code
stringlengths
114
1.05M
path
stringlengths
3
312
quality_prob
float64
0.5
0.99
learning_prob
float64
0.2
1
filename
stringlengths
3
168
kind
stringclasses
1 value
from abc import abstractmethod from math import pi from .base import dot, transpose, safe_log, safe_exp from .utils import check_array, check_types, check_version __all__ = ["GaussianNBPure", "MultinomialNBPure", "ComplementNBPure"] class _BaseNBPure: """Base class for naive Bayes classifiers""" @abstractmethod def _joint_log_likelihood(self, X): """Compute the unnormalized posterior log probability of X""" def predict(self, X): """ Perform classification on an array of test vectors X. """ X = check_array(X, handle_sparse="error") jll = self._joint_log_likelihood(X) indices = map(lambda a: a.index(max(a)), jll) return [self.classes_[i] for i in indices] def predict_log_proba(self, X): """ Return log-probability estimates for the test vector X. """ X = check_array(X, handle_sparse="error") jll = self._joint_log_likelihood(X) log_prob_x = list(map(lambda a: safe_log(sum(map(safe_exp, a))), jll)) return [ list(map(lambda a: a - log_prob_x[index], jll[index])) for index in range(len(jll)) ] def predict_proba(self, X): """ Return probability estimates for the test vector X. """ return [list(map(safe_exp, a)) for a in self.predict_log_proba(X)] class GaussianNBPure(_BaseNBPure): """ Pure python implementation of `GaussianNB`. Args: estimator (sklearn estimator): fitted `GaussianNB` object """ def __init__(self, estimator): check_version(estimator) self.class_prior_ = estimator.class_prior_.tolist() self.classes_ = estimator.classes_.tolist() self.var_ = estimator.var_.tolist() self.theta_ = estimator.theta_.tolist() check_types(self) def _joint_log_likelihood(self, X): """Calculate the posterior log probability of the samples X""" joint_log_likelihood = [] for i in range(len(self.classes_)): jointi = safe_log(self.class_prior_[i]) n_ij = -0.5 * sum(list(map(lambda x: safe_log(2.0 * pi * x), self.var_[i]))) jll = [ list( map( lambda b: ((a[b] - self.theta_[i][b]) ** 2) / self.var_[i][b], range(len(a)), ) ) for a in X ] jll = list(map(lambda a: 0.5 * sum(a), jll)) jll = [(n_ij - a) + jointi for a in jll] joint_log_likelihood.append(jll) return transpose(joint_log_likelihood) class MultinomialNBPure(_BaseNBPure): """ Pure python implementation of `MultinomialNB`. Args: estimator (sklearn estimator): fitted `MultinomialNB` object """ def __init__(self, estimator): check_version(estimator) self.class_log_prior_ = estimator.class_log_prior_.tolist() self.classes_ = estimator.classes_.tolist() self.feature_log_prob_ = estimator.feature_log_prob_.tolist() check_types(self) def _joint_log_likelihood(self, X): """Calculate the posterior log probability of the samples X""" return [self._jll(a) for a in X] def _jll(self, x): """Calculate the joint log likelihood for one sample""" dot_prod = dot(x, self.feature_log_prob_) return [ (dot_prod[index] + self.class_log_prior_[index]) for index in range(len(self.classes_)) ] class ComplementNBPure(_BaseNBPure): """ Pure python implementation of `ComplementNB`. Args: estimator (sklearn estimator): fitted `ComplementNB` object """ def __init__(self, estimator): check_version(estimator) self.class_log_prior_ = estimator.class_log_prior_.tolist() self.classes_ = estimator.classes_.tolist() self.feature_log_prob_ = estimator.feature_log_prob_.tolist() check_types(self) def _joint_log_likelihood(self, X): """Calculate the class scores for the samples in X""" jll = [dot(x, self.feature_log_prob_) for x in X] if len(self.classes_) == 1: jll = [[x[0] + self.class_log_prior_[0]] for x in jll] return jll
/scikit-endpoint-0.0.3.tar.gz/scikit-endpoint-0.0.3/scikit_endpoint/naive_bayes.py
0.931952
0.583856
naive_bayes.py
pypi
from operator import add from ..utils import check_array, ndim, shape, check_types from ..base import dot, expit, ravel class LinearClassifierMixinPure: """Mixin for linear classifiers""" def __init__(self, estimator): self.coef_ = estimator.coef_.tolist() self.classes_ = estimator.classes_.tolist() if hasattr(estimator, "intercept_"): if isinstance(estimator.intercept_, float): self.intercept_ = [estimator.intercept_] * len(self.classes_) else: self.intercept_ = estimator.intercept_.tolist() if hasattr(estimator, "multi_class"): self.multi_class = estimator.multi_class if hasattr(estimator, "solver"): self.solver = estimator.solver if hasattr(estimator, "loss"): self.loss = estimator.loss check_types(self) def decision_function(self, X): """ Predict confidence scores for samples. The confidence score for a sample is the signed distance of that sample to the hyperplane. """ X = check_array(X, handle_sparse="allow") n_features = shape(self.coef_)[1] if shape(X)[1] != n_features: raise ValueError( "X has %d features per sample; expecting %d" % (shape(X)[1], n_features) ) scores = [ list(map(add, dot(X[i], self.coef_), self.intercept_)) for i in range(len(X)) ] return ravel(scores) if shape(scores)[1] == 1 else scores def predict(self, X): """Predict class labels for samples in X""" scores = self.decision_function(X) if len(shape(scores)) == 1: indices = map(lambda x: int(x > 0), scores) else: indices = map(lambda a: a.index(max(a)), scores) return [self.classes_[i] for i in indices] def _predict_proba_lr(self, X): """ Probability estimation for OvR logistic regression. Positive class probabilities are computed as 1. / (1. + np.exp(-self.decision_function(X))); multiclass is handled by normalizing that over all classes. """ prob = self.decision_function(X) if ndim(prob) == 1: return [[1 - a, a] for a in map(expit, prob)] else: prob = [list(map(expit, a)) for a in prob] return [ list(map(lambda b: (b / sum(a)) if sum(a) != 0 else float("NaN"), a)) for a in prob ]
/scikit-endpoint-0.0.3.tar.gz/scikit-endpoint-0.0.3/scikit_endpoint/linear_model/_base.py
0.772702
0.315413
_base.py
pypi
import re import unicodedata from functools import partial from math import isnan import warnings from ._hash import _FeatureHasherPure from ..map import convert_estimator from ..preprocessing import normalize_pure from ..utils import ( convert_type, sparse_list, shape, check_array, check_types, check_version, ) from ..base import safe_log __all__ = [ "CountVectorizerPure", "TfidfTransformerPure", "TfidfVectorizerPure", "HashingVectorizerPure", ] def _preprocess(doc, accent_function=None, lower=False): """ Chain together an optional series of text preprocessing steps to apply to a document. """ if lower: doc = doc.lower() if accent_function is not None: doc = accent_function(doc) return doc def _analyze( doc, analyzer=None, tokenizer=None, ngrams=None, preprocessor=None, decoder=None, stop_words=None, ): """ Chain together an optional series of text processing steps to go from a single document to ngrams, with or without tokenizing or preprocessing. """ if decoder is not None: doc = decoder(doc) if analyzer is not None: doc = analyzer(doc) else: if preprocessor is not None: doc = preprocessor(doc) if tokenizer is not None: doc = tokenizer(doc) if ngrams is not None: if stop_words is not None: doc = ngrams(doc, stop_words) else: doc = ngrams(doc) return doc def strip_accents_unicode(s): """Transform accentuated unicode symbols into their simple counterpart""" try: # If `s` is ASCII-compatible, then it does not contain any accented # characters and we can avoid an expensive list comprehension s.encode("ASCII", errors="strict") return s except UnicodeEncodeError: normalized = unicodedata.normalize("NFKD", s) return "".join([c for c in normalized if not unicodedata.combining(c)]) def strip_accents_ascii(s): """Transform accentuated unicode symbols into ascii or nothing""" nkfd_form = unicodedata.normalize("NFKD", s) return nkfd_form.encode("ASCII", "ignore").decode("ASCII") def strip_tags(s): """Basic regexp based HTML / XML tag stripper function""" return re.compile(r"<([^>]+)>", flags=re.UNICODE).sub(" ", s) def _check_stop_list(stop): if stop == "english": raise ValueError( "English stopwords not supported. Pass explicitly as a custom stopwords list." ) elif isinstance(stop, str): raise ValueError("not a built-in stop list: %s" % stop) elif stop is None: return None else: # assume it's a collection return frozenset(stop) class _VectorizerMixinPure: """Provides common code for text vectorizers (tokenization logic)""" _white_spaces = re.compile(r"\s\s+") def decode(self, doc): """Decode the input into a string of unicode symbols""" if self.input == "filename": with open(doc, "rb") as fh: doc = fh.read() elif self.input == "file": doc = doc.read() if isinstance(doc, bytes): doc = doc.decode(self.encoding, self.decode_error) if not isinstance(doc, str) and isnan(doc): raise ValueError( "np.nan is an invalid document, expected byte or unicode string." ) return doc def _word_ngrams(self, tokens, stop_words=None): """Turn tokens into a sequence of n-grams after stop words filtering""" # handle stop words if stop_words is not None: tokens = [w for w in tokens if w not in stop_words] # handle token n-grams min_n, max_n = self.ngram_range if max_n != 1: original_tokens = tokens if min_n == 1: # no need to do any slicing for unigrams # just iterate through the original tokens tokens = list(original_tokens) min_n += 1 else: tokens = [] n_original_tokens = len(original_tokens) # bind method outside of loop to reduce overhead tokens_append = tokens.append space_join = " ".join for n in range(min_n, min(max_n + 1, n_original_tokens + 1)): for i in range(n_original_tokens - n + 1): tokens_append(space_join(original_tokens[i : i + n])) return tokens def _char_ngrams(self, text_document): """Tokenize text_document into a sequence of character n-grams""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) text_len = len(text_document) min_n, max_n = self.ngram_range if min_n == 1: # no need to do any slicing for unigrams # iterate through the string ngrams = list(text_document) min_n += 1 else: ngrams = [] # bind method outside of loop to reduce overhead ngrams_append = ngrams.append for n in range(min_n, min(max_n + 1, text_len + 1)): for i in range(text_len - n + 1): ngrams_append(text_document[i : i + n]) return ngrams def _char_wb_ngrams(self, text_document): """Whitespace sensitive char-n-gram tokenization""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) min_n, max_n = self.ngram_range ngrams = [] # bind method outside of loop to reduce overhead ngrams_append = ngrams.append for w in text_document.split(): w = " " + w + " " w_len = len(w) for n in range(min_n, max_n + 1): offset = 0 ngrams_append(w[offset : offset + n]) while offset + n < w_len: offset += 1 ngrams_append(w[offset : offset + n]) if offset == 0: # count a short word (w_len < n) only once break return ngrams def build_preprocessor(self): """Return a function to preprocess the text before tokenization""" if self.preprocessor is not None: return self.preprocessor # accent stripping if not self.strip_accents: strip_accents = None elif callable(self.strip_accents): strip_accents = self.strip_accents elif self.strip_accents == "ascii": strip_accents = strip_accents_ascii elif self.strip_accents == "unicode": strip_accents = strip_accents_unicode else: raise ValueError( 'Invalid value for "strip_accents": %s' % self.strip_accents ) return partial(_preprocess, accent_function=strip_accents, lower=self.lowercase) def build_tokenizer(self): """Return a function that splits a string into a sequence of tokens""" if self.tokenizer is not None: return self.tokenizer token_pattern = re.compile(self.token_pattern) return token_pattern.findall def get_stop_words(self): """Build or fetch the effective stop words list""" return _check_stop_list(self.stop_words) def _check_stop_words_consistency(self, stop_words, preprocess, tokenize): """Check if stop words are consistent""" if id(self.stop_words) == getattr(self, "_stop_words_id", None): # Stop words are were previously validated return None # NB: stop_words is validated, unlike self.stop_words try: inconsistent = set() for w in stop_words or (): tokens = list(tokenize(preprocess(w))) for token in tokens: if token not in stop_words: inconsistent.add(token) self._stop_words_id = id(self.stop_words) if inconsistent: warnings.warn( "Your stop_words may be inconsistent with " "your preprocessing. Tokenizing the stop " "words generated tokens %r not in " "stop_words." % sorted(inconsistent) ) return not inconsistent except Exception: # Failed to check stop words consistency (e.g. because a custom # preprocessor or tokenizer was used) self._stop_words_id = id(self.stop_words) return "error" def build_analyzer(self): """ Return a callable that handles preprocessing, tokenization and n-grams generation. """ if callable(self.analyzer): if self.input in ["file", "filename"]: self._validate_custom_analyzer() return partial(_analyze, analyzer=self.analyzer, decoder=self.decode) preprocess = self.build_preprocessor() if self.analyzer == "char": return partial( _analyze, ngrams=self._char_ngrams, preprocessor=preprocess, decoder=self.decode, ) elif self.analyzer == "char_wb": return partial( _analyze, ngrams=self._char_wb_ngrams, preprocessor=preprocess, decoder=self.decode, ) elif self.analyzer == "word": stop_words = self.get_stop_words() tokenize = self.build_tokenizer() self._check_stop_words_consistency(stop_words, preprocess, tokenize) return partial( _analyze, ngrams=self._word_ngrams, tokenizer=tokenize, preprocessor=preprocess, decoder=self.decode, stop_words=stop_words, ) else: raise ValueError( "%s is not a valid tokenization scheme/analyzer" % self.analyzer ) class CountVectorizerPure(_VectorizerMixinPure): """ Pure python implementation of `CountVectorizer`. Args: estimator (sklearn estimator): fitted `CountVectorizer` object """ def __init__(self, estimator): check_version(estimator) self.dtype = convert_type(estimator.dtype) self.binary = estimator.binary self.vocabulary_ = {k: int(v) for k, v in estimator.vocabulary_.items()} self.analyzer = estimator.analyzer self.preprocessor = estimator.preprocessor self.tokenizer = estimator.tokenizer self.stop_words = estimator.stop_words self.token_pattern = estimator.token_pattern self.ngram_range = estimator.ngram_range self.strip_accents = estimator.strip_accents self.decode_error = estimator.decode_error self.encoding = estimator.encoding self.lowercase = estimator.lowercase self.input = estimator.input check_types(self) def _count_vocab(self, raw_documents): """Create sparse feature matrix, and vocabulary where fixed_vocab=False""" vocabulary = self.vocabulary_ analyze = self.build_analyzer() data = [] for doc in raw_documents: feature_counter = {} for feature in analyze(doc): try: feature_idx = vocabulary[feature] if feature_idx not in feature_counter: feature_counter[feature_idx] = 1 else: feature_counter[feature_idx] += 1 except KeyError: continue data.append(feature_counter) X = sparse_list(data, size=len(vocabulary), dtype=self.dtype) return vocabulary, X def transform(self, raw_documents): """Transform documents to document-term matrix""" if isinstance(raw_documents, str): raise ValueError( "Iterable over raw text documents expected, string object received." ) _, X = self._count_vocab(raw_documents) if self.binary: X = [dict.fromkeys(x, 1) for x in X] return X class TfidfVectorizerPure(CountVectorizerPure): """ Pure python implementation of `TfidfVectorizer`. Args: estimator (sklearn estimator): fitted `TfidfVectorizer` object """ def __init__(self, estimator): check_version(estimator) self._tfidf = convert_estimator(estimator._tfidf) super().__init__(estimator) def transform(self, raw_documents): """Transform documents to document-term matrix.""" X = super().transform(raw_documents) return self._tfidf.transform(X, copy=False) class TfidfTransformerPure: """ Pure python implementation of `TfidfTransformer`. Args: estimator (sklearn estimator): fitted `TfidfTransformer` object """ def __init__(self, estimator): check_version(estimator) self.norm = estimator.norm self.use_idf = estimator.use_idf self.smooth_idf = estimator.smooth_idf self.sublinear_tf = estimator.sublinear_tf self.idf_ = estimator.idf_.tolist() self.expected_n_features_ = estimator._idf_diag.shape[0] check_types(self) def transform(self, X, copy=True): X = check_array(X, handle_sparse="allow") n_samples, n_features = shape(X) if self.sublinear_tf: for index in range(len(X)): X[index] = safe_log(X[index]) + 1 if self.use_idf: if n_features != self.expected_n_features_: raise ValueError( "Input has n_features=%d while the model" " has been trained with n_features=%d" % (n_features, self.expected_n_features_) ) for index in range(len(X)): for k, v in X[index].items(): X[index][k] = v * self.idf_[k] if self.norm: X = normalize_pure(X, norm=self.norm, copy=False) return X class HashingVectorizerPure(_VectorizerMixinPure): """ Pure python implementation of `HashingVectorizer`. Args: estimator (sklearn estimator): fitted `HashingVectorizer` object """ def __init__(self, estimator): check_version(estimator) self.dtype = convert_type(estimator.dtype) self.norm = estimator.norm self.binary = estimator.binary self.analyzer = estimator.analyzer self.preprocessor = estimator.preprocessor self.tokenizer = estimator.tokenizer self.stop_words = estimator.stop_words self.token_pattern = estimator.token_pattern self.ngram_range = estimator.ngram_range self.strip_accents = estimator.strip_accents self.decode_error = estimator.decode_error self.encoding = estimator.encoding self.lowercase = estimator.lowercase self.input = estimator.input self.n_features = estimator.n_features self.alternate_sign = estimator.alternate_sign check_types(self) def transform(self, X): """Transform a sequence of documents to a document-term matrix""" if isinstance(X, str): raise ValueError( "Iterable over raw text documents expected, string object received." ) analyzer = self.build_analyzer() X = self._get_hasher().transform(analyzer(doc) for doc in X) if self.binary: X = [dict.fromkeys(x, 1) for x in X] if self.norm is not None: X = normalize_pure(X, norm=self.norm, copy=False) return X def _get_hasher(self): return _FeatureHasherPure( n_features=self.n_features, input_type="string", dtype=self.dtype, alternate_sign=self.alternate_sign, )
/scikit-endpoint-0.0.3.tar.gz/scikit-endpoint-0.0.3/scikit_endpoint/feature_extraction/text.py
0.586641
0.316316
text.py
pypi
import numbers from ..utils import check_types, sparse_list MAX_INT = 2147483647 def _xrange(a, b, c): return range(a, b, c) def _xencode(x): if isinstance(x, (bytes, bytearray)): return x else: return x.encode() def _iteritems(d): """Like d.iteritems, but accepts any collections.Mapping.""" return d.iteritems() if hasattr(d, "iteritems") else d.items() def _hash(key, seed=0x0): """Implements 32bit murmur3 hash""" key = bytearray(_xencode(key)) def fmix(h): h ^= h >> 16 h = (h * 0x85EBCA6B) & 0xFFFFFFFF h ^= h >> 13 h = (h * 0xC2B2AE35) & 0xFFFFFFFF h ^= h >> 16 return h length = len(key) nblocks = int(length / 4) h1 = seed c1 = 0xCC9E2D51 c2 = 0x1B873593 # body for block_start in _xrange(0, nblocks * 4, 4): # ??? big endian? k1 = ( key[block_start + 3] << 24 | key[block_start + 2] << 16 | key[block_start + 1] << 8 | key[block_start + 0] ) k1 = (c1 * k1) & 0xFFFFFFFF k1 = (k1 << 15 | k1 >> 17) & 0xFFFFFFFF # inlined ROTL32 k1 = (c2 * k1) & 0xFFFFFFFF h1 ^= k1 h1 = (h1 << 13 | h1 >> 19) & 0xFFFFFFFF # inlined ROTL32 h1 = (h1 * 5 + 0xE6546B64) & 0xFFFFFFFF # tail tail_index = nblocks * 4 k1 = 0 tail_size = length & 3 if tail_size >= 3: k1 ^= key[tail_index + 2] << 16 if tail_size >= 2: k1 ^= key[tail_index + 1] << 8 if tail_size >= 1: k1 ^= key[tail_index + 0] if tail_size > 0: k1 = (k1 * c1) & 0xFFFFFFFF k1 = (k1 << 15 | k1 >> 17) & 0xFFFFFFFF # inlined ROTL32 k1 = (k1 * c2) & 0xFFFFFFFF h1 ^= k1 # finalization unsigned_val = fmix(h1 ^ length) if unsigned_val & 0x80000000 == 0: return unsigned_val else: return -((unsigned_val ^ 0xFFFFFFFF) + 1) def _hashing_transform(raw_X, n_features, dtype, alternate_sign=1, seed=0): """Guts of FeatureHasher.transform""" assert n_features > 0 X = [] for x in raw_X: row = {} for f, v in x: if isinstance(v, str): f = "%s%s%s" % (f, "=", v) value = 1 else: value = v if value == 0: continue h = _hash(f, seed) index = abs(h) % n_features if alternate_sign: value *= (h >= 0) * 2 - 1 row[index] = value X.append(row) return sparse_list(X, size=n_features, dtype=dtype) class _FeatureHasherPure: """Pure python implementation of `FeatureHasher`""" def __init__( self, n_features=(2**20), input_type="dict", dtype=float, alternate_sign=True ): self._validate_params(n_features, input_type) self.dtype = dtype self.input_type = input_type self.n_features = n_features self.alternate_sign = alternate_sign check_types(self) @staticmethod def _validate_params(n_features, input_type): if not isinstance(n_features, numbers.Integral): raise TypeError( "n_features must be integral, got %r (%s)." % (n_features, type(n_features)) ) elif n_features < 1 or n_features >= MAX_INT + 1: raise ValueError("Invalid number of features (%d)." % n_features) if input_type not in ("dict", "pair", "string"): raise ValueError( "input_type must be 'dict', 'pair' or 'string', got %r." % input_type ) def transform(self, raw_X): """Transform a sequence of instances to a `sparse_list`""" raw_X = iter(raw_X) if self.input_type == "dict": raw_X = (_iteritems(d) for d in raw_X) elif self.input_type == "string": raw_X = (((f, 1) for f in x) for x in raw_X) return _hashing_transform( raw_X, self.n_features, self.dtype, self.alternate_sign, seed=0 )
/scikit-endpoint-0.0.3.tar.gz/scikit-endpoint-0.0.3/scikit_endpoint/feature_extraction/_hash.py
0.605566
0.343645
_hash.py
pypi
from ._label import _encode, _encode_check_unknown from ..base import accumu, apply_2d from ..utils import ( check_types, check_array, shape, sparse_list, convert_type, check_version, ) class _BaseEncoderPure: """ Base class for encoders that includes the code to categorize and transform the input features. """ def __init__(self, estimator): check_version(estimator) self.dtype = convert_type(estimator.dtype) self.categories_ = [a.tolist() for a in estimator.categories_] if hasattr(estimator, "sparse"): self.sparse = estimator.sparse if hasattr(estimator, "drop") and (estimator.drop is not None): raise ValueError("Encoder does not handle 'drop' functionality") if hasattr(estimator, "handle_unknown"): self.handle_unknown = estimator.handle_unknown check_types(self) def _check_X(self, X): """Perform custom check_array""" X = check_array(X) n_samples, n_features = shape(X) X_columns = [] for i in range(n_features): Xi = self._get_feature(X, feature_idx=i) X_columns.append(Xi) return X_columns, n_samples, n_features def _get_feature(self, X, feature_idx): return [x[feature_idx] for x in X] def _transform(self, X, handle_unknown="error"): X_list, n_samples, n_features = self._check_X(X) X_int = [[0] * n_features] * n_samples X_mask = [[True] * n_features] * n_samples if n_features != len(self.categories_): raise ValueError( "The number of features in X is different to the number of " "features of the fitted data. The fitted data had {} features " "and the X has {} features.".format( len( self.categories_, ), n_features, ) ) for i in range(n_features): Xi = X_list[i] diff, valid_mask = _encode_check_unknown( Xi, self.categories_[i], return_mask=True ) if not (sum(valid_mask) == len(valid_mask)): if handle_unknown == "error": msg = ( "Found unknown categories {0} in column {1}" " during transform".format(diff, i) ) raise ValueError(msg) else: X_mask = [ [ valid_mask[j] if idx == i else X_mask[j][idx] for idx in range(n_features) ] for j in range(n_samples) ] Xi = [ Xi[idx] if valid_mask[idx] else self.categories_[i][0] for idx in range(len(Xi)) ] _, encoded = _encode( Xi, self.categories_[i], encode=True, check_unknown=False ) X_int = [ [encoded[j] if idx == i else X_int[j][idx] for idx in range(n_features)] for j in range(n_samples) ] return X_int, X_mask class OrdinalEncoderPure(_BaseEncoderPure): """ Pure python implementation of `OrdinalEncoder`. Args: estimator (sklearn estimator): fitted `OrdinalEncoder` object """ def transform(self, X): """Transform X to ordinal codes""" X_int, _ = self._transform(X) return apply_2d(X_int, self.dtype) class OneHotEncoderPure(_BaseEncoderPure): """ Pure python implementation of `OneHotEncoder`. Args: estimator (sklearn estimator): fitted `OneHotEncoder` object """ def transform(self, X): """Transform X using one-hot encoding""" X_int, X_mask = self._transform(X, handle_unknown=self.handle_unknown) n_samples, n_features = shape(X_int) n_values = [0] + [len(cats) for cats in self.categories_] feature_indices = list(accumu(n_values)) data = [ dict( [ (n_values[i] + X_int[j][i], self.dtype(1)) for i in range(n_features) if X_mask[j][i] ] ) for j in range(n_samples) ] out = sparse_list(data, size=feature_indices[-1], dtype=self.dtype) if not self.sparse: return out.todense() else: return out
/scikit-endpoint-0.0.3.tar.gz/scikit-endpoint-0.0.3/scikit_endpoint/preprocessing/_encoders.py
0.827793
0.416915
_encoders.py
pypi
from math import sqrt from copy import copy as cp from ..utils import sparse_list, issparse, check_array, check_types, check_version from ..base import transpose, apply_2d, apply_axis_2d, matmult_same_dim def _handle_zeros_in_scale(scale, copy=True): """Makes sure that whenever scale is zero, we handle it correctly""" if isinstance(scale, (int, float)): if scale == 0.0: scale = 1.0 return scale elif isinstance(scale, list): if copy: scale = cp(scale) return [(1.0 if scale[i] == 0.0 else scale[i]) for i in range(len(scale))] def _row_norms(X): """Row-wise (squared) Euclidean norm of X""" X_X = matmult_same_dim(X, X) if issparse(X): norms = [sum(x.values()) for x in X_X] else: norms = apply_axis_2d(X_X, sum, axis=1) return list(map(sqrt, norms)) def normalize_pure(X, norm="l2", axis=1, copy=True, return_norm=False): """Scale input vectors individually to unit norm""" # check input compatibility if (axis == 0) and issparse(X): raise ValueError("Axis 0 is not supported for sparse data") if norm not in ("l1", "l2", "max"): raise ValueError("'%s' is not a supported norm" % norm) if axis not in [0, 1]: raise ValueError("'%d' is not a supported axis" % axis) X = check_array(X, handle_sparse="allow") if axis == 0: X = transpose(X) if issparse(X): if return_norm and norm in ("l1", "l2"): raise NotImplementedError( "return_norm=True is not implemented " "for sparse matrices with norm 'l1' " "or norm 'l2'" ) if norm == "l1": norms = [sum(map(abs, x.values())) for x in X] elif norm == "l2": norms = _row_norms(X) elif norm == "max": norms = [max(list(x.values()) + [0]) for x in X] norms = _handle_zeros_in_scale(norms, copy=False) X_sparse = [ {k: (v / float(norms[index])) for k, v in X[index].items()} for index in range(len(X)) ] X = sparse_list(X_sparse, X.size, X.dtype) else: if norm == "l1": norms = apply_axis_2d(apply_2d(X, abs), sum, axis=1) elif norm == "l2": norms = _row_norms(X) elif norm == "max": norms = apply_axis_2d(X, max, axis=1) norms = _handle_zeros_in_scale(norms, copy=False) X = [ list(map(lambda a: a / float(norms[index]), X[index])) for index in range(len(X)) ] if axis == 0: X = transpose(X) if return_norm: return X, norms else: return X class NormalizerPure: """ Pure python implementation of `Normalizer`. Args: estimator (sklearn estimator): fitted `Normalizer` object """ def __init__(self, estimator): check_version(estimator) self.norm = estimator.norm self.copy = estimator.copy check_types(self) def transform(self, X, copy=None): """Scale each non zero row of X to unit norm.""" copy = copy if copy is not None else self.copy X = check_array(X, handle_sparse="allow") return normalize_pure(X, norm=self.norm, axis=1, copy=copy) class StandardScalerPure: """ Pure python implementation of `StandardScaler`. Args: estimator (sklearn estimator): fitted `StandardScaler` object """ def __init__(self, estimator): check_version(estimator) self.with_mean = estimator.with_mean self.with_std = estimator.with_std if estimator.scale_ is None: self.scale_ = None else: self.scale_ = estimator.scale_.tolist() if estimator.mean_ is None: self.mean_ = None else: self.mean_ = estimator.mean_.tolist() check_types(self) def transform(self, X, copy=None): """Perform standardization by centering and scaling""" X = check_array(X, handle_sparse="allow") if issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives." ) if self.scale_ is not None: X_ = [{k: (v / self.scale_[k]) for k, v in x.items()} for x in X] X = sparse_list(X_, size=X.size, dtype=X.dtype) else: if self.with_mean: X = [[x[i] - self.mean_[i] for i in range(len(self.mean_))] for x in X] if self.with_std: X = [ [x[i] / self.scale_[i] for i in range(len(self.scale_))] for x in X ] return X class MinMaxScalerPure: """ Pure python implementation of `MinMaxScaler`. Args: estimator (sklearn estimator): fitted `MinMaxScaler` object """ def __init__(self, estimator): check_version(estimator) self.feature_range = estimator.feature_range if estimator.scale_ is None: self.scale_ = None else: self.scale_ = estimator.scale_.tolist() if estimator.min_ is None: self.min_ = None else: self.min_ = estimator.min_.tolist() check_types(self) def transform(self, X): """Scale features of X according to feature_range""" if issparse(X): raise TypeError( "MinMaxScalerPure does not support sparse input. " "Consider using MaxAbsScalerPure instead." ) X = check_array(X) return [ [(x[i] * self.scale_[i]) + self.min_[i] for i in range(len(self.scale_))] for x in X ] class MaxAbsScalerPure: """ Pure python implementation of `MaxAbsScaler`. Args: estimator (sklearn estimator): fitted `MaxAbsScaler` object """ def __init__(self, estimator): check_version(estimator) self.copy = estimator.copy if estimator.scale_ is None: self.scale_ = None else: self.scale_ = estimator.scale_.tolist() if estimator.max_abs_ is None: self.max_abs_ = None else: self.max_abs_ = estimator.max_abs_.tolist() check_types(self) def transform(self, X): """Scale the data""" X = check_array(X, handle_sparse="allow") if issparse(X): X_ = [{k: (v / self.scale_[k]) for k, v in x.items()} for x in X] X = sparse_list(X_, size=X.size, dtype=X.dtype) else: X = [[x[i] / self.scale_[i] for i in range(len(self.scale_))] for x in X] return X
/scikit-endpoint-0.0.3.tar.gz/scikit-endpoint-0.0.3/scikit_endpoint/preprocessing/_data.py
0.847747
0.490907
_data.py
pypi
from ..base import sfmax, expit from ..tree import DecisionTreeRegressorPure from ..utils import check_types, check_array MIN_VERSION = "0.82" SUPPORTED_OBJ = ["binary:logistic", "multi:softprob"] SUPPORTED_BOOSTER = ["gbtree"] class XGBClassifierPure: """ Pure python implementation of `XGBClassifier`. Only supports 'gbtree' booster and 'binary:logistic' or 'multi:softprob' objectives. Args: estimator (xgboost estimator): fitted `XGBClassifier` object """ def __init__(self, estimator): if (not isinstance(estimator.objective, str)) or ( estimator.objective not in SUPPORTED_OBJ ): raise ValueError( "Objective function not supported; only {} are supported".format( SUPPORTED_OBJ ) ) else: self.objective = estimator.objective if estimator.booster not in SUPPORTED_BOOSTER: raise ValueError("Booster: '{}' not supported".format(estimator.booster)) else: self.booster = estimator.booster self.classes_ = estimator.classes_.tolist() self.n_classes_ = estimator.n_classes_ self.n_estimators = estimator.n_estimators self.estimators_ = self._build_estimators(estimator) check_types(self) def _build_estimators(self, estimator): """Convert booster to list of pure decision tree regressors""" if not hasattr(estimator.get_booster(), "trees_to_dataframe"): raise Exception( "This xgboost estimator was likely fitted with version < {} " "which is not supported".format(MIN_VERSION) ) tree_df = estimator.get_booster().trees_to_dataframe() estimators_ = [] idx = 0 for est_id in range(self.n_estimators): if self.n_classes_ == 2: tree = tree_df[tree_df["Tree"] == idx].to_dict(orient="list") est_row_ = DecisionTreeRegressorPure(tree) idx += 1 else: est_row_ = [] for cls_id in range(self.n_classes_): tree = tree_df[tree_df["Tree"] == idx].to_dict(orient="list") est_row_.append(DecisionTreeRegressorPure(tree)) idx += 1 estimators_.append(est_row_) return estimators_ def _predict(self, X): """Raw sums of estimator predictions for each class for multi-class""" preds = [] for cls_index in range(self.n_classes_): cls_sum = [0] * len(X) for est_index in range(self.n_estimators): est_preds = self.estimators_[est_index][cls_index].predict(X) cls_sum = list(map(lambda x, y: x + y, cls_sum, est_preds)) preds.append(cls_sum) return preds def _predict_binary(self, X): """Raw sums of estimator predictions for each class for binary""" preds = [0] * len(X) for estimator in self.estimators_: preds = list(map(lambda x, y: x + y, preds, estimator.predict(X))) return preds def predict(self, X): proba = self.predict_proba(X) return [self.classes_[a.index(max(a))] for a in proba] def predict_proba(self, X): X = check_array(X) if self.objective == "multi:softprob": preds = self._predict(X) out = [] for i in range(len(X)): out.append(sfmax([preds[j][i] for j in range(self.n_classes_)])) elif self.objective == "binary:logistic": preds = self._predict_binary(X) out = list(map(expit, preds)) out = list(map(lambda x: [1 - x, x], out)) else: raise ValueError( "Objective function not supported; only {} are supported".format( SUPPORTED_OBJ ) ) return out
/scikit-endpoint-0.0.3.tar.gz/scikit-endpoint-0.0.3/scikit_endpoint/xgboost/_classes.py
0.685002
0.384392
_classes.py
pypi
import warnings from math import isnan from ..base import safe_log from ..utils import check_array, check_types, check_version class _DecisionTreeBase: """Decision tree base class""" def __init__(self, estimator): if isinstance(estimator, dict): # sourced from xgboost booster object tree dictionary self.threshold_ = list( map(lambda x: -2 if isnan(x) else x, estimator["Split"]) ) self.value_ = [[a] for a in estimator["Gain"]] self.children_left_ = list( map( lambda x: -1 if not isinstance(x, str) else int(x.split("-")[-1]), estimator["Yes"], ) ) self.children_right_ = list( map( lambda x: -1 if not isinstance(x, str) else int(x.split("-")[-1]), estimator["No"], ) ) self.feature_ = list( map( lambda x: -2 if x == "Leaf" else int(x.replace("f", "")[-1]), estimator["Feature"], ) ) else: # sourced from sklearn decision tree check_version(estimator) self.children_left_ = estimator.tree_.children_left.tolist() self.children_right_ = estimator.tree_.children_right.tolist() self.feature_ = estimator.tree_.feature.tolist() self.threshold_ = estimator.tree_.threshold.tolist() self.value_ = [a[0] for a in estimator.tree_.value.tolist()] with warnings.catch_warnings(): warnings.simplefilter("ignore") if hasattr(estimator, "classes_") and (estimator.classes_ is not None): self.classes_ = estimator.classes_.tolist() else: self.classes_ = [0, 1] check_types(self) def _get_leaf_node(self, x): if isinstance(x, dict): left_equal = lambda nd: x.get(self.feature_[nd], 0.0) else: left_equal = lambda nd: x[self.feature_[nd]] found_node = False node_id = 0 while not found_node: if self.children_left_[node_id] == self.children_right_[node_id]: found_node = True else: if left_equal(node_id) <= self.threshold_[node_id]: node_id = self.children_left_[node_id] else: node_id = self.children_right_[node_id] return node_id class DecisionTreeClassifierPure(_DecisionTreeBase): """ Pure python implementation of `DecisionTreeClassifier`. Args: estimator (sklearn estimator): fitted `DecisionTreeClassifier` object """ def _get_pred_from_leaf_node(self, node_id): return self.value_[node_id].index(max(self.value_[node_id])) def _get_proba_from_leaf_node(self, node_id): return [a / sum(self.value_[node_id]) for a in self.value_[node_id]] def predict(self, X): X = check_array(X, handle_sparse="allow") leaves = [self._get_leaf_node(x) for x in X] preds = [self._get_pred_from_leaf_node(x) for x in leaves] return [self.classes_[x] for x in preds] def predict_proba(self, X): X = check_array(X, handle_sparse="allow") leaves = [self._get_leaf_node(x) for x in X] return [self._get_proba_from_leaf_node(x) for x in leaves] def predict_log_proba(self, X): return [list(map(safe_log, x)) for x in self.predict_proba(X)] class DecisionTreeRegressorPure(_DecisionTreeBase): """ Pure python implementation of `DecisionTreeRegressor`. Args: estimator (sklearn estimator): fitted `DecisionTreeRegressor` object """ def _get_pred_from_leaf_node(self, node_id): return self.value_[node_id][0] def predict(self, X): X = check_array(X, handle_sparse="allow") leaves = [self._get_leaf_node(x) for x in X] return [self._get_pred_from_leaf_node(x) for x in leaves] class ExtraTreeClassifierPure(DecisionTreeClassifierPure): """ Pure python implementation of `ExtraTreeClassifier`. Args: estimator (sklearn estimator): fitted `ExtraTreeClassifier` object """ pass class ExtraTreeRegressorPure(DecisionTreeRegressorPure): """ Pure python implementation of `ExtraTreeRegressor`. Args: estimator (sklearn estimator): fitted `ExtraTreeRegressor` object """ pass
/scikit-endpoint-0.0.3.tar.gz/scikit-endpoint-0.0.3/scikit_endpoint/tree/_classes.py
0.795142
0.333313
_classes.py
pypi
from ..base import transpose, apply_axis_2d, apply_2d, safe_exp, safe_log, ravel, expit from ..utils import check_types, shape EPS = 1.1920929e-07 def _clip(a, a_min, a_max): if a < a_min: return a_min elif a > a_max: return a_max else: return a class _MultinomialDeviancePure: """Multinomial deviance loss function for multi-class classification""" is_multi_class = True def __init__(self, n_classes): if n_classes < 3: raise ValueError( "{0:s} requires more than 2 classes.".format(self.__class__.__name__) ) self.n_classes_ = n_classes check_types(self) def _raw_prediction_to_proba(self, raw_predictions): logsumexp = list( map(safe_log, apply_axis_2d(apply_2d(raw_predictions, safe_exp), sum)) ) return [ [ safe_exp(raw_predictions[index][i] - logsumexp[index]) for i in range(self.n_classes_) ] for index in range(len(raw_predictions)) ] def _raw_prediction_to_decision(self, raw_predictions): proba = self._raw_prediction_to_proba(raw_predictions) return [a.index(max(a)) for a in proba] def get_init_raw_predictions(self, X, estimator): probas = estimator.predict_proba(X) func = lambda x: safe_log(_clip(x, EPS, 1 - EPS)) return apply_2d(probas, func) class _BinomialDeviancePure: """Binomial deviance loss function for binary classification""" def __init__(self, n_classes): if n_classes != 2: raise ValueError( "{0:s} requires 2 classes; got {1:d} class(es)".format( self.__class__.__name__, n_classes ) ) check_types(self) def _raw_prediction_to_proba(self, raw_predictions): proba = ( ravel(raw_predictions) if shape(raw_predictions)[1] == 1 else raw_predictions ) proba_1 = list(map(expit, proba)) proba = [[(1 - x) for x in proba_1], proba_1] return transpose(proba) def _raw_prediction_to_decision(self, raw_predictions): proba = self._raw_prediction_to_proba(raw_predictions) return [a.index(max(a)) for a in proba] def get_init_raw_predictions(self, X, estimator): probas = estimator.predict_proba(X) func = lambda x: _clip(x, EPS, 1 - EPS) proba_pos_class = [func(a[1]) for a in probas] log_func = lambda x: safe_log(x / (1 - x)) return [[log_func(a)] for a in proba_pos_class] class _ExponentialLossPure: """Exponential loss function for binary classification""" def __init__(self, n_classes): if n_classes != 2: raise ValueError( "{0:s} requires 2 classes; got {1:d} class(es)".format( self.__class__.__name__, n_classes ) ) check_types(self) def _raw_prediction_to_proba(self, raw_predictions): proba = ( ravel(raw_predictions) if shape(raw_predictions)[1] == 1 else raw_predictions ) func = lambda x: expit(x) * 2.0 proba_1 = list(map(func, proba)) proba = [[(1 - x) for x in proba_1], proba_1] return transpose(proba) def _raw_prediction_to_decision(self, raw_predictions): raw_predictions = ( ravel(raw_predictions) if shape(raw_predictions)[1] == 1 else raw_predictions ) return [int(a >= 0) for a in raw_predictions] def get_init_raw_predictions(self, X, estimator): probas = estimator.predict_proba(X) func = lambda x: _clip(x, EPS, 1 - EPS) proba_pos_class = [func(a[1]) for a in probas] log_func = lambda x: 0.5 * safe_log(x / (1 - x)) return [[log_func(a)] for a in proba_pos_class]
/scikit-endpoint-0.0.3.tar.gz/scikit-endpoint-0.0.3/scikit_endpoint/ensemble/_gb_losses.py
0.618665
0.504089
_gb_losses.py
pypi
from operator import add from ._gb_losses import ( _MultinomialDeviancePure, _BinomialDeviancePure, _ExponentialLossPure, ) from ..base import transpose, apply_2d, safe_log, operate_2d from ..utils import check_version, check_types, check_array, shape from ..map import convert_estimator class GradientBoostingClassifierPure: """ Pure python implementation of `GradientBoostingClassifier`. Args: estimator (sklearn estimator): fitted `GradientBoostingClassifier` object """ def __init__(self, estimator): check_version(estimator, "0.21.0") self.classes_ = estimator.classes_.tolist() self.estimators_ = [] for est_arr in estimator.estimators_: est_arr_ = [] for est in est_arr: est_ = convert_estimator(est) est_arr_.append(est_) self.estimators_.append(est_arr_) if hasattr(estimator, "init_"): self.init_ = convert_estimator(estimator.init_) self.loss = estimator.loss self.learning_rate = estimator.learning_rate self.n_features_ = estimator.n_features_in_ if self.loss == "deviance": self.loss_ = ( _MultinomialDeviancePure(len(self.classes_)) if len(self.classes_) > 2 else _BinomialDeviancePure(len(self.classes_)) ) elif self.loss == "exponential": self.loss_ = _ExponentialLossPure(len(self.classes_)) else: raise ValueError("Loss: '{}' not supported.".format(self.loss)) check_types(self) def _raw_predict_init(self, X): """Check input and compute raw predictions of the init estimator""" X = check_array(X) if shape(X)[1] != self.n_features_: raise ValueError( "X.shape[1] should be {0:d}, not {1:d}.".format( self.n_features_, shape(X)[1] ) ) if self.init_ == "zero": raw_predictions = [[0.0] * shape(X)[1]] * shape(X)[0] else: raw_predictions = self.loss_.get_init_raw_predictions(X, self.init_) return raw_predictions def _raw_predict(self, X): init_preds = self._raw_predict_init(X) out = [] for k in range(len(self.estimators_[0])): column = [0] * (shape(X)[0]) for index in range(len(self.estimators_)): preds = self.estimators_[index][k].predict(X) column = [ column[i] + (preds[i] * self.learning_rate) for i in range(len(preds)) ] out.append(column) out = transpose(out) return operate_2d(init_preds, out, add) def predict_proba(self, X): raw_predictions = self._raw_predict(X) return self.loss_._raw_prediction_to_proba(raw_predictions) def predict_log_proba(self, X): return apply_2d(self.predict_proba(X), safe_log) def predict(self, X): proba = self.predict_proba(X) return [self.classes_[a.index(max(a))] for a in proba]
/scikit-endpoint-0.0.3.tar.gz/scikit-endpoint-0.0.3/scikit_endpoint/ensemble/_gb.py
0.865991
0.385519
_gb.py
pypi
from math import isnan from ..utils import shape, check_array, check_types, check_version from ..base import apply_2d, apply_axis_2d def _to_impute(val, missing_values): if isnan(missing_values): return isnan(val) else: return val == missing_values class MissingIndicatorPure: """ Pure python implementation of `MissingIndicator`. Args: estimator (sklearn estimator): fitted `MissingIndicator` object """ def __init__(self, estimator): check_version(estimator) self.features = estimator.features self.features_ = estimator.features_.tolist() self._n_features = estimator._n_features self.missing_values = ( float(estimator.missing_values) if isinstance(estimator.missing_values, float) else estimator.missing_values ) self.error_on_new = estimator.error_on_new check_types(self) def transform(self, X): X = check_array(X) if shape(X)[1] != self._n_features: raise ValueError( "X has a different number of features than during fitting." ) imputer_mask, features = self._get_missing_features_info(X) if self.features == "missing-only": features_diff_fit_trans = set(features) - set(self.features_) if self.error_on_new and len(features_diff_fit_trans) > 0: raise ValueError( "The features {} have missing values " "in transform but have no missing values " "in fit.".format(features_diff_fit_trans) ) if len(self.features_) < self._n_features: imputer_mask = [ [float(a[i]) for i in range(len(a)) if i in self.features_] for a in imputer_mask ] return imputer_mask def _get_missing_features_info(self, X): func = lambda x: _to_impute(x, self.missing_values) imputer_mask = apply_2d(X, func) if self.features == "missing-only": n_missing = apply_axis_2d(imputer_mask, sum, axis=0) if self.features == "all": features_indices = range(shape(X)[1]) else: features_indices = [a for a in n_missing if a != 0] return imputer_mask, features_indices class SimpleImputerPure: """ Pure python implementation of `SimpleImputer`. Args: estimator (sklearn estimator): fitted `SimpleImputer` object """ def __init__(self, estimator): check_version(estimator) self.statistics_ = estimator.statistics_.tolist() self.strategy = estimator.strategy if hasattr(estimator, "add_indicator"): self.add_indicator = estimator.add_indicator else: self.add_indicator = False self.missing_values = ( float(estimator.missing_values) if isinstance(estimator.missing_values, float) else estimator.missing_values ) if hasattr(estimator, "indicator_") and (estimator.indicator_ is not None): self.indicator_ = MissingIndicatorPure(estimator.indicator_) self.indicator_.error_on_new = False check_types(self) def _concatenate_indicator(self, X_imputed, X_indicator): """Concatenate indicator mask with the imputed data""" if not self.add_indicator: return X_imputed if X_indicator is None: raise ValueError( "Data from the missing indicator are not provided. Call " "_fit_indicator and _transform_indicator in the imputer " "implementation." ) return [ X_imputed[index] + X_indicator[index] for index in range(len(X_imputed)) ] def _transform_indicator(self, X): """ Compute the indicator mask. Note that X must be the original data as passed to the imputer before any imputation, since imputation may be done inplace in some cases. """ if self.add_indicator: if not hasattr(self, "indicator_"): raise ValueError( "Make sure to call _fit_indicator before _transform_indicator" ) return self.indicator_.transform(X) def transform(self, X): """Transform inpute X by imputing values""" X = check_array(X) X_indicator = self._transform_indicator(X) if shape(X)[1] != shape(self.statistics_)[0]: raise ValueError( "X has %d features per sample, expected %d" % (shape(X)[1], shape(self.statistics_)[0]) ) # delete the invalid columns if strategy is not constant if self.strategy == "constant": valid_statistics = self.statistics_ else: to_remove = [ index for index in range(len(self.statistics_)) if isnan(self.statistics_[index]) ] if len(to_remove) > 0: X = [[a[i] for i in range(len(a)) if i not in to_remove] for a in X] valid_statistics = [ self.statistics_[i] for i in range(len(self.statistics_)) if i not in to_remove ] else: valid_statistics = self.statistics_ func = ( lambda a, i: a[i] if not _to_impute(a[i], self.missing_values) else valid_statistics[i] ) X_imputed = [[func(a, i) for i in range(len(a))] for a in X] return self._concatenate_indicator(X_imputed, X_indicator)
/scikit-endpoint-0.0.3.tar.gz/scikit-endpoint-0.0.3/scikit_endpoint/impute/_base.py
0.829492
0.471223
_base.py
pypi
<p> <img src="https://github.com/monte-flora/scikit-explain/blob/master/images/mintpy_logo.png?raw=true" align="right" width="400" height="400" /> </p> ![Unit Tests](https://github.com/monte-flora/scikit-explain/actions/workflows/continuous_intergration.yml/badge.svg) [![codecov](https://codecov.io/gh/monte-flora/s/branch/master/graph/badge.svg?token=GG9NRQOZ0N)](https://codecov.io/gh/monte-flora/scikit-explain) [![Updates](https://pyup.io/repos/github/monte-flora/scikit-explain/shield.svg)](https://pyup.io/repos/github/monte-flora/scikit-explain/) [![Python 3](https://pyup.io/repos/github/monte-flora/scikit-explain/python-3-shield.svg)](https://pyup.io/repos/github/monte-flora/scikit-explain/) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) ![PyPI](https://img.shields.io/pypi/v/scikit-explain) [![Documentation Status](https://readthedocs.org/projects/scikit-explain/badge/?version=latest)](https://scikit-explain.readthedocs.io/en/latest/?badge=latest) scikit-explain is a user-friendly Python module for tabular-style machine learning explainability. Current explainability products includes * Feature importance: * [Single- and Multi-pass Permutation Importance](https://permutationimportance.readthedocs.io/en/latest/methods.html#permutation-importance) ([Brieman et al. 2001](https://link.springer.com/article/10.1023/A:1010933404324)], [Lakshmanan et al. 2015](https://journals.ametsoc.org/view/journals/atot/32/6/jtech-d-13-00205_1.xml?rskey=hlSyXu&result=2)) * [SHAP](https://christophm.github.io/interpretable-ml-book/shap.html) * First-order PD/ALE Variance ([Greenwell et al. 2018](https://arxiv.org/abs/1805.04755)) * Grouped permutation importance ([Au et al. 2021](https://arxiv.org/abs/2104.11688)) * Feature Effects/Attributions: * [Partial Dependence](https://christophm.github.io/interpretable-ml-book/pdp.html) (PD), * [Accumulated local effects](https://christophm.github.io/interpretable-ml-book/ale.html) (ALE), * Random forest-based feature contributions ([treeinterpreter](http://blog.datadive.net/interpreting-random-forests/)) * [SHAP](https://christophm.github.io/interpretable-ml-book/shap.html) * [LIME](https://christophm.github.io/interpretable-ml-book/lime.html#lime) * Main Effect Complexity (MEC; [Molnar et al. 2019](https://arxiv.org/abs/1904.03867)) * Feature Interactions: * Second-order PD/ALE * Interaction Strength and Main Effect Complexity (IAS; [Molnar et al. 2019](https://arxiv.org/abs/1904.03867)) * Second-order PD/ALE Variance ([Greenwell et al. 2018](https://arxiv.org/abs/1805.04755)) * Second-order Permutation Importance ([Oh et al. 2019](https://www.mdpi.com/2076-3417/9/23/5191)) * Friedman H-statistic ([Friedman and Popescu 2008](https://projecteuclid.org/journals/annals-of-applied-statistics/volume-2/issue-3/Predictive-learning-via-rule-ensembles/10.1214/07-AOAS148.full)) These explainability methods are discussed at length in Christoph Molnar's [Interpretable Machine Learning](https://christophm.github.io/interpretable-ml-book/). The primary feature of this package is the accompanying built-in plotting methods, which are desgined to be easy to use while producing publication-level quality figures. The computations do leverage parallelization when possible. Documentation for scikit-explain can be found at [Read the Docs](https://scikit-explain.readthedocs.io/en/latest/index.html#). The package is under active development and will likely contain bugs or errors. Feel free to raise issues! This package is largely original code, but also includes snippets or chunks of code from preexisting packages. Our goal is not take credit from other code authors, but to make a single source for computing several machine learning explanation methods. Here is a list of packages used in scikit-explain: [**PyALE**](https://github.com/DanaJomar/PyALE), [**PermutationImportance**](https://github.com/gelijergensen/PermutationImportance), [**ALEPython**](https://github.com/blent-ai/ALEPython), [**SHAP**](https://github.com/slundberg/shap/), [**scikit-learn**](https://github.com/scikit-learn/scikit-learn), [**LIME**](https://github.com/marcotcr/lime), [**Faster-LIME**](https://github.com/seansaito/Faster-LIME), [**treeinterpreter**](https://github.com/andosa/treeinterpreter) If you employ scikit-explain in your research, please cite this github and the relevant packages listed above. If you are experiencing issues with loading the tutorial jupyter notebooks, you can enter the URL/location of the notebooks into the following address: https://nbviewer.jupyter.org/. ## Install scikit-explain can be installed through conda-forge or pip. ``` conda install -c conda-forge scikit-explain pip install scikit-explain ``` ## Dependencies scikit-explain is compatible with Python 3.8 or newer. scikit-explain requires the following packages: ``` numpy scipy pandas scikit-learn matplotlib shap>=0.30.0 xarray>=0.16.0 tqdm statsmodels seaborn>=0.11.0 ``` Scikit-explain has built-in saving and loading function for pandas dataframes and xarray datasets. Datasets are saved in netCDF4 format. To use this feature, install netCDF4 with one of the following: `pip install netCDF4` or `conda install -c conda-forge netCDF4` ### Initializing scikit-explain The interface of scikit-explain is ```ExplainToolkit```, which houses all of the explainability methods and their corresponding plotting methods. See the tutorial notebooks for examples. ```python import skexplain # Loads three ML models (random forest, gradient-boosted tree, and logistic regression) # trained on a subset of the road surface temperature data from Handler et al. (2020). estimators = skexplain.load_models() X,y = skexplain.load_data() explainer = skexplain.ExplainToolkit(estimators=estimators,X=X,y=y,) ``` ## Permutation Importance scikit-explain includes both single-pass and multiple-pass permutation importance method ([Brieman et al. 2001](https://link.springer.com/article/10.1023/A:1010933404324)], [Lakshmanan et al. 2015](https://journals.ametsoc.org/view/journals/atot/32/6/jtech-d-13-00205_1.xml?rskey=hlSyXu&result=2), [McGovern et al. 2019](https://journals.ametsoc.org/view/journals/bams/100/11/bams-d-18-0195.1.xml?rskey=TvAHl8&result=20)). The permutation direction can also be given (i.e., backward or forward). Users can also specify feature groups and compute the grouped permutation feature importance ([Au et al. 2021](https://arxiv.org/abs/2104.11688)). Scikit-explain has a function that allows for any feature ranking to be converted into a format for using the plotting package (skexplain.common.importance_utils.to_skexplain_importance). In the [tutorial](https://github.com/monte-flora/scikit-explain/blob/master/tutorial_notebooks/permutation_importance_tutorial.ipynb), users have flexibility for making publication-quality figures. ```python perm_results = explainer.permutation_importance(n_vars=10, evaluation_fn='auc') explainer.plot_importance(data=perm_results) ``` <p align="center"> <img width="811" src="https://github.com/monte-flora/scikit-explain/blob/master/images/multi_pass_perm_imp.png?raw=true" /> </p> Sample notebook can be found here: [**Permutation Importance**](https://github.com/monte-flora/scikit-explain/blob/master/tutorial_notebooks/permutation_importance_tutorial.ipynb) ## Partial dependence and Accumulated Local Effects To compute the expected functional relationship between a feature and an ML model's prediction, scikit-explain has partial dependence, accumulated local effects, or SHAP dependence. There is also an option for second-order interaction effects. For the choice of feature, you can manually select or can run the permutation importance and a built-in method will retrieve those features. It is also possible to configure the plot for readable feature names. ```python # Assumes the .permutation_importance has already been run. important_vars = explainer.get_important_vars(results, multipass=True, nvars=7) ale = explainer.ale(features=important_vars, n_bins=20) explainer.plot_ale(ale) ``` <p align="center"> <img width="811" src="https://github.com/monte-flora/scikit-explain/blob/master/images/ale_1d.png?raw=true" /> </p> Additionally, you can use the same code snippet to compute the second-order ALE (see the notebook for more details). <p align="center"> <img width="811" src="https://github.com/monte-flora/scikit-explain/blob/master/images/ale_2d.png?raw=true" /> </p> Sample notebook can be found here: - [**Accumulated Local effects**](https://github.com/monte-flora/skexplain/blob/master/tutorial_notebooks/accumulated_local_effect_tutorial.ipynb) - [**Partial Dependence**](https://github.com/monte-flora/scikit-explain/blob/master/tutorial_notebooks/partial_dependence_tutorial.ipynb) ## Feature Attributions (Local Explainability) To explain individual examples (or set of examples), scikit-explain has model-agnostic methods like SHAP and LIME and model-specific methods like tree interpreter (for decision tree-based model from scikit-learn). For SHAP, scikit-explain uses the shap.Explainer method, which automatically determines the most appropriate Shapley value algorithm ([see their docs](https://shap.readthedocs.io/en/latest/generated/shap.Explainer.html)). For LIME, scikit-explain uses the code from the Faster-LIME method. scikit-explain can create the summary and dependence plots from the shap python package, but is adapted for multiple features and an easier user interface. It is also possible to plot attributions for a single example or summarized by model performance. ```python import shap single_example = examples.iloc[[0]] explainer = skexplain.ExplainToolkit(estimators=estimators[0], X=single_example,) # For the LIME, we must provide the training dataset. We also denote any categorical features. lime_kws = {'training_data' : X.values, 'categorical_names' : ['rural', 'urban']} # The masker handles the missing features. In this case, we are using correlations # in the dataset to determine the feature groupings. These groups of features are remove or added into # sets together. shap_kws={'masker' : shap.maskers.Partition(X, max_samples=100, clustering="correlation"), 'algorithm' : 'permutation'} # method can be a single str or list of strs. attr_results = explainer.local_attributions(method=['shap', 'lime', 'tree_interpreter'], shap_kws=shap_kws, lime_kws=lime_kws) fig = explainer.plot_contributions(results) ``` <p align="center"> <img width="811" src="https://github.com/monte-flora/scikit-explain/blob/master/images/feature_contribution_single.png?raw=true" /> </p> ```python explainer = skexplain.ExplainToolkit(estimators=estimators[0],X=X, y=y) # average_attributions is used to average feature attributions and their feature values either using a simple mean or the mean based on model performance. avg_attr_results = explainer.average_attributions(method='shap', shap_kwargs=shap_kwargs, performance_based=True,) fig = myInterpreter.plot_contributions(avg_attr_results) ``` <p align="center"> <img width="811" src="https://github.com/monte-flora/scikit-explain/blob/master/images/feature_contributions_perform.png?raw=true" /> </p> ```python explainer = skexplain.ExplainToolkit(estimators=estimators[0],X=X, y=y) attr_results = explainer.local_attributions(method='lime', lime_kws=lime_kws) explainer.scatter_plot(plot_type = 'summary', dataset=attr_results) ``` <p align="center"> <img width="811" src="https://github.com/monte-flora/scikit-explain/blob/master/images/shap_dependence.png?raw=true" /> </p> ```python from skexplain.common import plotting_config features = ['tmp2m_hrs_bl_frez', 'sat_irbt', 'sfcT_hrs_ab_frez', 'tmp2m_hrs_ab_frez', 'd_rad_d'] explainer.scatter_plot(features=features, plot_type = 'dependence', dataset=dataset, display_feature_names=plotting_config.display_feature_names, display_units = plotting_config.display_units, to_probability=True) ``` <p align="center"> <img width="811" src="https://github.com/monte-flora/scikit-explain/blob/master/images/shap_summary.png?raw=true" /> </p> Sample notebook can be found here: - [**Feature Contributions**](https://github.com/monte-flora/scikit-explain/blob/master/tutorial_notebooks/feature_contributions.ipynb) - [**Additional Feature Attributions Plots**](https://github.com/monte-flora/scikit-explain/blob/master/tutorial_notebooks/additional_feature_attribution_plots.ipynb) ## Tutorial notebooks The notebooks provides the package documentation and demonstrate scikit-explain API, which was used to create the above figures. If you are experiencing issues with loading the jupyter notebooks, you can enter the URL/location of the notebooks into the following address: https://nbviewer.jupyter.org/. - [**Permutation Importance**](https://github.com/monte-flora/scikit-explain/blob/master/tutorial_notebooks/permutation_importance_tutorial.ipynb) - [**Accumulated Local effects**](https://github.com/monte-flora/scikit-explain/blob/master/tutorial_notebooks/accumulated_local_effect_tutorial.ipynb) - [**Partial Dependence**](https://github.com/monte-flora/scikit-explain/blob/master/tutorial_notebooks/partial_dependence_tutorial.ipynb) - [**Feature Contributions**](https://github.com/monte-flora/scikit-explain/blob/master/tutorial_notebooks/feature_contributions.ipynb) - [**Additional Feature Attributions Plots**](https://github.com/monte-flora/scikit-explain/blob/master/tutorial_notebooks/additional_feature_attribution_plots.ipynb)
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/README.md
0.838845
0.944331
README.md
pypi
import numpy as np import sklearn from multiprocessing.pool import Pool from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier, _tree from distutils.version import LooseVersion from tqdm import tqdm if LooseVersion(sklearn.__version__) < LooseVersion("0.17"): raise Exception("treeinterpreter requires scikit-learn 0.17 or later") class TreeInterpreter: def __init__(self, model, examples, joint_contribution=False, n_jobs=1): """ Parameters ---------- model : DecisionTreeRegressor, DecisionTreeClassifier, ExtraTreeRegressor, ExtraTreeClassifier, RandomForestRegressor, RandomForestClassifier, ExtraTreesRegressor, ExtraTreesClassifier Scikit-learn model on which the prediction should be decomposed. X : array-like, shape = (n_samples, n_features) Test samples. joint_contribution : boolean Specifies if contributions are given individually from each feature, or jointly over them """ self._model = model self._examples = examples self._joint_contribution = joint_contribution self._n_jobs = n_jobs def _get_tree_paths(self, tree, node_id, depth=0): """ Returns all paths through the tree as list of node_ids """ if node_id == _tree.TREE_LEAF: raise ValueError("Invalid node_id %s" % _tree.TREE_LEAF) left_child = tree.children_left[node_id] right_child = tree.children_right[node_id] if left_child != _tree.TREE_LEAF: left_paths = self._get_tree_paths(tree, left_child, depth=depth + 1) right_paths = self._get_tree_paths(tree, right_child, depth=depth + 1) for path in left_paths: path.append(node_id) for path in right_paths: path.append(node_id) paths = left_paths + right_paths else: paths = [[node_id]] return paths def predict_tree(self, tree): """ For a given DecisionTreeRegressor, DecisionTreeClassifier, ExtraTreeRegressor, or ExtraTreeClassifier, returns a triple of [prediction, bias and feature_contributions], such that prediction ≈ bias + feature_contributions. """ leaves = tree.apply(self._examples) paths = self._get_tree_paths(tree.tree_, 0) for path in paths: path.reverse() leaf_to_path = {} # map leaves to paths for path in paths: leaf_to_path[path[-1]] = path # remove the single-dimensional inner arrays values = tree.tree_.value.squeeze(axis=1) # reshape if squeezed into a single float if len(values.shape) == 0: values = np.array([values]) if isinstance(tree, DecisionTreeRegressor): biases = np.full(self._examples.shape[0], values[paths[0][0]]) line_shape = self._examples.shape[1] elif isinstance(tree, DecisionTreeClassifier): # scikit stores category counts, we turn them into probabilities normalizer = values.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 values /= normalizer biases = np.tile(values[paths[0][0]], (self._examples.shape[0], 1)) line_shape = (self._examples.shape[1], tree.n_classes_) direct_prediction = values[leaves] # make into python list, accessing values will be faster values_list = list(values) feature_index = list(tree.tree_.feature) contributions = [] if self._joint_contribution: for row, leaf in enumerate(leaves): path = leaf_to_path[leaf] path_features = set() contributions.append({}) for i in range(len(path) - 1): path_features.add(feature_index[path[i]]) contrib = values_list[path[i + 1]] - values_list[path[i]] # path_features.sort() contributions[row][tuple(sorted(path_features))] = ( contributions[row].get(tuple(sorted(path_features)), 0) + contrib ) return direct_prediction, biases, contributions else: unique_leaves = np.unique(leaves) unique_contributions = {} for row, leaf in enumerate(unique_leaves): for path in paths: if leaf == path[-1]: break contribs = np.zeros(line_shape) for i in range(len(path) - 1): contrib = values_list[path[i + 1]] - values_list[path[i]] contribs[feature_index[path[i]]] += contrib unique_contributions[leaf] = contribs for row, leaf in enumerate(leaves): contributions.append(unique_contributions[leaf]) return direct_prediction, biases, np.array(contributions) def predict_forest(self): """ For a given RandomForestRegressor, RandomForestClassifier, ExtraTreesRegressor, or ExtraTreesClassifier returns a triple of [prediction, bias and feature_contributions], such that prediction ≈ bias + feature_contributions. """ biases = [] contributions = [] predictions = [] if self._joint_contribution: for tree in self._model.estimators_: pred, bias, contribution = self.predict_tree() biases.append(bias) contributions.append(contribution) predictions.append(pred) total_contributions = [] for i in range(len(self._examples)): contr = {} for j, dct in enumerate(contributions): for k in set(dct[i]).union(set(contr.keys())): contr[k] = (contr.get(k, 0) * j + dct[i].get(k, 0)) / (j + 1) total_contributions.append(contr) for i, item in enumerate(contribution): total_contributions[i] sm = sum([v for v in contribution[i].values()]) return ( np.mean(predictions, axis=0), np.mean(biases, axis=0), total_contributions, ) else: if self._n_jobs > 1: pool = Pool(processes=self._n_jobs) # iterates return values from the issued tasks iterator = self._model.estimators_ for pred, bias, contribution in tqdm(pool.map(self.predict_tree, iterator), desc='Tree'): biases.append(bias) contributions.append(contribution) predictions.append(pred) pool.close() pool.join() else: for tree in tqdm(self._model.estimators_, desc='Tree'): pred, bias, contribution = self.predict_tree(tree) biases.append(bias) contributions.append(contribution) predictions.append(pred) return ( np.mean(predictions, axis=0), np.mean(biases, axis=0), np.mean(contributions, axis=0), ) def predict(self): """Returns a triple (prediction, bias, feature_contributions), such that prediction ≈ bias + feature_contributions. Returns ------- decomposed prediction : triple of * prediction, shape = (n_samples) for regression and (n_samples, n_classes) for classification * bias, shape = (n_samples) for regression and (n_samples, n_classes) for classification * contributions, If joint_contribution is False then returns and array of shape = (n_samples, n_features) for regression or shape = (n_samples, n_features, n_classes) for classification, denoting contribution from each feature. If joint_contribution is True, then shape is array of size n_samples, where each array element is a dict from a tuple of feature indices to to a value denoting the contribution from that feature tuple. """ # Only single out response variable supported, if self._model.n_outputs_ > 1: raise ValueError("Multilabel classification trees not supported") if isinstance(self._model, DecisionTreeClassifier) or isinstance( self._model, DecisionTreeRegressor ): return self.predict_tree() elif isinstance(self._model, RandomForestClassifier) or isinstance( self._model, RandomForestRegressor ): return self.predict_forest() else: raise ValueError( "Wrong model type. Base learner needs to be a " "DecisionTreeClassifier or DecisionTreeRegressor." )
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/main/tree_interpreter.py
0.817793
0.402216
tree_interpreter.py
pypi
import numpy as np from .error_handling import InvalidStrategyException __all__ = [ "verify_scoring_strategy", "VALID_SCORING_STRATEGIES", "argmin_of_mean", "argmax_of_mean", "indexer_of_converter", ] def verify_scoring_strategy(scoring_strategy): """Asserts that the scoring strategy is valid and interprets various strings :param scoring_strategy: a function to be used for determining optimal variables or a string. If a function, should be of the form ``([some value]) -> index``. If a string, must be one of the options in ``VALID_SCORING_STRATEGIES`` :returns: a function to be used for determining optimal variables """ if callable(scoring_strategy): return scoring_strategy elif scoring_strategy in VALID_SCORING_STRATEGIES: return VALID_SCORING_STRATEGIES[scoring_strategy] else: raise InvalidStrategyException( scoring_strategy, options=list(VALID_SCORING_STRATEGIES.keys()) ) class indexer_of_converter(object): """This object is designed to help construct a scoring strategy by breaking the process of determining an optimal score into two pieces: First, each of the scores are converted to a simpler representation. For instance, an array of scores resulting from a bootstrapped evaluation method may be converted to just their mean. Second, each of the simpler representations are compared to determine the index of the one which is most optimal. This is typically just an ``argmin`` or ``argmax`` call. """ def __init__(self, indexer, converter): """Constructs a function which first converts all objects in a list to something simpler and then uses the indexer to determine the index of the most "optimal" one :param indexer: a function which converts a list of probably simply values (like numbers) to a single index :param converter: a function which converts a single more complex object to a simpler one (like a single number) """ self.indexer = indexer self.converter = converter def __call__(self, scores): """Finds the index of the most "optimal" score in a list""" return self.indexer([self.converter(score) for score in scores]) argmin_of_mean = indexer_of_converter(np.argmin, np.mean) argmax_of_mean = indexer_of_converter(np.argmax, np.mean) VALID_SCORING_STRATEGIES = { "max": argmax_of_mean, "maximize": argmax_of_mean, "argmax": np.argmax, "min": argmin_of_mean, "minimize": argmin_of_mean, "argmin": np.argmin, "argmin_of_mean": argmin_of_mean, "argmax_of_mean": argmax_of_mean, }
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/main/PermutationImportance/scoring_strategies.py
0.827793
0.480418
scoring_strategies.py
pypi
from .abstract_runner import abstract_variable_importance from .selection_strategies import ( SequentialForwardSelectionStrategy, SequentialBackwardSelectionStrategy, ) from .sklearn_api import ( score_untrained_sklearn_model, score_untrained_sklearn_model_with_probabilities, ) __all__ = [ "sequential_forward_selection", "sklearn_sequential_forward_selection", "sequential_backward_selection", "sklearn_sequential_backward_selection", ] def sequential_forward_selection( training_data, scoring_data, scoring_fn, scoring_strategy, variable_names=None, nimportant_vars=None, njobs=1, ): """Performs sequential forward selection over data given a particular set of functions for scoring and determining optimal variables :param training_data: a 2-tuple ``(inputs, outputs)`` for training in the ``scoring_fn`` :param scoring_data: a 2-tuple ``(inputs, outputs)`` for scoring in the ``scoring_fn`` :param scoring_fn: a function to be used for scoring. Should be of the form ``(training_data, scoring_data) -> some_value`` :param scoring_strategy: a function to be used for determining optimal variables. Should be of the form ``([some_value]) -> index`` :param variable_names: an optional list for variable names. If not given, will use names of columns of data (if pandas dataframe) or column indices :param nimportant_vars: number of variables to compute importance for. Defaults to all variables :param njobs: an integer for the number of threads to use. If negative, will use ``num_cpus + njobs``. Defaults to 1 :returns: :class:`PermutationImportance.result.ImportanceResult` object which contains the results for each run """ return abstract_variable_importance( training_data, scoring_data, scoring_fn, scoring_strategy, SequentialForwardSelectionStrategy, variable_names=variable_names, nimportant_vars=nimportant_vars, njobs=njobs, ) def sklearn_sequential_forward_selection( model, training_data, scoring_data, evaluation_fn, scoring_strategy, variable_names=None, nimportant_vars=None, njobs=1, nbootstrap=None, subsample=1, **kwargs ): """Performs sequential forward selection for a particular model, ``scoring_data``, ``evaluation_fn``, and strategy for determining optimal variables :param model: a sklearn model :param training_data: a 2-tuple ``(inputs, outputs)`` for training in the ``scoring_fn`` :param scoring_data: a 2-tuple ``(inputs, outputs)`` for scoring in the ``scoring_fn`` :param evaluation_fn: a function which takes the deterministic or probabilistic model predictions and scores them against the true values. Must be of the form ``(truths, predictions) -> some_value`` Probably one of the metrics in :mod:`PermutationImportance.metrics` or `sklearn.metrics <https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics>`_ :param scoring_strategy: a function to be used for determining optimal variables. Should be of the form ``([some_value]) -> index`` :param variable_names: an optional list for variable names. If not given, will use names of columns of data (if pandas dataframe) or column indices :param nimportant_vars: number of variables to compute importance for. Defaults to all variables :param njobs: an integer for the number of threads to use. If negative, will use ``num_cpus + njobs``. Defaults to 1 :param nbootstrap: number of times to perform scoring on each variable. Results over different bootstrap iterations are averaged. Defaults to 1 :param subsample: number of elements to sample (with replacement) per bootstrap round. If between 0 and 1, treated as a fraction of the number of total number of events (e.g. 0.5 means half the number of events). If not specified, subsampling will not be used and the entire data will be used (without replacement) :param kwargs: all other kwargs will be passed on to the ``evaluation_fn`` :returns: :class:`PermutationImportance.result.ImportanceResult` object which contains the results for each run """ # Check if the data is probabilistic if len(scoring_data[1].shape) > 1 and scoring_data[1].shape[1] > 1: scoring_fn = score_untrained_sklearn_model_with_probabilities( model, evaluation_fn, nbootstrap=nbootstrap, subsample=subsample, **kwargs ) else: scoring_fn = score_untrained_sklearn_model( model, evaluation_fn, nbootstrap=nbootstrap, subsample=subsample, **kwargs ) return sequential_forward_selection( training_data, scoring_data, scoring_fn, scoring_strategy, variable_names=variable_names, nimportant_vars=nimportant_vars, njobs=njobs, ) def sequential_backward_selection( training_data, scoring_data, scoring_fn, scoring_strategy, variable_names=None, nimportant_vars=None, njobs=1, ): """Performs sequential backward selection over data given a particular set of functions for scoring and determining optimal variables :param training_data: a 2-tuple ``(inputs, outputs)`` for training in the ``scoring_fn`` :param scoring_data: a 2-tuple ``(inputs, outputs)`` for scoring in the ``scoring_fn`` :param scoring_fn: a function to be used for scoring. Should be of the form ``(training_data, scoring_data) -> some_value`` :param scoring_strategy: a function to be used for determining optimal variables. Should be of the form ``([some_value]) -> index`` :param variable_names: an optional list for variable names. If not given, will use names of columns of data (if pandas dataframe) or column indices :param nimportant_vars: number of variables to compute importance for. Defaults to all variables :param njobs: an integer for the number of threads to use. If negative, will use ``num_cpus + njobs``. Defaults to 1 :returns: :class:`PermutationImportance.result.ImportanceResult` object which contains the results for each run """ return abstract_variable_importance( training_data, scoring_data, scoring_fn, scoring_strategy, SequentialBackwardSelectionStrategy, variable_names=variable_names, nimportant_vars=nimportant_vars, njobs=njobs, ) def sklearn_sequential_backward_selection( model, training_data, scoring_data, evaluation_fn, scoring_strategy, variable_names=None, nimportant_vars=None, njobs=1, nbootstrap=None, subsample=1, **kwargs ): """Performs sequential backward selection for a particular model, ``scoring_data``, ``evaluation_fn``, and strategy for determining optimal variables :param model: a sklearn model :param training_data: a 2-tuple ``(inputs, outputs)`` for training in the ``scoring_fn`` :param scoring_data: a 2-tuple ``(inputs, outputs)`` for scoring in the ``scoring_fn`` :param evaluation_fn: a function which takes the deterministic or probabilistic model predictions and scores them against the true values. Must be of the form ``(truths, predictions) -> some_value`` Probably one of the metrics in :mod:`PermutationImportance.metrics` or `sklearn.metrics <https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics>`_ :param scoring_strategy: a function to be used for determining optimal variables. Should be of the form ``([some_value]) -> index`` :param variable_names: an optional list for variable names. If not given, will use names of columns of data (if pandas dataframe) or column indices :param nimportant_vars: number of variables to compute importance for. Defaults to all variables :param njobs: an integer for the number of threads to use. If negative, will use ``num_cpus + njobs``. Defaults to 1 :param nbootstrap: number of times to perform scoring on each variable. Results over different bootstrap iterations are averaged. Defaults to 1 :param subsample: number of elements to sample (with replacement) per bootstrap round. If between 0 and 1, treated as a fraction of the number of total number of events (e.g. 0.5 means half the number of events). If not specified, subsampling will not be used and the entire data will be used (without replacement) :param kwargs: all other kwargs will be passed on to the ``evaluation_fn`` :returns: :class:`PermutationImportance.result.ImportanceResult` object which contains the results for each run """ # Check if the data is probabilistic if len(scoring_data[1].shape) > 1 and scoring_data[1].shape[1] > 1: scoring_fn = score_untrained_sklearn_model_with_probabilities( model, evaluation_fn, nbootstrap=nbootstrap, subsample=subsample, **kwargs ) else: scoring_fn = score_untrained_sklearn_model( model, evaluation_fn, nbootstrap=nbootstrap, subsample=subsample, **kwargs ) return sequential_backward_selection( training_data, scoring_data, scoring_fn, scoring_strategy, variable_names=variable_names, nimportant_vars=nimportant_vars, njobs=njobs, )
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/main/PermutationImportance/sequential_selection.py
0.913141
0.528229
sequential_selection.py
pypi
from multiprocessing import Process, Queue, cpu_count try: from Queue import Full as QueueFull from Queue import Empty as QueueEmpty except ImportError: # python3 from queue import Full as QueueFull from queue import Empty as QueueEmpty __all__ = ["pool_imap_unordered"] def worker(func, recvq, sendq): for args in iter(recvq.get, None): # The args are training_data, scoring_data, var_idx # Thus, we want to return the var_idx and then # send those args to the abstract runner. result = (args[-1], func(*args)) sendq.put(result) def pool_imap_unordered(func, iterable, procs=cpu_count()): """Lazily imaps in an unordered manner over an iterable in parallel as a generator :Author: Grant Jenks <https://stackoverflow.com/users/232571/grantj> :param func: function to perform on each iterable :param iterable: iterable which has items to map over :param procs: number of workers in the pool. Defaults to the cpu count :yields: the results of the mapping """ # Create queues for sending/receiving items from iterable. sendq = Queue(procs) recvq = Queue() # Start worker processes. for rpt in range(procs): Process(target=worker, args=(func, sendq, recvq)).start() # Iterate iterable and communicate with worker processes. send_len = 0 recv_len = 0 itr = iter(iterable) try: value = next(itr) while True: try: sendq.put(value, True, 0.1) send_len += 1 value = next(itr) except QueueFull: while True: try: result = recvq.get(False) recv_len += 1 yield result except QueueEmpty: break except StopIteration: pass # Collect all remaining results. while recv_len < send_len: result = recvq.get() recv_len += 1 yield result # Terminate worker processes. for rpt in range(procs): sendq.put(None)
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/main/PermutationImportance/multiprocessing_utils.py
0.494629
0.225843
multiprocessing_utils.py
pypi
import numpy as np import pandas as pd from .utils import get_data_subset, make_data_from_columns, conditional_permutations __all__ = [ "SequentialForwardSelectionStrategy", "SequentialBackwardSelectionStrategy", "PermutationImportanceSelectionStrategy", "SelectionStrategy", ] class SelectionStrategy(object): """The base ``SelectionStrategy`` only provides the tools for storing the data and other important information as well as the convenience method for iterating over the selection strategies triples lazily.""" name = "Abstract Selection Strategy" def __init__(self, training_data, scoring_data, num_vars, important_vars): """Initializes the object by storing the data and keeping track of other important information :param training_data: (training_inputs, training_outputs) :param scoring_data: (scoring_inputs, scoring_outputs) :param num_vars: integer for the total number of variables :param important_vars: a list of the indices of variables which are already considered important """ self.training_data = training_data self.scoring_data = scoring_data self.num_vars = num_vars self.important_vars = important_vars def generate_datasets(self, important_variables): """Generator which returns triples (variable, training_data, scoring_data)""" raise NotImplementedError( "Please implement a strategy for generating datasets on class %s" % self.name ) def generate_all_datasets(self): """By default, loops over all variables not yet considered important""" for var in range(self.num_vars): if var not in self.important_vars: training_data, scoring_data = self.generate_datasets( self.important_vars + [var,] ) yield (training_data, scoring_data, var) def __iter__(self): return self.generate_all_datasets() class SequentialForwardSelectionStrategy(SelectionStrategy): """Sequential Forward Selection tests all variables which are not yet considered important by adding that columns to the other columns which are returned. This means that the shape of the training data will be ``(num_rows, num_important_vars + 1)``.""" name = "Sequential Forward Selection" def generate_datasets(self, important_variables): """Check each of the non-important variables. Dataset is the columns which are important :returns: (training_data, scoring_data) """ training_inputs, training_outputs = self.training_data scoring_inputs, scoring_outputs = self.scoring_data columns = important_variables # Make a slice of the training inputs training_inputs_subset = get_data_subset(training_inputs, None, columns) # Make a slice of the scoring inputs scoring_inputs_subset = get_data_subset(scoring_inputs, None, columns) return (training_inputs_subset, training_outputs), ( scoring_inputs_subset, scoring_outputs, ) class SequentialBackwardSelectionStrategy(SelectionStrategy): """Sequential Backward Selection tests all variables which are not yet considered important by removing that column from the data. This means that the shape of the training data will be ``(num_rows, num_vars - num_important_vars - 1)``.""" name = "Sequential Backward Selection" def generate_datasets(self, important_variables): """Check each of the non-important variables. Dataset is the columns which are not important :yields: a sequence of (variable being evaluated, columns to include) """ training_inputs, training_outputs = self.training_data scoring_inputs, scoring_outputs = self.scoring_data columns = [x for x in range(self.num_vars) if x not in important_variables] # Make a slice of the training inputs training_inputs_subset = get_data_subset(training_inputs, None, columns) # Make a slice of the scoring inputs scoring_inputs_subset = get_data_subset(scoring_inputs, None, columns) return (training_inputs_subset, training_outputs), ( scoring_inputs_subset, scoring_outputs, ) class PermutationImportanceSelectionStrategy(SelectionStrategy): """Permutation Importance tests all variables which are not yet considered important by shuffling that column in addition to the columns of the variables which are considered important. The shape of the data will remain constant, but at each step, one additional column will be permuted.""" name = "Permutation Importance" def __init__( self, training_data, scoring_data, num_vars, important_vars, random_state, **kwargs ): """Initializes the object by storing the data and keeping track of other important information :param training_data: (training_inputs, training_outputs) :param scoring_data: (scoring_inputs, scoring_outputs) :param num_vars: integer for the total number of variables :param important_vars: a list of the indices of variables which are already considered important """ super(PermutationImportanceSelectionStrategy, self).__init__( training_data, scoring_data, num_vars, important_vars ) # Also initialize the "shuffled data" scoring_inputs, __ = self.scoring_data indices = random_state.permutation(len(scoring_inputs)) # With each iteration of the algorithm, the indices # are shuffled once and identically for each feature. # Thus, when multiple features are permuted they are # jointly permuted (i.e., without destroying the # dependencies of the features within the group). # However, how the features are jointly permuted # changes from iteration to iteration to limit # bias due to a poor permutation. self.shuffled_scoring_inputs = get_data_subset( scoring_inputs, indices ) # This copies # keep track of the initial index (assuming this is pandas data) self.original_index = ( scoring_inputs.index if isinstance(scoring_inputs, pd.DataFrame) else None ) def generate_datasets(self, important_variables): """Check each of the non-important variables. Dataset has columns which are important shuffled :returns: (training_data, scoring_data) """ scoring_inputs, scoring_outputs = self.scoring_data complete_scoring_inputs = make_data_from_columns( [ get_data_subset( self.shuffled_scoring_inputs if i in important_variables else scoring_inputs, None, [i], ) for i in range(self.num_vars) ], index=self.original_index, ) return self.training_data, (complete_scoring_inputs, scoring_outputs) class ConditionalPermutationImportanceSelectionStrategy(SelectionStrategy): """Conditional Permutation Importance tests all variables which are not yet considered important by performing conditional permutation on that column in addition to the columns of the variables which are considered important. The shape of the data will remain constant, but at each step, one additional column will be permuted.""" name = "Conditional Permutation Importance" def __init__( self, training_data, scoring_data, num_vars, important_vars, random_state, **kwargs ): """Initializes the object by storing the data and keeping track of other important information :param training_data: (training_inputs, training_outputs) :param scoring_data: (scoring_inputs, scoring_outputs) :param num_vars: integer for the total number of variables :param important_vars: a list of the indices of variables which are already considered important """ super(ConditionalPermutationImportanceSelectionStrategy, self).__init__( training_data, scoring_data, num_vars, important_vars ) n_bins = kwargs.get("n_bins", 50) # Also initialize the "shuffled data" scoring_inputs, __ = self.scoring_data self.shuffled_scoring_inputs = conditional_permutations( scoring_inputs, n_bins, random_state ) # This copies # keep track of the initial index (assuming this is pandas data) self.original_index = ( scoring_inputs.index if isinstance(scoring_inputs, pd.DataFrame) else None ) def generate_datasets(self, important_variables): """Check each of the non-important variables. Dataset has columns which are important shuffled :returns: (training_data, scoring_data) """ scoring_inputs, scoring_outputs = self.scoring_data # If a feature has been deemed important it remains shuffled complete_scoring_inputs = make_data_from_columns( [ get_data_subset( self.shuffled_scoring_inputs if i in important_variables else scoring_inputs, None, [i], ) for i in range(self.num_vars) ], index=self.original_index, ) return self.training_data, (complete_scoring_inputs, scoring_outputs) class ForwardPermutationImportanceSelectionStrategy(SelectionStrategy): """Forward Permutation Importance permutes all variables and then tests all variables which are not yet considered.""" name = "Forward Permutation Importance" def __init__( self, training_data, scoring_data, num_vars, important_vars, random_state, **kwargs ): """Initializes the object by storing the data and keeping track of other important information :param training_data: (training_inputs, training_outputs) :param scoring_data: (scoring_inputs, scoring_outputs) :param num_vars: integer for the total number of variables :param important_vars: a list of the indices of variables which are already considered important """ super(ForwardPermutationImportanceSelectionStrategy, self).__init__( training_data, scoring_data, num_vars, important_vars ) # With each iteration of the algorithm, the indices # are shuffled once and identically for each feature. # Thus, when multiple features are permuted they are # jointly permuted (i.e., without destroying the # dependencies of the features within the group). # However, how the features are jointly permuted # changes from iteration to iteration to limit # bias due to a poor permutation. # Also initialize the "shuffled data" scoring_inputs, __ = self.scoring_data indices = random_state.permutation(len(scoring_inputs)) self.shuffled_scoring_inputs = get_data_subset( scoring_inputs, indices ) # This copies # keep track of the initial index (assuming this is pandas data) self.original_index = ( scoring_inputs.index if isinstance(scoring_inputs, pd.DataFrame) else None ) def generate_datasets(self, important_variables): """Check each of the non-important variables. Dataset has columns which are non-important variables are shuffled :returns: (training_data, scoring_data) """ scoring_inputs, scoring_outputs = self.scoring_data # If a feature has been deemed important it remains shuffled complete_scoring_inputs = make_data_from_columns( [ get_data_subset( scoring_inputs if i in important_variables else self.shuffled_scoring_inputs, columns = [i], ) for i in range(self.num_vars) ], index=self.original_index, ) return self.training_data, (complete_scoring_inputs, scoring_outputs)
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/main/PermutationImportance/selection_strategies.py
0.842053
0.553928
selection_strategies.py
pypi
import numpy as np import pandas as pd import numbers from .error_handling import InvalidDataException __all__ = ["add_ranks_to_dict", "get_data_subset", "make_data_from_columns"] def add_ranks_to_dict(result, variable_names, scoring_strategy): """Takes a list of (var, score) and converts to a dictionary of {var: (rank, score)} :param result: a dict of {var_index: score} :param variable_names: a list of variable names :param scoring_strategy: a function to be used for determining optimal variables. Should be of the form ([floats]) -> index """ if len(result) == 0: return dict() result_dict = dict() rank = 0 while len(result) > 1: var_idxs = list(result.keys()) idxs = np.argsort(var_idxs) # Sort by indices to guarantee order variables = list(np.array(var_idxs)[idxs]) scores = list(np.array(list(result.values()))[idxs]) best_var = variables[scoring_strategy(scores)] score = result.pop(best_var) result_dict[variable_names[best_var]] = (rank, score) rank += 1 var, score = list(result.items())[0] result_dict[variable_names[var]] = (rank, score) return result_dict def get_data_subset(data, rows=None, columns=None): """Returns a subset of the data corresponding to the desired rows and columns :param data: either a pandas dataframe or a numpy array :param rows: a list of row indices :param columns: a list of column indices :returns: data_subset (same type as data) """ if rows is None: rows = np.arange(data.shape[0]) if isinstance(data, pd.DataFrame): if columns is None: return data.iloc[rows] else: return data.iloc[rows, columns] elif isinstance(data, np.ndarray): if columns is None: return data[rows] else: return data[np.ix_(rows, columns)] else: raise InvalidDataException( data, "Data must be a pandas dataframe or numpy array" ) def make_data_from_columns(columns_list, index=None): """Synthesizes a dataset out of a list of columns :param columns_list: a list of either pandas series or numpy arrays :returns: a pandas dataframe or a numpy array """ if len(columns_list) == 0: raise InvalidDataException( columns_list, "Must have at least one column to synthesize dataset" ) if isinstance(columns_list[0], pd.DataFrame) or isinstance( columns_list[0], pd.Series ): df = pd.concat([c.reset_index(drop=True) for c in columns_list], axis=1) if index is not None: return df.set_index(index) else: return df elif isinstance(columns_list[0], np.ndarray): return np.column_stack(columns_list) else: raise InvalidDataException( columns_list, "Columns_list must come from a pandas dataframe or numpy arrays", ) def conditional_permutations(data, n_bins, random_state): """ Conditionally permute each feature in a dataset. Code appended to the PermutationImportance package by Montgomery Flora 2021. Args: ------------------- data : pd.DataFrame or np.ndarray shape=(n_examples, n_features,) n_bins : interger number of bins to divide a feature into. Based on a percentile method to ensure that each bin receieves a similar number of examples random_state : np.random.RandomState instance Pseudo-random number generator to control the permutations of each feature. Pass an int to get reproducible results across function calls. Returns: ------------------- permuted_data : a permuted version of data """ permuted_data = data.copy() for i in range(np.shape(data)[1]): # Get the bin values of feature if isinstance(data, pd.DataFrame): feature_values = data.iloc[:, i] elif isinstance(data, np.ndarray): feature_values = data[:, i] else: raise InvalidDataException( data, "Data must be a pandas dataframe or numpy array" ) bin_edges = np.unique( np.percentile( feature_values, np.linspace(0, 100, n_bins + 1), interpolation="lower", ) ) bin_indices = np.clip( np.digitize(feature_values, bin_edges, right=True) - 1, 0, None ) shuffled_indices = bin_indices.copy() unique_bin_values = np.unique(bin_indices) # bin_indices is composed of bin indices for a corresponding value of feature_values for bin_idx in unique_bin_values: # idx is the actual index of indices where the bin index == i idx = np.where(bin_indices == bin_idx)[0] # Replace the bin indices with a permutation of the actual indices shuffled_indices[idx] = random_state.permutation(idx) if isinstance(data, pd.DataFrame): permuted_data.iloc[:, i] = data.iloc[shuffled_indices, i] else: permuted_data[:, i] = data[shuffled_indices, i] return permuted_data def check_random_state(seed): """Turn seed into a np.random.RandomState instance Parameters. Function comes for sci-kit-learn. ---------- seed : None, int or instance of RandomState If seed is None, return the RandomState singleton used by np.random. If seed is an int, return a new RandomState instance seeded with seed. If seed is already a RandomState instance, return it. Otherwise raise ValueError. """ if seed is None or seed is np.random: return np.random.mtrand._rand if isinstance(seed, numbers.Integral): return np.random.RandomState(seed) if isinstance(seed, np.random.RandomState): return seed raise ValueError( "%r cannot be used to seed a numpy.random.RandomState" " instance" % seed ) def bootstrap_generator(n_bootstrap, seed=42): """ Create a repeatable bootstrap generator. Will create the same set of random state generators given a number of bootstrap iterations. """ base_random_state = np.random.RandomState(seed) random_num_set = base_random_state.choice(10000, size=n_bootstrap, replace=False) random_states = [np.random.RandomState(s) for s in random_num_set] return random_states
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/main/PermutationImportance/utils.py
0.79909
0.591045
utils.py
pypi
class InvalidStrategyException(Exception): """Thrown when a scoring strategy is invalid""" def __init__(self, strategy, msg=None, options=None): if msg is None: msg = ( "%s is not a valid strategy for determining the optimal variable. " % strategy ) msg += "\nShould be a callable or a valid string option. " if options is not None: msg += "Valid options are\n%r" % options super(InvalidStrategyException, self).__init__(msg) self.strategy = strategy self.options = None class InvalidInputException(Exception): """Thrown when the input to the program does not match expectations""" def __init__(self, value, msg=None): if msg is None: msg = "Input value does not match expectations: %s" % value super(InvalidInputException, self).__init__(msg) self.value = value class InvalidDataException(Exception): """Thrown when the training or scoring data is not of the right type""" def __init__(self, data, msg=None): if msg is None: msg = "Data is not of the right format" super(InvalidDataException, self).__init__(msg) self.data = data class UnmatchedLengthPredictionsException(Exception): """Thrown when the number of predictions doesn't match truths""" def __init__(self, truths, predictions, msg=None): if msg is None: msg = "Shapes of truths and predictions do not match: %r and %r" % ( truths.shape, predictions.shape, ) super(UnmatchedLengthPredictionsException, self).__init__(msg) self.truths = truths self.predictions = predictions class UnmatchingProbabilisticForecastsException(Exception): """Thrown when the shape of probabilisic predictions doesn't match the truths""" def __init__(self, truths, predictions, msg=None): if msg is None: msg = "Shapes of truths and predictions do not match: %r and %r" % ( truths.shape, predictions.shape, ) super(UnmatchingProbabilisticForecastsException, self).__init__(msg) self.truths = truths self.predictions = predictions class AmbiguousProbabilisticForecastsException(Exception): """Thrown when classes were not provided for converting probabilistic predictions to deterministic ones but are required""" def __init__(self, truths, predictions, msg=None): if msg is None: msg = "Classes not provided for converting probabilistic predictions to deterministic ones" super(AmbiguousProbabilisticForecastsException, self).__init__(msg) self.truths = truths self.predictions = predictions class FullImportanceResultWarning(Warning): """Thrown when we try to add a result to a full :class:`PermutationImportance.result.ImportanceResult`""" pass
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/main/PermutationImportance/error_handling.py
0.790611
0.24243
error_handling.py
pypi
import numpy as np import pandas as pd from .error_handling import InvalidDataException, InvalidInputException try: basestring except NameError: # Python3 basestring = str __all__ = ["verify_data", "determine_variable_names"] def verify_data(data): """Verifies that the data tuple is of the right format and coerces it to numpy arrays for the code under the hood :param data: one of the following: (pandas dataframe, string for target column), (pandas dataframe for inputs, pandas dataframe for outputs), (numpy array for inputs, numpy array for outputs) :returns: (numpy array for input, numpy array for output) or (pandas dataframe for input, pandas dataframe for output) """ try: iter(data) except TypeError: raise InvalidDataException(data, "Data must be iterable") else: if len(data) != 2: raise InvalidDataException(data, "Data must contain 2 elements") else: # check if the first element is pandas dataframe or numpy array if isinstance(data[0], pd.DataFrame): # check if the second element is string or pandas dataframe if isinstance(data[1], basestring): return ( data[0].loc[:, data[0].columns != data[1]], data[0][[data[1]]], ) elif isinstance(data[1], pd.DataFrame): return data[0], data[1] else: raise InvalidDataException( data, "Second element of data must be a string for the target column or a pandas dataframe", ) elif isinstance(data[0], np.ndarray): if isinstance(data[1], np.ndarray): return data[0], data[1] else: raise InvalidDataException( data, "Second element of data must also be a numpy array" ) else: raise InvalidDataException( data, "First element of data must be a numpy array or pandas dataframe", ) def determine_variable_names(data, variable_names): """Uses ``data`` and/or the ``variable_names`` to determine what the variable names are. If ``variable_names`` is not specified and ``data`` is not a pandas dataframe, defaults to the column indices :param data: a 2-tuple where the input data is the first item :param variable_names: either a list of variable names or None :returns: a list of variable names """ if variable_names is not None: try: iter(variable_names) except TypeError: raise InvalidInputException( variable_names, "Variable names must be iterable" ) else: if len(variable_names) != data[0].shape[1]: raise InvalidInputException( variable_names, "Variable names should have length %i" % data[0].shape[1], ) else: return np.array(variable_names) else: if isinstance(data[0], pd.DataFrame): return data[0].columns.values else: return np.arange(data[0].shape[1])
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/main/PermutationImportance/data_verification.py
0.619241
0.616936
data_verification.py
pypi
import numpy as np from sklearn.base import clone from .utils import get_data_subset, bootstrap_generator from joblib import Parallel, delayed __all__ = [ "model_scorer", "score_untrained_sklearn_model", "score_untrained_sklearn_model_with_probabilities", "score_trained_sklearn_model", "score_trained_sklearn_model_with_probabilities", "train_model", "get_model", "predict_model", "predict_proba_model", ] def train_model(model, X_train, y_train): """Trains a scikit-learn model and returns the trained model""" if X_train.shape[1] == 0: # No data to train over, so don't bother return None cloned_model = clone(model) return cloned_model.fit(X_train, y_train) def get_model(model, X_train, y_train): """Just return the trained model""" return model def predict_model(model, X_score): """Uses a trained scikit-learn model to predict over the scoring data""" return model.predict(X_score) def predict_proba_model(model, X_score): """Uses a trained scikit-learn model to predict class probabilities for the scoring data""" pred = model.predict_proba(X_score) # Binary classification. if pred.shape[1] == 2: return pred[:,1] else: return pred def forward_permutations(X, inds, var_idx): return np.array( [ X[:, i] if i == var_idx else X[inds, i] for i in range(X.shape[1]) ] ).T class model_scorer(object): """General purpose scoring method which takes a particular model, trains the model over the given training data, uses the trained model to predict on the given scoring data, and then evaluates those predictions using some evaluation function. Additionally provides the tools for bootstrapping the scores and providing a distribution of scores to be used for statistics. NOTE: Since these method is used internally, the scoring inputs into this method for different rounds of multipass permutation importance are already permuted for the top most features. Thus, in any current iteration, we need only permute a single column at a time. """ def __init__( self, model, training_fn, prediction_fn, evaluation_fn, nimportant_vars=1, default_score=0.0, n_permute=1, subsample=1, direction='backward', **kwargs ): """Initializes the scoring object by storing the training, predicting, and evaluation functions :param model: a scikit-learn model :param training_fn: a function for training a scikit-learn model. Must be of the form ``(model, X_train, y_train) -> trained_model | None``. If the function returns ``None``, then it is assumed that the model training failed. Probably :func:`PermutationImportance.sklearn_api.train_model` or :func:`PermutationImportance.sklearn_api.get_model` :param predicting_fn: a function for predicting on scoring data using a scikit-learn model. Must be of the form ``(model, X_score) -> predictions``. Predictions may be either deterministic or probabilistic, depending on what the evaluation_fn accepts. Probably :func:`PermutationImportance.sklearn_api.predict_model` or :func:`PermutationImportance.sklearn_api.predict_proba_model` :param evaluation_fn: a function which takes the deterministic or probabilistic model predictions and scores them against the true values. Must be of the form ``(truths, predictions) -> some_value`` Probably one of the metrics in :mod:`PermutationImportance.metrics` or `sklearn.metrics <https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics>`_ :param default_score: value to return if the model cannot be trained :param nbootstrap: number of times to perform scoring on each variable. Results over different bootstrap iterations are averaged. Defaults to None, which will not perform bootstrapping :param subsample: number of elements to sample (with replacement) per bootstrap round. If between 0 and 1, treated as a fraction of the number of total number of events (e.g. 0.5 means half the number of events). If not specified, subsampling will not be used and the entire data will be used (without replacement) """ self.model = model self.training_fn = training_fn self.prediction_fn = prediction_fn self.evaluation_fn = evaluation_fn self.default_score = default_score self.n_permute = n_permute self.subsample = subsample self.direction = direction self.kwargs = kwargs self.random_seed = kwargs.get("random_seed", 42) def _scorer(self, X, y): predictions = self.prediction_fn(self.model, X) return self.evaluation_fn(y,predictions) def get_subsample_size(self, full_size): return ( int(full_size * self.subsample) if self.subsample <= 1 else self.subsample ) def _train(self): # Try to train model trained_model = self.training_fn(self.model, X_train, y_train) # If we didn't succeed in training (probably because there weren't any # training predictors), return the default_score if trained_model is None: if self.n_permute == 1: return [self.default_score] else: return np.full((self.n_permute,), self.default_score) def get_permuted_data(self, idx, var_idx): """ Get permuted data """ X_score_sub = self.X_score y_score_sub = self.y_score X_train_sub = self.X_train inds = self.shuffled_indices[idx] if len(self.rows[0]) != self.y_score.shape[0]: X_score_sub = get_data_subset(self.X_score, self.rows[idx]) y_score_sub = get_data_subset(self.y_score, self.rows[idx]) if self.direction == 'forward': X_train_sub = get_data_subset(self.X_train, self.rows[idx]) #inds = inds[idx] if var_idx is None: return X_score_sub, y_score_sub # For the backward, X_score is mostly unpermuted expect for # the top features. For the forward, X_score is all permuted # expect for the top features. X_perm = X_score_sub.copy() if self.direction == 'backward': X_perm[:,var_idx] = X_score_sub[inds, var_idx] else: X_perm[:,var_idx] = X_train_sub[:, var_idx] return X_perm, y_score_sub def __call__(self, training_data, scoring_data, var_idx): """Uses the training, predicting, and evaluation functions to score the model given the training and scoring data :param training_data: (training_input, training_output) :param scoring_data: (scoring_input, scoring_output) :returns: either a single value or an array of values :param var_idx : integer The column index of the variable being permuted. When computing the original score, set var_idx==None. """ (self.X_train, self.y_train) = training_data (self.X_score, self.y_score) = scoring_data permuted_set = [self.get_permuted_data(idx, var_idx) for idx in range(self.n_permute)] scores = np.array([self._scorer(*arg) for arg in permuted_set]) return np.array(scores) def score_untrained_sklearn_model( model, evaluation_fn, nbootstrap=None, subsample=1, **kwargs ): """A convenience method which uses the default training and the deterministic prediction methods for scikit-learn to evaluate a model :param model: a scikit-learn model :param evaluation_fn: a function which takes the deterministic or probabilistic model predictions and scores them against the true values. Must be of the form ``(truths, predictions) -> some_value`` Probably one of the metrics in :mod:`PermutationImportance.metrics` or `sklearn.metrics <https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics>`_ :param nbootstrap: number of times to perform scoring on each variable. Results over different bootstrap iterations are averaged. Defaults to 1 :param subsample: number of elements to sample (with replacement) per bootstrap round. If between 0 and 1, treated as a fraction of the number of total number of events (e.g. 0.5 means half the number of events). If not specified, subsampling will not be used and the entire data will be used (without replacement) :param kwargs: all other kwargs passed on to the evaluation_fn :returns: a callable which accepts ``(training_data, scoring_data)`` and returns some value (probably a float or an array of floats) """ return model_scorer( model, training_fn=train_model, prediction_fn=predict_model, evaluation_fn=evaluation_fn, nbootstrap=nbootstrap, subsample=subsample, **kwargs ) def score_untrained_sklearn_model_with_probabilities( model, evaluation_fn, nbootstrap=None, subsample=1, **kwargs ): """A convenience method which uses the default training and the probabilistic prediction methods for scikit-learn to evaluate a model :param model: a scikit-learn model :param evaluation_fn: a function which takes the deterministic or probabilistic model predictions and scores them against the true values. Must be of the form ``(truths, predictions) -> some_value`` Probably one of the metrics in :mod:`PermutationImportance.metrics` or `sklearn.metrics <https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics>`_ :param nbootstrap: number of times to perform scoring on each variable. Results over different bootstrap iterations are averaged. Defaults to 1 :param subsample: number of elements to sample (with replacement) per bootstrap round. If between 0 and 1, treated as a fraction of the number of total number of events (e.g. 0.5 means half the number of events). If not specified, subsampling will not be used and the entire data will be used (without replacement) :param kwargs: all other kwargs passed on to the evaluation_fn :returns: a callable which accepts ``(training_data, scoring_data)`` and returns some value (probably a float or an array of floats) """ return model_scorer( model, training_fn=train_model, prediction_fn=predict_proba_model, evaluation_fn=evaluation_fn, nbootstrap=nbootstrap, subsample=subsample, **kwargs ) def score_trained_sklearn_model( model, evaluation_fn, n_permute=1, subsample=1, direction='backward', **kwargs ): """A convenience method which does not retrain a scikit-learn model and uses deterministic prediction methods to evaluate the model :param model: a scikit-learn model :param evaluation_fn: a function which takes the deterministic or probabilistic model predictions and scores them against the true values. Must be of the form ``(truths, predictions) -> some_value`` Probably one of the metrics in :mod:`PermutationImportance.metrics` or `sklearn.metrics <https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics>`_ :param nbootstrap: number of times to perform scoring on each variable. Results over different bootstrap iterations are averaged. Defaults to 1 :param subsample: number of elements to sample (with replacement) per bootstrap round. If between 0 and 1, treated as a fraction of the number of total number of events (e.g. 0.5 means half the number of events). If not specified, subsampling will not be used and the entire data will be used (without replacement) :param kwargs: all other kwargs passed on to the evaluation_fn :returns: a callable which accepts ``(training_data, scoring_data)`` and returns some value (probably a float or an array of floats) """ return model_scorer( model, training_fn=get_model, prediction_fn=predict_model, evaluation_fn=evaluation_fn, n_permute=n_permute, subsample=subsample, direction=direction, **kwargs ) def score_trained_sklearn_model_with_probabilities( model, evaluation_fn, n_permute=1, subsample=1, direction='backward', **kwargs ): """A convenience method which does not retrain a scikit-learn model and uses probabilistic prediction methods to evaluate the model :param model: a scikit-learn model :param evaluation_fn: a function which takes the deterministic or probabilistic model predictions and scores them against the true values. Must be of the form ``(truths, predictions) -> some_value`` Probably one of the metrics in :mod:`PermutationImportance.metrics` or `sklearn.metrics <https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics>`_ :param nbootstrap: number of times to perform scoring on each variable. Results over different bootstrap iterations are averaged. Defaults to 1 :param subsample: number of elements to sample (with replacement) per bootstrap round. If between 0 and 1, treated as a fraction of the number of total number of events (e.g. 0.5 means half the number of events). If not specified, subsampling will not be used and the entire data will be used (without replacement) :param kwargs: all other kwargs passed on to the evaluation_fn :returns: a callable which accepts ``(training_data, scoring_data)`` and returns some value (probably a float or an array of floats) """ return model_scorer( model, training_fn=get_model, prediction_fn=predict_proba_model, evaluation_fn=evaluation_fn, n_permute=n_permute, subsample=subsample, direction=direction, **kwargs )
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/main/PermutationImportance/sklearn_api.py
0.903559
0.66888
sklearn_api.py
pypi
import warnings try: from itertools import izip as zip except ImportError: # python3 pass from .error_handling import FullImportanceResultWarning class ImportanceResult(object): """Houses the result of any importance method, which consists of a sequence of contexts and results. An individual result can only be truly interpreted correctly in light of the corresponding context. This object allows for indexing into the contexts and results and also provides convenience methods for retrieving the results with no context and the most complete context""" def __init__(self, method, variable_names, original_score): """Initializes the results object with the method used and a list of variable names :param method: string for the type of variable importance used :param variable_names: a list of names for variables :param original_score: the score of the model when no variables are important """ self.method = method self.variable_names = variable_names self.original_score = original_score # The initial context is "empty" self.contexts = [{}] self.results = list() self.complete = False def add_new_results(self, new_results, next_important_variable=None): """Adds a new round of results. Warns if the ImportanceResult is already complete :param new_results: a dictionary with keys of variable names and values of ``(rank, score)`` :param next_important_variable: variable name of the next most important variable. If not given, will select the variable with the smallest rank """ if not self.complete: if next_important_variable is None: next_important_variable = min( new_results.keys(), key=lambda key: new_results[key][0] ) self.results.append(new_results) new_context = self.contexts[-1].copy() self.contexts.append(new_context) __, score = new_results[next_important_variable] self.contexts[-1][next_important_variable] = (len(self.results) - 1, score) # Check to see if this result could constitute the last possible one if len(self.results) == len(self.variable_names): self.results.append(dict()) self.complete = True else: warnings.warn( "Cannot add new result to full ImportanceResult", FullImportanceResultWarning, ) def retrieve_singlepass(self): """Returns the singlepass results as a dictionary with keys of variable names and values of ``(rank, score)``.""" return self.results[0] def retrieve_all_iterations(self): """Returns the singlepass results for all multipass iterations""" return self.results def retrieve_multipass(self): """Returns the multipass results as a dictionary with keys of variable names and values of ``(rank, score)``.""" return self.contexts[-1] def __iter__(self): """Iterates over pairs of contexts and results""" return zip(self.contexts, self.results) def __getitem__(self, index): """Retrieves the ith pair of ``(context, result)``""" if index < 0: index = len(self.results) + index return (self.contexts[index], self.results[index]) def __len__(self): """Returns the total number of results computed""" return len(self.results)
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/main/PermutationImportance/result.py
0.715821
0.439146
result.py
pypi
import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import MaxNLocator, FormatStrFormatter, AutoMinorLocator import matplotlib.ticker as mticker from matplotlib import rcParams from matplotlib.colors import ListedColormap from matplotlib.gridspec import GridSpec import matplotlib import seaborn as sns from ..common.utils import is_outlier from ..common.contrib_utils import combine_like_features import shap class PlotStructure: """ Plot handles figure and subplot generation """ def __init__(self, BASE_FONT_SIZE=12, seaborn_kws=None): GENERIC_FONT_SIZE_NAMES = [ "teensie", "tiny", "small", "normal", "big", "large", "huge", ] FONT_SIZES_ARRAY = np.arange(-6, 8, 2) + BASE_FONT_SIZE self.FONT_SIZES = { name: size for name, size in zip(GENERIC_FONT_SIZE_NAMES, FONT_SIZES_ARRAY) } if seaborn_kws is None: custom_params = {"axes.spines.right": False, "axes.spines.top": False} sns.set_theme(style="ticks", rc=custom_params) else: if seaborn_kws is not None and isinstance(seaborn_kws, dict): sns.set_theme(**seaborn_kws) # Setting the font style to serif rcParams["font.family"] = "serif" plt.rc("font", size=self.FONT_SIZES["normal"]) # controls default text sizes plt.rc("axes", titlesize=self.FONT_SIZES["tiny"]) # fontsize of the axes title plt.rc( "axes", labelsize=self.FONT_SIZES["normal"] ) # fontsize of the x and y labels plt.rc( "xtick", labelsize=self.FONT_SIZES["teensie"] ) # fontsize of the x-axis tick marks plt.rc( "ytick", labelsize=self.FONT_SIZES["teensie"] ) # fontsize of the y-axis tick marks plt.rc("legend", fontsize=self.FONT_SIZES["teensie"]) # legend fontsize plt.rc( "figure", titlesize=self.FONT_SIZES["big"] ) # fontsize of the figure title def get_fig_props(self, n_panels, **kwargs): """Determine appropriate figure properties""" width_slope = 0.875 height_slope = 0.45 intercept = 3.0 - width_slope figsize = ( min((n_panels * width_slope) + intercept, 19), min((n_panels * height_slope) + intercept, 12), ) wspace = (-0.03 * n_panels) + 0.85 hspace = (0.0175 * n_panels) + 0.3 n_columns = kwargs.get("n_columns", 3) wspace = wspace + 0.25 if n_columns > 3 else wspace kwargs["figsize"] = kwargs.get("figsize", figsize) kwargs["wspace"] = kwargs.get("wspace", wspace) kwargs["hspace"] = kwargs.get("hspace", hspace) return kwargs def create_subplots(self, n_panels, **kwargs): """ Create a series of subplots (MxN) based on the number of panels and number of columns (optionally). Args: ----------------------- n_panels : int Number of subplots to create Optional keyword args: n_columns : int The number of columns for a plot (default=3 for n_panels >=3) figsize: 2-tuple of figure size (width, height in inches) wspace : float the amount of width reserved for space between subplots, expressed as a fraction of the average axis width hspace : float sharex : boolean sharey : boolean """ # figsize = width, height in inches figsize = kwargs.get("figsize", (6.4, 4.8)) wspace = kwargs.get("wspace", 0.4) hspace = kwargs.get("hspace", 0.3) sharex = kwargs.get("sharex", False) sharey = kwargs.get("sharey", False) delete = True if n_panels <= 3: n_columns = kwargs.get("n_columns", n_panels) delete = True if n_panels != n_columns else False else: n_columns = kwargs.get("n_columns", 3) n_rows = int(n_panels / n_columns) extra_row = 0 if (n_panels % n_columns) == 0 else 1 fig, axes = plt.subplots( n_rows + extra_row, n_columns, sharex=sharex, sharey=sharey, figsize=figsize, dpi=300, ) fig.patch.set_facecolor("white") plt.subplots_adjust(wspace=wspace, hspace=hspace) if delete: n_axes_to_delete = len(axes.flat) - n_panels if n_axes_to_delete > 0: for i in range(n_axes_to_delete): fig.delaxes(axes.flat[-(i + 1)]) return fig, axes def _create_joint_subplots(self, n_panels, **kwargs): """ Create grid for multipanel drawing a bivariate plots with marginal univariate plots on the top and right hand side. """ figsize = kwargs.get("figsize", (6.4, 4.8)) ratio = kwargs.get("ratio", 5) n_columns = kwargs.get("n_columns", 3) fig = plt.figure(figsize=figsize, dpi=300) fig.patch.set_facecolor("white") extra_row = 0 if (n_panels % n_columns) == 0 else 1 nrows = ratio * (int(n_panels / n_columns) + extra_row) ncols = ratio * n_columns gs = GridSpec(ncols=ncols, nrows=nrows) main_ax_len = ratio - 1 main_axes = [] top_axes = [] rhs_axes = [] col_offset_idx = list(range(n_columns)) * int(nrows / ratio) row_offset = 0 for i in range(n_panels): col_offset = ratio * col_offset_idx[i] row_idx = 1 if i % n_columns == 0 and i > 0: row_offset += ratio main_ax = fig.add_subplot( gs[ row_idx + row_offset : main_ax_len + row_offset, col_offset : main_ax_len + col_offset - 1, ], frameon=False, ) top_ax = fig.add_subplot( gs[row_idx + row_offset - 1, col_offset : main_ax_len + col_offset - 1], frameon=False, sharex=main_ax, ) rhs_ax = fig.add_subplot( gs[ row_idx + row_offset : main_ax_len + row_offset, main_ax_len + col_offset - 1, ], frameon=False, sharey=main_ax, ) ax_marg = [top_ax, rhs_ax] for ax in ax_marg: # Turn off tick visibility for the measure axis on the marginal plots plt.setp(ax.get_xticklabels(), visible=False) plt.setp(ax.get_yticklabels(), visible=False) # Turn off the ticks on the density axis for the marginal plots plt.setp(ax.yaxis.get_majorticklines(), visible=False) plt.setp(ax.xaxis.get_majorticklines(), visible=False) plt.setp(ax.yaxis.get_minorticklines(), visible=False) plt.setp(ax.xaxis.get_minorticklines(), visible=False) ax.yaxis.grid(False) ax.xaxis.grid(False) for axis in [ax.xaxis, ax.yaxis]: axis.label.set_visible(False) main_axes.append(main_ax) top_axes.append(top_ax) rhs_axes.append(rhs_ax) n_rows = int(nrows / ratio) return fig, main_axes, top_axes, rhs_axes, n_rows def axes_to_iterator(self, n_panels, axes): """Turns axes list into iterable""" if isinstance(axes, list): return axes else: ax_iterator = [axes] if n_panels == 1 else axes.flat return ax_iterator def set_major_axis_labels( self, fig, xlabel=None, ylabel_left=None, ylabel_right=None, title=None, **kwargs, ): """ Generate a single X- and Y-axis labels for a series of subplot panels. E.g., """ fontsize = kwargs.get("fontsize", self.FONT_SIZES["normal"]) labelpad = kwargs.get("labelpad", 15) ylabel_right_color = kwargs.get("ylabel_right_color", "k") # add a big axis, hide frame ax = fig.add_subplot(111, frameon=False) # hide tick and tick label of the big axis plt.tick_params( labelcolor="none", top=False, bottom=False, left=False, right=False ) # set axes labels ax.set_xlabel(xlabel, fontsize=fontsize, labelpad=labelpad) ax.set_ylabel(ylabel_left, fontsize=fontsize, labelpad=labelpad) if ylabel_right is not None: ax_right = fig.add_subplot(1, 1, 1, sharex=ax, frameon=False) plt.tick_params( labelcolor="none", top=False, bottom=False, left=False, right=False ) ax_right.yaxis.set_label_position("right") ax_right.set_ylabel( ylabel_right, labelpad=2 * labelpad, fontsize=fontsize, color=ylabel_right_color, ) ax_right.grid(False) ax.set_title(title) ax.grid(False) return ax def set_row_labels(self, labels, axes, pos=-1, pad=1.15, rotation=270, **kwargs): """ Give a label to each row in a series of subplots """ colors = kwargs.get("colors", ["xkcd:darkish blue"] * len(labels)) fontsize = kwargs.get("fontsize", self.FONT_SIZES["small"]) if np.ndim(axes) == 2: iterator = axes[:, pos] else: iterator = [axes[pos]] for ax, row, color in zip(iterator, labels, colors): ax.yaxis.set_label_position("right") ax.annotate( row, xy=(1, 1), xytext=(pad, 0.5), xycoords=ax.transAxes, rotation=rotation, size=fontsize, ha="center", va="center", color=color, alpha=0.65, ) def add_alphabet_label(self, n_panels, axes, pos=(0.9, 0.09), alphabet_fontsize=10, **kwargs): """ A alphabet character to each subpanel. """ alphabet_list = [chr(x) for x in range(ord("a"), ord("z") + 1)] + [ f"{chr(x)}{chr(x)}" for x in range(ord("a"), ord("z") + 1) ] ax_iterator = self.axes_to_iterator(n_panels, axes) for i, ax in enumerate(ax_iterator): ax.text( pos[0], pos[1], f"({alphabet_list[i]})", fontsize=alphabet_fontsize, alpha=0.8, ha="center", va="center", transform=ax.transAxes, ) def _to_sci_notation(self, ydata, ax=None, xdata=None, colorbar=False): """ Convert decimals (less 0.01) to 10^e notation """ # f = mticker.ScalarFormatter(useOffset=False, useMathText=True) # g = lambda x, pos: "${}$".format(f._formatSciNotation("%1.10e" % x)) if colorbar and np.absolute(np.amax(ydata)) <= 0.01: # colorbar.ax.yaxis.set_major_formatter(mticker.FuncFormatter(g)) colorbar.ax.ticklabel_format( style="sci", ) colorbar.ax.tick_params(axis="y", labelsize=5) elif ax: if np.absolute(np.amax(xdata)) <= 0.01: ax.ticklabel_format( style="sci", ) # ax.xaxis.set_major_formatter(mticker.FuncFormatter(g)) ax.tick_params(axis="x", labelsize=5, rotation=45) if np.absolute(np.amax(ydata)) <= 0.01: # ax.yaxis.set_major_formatter(mticker.FuncFormatter(g)) ax.ticklabel_format( style="sci", ) ax.tick_params(axis="y", labelsize=5, rotation=45) def calculate_ticks( self, nticks, ax=None, upperbound=None, lowerbound=None, round_to=5, center=False, ): """ Calculate the y-axis ticks marks for the line plots """ if ax is not None: upperbound = round(ax.get_ybound()[1], 5) lowerbound = round(ax.get_ybound()[0], 5) max_value = max(abs(upperbound), abs(lowerbound)) if 0 < max_value < 1: if max_value < 0.1: round_to = 3 else: round_to = 5 elif 5 < max_value < 10: round_to = 2 else: round_to = 0 def round_to_a_base(a_number, base=5): return base * round(a_number / base) if max_value > 5: max_value = round_to_a_base(max_value) if center: values = np.linspace(-max_value, max_value, nticks) values = np.round(values, round_to) else: dy = upperbound - lowerbound # deprecated 8 March 2022 by Monte. if round_to > 2: fit = np.floor(dy / (nticks - 1)) + 1 dy = (nticks - 1) * fit values = np.linspace(lowerbound, lowerbound + dy, nticks) values = np.round(values, round_to) return values def set_tick_labels( self, ax, feature_names, display_feature_names, return_labels=False ): """ Setting the tick labels for the tree interpreter plots. """ if isinstance(display_feature_names, dict): labels = [ display_feature_names.get(feature_name, feature_name) for feature_name in feature_names ] else: labels = display_feature_names if return_labels: labels = [f"{l}" for l in labels] return labels else: labels = [f"{l}" for l in labels] ax.set_yticklabels(labels) def set_axis_label(self, ax, xaxis_label=None, yaxis_label=None, **kwargs): """ Setting the x- and y-axis labels with fancy labels (and optionally physical units) """ fontsize = kwargs.get("fontsize", self.FONT_SIZES["tiny"]) if xaxis_label is not None: xaxis_label_pretty = self.display_feature_names.get( xaxis_label, xaxis_label ) units = self.display_units.get(xaxis_label, "") if units == "": xaxis_label_with_units = f"{xaxis_label_pretty}" else: xaxis_label_with_units = f"{xaxis_label_pretty} ({units})" ax.set_xlabel(xaxis_label_with_units, fontsize=fontsize) if yaxis_label is not None: yaxis_label_pretty = self.display_feature_names.get( yaxis_label, yaxis_label ) units = self.display_units.get(yaxis_label, "") if units == "": yaxis_label_with_units = f"{yaxis_label_pretty}" else: yaxis_label_with_units = f"{yaxis_label_pretty} ({units})" ax.set_ylabel(yaxis_label_with_units, fontsize=fontsize) def set_legend(self, n_panels, fig, ax, major_ax=None, **kwargs): """ Set a single legend on the bottom of a figure for a set of subplots. """ if major_ax is None: major_ax = self.set_major_axis_labels(fig) fontsize = kwargs.get("fontsize", "medium") ncol = kwargs.get("ncol", 3) handles = kwargs.get("handles", None) labels = kwargs.get("labels", None) if handles is None: handles, _ = ax.get_legend_handles_labels() if labels is None: _, labels = ax.get_legend_handles_labels() if n_panels > 3: bbox_to_anchor = (0.5, -0.35) else: bbox_to_anchor = (0.5, -0.5) bbox_to_anchor = kwargs.get("bbox_to_anchor", bbox_to_anchor) # Shrink current axis's height by 10% on the bottom box = major_ax.get_position() major_ax.set_position( [box.x0, box.y0 + box.height * 0.1, box.width, box.height * 0.9] ) # Put a legend below current axis major_ax.legend( handles, labels, loc="lower center", bbox_to_anchor=bbox_to_anchor, fancybox=True, shadow=True, ncol=ncol, fontsize=fontsize, ) def set_minor_ticks(self, ax): """ Adds minor tick marks to the x- and y-axis to a subplot ax to increase readability. """ ax.xaxis.set_minor_locator(AutoMinorLocator(n=3)) ax.yaxis.set_minor_locator(AutoMinorLocator(n=3)) def set_n_ticks(self, ax, option="y", nticks=5): """ Set the max number of ticks per x- and y-axis for a subplot ax """ if option == "y" or option == "both": ax.yaxis.set_major_locator(MaxNLocator(nticks)) if option == "x" or option == "both": ax.xaxis.set_major_locator(MaxNLocator(nticks)) def make_twin_ax(self, ax): """ Create a twin axis on an existing axis with a shared x-axis """ # align the twinx axis twin_ax = ax.twinx() # Turn twin_ax grid off. twin_ax.grid(False) # Set ax's patch invisible ax.patch.set_visible(False) # Set axtwin's patch visible and colorize it in grey twin_ax.patch.set_visible(True) # move ax in front ax.set_zorder(twin_ax.get_zorder() + 1) return twin_ax def despine_plt(self, ax): """ remove all four spines of plot """ ax.spines["right"].set_visible(False) ax.spines["top"].set_visible(False) ax.spines["left"].set_visible(False) ax.spines["bottom"].set_visible(False) def annotate_bars(self, ax, num1, num2, y, width, dh=0.01, barh=0.05, delta=0): """ Annotate barplot with connections between correlated variables. Parameters ---------------- num1: index of left bar to put bracket over num2: index of right bar to put bracket over y: centers of all bars (like plt.barh() input) width: widths of all bars (like plt.barh() input) dh: height offset over bar / bar + yerr in axes coordinates (0 to 1) barh: bar height in axes coordinates (0 to 1) delta : shifting of the annotation when multiple annotations would overlap """ lx, ly = y[num1], width[num1] rx, ry = y[num2], width[num2] ax_y0, ax_y1 = plt.gca().get_xlim() dh *= (ax_y1 - ax_y0) barh *= (ax_y1 - ax_y0) y = max(ly, ry) + dh barx = [lx, lx, rx, rx] bary = [y, y+barh, y+barh, y] mid = ((lx+rx)/2, y+barh) ax.plot(np.array(bary)+delta, barx, alpha=0.8, clip_on=False) ''' Deprecated 14 March 2022. def annotate_bars(self, ax, bottom_idx, top_idx, x=0, **kwargs): """ Adds a square bracket that contains two points. Used to connect predictors in the predictor ranking plot for highly correlated pairs. """ color = kwargs.get("color", "xkcd:slate gray") ax.annotate( "", xy=(x, bottom_idx), xytext=(x, top_idx), arrowprops=dict( arrowstyle="<->,head_length=0.05,head_width=0.05", ec=color, connectionstyle="bar,fraction=0.2", shrinkA=0.5, shrinkB=0.5, linewidth=0.5, ), ) ''' def get_custom_colormap(self, vals, **kwargs): """Get a custom colormap""" cmap = kwargs.get("cmap", matplotlib.cm.PuOr) bounds = np.linspace(np.nanpercentile(vals, 0), np.nanpercentile(vals, 100), 10) norm = matplotlib.colors.BoundaryNorm( bounds, cmap.N, ) mappable = matplotlib.cm.ScalarMappable( norm=norm, cmap=cmap, ) return mappable, bounds def add_ice_colorbar(self, fig, ax, mappable, cb_label, cdata, fontsize, **kwargs): """Add a colorbar to the right of a panel to accompany ICE color-coded plots""" cb = plt.colorbar(mappable, ax=ax, pad=0.2) cb.set_label(cb_label, size=fontsize) cb.ax.tick_params(labelsize=fontsize) cb.set_alpha(1) cb.outline.set_visible(False) bbox = cb.ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted()) cb.ax.set_aspect((bbox.height - 0.7) * 20) self._to_sci_notation(ax=None, colorbar=cb, ydata=cdata) def add_colorbar( self, fig, plot_obj, colorbar_label, ticks=MaxNLocator(5), ax=None, cax=None, **kwargs, ): """Adds a colorbar to the right of a panel""" # Add a colobar orientation = kwargs.get("orientation", "vertical") pad = kwargs.get("pad", 0.1) shrink = kwargs.get("shrink", 1.1) extend = kwargs.get("extend", "neither") if cax: cbar = plt.colorbar( plot_obj, cax=cax, pad=pad, ticks=ticks, shrink=shrink, orientation=orientation, extend=extend, ) else: cbar = plt.colorbar( plot_obj, ax=ax, pad=pad, ticks=ticks, shrink=shrink, orientation=orientation, extend=extend, ) cbar.ax.tick_params(labelsize=self.FONT_SIZES["tiny"]) cbar.set_label(colorbar_label, size=self.FONT_SIZES["small"]) cbar.outline.set_visible(False) # bbox = cbar.ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted()) # cbar.ax.set_aspect((bbox.height - 0.7) * 20) def save_figure(self, fname, fig=None, bbox_inches="tight", dpi=300, aformat="png"): """Saves the current figure""" plt.savefig(fname=fname, bbox_inches=bbox_inches, dpi=dpi, format=aformat)
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/plot/base_plotting.py
0.727395
0.518973
base_plotting.py
pypi
import matplotlib.pyplot as plt import seaborn as sns from matplotlib.colors import ListedColormap from scipy.stats import gaussian_kde from scipy.ndimage import gaussian_filter import scipy import itertools import numpy as np import matplotlib as mpl from scipy.ndimage import gaussian_filter from .base_plotting import PlotStructure gray4 = (189 / 255.0, 189 / 255.0, 189 / 255.0) gray5 = (150 / 255.0, 150 / 255.0, 150 / 255.0) blue2 = (222 / 255.0, 235 / 255.0, 247 / 255.0) blue5 = (107 / 255.0, 174 / 255.0, 214 / 255.0) orange3 = (253 / 255.0, 208 / 255.0, 162 / 255.0) orange5 = (253 / 255.0, 141 / 255.0, 60 / 255.0) red5 = (251 / 255.0, 106 / 255.0, 74 / 255.0) red6 = (239 / 255.0, 59 / 255.0, 44 / 255.0) purple5 = (158 / 255.0, 154 / 255.0, 200 / 255.0) purple6 = (128 / 255.0, 125 / 255.0, 186 / 255.0) purple9 = (63 / 255.0, 0 / 255.0, 125 / 255.0) custom_cmap = ListedColormap( [ gray4, gray5, blue2, blue5, orange3, orange5, red5, red6, purple5, purple6, purple9, ] ) class PlotScatter(PlotStructure): """ PlotScatter handles plotting 2D scatter between a set of features. It will also optionally overlay KDE contours of the target variable, which is a first-order method for evaluating possible feature interactions and whether the learned relationships are consistent with the data. """ oranges = ListedColormap( ["xkcd:peach", "xkcd:orange", "xkcd:bright orange", "xkcd:rust brown"] ) blues = ListedColormap( ["xkcd:periwinkle blue", "xkcd:clear blue", "xkcd:navy blue"] ) def __init__(self, BASE_FONT_SIZE=12): super().__init__(BASE_FONT_SIZE=BASE_FONT_SIZE) def plot_scatter( self, estimators, X, y, features, display_feature_names={}, display_units={}, subsample=1.0, peak_val=None, kde=False, **kwargs, ): """ Plot KDE between two features and color-code by the target variable """ # TODO: Plot relationships for multiple features!! estimator_names = list(estimators.keys()) n_panels = len(estimator_names) only_one_model = len(estimator_names) == 1 predictions = np.zeros((n_panels, len(y)), dtype=np.float16) j = 0 for estimator_name, estimator in estimators.items(): if hasattr(estimator, "predict_proba"): predictions[j, :] = estimator.predict_proba(X)[:, 1] else: predictions[j, :] = estimator.predict(X) j += 1 kwargs = self.get_fig_props(n_panels, **kwargs) # create subplots, one for each feature fig, axes = self.create_subplots( n_panels=n_panels, sharex=False, sharey=False, **kwargs, ) ax_iterator = self.axes_to_iterator(n_panels, axes) vmax = np.max(predictions) for i, ax in enumerate(ax_iterator): cf = self.scatter_( ax=ax, X=X, features=features, predictions=predictions[i, :], vmax=vmax, **kwargs, ) if subsample < 1.0: size = min(int(subsample * len(y)), len(y)) idxs = np.random.choice(len(y), size=size, replace=False) var1 = X[features[0]].values[idxs] var2 = X[features[1]].values[idxs] y1 = y.values[idxs] else: var1 = X[features[0]].values var2 = X[features[1]].values y1 = np.copy(y) # Shuffle values index = np.arange(len(var1)) np.random.shuffle(index) var1 = var1[index] var2 = var2[index] y1 = y1[index] ax.set_xlabel(display_feature_names.get(features[0], features[0])) ax.set_ylabel(display_feature_names.get(features[1], features[1])) ax.grid(color="#2A3459", alpha=0.6, linestyle="dashed", linewidth=0.5) # bluish dark grey, but slightly lighter than background if kde: cmap_set = [ self.oranges, self.blues, "Reds", "jet", ] classes = np.unique(y1) idx_sets = [np.where(y1 == c) for c in classes] for idxs, cmap in zip(idx_sets, cmap_set): # Plot positive cases cs = self.plot_kde_contours( ax, dy=var2[idxs], dx=var1[idxs], target=y1[idxs], cmap=cmap, ) handles_set = [cs.legend_elements()[-1]] labels = classes legend = ax.legend(handles_set, labels, framealpha=0.5) # Hide the right and top spines ax.spines["right"].set_visible(False) ax.spines["top"].set_visible(False) if not only_one_model: ax.set_title(estimator_names[i]) if n_panels == 1: ax_ = axes else: ax_ = axes.ravel().tolist() if hasattr(estimator, "predict_proba"): cbar_label = "Probability" else: cbar_label = "Response" cbar_label = kwargs.get("cbar_label", cbar_label) fig.colorbar(cf, ax=ax_, label=cbar_label, orientation="horizontal") return fig, axes def scatter_(self, ax, features, X, predictions, vmax, **kwargs): """ Plot 2D scatter of ML predictions; Only plots a random 20000 points """ size = min(20000, len(X)) idxs = np.random.choice(len(X), size=size, replace=False) x_val = X[features[0]].values[idxs] y_val = X[features[1]].values[idxs] z_val = predictions[idxs] # Show highest predictions on top! index = np.argsort(z_val) # index = np.random.choice(len(z_val), size=len(z_val), replace=False) x_val = x_val[index] y_val = y_val[index] z_val = z_val[index] cmap = kwargs.get("cmap", custom_cmap) zmax = vmax + 0.05 if vmax < 1.0 else 1.1 delta = 0.05 if vmax < 0.5 else 0.1 levels = [0, 0.05] + list(np.arange(0.1, zmax, delta)) norm = mpl.colors.BoundaryNorm(levels, cmap.N) sca = ax.scatter( x_val, y_val, c=z_val, cmap=cmap, alpha=0.6, s=3, norm=norm, ) return sca def kernal_density_estimate(self, dy, dx): dy_min = np.amin(dy) dx_min = np.amin(dx) dy_max = np.amax(dy) dx_max = np.amax(dx) x, y = np.mgrid[dx_min:dx_max:100j, dy_min:dy_max:100j] positions = np.vstack([x.ravel(), y.ravel()]) values = np.vstack([dx, dy]) kernel = gaussian_kde(values) f = np.reshape(kernel(positions).T, x.shape) return x, y, f def plot_kde_contours( self, ax, dy, dx, target, cmap, ): x, y, f = self.kernal_density_estimate(dy, dx) temp_linewidths = [0.85, 1.0, 1.25, 1.75] temp_thresh = [75.0, 90.0, 95.0, 97.5] temp_levels = [0.0, 0.0, 0.0, 0.0] for i in range(0, len(temp_thresh)): temp_levels[i] = np.percentile(f.ravel(), temp_thresh[i]) # masked_f = np.ma.masked_where(f < 1.6e-5, f) cs = ax.contour( x, y, f, levels=temp_levels, cmap=cmap, linewidths=temp_linewidths, alpha=1.0, ) fmt = {} for l, s in zip(cs.levels, temp_thresh[::-1]): fmt[l] = f"{int(s)}%" ax.clabel( cs, cs.levels, inline=True, fontsize=self.FONT_SIZES["teensie"], fmt=fmt ) return cs
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/plot/_kde_2d.py
0.665084
0.351589
_kde_2d.py
pypi
import numpy as np import collections from ..common.importance_utils import find_correlated_pairs_among_top_features from ..common.utils import is_list, is_correlated from .base_plotting import PlotStructure import random class PlotImportance(PlotStructure): """ PlotImportance handles plotting feature ranking plotting. The class is designed to be generic enough to handle all possible ranking methods computed within Scikit-Explain. """ SINGLE_VAR_METHODS = [ "backward_multipass", "backward_singlepass", "forward_multipass", "forward_singlepass", "ale_variance", "coefs", "shap_sum", "gini", "combined", "sage", "grouped", "grouped_only", "lime", "tree_interpreter", "sobol_total", "sobol_1st", "sobol_interact" ] DISPLAY_NAMES_DICT = { "backward_multipass": "Backward Multi-Pass", "backward_singlepass": "Backward Single-Pass", "forward_multipass": "Forward Multi-Pass", "forward_singlepass": "Forward Single-Pass", "perm_based": "Perm.-based Interact.", "ale_variance": "ALE-Based Import.", "ale_variance_interactions": "ALE-Based Interac.", "coefs": "Coef.", "shap_sum": "SHAP", "hstat": "H-Stat", "gini": "Gini", "combined": "Method-Average Ranking", "sage": "SAGE Importance Scores", "grouped": "Grouped Importance", "grouped_only": "Grouped Only Importance", "sobol_total" : 'Sobol Total', "sobol_1st" : 'Sobol 1st Order', "sobol_interact" : 'Sobol Higher Orders', } def __init__(self, BASE_FONT_SIZE=12, seaborn_kws=None): super().__init__(BASE_FONT_SIZE=BASE_FONT_SIZE, seaborn_kws=seaborn_kws) def is_bootstrapped(self, scores): """Check if the permutation importance results are bootstrapped""" return np.ndim(scores) > 1 def _get_axes(self, n_panels, **kwargs): """ Determine how many axes are required. """ if n_panels == 1: kwargs["figsize"] = kwargs.get("figsize", (3, 2.5)) elif n_panels == 2 or n_panels == 3: kwargs["figsize"] = kwargs.get("figsize", (6, 2.5)) else: figsize = kwargs.get("figsize", (8, 5)) # create subplots, one for each feature fig, axes = self.create_subplots(n_panels=n_panels, **kwargs) return fig, axes def _check_for_estimators(self, data, estimator_names): """Check that each estimator is in data""" for ds in data: if not ( collections.Counter(ds.attrs["estimators used"]) == collections.Counter(estimator_names) ): raise AttributeError( """ The estimator names given do not match the estimators used to create given data """ ) def plot_variable_importance( self, data, panels, display_feature_names={}, feature_colors=None, num_vars_to_plot=10, estimator_output="raw", plot_correlated_features=False, **kwargs, ): """Plots any variable importance method for a particular estimator Parameters ----------------- data : xarray.Dataset or list of xarray.Dataset Permutation importance dataset for one or more metrics panels: list of 2-tuples of estimator names and rank method E.g., panels = [('singlepass', 'Random Forest', ('multipass', 'Random Forest') ] will plot the singlepass and multipass results for the random forest model. Possible methods include 'multipass', 'singlepass', 'perm_based', 'ale_variance', or 'ale_variance_interactions' display_feature_names : dict A dict mapping feature names to readable, "pretty" feature names feature_colors : dict A dict mapping features to various colors. Helpful for color coding groups of features num_vars_to_plot : int Number of top variables to plot (defalut is None and will use number of multipass results) kwargs: - xlabels - ylabel - xticks - p_values - colinear_features - rho_threshold """ xlabels = kwargs.get("xlabels", None) ylabels = kwargs.get("ylabels", None) xticks = kwargs.get("xticks", None) title = kwargs.get("title", "") p_values = kwargs.get("p_values", None) colinear_features = kwargs.get("colinear_features", None) rho_threshold = kwargs.get("rho_threshold", 0.8) plot_reference_score = kwargs.get("plot_reference_score", True) plot_error = kwargs.get('plot_error', True) only_one_method = all([m[0] == panels[0][0] for m in panels]) only_one_estimator = all([m[1] == panels[0][1] for m in panels]) if not only_one_method: kwargs["hspace"] = kwargs.get("hspace", 0.6) if plot_correlated_features: X = kwargs.get("X", None) if X is None or X.empty: raise ValueError( "Must provide X to InterpretToolkit to compute the correlations!" ) corr_matrix = X.corr().abs() data = [data] if not is_list(data) else data n_panels = len(panels) fig, axes = self._get_axes(n_panels, **kwargs) ax_iterator = self.axes_to_iterator(n_panels, axes) for i, (panel, ax) in enumerate(zip(panels, ax_iterator)): # Set the facecolor. #ax.set_facecolor(kwargs.get("facecolor", (0.95, 0.95, 0.95))) method, estimator_name = panel results = data[i] if xlabels is not None: ax.set_xlabel(xlabels[i], fontsize=self.FONT_SIZES["small"]) else: if not only_one_method: ax.set_xlabel( self.DISPLAY_NAMES_DICT.get(method, method), fontsize=self.FONT_SIZES["small"], ) if not only_one_estimator: ax.set_title(estimator_name) sorted_var_names = list( results[f"{method}_rankings__{estimator_name}"].values ) if num_vars_to_plot is None: num_vars_to_plot == len(sorted_var_names) sorted_var_names = sorted_var_names[ : min(num_vars_to_plot, len(sorted_var_names)) ] sorted_var_names = sorted_var_names[::-1] scores = results[f"{method}_scores__{estimator_name}"].values scores = scores[: min(num_vars_to_plot, len(sorted_var_names))] # Reverse the order. scores = scores[::-1] # Set very small values to zero. scores = np.where(np.absolute(np.round(scores, 17)) < 1e-15, 0, scores) # Get the colors for the plot colors_to_plot = [ self.variable_to_color(var, feature_colors) for var in sorted_var_names ] # Get the predictor names variable_names_to_plot = [ f" {var}" for var in self.convert_vars_to_readable( sorted_var_names, display_feature_names, ) ] if method == "combined": scores_to_plot = np.nanpercentile(scores, 50, axis=1) # Compute the confidence intervals (ci) ci = np.abs( np.nanpercentile(scores, 50, axis=1) - np.nanpercentile(scores, [25, 75], axis=1) ) else: scores_to_plot = np.nanmean(scores, axis=1) ci = np.abs( np.nanpercentile(scores, 50, axis=1) - np.nanpercentile(scores, [2.5, 97.5], axis=1) ) if plot_reference_score: if 'forward' in method: ax.axvline(results[f'all_permuted_score__{estimator_name}'].mean(),color='k',ls=':') elif 'backward' in method: ax.axvline(results[f'original_score__{estimator_name}'].mean(),color='k',ls='--') # Despine self.despine_plt(ax) elinewidth = 0.9 if n_panels <= 3 else 0.5 if plot_error: ax.barh( np.arange(len(scores_to_plot)), scores_to_plot, linewidth=1.75, edgecolor="white", alpha=0.5, color=colors_to_plot, xerr=ci, capsize=3.0, ecolor="k", error_kw=dict( alpha=0.2, elinewidth=elinewidth, ), zorder=2, ) else: ax.barh( np.arange(len(scores_to_plot)), scores_to_plot, linewidth=1.75, edgecolor="white", alpha=0.5, color=colors_to_plot, zorder=2, ) if plot_correlated_features: self._add_correlated_brackets( ax, np.arange(len(scores_to_plot)), scores_to_plot, corr_matrix, sorted_var_names, rho_threshold ) if num_vars_to_plot >= 20: size = kwargs.get("fontsize", self.FONT_SIZES["teensie"] - 3) elif num_vars_to_plot > 10: size = kwargs.get("fontsize", self.FONT_SIZES["teensie"] - 2) else: size = kwargs.get("fontsize", self.FONT_SIZES["teensie"] - 1) # Put the variable names _into_ the plot if method not in self.SINGLE_VAR_METHODS and plot_correlated_features: pass # This is code is not flexible at the moment. #results_dict = is_correlated( # corr_matrix, sorted_var_names, rho_threshold=rho_threshold #) if colinear_features is None: fontweight = ["light"] * len(variable_names_to_plot) colors = ["k"] * len(variable_names_to_plot) else: # Bold text if the VIF > threshold (indicates a multicolinear predictor) fontweight = [ "bold" if v in colinear_features else "light" for v in sorted_var_names ] # Bold text if value is insignificant. colors = ["xkcd:medium blue" if v in colinear_features else "k" for v in sorted_var_names] ax.set_yticks(range(len(variable_names_to_plot))) ax.set_yticklabels(variable_names_to_plot) labels = ax.get_yticklabels() # Bold var names ##[label.set_fontweight(opt) for opt, label in zip(fontweight, labels)] [label.set_color(c) for c, label in zip(colors, labels)] ax.tick_params(axis="both", which="both", length=0) if xticks is not None: ax.set_xticks(xticks) else: self.set_n_ticks(ax, option="x") xlabel = ( self.DISPLAY_NAMES_DICT.get(method, method) if (only_one_method and xlabels is None) else "" ) major_ax = self.set_major_axis_labels( fig, xlabel=xlabel, ylabel_left="", ylabel_right="", title=title, fontsize=self.FONT_SIZES["small"], **kwargs, ) if ylabels is not None: self.set_row_labels( labels=ylabels, axes=axes, pos=-1, pad=1.15, rotation=270, **kwargs ) self.add_alphabet_label( n_panels, axes, pos=kwargs.get("alphabet_pos", (0.9, 0.09)), alphabet_fontsize = kwargs.get("alphabet_fontsize", 10) ) # Necessary to make sure that the tick labels for the feature names # do overlap another ax. fig.tight_layout() return fig, axes def _add_correlated_brackets(self, ax, y, width, corr_matrix, top_features, rho_threshold): """ Add bracket connecting features above a given correlation threshold. Parameters ------------------ ax : matplotlib.ax.Axes object y : width : corr_matrix: top_features: rho_threshold: """ get_colors = lambda n: list( map(lambda i: "#" + "%06x" % random.randint(0, 0xFFFFFF), range(n)) ) _, pair_indices = find_correlated_pairs_among_top_features( corr_matrix, top_features, rho_threshold=rho_threshold, ) colors = get_colors(len(pair_indices)) top_indices, bottom_indices = [], [] for p, color in zip(pair_indices, colors): delta=0 if p[0] > p[1]: bottom_idx = p[1] top_idx = p[0] else: bottom_idx = p[0] top_idx = p[1] # If a feature has already shown up in a correlated pair, # then we want to shift the brackets slightly for ease of # interpretation. if bottom_idx in bottom_indices or bottom_idx in top_indices: delta += 0.1 if top_idx in top_indices or top_idx in bottom_indices: delta += 0.1 top_indices.append(top_idx) bottom_indices.append(bottom_idx) self.annotate_bars(ax, bottom_idx, top_idx, y=y, width=width, delta=delta) # You can fill this in by using a dictionary with {var_name: legible_name} def convert_vars_to_readable(self, variables_list, VARIABLE_NAMES_DICT): """Substitutes out variable names for human-readable ones :param variables_list: a list of variable names :returns: a copy of the list with human-readable names """ human_readable_list = list() for var in variables_list: if var in VARIABLE_NAMES_DICT: human_readable_list.append(VARIABLE_NAMES_DICT[var]) else: human_readable_list.append(var) return human_readable_list # This could easily be expanded with a dictionary def variable_to_color(self, var, VARIABLES_COLOR_DICT): """ Returns the color for each variable. """ if var == "No Permutations": return "xkcd:pastel red" else: if VARIABLES_COLOR_DICT is None: return "xkcd:powder blue" elif not isinstance(VARIABLES_COLOR_DICT, dict) and isinstance( VARIABLES_COLOR_DICT, str ): return VARIABLES_COLOR_DICT else: return VARIABLES_COLOR_DICT[var]
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/plot/plot_permutation_importance.py
0.730578
0.371479
plot_permutation_importance.py
pypi
import matplotlib.pyplot as plt import seaborn as sns def rounding(v): """Rounding for pretty plots""" if v > 100: return int(round(v)) elif v > 0 and v < 100: return round(v, 1) elif v >= 0.1 and v < 1: return round(v, 1) elif v >= 0 and v < 0.1: return round(v, 3) def box_and_whisker( X_train, top_preds, example, display_feature_names={}, display_units={}, **kwargs ): """Create interpretability graphic""" color = kwargs.get("bar_color", "lightblue") f, axes = plt.subplots(dpi=300, nrows=len(top_preds), figsize=(4, 5)) sns.despine( fig=f, ax=axes, top=True, right=True, left=True, bottom=False, offset=None, trim=False, ) box_plots = [] for ax, v in zip(axes, top_preds): box_plot = ax.boxplot( x=X_train[v], vert=False, whis=[0, 100], patch_artist=True, widths=0.35 ) box_plots.append(box_plot) ax.annotate( display_feature_names.get(v, v) + " (" + display_units.get(v, v) + ")", xy=(0.9, 1.15), xycoords="axes fraction", ) ax.annotate( rounding(example[v]), xy=(0.9, 0.7), xycoords="axes fraction", fontsize=6, color="red", ) # plot vertical lines ax.axvline(x=example[v], color="red", zorder=5) # Remove y tick labels ax.set_yticks( [], ) # fill with colors for bplot in box_plots: for patch in bplot["boxes"]: patch.set_facecolor(color) for line in bplot["means"]: line.set_color(color) plt.subplots_adjust(wspace=5.75) f.suptitle("Training Set Distribution for Top Predictors") axes[0].set_title( "Vertical red bars show current values for this object", fontsize=8, pad=25, color="red", ) f.tight_layout() return f, axes
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/plot/_box_and_whisker.py
0.754192
0.526404
_box_and_whisker.py
pypi
from functools import partial from sklearn.metrics._base import _average_binary_score from sklearn.utils.multiclass import type_of_target from sklearn.metrics import ( brier_score_loss, average_precision_score, precision_recall_curve, ) import numpy as np def brier_skill_score(y_values, forecast_probabilities): """Computes the brier skill score""" climo = np.mean((y_values - np.mean(y_values)) ** 2) return 1.0 - brier_score_loss(y_values, forecast_probabilities) / climo def modified_precision(precision, known_skew, new_skew): """ Modify the success ratio according to equation (3) from Lampert and Gancarski (2014). """ precision[precision < 1e-5] = 1e-5 term1 = new_skew / (1.0 - new_skew) term2 = (1 / precision) - 1.0 denom = known_skew + ((1 - known_skew) * term1 * term2) return known_skew / denom def calc_sr_min(skew): pod = np.linspace(0, 1, 100) sr_min = (skew * pod) / (1 - skew + (skew * pod)) return sr_min def _binary_uninterpolated_average_precision( y_true, y_score, known_skew, new_skew, pos_label=1, sample_weight=None ): precision, recall, _ = precision_recall_curve( y_true, y_score, pos_label=pos_label, sample_weight=sample_weight ) # Return the step function integral # The following works because the last entry of precision is # guaranteed to be 1, as returned by precision_recall_curve if known_skew is not None: precision = modified_precision(precision, known_skew, new_skew) return -np.sum(np.diff(recall) * np.array(precision)[:-1]) def min_aupdc( y_true, pos_label, average, sample_weight=None, known_skew=None, new_skew=None ): """ Compute the minimum possible area under the performance diagram curve. Essentially, a vote of NO for all predictions. """ min_score = np.zeros((len(y_true))) average_precision = partial( _binary_uninterpolated_average_precision, known_skew=known_skew, new_skew=new_skew, pos_label=pos_label, ) ap_min = _average_binary_score( average_precision, y_true, min_score, average, sample_weight=sample_weight ) return ap_min def norm_aupdc( y_true, y_score, known_skew=None, *, average="macro", pos_label=1, sample_weight=None, min_method="random", ): """ Compute the normalized modified average precision. Normalization removes the no-skill region either based on skew or random classifier performance. Modification alters success ratio to be consistent with a known skew. Parameters: ------------------- y_true, array of (n_samples,) Binary, truth labels (0,1) y_score, array of (n_samples,) Model predictions (either determinstic or probabilistic) known_skew, float between 0 and 1 Known or reference skew (# of 1 / n_samples) for computing the modified success ratio. min_method, 'skew' or 'random' If 'skew', then the normalization is based on the minimum AUPDC formula presented in Boyd et al. (2012). If 'random', then the normalization is based on the minimum AUPDC for a random classifier, which is equal to the known skew. Boyd, 2012: Unachievable Region in Precision-Recall Space and Its Effect on Empirical Evaluation, ArXiv """ new_skew = np.mean(y_true) if known_skew is None: known_skew = new_skew y_type = type_of_target(y_true) if y_type == "multilabel-indicator" and pos_label != 1: raise ValueError( "Parameter pos_label is fixed to 1 for " "multilabel-indicator y_true. Do not set " "pos_label or set pos_label to 1." ) elif y_type == "binary": # Convert to Python primitive type to avoid NumPy type / Python str # comparison. See https://github.com/numpy/numpy/issues/6784 present_labels = np.unique(y_true).tolist() if len(present_labels) == 2 and pos_label not in present_labels: raise ValueError( f"pos_label={pos_label} is not a valid label. It should be " f"one of {present_labels}" ) average_precision = partial( _binary_uninterpolated_average_precision, known_skew=known_skew, new_skew=new_skew, pos_label=pos_label, ) ap = _average_binary_score( average_precision, y_true, y_score, average, sample_weight=sample_weight ) if min_method == "random": ap_min = known_skew elif min_method == "skew": ap_min = min_aupdc( y_true, pos_label, average, sample_weight=sample_weight, known_skew=known_skew, new_skew=new_skew, ) naupdc = (ap - ap_min) / (1.0 - ap_min) return naupdc
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/common/metrics.py
0.920567
0.582996
metrics.py
pypi
import xarray as xr import numpy as np from skexplain.common.utils import compute_bootstrap_indices import pandas as pd def method_average_ranking(data, features, methods, estimator_names, n_features=12): """ Compute the median ranking across the results of different ranking methods. Also, include the 25-75th percentile ranking uncertainty. Parameters ------------ data : list of xarray.Dataset The set of predictor ranking results to average over. methods : list of string The ranking methods to use from the data (see plot_importance for examples) estimator_names : string or list of strings Name of the estimator(s). Returns -------- rankings_dict_avg : dict feature : median ranking pairs rankings_sorted : np.array Sorted median rankings (lower values indicates higher rank) feature_sorted : np.array The features corresponding the ranks in ``rankings_sorted`` xerr """ rankings_dict = {f: [] for f in features} for d, method in zip(data, methods): for estimator_name in estimator_names: features = d[f"{method}_rankings__{estimator_name}"].values[:n_features] rankings = {f: i for i, f in enumerate(features)} for f in features: try: rankings_dict[f].append(rankings[f]) except: rankings_dict[f].append(np.nan) max_len = np.max([len(rankings_dict[k]) for k in rankings_dict.keys()]) for k in rankings_dict.keys(): l = rankings_dict[k] if len(l) < max_len: delta = max_len - len(l) rankings_dict[k] = l + [np.nan] * delta rankings_dict_avg = { f: np.nanpercentile(rankings_dict[f], 50) for f in rankings_dict.keys() } features = np.array(list(rankings_dict_avg.keys())) rankings = np.array([rankings_dict_avg[f] for f in features]) idxs = np.argsort(rankings) rankings_sorted = rankings[idxs] features_ranked = features[idxs] scores = np.array([rankings_dict[f] for f in features_ranked]) data = {} data[f"combined_rankings__{estimator_name}"] = ( [f"n_vars_avg"], features_ranked, ) data[f"combined_scores__{estimator_name}"] = ( [f"n_vars_avg", "n_bootstrap"], scores, ) data = xr.Dataset(data) return data def non_increasing(L): # Check for decreasing scores. return all(x >= y for x, y in zip(L, L[1:])) def compute_importance(results, scoring_strategy, direction): """ Compute the importance scores from the permutation importance results. The importance score varies depending on the orientation of the loss metric and whether it is multipass or singlepass. Parameters -------------- results : InterpretToolkit.permutation_importance results xr.Dataset scoring_strategy : 'minimize' or 'maximize' Whether the strategy for assessing importance was based on minimizing or maximing the performance metric after permuting features (e.g., the goal is to 'maximize' loss metrics like MSE, but 'minimize' rank metrics like AUC) direction : 'forward' or 'backward' Whether the permutation method was 'forward' or 'backward'. Returns -------------- results : xarray.Dataset scores for each estimator and multi/singlepass are converted to proper importance scores. """ if scoring_strategy == 'argmin_of_mean': scoring_strategy = 'minimize' elif scoring_strategy == 'argmax_of_mean': scoring_strategy = 'maximize' print(direction, scoring_strategy) estimators = results.attrs["estimators used"] for estimator in estimators: orig_score = results[f"original_score__{estimator}"].values if direction == 'forward': all_permuted_score = results[f"all_permuted_score__{estimator}"].values for mode in ["singlepass", "multipass"]: permute_scores = results[f"{mode}_scores__{estimator}"].values if direction == 'forward': # For a loss metric, forward importance is generically defined # as the error(X_J') - error(X_j') where J is the set of # all features while j is some subset of J or a single feature. if scoring_strategy == 'maximize': # E.g., AUC, NAUPDC, CSI, BSS imp = permute_scores - all_permuted_score elif scoring_strategy == 'minimize': # For a rank-based metric, importance is defined opposite # of the loss metric [ error(X_j') - error(X_J') ] # E.g., MSE, BS, etc. print('This happened for forward!') imp = all_permuted_score - permute_scores elif direction == 'backward': # For a loss metric, backward importance is generically defined # as the error(X_j') - error(X_j) where j is some subset or # a single feature. if scoring_strategy == 'minimize': imp = orig_score - permute_scores elif scoring_strategy == 'maximize': # For a rank-based metric, it is defined opposite of that above. # i.e., error(X_j) - error(X_j') print('this happened for backward!') imp = permute_scores - orig_score """ decreasing = non_increasing(np.mean(permute_scores, axis=1)) if decreasing: if orientation == "negative": # Singlepass MSE imp = permute_scores - orig_score else: # Backward Multipass on AUC/AUPDC (permuted_score - (1-orig_score)). # Most positively-oriented metrics top off at 1. top = np.max(permute_scores) imp = permute_scores - (top - orig_score) else: if orientation == "negative": # Forward Multipass MSE top = np.max(permute_scores) imp = (top + orig_score) - permute_scores else: # Singlepass AUC/NAUPDC imp = orig_score - permute_scores """ # Normalize the importance score so that range is [0,1] imp = imp / (np.percentile(imp, 99) - np.percentile(imp, 1)) results[f"{mode}_scores__{estimator}"] = ( [f"n_vars_{mode}", "n_bootstrap"], imp, ) return results def to_skexplain_importance( importances, estimator_name, feature_names, method, normalize=False, bootstrap_axis=0, ): """ Convert feature ranking-based scores from non-permutation-importance methods computed by scikit-explain or other methods into a skexplain-style datset to leverage the built-in plotting code. This method handles the ranking and sorting of the importance values by assuming higher values equal higher importance. Caution: This method assumes that higher values equal higher importance! Parameters --------------- importances : 1d or 2d array-like The feature importance scores. The code assumes that 2D arrays are the result of bootstrapping. Users can declare the bootstrapping axis with `bootstrap_axis`. By default, the first axis (=0) is the bootstrap axis for skexplain methods bootstrap_axis : int (default=0) estimator_name : str The estimator name. Used for plotting and creating the dataset. feature_names : array-like of shape (n_features) The feature names. Used for plotting and creating the dataset. method : 'sage', 'coefs', 'shap_std', 'shap_sum', 'tree_interpreter', 'lime' or str The name of the feature ranking method. The named method perform specific operations. For example, local methods like 'shap_sum', 'tree_interpreter', 'lime' will sum the importance values to determine feature ranking. normalize : True/False (default=False) If True, normalize the feature importance values using min-max scaling. This is useful when comparing importance across different methods. """ bootstrap = False if method == "sage": importances_std = importances.std importances = importances.values elif method == "coefs": importances = np.absolute(importances) elif method == "shap_std": # Compute the std(SHAP) importances = np.nanstd(importances, axis=0) elif method == "shap_sum" or method == "tree_interpreter" or method == 'lime': # Compute sum of abs values importances = np.nansum(np.absolute(importances), axis=0) else: if np.ndim(importances) == 2: # average over bootstrapping bootstrap = True importances_to_save = importances.copy() importances = np.nanmean(importances, axis=bootstrap_axis) # Sort from higher score to lower score ranked_indices = np.argsort(importances)[::-1] if bootstrap: scores_ranked = importances_to_save[ranked_indices, :] else: scores_ranked = importances[ranked_indices] if method == "sage": std_ranked = importances_std[ranked_indices] features_ranked = np.array(feature_names)[ranked_indices] data = {} data[f"{method}_rankings__{estimator_name}"] = ( [f"n_vars_{method}"], features_ranked, ) if not bootstrap: scores_ranked = scores_ranked.reshape(len(scores_ranked), 1) importances = importances.reshape(len(importances), 1) if normalize: # Normalize the importance score so that range is [0,1] scores_ranked = scores_ranked / ( np.percentile(scores_ranked, 99) - np.percentile(scores_ranked, 1) ) data[f"{method}_scores__{estimator_name}"] = ( [f"n_vars_{method}", "n_bootstrap"], scores_ranked, ) if method == "sage": data[f"sage_scores_std__{estimator_name}"] = ( [f"n_vars_sage"], std_ranked, ) data = xr.Dataset(data) data.attrs["estimators used"] = estimator_name data.attrs["estimator output"] = "probability" return data def combine_top_features(results_dict, n_vars=None): """Combines the list of top features from different estimators into a single list where duplicates are removed. Args: ------------- results_dict : dict n_vars : integer """ if n_vars is None: n_vars = 1000 combined_features = [] for estimator_name in results_dict.keys(): features = results_dict[estimator_name] combined_features.append(features) unique_features = list(set.intersection(*map(set, combined_features)))[:n_vars] return unique_features def retrieve_important_vars(results, estimator_names, multipass=True): """ Return a list of the important features stored in the ImportanceObject Args: ------------------- results : python object ImportanceObject from PermutationImportance multipass : boolean if True, returns the multipass permutation importance results else returns the singlepass permutation importance results Returns: top_features : list a list of features with order determined by the permutation importance method """ perm_method = "multipass" if multipass else "singlepass" direction = results.attrs['direction'] important_vars_dict = {} for estimator_name in estimator_names: top_features = list(results[f"{direction}_{perm_method}_rankings__{estimator_name}"].values) important_vars_dict[estimator_name] = top_features return important_vars_dict def find_correlated_pairs_among_top_features( corr_matrix, top_features, rho_threshold=0.8, ): """ Of the top features, find correlated pairs above some linear correlation coefficient threshold Args: ---------------------- corr_matrix : pandas.DataFrame top_features : list of strings rho_threshold : float """ top_feature_indices = {f: i for i, f in enumerate(top_features)} sub_corr_matrix = corr_matrix[top_features].loc[top_features] pairs = [] for feature in top_features: # try: most_corr_feature = ( sub_corr_matrix[feature].sort_values(ascending=False).index[1] ) # except: # continue most_corr_value = sub_corr_matrix[feature].sort_values(ascending=False)[1] if round(most_corr_value, 5) >= rho_threshold: pairs.append((feature, most_corr_feature)) pairs = list(set([tuple(sorted(t)) for t in pairs])) pair_indices = [ (top_feature_indices[p[0]], top_feature_indices[p[1]]) for p in pairs ] return pairs, pair_indices def all_permuted_score(estimator, X, y, evaluation_fn, n_permute, subsample, random_seed=123, class_index=1): random_state = np.random.RandomState(random_seed) inds = random_state.permutation(len(X)) if isinstance(X, pd.DataFrame): X = X.values inds_set = compute_bootstrap_indices(X, subsample=1.0, n_bootstrap=n_permute, seed=90) scores = [] for inds in inds_set: X_sampled = X[inds, :] X_permuted = np.array([ X_sampled[inds, i] for i in range(X.shape[1])]).T if hasattr(estimator, 'predict_proba'): predictions = estimator.predict_proba(X_permuted)[:] # For binary classification problems. if predictions.shape[1] == 2: predictions = predictions[:,1] #print (predictions.shape) elif hasattr(estimator, 'predict'): predictions = estimator.predict(X_permuted)[:] else: raise AttributeError(f'{estimator} does not have .predict or .predict_proba!') scores.append(evaluation_fn(y, predictions)) return np.array(scores)
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/common/importance_utils.py
0.885749
0.579311
importance_utils.py
pypi
import numpy as np import xarray as xr import pandas as pd from collections import ChainMap from statsmodels.distributions.empirical_distribution import ECDF from scipy.stats import t from sklearn.linear_model import Ridge class MissingFeaturesError(Exception): """ Raised when features are missing. E.g., All features are require for IAS or MEC """ def __init__(self, estimator_name, missing_features): self.message = f"""ALE for {estimator_name} was not computed for all features. These features were missing: {missing_features}""" super().__init__(self.message) def check_all_features_for_ale(ale, estimator_names, features): """ Is there ALE values for each feature """ data_vars = ale.data_vars for estimator_name in estimator_names: _list = [True if f'{f}__{estimator_name}__ale' in data_vars else False for f in features] if not all(_list): missing_features = np.array(features)[np.where(~np.array(_list))[0]] raise MissingFeaturesError(estimator_name, missing_features) def flatten_nested_list(list_of_lists): """Turn a list of list into a single, flatten list""" all_elements_are_lists = all([is_list(item) for item in list_of_lists]) if not all_elements_are_lists: new_list_of_lists = [] for item in list_of_lists: if is_list(item): new_list_of_lists.append(item) else: new_list_of_lists.append([item]) list_of_lists = new_list_of_lists return [item for elem in list_of_lists for item in elem] def is_dataset(data): return isinstance(data, xr.Dataset) def is_dataframe(data): return isinstance(data, pd.DataFrame) def check_is_permuted(X, X_permuted): permuted_features = [] for f in X.columns: if not np.array_equal(X.loc[:, f], X_permuted.loc[:, f]): permuted_features.append(f) return permuted_features def is_correlated(corr_matrix, feature_pairs, rho_threshold=0.8): """ Returns dict where the key are the feature pairs and the items are booleans of whether the pair is linearly correlated above the given threshold. """ results = {} for pair in feature_pairs: f1, f2 = pair.split("__") corr = corr_matrix[f1][f2] results[pair] = round(corr, 3) >= rho_threshold return results def is_fitted(estimator): """ Checks if a scikit-learn estimator/transformer has already been fit. Parameters ---------- estimator: scikit-learn estimator (e.g. RandomForestClassifier) or transformer (e.g. MinMaxScaler) object Returns ------- Boolean that indicates if ``estimator`` has already been fit (True) or not (False). """ attrs = [v for v in vars(estimator) if v.endswith("_") and not v.startswith("__")] return len(attrs) != 0 def determine_feature_dtype(X, features): """ Determine if any features are categorical. """ feature_names = list(X.columns) non_cat_features = [] cat_features = [] for f in features: if f not in feature_names: raise KeyError(f"'{f}' is not a valid feature.") if str(X.dtypes[f]) == "category": cat_features.append(f) else: non_cat_features.append(f) return non_cat_features, cat_features def cartesian(array, out=None): """Generate a cartesian product of input array. Parameters Codes comes directly from sklearn/utils/extmath.py ---------- array : list of array-like 1-D array to form the cartesian product of. out : ndarray Array to place the cartesian product in. Returns ------- out : ndarray 2-D array of shape (M, len(array)) containing cartesian products formed of input array. X -------- >>> cartesian(([1, 2, 3], [4, 5], [6, 7])) array([[1, 4, 6], [1, 4, 7], [1, 5, 6], [1, 5, 7], [2, 4, 6], [2, 4, 7], [2, 5, 6], [2, 5, 7], [3, 4, 6], [3, 4, 7], [3, 5, 6], [3, 5, 7]]) """ array = [np.asarray(x) for x in array] shape = (len(x) for x in array) dtype = array[0].dtype ix = np.indices(shape) ix = ix.reshape(len(array), -1).T if out is None: out = np.empty_like(ix, dtype=dtype) for n, arr in enumerate(array): out[:, n] = array[n][ix[:, n]] return out def to_dataframe(results, estimator_names, feature_names): """ Convert the feature contribution results to a pandas.DataFrame with nested indexing. """ # results[0] = dict of avg. contributions per estimator # results[1] = dict of avg. feature values per estimator contrib_names = feature_names.copy() contrib_names += ["Bias"] nested_key = results[0][estimator_names[0]].keys() dframes = [] for key in nested_key: data = [] for name in estimator_names: contribs_dict = results[0][name][key] vals_dict = results[1][name][key] data.append( [contribs_dict[f] for f in contrib_names] + [vals_dict[f] for f in feature_names] ) column_names = [f + "_contrib" for f in contrib_names] + [ f + "_val" for f in feature_names ] df = pd.DataFrame(data, columns=column_names, index=estimator_names) dframes.append(df) result = pd.concat(dframes, keys=list(nested_key)) return result def to_xarray(data): """Converts data dict to xarray.Dataset""" ds = xr.Dataset(data) return ds def is_str(a): """Check if argument is a string""" return isinstance(a, str) def is_list(a): """Check if argument is a list""" return isinstance(a, list) def to_list(a): """Convert argument to a list""" return [a] def is_tuple(a): """Check if argument is a tuple""" return isinstance(a, tuple) def is_valid_feature(features, official_feature_list): """Check if a feature is valid""" for f in features: if isinstance(f, tuple): for sub_f in f: if sub_f not in official_feature_list: raise Exception(f"Feature {sub_f} is not a valid feature!") else: if f not in official_feature_list: raise Exception(f"Feature {f} is not a valid feature!") def is_classifier(estimator): """Return True if the given estimator is (probably) a classifier. Parameters Function from base.py in sklearn ---------- estimator : object Estimator object to test. Returns ------- out : bool True if estimator is a classifier and False otherwise. """ return getattr(estimator, "_estimator_type", None) == "classifier" def is_regressor(estimator): """Return True if the given estimator is (probably) a regressor. Parameters Functions from base.py in sklearn ---------- estimator : object Estimator object to test. Returns ------- out : bool True if estimator is a regressor and False otherwise. """ return getattr(estimator, "_estimator_type", None) == "regressor" def is_all_dict(alist): """Check if every element of a list are dicts""" return all([isinstance(l, dict) for l in alist]) def compute_bootstrap_indices(X, subsample=1.0, n_bootstrap=1, seed=90): """ Routine to generate the indices for bootstrapped X. Args: ---------------- X : pandas.DataFrame, numpy.array subsample : float or integer n_bootstrap : integer Return: ---------------- bootstrap_indices : list list of indices of the size of subsample or subsample*len(X) """ base_random_state = np.random.RandomState(seed=seed) random_num_set = base_random_state.choice(10000, size=n_bootstrap, replace=False) random_states = [np.random.RandomState(s) for s in random_num_set] n_samples = len(X) size = int(n_samples * subsample) if subsample <= 1.0 else subsample bootstrap_indices = [ random_state.choice(range(n_samples), size=size).tolist() for random_state in random_states ] return bootstrap_indices def merge_dict(dicts): """Merge a list of dicts into a single dict""" return dict(ChainMap(*dicts)) def merge_nested_dict(dicts): """ Merge a list of nested dicts into a single dict """ merged_dict = {} for d in dicts: for key in d.keys(): for subkey in d[key].keys(): if key not in list(merged_dict.keys()): merged_dict[key] = {subkey: {}} merged_dict[key][subkey] = d[key][subkey] return merged_dict def is_outlier(points, thresh=3.5): """ Returns a boolean array with True if points are outliers and False otherwise. Parameters: ----------- points : An numobservations by numdimensions array of observations thresh : The modified z-score to use as a threshold. Observations with a modified z-score (based on the median absolute deviation) greater than this value will be classified as outliers. Returns: -------- mask : A numobservations-length boolean array. References: ---------- Boris Iglewicz and David Hoaglin (1993), "Volume 16: How to Detect and Handle Outliers", The ASQC Basic References in Quality Control: Statistical Techniques, Edward F. Mykytka, Ph.D., Editor. """ if len(points.shape) == 1: points = points[:, None] median = np.median(points, axis=0) diff = np.sum((points - median) ** 2, axis=-1) diff = np.sqrt(diff) med_abs_deviation = np.median(diff) modified_z_score = 0.6745 * diff / med_abs_deviation return modified_z_score > thresh def cmds(D, k=2): """Classical multidimensional scaling Theory and code references: https://en.wikipedia.org/wiki/Multidimensional_scaling#Classical_multidimensional_scaling http://www.nervouscomputer.com/hfs/cmdscale-in-python/ Arguments: D -- A squared matrix-like object (array, DataFrame, ....), usually a distance matrix """ n = D.shape[0] if D.shape[0] != D.shape[1]: raise Exception("The matrix D should be squared") if k > (n - 1): raise Exception("k should be an integer <= D.shape[0] - 1") # (1) Set up the squared proximity matrix D_double = np.square(D) # (2) Apply double centering: using the centering matrix # centering matrix center_mat = np.eye(n) - np.ones((n, n)) / n # apply the centering B = -(1 / 2) * center_mat.dot(D_double).dot(center_mat) # (3) Determine the m largest eigenvalues # (where m is the number of dimensions desired for the output) # extract the eigenvalues eigenvals, eigenvecs = np.linalg.eigh(B) # sort descending idx = np.argsort(eigenvals)[::-1] eigenvals = eigenvals[idx] eigenvecs = eigenvecs[:, idx] # (4) Now, X=eigenvecs.dot(eigen_sqrt_diag), # where eigen_sqrt_diag = diag(sqrt(eigenvals)) eigen_sqrt_diag = np.diag(np.sqrt(eigenvals[0:k])) ret = eigenvecs[:, 0:k].dot(eigen_sqrt_diag) return ret def order_groups(X, feature): """Assign an order to the values of a categorical feature. The function returns an order to the unique values in X[feature] according to their similarity based on the other features. The distance between two categories is the sum over the distances of each feature. Arguments: X -- A pandas DataFrame containing all the features to considering in the ordering (including the categorical feature to be ordered). feature -- String, the name of the column holding the categorical feature to be ordered. """ features = X.columns # groups = X[feature].cat.categories.values groups = X[feature].unique() D_cumu = pd.DataFrame(0, index=groups, columns=groups) K = len(groups) for j in set(features) - set([feature]): D = pd.DataFrame(index=groups, columns=groups) # discrete/factor feature j # e.g. j = 'color' if (X[j].dtypes.name == "category") | ( (len(X[j].unique()) <= 10) & ("float" not in X[j].dtypes.name) ): # counts and proportions of each value in j in each group in 'feature' cross_counts = pd.crosstab(X[feature], X[j]) cross_props = cross_counts.div(np.sum(cross_counts, axis=1), axis=0) for i in range(K): group = groups[i] D_values = abs(cross_props - cross_props.loc[group]).sum(axis=1) / 2 D.loc[group, :] = D_values D.loc[:, group] = D_values else: # continuous feature j # e.g. j = 'length' # extract the 1/100 quantiles of the feature j seq = np.arange(0, 1, 1 / 100) q_X_j = X[j].quantile(seq).to_list() # get the ecdf (empiricial cumulative distribution function) # compute the function from the data points in each group X_ecdf = X.groupby(feature)[j].agg(ECDF) # apply each of the functions on the quantiles # i.e. for each quantile value get the probability that j will take # a value less than or equal to this value. q_ecdf = X_ecdf.apply(lambda x: x(q_X_j)) for i in range(K): group = groups[i] D_values = q_ecdf.apply(lambda x: max(abs(x - q_ecdf[group]))) D.loc[group, :] = D_values D.loc[:, group] = D_values D_cumu = D_cumu + D # To avoid numpy.core._exceptions._UFuncInputCastingError, convert to dtype float32 D_cumu = D_cumu.astype(float) # reduce the dimension of the cumulative distance matrix to 1 D1D = cmds(D_cumu, 1).flatten() # order groups based on the values order_idx = D1D.argsort() groups_ordered = D_cumu.index[D1D.argsort()] return pd.Series(range(K), index=groups_ordered) def quantile_ied(x_vec, q): """ Inverse of empirical distribution function (quantile R type 1). More details in https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.mquantiles.html https://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html https://en.wikipedia.org/wiki/Quantile Arguments: x_vec -- A pandas series containing the values to compute the quantile for q -- An array of probabilities (values between 0 and 1) """ x_vec = x_vec.sort_values() n = len(x_vec) - 1 m = 0 j = (n * q + m).astype(int) # location of the value g = n * q + m - j gamma = (g != 0).astype(int) quant_res = (1 - gamma) * x_vec.shift(1, fill_value=0).iloc[j] + gamma * x_vec.iloc[ j ] quant_res.index = q # add min at quantile zero and max at quantile one (if needed) if 0 in q: quant_res.loc[0] = x_vec.min() if 1 in q: quant_res.loc[1] = x_vec.max() return quant_res def CI_estimate(x_vec, C=0.95): """Estimate the size of the confidence interval of a data sample. The confidence interval of the given data sample (x_vec) is [mean(x_vec) - returned value, mean(x_vec) + returned value]. """ alpha = 1 - C n = len(x_vec) stand_err = x_vec.std() / np.sqrt(n) critical_val = 1 - (alpha / 2) z_star = stand_err * t.ppf(critical_val, n - 1) return z_star dict_disc_to_bin = { 'quartile': [25, 50, 75], 'quintile': [20, 40, 60, 80], 'decile': [10, 20, 30, 40, 50, 60, 70, 80, 90] } def ridge_solve(tup): data_synthetic_onehot, model_pred, weights = tup solver = Ridge(alpha=1, fit_intercept=True) solver.fit(data_synthetic_onehot, model_pred, sample_weight=weights.ravel()) # Get explanations importance = solver.coef_[ data_synthetic_onehot[0].toarray().ravel() == 1].ravel() bias = solver.intercept_ return importance, bias def kernel_fn(distances, kernel_width): return np.sqrt(np.exp(-(distances ** 2) / kernel_width ** 2)) def discretize(X, percentiles=[25, 50, 75], all_bins=None): if all_bins is None: all_bins = np.percentile(X, percentiles, axis=0).T return (np.array([np.digitize(a, bins) for (a, bins) in zip(X.T, all_bins)]).T, all_bins)
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/common/utils.py
0.792304
0.412767
utils.py
pypi
import numpy as np import time import _pickle as cPickle from sklearn.metrics.scorer import _BaseScorer class TimeScorer(_BaseScorer): def _score(self, method_caller, estimator, X, y_true=None, n_iter=1, unit=True, scoring=None, tradeoff=None, sample_weight=None): """ Evaluate prediction latency. Parameters ---------- method_caller : callable Returns predictions given an estimator, method name, and other arguments, potentially caching results. estimator : object Trained estimator to use for scoring. X : array-like or sparse matrix Test data that will be fed to estimator.predict. y_true : array-like, default None Gold standard target values for X. Not necessary for _TimeScorer. n_iter : int, default 1 Number of timing runs. unit : bool, default True Use per-unit latency or total latency. scoring: scorer object, default None Scorer used for trade-off. tradeoff: float, default None Multiplier for tradeoff. Returns ------- score : float Custom score combining scoring method (optional) and estimator prediction latency (ms). """ # overwrite kwargs from _kwargs if "n_iter" in self._kwargs.keys(): n_iter = self._kwargs["n_iter"] if "unit" in self._kwargs.keys(): unit = self._kwargs["unit"] if "scoring" in self._kwargs.keys(): scoring = self._kwargs["scoring"] if "tradeoff" in self._kwargs.keys(): tradeoff = self._kwargs["tradeoff"] # run timing iterations count = 0 time_sum = 0 while count < n_iter: count += 1 if unit: time_sum += np.sum([ self._elapsed(estimator, [x]) for x in X]) else: time_sum += self._elapsed(estimator, X) unit_time = 1000 * float((time_sum / float(n_iter)) / float(len(X))) if scoring and tradeoff: scoring_score = scoring(estimator, X, y_true) return scoring_score - (tradeoff * unit_time) else: return 1. / unit_time def _elapsed(self, estimator, X): """ Return elapsed time for predict method of estimator on X. """ start_time = time.time() y_pred = estimator.predict(X) end_time = time.time() return end_time - start_time class MemoryScorer(_BaseScorer): def _score(self, method_caller, estimator, X=None, y_true=None, scoring=None, tradeoff=None, sample_weight=None): """ Score using estimated memory of pickled estimator object. Parameters ---------- method_caller : callable Returns predictions given an estimator, method name, and other arguments, potentially caching results. estimator : object Trained estimator to use for scoring. X : array-like or sparse matrix Test data that will be fed to estimator.predict. Not necessary for _MemoryScorer. y_true : array-like, default None Gold standard target values for X. Not necessary for _MemoryScorer. scoring: scorer object, default None Scorer used for trade-off. tradeoff: float, default None Multiplier for tradeoff. Returns ------- score : float Custom score combining scoring method (optional) and estimator memory (MB). """ # overwrite kwargs from _kwargs if "scoring" in self._kwargs.keys(): scoring = self._kwargs["scoring"] if "tradeoff" in self._kwargs.keys(): tradeoff = self._kwargs["tradeoff"] obj_size = (0.000001 * float(len(cPickle.dumps(estimator)))) if scoring and tradeoff: scoring_score = scoring(estimator, X, y_true) return scoring_score - (tradeoff * obj_size) else: return 1. / obj_size class CombinedScorer(_BaseScorer): def _score(self, method_caller, estimator, X=None, y_true=None, scoring=None, sample_weight=None): """ Combine multiple scorers using the average of their scores. Parameters ---------- method_caller : callable Returns predictions given an estimator, method name, and other arguments, potentially caching results. estimator : object Trained estimator to use for scoring. X : array-like or sparse matrix Test data that will be fed to estimator.predict. Not necessary for _MemoryScorer. y_true : array-like, default None Gold standard target values for X. Not necessary for _MemoryScorer. scoring: list of scorer objects, default None List of scorers to average. Returns ------- score : float Custom score combining input scoring methods using the mean score.. """ # overwrite kwargs from _kwargs if "scoring" in self._kwargs.keys(): scoring = self._kwargs["scoring"] if (not isinstance(scoring, list)) and (not isinstance(scoring, tuple)): scoring = [scoring] return np.mean([x(estimator, X, y_true) for x in scoring]) def cluster_distribution_score(X, labels): """ Scoring function which scores the resulting cluster distribution accross classes. A more even distribution indicates a higher score. Parameters ---------- X : array-like, shape (``n_samples``, ``n_features``) List of ``n_features``-dimensional data points. Each row corresponds to a single data point. labels : array-like, shape (``n_samples``,) Predicted labels for each sample. Returns ------- score : float The resulting Cluster Distribution score. """ n_clusters = float(len(np.unique(labels))) max_count = float(np.max(np.bincount(labels))) return 1.0 / ((max_count / len(labels)) / (1.0 / n_clusters))
/scikit-ext-0.1.16.tar.gz/scikit-ext-0.1.16/scikit_ext/scorers.py
0.910438
0.401219
scorers.py
pypi
import numpy as np import pandas as pd from scipy.sparse import csr_matrix from scipy.stats import rankdata from sklearn.model_selection import GridSearchCV from sklearn.multiclass import OneVsRestClassifier from sklearn.preprocessing import normalize from sklearn.base import ( BaseEstimator, ClassifierMixin, is_classifier, clone) from sklearn.utils.metaestimators import if_delegate_has_method from sklearn.model_selection._split import check_cv from sklearn.model_selection._search import BaseSearchCV from sklearn.model_selection import cross_val_score from sklearn.exceptions import NotFittedError from sklearn.metrics import calinski_harabasz_score from sklearn.pipeline import Pipeline class ZoomGridSearchCV(GridSearchCV): """ Fits multiple ``GridSearchCV`` models, updating the ``param_grid`` after each iteration. The update looks at successful parameter values for each grid key. A new list of values is created which expands the resolution of the search values centered around the best performing value of the previous fit. This allows the standard grid search process to start with a small number of distant values for each parameter, and zoom in as the better performing corner of the hyperparameter search space becomes clear. The process only updates paramter keys whose values are all of type ``int`` or are all of type ``float``. Any other data type valued parameters or mixed parameters will simply be copied and reused for each iteration. The only stopping criteria for iterations is the ``n_iter`` parameter. Inherits ``GridSearchCV`` so all methods and attributes are identical except for ``fit`` which is overriden by a method looping through the ``fit`` method of ``GridSearchCV``. Ultimately, the class exactly resembles a fitted ``GridSearchCV`` after ``fit`` is run. Running ``fit`` with ``n_iter = 0`` is identical to funning ``fit`` with ``GridSearchCV``. """ def __init__(self, estimator, param_grid, n_iter=1, **kwargs): GridSearchCV.__init__( self, estimator, param_grid, **kwargs) self._fit = GridSearchCV.fit self.n_iter=n_iter def fit(self, X, y=None, groups=None, **fit_params): """ Run fit with all sets of parameters. For ``n_iter`` iterations, zoom in on successful parameters, creating a new parameter grid and refitting. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. **fit_params : dict of string -> object Parameters passed to the ``fit`` method of the estimator """ n = -1 while n < self.n_iter: if n > -1: self._update_grid() if self.verbose > 0: print("Grid Updated on Iteration {0}:".format(n)) print(self.param_grid) else: if self.verbose > 0: print("Initial Grid:") print(self.param_grid) GridSearchCV.fit(self, X, y=y, groups=groups, **fit_params) n += 1 def _update_grid(self): """ Update parameter grid based on previous fit results """ results = pd.DataFrame(self.cv_results_) # get parameters to update update_params = {} for key, value in self.param_grid.items(): if all(isinstance(x, int) for x in value): updated_value = self._update_elements( results, key, value, dtype=int) elif all(isinstance(x, float) for x in value): updated_value = self._update_elements( results, key, value, dtype=float) else: updated_value = value if len(updated_value) > 0: update_params[key] = updated_value # update parameter grid attribute self.param_grid = update_params def _update_elements(self, results, key, value, dtype=int): """ Update elements of a single param_grid key, value pair """ tmp = (results.loc[~pd.isnull(results["param_{0}".format(key)]), ["param_{0}".format(key), "rank_test_score"]] .sort_values("rank_test_score")) best_val = tmp["param_{0}".format(key)].values[0] value_range = (np.max(value) - np.min(value)) / 5.0 val = ( list( np.linspace(best_val, best_val + value_range, int(round(len(value) / 2.0)))) + list( np.linspace(best_val - value_range, best_val, int(round(len(value) / 2.0))))) val = list(np.unique([dtype(x) for x in val])) if all(x >= 0 for x in value): val = [x for x in val if x >= 0] elif all(x <= 0 for x in value): val = [x for x in val if x <= 0] return val class PrunedPipeline(Pipeline): """ A standard sklearn feature Pipeline with additional pruning method. After fitting, the pruning method is applied to the fitted pipeline. This applies the feature selection directly to the fitted vocabulary (and idf values if applicable), removing all elements of these attributes that will not ultimately survive the feature selection filter. The ``PrunedPipeline`` will make idential predictions as a similarly trained ``Pipeline``. However, it will require less memory and will make faster predictions. Parameters ---------- steps : list List of (name, transform) tuples (implementing fit/transform) that are chained, in the order in which they are chained, with the last object an estimator. memory : None, str or object with the joblib.Memory interface, optional Used to cache the fitted transformers of the pipeline. By default, no caching is performed. If a string is given, it is the path to the caching directory. Enabling caching triggers a clone of the transformers before fitting. Therefore, the transformer instance given to the pipeline cannot be inspected directly. Use the attribute ``named_steps`` or ``steps`` to inspect estimators within the pipeline. Caching the transformers is advantageous when fitting is time consuming. vectorizer_name : str, default vec Name of ``Pipeline`` step which performs feature extraction. Any transformer with a ``vocabulary_``dictionary can be the step with this name. Ideal transformers are of types sklearn.feature_extraction.text.CountVectorizer or sklearn.feature_extraction.text.TfidfVectorizer. selector_name : str, default select Name of ``Pipeline`` step which performs feature selection. Any transformer with a ``get_support`` method returning an iterable of booleans with length ``len(vocabulary_)`` can be the step with this name. Ideal transformers are of type sklearn.feature_selection.univariate_selection._BaseFilter. Attributes ---------- named_steps : bunch object, a dictionary with attribute access Read-only attribute to access any step parameter by user given name. Keys are step names and values are steps parameters. """ def __init__(self, steps, memory=None, vectorizer_name="vec", selector_name="select", verbose=False): self.steps = steps self.memory = memory self.verbose = verbose self.vectorizer_name = vectorizer_name self.selector_name = selector_name self._validate_steps() self._validate_prune() def fit(self, X, y=None, **fit_params): """ Fit the model Fit all the transforms one after the other and transform the data, then fit the transformed data using the final estimator. Perform prune after standard pipeline fit. Parameters ---------- X : iterable Training data. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Training targets. Must fulfill label requirements for all steps of the pipeline. **fit_params : dict of string -> object Parameters passed to the ``fit`` method of each step, where each parameter name is prefixed such that parameter ``p`` for step ``s`` has key ``s__p``. Returns ------- self : PrunedPipeline This estimator """ # standard Pipeline fit method self._validate_prune() Xt, fit_params = self._fit(X, y, **fit_params) if self._final_estimator is not None: self._final_estimator.fit(Xt, y, **fit_params) # prune pipeline if self.selector_name and self.vectorizer_name: self._prune() return self def _validate_prune(self): """ Validate prune step inputs """ names, estimators = zip(*self.steps) for name in [self.selector_name, self.vectorizer_name]: if name: if not name in names: raise ValueError( "Name {0} should exist in steps".format( name)) self.selector_index = names.index(self.selector_name) self.vectorizer_index = names.index(self.vectorizer_name) def _prune(self): """ Prune fitted ``Pipeline`` object. The pruner runs the ``get_support`` method from the designated feature selector, returning the selector mask. Then the ``vocabulary_`` (and optional ``idf_`` if exists) attribute is pruned to only contain elements who survive the selector mask. The selector step is then removed from the pipeline. Transform methods on the pipeline will then reflect these changes, reducing the size of the vectorizer and effectively skipping the selector step. """ # collect pipeline step data voc = self.steps[self.vectorizer_index][1].vocabulary_ if hasattr(self.steps[self.vectorizer_index][1], "idf_"): idf = self.steps[self.vectorizer_index][1].idf_ else: idf = None support = self.steps[self.selector_index][1].get_support() # restructure vocabulary terms = [] indices = [] for key, value in voc.items(): terms.append(key) indices.append(value) sort_mask = np.argsort(indices) terms = np.array(terms)[sort_mask] # rebuild vocabulary dictionary new_vocab = {} new_idf = [] count = 0 for index in range(len(terms)): if support[index]: new_vocab[terms[index]] = count if idf is not None: new_idf.append(idf[index]) count += 1 # replace vocabulary self.steps[self.vectorizer_index][1].vocabulary_ = new_vocab if idf is not None: self.steps[self.vectorizer_index][1]._tfidf._idf_diag = csr_matrix(np.diag(new_idf)) removed_step = self.steps.pop(self.selector_index) class MultiGridSearchCV(BaseSearchCV): """ An iterator through multiple GridSearchCV models using various ``estimators`` and associated ``param_grids``. Providing two equal length iterables as required arguments containing estimators and paraeter grids, as well as keyword arguments for GridSearchCV, will then simply iterate through and fit multiple GridSearchCV models, fitting them sequentially. Then the maximum ``best_score_`` is compared accross the GridSearchCV models, and the best one is identified. The best estimator is set as an attribute, ``best_estimator_`` and the best GridSearchCV model is set as an attribute, ``best_grid_search_cv_``. """ def __init__(self, estimators, param_grids, gs_estimator=GridSearchCV, **kwargs): self.estimators=estimators self.param_grids=param_grids self.gs_estimator=gs_estimator self.gs_kwargs=kwargs BaseSearchCV.__init__( self, None, **kwargs) def fit(self, X, y=None): """ Iterate through estimators and param_grids, fitting each, and then chosing the best. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. """ # Iterate through estimators fitting each models = [] for index in range(len(self.estimators)): model = self.gs_estimator( self.estimators[index], self.param_grids[index], **self.gs_kwargs) model.fit(X, y) models.append(model) # Generate cross validation results cv_df = pd.DataFrame() for index in range(len(models)): tmpDf = pd.DataFrame(models[index].cv_results_) tmpDf["grid_search_index"] = index cv_df = cv_df.append(tmpDf, sort=True) cv_df.index = range(len(cv_df)) cv_df = cv_df[[c for c in cv_df.columns if "param_" not in c]] cv_df["rank_test_score"] = map(int, (len(cv_df) + 1) - rankdata(cv_df["mean_test_score"], method="ordinal")) self.cv_results_ = {} for col in cv_df.columns: self.cv_results_[col] = list(cv_df[col].values) # Find best model and set associated attributes self.scores_ = [x.best_score_ for x in models] self.best_index_ = np.argmax(self.scores_) self.best_score_ = models[self.best_index_].best_score_ self.best_grid_search_cv_ = models[self.best_index_] self.best_estimator_ = models[self.best_index_].best_estimator_ self.scorer_ = self.best_grid_search_cv_.scorer_ self.multimetric_ = self.best_grid_search_cv_.multimetric_ self.n_splits_ = self.best_grid_search_cv_.n_splits_ return self class IterRandomEstimator(BaseEstimator, ClassifierMixin): """ Meta-Estimator intended primarily for unsupervised estimators whose fitted model can be heavily dependent on an arbitrary random initialization state. It is best used for problems where a ``fit_predict`` method is intended, so the only data used for prediction will be the same data on which the model was fitted. The ``fit`` method will fit multiple iterations of the same base estimator, varying the ``random_state`` argument for each iteration. The iterations will stop either when ``max_iter`` is reached, or when the target score is obtained. The model does not use cross validation to find the best estimator. It simply fits and scores on the entire input data set. A hyperparaeter is not being optimized here, only random initialization states. The idea is to find the best fitted model, and keep that exact model, rather than to find the best hyperparameter set. """ def __init__(self, estimator, target_score=None, max_iter=10, random_state=None, scoring=calinski_harabasz_score, fit_params=None, verbose=0): self.estimator=estimator self.target_score=target_score self.max_iter=max_iter self.random_state=random_state if not self.random_state: self.random_state = np.random.randint(100) self.fit_params=fit_params self.verbose=verbose self.scoring=scoring def fit(self, X, y=None, **fit_params): """ Run fit on the estimator attribute multiple times with various ``random_state`` arguments and choose the fitted estimator with the best score. Uses ``calinski_harabasz_score`` if no scoring is provided. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. **fit_params : dict of string -> object Parameters passed to the ``fit`` method of the estimator """ estimator = self.estimator estimator.verbose = self.verbose if self.verbose > 0: if not self.target_score: print("Fitting {0} estimators unless a target " "score of {1} is reached".format( self.max_iter, self.target_score)) else: print("Fitting {0} estimators".format( self.max_iter)) count = 0 scores = [] estimators = [] states = [] random_state = self.random_state if not random_state: random_state = n while count < self.max_iter: estimator = clone(estimator) if random_state: random_state = random_state + 1 estimator.random_state = random_state estimator.fit(X, y, **fit_params) labels = estimator.labels_ score = self.scoring(X, labels) scores.append(score) estimators.append(estimator) states.append(random_state) if self.target_score is not None and score > self.target_score: break count += 1 self.best_estimator_ = estimators[np.argmax(scores)] self.best_score_ = np.max(scores) self.best_index_ = np.argmax(scores) self.best_params_ = self.best_estimator_.get_params() self.scores_ = scores self.random_states_ = states class OptimizedEnsemble(BaseSearchCV): """ An optimized ensemble class. Will find the optimal ``n_estimators`` parameter for the given ensemble estimator, according to the specified input parameters. The ``fit`` method will iterate through n_estimators options, starting with n_estimators_init, and using the step_function reursively from there. Stop at max_iter or when the score gain between iterations is less than threshold. The OptimizedEnsemble class can then itself be used as an Estimator, or the ``best_estimator_`` attribute can be accessed directly, which is a fitted version of the input estimator with the optimal parameters. """ def __init__(self, estimator, n_estimators_init=5, threshold=0.01, max_iter=10, step_function=lambda x: x*2, **kwargs): self.n_estimators_init=n_estimators_init self.threshold=threshold self.step_function=step_function self.max_iter=max_iter BaseSearchCV.__init__( self, estimator, **kwargs) def fit(self, X, y, **fit_params): """ Find the optimal ``n_estimators`` parameter using a custom optimization routine. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. **fit_params : dict of string -> object Parameters passed to the ``fit`` method of the estimator """ estimator = self.estimator cv = check_cv(self.cv, y, classifier=is_classifier(estimator)) n_splits = cv.get_n_splits(X, y, groups=None) if self.verbose > 0: print("Fitting {0} folds for each n_estimators candidate, " "for a maximum of {1} candidates, totalling" " a maximum of {2} fits".format(n_splits, self.max_iter, self.max_iter * n_splits)) count = 0 scores = [] n_estimators = [] n_est = self.n_estimators_init while count < self.max_iter: estimator = clone(estimator) estimator.n_estimators = n_est score = np.mean(cross_val_score( estimator, X, y, cv=self.cv, scoring=self.scoring, fit_params=fit_params, verbose=self.verbose, n_jobs=self.n_jobs, pre_dispatch=self.pre_dispatch)) scores.append(score) n_estimators.append(n_est) if (count > 0 and (scores[count] - scores[count - 1]) < self.threshold): break else: best_estimator = estimator count += 1 n_est = self.step_function(n_est) self.scores_ = scores self.n_estimators_list_ = n_estimators if self.refit: self.best_estimator_ = clone(best_estimator) if y is not None: self.best_estimator_.fit(X, y, **fit_params) else: self.best_estimator_.fit(X, **fit_params) self.best_index_ = count - 1 self.best_score_ = self.scores_[count - 1] self.best_n_estimators_ = self.n_estimators_list_[count - 1] self.best_params_ = self.best_estimator_.get_params() return self @if_delegate_has_method(delegate=('best_estimator_', 'estimator')) def score(self, X, y=None): """ Call score on the estimator with the best found parameters. Only available if the underlying estimator supports ``score``. This uses the score defined by the ``best_estimator_.score`` method. Parameters ---------- X : array-like, shape = [n_samples, n_features] Input data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. Returns ------- score : float """ self._check_is_fitted('score') return self.best_estimator_.score(X, y) class OneVsRestAdjClassifier(OneVsRestClassifier): """ One-vs-the-rest (OvR) multiclass strategy Also known as one-vs-all, this strategy consists in fitting one classifier per class. For each classifier, the class is fitted against all the other classes. In addition to its computational efficiency (only n_classes classifiers are needed), one advantage of this approach is its interpretability. Since each class is represented by one and one classifier only, it is possible to gain knowledge about the class by inspecting its corresponding classifier. This is the most commonly used strategy for multiclass classification and is a fair default choice. The adjusted version is a custom extension which overwrites the inherited predict_proba() method with a more flexible method allowing custom normalization for the predicted probabilities. Any norm argument that can be passed directly to sklearn.preprocessing.normalize is allowed. Additionally, norm=None will skip the normalization step alltogeter. To mimick the inherited OneVsRestClassfier behavior, set norm='l2'. All other methods are inherited from OneVsRestClassifier. Parameters ---------- estimator : estimator object An estimator object implementing fit and one of decision_function or predict_proba. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. norm: str, optional, default: None Normalization method to be passed straight into sklearn.preprocessing.normalize as the norm input. A value of None (default) will skip the normalization step. Attributes ---------- estimators_ : list of n_classes estimators Estimators used for predictions. classes_ : array, shape = [n_classes] Class labels. label_binarizer_ : LabelBinarizer object Object used to transform multiclass labels to binary labels and vice-versa. multilabel_ : boolean Whether a OneVsRestClassifier is a multilabel classifier. """ def __init__(self, estimator, norm=None, **kwargs): OneVsRestClassifier.__init__( self, estimator, **kwargs) self.norm = norm def predict_proba(self, X): """ Probability estimates. The returned estimates for all classes are ordered by label of classes. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- T : array-like, shape = [n_samples, n_classes] Returns the probability of the sample for each class in the model, where classes are ordered as they are in self.classes_. """ probs = [] for index in range(len(self.estimators_)): probs.append(self.estimators_[index].predict_proba(X)[:,1]) out = np.array([ [probs[y][index] for y in range(len(self.estimators_))] for index in range(len(probs[0]))]) if self.norm: return normalize(out, norm=self.norm) else: return out
/scikit-ext-0.1.16.tar.gz/scikit-ext-0.1.16/scikit_ext/estimators.py
0.886131
0.543833
estimators.py
pypi
import numpy as np import pandas as pd from sklearn.base import BaseEstimator, TransformerMixin from sklearn.utils import check_array from sklearn.utils.validation import check_is_fitted from skfair.common import as_list def scalar_projection(vec, unto): return vec.dot(unto) / unto.dot(unto) def vector_projection(vec, unto): return scalar_projection(vec, unto) * unto class InformationFilter(BaseEstimator, TransformerMixin): """ The `InformationFilter` uses a variant of the gram smidt process to filter information out of the dataset. This can be useful if you want to filter information out of a dataset because of fairness. To explain how it works: given a training matrix :math:`X` that contains columns :math:`x_1, ..., x_k`. If we assume columns :math:`x_1` and :math:`x_2` to be the sensitive columns then the information-filter will remove information by applying these transformations; .. math:: \\begin{split} v_1 & = x_1 \\\\ v_2 & = x_2 - \\frac{x_2 v_1}{v_1 v_1}\\\\ v_3 & = x_3 - \\frac{x_k v_1}{v_1 v_1} - \\frac{x_2 v_2}{v_2 v_2}\\\\ ... \\\\ v_k & = x_k - \\frac{x_k v_1}{v_1 v_1} - \\frac{x_2 v_2}{v_2 v_2} \\end{split} Concatenating our vectors (but removing the sensitive ones) gives us a new training matrix :math:`X_{fair} = [v_3, ..., v_k]`. :param columns: the columns to filter out this can be a sequence of either int (in the case of numpy) or string (in the case of pandas). :param alpha: parameter to control how much to filter, for alpha=1 we filter out all information while for alpha=0 we don't apply any. """ def __init__(self, columns, alpha=1): self.columns = columns self.alpha = alpha def _check_coltype(self, X): for col in as_list(self.columns): if isinstance(col, str): if isinstance(X, np.ndarray): raise ValueError( f"column {col} is a string but datatype receive is numpy." ) if isinstance(X, pd.DataFrame): if col not in X.columns: raise ValueError(f"column {col} is not in {X.columns}") if isinstance(col, int): if col not in range(np.atleast_2d(np.array(X)).shape[1]): raise ValueError( f"column {col} is out of bounds for input shape {X.shape}" ) def _col_idx(self, X, name): if isinstance(name, str): if isinstance(X, np.ndarray): raise ValueError( "You cannot have a column of type string on a numpy input matrix." ) return {name: i for i, name in enumerate(X.columns)}[name] return name def _make_v_vectors(self, X, col_ids): vs = np.zeros((X.shape[0], len(col_ids))) for i, c in enumerate(col_ids): vs[:, i] = X[:, col_ids[i]] for j in range(0, i): vs[:, i] = vs[:, i] - vector_projection(vs[:, i], vs[:, j]) return vs def fit(self, X, y=None): """Learn the projection required to make the dataset orthogonal to sensitive columns.""" self._check_coltype(X) self.col_ids_ = [ v if isinstance(v, int) else self._col_idx(X, v) for v in as_list(self.columns) ] X = check_array(X, estimator=self) X_fair = X.copy() v_vectors = self._make_v_vectors(X, self.col_ids_) # gram smidt process but only on sensitive attributes for i, col in enumerate(X_fair.T): for v in v_vectors.T: X_fair[:, i] = X_fair[:, i] - vector_projection(X_fair[:, i], v) # we want to learn matrix P: X P = X_fair # this means we first need to create X_fair in order to learn P self.projection_, resid, rank, s = np.linalg.lstsq(X, X_fair, rcond=None) return self def transform(self, X): """Transforms X by applying the information filter.""" check_is_fitted(self, ["projection_", "col_ids_"]) self._check_coltype(X) X = check_array(X, estimator=self) # apply the projection and remove the column we won't need X_fair = X @ self.projection_ X_removed = np.delete(X_fair, self.col_ids_, axis=1) X_orig = np.delete(X, self.col_ids_, axis=1) return self.alpha * np.atleast_2d(X_removed) + (1 - self.alpha) * np.atleast_2d( X_orig )
/scikit-fairness-0.0.1.tar.gz/scikit-fairness-0.0.1/skfair/preprocessing/informationfilter.py
0.883104
0.645888
informationfilter.py
pypi
.. image:: https://raw.githubusercontent.com/GAA-UAM/scikit-fda/develop/docs/logos/title_logo/title_logo.png :alt: scikit-fda: Functional Data Analysis in Python scikit-fda: Functional Data Analysis in Python =================================================== |python|_ |build-status| |docs| |Codecov|_ |PyPIBadge|_ |license|_ |doi| Functional Data Analysis, or FDA, is the field of Statistics that analyses data that depend on a continuous parameter. This package offers classes, methods and functions to give support to FDA in Python. Includes a wide range of utils to work with functional data, and its representation, exploratory analysis, or preprocessing, among other tasks such as inference, classification, regression or clustering of functional data. See documentation for further information on the features included in the package. Documentation ============= The documentation is available at `fda.readthedocs.io/en/stable/ <https://fda.readthedocs.io/en/stable/>`_, which includes detailed information of the different modules, classes and methods of the package, along with several examples showing different functionalities. The documentation of the latest version, corresponding with the develop version of the package, can be found at `fda.readthedocs.io/en/latest/ <https://fda.readthedocs.io/en/latest/>`_. Installation ============ Currently, *scikit-fda* is available in Python 3.6 and 3.7, regardless of the platform. The stable version can be installed via PyPI_: .. code:: pip install scikit-fda Installation from source ------------------------ It is possible to install the latest version of the package, available in the develop branch, by cloning this repository and doing a manual installation. .. code:: bash git clone https://github.com/GAA-UAM/scikit-fda.git pip install ./scikit-fda Make sure that your default Python version is currently supported, or change the python and pip commands by specifying a version, such as ``python3.6``: .. code:: bash git clone https://github.com/GAA-UAM/scikit-fda.git python3.6 -m pip install ./scikit-fda Requirements ------------ *scikit-fda* depends on the following packages: * `cython <https://github.com/cython/cython>`_ - Python to C compiler * `fdasrsf <https://github.com/jdtuck/fdasrsf_python>`_ - SRSF framework * `findiff <https://github.com/maroba/findiff>`_ - Finite differences * `matplotlib <https://github.com/matplotlib/matplotlib>`_ - Plotting with Python * `multimethod <https://github.com/coady/multimethod>`_ - Multiple dispatch * `numpy <https://github.com/numpy/numpy>`_ - The fundamental package for scientific computing with Python * `pandas <https://github.com/pandas-dev/pandas>`_ - Powerful Python data analysis toolkit * `rdata <https://github.com/vnmabus/rdata>`_ - Reader of R datasets in .rda format in Python * `scikit-datasets <https://github.com/daviddiazvico/scikit-datasets>`_ - Scikit-learn compatible datasets * `scikit-learn <https://github.com/scikit-learn/scikit-learn>`_ - Machine learning in Python * `scipy <https://github.com/scipy/scipy>`_ - Scientific computation in Python * `setuptools <https://github.com/pypa/setuptools>`_ - Python Packaging The dependencies are automatically installed. Contributions ============= All contributions are welcome. You can help this project grow in multiple ways, from creating an issue, reporting an improvement or a bug, to doing a repository fork and creating a pull request to the development branch. The people involved at some point in the development of the package can be found in the `contributors file <https://github.com/GAA-UAM/scikit-fda/blob/develop/THANKS.txt>`_. .. Citation ======== If you find this project useful, please cite: .. todo:: Include citation to scikit-fda paper. License ======= The package is licensed under the BSD 3-Clause License. A copy of the license_ can be found along with the code. .. _examples: https://fda.readthedocs.io/en/latest/auto_examples/index.html .. _PyPI: https://pypi.org/project/scikit-fda/ .. |python| image:: https://img.shields.io/pypi/pyversions/scikit-fda.svg .. _python: https://badge.fury.io/py/scikit-fda .. |build-status| image:: https://travis-ci.org/GAA-UAM/scikit-fda.svg?branch=develop :alt: build status :scale: 100% :target: https://travis-ci.com/GAA-UAM/scikit-fda .. |docs| image:: https://readthedocs.org/projects/fda/badge/?version=latest :alt: Documentation Status :scale: 100% :target: http://fda.readthedocs.io/en/latest/?badge=latest .. |Codecov| image:: https://codecov.io/gh/GAA-UAM/scikit-fda/branch/develop/graph/badge.svg .. _Codecov: https://codecov.io/github/GAA-UAM/scikit-fda?branch=develop .. |PyPIBadge| image:: https://badge.fury.io/py/scikit-fda.svg .. _PyPIBadge: https://badge.fury.io/py/scikit-fda .. |license| image:: https://img.shields.io/badge/License-BSD%203--Clause-blue.svg .. _license: https://github.com/GAA-UAM/scikit-fda/blob/master/LICENSE.txt .. |doi| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3468127.svg :target: https://doi.org/10.5281/zenodo.3468127
/scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/README.rst
0.904158
0.76947
README.rst
pypi
from __future__ import annotations from abc import ABC, abstractmethod from typing import TYPE_CHECKING, Any, Generic, TypeVar, overload import sklearn.base if TYPE_CHECKING: from ..typing._numpy import NDArrayFloat, NDArrayInt SelfType = TypeVar("SelfType") TransformerNoTarget = TypeVar( "TransformerNoTarget", bound="TransformerMixin[Any, Any, None]", ) Input = TypeVar("Input", contravariant=True) Output = TypeVar("Output", covariant=True) Target = TypeVar("Target", contravariant=True) TargetPrediction = TypeVar("TargetPrediction") class BaseEstimator( # noqa: D101 ABC, sklearn.base.BaseEstimator, # type: ignore[misc] ): pass # noqa: WPS604 class TransformerMixin( # noqa: D101 ABC, Generic[Input, Output, Target], sklearn.base.TransformerMixin, # type: ignore[misc] ): @overload def fit( self: TransformerNoTarget, X: Input, ) -> TransformerNoTarget: pass @overload def fit( self: SelfType, X: Input, y: Target, ) -> SelfType: pass def fit( # noqa: D102 self: SelfType, X: Input, y: Target | None = None, ) -> SelfType: return self @overload def fit_transform( self: TransformerNoTarget, X: Input, ) -> Output: pass @overload def fit_transform( self, X: Input, y: Target, ) -> Output: pass def fit_transform( # noqa: D102 self, X: Input, y: Target | None = None, **fit_params: Any, ) -> Output: if y is None: return self.fit( # type: ignore[no-any-return] X, **fit_params, ).transform(X) return self.fit( # type: ignore[no-any-return] X, y, **fit_params, ).transform(X) class InductiveTransformerMixin( # noqa: D101 TransformerMixin[Input, Output, Target], ): @abstractmethod def transform( # noqa: D102 self: SelfType, X: Input, ) -> Output: pass class OutlierMixin( # noqa: D101 ABC, Generic[Input], sklearn.base.OutlierMixin, # type: ignore[misc] ): def fit_predict( # noqa: D102 self, X: Input, y: object = None, ) -> NDArrayInt: return self.fit(X, y).predict(X) # type: ignore[no-any-return] class ClassifierMixin( # noqa: D101 ABC, Generic[Input, TargetPrediction], sklearn.base.ClassifierMixin, # type: ignore[misc] ): def fit( # noqa: D102 self: SelfType, X: Input, y: TargetPrediction, ) -> SelfType: return self @abstractmethod def predict( # noqa: D102 self: SelfType, X: Input, ) -> TargetPrediction: pass def score( # noqa: D102 self, X: Input, y: Target, sample_weight: NDArrayFloat | None = None, ) -> float: return super().score( # type: ignore[no-any-return] X, y, sample_weight=sample_weight, ) class ClusterMixin( # noqa: D101 ABC, Generic[Input], sklearn.base.ClusterMixin, # type: ignore[misc] ): def fit_predict( # noqa: D102 self, X: Input, y: object = None, ) -> NDArrayInt: return super().fit_predict(X, y) # type: ignore[no-any-return] class RegressorMixin( # noqa: D101 ABC, Generic[Input, TargetPrediction], sklearn.base.RegressorMixin, # type: ignore[misc] ): def fit( # noqa: D102 self: SelfType, X: Input, y: TargetPrediction, ) -> SelfType: return self @abstractmethod def predict( # noqa: D102 self: SelfType, X: Input, ) -> TargetPrediction: pass def score( # noqa: D102 self, X: Input, y: TargetPrediction, sample_weight: NDArrayFloat | None = None, ) -> float: from ..misc.scoring import r2_score y_pred = self.predict(X) return r2_score( y, y_pred, sample_weight=sample_weight, )
/scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/_utils/_sklearn_adapter.py
0.875814
0.271692
_sklearn_adapter.py
pypi
from __future__ import annotations from typing import TYPE_CHECKING, Optional import numpy as np from scipy.interpolate import PchipInterpolator from ..typing._base import DomainRangeLike from ..typing._numpy import ArrayLike, NDArrayFloat if TYPE_CHECKING: from ..representation import FDataGrid def invert_warping( warping: FDataGrid, *, output_points: Optional[ArrayLike] = None, ) -> FDataGrid: r""" Compute the inverse of a diffeomorphism. Let :math:`\gamma : [a,b] \rightarrow [a,b]` be a function strictly increasing, calculates the corresponding inverse :math:`\gamma^{-1} : [a,b] \rightarrow [a,b]` such that :math:`\gamma^{-1} \circ \gamma = \gamma \circ \gamma^{-1} = \gamma_{id}`. Uses a PCHIP interpolator to compute approximately the inverse. Args: warping: Functions to be inverted. output_points: Set of points where the functions are interpolated to obtain the inverse, by default uses the sample points of the fdatagrid. Returns: Inverse of the original functions. Raises: ValueError: If the functions are not strictly increasing or are multidimensional. Examples: >>> import numpy as np >>> from skfda import FDataGrid We will construct the warping :math:`\gamma : [0,1] \rightarrow [0,1]` wich maps t to t^3. >>> t = np.linspace(0, 1) >>> gamma = FDataGrid(t**3, t) >>> gamma FDataGrid(...) We will compute the inverse. >>> inverse = invert_warping(gamma) >>> inverse FDataGrid(...) The result of the composition should be approximately the identity function . >>> identity = gamma.compose(inverse) >>> identity([0, 0.25, 0.5, 0.75, 1]).round(3) array([[[ 0. ], [ 0.25], [ 0.5 ], [ 0.75], [ 1. ]]]) """ from ..misc.validation import check_fdata_dimensions check_fdata_dimensions( warping, dim_domain=1, dim_codomain=1, ) output_points = ( warping.grid_points[0] if output_points is None else np.asarray(output_points) ) y = warping(output_points)[..., 0] data_matrix = np.empty((warping.n_samples, len(output_points))) for i in range(warping.n_samples): data_matrix[i] = PchipInterpolator(y[i], output_points)(output_points) return warping.copy(data_matrix=data_matrix, grid_points=output_points) def normalize_scale( t: NDArrayFloat, a: float = 0, b: float = 1, ) -> NDArrayFloat: """ Perfoms an afine translation to normalize an interval. Args: t: Array of dim 1 or 2 with at least 2 values. a: Starting point of the new interval. Defaults 0. b: Stopping point of the new interval. Defaults 1. Returns: Array with the transformed interval. """ t = t.T # Broadcast to normalize multiple arrays t1 = np.array(t, copy=True) t1 -= t[0] # Translation to [0, t[-1] - t[0]] t1 *= (b - a) / (t[-1] - t[0]) # Scale to [0, b-a] t1 += a # Translation to [a, b] t1[0] = a # Fix possible round errors t1[-1] = b return t1.T def normalize_warping( warping: FDataGrid, domain_range: Optional[DomainRangeLike] = None, ) -> FDataGrid: r""" Rescale a warping to normalize their :term:`domain`. Given a set of warpings :math:`\gamma_i:[a,b]\rightarrow [a,b]` it is used an affine traslation to change the domain of the transformation to other domain, :math:`\tilde \gamma_i:[\tilde a,\tilde b] \rightarrow [\tilde a, \tilde b]`. Args: warping: Set of warpings to rescale. domain_range: New domain range of the warping. By default it is used the same domain range. Returns: Normalized warpings. """ from ..misc.validation import validate_domain_range domain_range_tuple = ( warping.domain_range[0] if domain_range is None else validate_domain_range(domain_range)[0] ) data_matrix = normalize_scale( warping.data_matrix[..., 0], *domain_range_tuple, ) grid_points = normalize_scale(warping.grid_points[0], *domain_range_tuple) return warping.copy( data_matrix=data_matrix, grid_points=grid_points, domain_range=domain_range, )
/scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/_utils/_warping.py
0.970099
0.665635
_warping.py
pypi
from __future__ import annotations import functools import numbers from functools import singledispatch from typing import ( TYPE_CHECKING, Any, Callable, Iterable, List, Optional, Sequence, Sized, Tuple, Type, TypeVar, Union, cast, overload, ) import numpy as np import scipy.integrate from pandas.api.indexers import check_array_indexer from sklearn.preprocessing import LabelEncoder from sklearn.utils.multiclass import check_classification_targets from typing_extensions import Literal, ParamSpec, Protocol from ..typing._base import GridPoints, GridPointsLike from ..typing._numpy import NDArrayAny, NDArrayFloat, NDArrayInt, NDArrayStr from ._sklearn_adapter import BaseEstimator ArrayDTypeT = TypeVar("ArrayDTypeT", bound="np.generic") if TYPE_CHECKING: from ..representation import FData, FDataGrid from ..representation.basis import Basis from ..representation.extrapolation import ExtrapolationLike T = TypeVar("T", bound=FData) Input = TypeVar("Input", bound=Union[FData, NDArrayFloat]) Output = TypeVar("Output", bound=Union[FData, NDArrayFloat]) Target = TypeVar("Target", bound=NDArrayInt) _MapAcceptableSelf = TypeVar( "_MapAcceptableSelf", bound="_MapAcceptable", ) class _MapAcceptable(Protocol, Sized): def __getitem__( self: _MapAcceptableSelf, __key: Union[slice, NDArrayInt], # noqa: WPS112 ) -> _MapAcceptableSelf: pass @property def nbytes(self) -> int: pass _MapAcceptableT = TypeVar( "_MapAcceptableT", bound=_MapAcceptable, contravariant=True, ) MapFunctionT = TypeVar("MapFunctionT", covariant=True) P = ParamSpec("P") class _MapFunction(Protocol[_MapAcceptableT, P, MapFunctionT]): """Protocol for functions that can be mapped over several arrays.""" def __call__( self, *args: _MapAcceptableT, **kwargs: P.kwargs, ) -> MapFunctionT: pass class _PairwiseFunction(Protocol[_MapAcceptableT, P, MapFunctionT]): """Protocol for pairwise array functions.""" def __call__( self, __arg1: _MapAcceptableT, # noqa: WPS112 __arg2: _MapAcceptableT, # noqa: WPS112 **kwargs: P.kwargs, # type: ignore[name-defined] ) -> MapFunctionT: pass def _to_grid( X: FData, y: FData, eval_points: Optional[NDArrayFloat] = None, ) -> Tuple[FDataGrid, FDataGrid]: """Transform a pair of FDatas in grids to perform calculations.""" from .. import FDataGrid x_is_grid = isinstance(X, FDataGrid) y_is_grid = isinstance(y, FDataGrid) if eval_points is not None: X = X.to_grid(eval_points) y = y.to_grid(eval_points) elif x_is_grid and not y_is_grid: y = y.to_grid(X.grid_points[0]) elif not x_is_grid and y_is_grid: X = X.to_grid(y.grid_points[0]) elif not x_is_grid and not y_is_grid: X = X.to_grid() y = y.to_grid() return X, y def _to_grid_points(grid_points_like: GridPointsLike) -> GridPoints: """Convert to grid points. If the original list is one-dimensional (e.g. [1, 2, 3]), return list to array (in this case [array([1, 2, 3])]). If the original list is two-dimensional (e.g. [[1, 2, 3], [4, 5]]), return a list containing other one-dimensional arrays (in this case [array([1, 2, 3]), array([4, 5])]). In any other case the behaviour is unespecified. """ unidimensional = False if not isinstance(grid_points_like, Iterable): grid_points_like = [grid_points_like] if not isinstance(grid_points_like[0], Iterable): unidimensional = True if unidimensional: return (_int_to_real(np.asarray(grid_points_like)),) return tuple(_int_to_real(np.asarray(i)) for i in grid_points_like) @overload def _cartesian_product( axes: Sequence[np.typing.NDArray[ArrayDTypeT]], *, flatten: bool = True, return_shape: Literal[False] = False, ) -> np.typing.NDArray[ArrayDTypeT]: pass @overload def _cartesian_product( axes: Sequence[np.typing.NDArray[ArrayDTypeT]], *, flatten: bool = True, return_shape: Literal[True], ) -> Tuple[np.typing.NDArray[ArrayDTypeT], Tuple[int, ...]]: pass def _cartesian_product( # noqa: WPS234 axes: Sequence[np.typing.NDArray[ArrayDTypeT]], *, flatten: bool = True, return_shape: bool = False, ) -> ( np.typing.NDArray[ArrayDTypeT] | Tuple[np.typing.NDArray[ArrayDTypeT], Tuple[int, ...]] ): """ Compute the cartesian product of the axes. Computes the cartesian product of the axes and returns a numpy array of 1 dimension with all the possible combinations, for an arbitrary number of dimensions. Args: axes: List with axes. flatten: Whether to return the flatten array or keep one dimension per axis. return_shape: If ``True`` return the shape of the array before flattening. Returns: Numpy 2-D array with all the possible combinations. The entry (i,j) represent the j-th coordinate of the i-th point. If ``return_shape`` is ``True`` returns also the shape of the array before flattening. Examples: >>> from skfda._utils import _cartesian_product >>> axes = [[0,1],[2,3]] >>> _cartesian_product(axes) array([[0, 2], [0, 3], [1, 2], [1, 3]]) >>> axes = [[0,1],[2,3],[4]] >>> _cartesian_product(axes) array([[0, 2, 4], [0, 3, 4], [1, 2, 4], [1, 3, 4]]) >>> axes = [[0,1]] >>> _cartesian_product(axes) array([[0], [1]]) """ cartesian = np.stack(np.meshgrid(*axes, indexing='ij'), -1) shape = cartesian.shape if flatten: cartesian = cartesian.reshape(-1, len(axes)) if return_shape: return cartesian, shape return cartesian # type: ignore[no-any-return] def _same_domain(fd: Union[Basis, FData], fd2: Union[Basis, FData]) -> bool: """Check if the domain range of two objects is the same.""" return np.array_equal(fd.domain_range, fd2.domain_range) def _one_grid_to_points( axes: GridPointsLike, *, dim_domain: int, ) -> Tuple[NDArrayFloat, Tuple[int, ...]]: """ Convert a list of ndarrays, one per domain dimension, in the points. Returns also the shape containing the information of how each point is formed. """ axes = _to_grid_points(axes) if len(axes) != dim_domain: raise ValueError( f"Length of axes should be {dim_domain}", ) cartesian, shape = _cartesian_product(axes, return_shape=True) # Drop domain size dimension, as it is not needed to reshape the output shape = shape[:-1] return cartesian, shape class EvaluateMethod(Protocol): """Evaluation method.""" def __call__( self, __eval_points: NDArrayFloat, # noqa: WPS112 extrapolation: Optional[ExtrapolationLike], aligned: bool, ) -> NDArrayFloat: """Evaluate a function.""" pass @overload def _evaluate_grid( axes: GridPointsLike, *, evaluate_method: EvaluateMethod, n_samples: int, dim_domain: int, dim_codomain: int, extrapolation: Optional[ExtrapolationLike] = None, aligned: Literal[True] = True, ) -> NDArrayFloat: pass @overload def _evaluate_grid( axes: Iterable[GridPointsLike], *, evaluate_method: EvaluateMethod, n_samples: int, dim_domain: int, dim_codomain: int, extrapolation: Optional[ExtrapolationLike] = None, aligned: Literal[False], ) -> NDArrayFloat: pass @overload def _evaluate_grid( axes: Union[GridPointsLike, Iterable[GridPointsLike]], *, evaluate_method: EvaluateMethod, n_samples: int, dim_domain: int, dim_codomain: int, extrapolation: Optional[ExtrapolationLike] = None, aligned: bool, ) -> NDArrayFloat: pass def _evaluate_grid( # noqa: WPS234 axes: Union[GridPointsLike, Iterable[GridPointsLike]], *, evaluate_method: EvaluateMethod, n_samples: int, dim_domain: int, dim_codomain: int, extrapolation: Optional[ExtrapolationLike] = None, aligned: bool = True, ) -> NDArrayFloat: """ Evaluate the functional object in the cartesian grid. This method is called internally by :meth:`evaluate` when the argument `grid` is True. Evaluates the functional object in the grid generated by the cartesian product of the axes. The length of the list of axes should be equal than the domain dimension of the object. If the list of axes has lengths :math:`n_1, n_2, ..., n_m`, where :math:`m` is equal than the dimension of the domain, the result of the evaluation in the grid will be a matrix with :math:`m+1` dimensions and shape :math:`n_{samples} x n_1 x n_2 x ... x n_m`. If `aligned` is false each sample is evaluated in a different grid, and the list of axes should contain a list of axes for each sample. If the domain dimension is 1, the result of the behaviour of the evaluation will be the same than :meth:`evaluate` without the grid option, but with worst performance. Args: axes: List of axes to generated the grid where the object will be evaluated. evaluate_method: Function used to evaluate the functional object. n_samples: Number of samples. dim_domain: Domain dimension. dim_codomain: Codomain dimension. extrapolation: Controls the extrapolation mode for elements outside the domain range. By default it is used the mode defined during the instance of the object. aligned: If False evaluates each sample in a different grid. evaluate_method: method to use to evaluate the points n_samples: number of samples dim_domain: dimension of the domain dim_codomain: dimensions of the codomain Returns: Numpy array with dim_domain + 1 dimensions with the result of the evaluation. Raises: ValueError: If there are a different number of axes than the domain dimension. """ # Compute intersection points and resulting shapes if aligned: axes = cast(GridPointsLike, axes) eval_points, shape = _one_grid_to_points(axes, dim_domain=dim_domain) else: axes_per_sample = cast(Iterable[GridPointsLike], axes) axes_per_sample = list(axes_per_sample) eval_points_tuple, shape_tuple = zip( *[ _one_grid_to_points(a, dim_domain=dim_domain) for a in axes_per_sample ], ) if len(eval_points_tuple) != n_samples: raise ValueError( "Should be provided a list of axis per sample", ) eval_points = np.asarray(eval_points_tuple) # Evaluate the points evaluated = evaluate_method( eval_points, extrapolation=extrapolation, aligned=aligned, ) # Reshape the result if aligned: res = evaluated.reshape( [n_samples] + list(shape) + [dim_codomain], ) else: res = np.asarray([ r.reshape(list(s) + [dim_codomain]) for r, s in zip(evaluated, shape_tuple) ]) return res def nquad_vec( func: Callable[[NDArrayFloat], NDArrayFloat], ranges: Sequence[Tuple[float, float]], ) -> NDArrayFloat: """Perform multiple integration of vector valued functions.""" initial_depth = len(ranges) - 1 def integrate(*args: Any, depth: int) -> NDArrayFloat: # noqa: WPS430 if depth == 0: f = functools.partial(func, *args) else: f = functools.partial(integrate, *args, depth=depth - 1) return scipy.integrate.quad_vec( # type: ignore[no-any-return] f, *ranges[initial_depth - depth], )[0] return integrate(depth=initial_depth) def _map_in_batches( function: _MapFunction[_MapAcceptableT, P, np.typing.NDArray[ArrayDTypeT]], arguments: Tuple[_MapAcceptableT, ...], indexes: Tuple[NDArrayInt, ...], memory_per_batch: Optional[int] = None, *args: P.args, # Should be empty **kwargs: P.kwargs, ) -> np.typing.NDArray[ArrayDTypeT]: """ Map a function over samples of FData or ndarray tuples efficiently. This function prevents a large set of indexes to use all available memory and hang the PC. """ if memory_per_batch is None: # 256MB is not too big memory_per_batch = 256 * 1024 * 1024 # noqa: WPS432 memory_per_element = sum(a.nbytes // len(a) for a in arguments) n_elements_per_batch_allowed = memory_per_batch // memory_per_element if n_elements_per_batch_allowed < 1: raise ValueError("Too few memory allowed for the operation") n_indexes = len(indexes[0]) assert all(n_indexes == len(i) for i in indexes) batches: List[np.typing.NDArray[ArrayDTypeT]] = [] for pos in range(0, n_indexes, n_elements_per_batch_allowed): batch_args = tuple( a[i[pos:pos + n_elements_per_batch_allowed]] for a, i in zip(arguments, indexes) ) batches.append(function(*batch_args, **kwargs)) return np.concatenate(batches, axis=0) def _pairwise_symmetric( function: _PairwiseFunction[ _MapAcceptableT, P, np.typing.NDArray[ArrayDTypeT], ], arg1: _MapAcceptableT, arg2: Optional[_MapAcceptableT] = None, memory_per_batch: Optional[int] = None, *args: P.args, # Should be empty **kwargs: P.kwargs, ) -> np.typing.NDArray[ArrayDTypeT]: """Compute pairwise a commutative function.""" def map_function( *args: _MapAcceptableT, **kwargs: P.kwargs, ) -> np.typing.NDArray[ArrayDTypeT]: """Just to keep Mypy happy.""" return function(args[0], args[1], **kwargs) dim1 = len(arg1) if arg2 is None or arg2 is arg1: triu_indices = np.triu_indices(dim1) triang_vec = _map_in_batches( map_function, (arg1, arg1), triu_indices, memory_per_batch, **kwargs, # type: ignore[arg-type] ) matrix = np.empty((dim1, dim1), dtype=triang_vec.dtype) # Set upper matrix matrix[triu_indices] = triang_vec # Set lower matrix matrix[(triu_indices[1], triu_indices[0])] = triang_vec return matrix dim2 = len(arg2) indices = np.indices((dim1, dim2)) vec = _map_in_batches( map_function, (arg1, arg2), (indices[0].ravel(), indices[1].ravel()), memory_per_batch=memory_per_batch, **kwargs, # type: ignore[arg-type] ) return np.reshape(vec, (dim1, dim2)) def _int_to_real(array: Union[NDArrayInt, NDArrayFloat]) -> NDArrayFloat: """Convert integer arrays to floating point.""" return array + 0.0 def _check_array_key(array: NDArrayAny, key: Any) -> Any: """Check a getitem key.""" key = check_array_indexer(array, key) if isinstance(key, tuple): non_ellipsis = [i for i in key if i is not Ellipsis] if len(non_ellipsis) > 1: raise KeyError(key) key = non_ellipsis[0] if isinstance(key, numbers.Integral): # To accept also numpy ints key = int(key) if key < 0: key = len(array) + key if not 0 <= key < len(array): raise IndexError("index out of bounds") return slice(key, key + 1) return key def _check_estimator(estimator: Type[BaseEstimator]) -> None: from sklearn.utils.estimator_checks import ( check_get_params_invariance, check_set_params, ) name = estimator.__name__ instance = estimator() check_get_params_invariance(name, instance) check_set_params(name, instance) def _classifier_get_classes( y: NDArrayStr | NDArrayInt, ) -> Tuple[NDArrayStr | NDArrayInt, NDArrayInt]: check_classification_targets(y) le = LabelEncoder() y_ind = le.fit_transform(y) classes = le.classes_ if classes.size < 2: raise ValueError( f'The number of classes has to be greater than' f'one; got {classes.size} class', ) return classes, y_ind
/scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/_utils/_utils.py
0.922067
0.426919
_utils.py
pypi
from __future__ import annotations import abc import math from typing import TypeVar import numpy as np import scipy.stats import sklearn from scipy.special import comb from typing_extensions import Literal from ..._utils._sklearn_adapter import BaseEstimator, InductiveTransformerMixin from ...typing._numpy import NDArrayFloat, NDArrayInt T = TypeVar("T", contravariant=True) SelfType = TypeVar("SelfType") _Side = Literal["left", "right"] Input = TypeVar("Input", contravariant=True) class _DepthOrOutlyingness( BaseEstimator, InductiveTransformerMixin[Input, NDArrayFloat, object], ): """Abstract class representing a depth or outlyingness function.""" def fit(self: SelfType, X: Input, y: object = None) -> SelfType: """ Learn the distribution from the observations. Args: X: Functional dataset from which the distribution of the data is inferred. y: Unused. Kept only for convention. Returns: Fitted estimator. """ return self @abc.abstractmethod def transform(self, X: Input) -> NDArrayFloat: """ Compute the depth or outlyingness inside the learned distribution. Args: X: Points whose depth is going to be evaluated. Returns: Depth of each observation. """ pass def fit_transform(self, X: Input, y: object = None) -> NDArrayFloat: """ Compute the depth or outlyingness of each observation. This computation is done with respect to the whole dataset. Args: X: Dataset. y: Unused. Kept only for convention. Returns: Depth of each observation. """ return self.fit(X).transform(X) def __call__( self, X: Input, *, distribution: Input | None = None, ) -> NDArrayFloat: """ Allow the depth or outlyingness to be used as a function. Args: X: Points whose depth is going to be evaluated. distribution: Functional dataset from which the distribution of the data is inferred. If ``None`` it is the same as ``X``. Returns: Depth of each observation. """ copy: _DepthOrOutlyingness[Input] = sklearn.base.clone(self) if distribution is None: return copy.fit_transform(X) return copy.fit(distribution).transform(X) @property def max(self) -> float: """ Maximum (or supremum if there is no maximum) of the possibly predicted values. """ return 1 @property def min(self) -> float: """ Minimum (or infimum if there is no maximum) of the possibly predicted values. """ return 0 class Depth(_DepthOrOutlyingness[T]): """Abstract class representing a depth function.""" class Outlyingness(_DepthOrOutlyingness[T]): """Abstract class representing an outlyingness function.""" def _searchsorted_one_dim( array: NDArrayFloat, values: NDArrayFloat, *, side: _Side = 'left', ) -> NDArrayInt: return np.searchsorted(array, values, side=side) _searchsorted_vectorized = np.vectorize( _searchsorted_one_dim, signature='(n),(m),()->(m)', excluded='side', ) def _searchsorted_ordered( array: NDArrayFloat, values: NDArrayFloat, *, side: _Side = 'left', ) -> NDArrayInt: return _searchsorted_vectorized( # type: ignore[no-any-return] array, values, side=side, ) def _cumulative_distribution(column: NDArrayFloat) -> NDArrayFloat: """ Calculate the cumulative distribution function at each point. Args: column: Array containing the values over which the distribution function is calculated. Returns: Array containing the evaluation at each point of the distribution function. Examples: >>> _cumulative_distribution(np.array([1, 4, 5, 1, 2, 2, 4, 1, 1, 3])) array([ 0.4, 0.9, 1. , 0.4, 0.6, 0.6, 0.9, 0.4, 0.4, 0.7]) """ return _searchsorted_ordered( np.sort(column), column, side='right', ) / len(column) class _UnivariateFraimanMuniz(Depth[NDArrayFloat]): r""" Univariate depth used to compute the Fraiman an Muniz depth. Each column is considered as the samples of an aleatory variable. The univariate depth of each of the samples of each column is calculated as follows: .. math:: D(x) = 1 - \left\lvert \frac{1}{2}- F(x)\right\rvert Where :math:`F` stands for the marginal univariate distribution function of each column. """ def fit(self: SelfType, X: NDArrayFloat, y: object = None) -> SelfType: self._sorted_values = np.sort(X, axis=0) return self def transform(self, X: NDArrayFloat) -> NDArrayFloat: cum_dist = _searchsorted_ordered( np.moveaxis(self._sorted_values, 0, -1), np.moveaxis(X, 0, -1), side='right', ).astype(X.dtype) / len(self._sorted_values) assert cum_dist.shape[-2] == 1 ret = 0.5 - np.moveaxis(cum_dist, -1, 0)[..., 0] ret = - np.abs(ret) ret += 1 return ret @property def min(self) -> float: return 1 / 2 class SimplicialDepth(Depth[NDArrayFloat]): r""" Simplicial depth. The simplicial depth of a point :math:`x` in :math:`\mathbb{R}^p` given a distribution :math:`F` is the probability that a random simplex with its :math:`p + 1` points sampled from :math:`F` contains :math:`x`. References: Liu, R. Y. (1990). On a Notion of Data Depth Based on Random Simplices. The Annals of Statistics, 18(1), 405–414. """ def fit( # noqa: D102 self, X: NDArrayFloat, y: object = None, ) -> SimplicialDepth: self._dim = X.shape[-1] if self._dim == 1: self.sorted_values = np.sort(X, axis=0) else: raise NotImplementedError( "SimplicialDepth is currently only " "implemented for one-dimensional data.", ) return self def transform(self, X: NDArrayFloat) -> NDArrayFloat: # noqa: D102 assert self._dim == X.shape[-1] if self._dim == 1: positions_left = _searchsorted_ordered( np.moveaxis(self.sorted_values, 0, -1), np.moveaxis(X, 0, -1), ) positions_left = np.moveaxis(positions_left, -1, 0)[..., 0] positions_right = _searchsorted_ordered( np.moveaxis(self.sorted_values, 0, -1), np.moveaxis(X, 0, -1), side='right', ) positions_right = np.moveaxis(positions_right, -1, 0)[..., 0] num_strictly_below = positions_left num_strictly_above = len(self.sorted_values) - positions_right total_pairs = comb(len(self.sorted_values), 2) return ( # type: ignore[no-any-return] total_pairs - comb(num_strictly_below, 2) - comb(num_strictly_above, 2) ) / total_pairs class OutlyingnessBasedDepth(Depth[T]): r""" Computes depth based on an outlyingness measure. An outlyingness function :math:`O(x)` can be converted to a depth function as .. math:: D(x) = \frac{1}{1 + O(x)} if :math:`O(x)` is unbounded or as .. math:: D(x) = 1 - \frac{O(x)}{\sup O(x)} if :math:`O(x)` is bounded. If the infimum value of the outlyiness function is not zero, it is subtracted beforehand. Args: outlyingness (Outlyingness): Outlyingness object. References: Serfling, R. (2006). Depth functions in nonparametric multivariate inference. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 72, 1. """ def __init__(self, outlyingness: Outlyingness[T]): self.outlyingness = outlyingness def fit( # noqa: D102 self, X: T, y: object = None, ) -> OutlyingnessBasedDepth[T]: self.outlyingness.fit(X) return self def transform(self, X: T) -> NDArrayFloat: # noqa: D102 outlyingness_values = self.outlyingness.transform(X) min_val = self.outlyingness.min max_val = self.outlyingness.max if math.isinf(max_val): return 1 / (1 + outlyingness_values - min_val) return 1 - (outlyingness_values - min_val) / (max_val - min_val) class StahelDonohoOutlyingness(Outlyingness[NDArrayFloat]): r""" Computes Stahel-Donoho outlyingness. Stahel-Donoho outlyingness is defined as .. math:: \sup_{\|u\|=1} \frac{|u^T x - \text{Med}(u^T X))|}{\text{MAD}(u^TX)} where :math:`\text{X}` is a sample with distribution :math:`F`, :math:`\text{Med}` is the median and :math:`\text{MAD}` is the median absolute deviation. References: Zuo, Y., Cui, H., & He, X. (2004). On the Stahel-Donoho estimator and depth-weighted means of multivariate data. Annals of Statistics, 32(1), 167–188. https://doi.org/10.1214/aos/1079120132 """ def fit( # noqa: D102 self, X: NDArrayFloat, y: object = None, ) -> StahelDonohoOutlyingness: dim = X.shape[-1] if dim == 1: self._location = np.median(X, axis=0) self._scale = scipy.stats.median_abs_deviation(X, axis=0) else: raise NotImplementedError("Only implemented for one dimension") return self def transform(self, X: NDArrayFloat) -> NDArrayFloat: # noqa: D102 dim = X.shape[-1] if dim == 1: # Special case, can be computed exactly diff: NDArrayFloat = np.abs(X - self._location) / self._scale return diff[..., 0] raise NotImplementedError("Only implemented for one dimension") @property def max(self) -> float: return math.inf class ProjectionDepth(OutlyingnessBasedDepth[NDArrayFloat]): """ Computes Projection depth. It is defined as the depth induced by the :class:`Stahel-Donoho outlyingness <StahelDonohoOutlyingness>`. See also: :class:`StahelDonohoOutlyingness`: Stahel-Donoho outlyingness. References: Zuo, Y., Cui, H., & He, X. (2004). On the Stahel-Donoho estimator and depth-weighted means of multivariate data. Annals of Statistics, 32(1), 167–188. https://doi.org/10.1214/aos/1079120132 """ def __init__(self) -> None: super().__init__(outlyingness=StahelDonohoOutlyingness())
/scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/exploratory/depth/multivariate.py
0.946312
0.6372
multivariate.py
pypi
from __future__ import annotations import itertools from typing import TypeVar import numpy as np import scipy.integrate from ..._utils._sklearn_adapter import BaseEstimator from ...misc.metrics import l2_distance from ...misc.metrics._utils import _fit_metric from ...representation import FData, FDataGrid from ...typing._metric import Metric from ...typing._numpy import NDArrayFloat from .multivariate import Depth, SimplicialDepth, _UnivariateFraimanMuniz T = TypeVar("T", bound=FData) class IntegratedDepth(Depth[FDataGrid]): r""" Functional depth as the integral of a multivariate depth. Args: multivariate_depth (Depth): Multivariate depth to integrate. By default it is the one used by Fraiman and Muniz, that is, .. math:: D(x) = 1 - \left\lvert \frac{1}{2}- F(x)\right\rvert Examples: >>> import skfda >>> >>> data_matrix = [[1, 1, 2, 3, 2.5, 2], ... [0.5, 0.5, 1, 2, 1.5, 1], ... [-1, -1, -0.5, 1, 1, 0.5], ... [-0.5, -0.5, -0.5, -1, -1, -1]] >>> grid_points = [0, 2, 4, 6, 8, 10] >>> fd = skfda.FDataGrid(data_matrix, grid_points) >>> depth = skfda.exploratory.depth.IntegratedDepth() >>> depth(fd) array([ 0.5 , 0.75 , 0.925, 0.875]) References: Fraiman, R., & Muniz, G. (2001). Trimmed means for functional data. Test, 10(2), 419–440. https://doi.org/10.1007/BF02595706 """ def __init__( self, *, multivariate_depth: Depth[NDArrayFloat] | None = None, ) -> None: self.multivariate_depth = multivariate_depth def fit( # noqa: D102 self, X: FDataGrid, y: object = None, ) -> IntegratedDepth: self.multivariate_depth_: Depth[NDArrayFloat] if self.multivariate_depth is None: self.multivariate_depth_ = _UnivariateFraimanMuniz() else: self.multivariate_depth_ = self.multivariate_depth self._domain_range = X.domain_range self._grid_points = X.grid_points self.multivariate_depth_.fit(X.data_matrix) return self def transform(self, X: FDataGrid) -> NDArrayFloat: # noqa: D102 pointwise_depth = self.multivariate_depth_.transform(X.data_matrix) interval_len = ( self._domain_range[0][1] - self._domain_range[0][0] ) integrand = pointwise_depth for d, s in zip(X.domain_range, X.grid_points): integrand = scipy.integrate.simps( integrand, x=s, axis=1, ) interval_len = d[1] - d[0] integrand /= interval_len return integrand @property def max(self) -> float: if self.multivariate_depth is None: return 1 return self.multivariate_depth.max @property def min(self) -> float: if self.multivariate_depth is None: return 1 / 2 return self.multivariate_depth.min class ModifiedBandDepth(IntegratedDepth): """ Implementation of Modified Band Depth for functional data. The band depth of each sample is obtained by computing the fraction of time its graph is contained in the bands determined by two sample curves. In the case the fdatagrid :term:`domain` dimension is 2, instead of curves, surfaces determine the bands. In larger dimensions, the hyperplanes determine the bands. Examples: >>> import skfda >>> >>> data_matrix = [[1, 1, 2, 3, 2.5, 2], ... [0.5, 0.5, 1, 2, 1.5, 1], ... [-1, -1, -0.5, 1, 1, 0.5], ... [-0.5, -0.5, -0.5, -1, -1, -1]] >>> grid_points = [0, 2, 4, 6, 8, 10] >>> fd = skfda.FDataGrid(data_matrix, grid_points) >>> depth = skfda.exploratory.depth.ModifiedBandDepth() >>> values = depth(fd) >>> values.round(2) array([ 0.5 , 0.83, 0.73, 0.67]) References: López-Pintado, S., & Romo, J. (2009). On the Concept of Depth for Functional Data. Journal of the American Statistical Association, 104(486), 718–734. https://doi.org/10.1198/jasa.2009.0108 """ def __init__(self) -> None: super().__init__(multivariate_depth=SimplicialDepth()) class BandDepth(Depth[FDataGrid]): """ Implementation of Band Depth for functional data. The band depth of each sample is obtained by computing the fraction of the bands determined by two sample curves containing the whole graph of the first one. In the case the fdatagrid :term:`domain` dimension is 2, instead of curves, surfaces determine the bands. In larger dimensions, the hyperplanes determine the bands. Examples: >>> import skfda >>> >>> data_matrix = [[1, 1, 2, 3, 2.5, 2], ... [0.5, 0.5, 1, 2, 1.5, 1], ... [-1, -1, -0.5, 1, 1, 0.5], ... [-0.5, -0.5, -0.5, -1, -1, -1]] >>> grid_points = [0, 2, 4, 6, 8, 10] >>> fd = skfda.FDataGrid(data_matrix, grid_points) >>> depth = skfda.exploratory.depth.BandDepth() >>> depth(fd) array([ 0.5 , 0.83333333, 0.5 , 0.5 ]) References: López-Pintado, S., & Romo, J. (2009). On the Concept of Depth for Functional Data. Journal of the American Statistical Association, 104(486), 718–734. https://doi.org/10.1198/jasa.2009.0108 """ def fit(self, X: FDataGrid, y: object = None) -> BandDepth: # noqa: D102 if X.dim_codomain != 1: raise NotImplementedError( "Band depth not implemented for vector valued functions", ) self._distribution = X return self def transform(self, X: FDataGrid) -> NDArrayFloat: # noqa: D102 num_in = np.zeros(shape=len(X), dtype=X.data_matrix.dtype) n_total = 0 for f1, f2 in itertools.combinations(self._distribution, 2): between_range_1 = ( (f1.data_matrix <= X.data_matrix) & (X.data_matrix <= f2.data_matrix) ) between_range_2 = ( (f2.data_matrix <= X.data_matrix) & (X.data_matrix <= f1.data_matrix) ) between_range = between_range_1 | between_range_2 num_in += np.all( between_range, axis=tuple(range(1, X.data_matrix.ndim)), ) n_total += 1 return num_in / n_total class DistanceBasedDepth(Depth[FDataGrid], BaseEstimator): r""" Functional depth based on a metric. Parameters: metric: The metric to use as M in the following depth calculation .. math:: D(x) = [1 + M(x, \mu)]^{-1}. as explained in :footcite:`serfling+zuo_2000_depth_function`. Examples: >>> import skfda >>> from skfda.exploratory.depth import DistanceBasedDepth >>> from skfda.misc.metrics import MahalanobisDistance >>> data_matrix = [[1, 1, 2, 3, 2.5, 2], ... [0.5, 0.5, 1, 2, 1.5, 1], ... [-1, -1, -0.5, 1, 1, 0.5], ... [-0.5, -0.5, -0.5, -1, -1, -1]] >>> grid_points = [0, 2, 4, 6, 8, 10] >>> fd = skfda.FDataGrid(data_matrix, grid_points) >>> depth = DistanceBasedDepth(MahalanobisDistance(2)) >>> depth(fd) array([ 0.41897777, 0.8058132 , 0.31097392, 0.31723619]) References: .. footbibliography:: """ def __init__( self, metric: Metric[T] = l2_distance, ) -> None: self.metric = metric def fit( # noqa: D102 self, X: T, y: object = None, ) -> DistanceBasedDepth: """Fit the model using X as training data. Args: X: FDataGrid with the training data or array matrix with shape (n_samples, n_samples) if metric='precomputed'. y: Ignored. Returns: self """ _fit_metric(self.metric, X) self.mean_ = X.mean() return self def transform(self, X: T) -> NDArrayFloat: # noqa: D102 """Compute the depth of given observations. Args: X: FDataGrid with the observations to use in the calculation. Returns: Array with the depths. """ return 1 / (1 + self.metric(X, self.mean_))
/scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/exploratory/depth/_depth.py
0.933081
0.494629
_depth.py
pypi
from __future__ import annotations from builtins import isinstance from typing import TypeVar, Union import numpy as np from scipy import integrate from scipy.stats import rankdata from ...misc.metrics._lp_distances import l2_distance from ...representation import FData, FDataGrid from ...typing._metric import Metric from ...typing._numpy import NDArrayFloat from ..depth import Depth, ModifiedBandDepth F = TypeVar('F', bound=FData) T = TypeVar('T', bound=Union[NDArrayFloat, FData]) def mean( X: F, weights: NDArrayFloat | None = None, ) -> F: """ Compute the mean of all the samples in a FData object. Args: X: Object containing all the samples whose mean is wanted. weights: Sample weight. By default, uniform weight are used. Returns: Mean of all the samples in the original object, as a :term:`functional data object` with just one sample. """ if weights is None: return X.mean() weight = (1 / np.sum(weights)) * weights return (X * weight).sum() def var(X: FData) -> FDataGrid: """ Compute the variance of a set of samples in a FData object. Args: X: Object containing all the set of samples whose variance is desired. Returns: Variance of all the samples in the original object, as a :term:`functional data object` with just one sample. """ return X.var() # type: ignore[no-any-return] def gmean(X: FDataGrid) -> FDataGrid: """ Compute the geometric mean of all the samples in a FDataGrid object. Args: X: Object containing all the samples whose geometric mean is wanted. Returns: Geometric mean of all the samples in the original object, as a :term:`functional data object` with just one sample. """ return X.gmean() def cov(X: FData) -> FDataGrid: """ Compute the covariance. Calculates the covariance matrix representing the covariance of the functional samples at the observation points. Args: X: Object containing different samples of a functional variable. Returns: Covariance of all the samples in the original object, as a :term:`functional data object` with just one sample. """ return X.cov() # type: ignore[no-any-return] def modified_epigraph_index(X: FDataGrid) -> NDArrayFloat: """ Calculate the Modified Epigraph Index of a FDataGrid. The MEI represents the mean time a curve stays below other curve. In this case we will calculate the MEI for each curve in relation with all the other curves of our dataset. """ interval_len = ( X.domain_range[0][1] - X.domain_range[0][0] ) # Array containing at each point the number of curves # are above it. num_functions_above: NDArrayFloat = rankdata( -X.data_matrix, method='max', axis=0, ) - 1 integrand = num_functions_above for d, s in zip(X.domain_range, X.grid_points): integrand = integrate.simps( integrand, x=s, axis=1, ) interval_len = d[1] - d[0] integrand /= interval_len integrand /= X.n_samples return integrand.flatten() def depth_based_median( X: T, depth_method: Depth[T] | None = None, ) -> T: """ Compute the median based on a depth measure. The depth based median is the deepest curve given a certain depth measure. Args: X: Object containing different samples of a functional variable. depth_method: Depth method used to order the data. Defaults to :func:`modified band depth <skfda.exploratory.depth.ModifiedBandDepth>`. Returns: Object containing the computed depth_based median. See also: :func:`geometric_median` """ depth_method_used: Depth[T] if depth_method is None: assert isinstance(X, FDataGrid) depth_method_used = ModifiedBandDepth() else: depth_method_used = depth_method depth = depth_method_used(X) indices_descending_depth = (-depth).argsort(axis=0) # The median is the deepest curve return X[indices_descending_depth[0]] def _weighted_average(X: T, weights: NDArrayFloat) -> T: if isinstance(X, FData): return (X * weights).sum() return (X.T * weights).T.sum(axis=0) # type: ignore[no-any-return] def geometric_median( X: T, *, tol: float = 1.e-8, metric: Metric[T] = l2_distance, ) -> T: r""" Compute the geometric median. The sample geometric median is the point that minimizes the :math:`L_1` norm of the vector of distances to all observations: .. math:: \underset{y \in L(\mathcal{T})}{\arg \min} \sum_{i=1}^N \left \| x_i-y \right \| The geometric median in the functional case is also described in :footcite:`gervini_2008_estimation`. Instead of the proposed algorithm, however, the current implementation uses the corrected Weiszfeld algorithm to compute the median. Args: X: Object containing different samples of a functional variable. tol: tolerance used to check convergence. metric: metric used to compute the vector of distances. By default is the :math:`L_2` distance. Returns: Object containing the computed geometric median. Example: >>> from skfda import FDataGrid >>> data_matrix = [[0.5, 1, 2, .5], [1.5, 1, 4, .5]] >>> X = FDataGrid(data_matrix) >>> median = geometric_median(X) >>> median.data_matrix[0, ..., 0] array([ 1. , 1. , 3. , 0.5]) See also: :func:`depth_based_median` References: .. footbibliography:: """ weights = np.full(len(X), 1 / len(X)) median = _weighted_average(X, weights) distances = metric(X, median) while True: zero_distances = (distances == 0) n_zeros = np.sum(zero_distances) weights_new = ( (1 / distances) / np.sum(1 / distances) if n_zeros == 0 else (1 / n_zeros) * zero_distances ) median_new = _weighted_average(X, weights_new) if l2_distance(median_new, median) < tol: return median_new distances = metric(X, median_new) weights, median = (weights_new, median_new) def trim_mean( X: F, proportiontocut: float, *, depth_method: Depth[F] | None = None, ) -> FDataGrid: """Compute the trimmed means based on a depth measure. The trimmed means consists in computing the mean function without a percentage of least deep curves. That is, we first remove the least deep curves and then we compute the mean as usual. Note that in scipy the leftmost and rightmost proportiontocut data are removed. In this case, as we order the data by the depth, we only remove those that have the least depth values. Args: X: Object containing different samples of a functional variable. proportiontocut: Indicates the percentage of functions to remove. It is not easy to determine as it varies from dataset to dataset. depth_method: Method used to order the data. Defaults to :func:`modified band depth <skfda.exploratory.depth.ModifiedBandDepth>`. Returns: Object containing the computed trimmed mean. """ if depth_method is None: depth_method = ModifiedBandDepth() n_samples_to_keep = (len(X) - int(len(X) * proportiontocut)) # compute the depth of each curve and store the indexes in descending order depth = depth_method(X) indices_descending_depth = (-depth).argsort(axis=0) trimmed_curves = X[indices_descending_depth[:n_samples_to_keep]] return trimmed_curves.mean()
/scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/exploratory/stats/_stats.py
0.980186
0.679205
_stats.py
pypi
from __future__ import annotations import copy import itertools from functools import partial from typing import Generator, List, Sequence, Tuple, Type, cast import numpy as np from matplotlib.artist import Artist from matplotlib.axes import Axes from matplotlib.backend_bases import Event from matplotlib.figure import Figure from matplotlib.widgets import Slider, Widget from ._baseplot import BasePlot from ._utils import _get_axes_shape, _get_figure_and_axes, _set_figure_layout def _set_val_noevents(widget: Widget, val: float) -> None: e = widget.eventson widget.eventson = False widget.set_val(val) widget.eventson = e class MultipleDisplay: """ MultipleDisplay class used to combine and interact with plots. This module is used to combine different BasePlot objects that represent the same curves or surfaces, and represent them together in the same figure. Besides this, it includes the functionality necessary to interact with the graphics by clicking the points, hovering over them... Picking the points allow us to see our selected function standing out among the others in all the axes. It is also possible to add widgets to interact with the plots. Args: displays: Baseplot objects that will be plotted in the fig. criteria: Sequence of criteria used to order the points in the slider widget. The size should be equal to sliders, as each criterion is for one slider. sliders: Sequence of widgets that will be plotted. label_sliders: Label of each of the sliders. chart: Figure over with the graphs are plotted or axis over where the graphs are plotted. If None and ax is also None, the figure is initialized. fig: Figure over with the graphs are plotted in case ax is not specified. If None and ax is also None, the figure is initialized. axes: Axis where the graphs are plotted. If None, see param fig. Attributes: length_data: Number of instances or curves of the different displays. clicked: Boolean indicating whether a point has being clicked. selected_sample: Index of the function selected with the interactive module or widgets. """ def __init__( self, displays: BasePlot | Sequence[BasePlot], criteria: Sequence[float] | Sequence[Sequence[float]] = (), sliders: Type[Widget] | Sequence[Type[Widget]] = (), label_sliders: str | Sequence[str] | None = None, chart: Figure | Axes | None = None, fig: Figure | None = None, axes: Sequence[Axes] | None = None, ): if isinstance(displays, BasePlot): displays = (displays,) self.displays = [copy.copy(d) for d in displays] self._n_graphs = sum(d.n_subplots for d in self.displays) self.length_data = next( d.n_samples for d in self.displays if d.n_samples is not None ) self.sliders: List[Widget] = [] self.selected_sample: int | None = None if len(criteria) != 0 and not isinstance(criteria[0], Sequence): criteria = cast(Sequence[float], criteria) criteria = (criteria,) criteria = cast(Sequence[Sequence[float]], criteria) self.criteria = criteria if not isinstance(sliders, Sequence): sliders = (sliders,) if isinstance(label_sliders, str): label_sliders = (label_sliders,) if len(criteria) != len(sliders): raise ValueError( f"Size of criteria, and sliders should be equal " f"(have {len(criteria)} and {len(sliders)}).", ) self._init_axes( chart, fig=fig, axes=axes, extra=len(criteria), ) self._create_sliders( criteria=criteria, sliders=sliders, label_sliders=label_sliders, ) def _init_axes( self, chart: Figure | Axes | None = None, *, fig: Figure | None = None, axes: Sequence[Axes] | None = None, extra: int = 0, ) -> None: """ Initialize the axes and figure. Args: chart: Figure over with the graphs are plotted or axis over where the graphs are plotted. If None and ax is also None, the figure is initialized. fig: Figure over with the graphs are plotted in case ax is not specified. If None and ax is also None, the figure is initialized. axes: Axis where the graphs are plotted. If None, see param fig. extra: integer indicating the extra axes needed due to the necessity for them to plot the sliders. """ widget_aspect = 1 / 8 fig, axes = _get_figure_and_axes(chart, fig, axes) if len(axes) not in {0, self._n_graphs + extra}: raise ValueError("Invalid number of axes.") n_rows, n_cols = _get_axes_shape(self._n_graphs + extra) dim = list( itertools.chain.from_iterable( [d.dim] * d.n_subplots for d in self.displays ), ) + [2] * extra number_axes = n_rows * n_cols fig, axes = _set_figure_layout( fig=fig, axes=axes, n_axes=self._n_graphs + extra, dim=dim, ) for i in range(self._n_graphs, number_axes): if i >= self._n_graphs + extra: axes[i].set_visible(False) else: axes[i].set_box_aspect(widget_aspect) self.fig = fig self.axes = axes def _create_sliders( self, *, criteria: Sequence[Sequence[float]], sliders: Sequence[Type[Widget]], label_sliders: Sequence[str] | None = None, ) -> None: """ Create the sliders with the criteria selected. Args: criteria: Different criterion for each of the sliders. sliders: Widget types. label_sliders: Sequence of the names of each slider. """ for c in criteria: if len(c) != self.length_data: raise ValueError( "Slider criteria should be of the same size as data", ) for k, criterion in enumerate(criteria): label = label_sliders[k] if label_sliders else None self.add_slider( axes=self.axes[self._n_graphs + k], criterion=criterion, widget_class=sliders[k], label=label, ) def plot(self) -> Figure: """ Plot Multiple Display method. Plot the different BasePlot objects and widgets selected. Activates the interactivity functionality of clicking and hovering points. When clicking a point, the rest will be made partially transparent in all the corresponding graphs. Returns: fig: figure object in which the displays and widgets will be plotted. """ if self._n_graphs > 1: for d in self.displays[1:]: if ( d.n_samples is not None and d.n_samples != self.length_data ): raise ValueError( "Length of some data sets are not equal ", ) for ax in self.axes[:self._n_graphs]: ax.clear() int_index = 0 for disp in self.displays: axes_needed = disp.n_subplots end_index = axes_needed + int_index disp._set_figure_and_axes(axes=self.axes[int_index:end_index]) disp.plot() int_index = end_index self.fig.canvas.mpl_connect('pick_event', self.pick) self.fig.suptitle("Multiple display") self.fig.tight_layout() return self.fig def pick(self, event: Event) -> None: """ Activate interactive functionality when picking a point. Callback method that is activated when a point is picked. If no point was clicked previously, all the points but the one selected will be more transparent in all the graphs. If a point was clicked already, this new point will be the one highlighted among the rest. If the same point is clicked, the initial state of the graphics is restored. Args: event: event object containing the artist of the point picked. """ selected_sample = self._sample_from_artist(event.artist) if selected_sample is not None: if self.selected_sample == selected_sample: self._deselect_samples() else: self._select_sample(selected_sample) def _sample_from_artist(self, artist: Artist) -> int | None: """Return the sample corresponding to an artist.""" for d in self.displays: if d.artists is None: continue for i, a in enumerate(d.axes_): if a == artist.axes: if len(d.axes_) == 1: return np.where( # type: ignore[no-any-return] d.artists == artist, )[0][0] else: return np.where( # type: ignore[no-any-return] d.artists[:, i] == artist, )[0][0] return None def _visit_artists(self) -> Generator[Tuple[int, Artist], None, None]: for i in range(self.length_data): for d in self.displays: if d.artists is None: continue yield from ((i, artist) for artist in np.ravel(d.artists[i])) def _select_sample(self, selected_sample: int) -> None: """Reduce the transparency of all the points but the selected one.""" for i, artist in self._visit_artists(): artist.set_alpha(1.0 if i == selected_sample else 0.1) for criterion, slider in zip(self.criteria, self.sliders): val_widget = criterion[selected_sample] _set_val_noevents(slider, val_widget) self.selected_sample = selected_sample self.fig.canvas.draw_idle() def _deselect_samples(self) -> None: """Restore the original transparency of all the points.""" for _, artist in self._visit_artists(): artist.set_alpha(1) self.selected_sample = None self.fig.canvas.draw_idle() def add_slider( self, axes: Axes, criterion: Sequence[float], widget_class: Type[Widget] = Slider, label: str | None = None, ) -> None: """ Add the slider to the MultipleDisplay object. Args: axes: Axes for the widget. criterion: Criterion used for the slider. widget_class: Widget type. label: Name of the slider. """ full_desc = "" if label is None else label ordered_criterion_values, ordered_criterion_indexes = zip( *sorted(zip(criterion, range(self.length_data))), ) widget = widget_class( ax=axes, label=full_desc, valmin=ordered_criterion_values[0], valmax=ordered_criterion_values[-1], valinit=ordered_criterion_values[0], valstep=ordered_criterion_values, valfmt="%.3g", ) self.sliders.append(widget) axes.annotate( f"{ordered_criterion_values[0]:.3g}", xy=(0, -0.5), xycoords='axes fraction', annotation_clip=False, ) axes.annotate( f"{ordered_criterion_values[-1]:.3g}", xy=(0.95, -0.5), xycoords='axes fraction', annotation_clip=False, ) on_changed_function = partial( self._value_updated, ordered_criterion_values=ordered_criterion_values, ordered_criterion_indexes=ordered_criterion_indexes, ) widget.on_changed(on_changed_function) def _value_updated( self, value: float, ordered_criterion_values: Sequence[float], ordered_criterion_indexes: Sequence[int], ) -> None: """ Update the graphs when a widget is clicked. Args: value: Current value of the widget. ordered_criterion_values: Ordered values of the criterion. ordered_criterion_indexes: Sample numbers ordered using the criterion. """ value_index = int(np.searchsorted(ordered_criterion_values, value)) self.selected_sample = ordered_criterion_indexes[value_index] self._select_sample(self.selected_sample)
/scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/exploratory/visualization/_multiple_display.py
0.948858
0.437042
_multiple_display.py
pypi
from __future__ import annotations from typing import Any, Sequence import matplotlib import matplotlib.pyplot as plt import numpy as np from matplotlib.artist import Artist from matplotlib.axes import Axes from matplotlib.colors import Colormap from matplotlib.figure import Figure from matplotlib.patches import Ellipse from ...representation import FDataGrid from ...typing._numpy import NDArrayFloat, NDArrayInt from ..depth import Depth from ..outliers import MSPlotOutlierDetector from ._baseplot import BasePlot class MagnitudeShapePlot(BasePlot): r""" Implementation of the magnitude-shape plot. This plot, which is based on the calculation of the :func:`directional outlyingness <fda.magnitude_shape_plot.directional_outlyingness>` of each of the samples, serves as a visualization tool for the centrality of curves. Furthermore, an outlier detection procedure is included. The norm of the mean of the directional outlyingness (:math:`\lVert \mathbf{MO}\rVert`) is plotted in the x-axis, and the variation of the directional outlyingness (:math:`VO`) in the y-axis. The outliers are detected using an instance of :class:`MSPlotOutlierDetector`. For more information see :footcite:ts:`dai+genton_2018_visualization`. Args: fdata: Object containing the data. multivariate_depth: Method used to order the data. Defaults to :class:`projection depth <fda.depth_measures.multivariate.ProjectionDepth>`. pointwise_weights: an array containing the weights of each points of discretisation where values have been recorded. cutoff_factor: Factor that multiplies the cutoff value, in order to consider more or less curves as outliers. assume_centered: If True, the support of the robust location and the covariance estimates is computed, and a covariance estimate is recomputed from it, without centering the data. Useful to work with data whose mean is significantly equal to zero but is not exactly zero. If False, default value, the robust location and covariance are directly computed with the FastMCD algorithm without additional treatment. support_fraction: The proportion of points to be included in the support of the raw MCD estimate. Default is None, which implies that the minimum value of support_fraction will be used within the algorithm: [n_sample + n_features + 1] / 2 random_state: If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. By default, it is 0. ellipsoid: Whether to draw the non outlying ellipsoid. Attributes: points(numpy.ndarray): 2-dimensional matrix where each row contains the points plotted in the graph. outliers (1-D array, (fdata.n_samples,)): Contains 1 or 0 to denote if a sample is an outlier or not, respecively. colormap(matplotlib.pyplot.LinearSegmentedColormap, optional): Colormap from which the colors of the plot are extracted. Defaults to 'seismic'. color (float, optional): Tone of the colormap in which the nonoutlier points are plotted. Defaults to 0.2. outliercol (float, optional): Tone of the colormap in which the outliers are plotted. Defaults to 0.8. xlabel (string, optional): Label of the x-axis. Defaults to 'MO', mean of the directional outlyingness. ylabel (string, optional): Label of the y-axis. Defaults to 'VO', variation of the directional outlyingness. title (string, optional): Title of the plot. defaults to 'MS-Plot'. Representation in a Jupyter notebook: .. jupyter-execute:: from skfda.datasets import make_gaussian_process from skfda.misc.covariances import Exponential from skfda.exploratory.visualization import MagnitudeShapePlot fd = make_gaussian_process( n_samples=20, cov=Exponential(), random_state=1) MagnitudeShapePlot(fd) Example: >>> import skfda >>> data_matrix = [[1, 1, 2, 3, 2.5, 2], ... [0.5, 0.5, 1, 2, 1.5, 1], ... [-1, -1, -0.5, 1, 1, 0.5], ... [-0.5, -0.5, -0.5, -1, -1, -1]] >>> grid_points = [ 0., 2., 4., 6., 8., 10.] >>> fd = skfda.FDataGrid(data_matrix, grid_points) >>> MagnitudeShapePlot(fd) MagnitudeShapePlot( fdata=FDataGrid( array([[[ 1. ], [ 1. ], [ 2. ], [ 3. ], [ 2.5], [ 2. ]], [[ 0.5], [ 0.5], [ 1. ], [ 2. ], [ 1.5], [ 1. ]], [[-1. ], [-1. ], [-0.5], [ 1. ], [ 1. ], [ 0.5]], [[-0.5], [-0.5], [-0.5], [-1. ], [-1. ], [-1. ]]]), grid_points=(array([ 0., 2., 4., 6., 8., 10.]),), domain_range=((0.0, 10.0),), ...), multivariate_depth=None, pointwise_weights=None, cutoff_factor=1, points=array([[ 1.66666667, 0.12777778], [ 0. , 0. ], [-0.8 , 0.17666667], [-1.74444444, 0.94395062]]), outliers=array([False, False, False, False]), colormap=seismic, color=0.2, outliercol=0.8, xlabel='MO', ylabel='VO', title='') References: .. footbibliography:: """ def __init__( self, fdata: FDataGrid, chart: Figure | Axes | None = None, *, fig: Figure | None = None, axes: Sequence[Axes] | None = None, ellipsoid: bool = True, **kwargs: Any, ) -> None: BasePlot.__init__( self, chart, fig=fig, axes=axes, ) if fdata.dim_codomain > 1: raise NotImplementedError( "Only support 1 dimension on the codomain.") self.outlier_detector = MSPlotOutlierDetector(**kwargs) y = self.outlier_detector.fit_predict(fdata) outliers = (y == -1) self.ellipsoid = ellipsoid self._fdata = fdata self._outliers = outliers self._colormap = plt.cm.get_cmap('seismic') self._color = 0.2 self._outliercol = 0.8 self.xlabel = 'MO' self.ylabel = 'VO' self.title = ( "" if self.fdata.dataset_name is None else self.fdata.dataset_name ) @property def fdata(self) -> FDataGrid: return self._fdata @property def multivariate_depth(self) -> Depth[NDArrayFloat] | None: return self.outlier_detector.multivariate_depth @property def pointwise_weights(self) -> NDArrayFloat | None: return self.outlier_detector.pointwise_weights @property def cutoff_factor(self) -> float: return self.outlier_detector.cutoff_factor @property def points(self) -> NDArrayFloat: return self.outlier_detector.points_ @property def outliers(self) -> NDArrayInt: return self._outliers # type: ignore[no-any-return] @property def colormap(self) -> Colormap: return self._colormap @colormap.setter def colormap(self, value: Colormap) -> None: if not isinstance(value, matplotlib.colors.Colormap): raise ValueError( "colormap must be of type " "matplotlib.colors.Colormap", ) self._colormap = value @property def color(self) -> float: return self._color @color.setter def color(self, value: float) -> None: if value < 0 or value > 1: raise ValueError( "color must be a number between 0 and 1.") self._color = value @property def outliercol(self) -> float: return self._outliercol @outliercol.setter def outliercol(self, value: float) -> None: if value < 0 or value > 1: raise ValueError( "outcol must be a number between 0 and 1.") self._outliercol = value @property def n_samples(self) -> int: return self.fdata.n_samples def _plot( self, fig: Figure, axes: Axes, ) -> None: self.artists = np.zeros( (self.n_samples, 1), dtype=Artist, ) colors = np.zeros((self.fdata.n_samples, 4)) colors[np.where(self.outliers == 1)] = self.colormap(self.outliercol) colors[np.where(self.outliers == 0)] = self.colormap(self.color) colors_rgba = [tuple(i) for i in colors] if self.ellipsoid: center = self.outlier_detector.cov_.location_ prec = self.outlier_detector.cov_.get_precision() K = ( self.outlier_detector.cutoff_value_ / self.outlier_detector.scaling_ ) eigvals, eigvecs = np.linalg.eigh(prec) a, b = np.sqrt(K / eigvals) if eigvecs[0, 1] * eigvecs[1, 0] > 0: eigvecs[:, 0] *= -1 angle = np.rad2deg(np.arctan2(eigvecs[1, 0], eigvecs[0, 0])) ellipse = Ellipse( xy=center, width=2 * a, height=2 * b, angle=angle, facecolor='C0', alpha=0.1, ) axes[0].add_patch(ellipse) for i, _ in enumerate(self.points[:, 0].ravel()): self.artists[i, 0] = axes[0].scatter( self.points[:, 0].ravel()[i], self.points[:, 1].ravel()[i], color=colors_rgba[i], picker=True, pickradius=2, ) axes[0].set_xlabel(self.xlabel) axes[0].set_ylabel(self.ylabel) axes[0].set_title(self.title) def __repr__(self) -> str: """Return repr(self).""" return ( f"MagnitudeShapePlot(" f"\nfdata={repr(self.fdata)}," f"\nmultivariate_depth={self.multivariate_depth}," f"\npointwise_weights={repr(self.pointwise_weights)}," f"\ncutoff_factor={repr(self.cutoff_factor)}," f"\npoints={repr(self.points)}," f"\noutliers={repr(self.outliers)}," f"\ncolormap={self.colormap.name}," f"\ncolor={repr(self.color)}," f"\noutliercol={repr(self.outliercol)}," f"\nxlabel={repr(self.xlabel)}," f"\nylabel={repr(self.ylabel)}," f"\ntitle={repr(self.title)})" ).replace('\n', '\n ')
/scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/exploratory/visualization/_magnitude_shape_plot.py
0.959317
0.741545
_magnitude_shape_plot.py
pypi
from __future__ import annotations from typing import Sequence, Tuple import matplotlib import matplotlib.patches as mpatches import matplotlib.pyplot as plt import numpy as np from matplotlib.artist import Artist from matplotlib.axes import Axes from matplotlib.collections import PatchCollection from matplotlib.figure import Figure from matplotlib.patches import Rectangle from matplotlib.ticker import MaxNLocator from sklearn.exceptions import NotFittedError from sklearn.utils.validation import check_is_fitted from typing_extensions import Protocol from ...misc.validation import check_fdata_same_dimensions from ...representation import FData, FDataGrid from ...typing._numpy import NDArrayFloat, NDArrayInt from ._baseplot import BasePlot from ._utils import ColorLike, _darken, _set_labels class ClusteringEstimator(Protocol): @property def n_clusters(self) -> int: pass @property def cluster_centers_(self) -> FDataGrid: pass @property def labels_(self) -> NDArrayInt: pass def fit(self, X: FDataGrid) -> ClusteringEstimator: pass def predict(self, X: FDataGrid) -> NDArrayInt: pass class FuzzyClusteringEstimator(ClusteringEstimator, Protocol): def predict_proba(self, X: FDataGrid) -> NDArrayFloat: pass def _plot_clustering_checks( estimator: ClusteringEstimator, fdata: FData, sample_colors: Sequence[ColorLike] | None, sample_labels: Sequence[str] | None, cluster_colors: Sequence[ColorLike] | None, cluster_labels: Sequence[str] | None, center_colors: Sequence[ColorLike] | None, center_labels: Sequence[str] | None, ) -> None: """Check the arguments.""" if ( sample_colors is not None and len(sample_colors) != fdata.n_samples ): raise ValueError( "sample_colors must contain a color for each sample.", ) if ( sample_labels is not None and len(sample_labels) != fdata.n_samples ): raise ValueError( "sample_labels must contain a label for each sample.", ) if ( cluster_colors is not None and len(cluster_colors) != estimator.n_clusters ): raise ValueError( "cluster_colors must contain a color for each cluster.", ) if ( cluster_labels is not None and len(cluster_labels) != estimator.n_clusters ): raise ValueError( "cluster_labels must contain a label for each cluster.", ) if ( center_colors is not None and len(center_colors) != estimator.n_clusters ): raise ValueError( "center_colors must contain a color for each center.", ) if ( center_labels is not None and len(center_labels) != estimator.n_clusters ): raise ValueError( "centers_labels must contain a label for each center.", ) def _get_labels( x_label: str | None, y_label: str | None, title: str | None, xlabel_str: str, ) -> Tuple[str, str, str]: """ Get the axes labels. Set the arguments *xlabel*, *ylabel*, *title* passed to the plot functions :func:`plot_cluster_lines <skfda.exploratory.visualization.clustering_plots.plot_cluster_lines>` and :func:`plot_cluster_bars <skfda.exploratory.visualization.clustering_plots.plot_cluster_bars>`, in case they are not set yet. Args: x_label: Label for the x-axes. y_label: Label for the y-axes. title: Title for the figure where the clustering results are ploted. xlabel_str: In case xlabel is None, string to use for the labels in the x-axes. Returns: xlabel: Labels for the x-axes. ylabel: Labels for the y-axes. title: Title for the figure where the clustering results are plotted. """ if x_label is None: x_label = xlabel_str if y_label is None: y_label = "Degree of membership" if title is None: title = "Degrees of membership of the samples to each cluster" return x_label, y_label, title class ClusterPlot(BasePlot): """ ClusterPlot class. Args: estimator: estimator used to calculate the clusters. X: contains the samples which are grouped into different clusters. fig: figure over which the graphs are plotted in case ax is not specified. If None and ax is also None, the figure is initialized. axes: axis over where the graphs are plotted. If None, see param fig. n_rows: designates the number of rows of the figure to plot the different dimensions of the image. Only specified if fig and ax are None. n_cols: designates the number of columns of the figure to plot the different dimensions of the image. Only specified if fig and ax are None. sample_labels: contains in order the labels of each sample of the fdatagrid. cluster_colors: contains in order the colors of each cluster the samples of the fdatagrid are classified into. cluster_labels: contains in order the names of each cluster the samples of the fdatagrid are classified into. center_colors: contains in order the colors of each centroid of the clusters the samples of the fdatagrid are classified into. center_labels: contains in order the labels of each centroid of the clusters the samples of the fdatagrid are classified into. center_width: width of the centroid curves. colormap: colormap from which the colors of the plot are taken. Defaults to `rainbow`. """ def __init__( self, estimator: ClusteringEstimator, fdata: FDataGrid, chart: Figure | Axes | None = None, fig: Figure | None = None, axes: Axes | Sequence[Axes] | None = None, n_rows: int | None = None, n_cols: int | None = None, sample_labels: Sequence[str] | None = None, cluster_colors: Sequence[ColorLike] | None = None, cluster_labels: Sequence[str] | None = None, center_colors: Sequence[ColorLike] | None = None, center_labels: Sequence[str] | None = None, center_width: int = 3, colormap: matplotlib.colors.Colormap = None, ) -> None: if colormap is None: colormap = plt.cm.get_cmap('rainbow') super().__init__( chart, fig=fig, axes=axes, n_rows=n_rows, n_cols=n_cols, ) self.fdata = fdata self.estimator = estimator self.sample_labels = sample_labels self.cluster_colors = cluster_colors self.cluster_labels = cluster_labels self.center_colors = center_colors self.center_labels = center_labels self.center_width = center_width self.colormap = colormap @property def n_subplots(self) -> int: return self.fdata.dim_codomain @property def n_samples(self) -> int: return self.fdata.n_samples def _plot_clusters( self, fig: Figure, axes: Sequence[Axes], ) -> None: """Implement the plot of the FDataGrid samples by clusters.""" _plot_clustering_checks( estimator=self.estimator, fdata=self.fdata, sample_colors=None, sample_labels=self.sample_labels, cluster_colors=self.cluster_colors, cluster_labels=self.cluster_labels, center_colors=self.center_colors, center_labels=self.center_labels, ) if self.sample_labels is None: self.sample_labels = [ f'$SAMPLE: {i}$' for i in range(self.fdata.n_samples) ] if self.cluster_colors is None: self.cluster_colors = self.colormap( np.arange(self.estimator.n_clusters) / (self.estimator.n_clusters - 1), ) if self.cluster_labels is None: self.cluster_labels = [ f'$CLUSTER: {i}$' for i in range(self.estimator.n_clusters) ] if self.center_colors is None: self.center_colors = [_darken(c, 0.5) for c in self.cluster_colors] if self.center_labels is None: self.center_labels = [ f'$CENTER: {i}$' for i in range(self.estimator.n_clusters) ] colors_by_cluster = np.asarray(self.cluster_colors)[self.labels] patches = [ mpatches.Patch( color=self.cluster_colors[i], label=self.cluster_labels[i], ) for i in range(self.estimator.n_clusters) ] artists = [ axes[j].plot( self.fdata.grid_points[0], self.fdata.data_matrix[i, :, j], c=colors_by_cluster[i], label=self.sample_labels[i], ) for j in range(self.fdata.dim_codomain) for i in range(self.fdata.n_samples) ] self.artists = np.array(artists).reshape( (self.n_subplots, self.n_samples), ).T for j in range(self.fdata.dim_codomain): for i in range(self.estimator.n_clusters): axes[j].plot( self.fdata.grid_points[0], self.estimator.cluster_centers_.data_matrix[i, :, j], c=self.center_colors[i], label=self.center_labels[i], linewidth=self.center_width, ) axes[j].legend(handles=patches) _set_labels(self.fdata, fig, axes) def _plot( self, fig: Figure, axes: Sequence[Axes], ) -> None: try: check_is_fitted(self.estimator) check_fdata_same_dimensions( self.estimator.cluster_centers_, self.fdata, ) except NotFittedError: self.estimator.fit(self.fdata) self.labels = self.estimator.labels_ self._plot_clusters(fig=fig, axes=axes) class ClusterMembershipLinesPlot(BasePlot): """ Class ClusterMembershipLinesPlot. Args: estimator: estimator used to calculate the clusters. X: contains the samples which are grouped into different clusters. fig: figure over which the graph is plotted in case ax is not specified. If None and ax is also None, the figure is initialized. axes: axis over where the graph is plotted. If None, see param fig. sample_colors: contains in order the colors of each sample of the fdatagrid. sample_labels: contains in order the labels of each sample of the fdatagrid. cluster_labels: contains in order the names of each cluster the samples of the fdatagrid are classified into. colormap: colormap from which the colors of the plot are taken. x_label: Label for the x-axis. Defaults to "Cluster". y_label: Label for the y-axis. Defaults to "Degree of membership". title: Title for the figure where the clustering results are ploted. Defaults to "Degrees of membership of the samples to each cluster". """ def __init__( self, estimator: FuzzyClusteringEstimator, fdata: FDataGrid, *, chart: Figure | Axes | None = None, fig: Figure | None = None, axes: Axes | Sequence[Axes] | None = None, sample_colors: Sequence[ColorLike] | None = None, sample_labels: Sequence[str] | None = None, cluster_labels: Sequence[str] | None = None, colormap: matplotlib.colors.Colormap = None, x_label: str | None = None, y_label: str | None = None, title: str | None = None, ) -> None: if colormap is None: colormap = plt.cm.get_cmap('rainbow') super().__init__( chart, fig=fig, axes=axes, ) self.fdata = fdata self.estimator = estimator self.sample_labels = sample_labels self.sample_colors = sample_colors self.cluster_labels = cluster_labels self.x_label = x_label self.y_label = y_label self.title = title self.colormap = colormap @property def n_samples(self) -> int: return self.fdata.n_samples def _plot( self, fig: Figure, axes: Sequence[Axes], ) -> None: try: check_is_fitted(self.estimator) check_fdata_same_dimensions( self.estimator.cluster_centers_, self.fdata, ) except NotFittedError: self.estimator.fit(self.fdata) membership = self.estimator.predict_proba(self.fdata) _plot_clustering_checks( estimator=self.estimator, fdata=self.fdata, sample_colors=self.sample_colors, sample_labels=self.sample_labels, cluster_colors=None, cluster_labels=self.cluster_labels, center_colors=None, center_labels=None, ) x_label, y_label, title = _get_labels( self.x_label, self.y_label, self.title, "Cluster", ) if self.sample_colors is None: self.cluster_colors = self.colormap( np.arange(self.estimator.n_clusters) / (self.estimator.n_clusters - 1), ) labels_by_cluster = self.estimator.labels_ self.sample_colors = self.cluster_colors[labels_by_cluster] if self.sample_labels is None: self.sample_labels = [ f'$SAMPLE: {i}$' for i in range(self.fdata.n_samples) ] if self.cluster_labels is None: self.cluster_labels = [ f'${i}$' for i in range(self.estimator.n_clusters) ] axes[0].get_xaxis().set_major_locator(MaxNLocator(integer=True)) self.artists = np.array([ axes[0].plot( np.arange(self.estimator.n_clusters), membership[i], label=self.sample_labels[i], color=self.sample_colors[i], ) for i in range(self.fdata.n_samples) ]) axes[0].set_xticks(np.arange(self.estimator.n_clusters)) axes[0].set_xticklabels(self.cluster_labels) axes[0].set_xlabel(x_label) axes[0].set_ylabel(y_label) fig.suptitle(title) class ClusterMembershipPlot(BasePlot): """ Class ClusterMembershipPlot. Args: estimator: estimator used to calculate the clusters. X: contains the samples which are grouped into different clusters. fig: figure over which the graph is plotted in case ax is not specified. If None and ax is also None, the figure is initialized. axes: axis over where the graph is plotted. If None, see param fig. sample_colors: contains in order the colors of each sample of the fdatagrid. sample_labels: contains in order the labels of each sample of the fdatagrid. cluster_labels: contains in order the names of each cluster the samples of the fdatagrid are classified into. colormap: colormap from which the colors of the plot are taken. x_label: Label for the x-axis. Defaults to "Cluster". y_label: Label for the y-axis. Defaults to "Degree of membership". title: Title for the figure where the clustering results are ploted. Defaults to "Degrees of membership of the samples to each cluster". """ def __init__( self, estimator: FuzzyClusteringEstimator, fdata: FData, chart: Figure | Axes | None = None, *, fig: Figure | None = None, axes: Axes | Sequence[Axes] | None = None, sort: int = -1, sample_labels: Sequence[str] | None = None, cluster_colors: Sequence[ColorLike] | None = None, cluster_labels: Sequence[str] | None = None, colormap: matplotlib.colors.Colormap = None, x_label: str | None = None, y_label: str | None = None, title: str | None = None, ) -> None: if colormap is None: colormap = plt.cm.get_cmap('rainbow') super().__init__( chart, fig=fig, axes=axes, ) self.fdata = fdata self.estimator = estimator self.sample_labels = sample_labels self.cluster_colors = ( None if cluster_colors is None else list(cluster_colors) ) self.cluster_labels = cluster_labels self.x_label = x_label self.y_label = y_label self.title = title self.colormap = colormap self.sort = sort @property def n_samples(self) -> int: return self.fdata.n_samples def _plot( self, fig: Figure, axes: Sequence[Axes], ) -> None: self.artists = np.full( (self.n_samples, self.n_subplots), None, dtype=Artist, ) try: check_is_fitted(self.estimator) check_fdata_same_dimensions( self.estimator.cluster_centers_, self.fdata, ) except NotFittedError: self.estimator.fit(self.fdata) membership = self.estimator.predict_proba(self.fdata) if self.sort < -1 or self.sort >= self.estimator.n_clusters: raise ValueError( "The sorting number must belong to " "the interval [-1, n_clusters)", ) _plot_clustering_checks( estimator=self.estimator, fdata=self.fdata, sample_colors=None, sample_labels=self.sample_labels, cluster_colors=self.cluster_colors, cluster_labels=self.cluster_labels, center_colors=None, center_labels=None, ) x_label, y_label, title = _get_labels( self.x_label, self.y_label, self.title, "Sample", ) if self.sample_labels is None: self.sample_labels = list( np.arange( self.fdata.n_samples, ).astype(np.str_), ) if self.cluster_colors is None: self.cluster_colors = list( self.colormap( np.arange(self.estimator.n_clusters) / (self.estimator.n_clusters - 1), ), ) if self.cluster_labels is None: self.cluster_labels = [ f'$CLUSTER: {i}$' for i in range(self.estimator.n_clusters) ] patches = [ mpatches.Patch( color=self.cluster_colors[i], label=self.cluster_labels[i], ) for i in range(self.estimator.n_clusters) ] if self.sort == -1: labels_dim = membership else: sample_indices = np.argsort(-membership[:, self.sort]) self.sample_labels = list( np.array(self.sample_labels)[sample_indices], ) labels_dim = np.copy(membership[sample_indices]) temp_labels = np.copy(labels_dim[:, 0]) labels_dim[:, 0] = labels_dim[:, self.sort] labels_dim[:, self.sort] = temp_labels # Swap self.cluster_colors[0], self.cluster_colors[self.sort] = ( self.cluster_colors[self.sort], self.cluster_colors[0], ) conc = np.zeros((self.fdata.n_samples, 1)) labels_dim = np.concatenate((conc, labels_dim), axis=-1) bars = [ axes[0].bar( np.arange(self.fdata.n_samples), labels_dim[:, i + 1], bottom=np.sum(labels_dim[:, :(i + 1)], axis=1), color=self.cluster_colors[i], ) for i in range(self.estimator.n_clusters) ] for b in bars: b.remove() b.figure = None for i in range(self.n_samples): collection = PatchCollection( [ Rectangle( bar.patches[i].get_xy(), bar.patches[i].get_width(), bar.patches[i].get_height(), color=bar.patches[i].get_facecolor(), ) for bar in bars ], match_original=True, ) axes[0].add_collection(collection) self.artists[i, 0] = collection fig.canvas.draw() axes[0].set_xticks(np.arange(self.fdata.n_samples)) axes[0].set_xticklabels(self.sample_labels) axes[0].set_xlabel(x_label) axes[0].set_ylabel(y_label) axes[0].legend(handles=patches) fig.suptitle(title)
/scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/exploratory/visualization/clustering.py
0.967302
0.519765
clustering.py
pypi
from __future__ import annotations import numpy as np from matplotlib.artist import Artist from matplotlib.axes import Axes from matplotlib.figure import Figure from ...representation import FDataGrid from ..outliers import OutliergramOutlierDetector from ._baseplot import BasePlot class Outliergram(BasePlot): """ Outliergram method of visualization. Plots the :class:`Modified Band Depth (MBD)<skfda.exploratory.depth.ModifiedBandDepth>` on the Y axis and the :func:`Modified Epigraph Index (MEI)<skfda.exploratory.stats.modified_epigraph_index>` on the X axis. These points will create the form of a parabola. The shape outliers will be the points that appear far from this curve. Args: fdata: functional data set that we want to examine. chart: figure over with the graphs are plotted or axis over where the graphs are plotted. If None and ax is also None, the figure is initialized. fig: figure over with the graphs are plotted in case ax is not specified. If None and ax is also None, the figure is initialized. axes: axis where the graphs are plotted. If None, see param fig. n_rows: designates the number of rows of the figure to plot the different dimensions of the image. Only specified if fig and ax are None. n_cols: designates the number of columns of the figure to plot the different dimensions of the image. Only specified if fig and ax are None. Attributes: mbd: result of the calculation of the Modified Band Depth on our dataset. Represents the mean time a curve stays between other pair of curves, being a good measure of centrality. mei: result of the calculation of the Modified Epigraph Index on our dataset. Represents the mean time a curve stays below other curve. References: López-Pintado S., Romo J.. (2011). A half-region depth for functional data, Computational Statistics & Data Analysis, volume 55 (page 1679-1695). Arribas-Gil A., Romo J.. Shape outlier detection and visualization for functional data: the outliergram https://academic.oup.com/biostatistics/article/15/4/603/266279 """ def __init__( self, fdata: FDataGrid, chart: Figure | Axes | None = None, *, fig: Figure | None = None, axes: Axes | None = None, factor: float = 1.5, ) -> None: BasePlot.__init__( self, chart, fig=fig, axes=axes, ) self.fdata = fdata self.factor = factor self.outlier_detector = OutliergramOutlierDetector(factor=factor) self.outlier_detector.fit(fdata) indices = np.argsort(self.outlier_detector.mei_) self._parabola_ordered = self.outlier_detector.parabola_[indices] self._mei_ordered = self.outlier_detector.mei_[indices] @property def n_samples(self) -> int: return self.fdata.n_samples def _plot( self, fig: Figure, axes: Axes, ) -> None: self.artists = np.zeros( (self.n_samples, 1), dtype=Artist, ) for i, (mei, mbd) in enumerate( zip(self.outlier_detector.mei_, self.outlier_detector.mbd_), ): self.artists[i, 0] = axes[0].scatter( mei, mbd, picker=2, ) axes[0].plot( self._mei_ordered, self._parabola_ordered, ) shifted_parabola = ( self._parabola_ordered - self.outlier_detector.max_inlier_distance_ ) axes[0].plot( self._mei_ordered, shifted_parabola, linestyle='dashed', ) # Set labels of graph if self.fdata.dataset_name is not None: axes[0].set_title(self.fdata.dataset_name) axes[0].set_xlabel("MEI") axes[0].set_ylabel("MBD") axes[0].set_xlim([0, 1]) axes[0].set_ylim([ 0, # Minimum MBD 1, # Maximum MBD ])
/scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/exploratory/visualization/_outliergram.py
0.952364
0.799403
_outliergram.py
pypi
from __future__ import annotations from typing import Any, Dict, Sequence, Sized, Tuple, TypeVar import matplotlib.cm import matplotlib.patches import numpy as np from matplotlib.artist import Artist from matplotlib.axes import Axes from matplotlib.colors import Colormap from matplotlib.figure import Figure from typing_extensions import Protocol from ..._utils import _to_grid_points, constants from ...misc.validation import validate_domain_range from ...representation._functional_data import FData from ...typing._base import DomainRangeLike, GridPointsLike from ._baseplot import BasePlot from ._utils import ColorLike, _set_labels K = TypeVar('K', contravariant=True) V = TypeVar('V', covariant=True) class Indexable(Protocol[K, V]): """Class Indexable used to type _get_color_info.""" def __getitem__(self, __key: K) -> V: pass def __len__(self) -> int: pass def _get_color_info( fdata: Sized, group: Sequence[K] | None = None, group_names: Indexable[K, str] | None = None, group_colors: Indexable[K, ColorLike] | None = None, legend: bool = False, kwargs: Dict[str, Any] | None = None, ) -> Tuple[ Sequence[ColorLike] | None, Sequence[matplotlib.patches.Patch] | None, ]: if kwargs is None: kwargs = {} patches = None if group is not None: # In this case, each curve has a label, and all curves with the same # label should have the same color group_unique, group_indexes = np.unique( np.asarray(group), return_inverse=True, ) n_labels = len(group_unique) if group_colors is not None: group_colors_array = np.array( [group_colors[g] for g in group_unique], ) else: prop_cycle = matplotlib.rcParams['axes.prop_cycle'] cycle_colors = prop_cycle.by_key()['color'] group_colors_array = np.take( cycle_colors, np.arange(n_labels), mode='wrap', ) sample_colors = list(group_colors_array[group_indexes]) group_names_array = None if group_names is not None: group_names_array = np.array( [group_names[g] for g in group_unique], ) elif legend is True: group_names_array = group_unique if group_names_array is not None: patches = [ matplotlib.patches.Patch(color=c, label=l) for c, l in zip(group_colors_array, group_names_array) ] else: # In this case, each curve has a different color unless specified # otherwise if 'color' in kwargs: sample_colors = len(fdata) * [kwargs.get("color")] kwargs.pop('color') elif 'c' in kwargs: sample_colors = len(fdata) * [kwargs.get("c")] kwargs.pop('c') else: sample_colors = None return sample_colors, patches class GraphPlot(BasePlot): """ Class used to plot the FDataGrid object graph as hypersurfaces. When plotting functional data, we can either choose manually a color, a group of colors for the representations. Besides, we can use a list of variables (depths, scalar regression targets...) can be used as an argument to display the functions wtih a gradient of colors. Args: fdata: functional data set that we want to plot. gradient_criteria: list of real values used to determine the color in which each of the instances will be plotted. max_grad: maximum value that the gradient_list can take, it will be used to normalize the ``gradient_criteria`` in order to get values that can be used in the function colormap.__call__(). If not declared it will be initialized to the maximum value of gradient_list. min_grad: minimum value that the gradient_list can take, it will be used to normalize the ``gradient_criteria`` in order to get values that can be used in the function colormap.__call__(). If not declared it will be initialized to the minimum value of gradient_list. chart: figure over with the graphs are plotted or axis over where the graphs are plotted. If None and ax is also None, the figure is initialized. fig: figure over with the graphs are plotted in case ax is not specified. If None and ax is also None, the figure is initialized. axes: axis over where the graphs are plotted. If None, see param fig. n_rows: designates the number of rows of the figure to plot the different dimensions of the image. Only specified if fig and ax are None. n_cols: designates the number of columns of the figure to plot the different dimensions of the image. Only specified if fig and ax are None. n_points: Number of points to evaluate in the plot. In case of surfaces a tuple of length 2 can be pased with the number of points to plot in each axis, otherwise the same number of points will be used in the two axes. By default in unidimensional plots will be used 501 points; in surfaces will be used 30 points per axis, wich makes a grid with 900 points. domain_range: Range where the function will be plotted. In objects with unidimensional domain the domain range should be a tuple with the bounds of the interval; in the case of surfaces a list with 2 tuples with the ranges for each dimension. Default uses the domain range of the functional object. group: contains integers from [0 to number of labels) indicating to which group each sample belongs to. Then, the samples with the same label are plotted in the same color. If None, the default value, each sample is plotted in the color assigned by matplotlib.pyplot.rcParams['axes.prop_cycle']. group_colors: colors in which groups are represented, there must be one for each group. If None, each group is shown with distict colors in the "Greys" colormap. group_names: name of each of the groups which appear in a legend, there must be one for each one. Defaults to None and the legend is not shown. Implies `legend=True`. colormap: name of the colormap to be used. By default we will use autumn. legend: if `True`, show a legend with the groups. If `group_names` is passed, it will be used for finding the names to display in the legend. Otherwise, the values passed to `group` will be used. kwargs: if dim_domain is 1, keyword arguments to be passed to the matplotlib.pyplot.plot function; if dim_domain is 2, keyword arguments to be passed to the matplotlib.pyplot.plot_surface function. Attributes: gradient_list: normalization of the values from gradient color_list that will be used to determine the intensity of the color each function will have. """ def __init__( self, fdata: FData, chart: Figure | Axes | None = None, *, fig: Figure | None = None, axes: Axes | None = None, n_rows: int | None = None, n_cols: int | None = None, n_points: int | Tuple[int, int] | None = None, domain_range: DomainRangeLike | None = None, group: Sequence[K] | None = None, group_colors: Indexable[K, ColorLike] | None = None, group_names: Indexable[K, str] | None = None, gradient_criteria: Sequence[float] | None = None, max_grad: float | None = None, min_grad: float | None = None, colormap: Colormap | str | None = None, legend: bool = False, **kwargs: Any, ) -> None: super().__init__( chart, fig=fig, axes=axes, n_rows=n_rows, n_cols=n_cols, ) self.fdata = fdata self.gradient_criteria = gradient_criteria if self.gradient_criteria is not None: if len(self.gradient_criteria) != fdata.n_samples: raise ValueError( "The length of the gradient color", "list should be the same as the number", "of samples in fdata", ) if min_grad is None: self.min_grad = min(self.gradient_criteria) else: self.min_grad = min_grad if max_grad is None: self.max_grad = max(self.gradient_criteria) else: self.max_grad = max_grad self.gradient_list: Sequence[float] | None = ( [ (grad_color - self.min_grad) / (self.max_grad - self.min_grad) for grad_color in self.gradient_criteria ] ) else: self.gradient_list = None self.n_points = n_points self.group = group self.group_colors = group_colors self.group_names = group_names self.legend = legend self.colormap = colormap self.kwargs = kwargs if domain_range is None: self.domain_range = self.fdata.domain_range else: self.domain_range = validate_domain_range(domain_range) if self.gradient_list is None: sample_colors, patches = _get_color_info( self.fdata, self.group, self.group_names, self.group_colors, self.legend, kwargs, ) else: patches = None if self.colormap is None: colormap = matplotlib.cm.get_cmap("autumn") colormap = colormap.reversed() else: colormap = matplotlib.cm.get_cmap(self.colormap) sample_colors = colormap(self.gradient_list) self.sample_colors = sample_colors self.patches = patches @property def dim(self) -> int: return self.fdata.dim_domain + 1 @property def n_subplots(self) -> int: return self.fdata.dim_codomain @property def n_samples(self) -> int: return self.fdata.n_samples def _plot( self, fig: Figure, axes: Sequence[Axes], ) -> None: self.artists = np.zeros( (self.n_samples, self.fdata.dim_codomain), dtype=Artist, ) color_dict: Dict[str, ColorLike | None] = {} if self.fdata.dim_domain == 1: if self.n_points is None: self.n_points = constants.N_POINTS_UNIDIMENSIONAL_PLOT_MESH assert isinstance(self.n_points, int) # Evaluates the object in a linspace eval_points = np.linspace(*self.domain_range[0], self.n_points) mat = self.fdata(eval_points) for i in range(self.fdata.dim_codomain): for j in range(self.fdata.n_samples): set_color_dict(self.sample_colors, j, color_dict) self.artists[j, i] = axes[i].plot( eval_points, mat[j, ..., i].T, **self.kwargs, **color_dict, )[0] else: # Selects the number of points if self.n_points is None: n_points_tuple = 2 * (constants.N_POINTS_SURFACE_PLOT_AX,) elif isinstance(self.n_points, int): n_points_tuple = (self.n_points, self.n_points) elif len(self.n_points) != 2: raise ValueError( "n_points should be a number or a tuple of " "length 2, and has " "length {0}.".format(len(self.n_points)), ) # Axes where will be evaluated x = np.linspace(*self.domain_range[0], n_points_tuple[0]) y = np.linspace(*self.domain_range[1], n_points_tuple[1]) # Evaluation of the functional object Z = self.fdata((x, y), grid=True) X, Y = np.meshgrid(x, y, indexing='ij') for k in range(self.fdata.dim_codomain): for h in range(self.fdata.n_samples): set_color_dict(self.sample_colors, h, color_dict) self.artists[h, k] = axes[k].plot_surface( X, Y, Z[h, ..., k], **self.kwargs, **color_dict, ) _set_labels(self.fdata, fig, axes, self.patches) class ScatterPlot(BasePlot): """ Class used to scatter the FDataGrid object. Args: fdata: functional data set that we want to plot. grid_points: points to plot. chart: figure over with the graphs are plotted or axis over where the graphs are plotted. If None and ax is also None, the figure is initialized. fig: figure over with the graphs are plotted in case ax is not specified. If None and ax is also None, the figure is initialized. axes: axis over where the graphs are plotted. If None, see param fig. n_rows: designates the number of rows of the figure to plot the different dimensions of the image. Only specified if fig and ax are None. n_cols: designates the number of columns of the figure to plot the different dimensions of the image. Only specified if fig and ax are None. domain_range: Range where the function will be plotted. In objects with unidimensional domain the domain range should be a tuple with the bounds of the interval; in the case of surfaces a list with 2 tuples with the ranges for each dimension. Default uses the domain range of the functional object. group: contains integers from [0 to number of labels) indicating to which group each sample belongs to. Then, the samples with the same label are plotted in the same color. If None, the default value, each sample is plotted in the color assigned by matplotlib.pyplot.rcParams['axes.prop_cycle']. group_colors: colors in which groups are represented, there must be one for each group. If None, each group is shown with distict colors in the "Greys" colormap. group_names: name of each of the groups which appear in a legend, there must be one for each one. Defaults to None and the legend is not shown. Implies `legend=True`. legend: if `True`, show a legend with the groups. If `group_names` is passed, it will be used for finding the names to display in the legend. Otherwise, the values passed to `group` will be used. kwargs: if dim_domain is 1, keyword arguments to be passed to the matplotlib.pyplot.plot function; if dim_domain is 2, keyword arguments to be passed to the matplotlib.pyplot.plot_surface function. """ def __init__( self, fdata: FData, chart: Figure | Axes | None = None, *, fig: Figure | None = None, axes: Axes | None = None, n_rows: int | None = None, n_cols: int | None = None, grid_points: GridPointsLike | None = None, domain_range: Tuple[int, int] | DomainRangeLike | None = None, group: Sequence[K] | None = None, group_colors: Indexable[K, ColorLike] | None = None, group_names: Indexable[K, str] | None = None, legend: bool = False, **kwargs: Any, ) -> None: super().__init__( chart, fig=fig, axes=axes, n_rows=n_rows, n_cols=n_cols, ) self.fdata = fdata if grid_points is None: # This can only be done for FDataGrid self.grid_points = self.fdata.grid_points self.evaluated_points = self.fdata.data_matrix else: self.grid_points = _to_grid_points(grid_points) self.evaluated_points = self.fdata( self.grid_points, grid=True, ) self.domain_range = domain_range self.group = group self.group_colors = group_colors self.group_names = group_names self.legend = legend if self.domain_range is None: self.domain_range = self.fdata.domain_range else: self.domain_range = validate_domain_range(self.domain_range) sample_colors, patches = _get_color_info( self.fdata, self.group, self.group_names, self.group_colors, self.legend, kwargs, ) self.sample_colors = sample_colors self.patches = patches @property def dim(self) -> int: return self.fdata.dim_domain + 1 @property def n_subplots(self) -> int: return self.fdata.dim_codomain @property def n_samples(self) -> int: return self.fdata.n_samples def _plot( self, fig: Figure, axes: Sequence[Axes], ) -> None: """ Scatter FDataGrid object. Returns: fig: figure object in which the graphs are plotted. """ self.artists = np.zeros( (self.n_samples, self.fdata.dim_codomain), dtype=Artist, ) color_dict: Dict[str, ColorLike | None] = {} if self.fdata.dim_domain == 1: for i in range(self.fdata.dim_codomain): for j in range(self.fdata.n_samples): set_color_dict(self.sample_colors, j, color_dict) self.artists[j, i] = axes[i].scatter( self.grid_points[0], self.evaluated_points[j, ..., i].T, **color_dict, picker=True, pickradius=2, ) else: X = self.fdata.grid_points[0] Y = self.fdata.grid_points[1] X, Y = np.meshgrid(X, Y) for k in range(self.fdata.dim_codomain): for h in range(self.fdata.n_samples): set_color_dict(self.sample_colors, h, color_dict) self.artists[h, k] = axes[k].scatter( X, Y, self.evaluated_points[h, ..., k].T, **color_dict, picker=True, pickradius=2, ) _set_labels(self.fdata, fig, axes, self.patches) def set_color_dict( sample_colors: Any, ind: int, color_dict: Dict[str, ColorLike | None], ) -> None: """ Auxiliary method used to update color_dict. Sets the new color of the color_dict thanks to sample colors and index. """ if sample_colors is not None: color_dict["color"] = sample_colors[ind]
/scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/exploratory/visualization/representation.py
0.961198
0.46563
representation.py
pypi
from __future__ import annotations import warnings from typing import Sequence from matplotlib.axes import Axes from matplotlib.figure import Figure from skfda.exploratory.visualization.representation import GraphPlot from skfda.representation import FData from ._baseplot import BasePlot class FPCAPlot(BasePlot): """ FPCAPlot visualization. Args: mean: The functional data object containing the mean function. If len(mean) > 1, the mean is computed. components: The principal components factor: Multiple of the principal component curve to be added or subtracted. fig: Figure over which the graph is plotted. If not specified it will be initialized axes: Axes over where the graph is plotted. If ``None``, see param fig. n_rows: Designates the number of rows of the figure. n_cols: Designates the number of columns of the figure. """ def __init__( self, mean: FData, components: FData, *, factor: float = 1, multiple: float | None = None, chart: Figure | Axes | None = None, fig: Figure | None = None, axes: Axes | None = None, n_rows: int | None = None, n_cols: int | None = None, ): super().__init__( chart, fig=fig, axes=axes, n_rows=n_rows, n_cols=n_cols, ) self.mean = mean self.components = components if multiple is None: self.factor = factor else: warnings.warn( "The 'multiple' parameter is deprecated, " "use 'factor' instead.", DeprecationWarning, ) self.factor = multiple @property def multiple(self) -> float: warnings.warn( "The 'multiple' attribute is deprecated, use 'factor' instead.", DeprecationWarning, ) return self.factor @property def n_subplots(self) -> int: return len(self.components) def _plot( self, fig: Figure, axes: Sequence[Axes], ) -> None: if len(self.mean) > 1: self.mean = self.mean.mean() for i, ax in enumerate(axes): perturbations = self._get_component_perturbations(i) GraphPlot(fdata=perturbations, axes=ax).plot() ax.set_title(f"Principal component {i + 1}") def _get_component_perturbations(self, index: int = 0) -> FData: """ Compute the perturbations over the mean of a principal component. Args: index: Index of the component for which we want to compute the perturbations Returns: The mean function followed by the positive perturbation and the negative perturbation. """ if not isinstance(self.mean, FData): raise AttributeError("X must be a FData object") perturbations = self.mean.copy() perturbations = perturbations.concatenate( perturbations[0] + self.multiple * self.components[index], ) return perturbations.concatenate( perturbations[0] - self.multiple * self.components[index], )
/scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/exploratory/visualization/fpca.py
0.963343
0.501587
fpca.py
pypi
from __future__ import annotations from typing import Dict, Sequence, TypeVar import numpy as np from matplotlib.artist import Artist from matplotlib.axes import Axes from matplotlib.figure import Figure from ...representation import FData from ._baseplot import BasePlot from ._utils import ColorLike from .representation import Indexable, _get_color_info K = TypeVar('K', contravariant=True) class ParametricPlot(BasePlot): """ Parametric Plot visualization. This class contains the functionality in charge of plotting two different functions as coordinates, this can be done giving one FData, with domain 1 and codomain 2, or giving two FData, both of them with domain 1 and codomain 1. Args: fdata1: functional data set that we will use for the graph. If it has a dim_codomain = 1, the fdata2 will be needed. fdata2: optional functional data set, that will be needed if the fdata1 has dim_codomain = 1. chart: figure over with the graphs are plotted or axis over where the graphs are plotted. If None and ax is also None, the figure is initialized. fig: figure over with the graphs are plotted in case ax is not specified. If None and ax is also None, the figure is initialized. ax: axis where the graphs are plotted. If None, see param fig. """ def __init__( self, fdata1: FData, fdata2: FData | None = None, chart: Figure | Axes | None = None, *, fig: Figure | None = None, axes: Axes | None = None, group: Sequence[K] | None = None, group_colors: Indexable[K, ColorLike] | None = None, group_names: Indexable[K, str] | None = None, legend: bool = False, ) -> None: BasePlot.__init__( self, chart, fig=fig, axes=axes, ) self.fdata1 = fdata1 self.fdata2 = fdata2 if self.fdata2 is not None: self.fd_final = self.fdata1.concatenate( self.fdata2, as_coordinates=True, ) else: self.fd_final = self.fdata1 self.group = group self.group_names = group_names self.group_colors = group_colors self.legend = legend @property def n_samples(self) -> int: return self.fd_final.n_samples def _plot( self, fig: Figure, axes: Axes, ) -> None: self.artists = np.zeros((self.n_samples, 1), dtype=Artist) sample_colors, patches = _get_color_info( self.fd_final, self.group, self.group_names, self.group_colors, self.legend, ) color_dict: Dict[str, ColorLike | None] = {} if ( self.fd_final.dim_domain == 1 and self.fd_final.dim_codomain == 2 ): ax = axes[0] for i in range(self.fd_final.n_samples): if sample_colors is not None: color_dict["color"] = sample_colors[i] self.artists[i, 0] = ax.plot( self.fd_final.data_matrix[i][:, 0].tolist(), self.fd_final.data_matrix[i][:, 1].tolist(), **color_dict, )[0] else: raise ValueError( "Error in data arguments,", "codomain or domain is not correct.", ) if self.fd_final.dataset_name is not None: fig.suptitle(self.fd_final.dataset_name) if self.fd_final.coordinate_names[0] is None: ax.set_xlabel("Function 1") else: ax.set_xlabel(self.fd_final.coordinate_names[0]) if self.fd_final.coordinate_names[1] is None: ax.set_ylabel("Function 2") else: ax.set_ylabel(self.fd_final.coordinate_names[1])
/scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/exploratory/visualization/_parametric_plot.py
0.940216
0.526708
_parametric_plot.py
pypi
from __future__ import annotations from abc import ABC, abstractmethod from typing import Sequence, Tuple import matplotlib.pyplot as plt from matplotlib.artist import Artist from matplotlib.axes import Axes from matplotlib.backend_bases import LocationEvent, MouseEvent from matplotlib.collections import PathCollection from matplotlib.colors import ListedColormap from matplotlib.figure import Figure from matplotlib.text import Annotation from ...representation import FData from ...typing._numpy import NDArrayInt, NDArrayObject from ._utils import _figure_to_svg, _get_figure_and_axes, _set_figure_layout class BasePlot(ABC): """ BasePlot class. Attributes: artists: List of Artist objects corresponding to every instance of our plot. They will be used to modify the visualization with interactivity and widgets. fig: Figure over with the graphs are plotted. axes: Sequence of axes where the graphs are plotted. """ @abstractmethod def __init__( self, chart: Figure | Axes | None = None, *, fig: Figure | None = None, axes: Axes | Sequence[Axes] | None = None, n_rows: int | None = None, n_cols: int | None = None, c: NDArrayInt | None = None, cmap_bold: ListedColormap = None, x_label: str | None = None, y_label: str | None = None, ) -> None: self.artists: NDArrayObject | None = None self.chart = chart self.fig = fig self.axes = axes self.n_rows = n_rows self.n_cols = n_cols self._tag = self._create_annotation() self.c = c self.cmap_bold = cmap_bold self.x_label = x_label self.y_label = y_label def _plot( self, fig: Figure, axes: Sequence[Axes], ) -> None: pass def plot( self, ) -> Figure: """ Plot the object and its data. Returns: Figure: figure object in which the displays and widgets will be plotted. """ fig: Figure | None = getattr(self, "fig_", None) axes: Sequence[Axes] | None = getattr(self, "axes_", None) if fig is None: fig, axes = self._set_figure_and_axes( self.chart, fig=self.fig, axes=self.axes, ) assert axes is not None if self.x_label is not None: axes[0].set_xlabel(self.x_label) if self.y_label is not None: axes[0].set_ylabel(self.y_label) self._plot(fig, axes) self._hover_event_id = fig.canvas.mpl_connect( 'motion_notify_event', self.hover, ) return fig @property def dim(self) -> int: """Get the number of dimensions for this plot.""" return 2 @property def n_subplots(self) -> int: """Get the number of subplots that this plot uses.""" return 1 @property def n_samples(self) -> int | None: """Get the number of instances that will be used for interactivity.""" return None def _set_figure_and_axes( self, chart: Figure | Axes | None = None, *, fig: Figure | None = None, axes: Axes | Sequence[Axes] | None = None, ) -> Tuple[Figure, Sequence[Axes]]: fig, axes = _get_figure_and_axes(chart, fig, axes) fig, axes = _set_figure_layout( fig=fig, axes=axes, dim=self.dim, n_axes=self.n_subplots, n_rows=self.n_rows, n_cols=self.n_cols, ) self.fig_ = fig self.axes_ = axes return fig, axes def _repr_svg_(self) -> str: """Automatically represents the object as an svg when calling it.""" self.fig = self.plot() plt.close(self.fig) return _figure_to_svg(self.fig) def _create_annotation(self) -> Annotation: tag = Annotation( "", xy=(0, 0), xytext=(20, 20), textcoords="offset points", bbox={ "boxstyle": "round", "fc": "w", }, arrowprops={ "arrowstyle": "->", }, annotation_clip=False, clip_on=False, ) tag.get_bbox_patch().set_facecolor(color='khaki') intensity = 0.8 tag.get_bbox_patch().set_alpha(intensity) return tag def _update_annotation( self, tag: Annotation, *, axes: Axes, sample_number: int, fdata: FData | None, position: Tuple[float, float], ) -> None: """ Auxiliary method used to update the hovering annotations. Method used to update the annotations that appear while hovering a scattered point. The annotations indicate the index and coordinates of the point hovered. Args: tag: Annotation to update. axes: Axes were the annotation belongs. sample_number: Number of the current sample. """ xdata_graph, ydata_graph = position tag.xy = (xdata_graph, ydata_graph) sample_name = ( fdata.sample_names[sample_number] if fdata is not None else None ) sample_descr = f" ({sample_name})" if sample_name is not None else "" text = ( f"{sample_number}{sample_descr}: " f"({xdata_graph:.3g}, {ydata_graph:.3g})" ) tag.set_text(text) x_axis = axes.get_xlim() y_axis = axes.get_ylim() label_xpos = -60 label_ypos = 20 if (xdata_graph - x_axis[0]) > (x_axis[1] - xdata_graph): label_xpos = -80 if (ydata_graph - y_axis[0]) > (y_axis[1] - ydata_graph): label_ypos = -20 if tag.figure: tag.remove() tag.figure = None axes.add_artist(tag) tag.set_transform(axes.transData) tag.set_position((label_xpos, label_ypos)) def _sample_artist_from_event( self, event: LocationEvent, ) -> Tuple[int, FData | None, Artist] | None: """Get the number, fdata and artist under a location event.""" if self.artists is None: return None try: i = self.axes_.index(event.inaxes) except ValueError: return None for j, artist in enumerate(self.artists[:, i]): if not isinstance(artist, PathCollection): return None if artist.contains(event)[0]: return j, getattr(self, "fdata", None), artist return None def hover(self, event: MouseEvent) -> None: """ Activate the annotation when hovering a point. Callback method that activates the annotation when hovering a specific point in a graph. The annotation is a description of the point containing its coordinates. Args: event: event object containing the artist of the point hovered. """ found_artist = self._sample_artist_from_event(event) if event.inaxes is not None and found_artist is not None: sample_number, fdata, artist = found_artist self._update_annotation( self._tag, axes=event.inaxes, sample_number=sample_number, fdata=fdata, position=artist.get_offsets()[0], ) self._tag.set_visible(True) self.fig_.canvas.draw_idle() elif self._tag.get_visible(): self._tag.set_visible(False) self.fig_.canvas.draw_idle()
/scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/exploratory/visualization/_baseplot.py
0.952142
0.551574
_baseplot.py
pypi
from __future__ import annotations import io import math import re from itertools import repeat from typing import Sequence, Tuple, TypeVar, Union import matplotlib.backends.backend_svg import matplotlib.pyplot as plt from matplotlib.axes import Axes from matplotlib.figure import Figure from typing_extensions import Protocol, TypeAlias from ...representation._functional_data import FData non_close_text = '[^>]*?' svg_width_regex = re.compile( f'(<svg {non_close_text}width="){non_close_text}("{non_close_text}>)', ) svg_width_replacement = r'\g<1>100%\g<2>' svg_height_regex = re.compile( f'(<svg {non_close_text})height="{non_close_text}"({non_close_text}>)', ) svg_height_replacement = r'\g<1>\g<2>' ColorLike: TypeAlias = Union[ Tuple[float, float, float], Tuple[float, float, float, float], str, Sequence[float], ] K = TypeVar('K', contravariant=True) V = TypeVar('V', covariant=True) class Indexable(Protocol[K, V]): """Class Indexable used to type _get_color_info.""" def __getitem__(self, __key: K) -> V: pass def __len__(self) -> int: pass def _create_figure() -> Figure: """Create figure using the default backend.""" return plt.figure() def _figure_to_svg(figure: Figure) -> str: """Return the SVG representation of a figure.""" old_canvas = figure.canvas matplotlib.backends.backend_svg.FigureCanvas(figure) output = io.BytesIO() figure.savefig(output, format='svg') figure.set_canvas(old_canvas) data = output.getvalue() decoded_data = data.decode('utf-8') new_data = svg_width_regex.sub( svg_width_replacement, decoded_data, count=1, ) return svg_height_regex.sub( svg_height_replacement, new_data, count=1, ) def _get_figure_and_axes( chart: Figure | Axes | Sequence[Axes] | None = None, fig: Figure | None = None, axes: Axes | Sequence[Axes] | None = None, ) -> Tuple[Figure, Sequence[Axes]]: """Obtain the figure and axes from the arguments.""" num_defined = sum(e is not None for e in (chart, fig, axes)) if num_defined > 1: raise ValueError( "Only one of chart, fig and axes parameters" "can be passed as an argument.", ) # Parse chart argument if chart is not None: if isinstance(chart, matplotlib.figure.Figure): fig = chart else: axes = chart if fig is None and axes is None: new_fig = _create_figure() new_axes = [] elif fig is not None: new_fig = fig new_axes = fig.axes else: assert axes is not None if isinstance(axes, Axes): axes = [axes] new_fig = axes[0].figure new_axes = axes return new_fig, new_axes def _get_axes_shape( n_axes: int, n_rows: int | None = None, n_cols: int | None = None, ) -> Tuple[int, int]: """Get the number of rows and columns of the subplots.""" if ( (n_rows is not None and n_cols is not None) and ((n_rows * n_cols) < n_axes) ): raise ValueError( f"The number of rows ({n_rows}) multiplied by " f"the number of columns ({n_cols}) " f"is less than the number of required " f"axes ({n_axes})", ) if n_rows is None and n_cols is None: new_n_cols = int(math.ceil(math.sqrt(n_axes))) new_n_rows = int(math.ceil(n_axes / new_n_cols)) elif n_rows is None and n_cols is not None: new_n_cols = n_cols new_n_rows = int(math.ceil(n_axes / n_cols)) elif n_cols is None and n_rows is not None: new_n_cols = int(math.ceil(n_axes / n_rows)) new_n_rows = n_rows return new_n_rows, new_n_cols def _projection_from_dim(dim: int) -> str: if dim == 2: return 'rectilinear' elif dim == 3: return '3d' raise NotImplementedError( "Only bidimensional or tridimensional plots are supported.", ) def _set_figure_layout( fig: Figure, axes: Sequence[Axes], dim: int | Sequence[int] = 2, n_axes: int = 1, n_rows: int | None = None, n_cols: int | None = None, ) -> Tuple[Figure, Sequence[Axes]]: """ Set the figure axes for plotting. Args: fig: Figure over with the graphs are plotted in case ax is not specified. axes: Axis over where the graphs are plotted. dim: Dimension of the plot. Either 2 for a 2D plot or 3 for a 3D plot. n_axes: Number of subplots. n_rows: Designates the number of rows of the figure to plot the different dimensions of the image. Can only be passed if no axes are specified. n_cols: Designates the number of columns of the figure to plot the different dimensions of the image. Can only be passed if no axes are specified. Returns: (tuple): tuple containing: * fig (figure): figure object in which the graphs are plotted. * axes (list): axes in which the graphs are plotted. """ if len(axes) not in {0, n_axes}: raise ValueError( f"The number of axes ({len(axes)}) must be 0 (to create them)" f" or equal to the number of axes needed " f"({n_axes} in this case).", ) if len(axes) != 0 and (n_rows is not None or n_cols is not None): raise ValueError( "The number of columns and/or number of rows of " "the figure, in which each dimension of the " "image is plotted, can only be customized in case " "that no axes are provided.", ) if len(axes) == 0: # Create the axes n_rows, n_cols = _get_axes_shape(n_axes, n_rows, n_cols) for i in range(n_rows): for j in range(n_cols): subplot_index = i * n_cols + j if subplot_index < n_axes: plot_dim = ( dim if isinstance(dim, int) else dim[subplot_index] ) fig.add_subplot( n_rows, n_cols, subplot_index + 1, projection=_projection_from_dim(plot_dim), ) axes = fig.axes else: # Check that the projections are right projections = ( repeat(_projection_from_dim(dim)) if isinstance(dim, int) else (_projection_from_dim(d) for d in dim) ) for a, proj in zip(axes, projections): if a.name != proj: raise ValueError( f"The projection of the axes is {a.name} " f"but should be {proj}", ) return fig, axes def _set_labels( fdata: FData, fig: Figure, axes: Sequence[Axes], patches: Sequence[matplotlib.patches.Patch] | None = None, ) -> None: """Set labels if any. Args: fdata: functional data object. fig: figure object containing the axes that implement set_xlabel and set_ylabel, and set_zlabel in case of a 3d projection. axes: axes objects that implement set_xlabel and set_ylabel, and set_zlabel in case of a 3d projection; used if fig is None. patches: objects used to generate each entry in the legend. """ # Dataset name if fdata.dataset_name is not None: fig.suptitle(fdata.dataset_name) # Legend if patches is not None: fig.legend(handles=patches) elif patches is not None: axes[0].legend(handles=patches) assert len(axes) >= fdata.dim_codomain # Axis labels if axes[0].name == '3d': for i, a in enumerate(axes): if fdata.argument_names[0] is not None: a.set_xlabel(fdata.argument_names[0]) if fdata.argument_names[1] is not None: a.set_ylabel(fdata.argument_names[1]) if fdata.coordinate_names[i] is not None: a.set_zlabel(fdata.coordinate_names[i]) else: for i in range(fdata.dim_codomain): if fdata.argument_names[0] is not None: axes[i].set_xlabel(fdata.argument_names[0]) if fdata.coordinate_names[i] is not None: axes[i].set_ylabel(fdata.coordinate_names[i]) def _change_luminosity(color: ColorLike, amount: float = 0.5) -> ColorLike: """ Change the given color luminosity by the given amount. Input can be matplotlib color string, hex string, or RGB tuple. Note: Based on https://stackoverflow.com/a/49601444/2455333 """ import colorsys import matplotlib.colors as mc try: c = mc.cnames[color] except TypeError: c = color c = colorsys.rgb_to_hls(*mc.to_rgb(c)) intensity = (amount - 0.5) * 2 up = intensity > 0 intensity = abs(intensity) lightness = c[1] if up: new_lightness = lightness + intensity * (1 - lightness) else: new_lightness = lightness - intensity * lightness return colorsys.hls_to_rgb(c[0], new_lightness, c[2]) def _darken(color: ColorLike, amount: float = 0) -> ColorLike: return _change_luminosity(color, 0.5 - amount / 2) def _lighten(color: ColorLike, amount: float = 0) -> ColorLike: return _change_luminosity(color, 0.5 + amount / 2)
/scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/exploratory/visualization/_utils.py
0.925331
0.407333
_utils.py
pypi