: bool = False, domain_sk_decide: Union[MultiModeRCPSP, SingleModeRCPSP] = None, delta_time_freedom: int = 10, **kwargs, ): obs: State = state possible_task_to_launch = policy_rcpsp.domain.task_possible_to_launch_precedence( state=state ) tasks_remaining = set(state.tasks_remaining) sorted_task_not_done = sorted( [ (index, policy_rcpsp.permutation_task[index]) for index in range(len(policy_rcpsp.permutation_task)) if policy_rcpsp.permutation_task[index] in tasks_remaining and policy_rcpsp.permutation_task[index] in possible_task_to_launch ], key=lambda x: x[0], ) the_action = None if len(sorted_task_not_done) > 0: other_tasks_same_time = [sorted_task_not_done[0][1]] if policy_rcpsp.schedule is not None: scheduled_time = policy_rcpsp.schedule[sorted_task_not_done[0][1]][ "start_time" ] other_tasks_same_time = [ task_id for ind, task_id in sorted_task_not_done if scheduled_time <= policy_rcpsp.schedule[task_id]["start_time"] <= scheduled_time + delta_time_freedom ] for tinterest in other_tasks_same_time: the_action = SchedulingAction( task=tinterest, action=SchedulingActionEnum.START, mode=policy_rcpsp.modes_dictionnary[tinterest], time_progress=False, resource_unit_names=None, ) # start_tasks=[tinterest], advance_time=False) if policy_rcpsp.resource_allocation is not None: if tinterest in policy_rcpsp.resource_allocation: the_action.resource_unit_names = policy_rcpsp.resource_allocation[ tinterest ] applicable = action_in_applicable_actions( policy_rcpsp.domain, observation=state, the_action=the_action ) if applicable[0]: break else: the_action = None if the_action is None: the_action = SchedulingAction( task=None, action=SchedulingActionEnum.TIME_PR, mode=None, time_progress=True, resource_unit_names=None, ) return the_action def next_action_sgs_index_freedom( policy_rcpsp: PolicyRCPSP, state: State, check_if_applicable: bool = False, domain_sk_decide: Union[MultiModeRCPSP, SingleModeRCPSP] = None, delta_index_freedom: int = 10, **kwargs, ): obs: State = state possible_task_to_launch = policy_rcpsp.domain.task_possible_to_launch_precedence( state=state ) tasks_remaining = set(state.tasks_remaining) sorted_task_not_done = sorted( [ (index, policy_rcpsp.permutation_task[index]) for index in range(len(policy_rcpsp.permutation_task)) if policy_rcpsp.permutation_task[index] in tasks_remaining and policy_rcpsp.permutation_task[index] in possible_task_to_launch ], key=lambda x: x[0], ) the_action = None if len(sorted_task_not_done) > 0: index_t = sorted_task_not_done[0][0] other_tasks_same_time = [ task_id for ind, task_id in sorted_task_not_done if ind <= index_t + delta_index_freedom ] for tinterest in other_tasks_same_time: the_action = SchedulingAction( task=tinterest, action=SchedulingActionEnum.START, mode=policy_rcpsp.modes_dictionnary[tinterest], time_progress=False, resource_unit_names=None, ) # start_tasks=[tinterest], advance_time=False) if policy_rcpsp.resource_allocation is not None: if tinterest in policy_rcpsp.resource_allocation: the_action.resource_unit_names = policy_rcpsp.resource_allocation[ tinterest ] applicable = action_in_applicable_actions( policy_rcpsp.domain, observation=state, the_action=the_action ) if applicable[0]: break else: the_action = None if the_action is None: the_action = SchedulingAction( task=None, action=SchedulingActionEnum.TIME_PR, mode=None, time_progress=True, resource_unit_names=None, ) return the_action map_method_to_function = { BasePolicyMethod.FOLLOW_GANTT: next_action_follow_static_gantt, BasePolicyMethod.SGS_PRECEDENCE: next_action_sgs_first_task_precedence_ready, BasePolicyMethod.SGS_STRICT: next_action_sgs_strict, BasePolicyMethod.SGS_READY: next_action_sgs_first_task_ready, BasePolicyMethod.SGS_TIME_FREEDOM: next_action_sgs_time_freedom, BasePolicyMethod.SGS_INDEX_FREEDOM: next_action_sgs_index_freedom, }
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/sgs_policies/sgs_policies.py
0.828245
0.164752
sgs_policies.py
pypi
from __future__ import annotations import glob import os from typing import Callable, Dict, Optional, Type import ray from ray.rllib.agents.trainer import Trainer from ray.rllib.env.multi_agent_env import MultiAgentEnv from ray.tune.registry import register_env from skdecide import Domain, Solver from skdecide.builders.domain import ( Initializable, Sequential, SingleAgent, UnrestrictedActions, ) from skdecide.builders.solver import Policies, Restorable from skdecide.hub.space.gym import GymSpace # TODO: remove UnrestrictedActions? class D(Domain, Sequential, UnrestrictedActions, Initializable): pass class RayRLlib(Solver, Policies, Restorable): """This class wraps a Ray RLlib solver (ray[rllib]) as a scikit-decide solver. !!! warning Using this class requires Ray RLlib to be installed. """ T_domain = D def __init__( self, algo_class: Type[Trainer], train_iterations: int, config: Optional[Dict] = None, policy_configs: Dict[str, Dict] = {"policy": {}}, policy_mapping_fn: Callable[[str], str] = lambda agent_id: "policy", ) -> None: """Initialize Ray RLlib. # Parameters algo_class: The class of Ray RLlib trainer/agent to wrap. train_iterations: The number of iterations to call the trainer's train() method. config: The configuration dictionary for the trainer. policy_configs: The mapping from policy id (str) to additional config (dict) (leave default for single policy). policy_mapping_fn: The function mapping agent ids to policy ids (leave default for single policy). """ self._algo_class = algo_class self._train_iterations = train_iterations self._config = config or {} self._policy_configs = policy_configs self._policy_mapping_fn = policy_mapping_fn ray.init(ignore_reinit_error=True) @classmethod def _check_domain_additional(cls, domain: Domain) -> bool: if isinstance(domain, SingleAgent): return isinstance(domain.get_action_space(), GymSpace) and isinstance( domain.get_observation_space(), GymSpace ) else: return all( isinstance(a, GymSpace) for a in domain.get_action_space().values() ) and all( isinstance(o, GymSpace) for o in domain.get_observation_space().values() ) def _solve_domain(self, domain_factory: Callable[[], D]) -> None: # Reuse algo if possible (enables further learning) if not hasattr(self, "_algo"): self._init_algo(domain_factory) # Training loop for _ in range(self._train_iterations): self._algo.train() def _sample_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: action = { k: self._algo.compute_action( self._unwrap_obs(v, k), policy_id=self._policy_mapping_fn(k) ) for k, v in observation.items() } return self._wrap_action(action) def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return True def _save(self, path: str) -> None: self._algo.save(path) def _load(self, path: str, domain_factory: Callable[[], D]): if not os.path.isfile(path): # Find latest checkpoint metadata_files = glob.glob(f"{path}/**/*.tune_metadata") latest_metadata_file = max(metadata_files, key=os.path.getctime) path = latest_metadata_file[: -len(".tune_metadata")] self._init_algo(domain_factory) self._algo.restore(path) def _init_algo(self, domain_factory: Callable[[], D]): domain = domain_factory() self._wrap_action = lambda a: { k: next(iter(domain.get_action_space()[k].from_unwrapped([v]))) for k, v in a.items() } self._unwrap_obs = lambda o, agent: next( iter(domain.get_observation_space()[agent].to_unwrapped([o])) ) # Overwrite multi-agent config pol_obs_spaces = { self._policy_mapping_fn(k): v.unwrapped() for k, v in domain.get_observation_space().items() } pol_act_spaces = { self._policy_mapping_fn(k): v.unwrapped() for k, v in domain.get_action_space().items() } policies = { k: (None, pol_obs_spaces[k], pol_act_spaces[k], v or {}) for k, v in self._policy_configs.items() } self._config["multiagent"] = { "policies": policies, "policy_mapping_fn": self._policy_mapping_fn, } # Instanciate algo register_env("skdecide_env", lambda _: AsRLlibMultiAgentEnv(domain_factory())) self._algo = self._algo_class(env="skdecide_env", config=self._config) class AsRLlibMultiAgentEnv(MultiAgentEnv): def __init__(self, domain: D) -> None: """Initialize AsRLlibMultiAgentEnv. # Parameters domain: The scikit-decide domain to wrap as a RLlib multi-agent environment. """ self._domain = domain def reset(self): """Resets the env and returns observations from ready agents. # Returns obs (dict): New observations for each ready agent. """ raw_observation = self._domain.reset() observation = { k: next(iter(self._domain.get_observation_space()[k].to_unwrapped([v]))) for k, v in raw_observation.items() } return observation def step(self, action_dict): """Returns observations from ready agents. The returns are dicts mapping from agent_id strings to values. The number of agents in the env can vary over time. # Returns obs (dict): New observations for each ready agent. rewards (dict): Reward values for each ready agent. If the episode is just started, the value will be None. dones (dict): Done values for each ready agent. The special key "__all__" (required) is used to indicate env termination. infos (dict): Optional info values for each agent id. """ action = { k: next(iter(self._domain.get_action_space()[k].from_unwrapped([v]))) for k, v in action_dict.items() } outcome = self._domain.step(action) observations = { k: next(iter(self._domain.get_observation_space()[k].to_unwrapped([v]))) for k, v in outcome.observation.items() } rewards = {k: v.reward for k, v in outcome.value.items()} done = {"__all__": outcome.termination} infos = {k: (v or {}) for k, v in outcome.info.items()} return observations, rewards, done, infos def unwrapped(self): """Unwrap the scikit-decide domain and return it. # Returns The original scikit-decide domain. """ return self._domain if __name__ == "__main__": from ray.rllib.agents.ppo import PPOTrainer from skdecide.hub.domain.rock_paper_scissors import RockPaperScissors from skdecide.utils import rollout domain_factory = lambda: RockPaperScissors() domain = domain_factory() if RayRLlib.check_domain(domain): solver_factory = lambda: RayRLlib( PPOTrainer, train_iterations=1, config={"framework": "torch"} ) solver = RockPaperScissors.solve_with(solver_factory, domain_factory) rollout( domain, solver, action_formatter=lambda a: str({k: v.name for k, v in a.items()}), outcome_formatter=lambda o: f"{ {k: v.name for k, v in o.observation.items()} }" f" - rewards: { {k: v.reward for k, v in o.value.items()} }", )
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/ray_rllib/ray_rllib.py
0.836955
0.240869
ray_rllib.py
pypi
from __future__ import annotations from typing import Callable from skdecide import DeterministicPolicySolver, Domain, EnumerableSpace, Memory from skdecide.builders.domain import EnumerableTransitions, FullyObservable, SingleAgent class D(Domain, SingleAgent, EnumerableTransitions, FullyObservable): pass class SimpleGreedy(DeterministicPolicySolver): T_domain = D @classmethod def _check_domain_additional(cls, domain: D) -> bool: return isinstance(domain.get_action_space(), EnumerableSpace) def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self._domain = ( domain_factory() ) # no further solving code required here since everything is computed online def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: # This solver selects the first action with the highest expected immediate reward (greedy) domain = self._domain memory = Memory( [observation] ) # note: observation == state (because FullyObservable) applicable_actions = domain.get_applicable_actions(memory) if domain.is_transition_value_dependent_on_next_state(): values = [] for a in applicable_actions.get_elements(): next_state_prob = domain.get_next_state_distribution( memory, [a] ).get_values() expected_value = sum( p * domain.get_transition_value(memory, [a], s).reward for s, p in next_state_prob ) values.append(expected_value) else: values = [ domain.get_transition_value(memory, a).reward for a in applicable_actions ] argmax = max(range(len(values)), key=lambda i: values[i]) return [ applicable_actions.get_elements()[argmax] ] # list of action here because we handle Parallel domains def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return True
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/simple_greedy/simple_greedy.py
0.927096
0.435781
simple_greedy.py
pypi
from __future__ import annotations from typing import Any, Callable, Dict from stable_baselines3.common.vec_env import DummyVecEnv from skdecide import Domain, Solver from skdecide.builders.domain import ( Initializable, Sequential, SingleAgent, UnrestrictedActions, ) from skdecide.builders.solver import Policies, Restorable from skdecide.hub.domain.gym import AsGymEnv from skdecide.hub.space.gym import GymSpace class D(Domain, SingleAgent, Sequential, UnrestrictedActions, Initializable): pass class StableBaseline(Solver, Policies, Restorable): """This class wraps a stable OpenAI Baselines solver (stable_baselines3) as a scikit-decide solver. !!! warning Using this class requires Stable Baselines 3 to be installed. """ T_domain = D def __init__( self, algo_class: type, baselines_policy: Any, learn_config: Dict = None, **kwargs: Any, ) -> None: """Initialize StableBaselines. # Parameters algo_class: The class of Baselines solver (stable_baselines3) to wrap. baselines_policy: The class of Baselines policy network (stable_baselines3.common.policies or str) to use. """ self._algo_class = algo_class self._baselines_policy = baselines_policy self._learn_config = learn_config if learn_config is not None else {} self._algo_kwargs = kwargs @classmethod def _check_domain_additional(cls, domain: Domain) -> bool: return isinstance(domain.get_action_space(), GymSpace) and isinstance( domain.get_observation_space(), GymSpace ) def _solve_domain(self, domain_factory: Callable[[], D]) -> None: # TODO: improve code for parallelism # (https://stable-baselines3.readthedocs.io/en/master/guide/examples.html # #multiprocessing-unleashing-the-power-of-vectorized-environments)? if not hasattr( self, "_algo" ): # reuse algo if possible (enables further learning) domain = domain_factory() env = DummyVecEnv( [lambda: AsGymEnv(domain)] ) # the algorithms require a vectorized environment to run self._algo = self._algo_class( self._baselines_policy, env, **self._algo_kwargs ) self._init_algo(domain) self._algo.learn(**self._learn_config) def _sample_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: action, _ = self._algo.predict(observation) return self._wrap_action(action) def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return True def _save(self, path: str) -> None: self._algo.save(path) def _load(self, path: str, domain_factory: Callable[[], D]): self._algo = self._algo_class.load(path) self._init_algo(domain_factory()) def _init_algo(self, domain: D): self._wrap_action = lambda a: next( iter(domain.get_action_space().from_unwrapped([a])) )
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/stable_baselines/stable_baselines.py
0.820326
0.238683
stable_baselines.py
pypi
from __future__ import annotations from typing import Any, Dict from skdecide import rollout_episode from skdecide.builders.domain.scheduling.scheduling_domains import D, SchedulingDomain from skdecide.builders.solver import DeterministicPolicies class MetaPolicy(DeterministicPolicies): T_domain = D def __init__( self, policies: Dict[Any, DeterministicPolicies], execution_domain: SchedulingDomain, known_domain: SchedulingDomain, nb_rollout_estimation=1, verbose=True, ): self.known_domain = known_domain self.known_domain.fast = True self.execution_domain = execution_domain self.policies = policies self.current_states = {method: None for method in policies} self.nb_rollout_estimation = nb_rollout_estimation self.verbose = verbose def reset(self): self.current_states = {method: None for method in self.policies} def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: results = {} actions_map = {} self.known_domain.set_inplace_environment(True) actions_c = [ self.policies[method].get_next_action(observation) for method in self.policies ] if len(set(actions_c)) > 1: for method in self.policies: results[method] = 0.0 for j in range(self.nb_rollout_estimation): states, actions, values = rollout_episode( domain=self.known_domain, solver=self.policies[method], outcome_formatter=None, action_formatter=None, verbose=False, from_memory=observation.copy(), ) # cost = sum(v.cost for v in values) results[method] += ( states[-1].t - observation.t ) # TODO, this is a trick... actions_map[method] = actions[0] if self.verbose: # print(results) print(actions_map[min(results, key=lambda x: results[x])]) return actions_map[min(results, key=lambda x: results[x])] else: return actions_c[0] def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return True
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/meta_policy/meta_policies.py
0.623606
0.213705
meta_policies.py
pypi
from __future__ import annotations import os import sys from typing import Any, Callable, List, Tuple from skdecide import Domain, Solver, hub from skdecide.builders.domain import ( Actions, DeterministicInitialized, DeterministicTransitions, FullyObservable, Markovian, Rewards, Sequential, SingleAgent, ) from skdecide.builders.solver import DeterministicPolicies, ParallelSolver, Utilities from skdecide.hub.space.gym import ListSpace record_sys_path = sys.path skdecide_cpp_extension_lib_path = os.path.abspath(hub.__path__[0]) if skdecide_cpp_extension_lib_path not in sys.path: sys.path.append(skdecide_cpp_extension_lib_path) try: from __skdecide_hub_cpp import _IWSolver_ as iw_solver class D( Domain, SingleAgent, Sequential, DeterministicTransitions, Actions, DeterministicInitialized, Markovian, FullyObservable, Rewards, ): # TODO: check why DeterministicInitialized & PositiveCosts/Rewards? pass class IW(ParallelSolver, Solver, DeterministicPolicies, Utilities): T_domain = D def __init__( self, domain_factory: Callable[[], Domain], state_features: Callable[[Domain, D.T_state], Any], use_state_feature_hash: bool = False, node_ordering: Callable[[float, int, int, float, int, int], bool] = None, time_budget: int = 0, # time budget to continue searching for better plans after a goal has been reached parallel: bool = False, shared_memory_proxy=None, debug_logs: bool = False, ) -> None: ParallelSolver.__init__( self, domain_factory=domain_factory, parallel=parallel, shared_memory_proxy=shared_memory_proxy, ) self._solver = None self._domain = None self._state_features = state_features self._use_state_feature_hash = use_state_feature_hash self._node_ordering = node_ordering self._time_budget = time_budget self._debug_logs = debug_logs self._lambdas = [self._state_features] self._ipc_notify = True def close(self): """Joins the parallel domains' processes. Not calling this method (or not using the 'with' context statement) results in the solver forever waiting for the domain processes to exit. """ if self._parallel: self._solver.close() ParallelSolver.close(self) def _init_solve(self, domain_factory: Callable[[], D]) -> None: self._domain_factory = domain_factory self._solver = iw_solver( domain=self.get_domain(), state_features=lambda d, s: self._state_features(d, s) if not self._parallel else d.call(None, 0, s), use_state_feature_hash=self._use_state_feature_hash, node_ordering=self._node_ordering, time_budget=self._time_budget, parallel=self._parallel, debug_logs=self._debug_logs, ) self._solver.clear() def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self._init_solve(domain_factory) def _solve_from(self, memory: D.T_memory[D.T_state]) -> None: self._solver.solve(memory) def _is_solution_defined_for( self, observation: D.T_agent[D.T_observation] ) -> bool: return self._solver.is_solution_defined_for(observation) def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: if not self._is_solution_defined_for(observation): self._solve_from(observation) return self._solver.get_next_action(observation) def _get_utility(self, observation: D.T_agent[D.T_observation]) -> D.T_value: return self._solver.get_utility(observation) def _reset(self) -> None: self._solver.clear() def get_nb_of_explored_states(self) -> int: return self._solver.get_nb_of_explored_states() def get_nb_of_pruned_states(self) -> int: return self._solver.get_nb_of_pruned_states() def get_intermediate_scores(self) -> List[Tuple[int, float]]: return self._solver.get_intermediate_scores() except ImportError: sys.path = record_sys_path print( 'Scikit-decide C++ hub library not found. Please check it is installed in "skdecide/hub".' ) raise
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/iw/iw.py
0.521471
0.162746
iw.py
pypi
from __future__ import annotations import json import importlib import inspect import pkgutil from types import ModuleType, FunctionType from typing import Dict import sklearn from sklearn.base import BaseEstimator, TransformerMixin from sklearn.utils._pprint import _changed_params MODULES = [ "sklearn.base", "sklearn.calibration", "sklearn.cluster", "sklearn.compose", "sklearn.covariance", "sklearn.cross_decomposition", "sklearn.datasets", "sklearn.decomposition", "sklearn.discriminant_analysis", "sklearn.dummy", "sklearn.ensemble", "sklearn.exceptions", "sklearn.experimental", "sklearn.feature_extraction", "sklearn.feature_selection", "sklearn.gaussian_process", "sklearn.impute", "sklearn.inspection", "sklearn.isotonic", "sklearn.kernel_approximation", "sklearn.kernel_ridge", "sklearn.linear_model", "sklearn.manifold", "sklearn.metrics", "sklearn.mixture", "sklearn.model_selection", "sklearn.multiclass", "sklearn.multioutput", "sklearn.naive_bayes", "sklearn.neighbors", "sklearn.neural_network", "sklearn.pipeline", "sklearn.preprocessing", "sklearn.random_projection", "sklearn.semi_supervised", "sklearn.svm", "sklearn.tree", "sklearn.utils", ] for mod in MODULES: importlib.import_module(mod) def _get_submodules(module): """Get all submodules of a module.""" if hasattr(module, "__path__"): return [name for _, name, _ in pkgutil.iter_modules(module.__path__)] return [] def get_all_sklearn_objects( module: ModuleType, ) -> Dict[str, FunctionType | BaseEstimator | TransformerMixin]: """Get all objects from a module.""" objs = {} submodules = _get_submodules(module) for name in dir(module): if not name.startswith("_"): obj = getattr(module, name) if name in submodules: objs.update(get_all_sklearn_objects(obj)) elif inspect.isclass(obj) or inspect.isfunction(obj): objs[name] = obj return objs def load(dict_: dict, /) -> BaseEstimator | TransformerMixin: """Create a python instance from dict structure.""" objs = get_all_sklearn_objects(sklearn) if isinstance(dict_, list): for i, item in enumerate(dict_): dict_[i] = load(item) return dict_ if isinstance(dict_, dict): for key in dict_.keys(): dict_[key] = load(dict_[key]) kwargs = dict_[key] if dict_[key] is not None else {} try: return objs[key](**kwargs) except KeyError: pass return dict_ return dict_ class SKLearnEncoder(json.JSONEncoder): """Encode SKLearn objects to JSON.""" def default(self, o): """Default encoding.""" if isinstance(o, (sklearn.base.BaseEstimator, sklearn.base.TransformerMixin)): name = o.__class__.__name__ params = _changed_params(o) if params == {}: params = None return {name: params} return json.JSONEncoder.default(self, o) def dump(obj: BaseEstimator | TransformerMixin, /) -> dict: """Create a dict from a python object.""" return json.loads(json.dumps(obj, cls=SKLearnEncoder))
/scikit_dict-0.1.0-py3-none-any.whl/skdict/__init__.py
0.749087
0.421492
__init__.py
pypi
from numpy import min, max, percentile, zeros, bool_, pad, sin, arange, pi, concatenate from numpy.random import default_rng from skdh.utility import moving_mean, moving_median, moving_sd from skdh.sleep.utility import ( compute_z_angle, compute_absolute_difference, drop_min_blocks, arg_longest_bout, ) def get_total_sleep_opportunity( fs, time, accel, temperature, wear_starts, wear_stops, min_rest_block, max_act_break, tso_min_thresh, tso_max_thresh, tso_perc, tso_factor, int_wear_temp, int_wear_move, plot_fn, idx_start=0, add_active_time=0.0, ): """ Compute the period of time in which sleep can occur for a given days worth of data. For this algorithm, it is the longest period of wear-time that has low activity. Parameters ---------- fs : float Sampling frequency of the time and acceleration data, in Hz. time : numpy.ndarray Timestamps for the acceleration. accel : numpy.ndarray (N, 3) array of acceleration values in g. temperature : numpy.ndarray (N, 3) array of temperature values in celsius. wear_starts : {numpy.ndarray, None} Indices for the starts of wear-time. Note that while `time` and `accel` should be the values for one day, `wear_starts` is likely indexed to the whole data series. This offset can be adjusted by `idx_start`. If indexing only into the one day, `idx_start` should be 0. If None, will compute wear internally. wear_stops : {numpy.ndarray, None} Indices for the stops of wear-time. Note that while `time` and `accel` should be the values for one day, `wear_stops` is likely indexed to the whole data series. This offset can be adjusted by `idx_start`. If indexing only into the one day, `idx_start` should be 0. If None, will compute wear internally. min_rest_block : int Minimum number of minutes that a rest period can be max_act_break : int Maximum number of minutes an active block can be so that it doesn't interrupt a longer rest period. tso_min_thresh : float Minimum angle value the TSO threshold can be. tso_max_thresh : float Maximum angle value the TSO threshold can be. tso_perc : int The percentile to use when calculating the TSO threshold from daily data. tso_factor : float The factor to multiply the percentile value by co get the TSO threshold. int_wear_temp : float Internal wear temperature threshold in celsius. int_wear_move : float Internal wear movement threshold in g. plot_fn : function Plotting function for the arm angle. idx_start : int, optional Offset index for wear-time indices. If `wear_starts` and `wear_stops` are relative to the day of interest, then `idx_start` should equal 0. add_active_time : float, optional Add active time to the accelerometer signal start and end when detecting the total sleep opportunity. This can occasionally be useful if less than 24 hrs of data are collected, as sleep-period skewed data can effect the sleep window cutoff, effecting the end results. Suggested is not adding more than 1.5 hours. Default is 0.0 for no added data. Returns ------- start : float Total sleep opportunity start timestamp. stop : float Total sleep opportunity stop timestamp. arg_start : int Total sleep opportunity start index, into the specific period of time. arg_stop : int Total sleep opportunity stop index, into the specific period of time. """ # samples in 5 seconds. GGIR makes this always odd, which is a function # of the library (zoo) they are using for rollmedian n5 = int(5 * fs) # compute the rolling median for 5s windows acc_rmd = moving_median(accel, n5, skip=1, axis=0) # compute the z-angle z = compute_z_angle(acc_rmd) # rolling 5s mean with non-overlapping windows for the z-angle _z_rm = moving_mean(z, n5, n5) # plot arm angle plot_fn(_z_rm) # add data as required rng = default_rng() blocksize = max([int(12 * 60 * add_active_time), 0]) angleblock = sin(arange(blocksize) / pi * 0.1) * 40 angleblock += rng.normal(loc=0.0, scale=10.0, size=blocksize) z_rm = concatenate((angleblock, _z_rm, angleblock)) # the angle differences dz_rm = compute_absolute_difference(z_rm) # rolling 5 minute median. 12 windows per minute * 5 minutes dz_rm_rmd = moving_median(dz_rm, 12 * 5, skip=1) # compute the TSO threshold tso_thresh = compute_tso_threshold( dz_rm_rmd, min_td=tso_min_thresh, max_td=tso_max_thresh, perc=tso_perc, factor=tso_factor, ) # get the number of windows there would be without additional data # .size because the difference is computed and left at the same size nw = (_z_rm.size - (12 * 5)) + 1 # "// 1" left out # create the TSO mask (1 -> sleep opportunity, only happens during wear) tso = zeros(nw, dtype=bool_) # block off external non-wear times, scale by 5s blocks for strt, stp in zip((wear_starts - idx_start) / n5, (wear_stops - idx_start) / n5): tso[int(strt) : int(stp)] = True # apply the threshold before any internal wear checking tso &= ( dz_rm_rmd[blocksize : blocksize + nw] < tso_thresh ) # now only blocks where there is no movement, and wear are left # check if we can compute wear internally if temperature is not None and int_wear_temp > 0.0: t_rmed_5s = moving_median(temperature, n5, 1) t_rmean_5s = moving_mean(t_rmed_5s, n5, n5) t_rmed_5m = moving_median(t_rmean_5s, 60, 1) # 5 min rolling median temp_nonwear = t_rmed_5m < int_wear_temp tso[temp_nonwear] = False # non-wear -> not a TSO opportunity if int_wear_move > 0.0: acc_rmean_5s = moving_mean(acc_rmd, n5, n5, axis=0) acc_rsd_30m = moving_sd(acc_rmean_5s, 360, 1, axis=0, return_previous=False) move_nonwear = pad( (acc_rsd_30m < int_wear_move).any(axis=1), pad_width=(150, 150), constant_values=False, ) tso[move_nonwear] = False # drop rest blocks less than minimum allowed rest length # rolling 5min, the underlying windows are 5s, so 12 * minutes => # of samples tso = drop_min_blocks( tso, 12 * min_rest_block, drop_value=1, replace_value=0, skip_bounds=True ) # drop active blocks less than maximum allowed active length tso = drop_min_blocks( tso, 12 * max_act_break, drop_value=0, replace_value=1, skip_bounds=True ) # get the indices of the longest bout arg_start, arg_end = arg_longest_bout(tso, 1) # get the timestamps of the longest bout if arg_start is not None: # account for left justified windows - times need to be bumped up half a window # account for 5s windows in indexing arg_start = (arg_start + 30) * n5 # 12 * 5 / 2 = 30 arg_end = (arg_end + 30) * n5 start, end = time[arg_start], time[arg_end] else: start = end = None return start, end, arg_start, arg_end def compute_tso_threshold(arr, min_td=0.1, max_td=0.5, perc=10, factor=15.0): """ Computes the daily threshold value separating rest periods from active periods for the TSO detection algorithm. Parameters ---------- arr : array Array of the absolute difference of the z-angle. min_td : float Minimum acceptable threshold value. max_td : float Maximum acceptable threshold value. perc : integer, optional Percentile to use for the threshold. Default is 10. factor : float, optional Factor to multiply the percentil value by. Default is 15.0. Returns ------- td : float """ td = min((max((percentile(arr, perc) * factor, min_td)), max_td)) return td
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/sleep/tso.py
0.895554
0.616243
tso.py
pypi
from numpy import ( any, arctan, pi, roll, abs, argmax, diff, nonzero, insert, sqrt, pad, int_, append, mean, var, ascontiguousarray, ) from scipy.signal import butter, sosfiltfilt from skdh.utility import get_windowed_view from skdh.utility import moving_mean, moving_sd, moving_median from skdh.utility.internal import rle __all__ = [ "compute_z_angle", "compute_absolute_difference", "drop_min_blocks", "arg_longest_bout", "compute_activity_index", ] def get_weartime(acc_rmed, temp, fs, move_thresh, temp_thresh): """ Compute the wear time using acceleration and temperature data. Parameters ---------- acc_rmed : numpy.ndarray Rolling median acceleration with 5s windows and 1 sample skips. temp : numpy.ndarray Raw temperature data. fs : float Sampling frequency. move_thresh : float Threshold to classify acceleration as wear/nonwear temp_thresh : float Temperature threshold to classify as wear/nonwear Returns ------- wear : numpy.ndarray (N, 2) array of [start, stop] indices of blocks of wear time. """ n5 = int(5 * fs) # rolling 5s mean (non-overlapping windows) mn = moving_mean(acc_rmed, n5, n5, axis=0) # rolling 30min StDev. 5s windows -> 12 windows per minute acc_rsd = moving_sd(mn, 12 * 30, 1, axis=0, return_previous=False) # TODO note that this 30 min rolling standard deviation likely means that our wear/nonwear # timest could be off by as much as 30 mins, due to windows extending into the wear time. # this is likely going to be an issue for all wear time algorithms due to long # windows, however. # rolling 5s median of temperature rmd = moving_median(temp, n5, skip=1) # rolling 5s mean (non-overlapping) mn = moving_mean(rmd, n5, n5) # rolling 5m median temp_rmd = moving_median(mn, 12 * 5, skip=1) move_mask = any(acc_rsd > move_thresh, axis=1) temp_mask = temp_rmd >= temp_thresh # pad the movement mask, temperature mask is the correct size npad = temp_mask.size - move_mask.size move_mask = pad(move_mask, (0, npad), mode="constant", constant_values=0) dwear = diff((move_mask | temp_mask).astype(int_)) starts = nonzero(dwear == 1)[0] + 1 stops = nonzero(dwear == -1)[0] + 1 if move_mask[0] or temp_mask[0]: starts = insert(starts, 0, 0) if move_mask[-1] or temp_mask[-1]: stops = append(stops, move_mask.size) return starts * n5, stops * n5 def compute_z_angle(acc): """ Computes the z-angle of a tri-axial accelerometer signal with columns X, Y, Z per sample. Parameters ---------- acc : array Returns ------- z : array """ z = arctan(acc[:, 2] / sqrt(acc[:, 0] ** 2 + acc[:, 1] ** 2)) * (180.0 / pi) return z def compute_absolute_difference(arr): """ Computes the absolute difference between an array and itself shifted by 1 sample along the first axis. Parameters ---------- arr : array Returns ------- absd: array """ shifted = roll(arr, 1) shifted[0] = shifted[1] absd = abs(arr - shifted) return absd def drop_min_blocks(arr, min_block_size, drop_value, replace_value, skip_bounds=True): """ Drops (rescores) blocks of a desired value with length less than some minimum length. (Ex. drop all blocks of value 1 with length < 5 and replace with new value 0). Parameters ---------- arr : array min_block_size : integer Minimum acceptable block length in samples. drop_value : integer Value of blocks to examine. replace_value : integer Value to replace dropped blocks to. skip_bounds : boolean If True, ignores the first and last blocks. Returns ------- arr : array """ lengths, starts, vals = rle(arr) ctr = 0 n = len(lengths) for length, start, val in zip(lengths, starts, vals): ctr += 1 if skip_bounds and (ctr == 1 or ctr == n): continue if val == drop_value and length < min_block_size: arr[start : start + length] = replace_value return arr def arg_longest_bout(arr, block_val): """ Finds the first and last indices of the longest block of a given value present in a 1D array. Parameters ---------- arr : array One-dimensional array. block_val : integer Value of the desired blocks. Returns ------- longest_bout : tuple First, last indices of the longest block. """ lengths, starts, vals = rle(arr) vals = vals.flatten() val_mask = vals == block_val if len(lengths[val_mask]): max_index = argmax(lengths[val_mask]) max_start = starts[val_mask][max_index] longest_bout = max_start, max_start + lengths[val_mask][max_index] else: longest_bout = None, None return longest_bout def compute_activity_index(fs, accel, hp_cut=0.25): """ Calculate the activity index Parameters ---------- fs : float Sampling frequency in Hz accel : numpy.ndarray Acceleration hp_cut : float High-pass filter cutoff Returns ------- ai : numpy.ndarray The activity index of non-overlapping 60s windows """ # high pass filter sos = butter(3, hp_cut * 2 / fs, btype="high", output="sos") accel_hf = ascontiguousarray(sosfiltfilt(sos, accel, axis=0)) # non-overlapping 60s windows acc_w = get_windowed_view(accel_hf, int(60 * fs), int(60 * fs)) # compute activity index act_ind = sqrt(mean(var(acc_w, axis=2), axis=1)) return act_ind
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/sleep/utility.py
0.803521
0.569912
utility.py
pypi
from numpy import array, convolve, int_ from skdh.sleep.utility import rle def compute_sleep_predictions(act_index, sf=0.243, rescore=True): """ Apply the Cole-Kripke algorithm to activity index data Parameters ---------- act_index : numpy.ndarray Activity index calculated from accelerometer data on 1 minute windows. sf : float, optional Scale factor used for the predictions. Default is 0.243, which was optimized for activity index. Recommended range if changing is between 0.15 and 0.3 depending on desired sensitivity, and possibly the population being observed. rescore : bool, optional If True, applies Webster's rescoring rules to the sleep predictions to improve specificity. Returns ------- Notes ----- Applies Webster's rescoring rules as described in the Cole-Kripke paper. """ # paper writes this backwards [::-1]. For convolution has to be written this way though kernel = array([0.0, 0.0, 4.024, 5.84, 16.19, 5.07, 3.75, 6.87, 4.64]) * sf scores = convolve(act_index, kernel, "same") predictions = (scores < 0.5).astype(int_) # sleep as positive if rescore: wake_bin = 0 for t in range(predictions.size): if not predictions[t]: wake_bin += 1 else: if ( wake_bin >= 15 ): # rule c: >= 15 minutes of wake -> next 4min of sleep rescored predictions[t : t + 4] = 0 elif ( 10 <= wake_bin < 15 ): # rule b: >= 10 minutes of wake -> next 3 min rescored predictions[t : t + 3] = 0 elif ( 4 <= wake_bin < 10 ): # rule a: >=4 min of wake -> next 1min of sleep rescored predictions[t] = 0 wake_bin = 0 # reset # rule d: [>10 min wake][<=6 min sleep][>10min wake] gets rescored dt, changes, vals = rle(predictions) mask = (changes >= 10) & (changes < (predictions.size - 10)) & (dt <= 6) & vals for start, dur in zip(changes[mask], dt[mask]): predictions[start : start + dur] = 0 return predictions
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/sleep/sleep_classification.py
0.901303
0.577972
sleep_classification.py
pypi
from abc import ABC, abstractmethod from collections.abc import Iterator, Sequence import json from warnings import warn from pandas import DataFrame from numpy import float_, asarray, zeros, sum, moveaxis __all__ = ["Bank"] class ArrayConversionError(Exception): pass def get_n_feats(size, index): if isinstance(index, int): return 1 elif isinstance(index, (Iterator, Sequence)): return len(index) elif isinstance(index, slice): return len(range(*index.indices(size))) elif isinstance(index, type(Ellipsis)): return size def partial_index_check(index): if index is None: index = ... if not isinstance(index, (int, Iterator, Sequence, type(...), slice)): raise IndexError(f"Index type ({type(index)}) not understood.") if isinstance(index, str): raise IndexError("Index type (str) not understood.") return index def normalize_indices(nfeat, index): if index is None: return [...] * nfeat elif not isinstance(index, (Iterator, Sequence)): # slice, single integer, etc return [partial_index_check(index)] * nfeat elif all([isinstance(i, int) for i in index]): # iterable of ints return [index] * nfeat elif isinstance(index, Sequence): # able to be indexed return [partial_index_check(i) for i in index] else: # pragma: no cover return IndexError(f"Index type ({type(index)}) not understood.") def normalize_axes(ndim, axis, ind_axis): """ Normalize input axes to be positive/correct for how the swapping has to work """ if axis == ind_axis: raise ValueError("axis and index_axis cannot be the same") if ndim == 1: return 0, None elif ndim >= 2: """ | shape | ax | ia | move1 | ax | ia | res | ax | ia | res move | |--------|----|----|--------|----|----|-------|----|----|----------| | (a, b) | 0 | 1 | (b, a) | 0 | 0 | (bf,) | | | | | (a, b) | 0 | N | (b, a) | 0 | N | (f, b)| | | | | (a, b) | 1 | 0 | | | | (3a,) | | | | | (a, b) | 1 | N | | | | (f, a)| | | | | shape | ax| ia | move1 | ax| ia| move2 | res | | ia| res move | |----------|---|------|----------|---|---|----------|----------|----|---|----------| | (a, b, c)| 0 | 1(0) | (b, c, a)| | | | (bf, c) | 0 | 0 | | | (a, b, c)| 0 | 2(1) | (b, c, a)| | 1 | (c, b, a)| (cf, b) | 0 | 1 | (b, cf) | | (a, b, c)| 0 | N | (b, c, a)| | | | (f, b, c)| | | | | (a, b, c)| 1 | 0 | (a, c, b)| | | | (af, c) | 0 | 0 | | | (a, b, c)| 1 | 2(1) | (a, c, b)| | 1 | (c, a, b)| (cf, a) | 0 | 1 | (a, cf) | | (a, b, c)| 1 | N | (a, c, b)| | | | (f, a, c)| | | | | (a, b, c)| 2 | 0 | (a, b, c)| | | | (af, b) | 0 | 0 | | | (a, b, c)| 2 | 1 | (a, b, c)| | 1 | (b, a, c)| (bf, a) | 0 | 1 | (a, bf) | | (a, b, c)| 2 | N | (a, b, c)| | | | (f, a, b)| | | | | shape | ax| ia | move1 | ia| move2 | res | | ia| res move | |------------|---|------|-------------|---|-------------|-------------|---|---|-----------| |(a, b, c, d)| 0 | 1(0) | (b, c, d, a)| | | (bf, c, d) | 0 | 0 | | |(a, b, c, d)| 0 | 2(1) | (b, c, d, a)| 1 | (c, b, d, a)| (cf, b, d) | 0 | 1 | (b, cf, d)| |(a, b, c, d)| 0 | 3(2) | (b, c, d, a)| 2 | (d, b, c, a)| (df, b, c) | 0 | 2 | (d, c, df)| |(a, b, c, d)| 0 | N | (b, c, d, a)| | | (f, b, c, d)| | | | |(a, b, c, d)| 1 | 0 | (a, c, d, b)| | | (af, c, d) | | | | |(a, b, c, d)| 1 | 2(1) | (a, c, d, b)| 1 | (c, a, d, b)| (cf, a, d) | 0 | 1 | (a, cf, d)| |(a, b, c, d)| 1 | 3(2) | (a, c, d, b)| 2 | (d, a, c, b)| (df, a, c) | 0 | 2 | (a, c, df)| |(a, b, c, d)| 1 | N | (a, c, d, b)| | | (f, a, c, d)| | | | |(a, b, c, d)| 2 | 0 | (a, b, d, c)| | | (af, b, d) | | | | |(a, b, c, d)| 2 | 1 | (a, b, d, c)| 1 | (b, a, d, c)| (bf, a, d) | 0 | 1 | (a, bf, d)| |(a, b, c, d)| 2 | 3(2) | (a, b, d, c)| 2 | (d, a, b, c)| (df, a, b) | 0 | 2 | (a, b, df)| |(a, b, c, d)| 2 | N | (a, b, d, c)| | | (f, a, b, d)| | | | |(a, b, c, d)| 3 | 0 | (a, b, c, d)| | | (af, b, c) | | | | |(a, b, c, d)| 3 | 1 | (a, b, c, d)| 1 | (b, a, c, d)| (bf, a, c) | 0 | 1 | (a, bf, c)| |(a, b, c, d)| 3 | 2 | (a, b, c, d)| 2 | (c, a, b, d)| (cf, a, b) | 0 | 2 | (a, b, cf)| |(a, b, c, d)| 3 | N | (a, b, c, d)| | | (f, a, b, c)| | | | """ ax = axis if axis >= 0 else ndim + axis if ind_axis is None: return ax, None ia = ind_axis if ind_axis >= 0 else ndim + ind_axis if ia > ax: ia -= 1 return ax, ia class Bank: """ A feature bank object for ease in creating a table or pipeline of features to be computed. Parameters ---------- bank_file : {None, path-like}, optional Path to a saved bank file to load. Optional Examples -------- """ __slots__ = ("_feats", "_indices") def __str__(self): return "Bank" def __repr__(self): s = "Bank[" for f in self._feats: s += f"\n\t{f!r}," s += "\n]" return s def __contains__(self, item): return item in self._feats def __len__(self): return len(self._feats) def __init__(self, bank_file=None): # initialize some variables self._feats = [] self._indices = [] if bank_file is not None: self.load(bank_file) def add(self, features, index=None): """ Add a feature or features to the pipeline. Parameters ---------- features : {Feature, list} Single signal Feature, or list of signal Features to add to the feature Bank index : {int, slice, list}, optional Index to be applied to data input to each features. Either a index that will apply to every feature, or a list of features corresponding to each feature being added. """ if isinstance(features, Feature): if features in self: warn( f"Feature {features!s} already in the Bank, will be duplicated.", UserWarning, ) self._indices.append(partial_index_check(index)) self._feats.append(features) elif all([isinstance(i, Feature) for i in features]): if any([ft in self for ft in features]): warn("Feature already in the Bank, will be duplicated.", UserWarning) self._indices.extend(normalize_indices(len(features), index)) self._feats.extend(features) def save(self, file): """ Save the feature Bank to a file for a persistent object that can be loaded later to create the same Bank as before Parameters ---------- file : path-like File to be saved to. Creates a new file or overwrites an existing file. """ out = [] for i, ft in enumerate(self._feats): idx = "Ellipsis" if self._indices[i] is Ellipsis else self._indices[i] out.append( {ft.__class__.__name__: {"Parameters": ft._params, "Index": idx}} ) with open(file, "w") as f: json.dump(out, f) def load(self, file): """ Load a previously saved feature Bank from a json file. Parameters ---------- file : path-like File to be read to create the feature Bank. """ # the import must be here, otherwise a circular import error occurs from skdh.features import lib with open(file, "r") as f: feats = json.load(f) for ft in feats: name = list(ft.keys())[0] params = ft[name]["Parameters"] index = ft[name]["Index"] if index == "Ellipsis": index = Ellipsis # add it to the feature bank self.add(getattr(lib, name)(**params), index=index) def compute( self, signal, fs=1.0, *, axis=-1, index_axis=None, indices=None, columns=None ): """ Compute the specified features for the given signal Parameters ---------- signal : {array-like} Array-like signal to have features computed for. fs : float, optional Sampling frequency in Hz. Default is 1Hz axis : int, optional Axis along which to compute the features. Default is -1. index_axis : {None, int}, optional Axis corresponding to the indices specified in `Bank.add` or `indices`. Default is None, which assumes that this axis is not part of the signal. Note that setting this to None means values for `indices` or the indices set in `Bank.add` will be ignored. indices : {None, int, list-like, slice, ellipsis}, optional Indices to apply to the input signal. Either None, a integer, list-like, slice to apply to each feature, or a list-like of lists/objects with a 1:1 correspondence to the features present in the Bank. If provided, takes precedence over any values given in `Bank.add`. Default is None, which will use indices from `Bank.add`. columns : {None, list}, optional Columns to use if providing a dataframe. Default is None (uses all columns). Returns ------- feats : numpy.ndarray Computed features. """ # standardize the input signal if isinstance(signal, DataFrame): columns = columns if columns is not None else signal.columns x = signal[columns].values.astype(float_) else: try: x = asarray(signal, dtype=float_) except ValueError as e: raise ArrayConversionError("Error converting signal to ndarray") from e axis, index_axis = normalize_axes(x.ndim, axis, index_axis) if index_axis is None: indices = [...] * len(self) else: if indices is None: indices = self._indices else: indices = normalize_indices(len(self), indices) # get the number of features that will results. Needed to allocate the feature array if index_axis is None: # don't have to move any other axes than the computation axis x = moveaxis(x, axis, -1) # number of feats is 1 per n_feats = [1] * len(self) feats = zeros((sum(n_feats),) + x.shape[:-1], dtype=float_) else: # move both the computation and index axis. do this in two steps to allow for undoing # just the index axis swap later. The index_axis has been adjusted appropriately # to match this axis move in 2 steps x = moveaxis(x, axis, -1) x = moveaxis(x, index_axis, 0) n_feats = [] for ind in indices: n_feats.append(get_n_feats(x.shape[0], ind)) feats = zeros((sum(n_feats),) + x.shape[1:-1], dtype=float_) feat_i = 0 # keep track of where in the feature array we are for i, ft in enumerate(self._feats): feats[feat_i : feat_i + n_feats[i]] = ft.compute( x[indices[i]], fs=fs, axis=-1 ) feat_i += n_feats[i] # Move the shape back to the correct one. # only have to do this if there is an index axis, because otherwise the array is still in # the same order as originally if index_axis is not None: feats = moveaxis(feats, 0, index_axis) # undo the previous swap/move return feats class Feature(ABC): """ Base feature class """ def __str__(self): return self.__class__.__name__ def __repr__(self): s = self.__class__.__name__ + "(" for p in self._params: s += f"{p}={self._params[p]!r}, " if len(self._params) > 0: s = s[:-2] return s + ")" def __eq__(self, other): if isinstance(other, type(self)): # double check the name eq = str(other) == str(self) # check the parameters eq &= other._params == self._params return eq else: return False __slots__ = ("_params",) def __init__(self, **params): self._params = params @abstractmethod def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the signal feature. Parameters ---------- signal : array-like Signal to compute the feature over. fs : float, optional Sampling frequency in Hz. Default is 1.0 axis : int, optional Axis over which to compute the feature. Default is -1 (last dimension) Returns ------- feat : numpy.ndarray ndarray of the computed feature """ # move the computation axis to the end return moveaxis(asarray(signal, dtype=float_), axis, -1)
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/features/core.py
0.759805
0.499023
core.py
pypi
from skdh.features.core import Feature from skdh.features.lib import extensions __all__ = ["SignalEntropy", "SampleEntropy", "PermutationEntropy"] class SignalEntropy(Feature): r""" A Measure of the information contained in a signal. Also described as a measure of how surprising the outcome of a variable is. Notes ----- The entropy is estimated using the histogram of the input signal. Bin limits for the histogram are defined per .. math:: n_{bins} = ceil(\sqrt{N}) \delta = \frac{x_{max} - x_{min}}{N - 1} bin_{min} = x_{min} - \frac{\delta}{2} bin_{max} = x_{max} + \frac{\delta}{2} where :math:`N` is the number of samples in the signal. Note that the data is standardized before computing (using mean and standard deviation). With the histogram, then the estimate of the entropy is computed per .. math:: H_{est} = -\sum_{i=1}^kf(x_i)ln(f(x_i)) + ln(w) - bias w = \frac{bin_{max} - bin_{min}}{n_{bins}} bias = -\frac{n_{bins} - 1}{2N} Because of the standardization before the histogram computation, the entropy estimate is scaled again per .. math:: H_{est} = exp(H_{est}^2) - 2 References ---------- .. [1] Wallis, Kenneth. "A note on the calculation of entropy from histograms". 2006. https://warwick.ac.uk/fac/soc/economics/staff/academic/wallis/publications/entropy.pdf """ __slots__ = () def __init__(self): super(SignalEntropy, self).__init__() def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the signal entropy Parameters ---------- signal : array-like Array-like containing values to compute the signal entropy for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- sig_ent : numpy.ndarray Computed signal entropy. """ x = super().compute(signal, axis=axis) return extensions.signal_entropy(x) class SampleEntropy(Feature): r""" A measure of the complexity of a time-series signal. Sample entropy is a modification of approximate entropy, but has the benefit of being data-length independent and having an easier implementation. Smaller values indicate more self-similarity in the dataset, and/or less noise. Parameters ---------- m : int, optional Set length for comparison (aka embedding dimension). Default is 4 r : float, optional Maximum distance between sets. Default is 1.0 Notes ----- Sample entropy first computes the probability that if two sets of length :math:`m` simultaneous data points have distance :math:`<r`, then two sets of length :math:`m+` simultaneous data points also have distance :math:`<r`, and then takes the negative natural logarithm of this probability. .. math:: E_{sample} = -ln\frac{A}{B} where :math:`A=`number of :math:`m+1` vector pairs with distance :math:`<r` and :math:`B=`number of :math:`m` vector pairs with distance :math:`<r` The distance metric used is the Chebyshev distance, which is defined as the maximum absolute value of the sample-by-sample difference between two sets of the same length References ---------- .. [1] https://archive.physionet.org/physiotools/sampen/c/sampen.c """ __slots__ = ("m", "r") def __init__(self, m=4, r=1.0): super(SampleEntropy, self).__init__(m=m, r=r) self.m = m self.r = r def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the sample entropy of a signal Parameters ---------- signal : array-like Array-like containing values to compute the sample entropy for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- samp_en : numpy.ndarray Computed sample entropy. """ x = super().compute(signal, axis=axis) return extensions.sample_entropy(x, self.m, self.r) class PermutationEntropy(Feature): """ A meausure of the signal complexity. Based on how the temporal signal behaves according to a series of ordinal patterns. Parameters ---------- order : int, optional Order (length of sub-signals) to use in the computation. Default is 3 delay : int, optional Time-delay to use in computing the sub-signals. Default is 1 sample. normalize : bool, optional Normalize the output between 0 and 1. Default is False. """ __slots__ = ("order", "delay", "normalize") def __init__(self, order=3, delay=1, normalize=False): super(PermutationEntropy, self).__init__( order=order, delay=delay, normalize=False ) self.order = order self.delay = delay self.normalize = normalize def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the permutation entropy Parameters ---------- signal : array-like Array-like containing values to compute the signal entropy for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- perm_en : numpy.ndarray Computed permutation entropy. """ x = super().compute(signal, axis=axis) return extensions.permutation_entropy(x, self.order, self.delay, self.normalize)
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/features/lib/entropy.py
0.979957
0.909466
entropy.py
pypi
from numpy import zeros, ceil, log2, sort, sum, diff, sign, maximum import pywt from skdh.features.core import Feature __all__ = ["DetailPower", "DetailPowerRatio"] class DetailPower(Feature): """ The summed power in the detail levels that span the chosen frequency band. Parameters ---------- wavelet : str Wavelet to use. Options are the discrete wavelets in `PyWavelets`. Default is 'coif4'. freq_band : array_like 2-element array-like of the frequency band (Hz) to get the power in. Default is [1, 3]. References ---------- .. [1] Sekine, M. et al. "Classification of waist-acceleration signals in a continuous walking record." Medical Engineering & Physics. Vol. 22. Pp 285-291. 2000. """ __slots__ = ("wave", "f_band") _wavelet_options = pywt.wavelist(kind="discrete") def __init__(self, wavelet="coif4", freq_band=None): super().__init__(wavelet=wavelet, freq_band=freq_band) self.wave = wavelet if freq_band is not None: self.f_band = sort(freq_band) else: self.f_band = [1.0, 3.0] def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the detail power Parameters ---------- signal : array-like Array-like containing values to compute the detail power for. fs : float, optional Sampling frequency in Hz. If not provided, default is 1.0Hz. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- power : numpy.ndarray Computed detail power. """ x = super().compute(signal, fs, axis=axis) # computation lvls = [ int(ceil(log2(fs / self.f_band[0]))), # maximum level needed int(ceil(log2(fs / self.f_band[1]))), # minimum level to include in sum ] # TODO test effect of mode on result cA, *cD = pywt.wavedec(x, self.wave, mode="symmetric", level=lvls[0], axis=-1) # set non necessary levels to 0 for i in range(lvls[0] - lvls[1] + 1, lvls[0]): cD[i][:] = 0.0 # reconstruct and get negative->positive zero crossings xr = pywt.waverec((cA,) + tuple(cD), self.wave, mode="symmetric", axis=-1) N = sum(diff(sign(xr), axis=-1) > 0, axis=-1).astype(float) # ensure no 0 values to prevent divide by 0 N = maximum(N, 1e-10) rshape = x.shape[:-1] result = zeros(rshape) for i in range(lvls[0] - lvls[1] + 1): result += sum(cD[i] ** 2, axis=-1) return result / N class DetailPowerRatio(Feature): """ The ratio of the power in the detail signals that span the specified frequency band. Uses the discrete wavelet transform to break down the signal into constituent components at different frequencies. Parameters ---------- wavelet : str Wavelet to use. Options are the discrete wavelets in `PyWavelets`. Default is 'coif4'. freq_band : array_like 2-element array-like of the frequency band (Hz) to get the power in. Default is [1, 10]. Notes ----- In the original paper [1]_, the result is multiplied by 100 to obtain a percentage. This final multiplication is not included in order to obtain results that have a scale that closer matches the typical 0-1 (or -1 to 1) scale for machine learning features. NOTE that this does not mean that the values will be in this range - since the scaling factor is the original acceleration and not the wavelet detail values. References ---------- .. [1] Sekine, M. et al. "Classification of waist-acceleration signals in a continuous walking record." Medical Engineering & Physics. Vol. 22. Pp 285-291. 2000. """ __slots__ = ("wave", "f_band") _wavelet_options = pywt.wavelist(kind="discrete") def __init__(self, wavelet="coif4", freq_band=None): super().__init__(wavelet=wavelet, freq_band=freq_band) self.wave = wavelet if freq_band is not None: self.f_band = sort(freq_band) else: self.f_band = [1.0, 10.0] def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the detail power ratio Parameters ---------- signal : array-like Array-like containing values to compute the detail power ratio for. fs : float, optional Sampling frequency in Hz. If not provided, default is 1.0Hz. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- power_ratio : numpy.ndarray Computed detail power ratio. """ x = super().compute(signal, fs, axis=axis) # compute the required levels lvls = [ int(ceil(log2(fs / self.f_band[0]))), # maximum level needed int(ceil(log2(fs / self.f_band[1]))), # minimum level to include in sum ] # TODO test effect of mode on result cA, *cD = pywt.wavedec(x, self.wave, mode="symmetric", level=lvls[0], axis=-1) result = zeros(x.shape[:-1]) for i in range(lvls[0] - lvls[1] + 1): result += sum(cD[i] ** 2, axis=-1) return result / sum(x**2, axis=-1)
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/features/lib/wavelet.py
0.942447
0.675024
wavelet.py
pypi
from skdh.features.core import Feature from skdh.features.lib import extensions __all__ = [ "DominantFrequency", "DominantFrequencyValue", "PowerSpectralSum", "SpectralFlatness", "SpectralEntropy", ] class DominantFrequency(Feature): r""" The primary frequency in the signal. Computed using the FFT and finding the maximum value of the power spectral density in the specified range of frequencies. Parameters ---------- padlevel : int, optional Padding (factors of 2) to use in the FFT computation. Default is 2. low_cutoff : float, optional Low value of the frequency range to look in. Default is 0.0 Hz high_cutoff : float, optional High value of the frequency range to look in. Default is 5.0 Hz Notes ----- The `padlevel` parameter effects the number of points to be used in the FFT computation by factors of 2. The computation of number of points is per .. math:: nfft = 2^{ceil(log_2(N)) + padlevel} So `padlevel=2` would mean that for a signal with length 150, the number of points used in the FFT would go from 256 to 1024. """ __slots__ = ("pad", "low_cut", "high_cut") def __init__(self, padlevel=2, low_cutoff=0.0, high_cutoff=5.0): super(DominantFrequency, self).__init__( padlevel=padlevel, low_cutoff=low_cutoff, high_cutoff=high_cutoff ) self.pad = padlevel self.low_cut = low_cutoff self.high_cut = high_cutoff def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the dominant frequency Parameters ---------- signal : array-like Array-like containing values to compute the dominant frequency for. fs : float, optional Sampling frequency in Hz. If not provided, default is assumed to be 1Hz. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- dom_freq : numpy.ndarray Computed dominant frequency. """ x = super().compute(signal, fs, axis=axis) return extensions.dominant_frequency( x, fs, self.pad, self.low_cut, self.high_cut ) class DominantFrequencyValue(Feature): r""" The power spectral density maximum value. Taken inside the range of frequencies specified. Parameters ---------- padlevel : int, optional Padding (factors of 2) to use in the FFT computation. Default is 2. low_cutoff : float, optional Low value of the frequency range to look in. Default is 0.0 Hz high_cutoff : float, optional High value of the frequency range to look in. Default is 5.0 Hz Notes ----- The `padlevel` parameter effects the number of points to be used in the FFT computation by factors of 2. The computation of number of points is per .. math:: nfft = 2^{ceil(log_2(N)) + padlevel} So `padlevel=2` would mean that for a signal with length 150, the number of points used in the FFT would go from 256 to 1024. """ __slots__ = ("pad", "low_cut", "high_cut") def __init__(self, padlevel=2, low_cutoff=0.0, high_cutoff=5.0): super(DominantFrequencyValue, self).__init__( padlevel=padlevel, low_cutoff=low_cutoff, high_cutoff=high_cutoff ) self.pad = padlevel self.low_cut = low_cutoff self.high_cut = high_cutoff def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the dominant frequency value Parameters ---------- signal : array-like Array-like containing values to compute the dominant frequency value for. fs : float, optional Sampling frequency in Hz. If not provided, default is assumed to be 1Hz. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- dom_freq_val : numpy.ndarray Computed dominant frequency value. """ x = super().compute(signal, fs, axis=axis) return extensions.dominant_frequency_value( x, fs, self.pad, self.low_cut, self.high_cut ) class PowerSpectralSum(Feature): r""" Sum of power spectral density values. The sum of power spectral density values in a 1.0Hz wide band around the primary (dominant) frequency (:math:`f_{dom}\pm 0.5`) Parameters ---------- padlevel : int, optional Padding (factors of 2) to use in the FFT computation. Default is 2. low_cutoff : float, optional Low value of the frequency range to look in. Default is 0.0 Hz high_cutoff : float, optional High value of the frequency range to look in. Default is 5.0 Hz Notes ----- The `padlevel` parameter effects the number of points to be used in the FFT computation by factors of 2. The computation of number of points is per .. math:: nfft = 2^{ceil(log_2(N)) + padlevel} So `padlevel=2` would mean that for a signal with length 150, the number of points used in the FFT would go from 256 to 1024. """ __slots__ = ("pad", "low_cut", "high_cut") def __init__(self, padlevel=2, low_cutoff=0.0, high_cutoff=5.0): super(PowerSpectralSum, self).__init__( padlevel=padlevel, low_cutoff=low_cutoff, high_cutoff=high_cutoff ) self.pad = padlevel self.low_cut = low_cutoff self.high_cut = high_cutoff def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the power spectral sum Parameters ---------- signal : array-like Array-like containing values to compute the power spectral sum for. fs : float, optional Sampling frequency in Hz. If not provided, default is assumed to be 1Hz. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- pss : numpy.ndarray Computed power spectral sum. """ x = super().compute(signal, fs, axis=axis) return extensions.power_spectral_sum( x, fs, self.pad, self.low_cut, self.high_cut ) class SpectralFlatness(Feature): r""" A measure of the "tonality" or resonant structure of a signal. Provides a quantification of how tone-like a signal is, as opposed to being noise-like. For this case, tonality is defined in a sense as the amount of peaks in the power spectrum, opposed to a flat signal representing white noise. Parameters ---------- padlevel : int, optional Padding (factors of 2) to use in the FFT computation. Default is 2. low_cutoff : float, optional Low value of the frequency range to look in. Default is 0.0 Hz high_cutoff : float, optional High value of the frequency range to look in. Default is 5.0 Hz Notes ----- The `padlevel` parameter effects the number of points to be used in the FFT computation by factors of 2. The computation of number of points is per .. math:: nfft = 2^{ceil(log_2(N)) + padlevel} So `padlevel=2` would mean that for a signal with length 150, the number of points used in the FFT would go from 256 to 1024. """ __slots__ = ("pad", "low_cut", "high_cut") def __init__(self, padlevel=2, low_cutoff=0.0, high_cutoff=5.0): super(SpectralFlatness, self).__init__( padlevel=padlevel, low_cutoff=low_cutoff, high_cutoff=high_cutoff ) self.pad = padlevel self.low_cut = low_cutoff self.high_cut = high_cutoff def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the spectral flatness Parameters ---------- signal : array-like Array-like containing values to compute the spectral flatness for. fs : float, optional Sampling frequency in Hz. If not provided, default is assumed to be 1Hz. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- spec_flat : numpy.ndarray Computed spectral flatness. """ x = super().compute(signal, fs, axis=axis) return extensions.spectral_flatness( x, fs, self.pad, self.low_cut, self.high_cut ) class SpectralEntropy(Feature): r""" A measure of the information contained in the power spectral density estimate. Similar to :py:class:`SignalEntropy` but for the power spectral density. Parameters ---------- padlevel : int, optional Padding (factors of 2) to use in the FFT computation. Default is 2. low_cutoff : float, optional Low value of the frequency range to look in. Default is 0.0 Hz high_cutoff : float, optional High value of the frequency range to look in. Default is 5.0 Hz Notes ----- The `padlevel` parameter effects the number of points to be used in the FFT computation by factors of 2. The computation of number of points is per .. math:: nfft = 2^{ceil(log_2(N)) + padlevel} So `padlevel=2` would mean that for a signal with length 150, the number of points used in the FFT would go from 256 to 1024. """ __slots__ = ("pad", "low_cut", "high_cut") def __init__(self, padlevel=2, low_cutoff=0.0, high_cutoff=5.0): super(SpectralEntropy, self).__init__( padlevel=padlevel, low_cutoff=low_cutoff, high_cutoff=high_cutoff ) self.pad = padlevel self.low_cut = low_cutoff self.high_cut = high_cutoff def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the spectral entropy Parameters ---------- signal : array-like Array-like containing values to compute the spectral entropy for. fs : float, optional Sampling frequency in Hz. If not provided, default is assumed to be 1Hz. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- spec_ent : numpy.ndarray Computed spectral entropy. """ x = super().compute(signal, fs, axis=axis) return extensions.spectral_entropy(x, fs, self.pad, self.low_cut, self.high_cut)
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/features/lib/frequency.py
0.980224
0.744772
frequency.py
pypi
from skdh.features.core import Feature from skdh.features.lib import extensions __all__ = ["ComplexityInvariantDistance", "RangeCountPercentage", "RatioBeyondRSigma"] class ComplexityInvariantDistance(Feature): """ A distance metric that accounts for signal complexity. Parameters ---------- normalize : bool, optional Normalize the signal. Default is True. """ __slots__ = ("normalize",) def __init__(self, normalize=True): super(ComplexityInvariantDistance, self).__init__(normalize=normalize) self.normalize = normalize def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the complexity invariant distance Parameters ---------- signal : array-like Array-like containing values to compute the complexity invariant distance for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- cid : numpy.ndarray Computed complexity invariant distance. """ x = super().compute(signal, axis=axis) return extensions.complexity_invariant_distance(x, self.normalize) class RangeCountPercentage(Feature): """ The percent of the signal that falls between specified values Parameters ---------- range_min : {int, float}, optional Minimum value of the range. Default value is -1.0 range_max : {int, float}, optional Maximum value of the range. Default value is 1.0 """ __slots__ = ("rmin", "rmax") def __init__(self, range_min=-1.0, range_max=1.0): super(RangeCountPercentage, self).__init__( range_min=range_min, range_max=range_max ) self.rmin = range_min self.rmax = range_max def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the range count percentage Parameters ---------- signal : array-like Array-like containing values to compute the range count percentage for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- rcp : numpy.ndarray Computed range count percentage. """ x = super().compute(signal, fs=1.0, axis=axis) return extensions.range_count(x, self.rmin, self.rmax) class RatioBeyondRSigma(Feature): """ The percent of the signal outside :math:`r` standard deviations from the mean. Parameters ---------- r : float, optional Number of standard deviations above or below the mean the range includes. Default is 2.0 """ __slots__ = ("r",) def __init__(self, r=2.0): super(RatioBeyondRSigma, self).__init__(r=r) self.r = r def compute(self, signal, *, axis=-1, **kwargs): r""" compute(signal, *, axis=-1) Compute the ratio beyond :math:`r\sigma` Parameters ---------- signal : array-like Array-like containing values to compute the ratio beyond :math:`r\sigma` for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- rbr : numpy.ndarray Computed ratio beyond r sigma. """ x = super().compute(signal, fs=1.0, axis=axis) return extensions.ratio_beyond_r_sigma(x, self.r)
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/features/lib/misc.py
0.973507
0.747961
misc.py
pypi
from numpy import log as nplog, abs from skdh.features.core import Feature from skdh.features.lib import extensions __all__ = ["JerkMetric", "DimensionlessJerk", "SPARC"] class JerkMetric(Feature): r""" The normalized sum of jerk. Assumes the input signal is acceleration, and therefore the jerk is the first time derivative of the input signal. Notes ----- Given an acceleration signal :math:`a`, the pre-normalized jerk metric :math:`\hat{J}` is computed using a 2-point difference of the acceleration, then squared and summed per .. math:: \hat{J} = \sum_{i=2}^N\left(\frac{a_{i} - a_{i-1}}{\Delta t}\right)^2 where :math:`\Delta t` is the sampling period in seconds. The jerk metric :math:`J` is then normalized using constants and the maximum absolute acceleration value observed per .. math:: s = \frac{360max(|a|)^2}{\Delta t} .. math:: J = \frac{\hat{J}}{2s} """ __slots__ = () def __init__(self): super(JerkMetric, self).__init__() def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the jerk metric Parameters ---------- signal : array-like Array-like containing values to compute the jerk metric for. fs : float, optional Sampling frequency in Hz. If not provided, default is 1.0Hz axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- jerk_metric : numpy.ndarray Computed jerk metric. """ x = super().compute(signal, fs, axis=axis) return extensions.jerk_metric(x, fs) class DimensionlessJerk(Feature): r""" The dimensionless normalized sum of jerk, or its log value. Will take velocity, acceleration, or jerk as the input signal, and compute the jerk accordingly. Parameters ---------- log : bool, optional Take the log of the dimensionless jerk. Default is False. signal_type : {'acceleration', 'velocity', 'jerk'}, optional The type of the signal being provided. Default is 'acceleration' Notes ----- For all three inputs (acceleration, velocity, and jerk) the squaring and summation of the computed jerk values is the same as :py:class:`JerkMetric`. The difference comes in the normalization to get a dimensionless value, and in the computation of the jerk. For the different inputs, the pre-normalized metric :math:`\hat{J}` is computed per .. math:: \hat{J}_{vel} = \sum_{i=2}^{N-1}\left(\frac{v_{i+1} - 2v_{i} + v_{i-1}}{\Delta t^2}\right)^2 \\ \hat{J}_{acc} = \sum_{i=2}^N\left(\frac{a_{i} - a_{i-1}}{\Delta t}\right)^2 \\ \hat{J}_{jerk} = \sum_{i=1}^Nj_i^2 The scaling factor also changes depending on which input is provided, per .. math:: s_{vel} = \frac{max(|v|)^2}{N^3\Delta t^4} \\ s_{acc} = \frac{max(|a|)^2}{N \Delta t^2} \\ s_{jerk} = Nmax(|j|)^2 Note that the sampling period ends up cancelling out for all versions of the metric. Finally, the dimensionless jerk metric is simply the negative pre-normalized value divided by the corresponding scaling factor. If the log dimensionless jerk is required, then the negative is taken after taking the natural logarithm .. math:: DJ = \frac{-\hat{J}_{type}}{s_{type}} \\ DJ_{log} = -ln\left(\frac{\hat{J}_{type}}{s_{type}}\right) """ __slots__ = ("log", "i_type") _signal_type_options = ["velocity", "acceleration", "jerk"] def __init__(self, log=False, signal_type="acceleration"): super(DimensionlessJerk, self).__init__(log=log, signal_type=signal_type) self.log = log t_map = {"velocity": 1, "acceleration": 2, "jerk": 3} try: self.i_type = t_map[signal_type] except KeyError: raise ValueError(f"'signal_type' ({signal_type}) unrecognized.") def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the dimensionless jerk metric Parameters ---------- signal : array-like Array-like containing values to compute the dimensionless jerk metric for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- dimless_jerk_metric : numpy.ndarray Computed [log] dimensionless jerk metric. """ x = super().compute(signal, axis=axis) res = extensions.dimensionless_jerk_metric(x, self.i_type) if self.log: return -nplog(abs(res)) else: return res class SPARC(Feature): """ A quantitative measure of the smoothness of a signal. SPARC stands for the SPectral ARC length. Parameters ---------- padlevel : int Indicates the level of zero-padding to perform on the signal. This essentially multiplies the length of the signal by 2^padlevel. Default is 4. fc: float, optional The max. cut off frequency for calculating the spectral arc length metric. Default is 10.0 Hz. amplitude_threshold : float, optional The amplitude threshold to used for determining the cut off frequency up to which the spectral arc length is to be estimated. Default is 0.05 References ---------- .. [1] S. Balasubramanian, A. Melendez-Calderon, A. Roby-Brami, and E. Burdet, “On the analysis of movement smoothness,” J NeuroEngineering Rehabil, vol. 12, no. 1, p. 112, Dec. 2015, doi: 10.1186/s12984-015-0090-9. """ __slots__ = ("padlevel", "fc", "amp_thresh") def __init__(self, padlevel=4, fc=10.0, amplitude_threshold=0.05): super(SPARC, self).__init__( padlevel=padlevel, fc=fc, amplitude_threshold=amplitude_threshold ) self.padlevel = padlevel self.fc = fc self.amp_thresh = amplitude_threshold def compute(self, signal, fs=1.0, *, axis=-1): """ compute(signal, fs, *, columns=None, windowed=False) Compute the SPARC Parameters ---------- signal : array-like Array-like containing values to compute the SPARC for. fs : float, optional Sampling frequency in Hz. If not provided, default is 1.0Hz axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- sparc : numpy.ndarray Computed SPARC. """ x = super().compute(signal, fs, axis=axis) return extensions.SPARC(x, fs, self.padlevel, self.fc, self.amp_thresh)
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/features/lib/smoothness.py
0.956135
0.76973
smoothness.py
pypi
from numpy import mean, std, sum, diff, sign from scipy.stats import skew, kurtosis from skdh.features.core import Feature __all__ = ["Mean", "MeanCrossRate", "StdDev", "Skewness", "Kurtosis"] class Mean(Feature): """ The signal mean. Examples -------- >>> import numpy as np >>> signal = np.arange(15).reshape((5, 3)) >>> mn = Mean() >>> mn.compute(signal) array([6., 7., 8.]) """ __slots__ = () def __init__(self): super().__init__() def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the mean. Parameters ---------- signal : array-like Array-like containing values to compute the mean for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- mean : numpy.ndarray Computed mean. """ x = super().compute(signal, axis=axis) return mean(x, axis=-1) class MeanCrossRate(Feature): """ Number of signal mean value crossings. Expressed as a percentage of signal length. """ __slots__ = () def __init__(self): super(MeanCrossRate, self).__init__() def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the mean cross rate Parameters ---------- signal : array-like Array-like containing values to compute the mean cross rate for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- mcr : numpy.ndarray Computed mean cross rate. """ x = super().compute(signal, axis=axis) x_nomean = x - mean(x, axis=-1, keepdims=True) mcr = sum(diff(sign(x_nomean), axis=-1) != 0, axis=-1) return mcr / x.shape[-1] # shape of the 1 axis class StdDev(Feature): """ The signal standard deviation Examples -------- >>> import numpy as np >>> signal = np.arange(15).reshape((5, 3)) >>> StdDev().compute(signal) array([[4.74341649, 4.74341649, 4.74341649]]) """ __slots__ = () def __init__(self): super().__init__() def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the standard deviation Parameters ---------- signal : array-like Array-like containing values to compute the standard deviation for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- stdev : numpy.ndarray Computed standard deviation. """ x = super().compute(signal, axis=axis) return std(x, axis=-1, ddof=1) class Skewness(Feature): """ The skewness of a signal. NaN inputs will be propagated through to the result. """ __slots__ = () def __init__(self): super().__init__() def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the skewness Parameters ---------- signal : array-like Array-like containing values to compute the skewness for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- skew : numpy.ndarray Computed skewness. """ x = super().compute(signal, axis=axis) return skew(x, axis=-1, bias=False) class Kurtosis(Feature): """ The kurtosis of a signal. NaN inputs will be propagated through to the result. """ __slots__ = () def __init__(self): super().__init__() def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the kurtosis Parameters ---------- signal : array-like Array-like containing values to compute the kurtosis for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- kurt : numpy.ndarray Computed kurtosis. """ x = super().compute(signal, axis=axis) return kurtosis(x, axis=-1, bias=False)
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/features/lib/moments.py
0.971699
0.769622
moments.py
pypi