code
stringlengths
114
1.05M
path
stringlengths
3
312
quality_prob
float64
0.5
0.99
learning_prob
float64
0.2
1
filename
stringlengths
3
168
kind
stringclasses
1 value
defmodule Map do @moduledoc """ A `Dict` implementation that works on maps. Maps are key-value stores where keys are compared using the match operator (`===`). Maps can be created with the `%{}` special form defined in the `Kernel.SpecialForms` module. For more information about the functions in this module and their APIs, please consult the `Dict` module. """ use Dict @type key :: any @type value :: any defdelegate [keys(map), values(map), merge(map1, map2), to_list(map)], to: :maps @compile {:inline, fetch: 2, put: 3, delete: 2, has_key?: 2} # TODO: Deprecate by 1.3 # TODO: Remove by 1.4 @doc false def size(map) do map_size(map) end @doc """ Returns a new empty map. """ @spec new :: map def new, do: %{} @doc """ Creates a map from an enumerable. Duplicated keys are removed; the latest one prevails. ## Examples iex> Map.new([{:b, 1}, {:a, 2}]) %{a: 2, b: 1} iex> Map.new([a: 1, a: 2, a: 3]) %{a: 3} """ @spec new(Enum.t) :: map def new(enumerable) do Enum.reduce(enumerable, %{}, fn {k, v}, acc -> put(acc, k, v) end) end @doc """ Creates a map from an enumerable via the transformation function. Duplicated entries are removed; the latest one prevails. ## Examples iex> Map.new([:a, :b], fn x -> {x, x} end) %{a: :a, b: :b} """ @spec new(Enum.t, (term -> {key, value})) :: map def new(enumerable, transform) do fun = fn el, acc -> {k, v} = transform.(el) put(acc, k, v) end Enum.reduce(enumerable, %{}, fun) end def has_key?(map, key), do: :maps.is_key(key, map) def fetch(map, key), do: :maps.find(key, map) def put(map, key, val) do :maps.put(key, val, map) end def delete(map, key), do: :maps.remove(key, map) def merge(map1, map2, callback) do :maps.fold fn k, v2, acc -> update(acc, k, v2, fn(v1) -> callback.(k, v1, v2) end) end, map1, map2 end @doc """ Updates the value in the map with the given function. """ def update!(%{} = map, key, fun) do case fetch(map, key) do {:ok, value} -> put(map, key, fun.(value)) :error -> :erlang.error({:badkey, key}) end end def update!(map, _key, _fun), do: :erlang.error({:badmap, map}) @doc """ Gets a value and updates a map in one operation. """ def get_and_update(%{} = map, key, fun) do current_value = case :maps.find(key, map) do {:ok, value} -> value :error -> nil end {get, update} = fun.(current_value) {get, :maps.put(key, update, map)} end def get_and_update(map, _key, _fun), do: :erlang.error({:badmap, map}) @doc """ Gets a value and updates a map only if the key exists in one operation. """ def get_and_update!(%{} = map, key, fun) do case :maps.find(key, map) do {:ok, value} -> {get, update} = fun.(value) {get, :maps.put(key, update, map)} :error -> :erlang.error({:badkey, key}) end end def get_and_update!(map, _key, _fun), do: :erlang.error({:badmap, map}) @doc """ Converts a struct to map. It accepts the struct module or a struct itself and simply removes the `__struct__` field from the struct. ## Example defmodule User do defstruct [:name] end Map.from_struct(User) #=> %{name: nil} Map.from_struct(%User{name: "john"}) #=> %{name: "john"} """ def from_struct(struct) when is_atom(struct) do :maps.remove(:__struct__, struct.__struct__) end def from_struct(%{__struct__: _} = struct) do :maps.remove(:__struct__, struct) end def equal?(map1, map2) def equal?(%{} = map1, %{} = map2), do: map1 === map2 end
lib/elixir/lib/map.ex
0.680348
0.666066
map.ex
starcoder
defmodule GenEvent.Behaviour do @moduledoc """ This module is a convenience for defining GenEvent callbacks in Elixir. GenEvent is an OTP behaviour that encapsulates event handling functionality. ## Example Below is an example of a GenEvent that stores notifications until they are fetched: defmodule MyEventHandler do use GenEvent.Behaviour # Callbacks def init(_) do { :ok, [] } end def handle_event({:notification, x}, notifications) do { :ok, [x|notifications] } end def handle_call(:notifications, notifications) do {:ok, Enum.reverse(notifications), []} end end { :ok, pid } = :gen_event.start_link #=> {:ok,#PID<0.42.0>} :gen_event.add_handler(pid, MyEventHandler, []) #=> :ok :gen_event.notify(pid, {:notification, 1}) #=> :ok :gen_event.notify(pid, {:notification, 2}) #=> :ok :gen_event.call(pid, MyEventHandler, :notifications) #=> [1, 2] :gen_event.call(pid, MyEventHandler, :notifications) #=> [] Notice we never call the server callbacks directly, they are called by OTP whenever we interact with the server. Starting and sending messages to the GenEvent is done via Erlang's `:gen_event` module. For more information, please refer to the following: * http://www.erlang.org/doc/man/gen_event.html * http://learnyousomeerlang.com/event-handlers """ @doc false defmacro __using__(_) do quote location: :keep do @behaviour :gen_event @doc false def init(args) do { :ok, args } end @doc false def handle_event(_event, state) do { :ok, state } end @doc false def handle_call(_request, state) do { :ok, :ok, state } end @doc false def handle_info(_msg, state) do { :ok, state } end @doc false def terminate(reason, state) do :ok end @doc false def code_change(_old, state, _extra) do { :ok, state } end defoverridable [init: 1, handle_event: 2, handle_call: 2, handle_info: 2, terminate: 2, code_change: 3] end end end
lib/elixir/lib/gen_event/behaviour.ex
0.678647
0.413862
behaviour.ex
starcoder
defmodule Seren.Player do @moduledoc """ The Player context. """ import Ecto.Query, warn: false alias Seren.Repo alias Seren.Player.Track @doc """ Returns the list of tracks. ## Examples iex> list_tracks() [%Track{}, ...] """ def list_tracks do Repo.all(Track) end def list_tracks(limit) do from(t in Track, join: artist in assoc(t, :artist), left_join: album in assoc(t, :album), limit: ^limit, order_by: [artist.name, album.title, :album_disc_number, :track_number, :title]) |> Repo.all end def list_tracks(limit, offset) do from(t in Track, join: artist in assoc(t, :artist), left_join: album in assoc(t, :album), limit: ^limit, offset: ^offset, order_by: [artist.name, album.title, :album_disc_number, :track_number, :title]) |> Repo.all end @doc """ Returns list of tracks for various models """ def tracks_for_artist(id) do from(t in Track, where: t.artist_id == ^id, left_join: album in assoc(t, :album), order_by: [album.title, :album_disc_number, :track_number, :title]) |> Repo.all end def tracks_for_genre(id) do from(t in Track, join: artist in assoc(t, :artist), left_join: album in assoc(t, :album), where: t.genre_id == ^id, order_by: [artist.name, album.title, :album_disc_number, :track_number, :title]) |> Repo.all end def tracks_for_composer(id) do from(t in Track, join: artist in assoc(t, :artist), left_join: album in assoc(t, :album), where: t.composer_id == ^id, order_by: [album.title, :album_disc_number, :track_number, artist.name, :title]) |> Repo.all end def tracks_for_album(id) do from(t in Track, join: artist in assoc(t, :artist), where: t.album_id == ^id, order_by: [:album_disc_number, :track_number, artist.name, :title]) |> Repo.all end @doc """ Returns list of tracks for search query """ def tracks_for_search(query, limit) do like_query = "%#{String.replace(query, "%", "\\%") |> String.replace("_", "\\_")}%" from(t in Track, join: artist in assoc(t, :artist), left_join: album in assoc(t, :album), left_join: c in assoc(t, :composer), where: ilike(t.title, ^like_query) or ilike(artist.name, ^like_query) or ilike(album.title, ^like_query) or ilike(c.name, ^like_query), order_by: [artist.name, album.title, :album_disc_number, :track_number, :title], limit: ^limit) |> Repo.all end @doc """ Gets a single track. Raises `Ecto.NoResultsError` if the Track does not exist. ## Examples iex> get_track!(123) %Track{} iex> get_track!(456) ** (Ecto.NoResultsError) """ def get_track!(id), do: Repo.get!(Track, id) @doc """ Creates a track. ## Examples iex> create_track(%{field: value}) {:ok, %Track{}} iex> create_track(%{field: bad_value}) {:error, %Ecto.Changeset{}} """ def create_track(attrs \\ %{}) do %Track{} |> Track.changeset(attrs) |> Repo.insert() end @doc """ Updates a track. ## Examples iex> update_track(track, %{field: new_value}) {:ok, %Track{}} iex> update_track(track, %{field: bad_value}) {:error, %Ecto.Changeset{}} """ def update_track(%Track{} = track, attrs) do track |> Track.changeset(attrs) |> Repo.update() end @doc """ Deletes a Track. ## Examples iex> delete_track(track) {:ok, %Track{}} iex> delete_track(track) {:error, %Ecto.Changeset{}} """ def delete_track(%Track{} = track) do Repo.delete(track) end @doc """ Returns an `%Ecto.Changeset{}` for tracking track changes. ## Examples iex> change_track(track) %Ecto.Changeset{source: %Track{}} """ def change_track(%Track{} = track) do Track.changeset(track, %{}) end alias Seren.Player.Artist @doc """ Returns the list of artists. ## Examples iex> list_artists() [%Artist{}, ...] """ def list_artists do from(Artist, order_by: :name) |> Repo.all end @doc """ Gets a single artist. Raises `Ecto.NoResultsError` if the Artist does not exist. ## Examples iex> get_artist!(123) %Artist{} iex> get_artist!(456) ** (Ecto.NoResultsError) """ def get_artist!(id) do Repo.get!(Artist, id) end @doc """ Creates a artist. ## Examples iex> create_artist(%{field: value}) {:ok, %Artist{}} iex> create_artist(%{field: bad_value}) {:error, %Ecto.Changeset{}} """ def create_artist(attrs \\ %{}) do %Artist{} |> Artist.changeset(attrs) |> Repo.insert() end @doc """ Updates a artist. ## Examples iex> update_artist(artist, %{field: new_value}) {:ok, %Artist{}} iex> update_artist(artist, %{field: bad_value}) {:error, %Ecto.Changeset{}} """ def update_artist(%Artist{} = artist, attrs) do artist |> Artist.changeset(attrs) |> Repo.update() end @doc """ Deletes a Artist. ## Examples iex> delete_artist(artist) {:ok, %Artist{}} iex> delete_artist(artist) {:error, %Ecto.Changeset{}} """ def delete_artist(%Artist{} = artist) do Repo.delete(artist) end @doc """ Returns an `%Ecto.Changeset{}` for tracking artist changes. ## Examples iex> change_artist(artist) %Ecto.Changeset{source: %Artist{}} """ def change_artist(%Artist{} = artist) do Artist.changeset(artist, %{}) end alias Seren.Player.Genre @doc """ Returns the list of genres. ## Examples iex> list_genres() [%Genre{}, ...] """ def list_genres do from(Genre, order_by: :name) |> Repo.all end @doc """ Gets a single genre. Raises `Ecto.NoResultsError` if the Genre does not exist. ## Examples iex> get_genre!(123) %Genre{} iex> get_genre!(456) ** (Ecto.NoResultsError) """ def get_genre!(id), do: Repo.get!(Genre, id) @doc """ Creates a genre. ## Examples iex> create_genre(%{field: value}) {:ok, %Genre{}} iex> create_genre(%{field: bad_value}) {:error, %Ecto.Changeset{}} """ def create_genre(attrs \\ %{}) do %Genre{} |> Genre.changeset(attrs) |> Repo.insert() end @doc """ Updates a genre. ## Examples iex> update_genre(genre, %{field: new_value}) {:ok, %Genre{}} iex> update_genre(genre, %{field: bad_value}) {:error, %Ecto.Changeset{}} """ def update_genre(%Genre{} = genre, attrs) do genre |> Genre.changeset(attrs) |> Repo.update() end @doc """ Deletes a Genre. ## Examples iex> delete_genre(genre) {:ok, %Genre{}} iex> delete_genre(genre) {:error, %Ecto.Changeset{}} """ def delete_genre(%Genre{} = genre) do Repo.delete(genre) end @doc """ Returns an `%Ecto.Changeset{}` for tracking genre changes. ## Examples iex> change_genre(genre) %Ecto.Changeset{source: %Genre{}} """ def change_genre(%Genre{} = genre) do Genre.changeset(genre, %{}) end alias Seren.Player.Composer @doc """ Returns the list of composers. ## Examples iex> list_composers() [%Composer{}, ...] """ def list_composers do from(Composer, order_by: :name) |> Repo.all end @doc """ Gets a single composer. Raises `Ecto.NoResultsError` if the Composer does not exist. ## Examples iex> get_composer!(123) %Composer{} iex> get_composer!(456) ** (Ecto.NoResultsError) """ def get_composer!(id), do: Repo.get!(Composer, id) @doc """ Creates a composer. ## Examples iex> create_composer(%{field: value}) {:ok, %Composer{}} iex> create_composer(%{field: bad_value}) {:error, %Ecto.Changeset{}} """ def create_composer(attrs \\ %{}) do %Composer{} |> Composer.changeset(attrs) |> Repo.insert() end @doc """ Updates a composer. ## Examples iex> update_composer(composer, %{field: new_value}) {:ok, %Composer{}} iex> update_composer(composer, %{field: bad_value}) {:error, %Ecto.Changeset{}} """ def update_composer(%Composer{} = composer, attrs) do composer |> Composer.changeset(attrs) |> Repo.update() end @doc """ Deletes a Composer. ## Examples iex> delete_composer(composer) {:ok, %Composer{}} iex> delete_composer(composer) {:error, %Ecto.Changeset{}} """ def delete_composer(%Composer{} = composer) do Repo.delete(composer) end @doc """ Returns an `%Ecto.Changeset{}` for tracking composer changes. ## Examples iex> change_composer(composer) %Ecto.Changeset{source: %Composer{}} """ def change_composer(%Composer{} = composer) do Composer.changeset(composer, %{}) end alias Seren.Player.FileType @doc """ Returns the list of file_types. ## Examples iex> list_file_types() [%FileType{}, ...] """ def list_file_types do Repo.all(FileType) end @doc """ Gets a single file_type. Raises `Ecto.NoResultsError` if the File type does not exist. ## Examples iex> get_file_type!(123) %FileType{} iex> get_file_type!(456) ** (Ecto.NoResultsError) """ def get_file_type!(id), do: Repo.get!(FileType, id) @doc """ Creates a file_type. ## Examples iex> create_file_type(%{field: value}) {:ok, %FileType{}} iex> create_file_type(%{field: bad_value}) {:error, %Ecto.Changeset{}} """ def create_file_type(attrs \\ %{}) do %FileType{} |> FileType.changeset(attrs) |> Repo.insert() end @doc """ Updates a file_type. ## Examples iex> update_file_type(file_type, %{field: new_value}) {:ok, %FileType{}} iex> update_file_type(file_type, %{field: bad_value}) {:error, %Ecto.Changeset{}} """ def update_file_type(%FileType{} = file_type, attrs) do file_type |> FileType.changeset(attrs) |> Repo.update() end @doc """ Deletes a FileType. ## Examples iex> delete_file_type(file_type) {:ok, %FileType{}} iex> delete_file_type(file_type) {:error, %Ecto.Changeset{}} """ def delete_file_type(%FileType{} = file_type) do Repo.delete(file_type) end @doc """ Returns an `%Ecto.Changeset{}` for tracking file_type changes. ## Examples iex> change_file_type(file_type) %Ecto.Changeset{source: %FileType{}} """ def change_file_type(%FileType{} = file_type) do FileType.changeset(file_type, %{}) end alias Seren.Player.Album @doc """ Returns the list of albums. ## Examples iex> list_albums() [%Album{}, ...] """ def list_albums do Repo.all(Album) end @doc """ Gets a single album. Raises `Ecto.NoResultsError` if the Album does not exist. ## Examples iex> get_album!(123) %Album{} iex> get_album!(456) ** (Ecto.NoResultsError) """ def get_album!(id), do: Repo.get!(Album, id) @doc """ Creates a album. ## Examples iex> create_album(%{field: value}) {:ok, %Album{}} iex> create_album(%{field: bad_value}) {:error, %Ecto.Changeset{}} """ def create_album(attrs \\ %{}) do %Album{} |> Album.changeset(attrs) |> Repo.insert() end @doc """ Updates a album. ## Examples iex> update_album(album, %{field: new_value}) {:ok, %Album{}} iex> update_album(album, %{field: bad_value}) {:error, %Ecto.Changeset{}} """ def update_album(%Album{} = album, attrs) do album |> Album.changeset(attrs) |> Repo.update() end @doc """ Deletes a Album. ## Examples iex> delete_album(album) {:ok, %Album{}} iex> delete_album(album) {:error, %Ecto.Changeset{}} """ def delete_album(%Album{} = album) do Repo.delete(album) end @doc """ Returns an `%Ecto.Changeset{}` for tracking album changes. ## Examples iex> change_album(album) %Ecto.Changeset{source: %Album{}} """ def change_album(%Album{} = album) do Album.changeset(album, %{}) end end
lib/seren/player/player.ex
0.843009
0.545225
player.ex
starcoder
defprotocol Phoenix.HTML.FormData do @moduledoc """ Converts a data structure into a [`Phoenix.HTML.Form`](`t:Phoenix.HTML.Form.t/0`) struct. """ @doc """ Converts a data structure into a [`Phoenix.HTML.Form`](`t:Phoenix.HTML.Form.t/0`) struct. The options are the same options given to `form_for/4`. It can be used by implementations to configure their behaviour and it must be stored in the underlying struct, with any custom field removed. """ @spec to_form(t, Keyword.t()) :: Phoenix.HTML.Form.t() def to_form(data, options) @doc """ Converts the field in the given form based on the data structure into a list of [`Phoenix.HTML.Form`](`t:Phoenix.HTML.Form.t/0`) structs. The options are the same options given to `inputs_for/4`. It can be used by implementations to configure their behaviour and it must be stored in the underlying struct, with any custom field removed. """ @spec to_form(t, Phoenix.HTML.Form.t(), Phoenix.HTML.Form.field(), Keyword.t()) :: [Phoenix.HTML.Form.t()] def to_form(data, form, field, options) @doc """ Returns the value for the given field. """ @spec input_value(t, Phoenix.HTML.Form.t(), Phoenix.HTML.Form.field()) :: term def input_value(data, form, field) @doc """ Returns the HTML5 validations that would apply to the given field. """ @spec input_validations(t, Phoenix.HTML.Form.t(), Phoenix.HTML.Form.field()) :: Keyword.t() def input_validations(data, form, field) @doc """ Receives the given field and returns its input type (:text_input, :select, etc). Returns `nil` if the type is unknown. """ @spec input_type(t, Phoenix.HTML.Form.t(), Phoenix.HTML.Form.field()) :: atom | nil def input_type(data, form, field) end defimpl Phoenix.HTML.FormData, for: [Plug.Conn, Atom] do def to_form(conn_or_atom, opts) do {name, params, opts} = name_params_and_opts(conn_or_atom, opts) {errors, opts} = Keyword.pop(opts, :errors, []) id = Keyword.get(opts, :id) || name unless is_binary(id) or is_nil(id) do raise ArgumentError, ":id option in form_for must be a binary/string, got: #{inspect(id)}" end %Phoenix.HTML.Form{ source: conn_or_atom, impl: __MODULE__, id: id, name: name, params: params, data: %{}, errors: errors, options: opts } end case @for do Atom -> defp name_params_and_opts(atom, opts) do {params, opts} = Keyword.pop(opts, :params, %{}) {Atom.to_string(atom), params, opts} end Plug.Conn -> defp name_params_and_opts(conn, opts) do case Keyword.pop(opts, :as) do {nil, opts} -> {nil, conn.params, opts} {name, opts} -> name = to_string(name) {name, Map.get(conn.params, name) || %{}, opts} end end end def to_form(conn_or_atom, form, field, opts) when is_atom(field) or is_binary(field) do {default, opts} = Keyword.pop(opts, :default, %{}) {prepend, opts} = Keyword.pop(opts, :prepend, []) {append, opts} = Keyword.pop(opts, :append, []) {name, opts} = Keyword.pop(opts, :as) {id, opts} = Keyword.pop(opts, :id) {hidden, opts} = Keyword.pop(opts, :hidden, []) id = to_string(id || form.id <> "_#{field}") name = to_string(name || form.name <> "[#{field}]") params = Map.get(form.params, field_to_string(field)) cond do # cardinality: one is_map(default) -> [ %Phoenix.HTML.Form{ source: conn_or_atom, impl: __MODULE__, id: id, name: name, data: default, params: params || %{}, hidden: hidden, options: opts } ] # cardinality: many is_list(default) -> entries = if params do params |> Enum.sort_by(&elem(&1, 0)) |> Enum.map(&{nil, elem(&1, 1)}) else Enum.map(prepend ++ default ++ append, &{&1, %{}}) end for {{data, params}, index} <- Enum.with_index(entries) do index_string = Integer.to_string(index) %Phoenix.HTML.Form{ source: conn_or_atom, impl: __MODULE__, index: index, id: id <> "_" <> index_string, name: name <> "[" <> index_string <> "]", data: data, params: params, hidden: hidden, options: opts } end end end def input_value(_conn_or_atom, %{data: data, params: params}, field) when is_atom(field) or is_binary(field) do key = field_to_string(field) case params do %{^key => value} -> value %{} -> Map.get(data, field) end end def input_type(_conn_or_atom, _form, _field), do: :text_input def input_validations(_conn_or_atom, _form, _field), do: [] # Normalize field name to string version defp field_to_string(field) when is_atom(field), do: Atom.to_string(field) defp field_to_string(field) when is_binary(field), do: field end
lib/phoenix_html/form_data.ex
0.911559
0.692044
form_data.ex
starcoder
defmodule AshPostgres.DataLayer do @manage_tenant %Ash.Dsl.Section{ name: :manage_tenant, describe: """ Configuration for the behavior of a resource that manages a tenant """, examples: [ """ manage_tenant do template ["organization_", :id] create? true update? false end """ ], schema: [ template: [ type: {:custom, __MODULE__, :tenant_template, []}, required: true, doc: """ A template that will cause the resource to create/manage the specified schema. Use this if you have a resource that, when created, it should create a new tenant for you. For example, if you have a `customer` resource, and you want to create a schema for each customer based on their id, e.g `customer_10` set this option to `["customer_", :id]`. Then, when this is created, it will create a schema called `["customer_", :id]`, and run your tenant migrations on it. Then, if you were to change that customer's id to `20`, it would rename the schema to `customer_20`. Generally speaking you should avoid changing the tenant id. """ ], create?: [ type: :boolean, default: true, doc: "Whether or not to automatically create a tenant when a record is created" ], update?: [ type: :boolean, default: true, doc: "Whether or not to automatically update the tenant name if the record is udpated" ] ] } @reference %Ash.Dsl.Entity{ name: :reference, describe: """ Configures the reference for a relationship in resource migrations. Keep in mind that multiple relationships can theoretically involve the same destination and foreign keys. In those cases, you only need to configure the `reference` behavior for one of them. Any conflicts will result in an error, across this resource and any other resources that share a table with this one. For this reason, instead of adding a reference configuration for `:nothing`, its best to just leave the configuration out, as that is the default behavior if *no* relationship anywhere has configured the behavior of that reference. """, examples: [ "reference :post, on_delete: :delete, on_update: :update, name: \"comments_to_posts_fkey\"" ], args: [:relationship], target: AshPostgres.Reference, schema: AshPostgres.Reference.schema() } @references %Ash.Dsl.Section{ name: :references, describe: """ A section for configuring the references (foreign keys) in resource migrations. This section is only relevant if you are using the migration generator with this resource. Otherwise, it has no effect. """, examples: [ """ references do reference :post, on_delete: :delete, on_update: :update, name: "comments_to_posts_fkey" end """ ], entities: [@reference], schema: [ polymorphic_on_delete: [ type: {:one_of, [:delete, :nilify, :nothing, :restrict]}, doc: "For polymorphic resources, configures the on_delete behavior of the automatically generated foreign keys to source tables." ], polymorphic_on_update: [ type: {:one_of, [:update, :nilify, :nothing, :restrict]}, doc: "For polymorphic resources, configures the on_update behavior of the automatically generated foreign keys to source tables." ], polymorphic_name: [ type: {:one_of, [:update, :nilify, :nothing, :restrict]}, doc: "For polymorphic resources, configures the on_update behavior of the automatically generated foreign keys to source tables." ] ] } @check_constraint %Ash.Dsl.Entity{ name: :check_constraint, describe: """ Add a check constraint to be validated. If a check constraint exists on the table but not in this section, and it produces an error, a runtime error will be raised. Provide a list of attributes instead of a single attribute to add the message to multiple attributes. By adding the `check` option, the migration generator will include it when generating migrations. """, examples: [ """ check_constraint :price, "price_must_be_positive", check: "price > 0", message: "price must be positive" """ ], args: [:attribute, :name], target: AshPostgres.CheckConstraint, schema: AshPostgres.CheckConstraint.schema() } @check_constraints %Ash.Dsl.Section{ name: :check_constraints, describe: """ A section for configuring the check constraints for a given table. This can be used to automatically create those check constraints, or just to provide message when they are raised """, examples: [ """ check_constraints do check_constraint :price, "price_must_be_positive", check: "price > 0", message: "price must be positive" end """ ], entities: [@check_constraint] } @references %Ash.Dsl.Section{ name: :references, describe: """ A section for configuring the references (foreign keys) in resource migrations. This section is only relevant if you are using the migration generator with this resource. Otherwise, it has no effect. """, examples: [ """ references do reference :post, on_delete: :delete, on_update: :update, name: "comments_to_posts_fkey" end """ ], entities: [@reference], schema: [ polymorphic_on_delete: [ type: {:one_of, [:delete, :nilify, :nothing, :restrict]}, doc: "For polymorphic resources, configures the on_delete behavior of the automatically generated foreign keys to source tables." ], polymorphic_on_update: [ type: {:one_of, [:update, :nilify, :nothing, :restrict]}, doc: "For polymorphic resources, configures the on_update behavior of the automatically generated foreign keys to source tables." ], polymorphic_name: [ type: {:one_of, [:update, :nilify, :nothing, :restrict]}, doc: "For polymorphic resources, configures the on_update behavior of the automatically generated foreign keys to source tables." ] ] } @postgres %Ash.Dsl.Section{ name: :postgres, describe: """ Postgres data layer configuration """, sections: [ @manage_tenant, @references, @check_constraints ], modules: [ :repo ], examples: [ """ postgres do repo MyApp.Repo table "organizations" end """ ], schema: [ repo: [ type: :atom, required: true, doc: "The repo that will be used to fetch your data. See the `AshPostgres.Repo` documentation for more" ], migrate?: [ type: :boolean, default: true, doc: "Whether or not to include this resource in the generated migrations with `mix ash.generate_migrations`" ], base_filter_sql: [ type: :string, doc: "A raw sql version of the base_filter, e.g `representative = true`. Required if trying to create a unique constraint on a resource with a base_filter" ], skip_unique_indexes: [ type: {:custom, __MODULE__, :validate_skip_unique_indexes, []}, default: false, doc: "Skip generating unique indexes when generating migrations" ], unique_index_names: [ type: :any, default: [], doc: """ A list of unique index names that could raise errors, or an mfa to a function that takes a changeset and returns the list. Must be in the format `{[:affected, :keys], "name_of_constraint"}` or `{[:affected, :keys], "name_of_constraint", "custom error message"}` Note that this is *not* used to rename the unique indexes created from `identities`. Use `identity_index_names` for that. This is used to tell ash_postgres about unique indexes that exist in the database that it didn't create. """ ], identity_index_names: [ type: :any, default: [], doc: """ A keyword list of identity names to the unique index name that they should use when being managed by the migration generator. """ ], foreign_key_names: [ type: :any, default: [], doc: """ A list of foreign keys that could raise errors, or an mfa to a function that takes a changeset and returns the list. Must be in the format `{:key, "name_of_constraint"}` or `{:key, "name_of_constraint", "custom error message"}` """ ], table: [ type: :string, doc: "The table to store and read the resource from. Required unless `polymorphic?` is true." ], polymorphic?: [ type: :boolean, default: false, doc: """ Declares this resource as polymorphic. Polymorphic resources cannot be read or updated unless the table is provided in the query/changeset context. For example: PolymorphicResource |> Ash.Query.set_context(%{data_layer: %{table: "table"}}) |> MyApi.read!() When relating to polymorphic resources, you'll need to use the `context` option on relationships, e.g belongs_to :polymorphic_association, PolymorphicResource, context: %{data_layer: %{table: "table"}} """ ] ] } alias Ash.Filter alias Ash.Query.{BooleanExpression, Not, Ref} alias Ash.Query.Function.{Ago, Contains} alias Ash.Query.Operator.IsNil alias AshPostgres.Functions.{Fragment, TrigramSimilarity, Type} import AshPostgres, only: [repo: 1] @behaviour Ash.DataLayer @sections [@postgres] @moduledoc """ A postgres data layer that levereges Ecto's postgres capabilities. # Table of Contents #{Ash.Dsl.Extension.doc_index(@sections)} #{Ash.Dsl.Extension.doc(@sections)} """ use Ash.Dsl.Extension, sections: @sections, transformers: [ AshPostgres.Transformers.VerifyRepo, AshPostgres.Transformers.EnsureTableOrPolymorphic ] @doc false def tenant_template(value) do value = List.wrap(value) if Enum.all?(value, &(is_binary(&1) || is_atom(&1))) do {:ok, value} else {:error, "Expected all values for `manages_tenant` to be strings or atoms"} end end @doc false def validate_skip_unique_indexes(indexes) do indexes = List.wrap(indexes) if Enum.all?(indexes, &is_atom/1) do {:ok, indexes} else {:error, "All indexes to skip must be atoms"} end end import Ecto.Query, only: [from: 2, subquery: 1] @impl true def can?(_, :async_engine), do: true def can?(_, :transact), do: true def can?(_, :composite_primary_key), do: true def can?(_, :upsert), do: true def can?(resource, {:join, other_resource}) do data_layer = Ash.DataLayer.data_layer(resource) other_data_layer = Ash.DataLayer.data_layer(other_resource) data_layer == other_data_layer and repo(data_layer) == repo(other_data_layer) end def can?(resource, {:lateral_join, other_resource}) do data_layer = Ash.DataLayer.data_layer(resource) other_data_layer = Ash.DataLayer.data_layer(other_resource) data_layer == other_data_layer and repo(data_layer) == repo(other_data_layer) end def can?(_, :boolean_filter), do: true def can?(_, {:aggregate, :count}), do: true def can?(_, {:aggregate, :sum}), do: true def can?(_, :aggregate_filter), do: true def can?(_, :aggregate_sort), do: true def can?(_, :create), do: true def can?(_, :select), do: true def can?(_, :read), do: true def can?(_, :update), do: true def can?(_, :destroy), do: true def can?(_, :filter), do: true def can?(_, :limit), do: true def can?(_, :offset), do: true def can?(_, :multitenancy), do: true def can?(_, {:filter_expr, _}), do: true def can?(_, :nested_expressions), do: true def can?(_, {:query_aggregate, :count}), do: true def can?(_, :sort), do: true def can?(_, :distinct), do: true def can?(_, {:sort, _}), do: true def can?(_, _), do: false @impl true def in_transaction?(resource) do repo(resource).in_transaction?() end @impl true def limit(query, nil, _), do: {:ok, query} def limit(query, limit, _resource) do {:ok, from(row in query, limit: ^limit)} end @impl true def source(resource) do AshPostgres.table(resource) || "" end @impl true def set_context(resource, data_layer_query, context) do if context[:data_layer][:table] do {:ok, %{ data_layer_query | from: %{data_layer_query.from | source: {context[:data_layer][:table], resource}} }} else {:ok, data_layer_query} end end @impl true def offset(query, nil, _), do: query def offset(%{offset: old_offset} = query, 0, _resource) when old_offset in [0, nil] do {:ok, query} end def offset(query, offset, _resource) do {:ok, from(row in query, offset: ^offset)} end @impl true def run_query(query, resource) do if AshPostgres.polymorphic?(resource) && no_table?(query) do raise_table_error!(resource, :read) else {:ok, repo(resource).all(query, repo_opts(query))} end end defp no_table?(%{from: %{source: {"", _}}}), do: true defp no_table?(_), do: false defp repo_opts(%Ash.Changeset{tenant: tenant, resource: resource}) do repo_opts(%{tenant: tenant, resource: resource}) end defp repo_opts(%{tenant: tenant, resource: resource}) when not is_nil(tenant) do if Ash.Resource.Info.multitenancy_strategy(resource) == :context do [prefix: tenant] else [] end end defp repo_opts(_), do: [] @impl true def functions(resource) do config = repo(resource).config() functions = [AshPostgres.Functions.Type, AshPostgres.Functions.Fragment] if "pg_trgm" in (config[:installed_extensions] || []) do functions ++ [ AshPostgres.Functions.TrigramSimilarity ] else functions end end @impl true def run_aggregate_query(query, aggregates, resource) do subquery = from(row in subquery(query), select: %{}) query = Enum.reduce( aggregates, subquery, &add_subquery_aggregate_select(&2, &1, resource) ) {:ok, repo(resource).one(query, repo_opts(query))} end @impl true def set_tenant(_resource, query, tenant) do {:ok, Ecto.Query.put_query_prefix(query, to_string(tenant))} end @impl true def run_aggregate_query_with_lateral_join( query, aggregates, root_data, source_resource, destination_resource, source_field, destination_field ) do lateral_join_query = lateral_join_query( query, root_data, source_resource, source_field, destination_field ) subquery = from(row in subquery(lateral_join_query), select: %{}) query = Enum.reduce( aggregates, subquery, &add_subquery_aggregate_select(&2, &1, destination_resource) ) {:ok, repo(source_resource).one(query, repo_opts(:query))} end @impl true def run_query_with_lateral_join( query, root_data, source_resource, _destination_resource, source_field, destination_field ) do query = lateral_join_query( query, root_data, source_resource, source_field, destination_field ) {:ok, repo(source_resource).all(query, repo_opts(query))} end defp lateral_join_query( query, root_data, source_resource, source_field, destination_field ) do source_values = Enum.map(root_data, &Map.get(&1, source_field)) subquery = subquery( from(destination in query, where: field(destination, ^destination_field) == field(parent_as(:source_record), ^source_field) ) ) source_resource |> Ash.Query.new() |> Ash.Query.data_layer_query() |> case do {:ok, data_layer_query} -> from(source in data_layer_query, as: :source_record, where: field(source, ^source_field) in ^source_values, inner_lateral_join: destination in ^subquery, on: field(source, ^source_field) == field(destination, ^destination_field), select: destination ) {:error, error} -> {:error, error} end end @impl true def resource_to_query(resource, _), do: Ecto.Queryable.to_query({AshPostgres.table(resource) || "", resource}) @impl true def create(resource, changeset) do changeset.data |> Map.update!(:__meta__, &Map.put(&1, :source, table(resource, changeset))) |> ecto_changeset(changeset, :create) |> repo(resource).insert(repo_opts(changeset)) |> handle_errors() |> case do {:ok, result} -> maybe_create_tenant!(resource, result) {:ok, result} {:error, error} -> {:error, error} end end defp maybe_create_tenant!(resource, result) do if AshPostgres.manage_tenant_create?(resource) do tenant_name = tenant_name(resource, result) AshPostgres.MultiTenancy.create_tenant!(tenant_name, repo(resource)) else :ok end end defp maybe_update_tenant(resource, changeset, result) do if AshPostgres.manage_tenant_update?(resource) do changing_tenant_name? = resource |> AshPostgres.manage_tenant_template() |> Enum.filter(&is_atom/1) |> Enum.any?(&Ash.Changeset.changing_attribute?(changeset, &1)) if changing_tenant_name? do old_tenant_name = tenant_name(resource, changeset.data) new_tenant_name = tenant_name(resource, result) AshPostgres.MultiTenancy.rename_tenant(repo(resource), old_tenant_name, new_tenant_name) end end :ok end defp tenant_name(resource, result) do resource |> AshPostgres.manage_tenant_template() |> Enum.map_join(fn item -> if is_binary(item) do item else result |> Map.get(item) |> to_string() end end) end defp handle_errors({:error, %Ecto.Changeset{errors: errors}}) do {:error, Enum.map(errors, &to_ash_error/1)} end defp handle_errors({:ok, val}), do: {:ok, val} defp to_ash_error({field, {message, vars}}) do Ash.Error.Changes.InvalidAttribute.exception(field: field, message: message, vars: vars) end defp ecto_changeset(record, changeset, type) do ecto_changeset = record |> set_table(changeset, type) |> Ecto.Changeset.change(changeset.attributes) |> add_configured_foreign_key_constraints(record.__struct__) |> add_unique_indexes(record.__struct__, changeset) |> add_check_constraints(record.__struct__) case type do :create -> ecto_changeset |> add_my_foreign_key_constraints(record.__struct__) type when type in [:upsert, :update] -> ecto_changeset |> add_my_foreign_key_constraints(record.__struct__) |> add_related_foreign_key_constraints(record.__struct__) :delete -> ecto_changeset |> add_related_foreign_key_constraints(record.__struct__) end end defp set_table(record, changeset, operation) do if AshPostgres.polymorphic?(record.__struct__) do table = changeset.context[:data_layer][:table] || AshPostgres.table(record.__struct) if table do Ecto.put_meta(record, source: table) else raise_table_error!(changeset.resource, operation) end else record end end defp add_check_constraints(changeset, resource) do resource |> AshPostgres.check_constraints() |> Enum.reduce(changeset, fn constraint, changeset -> constraint.attribute |> List.wrap() |> Enum.reduce(changeset, fn attribute, changeset -> Ecto.Changeset.check_constraint(changeset, attribute, name: constraint.name, message: constraint.message || "is invalid" ) end) end) end defp add_related_foreign_key_constraints(changeset, resource) do # TODO: this doesn't guarantee us to get all of them, because if something is related to this # schema and there is no back-relation, then this won't catch it's foreign key constraints resource |> Ash.Resource.Info.relationships() |> Enum.map(& &1.destination) |> Enum.uniq() |> Enum.flat_map(fn related -> related |> Ash.Resource.Info.relationships() |> Enum.filter(&(&1.destination == resource)) |> Enum.map(&Map.take(&1, [:source, :source_field, :destination_field])) end) |> Enum.uniq() |> Enum.reduce(changeset, fn %{ source: source, source_field: source_field, destination_field: destination_field }, changeset -> Ecto.Changeset.foreign_key_constraint(changeset, destination_field, name: "#{AshPostgres.table(source)}_#{source_field}_fkey", message: "would leave records behind" ) end) end defp add_my_foreign_key_constraints(changeset, resource) do resource |> Ash.Resource.Info.relationships() |> Enum.reduce(changeset, &Ecto.Changeset.foreign_key_constraint(&2, &1.source_field)) end defp add_configured_foreign_key_constraints(changeset, resource) do resource |> AshPostgres.foreign_key_names() |> case do {m, f, a} -> List.wrap(apply(m, f, [changeset | a])) value -> List.wrap(value) end |> Enum.reduce(changeset, fn {key, name}, changeset -> Ecto.Changeset.foreign_key_constraint(changeset, key, name: name) {key, name, message}, changeset -> Ecto.Changeset.foreign_key_constraint(changeset, key, name: name, message: message) end) end defp add_unique_indexes(changeset, resource, ash_changeset) do changeset = resource |> Ash.Resource.Info.identities() |> Enum.reduce(changeset, fn identity, changeset -> name = AshPostgres.identity_index_names(resource)[identity.name] || "#{table(resource, ash_changeset)}_#{identity.name}_index" opts = if Map.get(identity, :message) do [name: name, message: identity.message] else [name: name] end Ecto.Changeset.unique_constraint(changeset, identity.keys, opts) end) names = resource |> AshPostgres.unique_index_names() |> case do {m, f, a} -> List.wrap(apply(m, f, [changeset | a])) value -> List.wrap(value) end names = [ {Ash.Resource.Info.primary_key(resource), table(resource, ash_changeset) <> "_pkey"} | names ] Enum.reduce(names, changeset, fn {keys, name}, changeset -> Ecto.Changeset.unique_constraint(changeset, List.wrap(keys), name: name) {keys, name, message}, changeset -> Ecto.Changeset.unique_constraint(changeset, List.wrap(keys), name: name, message: message) end) end @impl true def upsert(resource, changeset) do repo_opts = changeset |> repo_opts() |> Keyword.put(:on_conflict, {:replace, Map.keys(changeset.attributes)}) |> Keyword.put(:conflict_target, Ash.Resource.Info.primary_key(resource)) if AshPostgres.manage_tenant_update?(resource) do {:error, "Cannot currently upsert a resource that owns a tenant"} else changeset.data |> Map.update!(:__meta__, &Map.put(&1, :source, table(resource, changeset))) |> ecto_changeset(changeset, :upsert) |> repo(resource).insert(repo_opts) |> handle_errors() end end @impl true def update(resource, changeset) do changeset.data |> Map.update!(:__meta__, &Map.put(&1, :source, table(resource, changeset))) |> ecto_changeset(changeset, :update) |> repo(resource).update(repo_opts(changeset)) |> handle_errors() |> case do {:ok, result} -> maybe_update_tenant(resource, changeset, result) {:ok, result} {:error, error} -> {:error, error} end end @impl true def destroy(resource, %{data: record} = changeset) do record |> ecto_changeset(changeset, :delete) |> repo(resource).delete(repo_opts(changeset)) |> case do {:ok, _record} -> :ok {:error, error} -> handle_errors({:error, error}) end end @impl true def sort(query, sort, resource) do query = default_bindings(query, resource) sort |> sanitize_sort() |> Enum.reduce({:ok, query}, fn {order, sort}, {:ok, query} -> binding = case Map.fetch(query.__ash_bindings__.aggregates, sort) do {:ok, binding} -> binding :error -> 0 end new_query = Map.update!(query, :order_bys, fn order_bys -> order_bys = order_bys || [] sort_expr = %Ecto.Query.QueryExpr{ expr: [ {order, {{:., [], [{:&, [], [binding]}, sort]}, [], []}} ] } order_bys ++ [sort_expr] end) {:ok, new_query} end) end @impl true def select(query, select, resource) do query = default_bindings(query, resource) {:ok, from(row in query, select: struct(row, ^select) )} end @impl true def distinct(query, distinct_on, resource) do query = default_bindings(query, resource) query = query |> default_bindings(resource) |> Map.update!(:distinct, fn distinct -> distinct = distinct || %Ecto.Query.QueryExpr{ expr: [] } expr = Enum.map(distinct_on, fn distinct_on_field -> binding = case Map.fetch(query.__ash_bindings__.aggregates, distinct_on_field) do {:ok, binding} -> binding :error -> 0 end {:asc, {{:., [], [{:&, [], [binding]}, distinct_on_field]}, [], []}} end) %{distinct | expr: distinct.expr ++ expr} end) {:ok, query} end defp sanitize_sort(sort) do sort |> List.wrap() |> Enum.map(fn {sort, :asc_nils_last} -> {:asc_nulls_last, sort} {sort, :asc_nils_first} -> {:asc_nulls_first, sort} {sort, :desc_nils_last} -> {:desc_nulls_last, sort} {sort, :desc_nils_first} -> {:desc_nulls_first, sort} {sort, order} -> {order, sort} sort -> sort end) end @impl true def filter(query, %{expression: false}, _resource) do impossible_query = from(row in query, where: false) {:ok, Map.put(impossible_query, :__impossible__, true)} end def filter(query, filter, _resource) do relationship_paths = filter |> Filter.relationship_paths() |> Enum.map(fn path -> if can_inner_join?(path, filter) do {:inner, relationship_path_to_relationships(filter.resource, path)} else {:left, relationship_path_to_relationships(filter.resource, path)} end end) new_query = query |> join_all_relationships(relationship_paths) |> add_filter_expression(filter) {:ok, new_query} end defp default_bindings(query, resource) do Map.put_new(query, :__ash_bindings__, %{ current: Enum.count(query.joins) + 1, aggregates: %{}, bindings: %{0 => %{path: [], type: :root, source: resource}} }) end @known_inner_join_operators [ Eq, GreaterThan, GreaterThanOrEqual, In, LessThanOrEqual, LessThan, NotEq ] |> Enum.map(&Module.concat(Ash.Query.Operator, &1)) @known_inner_join_functions [ Ago, Contains ] |> Enum.map(&Module.concat(Ash.Query.Function, &1)) @known_inner_join_predicates @known_inner_join_functions ++ @known_inner_join_operators # For consistency's sake, this logic was removed. # We can revisit it sometime though. defp can_inner_join?(path, expr, seen_an_or? \\ false) defp can_inner_join?(path, %{expression: expr}, seen_an_or?), do: can_inner_join?(path, expr, seen_an_or?) defp can_inner_join?(_path, expr, _seen_an_or?) when expr in [nil, true, false], do: true defp can_inner_join?(path, %BooleanExpression{op: :and, left: left, right: right}, seen_an_or?) do can_inner_join?(path, left, seen_an_or?) || can_inner_join?(path, right, seen_an_or?) end defp can_inner_join?(path, %BooleanExpression{op: :or, left: left, right: right}, _) do can_inner_join?(path, left, true) && can_inner_join?(path, right, true) end defp can_inner_join?( _, %Not{}, _ ) do false end defp can_inner_join?( search_path, %struct{__operator__?: true, left: %Ref{relationship_path: relationship_path}}, seen_an_or? ) when search_path == relationship_path and struct in @known_inner_join_predicates do not seen_an_or? end defp can_inner_join?( search_path, %struct{__operator__?: true, right: %Ref{relationship_path: relationship_path}}, seen_an_or? ) when search_path == relationship_path and struct in @known_inner_join_predicates do not seen_an_or? end defp can_inner_join?( search_path, %struct{__function__?: true, arguments: arguments}, seen_an_or? ) when struct in @known_inner_join_predicates do if Enum.any?(arguments, &match?(%Ref{relationship_path: ^search_path}, &1)) do not seen_an_or? else true end end defp can_inner_join?(_, _, _), do: false @impl true def add_aggregate(query, aggregate, _resource) do resource = aggregate.resource query = default_bindings(query, resource) {query, binding} = case get_binding(resource, aggregate.relationship_path, query, :aggregate) do nil -> relationship = Ash.Resource.Info.relationship(resource, aggregate.relationship_path) subquery = aggregate_subquery(relationship, aggregate) new_query = join_all_relationships( query, [ {{:aggregate, aggregate.name, subquery}, relationship_path_to_relationships(resource, aggregate.relationship_path)} ] ) {new_query, get_binding(resource, aggregate.relationship_path, new_query, :aggregate)} binding -> {query, binding} end query_with_aggregate_binding = put_in( query.__ash_bindings__.aggregates, Map.put(query.__ash_bindings__.aggregates, aggregate.name, binding) ) new_query = query_with_aggregate_binding |> add_aggregate_to_subquery(resource, aggregate, binding) |> select_aggregate(resource, aggregate) {:ok, new_query} end defp select_aggregate(query, resource, aggregate) do binding = get_binding(resource, aggregate.relationship_path, query, :aggregate) query = if query.select do query else from(row in query, select: row, select_merge: %{aggregates: %{}} ) end %{query | select: add_to_select(query.select, binding, aggregate)} end defp add_to_select( %{expr: {:merge, _, [first, {:%{}, _, [{:aggregates, {:%{}, [], fields}}]}]}} = select, binding, %{load: nil} = aggregate ) do accessed = {{:., [], [{:&, [], [binding]}, aggregate.name]}, [], []} field = {:type, [], [ accessed, Ash.Type.ecto_type(aggregate.type) ]} field_with_default = if is_nil(aggregate.default_value) do field else {:coalesce, [], [ field, {:type, [], [ aggregate.default_value, Ash.Type.ecto_type(aggregate.type) ]} ]} end new_fields = [ {aggregate.name, field_with_default} | fields ] %{select | expr: {:merge, [], [first, {:%{}, [], [{:aggregates, {:%{}, [], new_fields}}]}]}} end defp add_to_select( %{expr: expr} = select, binding, %{load: load_as} = aggregate ) do accessed = {{:., [], [{:&, [], [binding]}, aggregate.name]}, [], []} field = {:type, [], [ accessed, Ash.Type.ecto_type(aggregate.type) ]} field_with_default = if is_nil(aggregate.default_value) do field else {:coalesce, [], [ field, {:type, [], [ aggregate.default_value, Ash.Type.ecto_type(aggregate.type) ]} ]} end %{select | expr: {:merge, [], [expr, {:%{}, [], [{load_as, field_with_default}]}]}} end defp add_aggregate_to_subquery(query, resource, aggregate, binding) do new_joins = List.update_at(query.joins, binding - 1, fn join -> aggregate_query = if aggregate.authorization_filter do {:ok, filter} = filter( join.source.from.source.query, aggregate.authorization_filter, Ash.Resource.Info.related(resource, aggregate.relationship_path) ) filter else join.source.from.source.query end new_aggregate_query = add_subquery_aggregate_select(aggregate_query, aggregate, resource) put_in(join.source.from.source.query, new_aggregate_query) end) %{ query | joins: new_joins } end defp aggregate_subquery(relationship, aggregate) do query = from(row in relationship.destination, group_by: ^relationship.destination_field, select: field(row, ^relationship.destination_field) ) if aggregate.query && aggregate.query.tenant do Ecto.Query.put_query_prefix(query, aggregate.query.tenant) else query end end defp order_to_postgres_order(dir) do case dir do :asc -> nil :asc_nils_last -> " ASC NULLS LAST" :asc_nils_first -> " ASC NULLS FIRST" :desc -> " DESC" :desc_nils_last -> " DESC NULLS LAST" :desc_nils_first -> " DESC NULLS FIRST" end end defp add_subquery_aggregate_select(query, %{kind: kind} = aggregate, _resource) when kind in [:first, :list] do query = default_bindings(query, aggregate.resource) key = aggregate.field type = Ash.Type.ecto_type(aggregate.type) field = if aggregate.query && aggregate.query.sort && aggregate.query.sort != [] do sort_expr = aggregate.query.sort |> Enum.map(fn {sort, order} -> case order_to_postgres_order(order) do nil -> [expr: {{:., [], [{:&, [], [0]}, sort]}, [], []}] order -> [expr: {{:., [], [{:&, [], [0]}, sort]}, [], []}, raw: order] end end) |> Enum.intersperse(raw: ", ") |> List.flatten() {:fragment, [], [ raw: "array_agg(", expr: {{:., [], [{:&, [], [0]}, key]}, [], []}, raw: " ORDER BY " ] ++ sort_expr ++ [raw: ")"]} else {:fragment, [], [ raw: "array_agg(", expr: {{:., [], [{:&, [], [0]}, key]}, [], []}, raw: ")" ]} end {params, filtered} = if aggregate.query && aggregate.query.filter && not match?(%Ash.Filter{expression: nil}, aggregate.query.filter) do {params, expr} = filter_to_expr( aggregate.query.filter, query.__ash_bindings__.bindings, query.select.params ) {params, {:filter, [], [field, expr]}} else {[], field} end casted = if kind == :first do {:type, [], [ {:fragment, [], [ raw: "(", expr: filtered, raw: ")[1]" ]}, type ]} else {:type, [], [ filtered, {:array, type} ]} end new_expr = {:merge, [], [query.select.expr, {:%{}, [], [{aggregate.name, casted}]}]} %{query | select: %{query.select | expr: new_expr, params: params}} end defp add_subquery_aggregate_select(query, %{kind: :list} = aggregate, _resource) do query = default_bindings(query, aggregate.resource) key = aggregate.field type = Ash.Type.ecto_type(aggregate.type) field = if aggregate.query && aggregate.query.sort && aggregate.query.sort != [] do sort_expr = aggregate.query.sort |> Enum.map(fn {sort, order} -> case order_to_postgres_order(order) do nil -> [expr: {{:., [], [{:&, [], [0]}, sort]}, [], []}] order -> [expr: {{:., [], [{:&, [], [0]}, sort]}, [], []}, raw: order] end end) |> Enum.intersperse(raw: ", ") |> List.flatten() {:fragment, [], [ raw: "array_agg(", expr: {{:., [], [{:&, [], [0]}, key]}, [], []}, raw: " ORDER BY " ] ++ sort_expr ++ [raw: ")"]} else {:fragment, [], [ raw: "array_agg(", expr: {{:., [], [{:&, [], [0]}, key]}, [], []}, raw: ")" ]} end {params, filtered} = if aggregate.query && aggregate.query.filter && not match?(%Ash.Filter{expression: nil}, aggregate.query.filter) do {params, expr} = filter_to_expr( aggregate.query.filter, query.__ash_bindings__.bindings, query.select.params ) {params, {:filter, [], [field, expr]}} else {[], field} end cast = {:type, [], [filtered, {:array, type}]} new_expr = {:merge, [], [query.select.expr, {:%{}, [], [{aggregate.name, cast}]}]} %{query | select: %{query.select | expr: new_expr, params: params}} end defp add_subquery_aggregate_select(query, %{kind: kind} = aggregate, resource) when kind in [:count, :sum] do query = default_bindings(query, aggregate.resource) key = aggregate.field || List.first(Ash.Resource.Info.primary_key(resource)) type = Ash.Type.ecto_type(aggregate.type) field = {kind, [], [{{:., [], [{:&, [], [0]}, key]}, [], []}]} {params, filtered} = if aggregate.query && aggregate.query.filter && not match?(%Ash.Filter{expression: nil}, aggregate.query.filter) do {params, expr} = filter_to_expr( aggregate.query.filter, query.__ash_bindings__.bindings, query.select.params ) {params, {:filter, [], [field, expr]}} else {[], field} end cast = {:type, [], [filtered, type]} new_expr = {:merge, [], [query.select.expr, {:%{}, [], [{aggregate.name, cast}]}]} %{query | select: %{query.select | expr: new_expr, params: params}} end defp relationship_path_to_relationships(resource, path, acc \\ []) defp relationship_path_to_relationships(_resource, [], acc), do: Enum.reverse(acc) defp relationship_path_to_relationships(resource, [relationship | rest], acc) do relationship = Ash.Resource.Info.relationship(resource, relationship) relationship_path_to_relationships(relationship.destination, rest, [relationship | acc]) end defp join_all_relationships(query, relationship_paths, path \\ [], source \\ nil) do query = default_bindings(query, source) Enum.reduce(relationship_paths, query, fn {_join_type, []}, query -> query {join_type, [relationship | rest_rels]}, query -> source = source || relationship.source current_path = path ++ [relationship] current_join_type = case join_type do {:aggregate, _name, _agg} when rest_rels != [] -> :left other -> other end if has_binding?(source, Enum.reverse(current_path), query, current_join_type) do query else joined_query = join_relationship( query, relationship, Enum.map(path, & &1.name), current_join_type, source ) joined_query_with_distinct = add_distinct(relationship, join_type, joined_query) join_all_relationships( joined_query_with_distinct, [{join_type, rest_rels}], current_path, source ) end end) end defp has_binding?(resource, path, query, {:aggregate, _, _}), do: has_binding?(resource, path, query, :aggregate) defp has_binding?(resource, candidate_path, %{__ash_bindings__: _} = query, type) do Enum.any?(query.__ash_bindings__.bindings, fn {_, %{path: path, source: source, type: ^type}} -> Ash.SatSolver.synonymous_relationship_paths?(resource, path, candidate_path, source) _ -> false end) end defp has_binding?(_, _, _, _), do: false defp get_binding(resource, path, %{__ash_bindings__: _} = query, type) do paths = Enum.flat_map(query.__ash_bindings__.bindings, fn {binding, %{path: path, type: ^type}} -> [{binding, path}] _ -> [] end) Enum.find_value(paths, fn {binding, candidate_path} -> Ash.SatSolver.synonymous_relationship_paths?(resource, candidate_path, path) && binding end) end defp get_binding(_, _, _, _), do: nil defp add_distinct(relationship, join_type, joined_query) do if relationship.cardinality == :many and join_type == :left && !joined_query.distinct do from(row in joined_query, distinct: ^Ash.Resource.Info.primary_key(relationship.destination) ) else joined_query end end defp join_relationship(query, relationship, path, join_type, source) do case Map.get(query.__ash_bindings__.bindings, path) do %{type: existing_join_type} when join_type != existing_join_type -> raise "unreachable?" nil -> do_join_relationship(query, relationship, path, join_type, source) _ -> query end end defp do_join_relationship(query, %{type: :many_to_many} = relationship, path, kind, source) do relationship_through = maybe_get_resource_query(relationship.through) relationship_destination = Ecto.Queryable.to_query(maybe_get_resource_query(relationship.destination)) current_binding = Enum.find_value(query.__ash_bindings__.bindings, 0, fn {binding, data} -> if data.type == kind && data.path == Enum.reverse(path) do binding end end) new_query = case kind do {:aggregate, _, subquery} -> subquery = subquery( from(destination in subquery, where: field(destination, ^relationship.destination_field) == field( parent_as(:rel_through), ^relationship.destination_field_on_join_table ) ) ) from([{row, current_binding}] in query, left_join: through in ^relationship_through, as: :rel_through, on: field(row, ^relationship.source_field) == field(through, ^relationship.source_field_on_join_table), left_lateral_join: destination in ^subquery, on: field(destination, ^relationship.destination_field) == field(through, ^relationship.destination_field_on_join_table) ) :inner -> from([{row, current_binding}] in query, join: through in ^relationship_through, on: field(row, ^relationship.source_field) == field(through, ^relationship.source_field_on_join_table), join: destination in ^relationship_destination, on: field(destination, ^relationship.destination_field) == field(through, ^relationship.destination_field_on_join_table) ) _ -> from([{row, current_binding}] in query, left_join: through in ^relationship_through, on: field(row, ^relationship.source_field) == field(through, ^relationship.source_field_on_join_table), left_join: destination in ^relationship_destination, on: field(destination, ^relationship.destination_field) == field(through, ^relationship.destination_field_on_join_table) ) end join_path = Enum.reverse([String.to_existing_atom(to_string(relationship.name) <> "_join_assoc") | path]) full_path = Enum.reverse([relationship.name | path]) binding_data = case kind do {:aggregate, name, _agg} -> %{type: :aggregate, name: name, path: full_path, source: source} _ -> %{type: kind, path: full_path, source: source} end new_query |> add_binding(%{path: join_path, type: :left, source: source}) |> add_binding(binding_data) end defp do_join_relationship(query, relationship, path, kind, source) do relationship_destination = Ecto.Queryable.to_query(maybe_get_resource_query(relationship.destination)) current_binding = Enum.find_value(query.__ash_bindings__.bindings, 0, fn {binding, data} -> if data.type == kind && data.path == Enum.reverse(path) do binding end end) new_query = case kind do {:aggregate, _, subquery} -> subquery = from( sub in subquery( from(destination in subquery, where: field(destination, ^relationship.destination_field) == field(parent_as(:rel_source), ^relationship.source_field) ) ), select: field(sub, ^relationship.destination_field) ) from([{row, current_binding}] in query, as: :rel_source, left_lateral_join: destination in ^subquery, on: field(row, ^relationship.source_field) == field(destination, ^relationship.destination_field) ) :inner -> from([{row, current_binding}] in query, join: destination in ^relationship_destination, on: field(row, ^relationship.source_field) == field(destination, ^relationship.destination_field) ) _ -> from([{row, current_binding}] in query, left_join: destination in ^relationship_destination, on: field(row, ^relationship.source_field) == field(destination, ^relationship.destination_field) ) end full_path = Enum.reverse([relationship.name | path]) binding_data = case kind do {:aggregate, name, _agg} -> %{type: :aggregate, name: name, path: full_path, source: source} _ -> %{type: kind, path: full_path, source: source} end new_query |> add_binding(binding_data) end defp add_filter_expression(query, filter) do wheres = filter |> split_and_statements() |> Enum.map(fn filter -> {params, expr} = filter_to_expr(filter, query.__ash_bindings__.bindings, []) %Ecto.Query.BooleanExpr{ expr: expr, op: :and, params: params } end) %{query | wheres: query.wheres ++ wheres} end defp split_and_statements(%Filter{expression: expression}) do split_and_statements(expression) end defp split_and_statements(%BooleanExpression{op: :and, left: left, right: right}) do split_and_statements(left) ++ split_and_statements(right) end defp split_and_statements(%Not{expression: %Not{expression: expression}}) do split_and_statements(expression) end defp split_and_statements(%Not{ expression: %BooleanExpression{op: :or, left: left, right: right} }) do split_and_statements(%BooleanExpression{ op: :and, left: %Not{expression: left}, right: %Not{expression: right} }) end defp split_and_statements(other), do: [other] defp filter_to_expr(expr, bindings, params, embedded? \\ false, type \\ nil) defp filter_to_expr(%Filter{expression: expression}, bindings, params, embedded?, type) do filter_to_expr(expression, bindings, params, embedded?, type) end # A nil filter means "everything" defp filter_to_expr(nil, _, _, _, _), do: {[], true} # A true filter means "everything" defp filter_to_expr(true, _, _, _, _), do: {[], true} # A false filter means "nothing" defp filter_to_expr(false, _, _, _, _), do: {[], false} defp filter_to_expr(expression, bindings, params, embedded?, type) do do_filter_to_expr(expression, bindings, params, embedded?, type) end defp do_filter_to_expr(expr, bindings, params, embedded?, type \\ nil) defp do_filter_to_expr( %BooleanExpression{op: op, left: left, right: right}, bindings, params, embedded?, _type ) do {params, left_expr} = do_filter_to_expr(left, bindings, params, embedded?) {params, right_expr} = do_filter_to_expr(right, bindings, params, embedded?) {params, {op, [], [left_expr, right_expr]}} end defp do_filter_to_expr(%Not{expression: expression}, bindings, params, embedded?, _type) do {params, new_expression} = do_filter_to_expr(expression, bindings, params, embedded?) {params, {:not, [], [new_expression]}} end defp do_filter_to_expr( %TrigramSimilarity{arguments: [arg1, arg2], embedded?: pred_embedded?}, bindings, params, embedded?, _type ) do {params, arg1} = do_filter_to_expr(arg1, bindings, params, pred_embedded? || embedded?) {params, arg2} = do_filter_to_expr(arg2, bindings, params, pred_embedded? || embedded?) {params, {:fragment, [], [raw: "similarity(", expr: arg1, raw: ", ", expr: arg2, raw: ")"]}} end defp do_filter_to_expr( %Type{arguments: [arg1, arg2], embedded?: pred_embedded?}, bindings, params, embedded?, _type ) when pred_embedded? or embedded? do {params, arg1} = do_filter_to_expr(arg1, bindings, params, true) {params, arg2} = do_filter_to_expr(arg2, bindings, params, true) case maybe_ecto_type(arg2) do nil -> {params, {:type, [], [arg1, arg2]}} type -> case arg1 do %{__predicate__?: _} -> {params, {:type, [], [arg1, arg2]}} value -> {params, %Ecto.Query.Tagged{value: value, type: type}} end end end defp do_filter_to_expr( %Type{arguments: [arg1, arg2], embedded?: pred_embedded?}, bindings, params, embedded?, _type ) do {params, arg1} = do_filter_to_expr(arg1, bindings, params, pred_embedded? || embedded?) {params, arg2} = do_filter_to_expr(arg2, bindings, params, pred_embedded? || embedded?) arg2 = maybe_ecto_type(arg2) {params, {:type, [], [arg1, arg2]}} end defp do_filter_to_expr( %Fragment{arguments: arguments, embedded?: pred_embedded?}, bindings, params, embedded?, _type ) do {params, fragment_data} = Enum.reduce(arguments, {params, []}, fn {:raw, str}, {params, fragment_data} -> {params, fragment_data ++ [{:raw, str}]} {:expr, expr}, {params, fragment_data} -> {params, expr} = do_filter_to_expr(expr, bindings, params, pred_embedded? || embedded?) {params, fragment_data ++ [{:expr, expr}]} end) {params, {:fragment, [], fragment_data}} end defp do_filter_to_expr( %IsNil{left: left, right: right, embedded?: pred_embedded?}, bindings, params, embedded?, _type ) do {params, left_expr} = do_filter_to_expr(left, bindings, params, pred_embedded? || embedded?) {params, right_expr} = do_filter_to_expr(right, bindings, params, pred_embedded? || embedded?) {params, {:==, [], [ {:is_nil, [], [left_expr]}, right_expr ]}} end defp do_filter_to_expr( %Ago{arguments: [left, right], embedded?: _pred_embedded?}, _bindings, params, _embedded?, _type ) when is_integer(left) and (is_binary(right) or is_atom(right)) do {params ++ [{DateTime.utc_now(), {:param, :any_datetime}}], {:datetime_add, [], [{:^, [], [Enum.count(params)]}, left * -1, to_string(right)]}} end defp do_filter_to_expr( %Contains{arguments: [left, %Ash.CiString{} = right], embedded?: pred_embedded?}, bindings, params, embedded?, type ) do do_filter_to_expr( %Fragment{ embedded?: pred_embedded?, arguments: [ raw: "strpos(", expr: left, raw: "::citext, ", expr: right, raw: ") > 0" ] }, bindings, params, embedded?, type ) end defp do_filter_to_expr( %Contains{arguments: [left, right], embedded?: pred_embedded?}, bindings, params, embedded?, type ) do do_filter_to_expr( %Fragment{ embedded?: pred_embedded?, arguments: [ raw: "strpos(", expr: left, raw: ", ", expr: right, raw: ") > 0" ] }, bindings, params, embedded?, type ) end defp do_filter_to_expr( %mod{ __predicate__?: _, left: left, right: right, embedded?: pred_embedded?, operator: op }, bindings, params, embedded?, _type ) do [left_type, right_type] = determine_types(mod, [left, right]) {params, left_expr} = do_filter_to_expr(left, bindings, params, pred_embedded? || embedded?, left_type) {params, right_expr} = do_filter_to_expr(right, bindings, params, pred_embedded? || embedded?, right_type) {params, {op, [], [ left_expr, right_expr ]}} end defp do_filter_to_expr( %Ref{attribute: %{name: name}} = ref, bindings, params, _embedded?, _type ) do {params, {{:., [], [{:&, [], [ref_binding(ref, bindings)]}, name]}, [], []}} end defp do_filter_to_expr({:embed, other}, _bindings, params, _true, _type) do {params, other} end defp do_filter_to_expr(%Ash.CiString{string: string}, bindings, params, embedded?, type) do do_filter_to_expr( %Fragment{ embedded?: embedded?, arguments: [ raw: "", expr: string, raw: "::citext" ] }, bindings, params, embedded?, type ) end defp do_filter_to_expr(%MapSet{} = mapset, bindings, params, embedded?, type) do do_filter_to_expr(Enum.to_list(mapset), bindings, params, embedded?, type) end defp do_filter_to_expr(other, _bindings, params, true, _type) do {params, other} end defp do_filter_to_expr(value, _bindings, params, false, type) do type = type || :any value = last_ditch_cast(value, type) {params ++ [{value, type}], {:^, [], [Enum.count(params)]}} end defp maybe_ecto_type({:array, type}), do: {:array, maybe_ecto_type(type)} defp maybe_ecto_type(type) when is_atom(type) do if Ash.Type.ash_type?(type) do Ash.Type.ecto_type(type) end end defp maybe_ecto_type(_type), do: nil defp last_ditch_cast(value, {:in, type}) when is_list(value) do Enum.map(value, &last_ditch_cast(&1, type)) end defp last_ditch_cast(value, _) when is_atom(value) do to_string(value) end defp last_ditch_cast(value, _type) do value end defp determine_types(mod, values) do mod.types() |> Enum.map(fn types -> case types do :same -> types = for _ <- values do :same end closest_fitting_type(types, values) :any -> for _ <- values do :any end types -> closest_fitting_type(types, values) end end) |> Enum.min_by(fn types -> types |> Enum.map(&vagueness/1) |> Enum.sum() end) end defp closest_fitting_type(types, values) do types_with_values = Enum.zip(types, values) types_with_values |> fill_in_known_types() |> clarify_types() end defp clarify_types(types) do basis = types |> Enum.map(&elem(&1, 0)) |> Enum.min_by(&vagueness(&1)) Enum.map(types, fn {type, _value} -> replace_same(type, basis) end) end defp replace_same({:in, type}, basis) do {:in, replace_same(type, basis)} end defp replace_same(:same, :same) do :any end defp replace_same(:same, {:in, :same}) do {:in, :any} end defp replace_same(:same, basis) do basis end defp replace_same(other, _basis) do other end defp fill_in_known_types(types) do Enum.map(types, &fill_in_known_type/1) end defp fill_in_known_type({vague_type, %Ref{attribute: %{type: type}}} = ref) when vague_type in [:any, :same] do if Ash.Type.ash_type?(type) do {type |> Ash.Type.storage_type() |> array_to_in(), ref} else {type |> array_to_in(), ref} end end defp fill_in_known_type( {{:array, type}, %Ref{attribute: %{type: {:array, type}} = attribute} = ref} ) do {:in, fill_in_known_type({type, %{ref | attribute: %{attribute | type: type}}})} end defp fill_in_known_type({type, value}), do: {array_to_in(type), value} defp array_to_in({:array, v}), do: {:in, array_to_in(v)} defp array_to_in(v), do: v defp vagueness({:in, type}), do: vagueness(type) defp vagueness(:same), do: 2 defp vagueness(:any), do: 1 defp vagueness(_), do: 0 defp ref_binding(ref, bindings) do case ref.attribute do %Ash.Resource.Attribute{} -> Enum.find_value(bindings, fn {binding, data} -> data.path == ref.relationship_path && data.type in [:inner, :left, :root] && binding end) %Ash.Query.Aggregate{} = aggregate -> Enum.find_value(bindings, fn {binding, data} -> data.path == aggregate.relationship_path && data.type == :aggregate && binding end) end end defp add_binding(query, data) do current = query.__ash_bindings__.current bindings = query.__ash_bindings__.bindings new_ash_bindings = %{ query.__ash_bindings__ | bindings: Map.put(bindings, current, data), current: current + 1 } %{query | __ash_bindings__: new_ash_bindings} end @impl true def transaction(resource, func) do repo(resource).transaction(func) end @impl true def rollback(resource, term) do repo(resource).rollback(term) end defp maybe_get_resource_query(resource) do case Ash.Query.data_layer_query(Ash.Query.new(resource), only_validate_filter?: false) do {:ok, query} -> query {:error, error} -> {:error, error} end end defp table(resource, changeset) do changeset.context[:data_layer][:table] || AshPostgres.table(resource) end defp raise_table_error!(resource, operation) do if AshPostgres.polymorphic?(resource) do raise """ Could not determine table for #{operation} on #{inspect(resource)}. Polymorphic resources require that the `data_layer[:table]` context is provided. See the guide on polymorphic resources for more information. """ else raise """ Could not determine table for #{operation} on #{inspect(resource)}. """ end end end
lib/data_layer.ex
0.935942
0.52074
data_layer.ex
starcoder
defmodule Absinthe.Type.Union do @moduledoc """ A unions is an abstract type made up of multiple possible concrete types. No common fields are declared in a union. Compare to `Absinthe.Type.Interface`. Because it's necessary for the union to determine the concrete type of a resolved object, you must either: * Provide a `:resolve_type` function on the union * Provide a `:is_type_of` function on each possible concrete type ``` union :search_result do description "A search result" types [:person, :business] resolve_type fn %Person{}, _ -> :person %Business{}, _ -> :business end end ``` """ use Absinthe.Introspection.Kind alias Absinthe.{Schema, Type} @typedoc """ * `:name` - The name of the union type. Should be a TitleCased `binary`. Set automatically. * `:description` - A nice description for introspection. * `:types` - The list of possible types. * `:resolve_type` - A function used to determine the concrete type of a resolved object. See also `Absinthe.Type.Object`'s `:is_type_of`. Either `resolve_type` is specified in the union type, or every object type in the union must specify `is_type_of` The `:resolve_type` function will be passed two arguments; the object whose type needs to be identified, and the `Absinthe.Execution` struct providing the full execution context. The `__private__` and `:__reference__` keys are for internal use. """ @type t :: %__MODULE__{ name: binary, description: binary, types: [Type.identifier_t], resolve_type: ((any, Absinthe.Resolution.t) -> atom | nil), identifier: atom, __private__: Keyword.t, __reference__: Type.Reference.t, } defstruct [ name: nil, description: nil, resolve_type: nil, identifier: nil, types: [], __private__: [], __reference__: nil, ] def build(%{attrs: attrs}) do quote do: %unquote(__MODULE__){unquote_splicing(attrs)} end @doc false @spec member?(t, Type.t) :: boolean def member?(%{types: types}, %{__reference__: %{identifier: ident}}) do ident in types end def member?(_, _) do false end @doc false @spec resolve_type(t, any, Absinthe.Resolution.t) :: Type.t | nil def resolve_type(type, object, env, opts \\ [lookup: true]) def resolve_type(%{resolve_type: nil, types: types}, obj, %{schema: schema}, opts) do type_name = Enum.find(types, fn %{is_type_of: nil} -> false type -> case Schema.lookup_type(schema, type) do nil -> false %{is_type_of: nil} -> false %{is_type_of: check} -> check.(obj) end end) if opts[:lookup] do Schema.lookup_type(schema, type_name) else type_name end end def resolve_type(%{resolve_type: resolver}, obj, %{schema: schema} = env, opts) do case resolver.(obj, env) do nil -> nil ident when is_atom(ident) -> if opts[:lookup] do Absinthe.Schema.lookup_type(schema, ident) else ident end end end end
deps/absinthe/lib/absinthe/type/union.ex
0.858422
0.881615
union.ex
starcoder
defmodule Slack do @moduledoc """ Slack is a genserver-ish interface for working with the Slack real time messaging API through a Websocket connection. To use this module you'll need a valid Slack API token. You can find your personal token on the [Slack Web API] page, or you can add a new [bot integration]. [Slack Web API]: https://api.slack.com/web [bot integration]: https://api.slack.com/bot-users ## Example ``` defmodule Bot do use Slack def handle_message(message = %{type: "message"}, slack) do if message.text == "Hi" do send_message("Hello to you too!", message.channel, slack) end end end Bot.start_link("API_TOKEN") ``` `handle_*` methods are always passed `slack` and `state` arguments. The `slack` argument holds the state of Slack and is kept up to date automatically. In this example we're just matching against the message type and checking if the text content is "Hi" and if so, we reply with our own greeting. The message type is pattern matched against because the [Slack RTM API](https://api.slack.com/rtm) defines many different types of messages that we can receive. Because of this it's wise to write a catch-all `handle_message/3` in your bots to prevent crashing. ## Callbacks * `handle_connect(slack)` - called when connected to Slack. * `handle_message(message, slack)` - called when a message is received. * `handle_close(reason, slack)` - called when websocket is closed. * `handle_info(message, slack)` - called when any other message is received in the process mailbox. ## Slack argument The Slack argument that's passed to each callback is what contains all of the state related to Slack including a list of channels, users, groups, bots, and even the socket. Here's a list of what's stored: * me - The current bot/users information stored as a map of properties. * team - The current team's information stored as a map of properties. * bots - Stored as a map with id's as keys. * channels - Stored as a map with id's as keys. * groups - Stored as a map with id's as keys. * users - Stored as a map with id's as keys. * ims (direct message channels) - Stored as a map with id's as keys. * socket - The connection to Slack. * client - The client that makes calls to Slack. For all but `socket` and `client`, you can see what types of data to expect each of the types to contain from the [Slack API types] page. [Slack API types]: https://api.slack.com/types """ defmacro __using__(_) do quote do @behaviour :websocket_client_handler require Logger import Slack import Slack.Lookups import Slack.Sends def start_link(token, client \\ :websocket_client) do case Slack.Rtm.start(token) do {:ok, rtm} -> state = %{ rtm: rtm, client: client, token: token } url = String.to_char_list(rtm.url) client.start_link(url, __MODULE__, state) {:error, %HTTPoison.Error{reason: :connect_timeout}} -> {:error, "Timed out while connecting to the Slack RTM API"} {:error, %HTTPoison.Error{reason: :nxdomain}} -> {:error, "Could not connect to the Slack RTM API"} {:error, error} -> {:error, error} end end def init(%{rtm: rtm, client: client, token: token}, socket) do slack = %Slack.State{ socket: socket, client: client, token: token, me: rtm.self, team: rtm.team, bots: rtm_list_to_map(rtm.bots), channels: rtm_list_to_map(rtm.channels), groups: rtm_list_to_map(rtm.groups), users: rtm_list_to_map(rtm.users), ims: rtm_list_to_map(rtm.ims) } handle_connect(slack) {:ok, slack} end def websocket_info(:start, _connection, state) do {:ok, state} end def websocket_info(message, _connection, slack) do try do handle_info(message, slack) rescue e -> handle_exception(e) end {:ok, slack} end def websocket_terminate(reason, _conn, slack) do try do handle_close(reason, slack) rescue e -> handle_exception(e) end end def websocket_handle({:ping, data}, _conn, state) do {:reply, {:pong, data}, state} end def websocket_handle({:text, message}, _conn, slack) do message = prepare_message message slack = Slack.State.update(message, slack) slack = if Map.has_key?(message, :type) do try do handle_message(message, slack) slack rescue e -> handle_exception(e) end else slack end {:ok, slack} end defp rtm_list_to_map(list) do Enum.reduce(list, %{}, fn (item, map) -> Map.put(map, item.id, item) end) end defp prepare_message(binstring) do binstring |> :binary.split(<<0>>) |> List.first |> JSX.decode!([{:labels, :atom}]) end defp handle_exception(e) do message = Exception.message(e) Logger.error(message) System.stacktrace |> Exception.format_stacktrace |> Logger.error raise message end def handle_connect(_slack ), do: :ok def handle_message(_message, _slack), do: :ok def handle_close(_reason, _slack), do: :ok def handle_info(_message, _slack), do: :ok defoverridable [handle_connect: 1, handle_message: 2, handle_close: 2, handle_info: 2] end end end
lib/slack.ex
0.824073
0.820073
slack.ex
starcoder
defmodule Bolt.Sips.Metadata do @moduledoc false defstruct [:bookmarks, :tx_timeout, :metadata] @type t :: %__MODULE__{ bookmarks: [String.t()], tx_timeout: non_neg_integer(), metadata: map() } alias Bolt.Sips.Metadata @doc """ Create a new metadata structure. Data must be valid. """ @spec new(map()) :: {:ok, Bolt.Sips.Metadata.t()} | {:error, String.t()} def new(data) do with {:ok, data} <- check_keys(data), {:ok, bookmarks} <- validate_bookmarks(Map.get(data, :bookmarks, [])), {:ok, tx_timeout} <- validate_timeout(Map.get(data, :tx_timeout)), {:ok, metadata} <- validate_metadata(Map.get(data, :metadata, %{})) do {:ok, %__MODULE__{ bookmarks: bookmarks, tx_timeout: tx_timeout, metadata: metadata }} else error -> error end end @doc """ Convert the Metadata struct to a map. All `nil` will be stripped """ @spec to_map(Bolt.Sips.Metadata.t()) :: map() def to_map(metadata) do with {:ok, metadata} <- check_keys(Map.from_struct(metadata)) do metadata |> Map.from_struct() |> Enum.filter(fn {_, value} -> value != nil end) |> Enum.into(%{}) else error -> error end end defp check_keys(data) do try do {:ok, struct!(Metadata, data)} rescue _ in KeyError -> {:error, "[Metadata] Invalid keys"} end end @spec validate_bookmarks(any()) :: {:ok, list()} | {:ok, nil} | {:error, String.t()} defp validate_bookmarks(bookmarks) when (is_list(bookmarks) and length(bookmarks) > 0) or is_nil(bookmarks) do {:ok, bookmarks} end defp validate_bookmarks([]) do {:ok, nil} end defp validate_bookmarks(_) do {:error, "[Metadata] Invalid bookmkarks. Should be a list."} end @spec validate_timeout(any()) :: {:ok, integer()} | {:error, String.t()} defp validate_timeout(timeout) when (is_integer(timeout) and timeout > 0) or is_nil(timeout) do {:ok, timeout} end defp validate_timeout(nil) do {:ok, nil} end defp validate_timeout(_) do {:error, "[Metadata] Invalid timeout. Should be a positive integer."} end @spec validate_metadata(any()) :: {:ok, map()} | {:ok, nil} | {:error, String.t()} defp validate_metadata(metadata) when (is_map(metadata) and map_size(metadata) > 0) or is_nil(metadata) do {:ok, metadata} end defp validate_metadata(%{}) do {:ok, nil} end defp validate_metadata(_) do {:error, "[Metadata] Invalid timeout. Should be a valid map or nil."} end end
lib/bolt_sips/metadata.ex
0.803829
0.492371
metadata.ex
starcoder
defmodule Elastix.Bulk do @moduledoc """ The bulk API makes it possible to perform many index/delete operations in a single API call. [Elastic documentation](https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html) """ import Elastix.HTTP, only: [prepare_url: 2] alias Elastix.{HTTP, JSON} @doc """ Excepts a list of actions and sources for the `lines` parameter. ## Examples iex> Elastix.Bulk.post("http://localhost:9200", [%{index: %{_id: "1"}}, %{user: "kimchy"}], index: "twitter", type: "tweet") {:ok, %HTTPoison.Response{...}} """ @spec post( elastic_url :: String.t(), lines :: list, opts :: Keyword.t(), query_params :: Keyword.t() ) :: HTTP.resp() def post(elastic_url, lines, options \\ [], query_params \\ []) do data = Enum.reduce(lines, [], fn l, acc -> ["\n", JSON.encode!(l) | acc] end) |> Enum.reverse() |> IO.iodata_to_binary() path = Keyword.get(options, :index) |> make_path(Keyword.get(options, :type), query_params) httpoison_options = Keyword.get(options, :httpoison_options, []) elastic_url |> prepare_url(path) |> HTTP.put(data, [], httpoison_options) end @doc """ Deprecated: use `post/4` instead. """ @spec post_to_iolist( elastic_url :: String.t(), lines :: list, opts :: Keyword.t(), query_params :: Keyword.t() ) :: HTTP.resp() def post_to_iolist(elastic_url, lines, options \\ [], query_params \\ []) do IO.warn( "This function is deprecated and will be removed in future releases; use Elastix.Bulk.post/4 instead." ) httpoison_options = Keyword.get(options, :httpoison_options, []) (elastic_url <> make_path(Keyword.get(options, :index), Keyword.get(options, :type), query_params)) |> HTTP.put(Enum.map(lines, fn line -> JSON.encode!(line) <> "\n" end), [], httpoison_options) end @doc """ Same as `post/4` but instead of sending a list of maps you must send raw binary data in the format described in the [Elasticsearch documentation](https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html). """ @spec post_raw( elastic_url :: String.t(), raw_data :: String.t(), opts :: Keyword.t(), query_params :: Keyword.t() ) :: HTTP.resp() def post_raw(elastic_url, raw_data, options \\ [], query_params \\ []) do httpoison_options = Keyword.get(options, :httpoison_options, []) (elastic_url <> make_path(Keyword.get(options, :index), Keyword.get(options, :type), query_params)) |> HTTP.put(raw_data, [], httpoison_options) end @doc false def make_path(index_name, type_name, query_params) do path = make_base_path(index_name, type_name) case query_params do [] -> path _ -> HTTP.append_query_string(path, query_params) end end defp make_base_path(nil, nil), do: "/_bulk" defp make_base_path(index_name, nil), do: "/#{index_name}/_bulk" defp make_base_path(index_name, type_name), do: "/#{index_name}/#{type_name}/_bulk" end
lib/elastix/bulk.ex
0.839718
0.472318
bulk.ex
starcoder
defmodule AWS.Synthetics do @moduledoc """ Amazon CloudWatch Synthetics You can use Amazon CloudWatch Synthetics to continually monitor your services. You can create and manage *canaries*, which are modular, lightweight scripts that monitor your endpoints and APIs from the outside-in. You can set up your canaries to run 24 hours a day, once per minute. The canaries help you check the availability and latency of your web services and troubleshoot anomalies by investigating load time data, screenshots of the UI, logs, and metrics. The canaries seamlessly integrate with CloudWatch ServiceLens to help you trace the causes of impacted nodes in your applications. For more information, see [Using ServiceLens to Monitor the Health of Your Applications](https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ServiceLens.html) in the *Amazon CloudWatch User Guide*. Before you create and manage canaries, be aware of the security considerations. For more information, see [Security Considerations for Synthetics Canaries](https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/servicelens_canaries_security.html). """ @doc """ Creates a canary. Canaries are scripts that monitor your endpoints and APIs from the outside-in. Canaries help you check the availability and latency of your web services and troubleshoot anomalies by investigating load time data, screenshots of the UI, logs, and metrics. You can set up a canary to run continuously or just once. Do not use `CreateCanary` to modify an existing canary. Use [UpdateCanary](https://docs.aws.amazon.com/AmazonSynthetics/latest/APIReference/API_UpdateCanary.html) instead. To create canaries, you must have the `CloudWatchSyntheticsFullAccess` policy. If you are creating a new IAM role for the canary, you also need the the `iam:CreateRole`, `iam:CreatePolicy` and `iam:AttachRolePolicy` permissions. For more information, see [Necessary Roles and Permissions](https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries_Roles). Do not include secrets or proprietary information in your canary names. The canary name makes up part of the Amazon Resource Name (ARN) for the canary, and the ARN is included in outbound calls over the internet. For more information, see [Security Considerations for Synthetics Canaries](https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/servicelens_canaries_security.html). """ def create_canary(client, input, options \\ []) do path_ = "/canary" headers = [] query_ = [] request(client, :post, path_, query_, headers, input, options, nil) end @doc """ Permanently deletes the specified canary. When you delete a canary, resources used and created by the canary are not automatically deleted. After you delete a canary that you do not intend to use again, you should also delete the following: <ul> <li> The Lambda functions and layers used by this canary. These have the prefix `cwsyn-*MyCanaryName* `. </li> <li> The CloudWatch alarms created for this canary. These alarms have a name of `Synthetics-SharpDrop-Alarm-*MyCanaryName* `. </li> <li> Amazon S3 objects and buckets, such as the canary's artifact location. </li> <li> IAM roles created for the canary. If they were created in the console, these roles have the name ` role/service-role/CloudWatchSyntheticsRole-*MyCanaryName* `. </li> <li> CloudWatch Logs log groups created for the canary. These logs groups have the name `/aws/lambda/cwsyn-*MyCanaryName* `. </li> </ul> Before you delete a canary, you might want to use `GetCanary` to display the information about this canary. Make note of the information returned by this operation so that you can delete these resources after you delete the canary. """ def delete_canary(client, name, input, options \\ []) do path_ = "/canary/#{URI.encode(name)}" headers = [] query_ = [] request(client, :delete, path_, query_, headers, input, options, nil) end @doc """ This operation returns a list of the canaries in your account, along with full details about each canary. This operation does not have resource-level authorization, so if a user is able to use `DescribeCanaries`, the user can see all of the canaries in the account. A deny policy can only be used to restrict access to all canaries. It cannot be used on specific resources. """ def describe_canaries(client, input, options \\ []) do path_ = "/canaries" headers = [] query_ = [] request(client, :post, path_, query_, headers, input, options, nil) end @doc """ Use this operation to see information from the most recent run of each canary that you have created. """ def describe_canaries_last_run(client, input, options \\ []) do path_ = "/canaries/last-run" headers = [] query_ = [] request(client, :post, path_, query_, headers, input, options, nil) end @doc """ Returns a list of Synthetics canary runtime versions. For more information, see [ Canary Runtime Versions](https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries_Library.html). """ def describe_runtime_versions(client, input, options \\ []) do path_ = "/runtime-versions" headers = [] query_ = [] request(client, :post, path_, query_, headers, input, options, nil) end @doc """ Retrieves complete information about one canary. You must specify the name of the canary that you want. To get a list of canaries and their names, use [DescribeCanaries](https://docs.aws.amazon.com/AmazonSynthetics/latest/APIReference/API_DescribeCanaries.html). """ def get_canary(client, name, options \\ []) do path_ = "/canary/#{URI.encode(name)}" headers = [] query_ = [] request(client, :get, path_, query_, headers, nil, options, nil) end @doc """ Retrieves a list of runs for a specified canary. """ def get_canary_runs(client, name, input, options \\ []) do path_ = "/canary/#{URI.encode(name)}/runs" headers = [] query_ = [] request(client, :post, path_, query_, headers, input, options, nil) end @doc """ Displays the tags associated with a canary. """ def list_tags_for_resource(client, resource_arn, options \\ []) do path_ = "/tags/#{URI.encode(resource_arn)}" headers = [] query_ = [] request(client, :get, path_, query_, headers, nil, options, nil) end @doc """ Use this operation to run a canary that has already been created. The frequency of the canary runs is determined by the value of the canary's `Schedule`. To see a canary's schedule, use [GetCanary](https://docs.aws.amazon.com/AmazonSynthetics/latest/APIReference/API_GetCanary.html). """ def start_canary(client, name, input, options \\ []) do path_ = "/canary/#{URI.encode(name)}/start" headers = [] query_ = [] request(client, :post, path_, query_, headers, input, options, nil) end @doc """ Stops the canary to prevent all future runs. If the canary is currently running, Synthetics stops waiting for the current run of the specified canary to complete. The run that is in progress completes on its own, publishes metrics, and uploads artifacts, but it is not recorded in Synthetics as a completed run. You can use `StartCanary` to start it running again with the canary’s current schedule at any point in the future. """ def stop_canary(client, name, input, options \\ []) do path_ = "/canary/#{URI.encode(name)}/stop" headers = [] query_ = [] request(client, :post, path_, query_, headers, input, options, nil) end @doc """ Assigns one or more tags (key-value pairs) to the specified canary. Tags can help you organize and categorize your resources. You can also use them to scope user permissions, by granting a user permission to access or change only resources with certain tag values. Tags don't have any semantic meaning to AWS and are interpreted strictly as strings of characters. You can use the `TagResource` action with a canary that already has tags. If you specify a new tag key for the alarm, this tag is appended to the list of tags associated with the alarm. If you specify a tag key that is already associated with the alarm, the new tag value that you specify replaces the previous value for that tag. You can associate as many as 50 tags with a canary. """ def tag_resource(client, resource_arn, input, options \\ []) do path_ = "/tags/#{URI.encode(resource_arn)}" headers = [] query_ = [] request(client, :post, path_, query_, headers, input, options, nil) end @doc """ Removes one or more tags from the specified canary. """ def untag_resource(client, resource_arn, input, options \\ []) do path_ = "/tags/#{URI.encode(resource_arn)}" headers = [] {query_, input} = [ {"TagKeys", "tagKeys"}, ] |> AWS.Request.build_params(input) request(client, :delete, path_, query_, headers, input, options, nil) end @doc """ Use this operation to change the settings of a canary that has already been created. You can't use this operation to update the tags of an existing canary. To change the tags of an existing canary, use [TagResource](https://docs.aws.amazon.com/AmazonSynthetics/latest/APIReference/API_TagResource.html). """ def update_canary(client, name, input, options \\ []) do path_ = "/canary/#{URI.encode(name)}" headers = [] query_ = [] request(client, :patch, path_, query_, headers, input, options, nil) end @spec request(AWS.Client.t(), binary(), binary(), list(), list(), map(), list(), pos_integer()) :: {:ok, Poison.Parser.t(), Poison.Response.t()} | {:error, Poison.Parser.t()} | {:error, HTTPoison.Error.t()} defp request(client, method, path, query, headers, input, options, success_status_code) do client = %{client | service: "synthetics"} host = build_host("synthetics", client) url = host |> build_url(path, client) |> add_query(query) additional_headers = [{"Host", host}, {"Content-Type", "application/x-amz-json-1.1"}] headers = AWS.Request.add_headers(additional_headers, headers) payload = encode_payload(input) headers = AWS.Request.sign_v4(client, method, url, headers, payload) perform_request(method, url, payload, headers, options, success_status_code) end defp perform_request(method, url, payload, headers, options, nil) do case HTTPoison.request(method, url, payload, headers, options) do {:ok, %HTTPoison.Response{status_code: 200, body: ""} = response} -> {:ok, response} {:ok, %HTTPoison.Response{status_code: status_code, body: body} = response} when status_code == 200 or status_code == 202 or status_code == 204 -> {:ok, Poison.Parser.parse!(body, %{}), response} {:ok, %HTTPoison.Response{body: body}} -> error = Poison.Parser.parse!(body, %{}) {:error, error} {:error, %HTTPoison.Error{reason: reason}} -> {:error, %HTTPoison.Error{reason: reason}} end end defp perform_request(method, url, payload, headers, options, success_status_code) do case HTTPoison.request(method, url, payload, headers, options) do {:ok, %HTTPoison.Response{status_code: ^success_status_code, body: ""} = response} -> {:ok, %{}, response} {:ok, %HTTPoison.Response{status_code: ^success_status_code, body: body} = response} -> {:ok, Poison.Parser.parse!(body, %{}), response} {:ok, %HTTPoison.Response{body: body}} -> error = Poison.Parser.parse!(body, %{}) {:error, error} {:error, %HTTPoison.Error{reason: reason}} -> {:error, %HTTPoison.Error{reason: reason}} end end defp build_host(_endpoint_prefix, %{region: "local"}) do "localhost" end defp build_host(endpoint_prefix, %{region: region, endpoint: endpoint}) do "#{endpoint_prefix}.#{region}.#{endpoint}" end defp build_url(host, path, %{:proto => proto, :port => port}) do "#{proto}://#{host}:#{port}#{path}" end defp add_query(url, []) do url end defp add_query(url, query) do querystring = AWS.Util.encode_query(query) "#{url}?#{querystring}" end defp encode_payload(input) do if input != nil, do: Poison.Encoder.encode(input, %{}), else: "" end end
lib/aws/synthetics.ex
0.809953
0.595875
synthetics.ex
starcoder
defmodule Yyzzy.Enum do ### Protocols and Behaviors: Enum ## Note, this implementation might have to change if we want fully qualified uids.. defimpl Enumerable, for: Yyzzy do def count(yyzzy) do {:ok, Enum.reduce(yyzzy,0,fn _x, acc -> acc + 1 end) } end @doc """ entities are in a tree like form so membership is done via DFS """ def member?(_, nil), do: {:ok, false} def member?(%Yyzzy{uid: uid}, value) when is_atom(value) and uid == value, do: {:ok, true} def member?(e, value) when is_atom(value) do {:ok, Enum.reduce_while(e, false, fn x, _acc -> case x.uid == value do true -> {:halt, true} false -> {:cont, false} end end)} end def member?(yyzzy, %Yyzzy{uid: value}), do: member?(yyzzy, value) def member?(_,_), do: {:error, __MODULE__} @doc """ reduce is done via DFS and has three cases: Root node, many children level of nodes which may have children level of only leafs """ def reduce(_, {:halt, acc}, _fun), do: {:halted, acc} def reduce(yyzzy, {:suspend, acc}, fun), do: {:suspended, acc, &reduce(yyzzy, &1, fun)} def reduce(y = %Yyzzy{entities: es}, {:cont, acc}, fun) when map_size(es) == 0 do {:cont, acc} = fun.(y, acc) {:done, acc} end def reduce(y = %Yyzzy{entities: es}, {:cont, acc}, fun) do new_acc = fun.(y,acc) [h | rest] = Map.values(es) rest = for child <- rest, into: %{} do case child.uid do {_heirarchy, uid} -> {uid, child} uid -> {uid, child} end end new_y = case h do f when is_function(f) -> f.({:update, fn x -> %Yyzzy{x | entities: Map.merge(x.entities, rest)} end }) f h -> %Yyzzy{h | entities: Map.merge(h.entities, rest)} end reduce(new_y, new_acc, fun) end def reduce(y, {:cont, acc}, fun) when is_function(y) do root = y.(:get) {:cont, new_acc} = fun.(root, acc) case Enum.count(root.entities) do 0 -> {:done, new_acc} n -> [h | _] = Map.keys(root.entities) reduce(Yyzzy.retree(root, h), new_acc, fun) end end end end
lib/yyzzy/enum.ex
0.610453
0.405154
enum.ex
starcoder
defmodule ElixirBoilerplateWeb.Errors do alias Ecto.Changeset alias ElixirBoilerplateWeb.Errors.View @doc """ Generates a human-readable block containing all errors in a changeset. Errors are then localized using translations in the `ecto` domain. For example, you could have an `ecto.po` file in the french locale: ``` msgid "" msgstr "" "Language: fr" msgid "can't be blank" msgstr "ne peut être vide" ``` """ def error_messages(changeset) do changeset |> Changeset.traverse_errors(&translate_error/1) |> convert_errors_to_html(changeset.data.__struct__) end defp translate_error({message, options}) do if options[:count] do Gettext.dngettext(ElixirBoilerplate.Gettext, "ecto", message, message, options[:count], options) else Gettext.dgettext(ElixirBoilerplate.Gettext, "ecto", message, options) end end defp convert_errors_to_html(errors, schema) do errors = Enum.reduce(errors, [], &convert_error_field(&1, &2, schema)) View.render("error_messages.html", %{errors: errors}) end defp convert_error_field({field, errors}, memo, schema) when is_list(errors), do: memo ++ Enum.flat_map(errors, &convert_error_subfield(&1, field, [], schema)) defp convert_error_field({field, errors}, memo, schema) when is_map(errors), do: memo ++ Enum.flat_map(Map.keys(errors), &convert_error_subfield(&1, field, errors[&1], schema)) defp convert_error_subfield(message, field, _, _schema) when is_binary(message) do # NOTE `schema` is available here if we want to use something like # `schema.humanize_field(field)` to be able to display `"Email address is # invalid"` instead of `email is invalid"`. ["#{field} #{message}"] end defp convert_error_subfield(message, field, memo, schema) when is_map(message) do Enum.reduce(message, memo, fn {subfield, errors}, memo -> memo ++ convert_error_field({"#{field}.#{subfield}", errors}, memo, schema) end) end defp convert_error_subfield(subfield, field, errors, schema) do field = "#{field}.#{subfield}" convert_error_field({field, errors}, [], schema) end end
lib/elixir_boilerplate_web/errors/errors.ex
0.819424
0.622631
errors.ex
starcoder
defmodule Flop do @moduledoc """ Flop is a helper library for filtering, ordering and pagination with Ecto. ## Usage The simplest way of using this library is just to use `Flop.validate_and_run/3` and `Flop.validate_and_run!/3`. Both functions take a queryable and a parameter map, validate the parameters, run the query and return the query results and the meta information. iex> Flop.Repo.insert_all(Flop.Pet, [ ...> %{name: "Harry", age: 4, species: "C. lupus"}, ...> %{name: "Maggie", age: 1, species: "O. cuniculus"}, ...> %{name: "Patty", age: 2, species: "C. aegagrus"} ...> ]) iex> params = %{order_by: ["name", "age"], page: 1, page_size: 2} iex> {:ok, {results, meta}} = ...> Flop.validate_and_run( ...> Flop.Pet, ...> params, ...> repo: Flop.Repo ...> ) iex> Enum.map(results, & &1.name) ["Harry", "Maggie"] iex> meta.total_count 3 iex> meta.total_pages 2 iex> meta.has_next_page? true Under the hood, these functions just call `Flop.validate/2` and `Flop.run/3`, which in turn calls `Flop.all/3` and `Flop.meta/3`. If you need finer control about if and when to execute each step, you can call those functions directly. See `Flop.Meta` for descriptions of the meta fields. ## Global configuration You can set some global options like the default Ecto repo via the application environment. All global options can be overridden by passing them directly to the functions or configuring the options for a schema module via `Flop.Schema`. import Config config :flop, repo: MyApp.Repo See `t:Flop.option/0` for a description of all available options. ## Schema options You can set some options for a schema by deriving `Flop.Schema`. The options are evaluated at the validation step. defmodule Pet do use Ecto.Schema @derive {Flop.Schema, filterable: [:name, :species], sortable: [:name, :age], default_limit: 20, max_limit: 100} schema "pets" do field :name, :string field :age, :integer field :species, :string field :social_security_number, :string end end You need to pass the schema to `Flop.validate/2` or any function that includes the validation step with the `:for` option. iex> params = %{"order_by" => ["name", "age"], "limit" => 5} iex> {:ok, flop} = Flop.validate(params, for: Flop.Pet) iex> flop.limit 5 iex> params = %{"order_by" => ["name", "age"], "limit" => 10_000} iex> {:error, meta} = Flop.validate(params, for: Flop.Pet) iex> [limit: [{msg, _}]] = meta.errors iex> msg "must be less than or equal to %{number}" iex> params = %{"order_by" => ["name", "age"], "limit" => 10_000} iex> {:error, %Flop.Meta{} = meta} = ...> Flop.validate_and_run( ...> Flop.Pet, ...> params, ...> for: Flop.Pet ...> ) iex> [limit: [{msg, _}]] = meta.errors iex> msg "must be less than or equal to %{number}" ## Ordering To add an ordering clause to a query, you need to set the `:order_by` and optionally the `:order_directions` parameter. `:order_by` should be the list of fields, while `:order_directions` is a list of `t:Flop.order_direction/0`. `:order_by` and `:order_directions` are zipped when generating the `ORDER BY` clause. If no order directions are given, `:asc` is used as default. iex> params = %{ ...> "order_by" => ["name", "age"], ...> "order_directions" => ["asc", "desc"] ...> } iex> {:ok, flop} = Flop.validate(params) iex> flop.order_by [:name, :age] iex> flop.order_directions [:asc, :desc] Flop uses these two fields instead of a keyword list, so that the order instructions can be easily passed in a query string. ## Pagination For queries using `OFFSET` and `LIMIT`, you have the choice between page-based pagination parameters: %{page: 5, page_size: 20} and offset-based pagination parameters: %{offset: 100, limit: 20} For cursor-based pagination, you can either use `:first`/`:after` or `:last`/`:before`. You also need to pass the `:order_by` parameter or set a default order for the schema via `Flop.Schema`. iex> Flop.Repo.insert_all(Flop.Pet, [ ...> %{name: "Harry", age: 4, species: "C. lupus"}, ...> %{name: "Maggie", age: 1, species: "O. cuniculus"}, ...> %{name: "Patty", age: 2, species: "C. aegagrus"} ...> ]) iex> iex> # forward (first/after) iex> iex> params = %{first: 2, order_by: [:species, :name]} iex> {:ok, {results, meta}} = Flop.validate_and_run(Flop.Pet, params) iex> Enum.map(results, & &1.name) ["Patty", "Harry"] iex> meta.has_next_page? true iex> end_cursor = meta.end_cursor "g3QAAAACZAAEbmFtZW0AAAAFSGFycnlkAAdzcGVjaWVzbQAAAAhDLiBsdXB1cw==" iex> params = %{first: 2, after: end_cursor, order_by: [:species, :name]} iex> {:ok, {results, meta}} = Flop.validate_and_run(Flop.Pet, params) iex> Enum.map(results, & &1.name) ["Maggie"] iex> meta.has_next_page? false iex> iex> # backward (last/before) iex> iex> params = %{last: 2, order_by: [:species, :name]} iex> {:ok, {results, meta}} = Flop.validate_and_run(Flop.Pet, params) iex> Enum.map(results, & &1.name) ["Harry", "Maggie"] iex> meta.has_previous_page? true iex> start_cursor = meta.start_cursor "g3QAAAACZAAEbmFtZW0AAAAFSGFycnlkAAdzcGVjaWVzbQAAAAhDLiBsdXB1cw==" iex> params = %{last: 2, before: start_cursor, order_by: [:species, :name]} iex> {:ok, {results, meta}} = Flop.validate_and_run(Flop.Pet, params) iex> Enum.map(results, & &1.name) ["Patty"] iex> meta.has_previous_page? false By default, it is assumed that the query result is a list of maps or structs. If your query returns a different data structure, you can pass the `:cursor_value_func` option to retrieve the cursor values. See `t:Flop.option/0` and `Flop.Cursor` for more information. You can restrict which pagination types are available. See `t:Flop.option/0` for details. ## Filters Filters can be passed as a list of maps. It is recommended to define the filterable fields for a schema using `Flop.Schema`. iex> Flop.Repo.insert_all(Flop.Pet, [ ...> %{name: "Harry", age: 4, species: "C. lupus"}, ...> %{name: "Maggie", age: 1, species: "O. cuniculus"}, ...> %{name: "Patty", age: 2, species: "C. aegagrus"} ...> ]) iex> iex> params = %{filters: [%{field: :name, op: :=~, value: "Mag"}]} iex> {:ok, {results, meta}} = Flop.validate_and_run(Flop.Pet, params) iex> meta.total_count 1 iex> [pet] = results iex> pet.name "Maggie" See `t:Flop.Filter.op/0` for a list of all available filter operators. ## GraphQL and Relay The parameters used for cursor-based pagination follow the Relay specification, so you can just pass the arguments you get from the client on to Flop. `Flop.Relay` can convert the query results returned by `Flop.validate_and_run/3` into `Edges` and `PageInfo` formats required for Relay connections. For example, if you have a context module like this: defmodule MyApp.Flora import Ecto.query, warn: false alias MyApp.Flora.Plant def list_plants_by_continent(%Continent{} = continent, %{} = args) do Plant |> where(continent_id: ^continent.id) |> Flop.validate_and_run(args, for: Plant) end end Then your Absinthe resolver for the `plants` connection may look something like this: def list_plants(args, %{source: %Continent{} = continent}) do with {:ok, result} <- Flora.list_plants_by_continent(continent, args) do {:ok, Flop.Relay.connection_from_result(result)} end end """ use Ecto.Schema import Ecto.Changeset alias Ecto.Changeset alias Ecto.Query alias Ecto.Queryable alias Flop.Builder alias Flop.Cursor alias Flop.CustomTypes.ExistingAtom alias Flop.Filter alias Flop.Meta require Ecto.Query require Logger @typedoc """ Options that can be passed to most of the functions or that can be set via the application environment. - `:cursor_value_func` - 2-arity function used to get the (unencoded) cursor value from a record. Only used with cursor-based pagination. The first argument is the record, the second argument is the list of fields used in the `ORDER BY` clause. Needs to return a map with the order fields as keys and the the record values of these fields as values. Defaults to `Flop.Cursor.get_cursor_from_node/2`. - `:default_limit` - Sets a global default limit for queries that is used if no default limit is set for a schema and no limit is set in the parameters. Can only be set in the application configuration. - `:default_pagination_type` - The pagination type to use when setting default parameters and the pagination type cannot be determined from the parameters. Parameters for other pagination types can still be passed when setting this option. To restrict which pagination types can be used, set the `:pagination_types` option. - `:filtering` (boolean) - Can be set to `false` to silently ignore filter parameters. - `:for` - The schema module to be used for validation. `Flop.Schema` must be derived for the given module. This option is optional and can not be set globally. If it is not set, schema specific validation will be omitted. Used by the validation functions. It is also used to determine which fields are join and compound fields. - `:max_limit` - Sets a global maximum limit for queries that is used if no maximum limit is set for a schema. Can only be set in the application configuration. - `:pagination` (boolean) - Can be set to `false` to silently ignore pagination parameters. - `:pagination_types` - Defines which pagination types are allowed. Parameters for other pagination types will not be cast. By default, all pagination types are allowed. See also `t:Flop.pagination_type/0`. - `:prefix` - Configures the query to be executed with the given query prefix. See the Ecto documentation on ["Query prefix"](https://hexdocs.pm/ecto/Ecto.Query.html#module-query-prefix). - `:ordering` (boolean) - Can be set to `false` to silently ignore order parameters. Default orders are still applied. - `:repo` - The Ecto Repo module to use for the database query. Used by all functions that execute a database query. All options can be passed directly to the functions. Some of the options can be set on a schema level via `Flop.Schema`. All options except `:for` can be set globally via the application environment. import Config config :flop, default_limit: 25, filtering: false, cursor_value_func: &MyApp.Repo.get_cursor_value/2, max_limit: 100, ordering: false, pagination_types: [:first, :last, :page], repo: MyApp.Repo, prefix: "some-prefix" The look up order is: 1. option passed to function 2. option set for schema using `Flop.Schema` (only `:max_limit`, `:default_limit` and `:pagination_types`) 3. option set in global config (except `:for`) 4. default value (only `:cursor_value_func`) """ @type option :: {:cursor_value_func, (any, [atom] -> map)} | {:default_limit, pos_integer} | {:default_pagination_type, pagination_type()} | {:filtering, boolean} | {:for, module} | {:max_limit, pos_integer} | {:ordering, boolean} | {:pagination, boolean} | {:pagination_types, [pagination_type()]} | {:prefix, binary} | {:repo, module} @typedoc """ Represents the supported order direction values. """ @type order_direction :: :asc | :asc_nulls_first | :asc_nulls_last | :desc | :desc_nulls_first | :desc_nulls_last @typedoc """ Represents the pagination type. - `:offset` - pagination using the `offset` and `limit` parameters - `:page` - pagination using the `page` and `page_size` parameters - `:first` - cursor-based pagination using the `first` and `after` parameters - `:last` - cursor-based pagination using the `last` and `before` parameters """ @type pagination_type :: :offset | :page | :first | :last @typedoc """ Represents the query parameters for filtering, ordering and pagination. ### Fields - `after`: Used for cursor-based pagination. Must be used with `first` or a default limit. - `before`: Used for cursor-based pagination. Must be used with `last` or a default limit. - `limit`, `offset`: Used for offset-based pagination. - `first` Used for cursor-based pagination. Can be used alone to begin pagination or with `after` - `last` Used for cursor-based pagination. - `page`, `page_size`: Used for offset-based pagination as an alternative to `offset` and `limit`. - `order_by`: List of fields to order by. Fields can be restricted by deriving `Flop.Schema` in your Ecto schema. - `order_directions`: List of order directions applied to the fields defined in `order_by`. If empty or the list is shorter than the `order_by` list, `:asc` will be used as a default for each missing order direction. - `filters`: List of filters, see `t:Flop.Filter.t/0`. """ @type t :: %__MODULE__{ after: String.t() | nil, before: String.t() | nil, filters: [Filter.t()] | nil, first: pos_integer | nil, last: pos_integer | nil, limit: pos_integer | nil, offset: non_neg_integer | nil, order_by: [atom | String.t()] | nil, order_directions: [order_direction()] | nil, page: pos_integer | nil, page_size: pos_integer | nil } @primary_key false embedded_schema do field :after, :string field :before, :string field :first, :integer field :last, :integer field :limit, :integer field :offset, :integer field :order_by, {:array, ExistingAtom} field :order_directions, {:array, Ecto.Enum}, values: [ :asc, :asc_nulls_first, :asc_nulls_last, :desc, :desc_nulls_first, :desc_nulls_last ] field :page, :integer field :page_size, :integer embeds_many :filters, Filter end @doc """ Adds clauses for filtering, ordering and pagination to a `t:Ecto.Queryable.t/0`. The parameters are represented by the `t:Flop.t/0` type. Any `nil` values will be ignored. ## Examples iex> flop = %Flop{limit: 10, offset: 19} iex> Flop.query(Flop.Pet, flop) #Ecto.Query<from p0 in Flop.Pet, limit: ^10, offset: ^19> Or enhance an already defined query: iex> require Ecto.Query iex> flop = %Flop{limit: 10} iex> Flop.Pet |> Ecto.Query.where(species: "dog") |> Flop.query(flop) #Ecto.Query<from p0 in Flop.Pet, where: p0.species == \"dog\", limit: ^10> Note that when using cursor-based pagination, the applied limit will be `first + 1` or `last + 1`. The extra record is removed by `Flop.run/3`. """ @spec query(Queryable.t(), Flop.t(), [option()]) :: Queryable.t() def query(q, %Flop{} = flop, opts \\ []) do q |> filter(flop, opts) |> order_by(flop, opts) |> paginate(flop, opts) end @doc """ Applies the given Flop to the given queryable and returns all matchings entries. iex> Flop.all(Flop.Pet, %Flop{}, repo: Flop.Repo) [] You can also configure a default repo in your config files: config :flop, repo: MyApp.Repo This allows you to omit the third argument: iex> Flop.all(Flop.Pet, %Flop{}) [] Note that when using cursor-based pagination, the applied limit will be `first + 1` or `last + 1`. The extra record is removed by `Flop.run/3`, but not by this function. """ @doc since: "0.6.0" @spec all(Queryable.t(), Flop.t(), [option()]) :: [any] def all(q, %Flop{} = flop, opts \\ []) do apply_on_repo(:all, "all", [query(q, flop, opts)], opts) end @doc """ Applies the given Flop to the given queryable, retrieves the data and the meta data. This function does not validate the given flop parameters. You can validate the parameters with `Flop.validate/2` or `Flop.validate!/2`, or you can use `Flop.validate_and_run/3` or `Flop.validate_and_run!/3` instead of this function. iex> {data, meta} = Flop.run(Flop.Pet, %Flop{}) iex> data == [] true iex> match?(%Flop.Meta{}, meta) true """ @doc since: "0.6.0" @spec run(Queryable.t(), Flop.t(), [option()]) :: {[any], Meta.t()} def run(q, flop, opts \\ []) def run( q, %Flop{ before: nil, first: first, last: nil } = flop, opts ) when is_integer(first) do results = all(q, flop, opts) {Enum.take(results, first), meta(results, flop, opts)} end def run( q, %Flop{ after: nil, first: nil, last: last } = flop, opts ) when is_integer(last) do results = all(q, flop, opts) page_data = results |> Enum.take(last) |> Enum.reverse() {page_data, meta(results, flop, opts)} end def run(q, %Flop{} = flop, opts) do {all(q, flop, opts), meta(q, flop, opts)} end @doc """ Validates the given flop parameters and retrieves the data and meta data on success. iex> {:ok, {[], %Flop.Meta{}}} = ...> Flop.validate_and_run(Flop.Pet, %Flop{}, for: Flop.Pet) iex> {:error, %Flop.Meta{} = meta} = ...> Flop.validate_and_run(Flop.Pet, %Flop{limit: -1}) iex> meta.errors [ limit: [ {"must be greater than %{number}", [validation: :number, kind: :greater_than, number: 0]} ] ] ## Options - `for`: Passed to `Flop.validate/2`. - `repo`: The `Ecto.Repo` module. Required if no default repo is configured. - `cursor_value_func`: An arity-2 function to be used to retrieve an unencoded cursor value from a query result item and the `order_by` fields. Defaults to `Flop.Cursor.get_cursor_from_node/2`. """ @doc since: "0.6.0" @spec validate_and_run(Queryable.t(), map | Flop.t(), [option()]) :: {:ok, {[any], Meta.t()}} | {:error, Meta.t()} def validate_and_run(q, map_or_flop, opts \\ []) do with {:ok, flop} <- validate(map_or_flop, opts) do {:ok, run(q, flop, opts)} end end @doc """ Same as `Flop.validate_and_run/3`, but raises on error. """ @doc since: "0.6.0" @spec validate_and_run!(Queryable.t(), map | Flop.t(), [option()]) :: {[any], Meta.t()} def validate_and_run!(q, map_or_flop, opts \\ []) do flop = validate!(map_or_flop, opts) run(q, flop, opts) end @doc """ Returns the total count of entries matching the filter conditions of the Flop. The pagination and ordering option are disregarded. iex> Flop.count(Flop.Pet, %Flop{}, repo: Flop.Repo) 0 You can also configure a default repo in your config files: config :flop, repo: MyApp.Repo This allows you to omit the third argument: iex> Flop.count(Flop.Pet, %Flop{}) 0 """ @doc since: "0.6.0" @spec count(Queryable.t(), Flop.t(), [option()]) :: non_neg_integer def count(q, %Flop{} = flop, opts \\ []) do apply_on_repo(:aggregate, "count", [filter(q, flop, opts), :count], opts) end @doc """ Returns meta information for the given query and flop that can be used for building the pagination links. iex> Flop.meta(Flop.Pet, %Flop{limit: 10}, repo: Flop.Repo) %Flop.Meta{ current_offset: 0, current_page: 1, end_cursor: nil, flop: %Flop{limit: 10}, has_next_page?: false, has_previous_page?: false, next_offset: nil, next_page: nil, page_size: 10, previous_offset: nil, previous_page: nil, start_cursor: nil, total_count: 0, total_pages: 0 } The function returns both the current offset and the current page, regardless of the pagination type. If the offset lies in between pages, the current page number is rounded up. This means that it is possible that the values for `current_page` and `next_page` can be identical. This can only occur if you use offset/limit based pagination with arbitrary offsets, but in that case, you will use the `previous_offset`, `current_offset` and `next_offset` values to render the pagination links anyway, so this shouldn't be a problem. Unless cursor-based pagination is used, this function will run a query to figure get the total count of matching records. """ @doc since: "0.6.0" @spec meta(Queryable.t() | [any], Flop.t(), [option()]) :: Meta.t() def meta(query_or_results, flop, opts \\ []) def meta( results, %Flop{ first: first, order_by: order_by, before: nil, last: nil } = flop, opts ) when is_list(results) and is_integer(first) do {start_cursor, end_cursor} = results |> Enum.take(first) |> Cursor.get_cursors(order_by, opts) %Meta{ flop: flop, start_cursor: start_cursor, end_cursor: end_cursor, has_next_page?: length(results) > first, has_previous_page?: !is_nil(flop.after), page_size: first, schema: opts[:for] } end def meta( results, %Flop{ after: nil, first: nil, order_by: order_by, last: last } = flop, opts ) when is_list(results) and is_integer(last) do {start_cursor, end_cursor} = results |> Enum.take(last) |> Enum.reverse() |> Cursor.get_cursors(order_by, opts) %Meta{ flop: flop, start_cursor: start_cursor, end_cursor: end_cursor, has_next_page?: !is_nil(flop.before), has_previous_page?: length(results) > last, page_size: last, schema: opts[:for] } end def meta(q, %Flop{} = flop, opts) do repo = option_or_default(opts, :repo) || raise no_repo_error("meta") opts = Keyword.put(opts, :repo, repo) total_count = count(q, flop, opts) page_size = flop.page_size || flop.limit total_pages = get_total_pages(total_count, page_size) current_offset = get_current_offset(flop) current_page = get_current_page(flop, total_pages) {has_previous_page?, previous_offset, previous_page} = get_previous(current_offset, current_page, page_size) {has_next_page?, next_offset, next_page} = get_next( current_offset, current_page, page_size, total_count, total_pages ) %Meta{ current_offset: current_offset, current_page: current_page, flop: flop, has_next_page?: has_next_page?, has_previous_page?: has_previous_page?, next_offset: next_offset, next_page: next_page, page_size: page_size, previous_offset: previous_offset, previous_page: previous_page, schema: opts[:for], total_count: total_count, total_pages: total_pages } end defp get_previous(offset, current_page, limit) do has_previous? = offset > 0 previous_offset = if has_previous?, do: max(0, offset - limit), else: nil previous_page = if current_page > 1, do: current_page - 1, else: nil {has_previous?, previous_offset, previous_page} end defp get_next(_, _, nil = _page_size, _, _) do {false, nil, nil} end defp get_next(current_offset, _, page_size, total_count, _) when current_offset + page_size >= total_count do {false, nil, nil} end defp get_next(current_offset, current_page, page_size, _, total_pages) do {true, current_offset + page_size, min(total_pages, current_page + 1)} end defp get_total_pages(0, _), do: 0 defp get_total_pages(_, nil), do: 1 defp get_total_pages(total_count, limit), do: ceil(total_count / limit) defp get_current_offset(%Flop{offset: nil, page: nil}), do: 0 defp get_current_offset(%Flop{offset: nil, page: page, page_size: page_size}), do: (page - 1) * page_size defp get_current_offset(%Flop{offset: offset}), do: offset defp get_current_page(%Flop{offset: nil, page: nil}, _), do: 1 defp get_current_page(%Flop{offset: nil, page: page}, _), do: page defp get_current_page(%Flop{limit: limit, offset: offset, page: nil}, total), do: min(ceil(offset / limit) + 1, total) ## Ordering @doc """ Applies the `order_by` and `order_directions` parameters of a `t:Flop.t/0` to an `t:Ecto.Queryable.t/0`. Used by `Flop.query/2`. """ @spec order_by(Queryable.t(), Flop.t(), [option()]) :: Queryable.t() def order_by(q, flop, opts \\ []) def order_by(q, %Flop{order_by: nil}, _opts), do: q # For backwards cursor pagination def order_by( q, %Flop{ last: last, order_by: fields, order_directions: directions, first: nil, after: nil, offset: nil }, opts ) when is_integer(last) do reversed_order = fields |> prepare_order(directions) |> reverse_ordering() case opts[:for] do nil -> Query.order_by(q, ^reversed_order) module -> struct = struct(module) Enum.reduce(reversed_order, q, fn expr, acc_q -> Flop.Schema.apply_order_by(struct, acc_q, expr) end) end end def order_by( q, %Flop{order_by: fields, order_directions: directions}, opts ) do case opts[:for] do nil -> Query.order_by(q, ^prepare_order(fields, directions)) module -> struct = struct(module) fields |> prepare_order(directions) |> Enum.reduce(q, fn expr, acc_q -> Flop.Schema.apply_order_by(struct, acc_q, expr) end) end end @spec prepare_order([atom], [order_direction()]) :: [ {order_direction(), atom} ] defp prepare_order(fields, directions) do directions = directions || [] field_count = length(fields) direction_count = length(directions) directions = if direction_count < field_count, do: directions ++ List.duplicate(:asc, field_count - direction_count), else: directions Enum.zip(directions, fields) end ## Pagination @doc """ Applies the pagination parameters of a `t:Flop.t/0` to an `t:Ecto.Queryable.t/0`. The function supports both `offset`/`limit` based pagination and `page`/`page_size` based pagination. If you validated the `t:Flop.t/0` with `Flop.validate/1` before, you can be sure that the given `t:Flop.t/0` only has pagination parameters set for one pagination method. If you pass an unvalidated `t:Flop.t/0` that has pagination parameters set for multiple pagination methods, this function will arbitrarily only apply one of the pagination methods. Used by `Flop.query/2`. """ @spec paginate(Queryable.t(), Flop.t(), [option()]) :: Queryable.t() def paginate(q, flop, opts \\ []) def paginate(q, %Flop{limit: limit, offset: offset}, _) when (is_integer(limit) and limit >= 1) or (is_integer(offset) and offset >= 0) do q |> limit(limit) |> offset(offset) end def paginate(q, %Flop{page: page, page_size: page_size}, _) when is_integer(page) and is_integer(page_size) and page >= 1 and page_size >= 1 do q |> limit(page_size) |> offset((page - 1) * page_size) end def paginate( q, %Flop{ first: first, after: nil, before: nil, last: nil, limit: nil }, _ ) when is_integer(first), do: limit(q, first + 1) def paginate( q, %Flop{ first: first, after: after_, order_by: order_by, order_directions: order_directions, before: nil, last: nil, limit: nil }, opts ) when is_integer(first) do orderings = prepare_order(order_by, order_directions) q |> apply_cursor(after_, orderings, opts) |> limit(first + 1) end def paginate( q, %Flop{ last: last, before: before, order_by: order_by, order_directions: order_directions, first: nil, after: nil, limit: nil }, opts ) when is_integer(last) do prepared_order_reversed = order_by |> prepare_order(order_directions) |> reverse_ordering() q |> apply_cursor(before, prepared_order_reversed, opts) |> limit(last + 1) end def paginate(q, _, _), do: q ## Offset/limit pagination @spec limit(Queryable.t(), pos_integer | nil) :: Queryable.t() defp limit(q, nil), do: q defp limit(q, limit), do: Query.limit(q, ^limit) @spec offset(Queryable.t(), non_neg_integer | nil) :: Queryable.t() defp offset(q, nil), do: q defp offset(q, offset), do: Query.offset(q, ^offset) ## Cursor pagination helpers @spec apply_cursor( Queryable.t(), map() | nil, [order_direction()], keyword ) :: Queryable.t() defp apply_cursor(q, nil, _, _), do: q defp apply_cursor(q, cursor, ordering, opts) do cursor = Cursor.decode!(cursor) where_dynamic = case opts[:for] do nil -> cursor_dynamic(ordering, cursor) module -> module |> struct() |> Flop.Schema.cursor_dynamic(ordering, cursor) end Query.where(q, ^where_dynamic) end defp cursor_dynamic([], _), do: true defp cursor_dynamic([{direction, field}], cursor) do field_cursor = cursor[field] if is_nil(field_cursor) do true else case direction do dir when dir in [:asc, :asc_nulls_first, :asc_nulls_last] -> Query.dynamic([r], field(r, ^field) > ^field_cursor) dir when dir in [:desc, :desc_nulls_first, :desc_nulls_last] -> Query.dynamic([r], field(r, ^field) < ^field_cursor) end end end defp cursor_dynamic([{direction, field} | [{_, _} | _] = tail], cursor) do field_cursor = cursor[field] if is_nil(field_cursor) do cursor_dynamic(tail, cursor) else case direction do dir when dir in [:asc, :asc_nulls_first, :asc_nulls_last] -> Query.dynamic( [r], field(r, ^field) >= ^field_cursor and (field(r, ^field) > ^field_cursor or ^cursor_dynamic(tail, cursor)) ) dir when dir in [:desc, :desc_nulls_first, :desc_nulls_last] -> Query.dynamic( [r], field(r, ^field) <= ^field_cursor and (field(r, ^field) < ^field_cursor or ^cursor_dynamic(tail, cursor)) ) end end end @spec reverse_ordering([order_direction()]) :: [order_direction()] defp reverse_ordering(order_directions) do Enum.map(order_directions, fn {:desc, field} -> {:asc, field} {:desc_nulls_last, field} -> {:asc_nulls_first, field} {:desc_nulls_first, field} -> {:asc_nulls_last, field} {:asc, field} -> {:desc, field} {:asc_nulls_last, field} -> {:desc_nulls_first, field} {:asc_nulls_first, field} -> {:desc_nulls_last, field} end) end ## Filter @doc """ Applies the `filter` parameter of a `t:Flop.t/0` to an `t:Ecto.Queryable.t/0`. Used by `Flop.query/2`. """ @spec filter(Queryable.t(), Flop.t(), [option()]) :: Queryable.t() def filter(q, flop, opt \\ []) def filter(q, %Flop{filters: nil}, _), do: q def filter(q, %Flop{filters: []}, _), do: q def filter(q, %Flop{filters: filters}, opts) when is_list(filters) do schema_struct = case opts[:for] do nil -> nil module -> struct(module) end conditions = Enum.reduce(filters, true, &Builder.filter(schema_struct, &1, &2)) Query.where(q, ^conditions) end ## Validation @doc """ Validates a `t:Flop.t/0`. ## Examples iex> params = %{"limit" => 10, "offset" => 0, "texture" => "fluffy"} iex> Flop.validate(params) {:ok, %Flop{ filters: [], limit: 10, offset: 0, order_by: nil, order_directions: nil, page: nil, page_size: nil }} iex> flop = %Flop{offset: -1} iex> {:error, %Flop.Meta{} = meta} = Flop.validate(flop) iex> meta.errors [ offset: [ {"must be greater than or equal to %{number}", [validation: :number, kind: :greater_than_or_equal_to, number: 0]} ] ] It also makes sure that only one pagination method is used. iex> params = %{limit: 10, offset: 0, page: 5, page_size: 10} iex> {:error, %Flop.Meta{} = meta} = Flop.validate(params) iex> meta.errors [limit: [{"cannot combine multiple pagination types", []}]] If you derived `Flop.Schema` in your Ecto schema to define the filterable and sortable fields, you can pass the module name to the function to validate that only allowed fields are used. The function will also apply any default values set for the schema. iex> params = %{"order_by" => ["species"]} iex> {:error, %Flop.Meta{} = meta} = Flop.validate(params, for: Flop.Pet) iex> [order_by: [{msg, [_, {_, enum}]}]] = meta.errors iex> msg "has an invalid entry" iex> enum [:name, :age, :owner_name, :owner_age] Note that currently, trying to use an existing field that is not allowed as seen above will result in the error message `has an invalid entry`, while trying to use a field name that does not exist in the schema (or more precisely: a field name that doesn't exist as an atom) will result in the error message `is invalid`. This might change in the future. """ @spec validate(Flop.t() | map, [option()]) :: {:ok, Flop.t()} | {:error, Meta.t()} def validate(flop_or_map, opts \\ []) def validate(%Flop{} = flop, opts) do flop |> flop_struct_to_map() |> validate(opts) end def validate(%{} = params, opts) do result = params |> Flop.Validation.changeset(opts) |> apply_action(:replace) case result do {:ok, _} = r -> r {:error, %Changeset{} = changeset} -> Logger.debug("Invalid Flop: #{inspect(changeset)}") {:error, %Meta{ errors: convert_errors(changeset), params: convert_params(params), schema: opts[:for] }} end end defp convert_errors(changeset) do changeset |> Changeset.traverse_errors(& &1) |> map_to_keyword() end defp map_to_keyword(%{} = map) do Enum.into(map, [], fn {key, value} -> {key, map_to_keyword(value)} end) end defp map_to_keyword(list) when is_list(list) do Enum.map(list, &map_to_keyword/1) end defp map_to_keyword(value), do: value defp flop_struct_to_map(%Flop{} = flop) do flop |> Map.from_struct() |> Map.update!(:filters, &filters_to_maps/1) |> Enum.reject(fn {_, value} -> is_nil(value) end) |> Enum.into(%{}) end defp filters_to_maps(nil), do: nil defp filters_to_maps(filters) when is_list(filters), do: Enum.map(filters, &filter_to_map/1) defp filter_to_map(%Filter{} = filter) do filter |> Map.from_struct() |> Enum.reject(fn {_, value} -> is_nil(value) end) |> Enum.into(%{}) end defp filter_to_map(%{} = filter), do: filter defp convert_params(params) do params |> map_to_string_keys() |> filters_to_list() end defp filters_to_list(%{"filters" => filters} = params) when is_map(filters) do filters = filters |> Enum.map(fn {index, filter} -> {String.to_integer(index), filter} end) |> Enum.sort_by(fn {index, _} -> index end) |> Enum.map(fn {_, filter} -> filter end) Map.put(params, "filters", filters) end defp filters_to_list(params), do: params defp map_to_string_keys(%{} = params) do Enum.into(params, %{}, fn {key, value} when is_atom(key) -> {Atom.to_string(key), map_to_string_keys(value)} {key, value} when is_binary(key) -> {key, map_to_string_keys(value)} end) end defp map_to_string_keys(values) when is_list(values), do: Enum.map(values, &map_to_string_keys/1) defp map_to_string_keys(value), do: value @doc """ Same as `Flop.validate/2`, but raises an `Ecto.InvalidChangesetError` if the parameters are invalid. """ @doc since: "0.5.0" @spec validate!(Flop.t() | map, [option()]) :: Flop.t() def validate!(flop_or_map, opts \\ []) do case validate(flop_or_map, opts) do {:ok, flop} -> flop {:error, %Meta{errors: errors, params: params}} -> raise Flop.InvalidParamsError, errors: errors, params: params end end @doc """ Sets the page value of a `Flop` struct while also removing/converting pagination parameters for other pagination types. iex> set_page(%Flop{page: 2, page_size: 10}, 6) %Flop{page: 6, page_size: 10} iex> set_page(%Flop{limit: 10, offset: 20}, 8) %Flop{limit: nil, offset: nil, page: 8, page_size: 10} iex> set_page(%Flop{page: 2, page_size: 10}, "6") %Flop{page: 6, page_size: 10} The page number will not be allowed to go below 1. iex> set_page(%Flop{}, -5) %Flop{page: 1} """ @doc since: "0.12.0" @spec set_page(Flop.t(), pos_integer | binary) :: Flop.t() def set_page(%Flop{} = flop, page) when is_integer(page) do %{ flop | after: nil, before: nil, first: nil, last: nil, limit: nil, offset: nil, page_size: flop.page_size || flop.limit || flop.first || flop.last, page: max(page, 1) } end def set_page(%Flop{} = flop, page) when is_binary(page) do set_page(flop, String.to_integer(page)) end @doc """ Sets the page of a Flop struct to the previous page, but not less than 1. ## Examples iex> to_previous_page(%Flop{page: 5}) %Flop{page: 4} iex> to_previous_page(%Flop{page: 1}) %Flop{page: 1} iex> to_previous_page(%Flop{page: -2}) %Flop{page: 1} """ @doc since: "0.15.0" @spec to_previous_page(Flop.t()) :: Flop.t() def to_previous_page(%Flop{page: 1} = flop), do: flop def to_previous_page(%Flop{page: page} = flop) when is_integer(page) and page < 1, do: %{flop | page: 1} def to_previous_page(%Flop{page: page} = flop) when is_integer(page), do: %{flop | page: page - 1} @doc """ Sets the page of a Flop struct to the next page. If the total number of pages is given as the second argument, the page number will not be increased if the last page has already been reached. You can get the total number of pages from the `Flop.Meta` struct. ## Examples iex> to_next_page(%Flop{page: 5}) %Flop{page: 6} iex> to_next_page(%Flop{page: 5}, 6) %Flop{page: 6} iex> to_next_page(%Flop{page: 6}, 6) %Flop{page: 6} iex> to_next_page(%Flop{page: 7}, 6) %Flop{page: 6} iex> to_next_page(%Flop{page: -5}) %Flop{page: 1} """ @doc since: "0.15.0" @spec to_next_page(Flop.t(), non_neg_integer | nil) :: Flop.t() def to_next_page(flop, total_pages \\ nil) def to_next_page(%Flop{page: page} = flop, _) when is_integer(page) and page < 0, do: %{flop | page: 1} def to_next_page(%Flop{page: page} = flop, nil), do: %{flop | page: page + 1} def to_next_page(%Flop{page: page} = flop, total_pages) when is_integer(total_pages) and page < total_pages, do: %{flop | page: page + 1} def to_next_page(%Flop{} = flop, total_pages) when is_integer(total_pages), do: %{flop | page: total_pages} @doc """ Sets the offset value of a `Flop` struct while also removing/converting pagination parameters for other pagination types. iex> set_offset(%Flop{limit: 10, offset: 10}, 20) %Flop{offset: 20, limit: 10} iex> set_offset(%Flop{page: 5, page_size: 10}, 20) %Flop{limit: 10, offset: 20, page: nil, page_size: nil} iex> set_offset(%Flop{limit: 10, offset: 10}, "20") %Flop{offset: 20, limit: 10} The offset will not be allowed to go below 0. iex> set_offset(%Flop{}, -5) %Flop{offset: 0} """ @doc since: "0.15.0" @spec set_offset(Flop.t(), non_neg_integer | binary) :: Flop.t() def set_offset(%Flop{} = flop, offset) when is_integer(offset) do %{ flop | after: nil, before: nil, first: nil, last: nil, limit: flop.limit || flop.page_size || flop.first || flop.last, offset: max(offset, 0), page_size: nil, page: nil } end def set_offset(%Flop{} = flop, offset) when is_binary(offset) do set_offset(flop, String.to_integer(offset)) end @doc """ Sets the offset of a Flop struct to the page depending on the limit. ## Examples iex> to_previous_offset(%Flop{offset: 20, limit: 10}) %Flop{offset: 10, limit: 10} iex> to_previous_offset(%Flop{offset: 5, limit: 10}) %Flop{offset: 0, limit: 10} iex> to_previous_offset(%Flop{offset: -2, limit: 10}) %Flop{offset: 0, limit: 10} """ @doc since: "0.15.0" @spec to_previous_offset(Flop.t()) :: Flop.t() def to_previous_offset(%Flop{offset: 0} = flop), do: flop def to_previous_offset(%Flop{offset: offset, limit: limit} = flop) when is_integer(limit) and is_integer(offset), do: %{flop | offset: max(offset - limit, 0)} @doc """ Sets the offset of a Flop struct to the next page depending on the limit. If the total count is given as the second argument, the offset will not be increased if the last page has already been reached. You can get the total count from the `Flop.Meta` struct. If the Flop has an offset beyond the total count, the offset will be set to the last page. ## Examples iex> to_next_offset(%Flop{offset: 10, limit: 5}) %Flop{offset: 15, limit: 5} iex> to_next_offset(%Flop{offset: 15, limit: 5}, 21) %Flop{offset: 20, limit: 5} iex> to_next_offset(%Flop{offset: 15, limit: 5}, 20) %Flop{offset: 15, limit: 5} iex> to_next_offset(%Flop{offset: 28, limit: 5}, 22) %Flop{offset: 20, limit: 5} iex> to_next_offset(%Flop{offset: -5, limit: 20}) %Flop{offset: 0, limit: 20} """ @doc since: "0.15.0" @spec to_next_offset(Flop.t(), non_neg_integer | nil) :: Flop.t() def to_next_offset(flop, total_count \\ nil) def to_next_offset(%Flop{limit: limit, offset: offset} = flop, _) when is_integer(limit) and is_integer(offset) and offset < 0, do: %{flop | offset: 0} def to_next_offset(%Flop{limit: limit, offset: offset} = flop, nil) when is_integer(limit) and is_integer(offset), do: %{flop | offset: offset + limit} def to_next_offset(%Flop{limit: limit, offset: offset} = flop, total_count) when is_integer(limit) and is_integer(offset) and is_integer(total_count) and offset >= total_count do %{flop | offset: (ceil(total_count / limit) - 1) * limit} end def to_next_offset(%Flop{limit: limit, offset: offset} = flop, total_count) when is_integer(limit) and is_integer(offset) and is_integer(total_count) do case offset + limit do new_offset when new_offset >= total_count -> flop new_offset -> %{flop | offset: new_offset} end end @doc """ Takes a `Flop.Meta` struct and returns a `Flop` struct with updated cursor pagination params for going to either the previous or the next page. See `to_previous_cursor/1` and `to_next_cursor/1` for details. ## Examples iex> set_cursor( ...> %Flop.Meta{ ...> flop: %Flop{first: 5, after: "a"}, ...> has_previous_page?: true, start_cursor: "b" ...> }, ...> :previous ...> ) %Flop{last: 5, before: "b"} iex> set_cursor( ...> %Flop.Meta{ ...> flop: %Flop{first: 5, after: "a"}, ...> has_next_page?: true, end_cursor: "b" ...> }, ...> :next ...> ) %Flop{first: 5, after: "b"} """ @doc since: "0.15.0" @spec set_cursor(Meta.t(), :previous | :next) :: Flop.t() def set_cursor(%Meta{} = meta, :previous), do: to_previous_cursor(meta) def set_cursor(%Meta{} = meta, :next), do: to_next_cursor(meta) @doc """ Takes a `Flop.Meta` struct and returns a `Flop` struct with updated cursor pagination params for going to the previous page. If there is no previous page, the `Flop` struct is return unchanged. ## Examples iex> to_previous_cursor( ...> %Flop.Meta{ ...> flop: %Flop{first: 5, after: "a"}, ...> has_previous_page?: true, start_cursor: "b" ...> } ...> ) %Flop{last: 5, before: "b"} iex> to_previous_cursor( ...> %Flop.Meta{ ...> flop: %Flop{last: 5, before: "b"}, ...> has_previous_page?: true, start_cursor: "a" ...> } ...> ) %Flop{last: 5, before: "a"} iex> to_previous_cursor( ...> %Flop.Meta{ ...> flop: %Flop{first: 5, after: "b"}, ...> has_previous_page?: false, start_cursor: "a" ...> } ...> ) %Flop{first: 5, after: "b"} """ @doc since: "0.15.0" @spec to_previous_cursor(Meta.t()) :: Flop.t() def to_previous_cursor(%Meta{flop: flop, has_previous_page?: false}), do: flop def to_previous_cursor(%Meta{ flop: flop, has_previous_page?: true, start_cursor: start_cursor }) when is_binary(start_cursor) do %{ flop | before: start_cursor, last: flop.last || flop.first || flop.page_size || flop.limit, after: nil, first: nil, page: nil, page_size: nil, limit: nil, offset: nil } end @doc """ Takes a `Flop.Meta` struct and returns a `Flop` struct with updated cursor pagination params for going to the next page. If there is no next page, the `Flop` struct is return unchanged. ## Examples iex> to_next_cursor( ...> %Flop.Meta{ ...> flop: %Flop{first: 5, after: "a"}, ...> has_next_page?: true, end_cursor: "b" ...> } ...> ) %Flop{first: 5, after: "b"} iex> to_next_cursor( ...> %Flop.Meta{ ...> flop: %Flop{last: 5, before: "b"}, ...> has_next_page?: true, end_cursor: "a" ...> } ...> ) %Flop{first: 5, after: "a"} iex> to_next_cursor( ...> %Flop.Meta{ ...> flop: %Flop{first: 5, after: "a"}, ...> has_next_page?: false, start_cursor: "b" ...> } ...> ) %Flop{first: 5, after: "a"} """ @doc since: "0.15.0" @spec to_next_cursor(Meta.t()) :: Flop.t() def to_next_cursor(%Meta{flop: flop, has_next_page?: false}), do: flop def to_next_cursor(%Meta{ flop: flop, has_next_page?: true, end_cursor: end_cursor }) when is_binary(end_cursor) do %{ flop | after: end_cursor, first: flop.first || flop.last || flop.page_size || flop.limit, before: nil, last: nil, page: nil, page_size: nil, limit: nil, offset: nil } end @doc """ Removes the `after` and `before` cursors from a Flop struct. ## Example iex> reset_cursors(%Flop{after: "A"}) %Flop{} iex> reset_cursors(%Flop{before: "A"}) %Flop{} """ @doc since: "0.15.0" @spec reset_cursors(Flop.t()) :: Flop.t() def reset_cursors(%Flop{} = flop), do: %{flop | after: nil, before: nil} @doc """ Removes all filters from a Flop struct. ## Example iex> reset_filters(%Flop{filters: [ ...> %Flop.Filter{field: :name, value: "Jim"} ...> ]}) %Flop{filters: []} """ @doc since: "0.15.0" @spec reset_filters(Flop.t()) :: Flop.t() def reset_filters(%Flop{} = flop), do: %{flop | filters: []} @doc """ Returns the current order direction for the given field. ## Examples iex> flop = %Flop{order_by: [:name, :age], order_directions: [:desc]} iex> current_order(flop, :name) :desc iex> current_order(flop, :age) :asc iex> current_order(flop, :species) nil """ @doc since: "0.15.0" @spec current_order(Flop.t(), atom) :: order_direction() | nil def current_order( %Flop{order_by: order_by, order_directions: order_directions}, field ) when is_atom(field) do get_order_direction(order_directions, get_index(order_by, field)) end @doc """ Removes the order parameters from a Flop struct. ## Example iex> reset_order(%Flop{order_by: [:name], order_directions: [:asc]}) %Flop{order_by: nil, order_directions: nil} """ @doc since: "0.15.0" @spec reset_order(Flop.t()) :: Flop.t() def reset_order(%Flop{} = flop), do: %{flop | order_by: nil, order_directions: nil} @doc """ Updates the `order_by` and `order_directions` values of a `Flop` struct. - If the field is not in the current `order_by` value, it will be prepended to the list. The order direction for the field will be set to `:asc`. - If the field is already at the front of the `order_by` list, the order direction will be reversed. - If the field is already in the list, but not at the front, it will be moved to the front and the order direction will be set to `:asc`. ## Example iex> flop = push_order(%Flop{}, :name) iex> flop.order_by [:name] iex> flop.order_directions [:asc] iex> flop = push_order(flop, :age) iex> flop.order_by [:age, :name] iex> flop.order_directions [:asc, :asc] iex> flop = push_order(flop, :age) iex> flop.order_by [:age, :name] iex> flop.order_directions [:desc, :asc] iex> flop = push_order(flop, :species) iex> flop.order_by [:species, :age, :name] iex> flop.order_directions [:asc, :desc, :asc] iex> flop = push_order(flop, :age) iex> flop.order_by [:age, :species, :name] iex> flop.order_directions [:asc, :asc, :asc] If a string is passed as the second argument, it will be converted to an atom using `String.to_existing_atom/1`. If the atom does not exist, the `Flop` struct will be returned unchanged. iex> flop = push_order(%Flop{}, "name") iex> flop.order_by [:name] iex> flop = push_order(%Flop{}, "this_atom_does_not_exist") iex> flop.order_by nil Since the pagination cursor depends on the sort order, the `:before` and `:after` parameters are reset. iex> push_order(%Flop{order_by: [:id], after: "ABC"}, :name) %Flop{order_by: [:name, :id], order_directions: [:asc], after: nil} iex> push_order(%Flop{order_by: [:id], before: "DEF"}, :name) %Flop{order_by: [:name, :id], order_directions: [:asc], before: nil} """ @spec push_order(Flop.t(), atom | String.t()) :: Flop.t() @doc since: "0.10.0" def push_order( %Flop{order_by: order_by, order_directions: order_directions} = flop, field ) when is_atom(field) do previous_index = get_index(order_by, field) previous_direction = get_order_direction(order_directions, previous_index) new_direction = new_order_direction(previous_index, previous_direction) {order_by, order_directions} = get_new_order( order_by, order_directions, field, new_direction, previous_index ) %{ flop | after: nil, before: nil, order_by: order_by, order_directions: order_directions } end def push_order(flop, field) when is_binary(field) do push_order(flop, String.to_existing_atom(field)) rescue _e in ArgumentError -> flop end defp get_index(nil, _field), do: nil defp get_index(order_by, field), do: Enum.find_index(order_by, &(&1 == field)) defp get_order_direction(_, nil), do: nil defp get_order_direction(nil, _), do: :asc defp get_order_direction(directions, index), do: Enum.at(directions, index, :asc) defp new_order_direction(0, :asc), do: :desc defp new_order_direction(0, :asc_nulls_first), do: :desc_nulls_last defp new_order_direction(0, :asc_nulls_last), do: :desc_nulls_first defp new_order_direction(0, :desc), do: :asc defp new_order_direction(0, :desc_nulls_first), do: :asc_nulls_last defp new_order_direction(0, :desc_nulls_last), do: :asc_nulls_first defp new_order_direction(_, _), do: :asc defp get_new_order( order_by, order_directions, field, new_direction, previous_index ) do {order_by, order_directions} = if previous_index do {List.delete_at(order_by, previous_index), List.delete_at(order_directions, previous_index)} else {order_by, order_directions} end {[field | order_by || []], [new_direction | order_directions || []]} end defp apply_on_repo(repo_fn, flop_fn, args, opts) do repo = option_or_default(opts, :repo) || raise no_repo_error(flop_fn) opts = if prefix = option_or_default(opts, :prefix) do [prefix: prefix] else [] end apply(repo, repo_fn, args ++ [opts]) end defp option_or_default(opts, key) do opts[key] || Application.get_env(:flop, key) end @doc """ Returns the option with the given key. The look-up order is: 1. the keyword list passed as the second argument 2. the schema module that derives `Flop.Schema`, if the passed list includes the `:for` option 3. the application environment 4. the default passed as the last argument """ @doc since: "0.11.0" @spec get_option(atom, [option()], any) :: any def get_option(key, opts, default \\ nil) do case opts[key] do nil -> case schema_option(opts[:for], key) do nil -> global_option(key, default) v -> v end v -> v end end defp schema_option(module, key) when is_atom(module) and module != nil and key in [ :default_limit, :default_order, :filterable_fields, :max_limit, :pagination_types, :sortable ] do apply(Flop.Schema, key, [struct(module)]) end defp schema_option(_, _), do: nil defp global_option(key, default) when is_atom(key) do Application.get_env(:flop, key, default) end @doc """ Converts key/value filter parameters at the root of a map, converts them into a list of filter parameter maps and nests them under the `:filters` key. The second argument is a list of fields as atoms. The `opts` argument is passed to `map_to_filter_params/2`. ## Examples iex> nest_filters(%{name: "Peter", page_size: 10}, [:name]) %{filters: [%{field: :name, op: :==, value: "Peter"}], page_size: 10} iex> nest_filters(%{"name" => "Peter"}, [:name]) %{"filters" => [%{"field" => "name", "op" => :==, "value" => "Peter"}]} iex> nest_filters(%{name: "Peter"}, [:name], operators: %{name: :!=}) %{filters: [%{field: :name, op: :!=, value: "Peter"}]} """ @doc since: "0.15.0" def nest_filters(%{} = args, fields, opts \\ []) when is_list(fields) do fields = fields ++ Enum.map(fields, &Atom.to_string/1) filters = args |> Map.take(fields) |> map_to_filter_params(opts) key = if has_atom_keys?(args), do: :filters, else: "filters" args |> Map.put(key, filters) |> Map.drop(fields) end defp has_atom_keys?(%{} = map) do map |> Map.keys() |> List.first() |> is_atom() end @doc """ Converts a map of filter conditions into a list of Flop filter params. The default operator is `:==`. `nil` values are excluded from the result. iex> map_to_filter_params(%{name: "George", age: 8, species: nil}) [ %{field: :age, op: :==, value: 8}, %{field: :name, op: :==, value: "George"} ] iex> map_to_filter_params(%{"name" => "George", "age" => 8, "cat" => true}) [ %{"field" => "age", "op" => :==, "value" => 8}, %{"field" => "cat", "op" => :==, "value" => true}, %{"field" => "name", "op" => :==, "value" => "George"} ] You can optionally pass a mapping from field names to operators as a map with atom keys. iex> map_to_filter_params( ...> %{name: "George", age: 8, species: nil}, ...> operators: %{name: :ilike_and} ...> ) [ %{field: :age, op: :==, value: 8}, %{field: :name, op: :ilike_and, value: "George"} ] iex> map_to_filter_params( ...> %{"name" => "George", "age" => 8, "cat" => true}, ...> operators: %{name: :ilike_and, age: :<=} ...> ) [ %{"field" => "age", "op" => :<=, "value" => 8}, %{"field" => "cat", "op" => :==, "value" => true}, %{"field" => "name", "op" => :ilike_and, "value" => "George"} ] """ @doc since: "0.14.0" @spec map_to_filter_params(map, keyword) :: [map] def map_to_filter_params(%{} = map, opts \\ []) do operators = opts[:operators] map |> Stream.reject(fn {_, nil} -> true _ -> false end) |> Enum.map(fn {field, value} when is_atom(field) -> %{ field: field, op: op_from_mapping(field, operators), value: value } {field, value} when is_binary(field) -> %{ "field" => field, "op" => op_from_mapping(field, operators), "value" => value } end) end defp op_from_mapping(_field, nil), do: :== defp op_from_mapping(field, %{} = operators) when is_atom(field) do Map.get(operators, field, :==) end defp op_from_mapping(field, %{} = operators) when is_binary(field) do atom_key = String.to_existing_atom(field) Map.get(operators, atom_key, :==) rescue ArgumentError -> :== end # coveralls-ignore-start defp no_repo_error(function_name), do: """ No repo specified. You can specify the repo either by passing it explicitly: Flop.#{function_name}(MyApp.Item, %Flop{}, repo: MyApp.Repo) Or you can configure a default repo in your config: config :flop, repo: MyApp.Repo """ # coveralls-ignore-end end
lib/flop.ex
0.806853
0.617686
flop.ex
starcoder
defmodule PersistentList.Day02 do alias PersistentList.Day02, as: List defstruct [:head, :tail] defimpl String.Chars, for: PersistentList.Day02 do def to_string(list), do: "[" <> stringify(list) <> "]" defp stringify(%List{head: nil}), do: "" defp stringify( %List{ head: head, tail: %List{ head: nil } } ), do: "#{head}" defp stringify(%List{head: head, tail: tail}), do: "#{head}, " <> stringify(tail) end def new(), do: %List{} def append(list, item), do: %List{head: item, tail: list} def prepend(%List{head: nil, tail: nil} = empty, item), do: empty |> append(item) def prepend(%List{head: head, tail: tail}, item), do: tail |> prepend(item) |> append(head) def concat(%List{head: nil, tail: nil}, other), do: other def concat(%List{head: head, tail: tail}, other), do: tail |> concat(other) |> append(head) def drop(%List{head: nil} = empty, _), do: empty def drop(list, num) when num == 0, do: list def drop(%List{tail: tail}, num), do: tail |> drop(num - 1) def drop_while(%List{head: nil} = empty, _), do: empty def drop_while(%List{head: head, tail: tail} = list, predicate), do: unless predicate.(head), do: list, else: tail |> drop_while(predicate) def take(%List{head: nil} = empty, _), do: empty def take(_, num) when num == 0, do: %List{} def take(%List{head: head, tail: tail}, num), do: tail |> take(num - 1) |> append(head) def take_while(%List{head: nil} = empty, _), do: empty def take_while(%List{head: head, tail: tail}, predicate), do: if predicate.(head), do: tail |> take_while(predicate) |> append(head), else: %List{} def filter(%List{head: nil} = empty, _), do: empty def filter(%List{head: head, tail: tail}, predicate) do unless predicate.(head), do: tail |> filter(predicate) |> append(head), else: tail |> filter(predicate) end end
persistent_list/lib/persistent_list/day02.ex
0.583441
0.461502
day02.ex
starcoder
defmodule Meeseeks.Selector.Combinator do @moduledoc """ Combinator structs package some method for finding related nodes and a `Meeseeks.Selector` to be run on found nodes. For instance, the css selector `ul > li` contains the combinator `> li`, which roughly translates to "find a node's children and match any that are `li`s." In Meeseeks, this combinator could be represented as: ```elixir alias Meeseeks.Selector.Combinator alias Meeseeks.Selector.Element %Combinator.ChildElements{ selector: %Element{selectors: [%Element.Tag{value: "li"}]}} ``` When defining a combinator using `use Meeseeks.Selector.Combinator`, the default implementation of `selector/1` expects the selector to be stored in field `selector`. If this is different in your struct, you must implement `selector/1`. ## Examples ```elixir defmodule Selector.Combinator.Parent do use Meeseeks.Selector.Combinator defstruct selector: nil def next(_combinator, node, _document) do node.parent end end ``` """ alias Meeseeks.{Document, Selector} @type t :: struct @doc """ Invoked in order to find the node or nodes that a combinator wishes its selector to be run on. Returns the applicable node or nodes, or `nil` if there are no applicable nodes. """ @callback next(combinator :: t, node :: Document.node_t(), document :: Document.t()) :: [Document.node_t()] | Document.node_t() | nil | no_return @doc """ Invoked to return the combinator's selector. """ @callback selector(combinator :: t) :: Selector.t() # next @doc """ Finds the node or nodes that a combinator wishes its selector to be run on. Returns the applicable node or nodes, or `nil` if there are no applicable nodes. """ @spec next(t, Document.node_t(), Document.t()) :: [Document.node_t()] | Document.node_t() | nil | no_return def next(%{__struct__: struct} = combinator, node, document) do struct.next(combinator, node, document) end # combinator @doc """ Returns the combinator's selector. """ @spec selector(t) :: Selector.t() def selector(%{__struct__: struct} = combinator) do struct.selector(combinator) end # __using__ @doc false defmacro __using__(_) do quote do @behaviour Selector.Combinator @impl Selector.Combinator def next(_, _, _), do: raise("next/3 not implemented") @impl Selector.Combinator def selector(combinator), do: combinator.selector defoverridable next: 3, selector: 1 end end end
lib/meeseeks/selector/combinator.ex
0.900717
0.726013
combinator.ex
starcoder
defmodule Protobuf.Parser do defmodule ParserError do defexception [:message] end def parse_files!(files, options \\ []) do files |> Enum.flat_map(fn path -> schema = File.read!(path) parse!(path, schema, options) end) |> finalize!(options) end def parse_string!(file, string, options \\ []) do file |> parse!(string, options) |> finalize!(options) end defp finalize!(defs, options) do case :gpb_parse.post_process_all_files(defs, options) do {:ok, defs} -> defs {:error, error} -> msg = case error do [ref_to_undefined_msg_or_enum: {{root_path, field}, type}] -> type_ref = type |> Enum.map(&Atom.to_string/1) |> Enum.join() invalid_ref = [field | root_path] |> Enum.reverse() |> Enum.map(&Atom.to_string/1) |> Enum.join() "Reference to undefined message or enum #{type_ref} at #{invalid_ref}" _ -> Macro.to_string(error) end raise ParserError, message: msg end end defp parse(path, string, options) when is_binary(string) or is_list(string) do case :gpb_scan.string('#{string}') do {:ok, tokens, _} -> lines = string |> String.split("\n", parts: :infinity) |> Enum.count() case :gpb_parse.parse(tokens ++ [{:"$end", lines + 1}]) do {:ok, defs} -> :gpb_parse.post_process_one_file(path, defs, options) error -> error end error -> error end end defp parse!(path, string, options) do case parse(path, string, options) do {:ok, defs} -> defs {:error, error} -> msg = case error do [ref_to_undefined_msg_or_enum: {{root_path, field}, type}] -> type_ref = type |> Enum.map(&Atom.to_string/1) |> Enum.join() invalid_ref = [field | root_path] |> Enum.reverse() |> Enum.map(&Atom.to_string/1) |> Enum.join() "Reference to undefined message or enum #{type_ref} at #{invalid_ref}" _ when is_binary(error) -> error _ -> Macro.to_string(error) end raise ParserError, message: msg end end end
lib/exprotobuf/parser.ex
0.592077
0.485722
parser.ex
starcoder
defmodule HelloOperator.Controller.V1.Greeting do @moduledoc """ HelloOperator: Greeting CRD. ## Kubernetes CRD Spec By default all CRD specs are assumed from the module name, you can override them using attributes. ### Examples ``` # Kubernetes API version of this CRD, defaults to value in module name @version "v2alpha1" # Kubernetes API group of this CRD, defaults to "hello-operator.example.com" @group "kewl.example.io" The scope of the CRD. Defaults to `:namespaced` @scope :cluster CRD names used by kubectl and the kubernetes API @names %{ plural: "foos", singular: "foo", kind: "Foo" } ``` ## Declare RBAC permissions used by this module RBAC rules can be declared using `@rule` attribute and generated using `mix bonny.manifest` This `@rule` attribute is cumulative, and can be declared once for each Kubernetes API Group. ### Examples ``` @rule {apiGroup, resources_list, verbs_list} @rule {"", ["pods", "secrets"], ["*"]} @rule {"apiextensions.k8s.io", ["foo"], ["*"]} ``` """ use Bonny.Controller @rule {"apps", ["deployments"], ["*"]} @rule {"", ["services"], ["*"]} # @group "your-operator.your-domain.com" # @version "v1" @scope :namespaced @names %{ plural: "greetings", singular: "greeting", kind: "Greeting" } @doc """ Creates a kubernetes `deployment` and `service` that runs a "Hello, World" app. """ @spec add(map()) :: :ok | :error def add(payload) do resources = parse(payload) conf = Bonny.Config.kubeconfig() with :ok <- K8s.Client.post(resources.deployment, conf), :ok <- K8s.Client.post(resources.service, conf) do :ok else {:error, error} -> {:error, error} end end @doc """ Updates `deployment` and `service` resources. """ @spec modify(map()) :: :ok | :error def modify(payload) do resources = parse(payload) conf = Bonny.Config.kubeconfig() with :ok <- K8s.Client.patch(resources.deployment, conf), :ok <- K8s.Client.patch(resources.service, conf) do :ok else {:error, error} -> {:error, error} end end @doc """ Deletes `deployment` and `service` resources. """ @spec delete(map()) :: :ok | :error def delete(payload) do resources = parse(payload) conf = Bonny.Config.kubeconfig() with :ok <- K8s.Client.delete(resources.deployment, conf), :ok <- K8s.Client.delete(resources.service, conf) do :ok else {:error, error} -> {:error, error} end end defp parse(%{"metadata" => %{"name" => name, "namespace" => ns}, "spec" => %{"greeting" => greeting}}) do deployment = gen_deployment(ns, name, greeting) service = gen_service(ns, name, greeting) %{ deployment: deployment, service: service } end defp gen_service(ns, name, greeting) do %{ apiVersion: "v1", kind: "Service", metadata: %{ name: name, namespace: ns, labels: %{app: name} }, spec: %{ ports: [%{port: 5000, protocol: "TCP"}], selector: %{app: name}, type: "NodePort" } } end defp gen_deployment(ns, name, greeting) do %{ apiVersion: "apps/v1", kind: "Deployment", metadata: %{ name: name, namespace: ns, labels: %{app: name} }, spec: %{ replicas: 2, selector: %{ matchLabels: %{app: name} }, template: %{ metadata: %{ labels: %{app: name} }, spec: %{ containers: [ %{ name: name, image: "quay.io/coryodaniel/greeting-server", env: [%{name: "GREETING", value: greeting}], ports: [%{containerPort: 5000}] } ] } } } } end end
lib/hello_operator/controllers/v1/greeting.ex
0.88499
0.824108
greeting.ex
starcoder

Dataset Card for "clean_code_data"

High quality code data filtering from the stack and pypi. The stack data is pulled from starcoder data, so it has some filtering applied already.

All data was cleaned to remove code licenses and other headers, and filtered for quality and learning value.

Downloads last month
35