code
stringlengths
114
1.05M
path
stringlengths
3
312
quality_prob
float64
0.5
0.99
learning_prob
float64
0.2
1
filename
stringlengths
3
168
kind
stringclasses
1 value
import requests import json import time import datetime import os def write_json(file, data): with open(file,'w') as f: json.dump(data, f, indent=4) """ Checks the responses from the server and throws errors accordingly. """ def check_response(response): if response.status_code == 401: raise ValueError("Old or incorrect token used, ensure you've got a working one with get_updated_token()") if response.status_code == 404: raise ValueError("Incorrect parameters passed to the API") if response.status_code == 500: raise ValueError("Unknown error with request") """ App key is the first step in authentication, it gets a key used to generate the token. """ def get_app_key(name, password, school, write_file_path='app_key.json'): # It actually sends the password plaintext to the server. app_key_response = requests.post(f"https://sms.schoolsoft.se/{school}/rest/app/login", data={'identification':name, 'verification':password, 'logintype':'4', 'usertype':'1', }) check_response(app_key_response) app_key_json = app_key_response.json() if write_file_path: write_json(write_file_path, app_key_json) return app_key_json """ Gets the token used for authentication from the app_key. Note that the token has an expiry date. This function shouldn't be used directly. Use get_updated_token() to prevent spamming the servers for new tokens. """ def get_token(school, app_key_json={}, app_key_path=None, write_file_path='token.json'): key = None if 'appKey' in app_key_json and not app_key_path: key = app_key_json['appKey'] elif app_key_path: with open(app_key_path) as app_key_json: key = json.load(app_key_json).get('appKey') # If no key is obtained from app_key_path or app_key_json raises an error. if not key: raise RuntimeError('No valid value for app_key. An app key is needed to generate the token') token_response = requests.get(f'https://sms.schoolsoft.se/{school}/rest/app/token', headers={ "appversion": "2.3.2", "appos": "android", "appkey": key, "deviceid":"" }) check_response(token_response) token_json = token_response.json() if write_file_path: write_json(write_file_path, token_json) return token_json """ Gets the lessons based on token and schoolname. School is found in the url like this: "https://sms13.schoolsoft.se/ school /jsp/student/right_student_startpage.jsp" """ def get_lessons(token, school, org_id, write_file_path='lessons.json'): lesson_response = requests.get(f'https://sms.schoolsoft.se/{school}/api/lessons/student/{org_id}', headers= { "appversion": "2.3.2", "appos": "android", "token": token}) check_response(lesson_response) lesson_json = lesson_response.json() if write_file_path: write_json(write_file_path, lesson_json) return lesson_json """ Gets the calendar for the student based on unix timestamps (1597246367) The API uses milliseconds based timestamps, but the function takes second based ones and converts them. By default with no parameters it will use the current time as start and a month from that as end. """ def get_calendar(token, school, org_id, unix_time_start=None, unix_time_end=None, write_file_path='calendar.json'): unix_time_start = time.time()*1000 if not unix_time_start else unix_time_start*1000 unix_time_end = (time.time() + 2592000)*1000 if not unix_time_end else unix_time_end*1000 # No decimals can get passed to the api without errors. unix_time_start = round(unix_time_start) unix_time_end = round(unix_time_end) calendar_response = requests.get(f'https://sms.schoolsoft.se/{school}/api/notices/student/{org_id}/{unix_time_start}/{unix_time_end}/calendar,schoolcalendar,privatecalendar', headers={ "appversion": "2.3.2", "appos": "android", "token": token}) check_response(calendar_response) calendar_json = calendar_response.json() if write_file_path: write_json(write_file_path, calendar_json) return calendar_json """ Gets the lunch :) """ def get_lunch(token, school, org_id, write_file_path='lunch.json'): lunch_response = requests.get(f'https://sms.schoolsoft.se/{school}/api/lunchmenus/student/{org_id}', headers={ "appversion": "2.3.2", "appos": "android", "token": token}) check_response(lunch_response) lunch_json = lunch_response.json() if write_file_path: write_json(write_file_path, lunch_json) return lunch_json """ Basically get_token(), but looks at the previous tokens expiry date and determines if a new token should be issued or use the old one. This function should be used when making applications. """ def get_updated_token(school, app_key_json={}, app_key_path=None, token_json={}, token_path=None, write_file_path='token.json'): if 'expiryDate' not in token_json and token_path: if os.path.isfile(token_path): with open(token_path) as f: token_json = json.load(f) if not token_json: # If no token passed to the function it generates a new one. token_json = get_token(school, app_key_json, app_key_path, write_file_path) return token_json # Cuts off milliseconds. expiry_date = token_json['expiryDate'][:-4] # Assumes the date is formatted like "2020-08-12 17:48:22". unix_time = time.mktime(datetime.datetime.strptime(expiry_date, "%Y-%m-%d %H:%M:%S").timetuple()) # Extra 5 minutes for good measure # The token seems to last 3 hours. if time.time() + 5*60 > unix_time: token_json = get_token(school, app_key_json, app_key_path, write_file_path) else: write_json(write_file_path, token_json) return token_json """ Gives the same info get_app_key(), but doesn't generate an app key. Should be used when you want to get user info and already have a token. """ def get_user_info(token, school, write_file_path='user.json'): user_response = requests.get(f'https://sms.schoolsoft.se/{school}/api/user/get', headers={ "appversion": "2.3.2", "appos": "android", "token": token}) check_response(user_response) user_json = user_response.json() if write_file_path: write_json(write_file_path, user_json) return user_json
/schoolsoft_api-1.0.3-py3-none-any.whl/schoolsoft_api/schoolsoft_api.py
0.484624
0.205356
schoolsoft_api.py
pypi
=========== schoolutils =========== schoolutils provides a simple, efficient way to track and manage student data. It includes: * a database for storing information about students, courses, assignments, and grades * a command-line interface for interacting with the database * tools for calculating grades * tools for importing and exporting student data in useful formats * reports on basic grade statistics Other planned features include: * tools for reporting more complex grade statistics * tools for receiving student assignments via email, and returning graded assignments and comments via email Installation ============ Installing locally vs. system-wide ---------------------------------- If you are your computer's administrator, you probably want to install schoolutils system-wide. In that case, you need to run the ``pip`` or ``python`` installation commands below with administrator privileges. On Mac OS X and GNU/Linux, you can generally do that by prefixing ``sudo`` to these commands (e.g., ``sudo pip install schoolutils``). If you do not have adminstrative access to the computer where you want to install schoolutils, or you simply don't want to install it system-wide, there are a couple of options for installing it locally. The first is to install schoolutils in a Python `virtual environment <https://pypi.python.org/pypi/virtualenv>`_ that you control. To do this, create and activate a virtual environment, then run the ``pip`` command below. The second is to install schoolutils to a directory in your control which is on the system Python interpreter's path. You can do that by passing the ``--user`` option to the ``python`` command below (``python setup.py install --user``). Note that if you don't install schoolutils system-wide, you may need to adjust your shell's $PATH environment variable to make the ``grade`` command available. A virtual environment makes this easy, so that is the recommended method for installing locally. Installation procedures ----------------------- The easiest way to install schoolutils is via `pip <http://www.pip-installer.org/en/latest/installing.html>`_:: $ pip install schoolutils You can also `download <http://pypi.python.org/pypi/schoolutils#downloads>`_ the package from PyPI, unpack it, and run:: $ python setup.py install from the package directory. Finally, you can get the development version with ``git``. The project is hosted on both `Bitbucket <https://bitbucket.org/wyleyr/schoolutils>`_ and `Github <https://github.com/wyleyr/schoolutils>`_. You can clone it using one of the following commands:: $ git clone https://bitbucket.org/wyleyr/schoolutils.git $ git clone git://github.com/wyleyr/schoolutils.git Then run the ``setup.py`` script from the repository root, as above. schoolutils has no dependencies (besides the Python standard library), so the installation should go smoothly; if you have any problems, please `report a bug <https://bitbucket.org/wyleyr/schoolutils/issues>`_. Configuration ============= It isn't necessary to configure schoolutils, but it will be faster to use if you do. The command-line interface expects to find configuration files in the ``.schoolutils`` directory of your home directory. You should create three Python modules there: ``config.py``, ``calculators.py``, and ``validators.py``. Sample configuration files are included in the ``examples`` directory of the source package:: $ mkdir ~/.schoolutils $ cp path/to/schoolutils_source/examples/*.py ~/.schoolutils The comments in the sample files explain the values you should provide there. The most important one in ``config.py`` is ``gradedb_file``, which should contain the path to your grade database file. If you don't provide this value, you will have to type it in every time you start the grading program. First run ========= Once you've installed the package, you can run the grading program as follows:: $ grade This will start the grading program's interactive user interface with the configuration you specified in your ``config.py`` module. From there, you can: 1) Add a course 2) Add or import students into the course 3) Add assignments 4) Start entering grades After that ========== A few concepts -------------- The grading program has a few important concepts you should be aware of: Currently selected course and assignment The grading program has a notion of the 'current course' and 'current assignment'. Most of the actions you take in the grading program depend on your having previously selected a course or assignment. For example, when you add or import students, the grading program will add them as members of the current course. When you enter grades, you will be entering grades for the current assignment. You can specify the current course and assignment in your ``config.py`` module, or select them interactively. Entered vs. calculated grades 'Entered' grades are grades you have entered into the database through the interactive interface. These are the sort of grades you produce by hand: for example, letter grades for a batch of papers that you've graded. 'Calculated' grades are grades you use the grading program to calculate. Grades are calculated by a Python function that you must provide, in your ``calculators.py`` module (see below). These will also be saved in the database, when you run the grade calculation command. You can use the grading program without ever calculating grades, but it will (hopefully!) save you some work if you do. Grade calculation function A grade calculation function is a function you define in your ``calculators.py`` module. This function should calculate the calculated grades for a single student on the basis of entered grades. You should define one grade calculation function per course. Grade calculation functions use a special naming convention so the grading program knows which function to use when calculating grades. The name should be:: calculate_grade_<course number>_<semester><year> For example, if you are teaching a course numbered '12A' in the fall semester of 2013, you'd write a grade calculation function named:: calculate_grade_12A_fall2013 Each grade calculation function will receive a set of database rows as input, representing a single student's grades in the current course. The function should return a dictionary or list of dictionaries representing grades calculated for that student. For more information, see the example ``calculators.py`` module. Validator function A validator function is a function you define in your ``validators.py`` module. It prepares data that you type into the user interface to be saved to the database. This function should accept a string and either return an appropriate value or raise a Python ``ValueError``. If a validator raises a ``ValueError``, the user interface asks you to re-enter the value until you type one that validates. For example, the ``letter_grade`` validator ensures that any string passed to it is a letter grade, so that you can't save a letter grade of 'W' by mistake. schoolutils provides sensible defaults for all validator functions, so defining your own is not strictly necessary. But you can reduce data-entry errors by providing custom validator functions, which will override the defaults. See the sample ``validators.py`` module for more information and a list of the validators for which you can provide custom definitions. Command-line options -------------------- To see command-line options available for the grading program, use:: $ grade --help Warning ------- schoolutils is alpha-quality software. It is offered in the hope you find it useful, but (like all software) it has bugs, so please take sensible precautions to protect your data. In particular, you should **backup your grade database file(s)** regularly! This is easy, because SQLite stores your whole grade database as a single flat file, so just do it! As with all Free software, schoolutils has no warranty. Please see the warranty notice in the license file or the individual source files for more information.
/schoolutils-0.1.7.zip/schoolutils-0.1.7/README.rst
0.744935
0.777617
README.rst
pypi
import hashlib import hmac from six import text_type import six.moves.urllib.request, six.moves.urllib.parse, six.moves.urllib.error from xblock.core import XBlock from xblock.fields import Scope, String from xblock.fragment import Fragment from .schoolyourself import SchoolYourselfXBlock class SchoolYourselfReviewXBlock(SchoolYourselfXBlock): """ This block renders a launcher button for a School Yourself review, which is rendered in an iframe. The block transmits the anonymous user ID and has a handler that receives information from School Yourself regarding the user's progress and mastery through the topic being shown. """ has_children = False has_score = True weight = 1.0 def get_display_name(self, module_title): return "Review: %s" % module_title def student_view(self, context=None): """ The primary view of the SchoolYourselfReviewXBlock, shown to students when viewing courses. """ # Construct the URL we're going to stuff into the iframe once # it gets launched: partner_url_params = self.get_partner_url_params(self.shared_key) iframe_url_params = dict(partner_url_params) iframe_url_params["module"] = self.module_id mastery_url_params = dict(partner_url_params) mastery_url_params["tags"] = self.module_id # Set up the screenshot URL: screenshot_url = "%s/page/screenshot/%s" % (self.base_url, self.module_id) mastery_url = "%s/progress/mastery?%s" % ( self.base_url, six.moves.urllib.parse.urlencode(mastery_url_params)) context = { "iframe_url": "%s/review/embed?%s" % ( self.base_url, six.moves.urllib.parse.urlencode(iframe_url_params)), "title": self.module_title, "icon_url": self.runtime.local_resource_url(self, "public/review_icon.png"), "mastery_url": mastery_url } # Now actually render the fragment, which is just a button with # some JS code that handles the click event on that button. fragment = Fragment(self.render_template("review_student_view.html", context)) # Load the common JS/CSS libraries: fragment.add_css_url( self.runtime.local_resource_url(self, "public/sylib.css")) fragment.add_javascript_url( self.runtime.local_resource_url(self, "public/sylib.js")) # And finally the embedded HTML/JS code: fragment.add_javascript(self.resource_string( "static/js/review_student_view.js")) fragment.add_css(self.resource_string( "static/css/student_view.css")) fragment.add_css_url("//fonts.googleapis.com/css?family=Open+Sans:700,400,300") fragment.initialize_js("SchoolYourselfReviewStudentView") return fragment @XBlock.json_handler def handle_grade(self, data, suffix=""): """This is the handler that gets called when we receive grades. We will verify the message to make sure that it is signed and that the signature is valid. If everything is good, then we'll publish a "grade" event for this module. The actual work is done in handle_grade_json(), and this method just calls that. This method is just here so that it can be wrapped by XBlock.json_handler, but the unit test covers the code in handle_grade_json() to avoid having to wrap everything around a Request/Response object. """ return self.handle_grade_json(data) def handle_grade_json(self, data): if not isinstance(data, dict): return "bad_request" mastery = data.get("mastery", None) user_id = data.get("user_id", None) signature = data.get("signature", None) if not mastery or not user_id or not signature: return "forbidden" # Check that the module ID we care about is actually in the data # that was sent. mastery_level = mastery.get(self.module_id, None) if mastery_level is None: return "bad_request" try: # The mastery level being passed in should be a number, otherwise # things later on in this method will choke. mastery_level = float(mastery_level) except ValueError: return "bad_request" # Verify the signature. sk = self.shared_key if isinstance(self.shared_key, str): sk = self.shared_key.encode('utf-8') verifier = hmac.new(sk, user_id.encode('utf-8'), digestmod='MD5') for key in sorted(mastery): verifier.update(key.encode('utf-8')) # Every entry should be a number. try: mastery[key] = float(mastery[key]) except ValueError: return "bad_request" verifier.update(b"%.2f" % mastery[key]) # If the signature is invalid, do nothing. if signature != verifier.hexdigest(): return "invalid_signature" # If we got here, then everything checks out and we can submit # a grade for this module. scaled_mastery_level = min(mastery_level / 0.7, 1.0) self.runtime.publish(self, "grade", { "value": scaled_mastery_level, "max_value": 1.0 }) return scaled_mastery_level @staticmethod def workbench_scenarios(): """A canned scenario for display in the workbench.""" return [ ("SchoolYourselfReviewXBlock", """\ <vertical_demo> <schoolyourself_review base_url="https://schoolyourself.org" module_id="algebra/multiplication" module_title="Multiplication, Multiplication, 'Multiplication'" shared_key="edx_test" partner_id="edx_test" /> </vertical_demo> """), ]
/schoolyourself_xblock-0.2-py3-none-any.whl/schoolyourself/schoolyourself_review.py
0.58948
0.21348
schoolyourself_review.py
pypi
import six.moves.urllib.request, six.moves.urllib.parse, six.moves.urllib.error from xblock.core import XBlock from xblock.fragment import Fragment from .schoolyourself import SchoolYourselfXBlock class SchoolYourselfLessonXBlock(SchoolYourselfXBlock): """ This block renders a launcher button for a School Yourself lesson, which is rendered in an iframe. The block transmits the anonymous user ID. """ has_children = False has_score = False def get_display_name(self, module_title): return "Lesson: %s" % module_title def student_view(self, context=None): """ The primary view of the SchoolYourselfLessonXBlock, shown to students when viewing courses. """ # Construct the URL we're going to stuff into the iframe once # it gets launched: url_params = self.get_partner_url_params(self.shared_key) url_params["id"] = self.module_id # Set up the screenshot URL: screenshot_url = "%s/page/screenshot/%s" % (self.base_url, self.module_id) context = { "iframe_url": "%s/page/embed?%s" % (self.base_url, six.moves.urllib.parse.urlencode(url_params)), "screenshot_url": screenshot_url, "title": self.module_title, "description": self.module_description } # Now actually render the fragment, which is just a button with # some JS code that handles the click event on that button. fragment = Fragment(self.render_template("lesson_student_view.html", context)) # Load the common JS/CSS libraries: fragment.add_css_url( self.runtime.local_resource_url(self, "public/sylib.css")) fragment.add_javascript_url( self.runtime.local_resource_url(self, "public/sylib.js")) fragment.add_css_url("//fonts.googleapis.com/css?family=Open+Sans:700,400,300") # And finally the embedded HTML/JS code: fragment.add_javascript(self.resource_string( "static/js/lesson_student_view.js")) fragment.add_css(self.resource_string( "static/css/student_view.css")) fragment.initialize_js("SchoolYourselfLessonStudentView") return fragment @staticmethod def workbench_scenarios(): """A canned scenario for display in the workbench.""" return [ ("SchoolYourselfLessonXBlock", """\ <vertical_demo> <schoolyourself_lesson base_url="https://schoolyourself.org" module_id="algebra/multiplication" module_title="Multiplication" module_description="Multiplying positive numbers, in any order" shared_key="edx_test" partner_id="edx_test" /> </vertical_demo> """), ]
/schoolyourself_xblock-0.2-py3-none-any.whl/schoolyourself/schoolyourself_lesson.py
0.678114
0.202778
schoolyourself_lesson.py
pypi
import hashlib class CrawledResource: """A resource crawled by the crawler. This is an adapter bewteen crawler and API. The id is computed by the originating url and the id it has in the url. """ def __init__(self, resource, origin_urls:list, id_in_origin=""): """Create a new crawled resource with the source urls.""" if not origin_urls: raise ValueError("Expected the resource to have an origin.") self._resource = resource self._origin_urls = origin_urls self._id_in_origin = id_in_origin @property def crawled_resource(self): """The unchanged crawled resource.""" return self._resource @property def origin_urls(self): """The urls where this resource is from.""" return self._origin_urls @property def provider(self): """The provider which identifies this client.""" return {"description": "This crawler crawls urls and adds them to the database.", "name": __name__.split(".", 1)[0], "url": "https://github.com/schul-cloud/schul_cloud_url_crawler", "url_trace": self.origin_urls} @property def resource(self): """The resource as seen by the crawler.""" resource = self._resource.copy() resource.setdefault("providers", []) resource["providers"] = resource["providers"] + [self.provider] return resource def get_api_resource_post(self, id_prefix=""): """The jsonapi format for the resource.""" return {"data":{"attributes":self.resource, "id": id_prefix+self.id, "type":"resource"}} @property def id(self): """Return the id of this resource.""" return self.origin_id + self._id_in_origin @property def origin_id(self): """The id of the origin of this resource.""" return hashlib.sha256(self.origin_url.encode()).hexdigest() @property def origin_url(self): """Return the url this resource is from.""" return self._origin_urls[0] @property def id_in_origin(self): """The id the resource has in its originating url.""" return self._id_in_origin def __repr__(self): """A string representation of this resource.""" return "<{} {}>".format(self.__class__.__name__, self.id)
/schul_cloud_url_crawler-1.0.17.tar.gz/schul_cloud_url_crawler-1.0.17/schul_cloud_url_crawler/crawled_resource.py
0.728459
0.229978
crawled_resource.py
pypi
import click import schul_cloud_url_crawler.resource_client as resource_client from schul_cloud_resources_api_v1 import ApiClient, ResourceApi from schul_cloud_resources_api_v1.rest import ApiException import schul_cloud_resources_api_v1.auth as auth from urllib3.exceptions import MaxRetryError import traceback import sys UnReachable = (MaxRetryError,) error_messages = { 3: "The resources server could be reached but basic authentication failed.", 4: "The resources server could be reached but API-key authentication failed.", 5: "The resources server could be reached but it requires authentication with --basic or --apikey.", 6: "The resource server could not be reached.", 7: "You can only provide one authentication mechanism with --basic and --apikey.", 8: "Basic authentication requires a username and a password divided by \":\". Example: --basic=user:password", } def error(return_code): """Raise an error and explain it.""" ty, err, tb = sys.exc_info() if err: traceback.print_exception(ty, err, tb) click.echo("Error {}: {}".format(return_code, error_messages[return_code])) exit(return_code) def authenticate(basic, apikey): """Authenticate with the parameters. Return the return code in case auf authentication failure. """ if basic is not None and apikey is not None: error(7) if basic is not None: username_and_password = basic.split(":", 1) if len(username_and_password) == 1: error(8) username, password = username_and_password auth.basic(username, password) return 3 elif apikey is not None: auth.api_key(apikey) return 4 auth.none() return 5 @click.command() @click.argument("api", type=str, required=True) @click.argument("urls", type=str, nargs=-1, required=False) @click.option("--basic", nargs=1, type=str, metavar="username:password", help="Username an password for authentication at the API.") @click.option("--apikey", nargs=1, type=str, metavar="api-key", help="The api-key for authentication at the API.") @click.option("--delete-all", is_flag=True, default=False, help="Delete all resources stored on the server. " "This only affects resources you are authenticated for.") @click.option("--delete-not-mentioned", is_flag=True, default=False, help="Delete all resources from urls which are not mentioned in the " "arguments. Enable this if this is your only crawler.") @click.option("--id", default="url-crawler", nargs=1, type=str, metavar="crawler-id", help="The crawler-id is the id of the crawler. " "By changing the id, you can connect multiple crawlers which do not" " interact. " "The crawler only adds and deletes resources with the crawler-id. " "--delete-all is the only option that affects crawlers with other ids.") def main(api, urls=[], basic=None, apikey=None, delete_not_mentioned=False, delete_all=False, id="url-crawler"): """Fetch ressources from URLS and post them to the API.""" urls = list(urls) print(api, urls, basic, apikey, delete_not_mentioned, delete_all, id) api_client = ApiClient(api) resource_api = ResourceApi(api_client) client = resource_client.ResourceClient(resource_api, id) auth_error = authenticate(basic, apikey) try: if delete_all: client.delete_resources() if delete_not_mentioned: client.delete_resources_not_from(urls) client.update(urls) except ApiException as err: if err.status == 401: click.echo(err.body) error(auth_error) raise except UnReachable: error(6)
/schul_cloud_url_crawler-1.0.17.tar.gz/schul_cloud_url_crawler-1.0.17/schul_cloud_url_crawler/cli.py
0.450601
0.153422
cli.py
pypi
class ArgumentError(Exception): def __init__(self, message=""): self.message = message super().__init__(self.message) class ArgumentTypeError(ArgumentError): def __init__(self, func_name, argument_name, allowed_types, actual_type, arg): if type(argument_name) == str and len(argument_name) > 0: argname = "{} to be of type".format(argument_name) else: argname = "type" type_str = "" if type(allowed_types) == list: allowed_type_names = [t.__name__ for t in allowed_types] if len(allowed_type_names) == 1: type_str += allowed_type_names[0] elif len(allowed_type_names) == 2: type_str += "{} or {}".format(*allowed_type_names) else: type_str = ", ".join([str(t) for t in allowed_type_names[:-1]]) type_str += ", or {}".format(allowed_type_names[-1]) elif type(allowed_types) == type: type_str = allowed_types.__name__ else: type_str = str(allowed_types) self.message = "{} expected {} {}, got {} of type {}".format( func_name, argname, type_str, arg, actual_type.__name__) super().__init__(self.message) class ArgumentTypeListError(ArgumentError): def __init__(self, func_name, valid_fmts, actual_fmt, actual_vals=None): arg_plural = "argument" if len(actual_fmt) > 1: arg_plural += "s" s = "Invalid types for {} with {} {}, expected".format(func_name, len(actual_fmt), arg_plural) if len(valid_fmts) >= 1: if len(valid_fmts) > 1: s += " one of" s += " \n" s += "".join(["\t{}({})\n".format(func_name, ", ".join([t.__name__ for t in fmt])) for fmt in valid_fmts]) else: s += "{}()\n".format(func_name) s += "received {}(".format(func_name) if actual_vals is not None and len(actual_vals) == len(actual_fmt): s += ", ".join(["{}: {}".format(arg, t.__name__) for arg, t in zip(actual_vals, actual_fmt)]) else: s += ", ".join([t.__name__ for t in actual_fmt]) s += ")" self.message = s super().__init__(self.message) class ArgumentNumError(ArgumentError): def __init__(self, func_name, allowed_nums, actual_num): num_str = "" if type(allowed_nums) == list: if len(allowed_nums) == 1: num_str += str(allowed_nums[0]) elif len(allowed_nums) == 2: num_str += "{} or {}".format(*allowed_nums) else: num_str = ", ".join([str(n) for n in allowed_nums[:-1]]) num_str += ", or {}".format(allowed_nums[-1]) else: num_str = str(allowed_nums) self.message = "{} expected {} arguments, got {}".format( func_name, num_str, actual_num ) super().__init__(self.message) class ArgumentConditionError(ArgumentError): def __init__(self, func_name, arg_name, expected_condition, actual_value): if type(arg_name) == str and len(arg_name) > 0: argname = "{}".format(arg_name) else: argname = "argument" self.message = "{} expected {} to match \"{}\", got {}".format( func_name, argname, expected_condition, actual_value ) super().__init__(self.message) pass
/schulich_ignite-0.1.3-py3-none-any.whl/spark/util/Errors.py
0.506836
0.187504
Errors.py
pypi
HTMLColors = [ "aliceblue", "antiquewhite", "aqua", "aquamarine", "azure", "beige", "bisque", "black", "blanchedalmond", "blue", "blueviolet", "brown", "burlywood", "cadetblue", "chartreuse", "chocolate", "coral", "cornflowerblue", "cornsilk", "crimson", "cyan", "darkblue", "darkcyan", "darkgoldenrod", "darkgray", "darkgreen", "darkkhaki", "darkmagenta", "darkolivegreen", "darkorange", "darkorchid", "darkred", "darksalmon", "darkseagreen", "darkslateblue", "darkslategray", "darkturquoise", "darkviolet", "deeppink", "deepskyblue", "dimgray", "dodgerblue", "firebrick", "floralwhite", "forestgreen", "fuchsia", "gainsboro", "ghostwhite", "gold", "goldenrod", "gray", "green", "greenyellow", "honeydew", "hotpink", "indianred", "indigo", "ivory", "khaki", "lavender", "lavenderblush", "lemonchiffon", "lightblue", "lightcoral", "lightcyan", "lightgoldenrodyellow", "lightgray", "lightgreen", "lightpink", "lightsalmon", "lightseagreen", "lightskyblue", "lightslategray", "lightsteelblue", "lightyellow", "lime", "limegreen", "linen", "magenta", "maroon", "mediumaquamarine", "mediumblue", "mediumpurple", "mediumseagreen", "mediumslateblue", "mediumspringgreen", "mediumturquoise", "mediumvioletred", "midnightblue", "mintcream", "mistyrose", "moccasin", "navajowhite", "navy", "oldlace", "olive", "olivedrab", "orange", "orangered", "orchid", "palegoldenrod", "palegreen", "paleturquoise", "palevioletred", "papayawhip", "peachpuff", "peru", "pink", "plum", "powderblue", "purple", "red", "rosybrown", "royalblue", "saddlebrown", "salmon", "sandybrown", "seagreen", "seashell", "sienna", "silver", "skyblue", "slateblue", "slategray", "snow", "springgreen", "steelblue", "tan", "teal", "thistle", "tomato", "turquoise", "violet", "wheat", "white", "whitesmoke", "yellow", "yellowgreen" ]
/schulich_ignite-0.1.3-py3-none-any.whl/spark/util/HTMLColors.py
0.585457
0.377426
HTMLColors.py
pypi
from math import sin, cos from ..decorators import validate_args, ignite_global from numbers import Real @validate_args([Real, Real, Real, Real], [Real, Real, Real, Real, Real], [Real, Real, Real, Real, Real, Real], [Real, Real, Real, Real, Real, Real, str]) @ignite_global def helper_fill_arc(self, *args): x, y, r, scale_x, scale_y, start, stop, mode = self.arc_args(*args) if scale_x == 0 or scale_y == 0: return self.canvas.translate(x, y) self.canvas.scale(scale_x, scale_y) if mode == "open" or mode == "chord": self.canvas.fill_arc(0, 0, r, start, stop) elif mode == "default" or mode == "pie": self.canvas.begin_path() start_x = r*cos(start) start_y = r*sin(start) self.canvas.move_to(start_x, start_y) self.canvas.arc(0, 0, r, start, stop) self.canvas.line_to(0, 0) self.canvas.close_path() self.canvas.fill() self.canvas.scale(1/scale_x, 1/scale_y) self.canvas.translate(-x, -y) @validate_args([Real, Real, Real, Real], [Real, Real, Real, Real, Real], [Real, Real, Real, Real, Real, Real], [Real, Real, Real, Real, Real, Real, str]) @ignite_global def helper_stroke_arc(self, *args): x, y, r, scale_x, scale_y, start, stop, mode = self.arc_args(*args) if scale_x == 0 or scale_y == 0: return start_x = r*cos(start) start_y = r*sin(start) self.canvas.translate(x, y) self.canvas.scale(scale_x, scale_y) self.canvas.begin_path() self.canvas.move_to(start_x, start_y) self.canvas.arc(0, 0, r, start, stop) if mode == "open" or mode == "default": self.canvas.move_to(start_x, start_y) elif mode == "pie": self.canvas.line_to(0, 0) elif mode == "chord": pass self.canvas.close_path() self.canvas.stroke() self.canvas.scale(1/scale_x, 1/scale_y) self.canvas.translate(-x, -y) @validate_args([Real, Real, Real, Real], [Real, Real, Real, Real, Real], [Real, Real, Real, Real, Real, Real], [Real, Real, Real, Real, Real, Real, str]) @ignite_global def helper_arc(self, *args): self.fill_arc(*args) self.stroke_arc(*args)
/schulich_ignite-0.1.3-py3-none-any.whl/spark/util/helper_functions/arc_functions.py
0.647241
0.39097
arc_functions.py
pypi
from ..decorators import * from ..HTMLColors import HTMLColors import re from ..Errors import * from numbers import Real from math import pi from math import sqrt import random @validate_args([str, str]) def helper_parse_color_string(self, func_name, s): rws = re.compile(r'\s') no_ws = rws.sub('', s).lower() # Check allowed color strings if no_ws in HTMLColors: return no_ws elif no_ws in self.color_strings: return self.color_strings[s] # Check other HTML-permissible formats else: for regex in self.regexes: if regex.fullmatch(no_ws) is not None: return no_ws # Not in any permitted format raise ArgumentConditionError(func_name, "", "Valid HTML format or color names", s) @validate_args([str], [Real], [Real, Real, Real], [Real, Real, Real, Real]) def helper_parse_color(self, *args, func_name="parse_color"): def clip(x, lb, ub): return min(max(x, lb), ub) argc = len(args) if argc == 1: if isinstance(args[0], Real): n = int(clip(args[0], 0, 255)) return f"rgb({n}, {n}, {n})" elif isinstance(args[0], str): return self.parse_color_string(func_name, args[0]) raise ArgumentConditionError(func_name, "", "Valid HTML format or color names", args[0]) elif argc == 3 or argc == 4: color_args = [int(clip(arg, 0, 255)) for arg in args[:3]] if argc == 3: return "rgb({}, {}, {})".format(*color_args) else: # Clip alpha between 0 and 1 alpha_arg = clip(args[3], 0, 1.0) return "rgba({}, {}, {}, {})".format(*color_args, alpha_arg) else: raise ArgumentNumError(func_name, [1, 3, 4], argc) @validate_args([str], [Real], [Real, Real, Real], [Real, Real, Real, Real]) @ignite_global def helper_color(self, *args): return self.parse_color(*args) @validate_args([Real, Real, Real, Real], [Real, Real, Real, Real, Real], [Real, Real, Real, Real, Real, Real], [Real, Real, Real, Real, Real, Real, str]) def helper_arc_args(self, *args): argc = len(args) x, y, w, h = args[:4] w, h = abs(w), abs(h) defaults = [0, 2*pi, "default"] start, stop, mode = [*args[4:argc], *defaults[argc-4:]] while start < 0: start += 2*pi while start > 2*pi: start -= 2*pi while stop < 0: stop += 2*pi while stop > 2*pi: stop += 2*pi d = max(w, h)/2 if d == 0: return x, y, d, 0, 0, start, stop, mode else: w_ratio = w / d h_ratio = h / d return x, y, d/2, w_ratio, h_ratio, start, stop, mode @validate_args([]) @ignite_global def helper_random(self, *args): return random.random() @validate_args([int]) @ignite_global def helper_randint(self, *args): return random.randint(0, args[0]) @validate_args([Real, Real, Real, Real]) @ignite_global def helper_bounding_box(self, *args): x, y, w, h = args left = min(x, x + w) abs_width = abs(w) top = min(y, y + h) abs_height = abs(h) return (left, top, abs_width, abs_height) @validate_args([list, list], [list, list, bool], [tuple, tuple], [tuple, tuple, bool]) @ignite_global def helper_collided(self, *args): x1, y1, width1, height1 = args[0] x2, y2, width2, height2 = args[1] sizes = {'bounding_box1 width': width1, 'bounding_box1 height': height1, 'bounding_box2 width': width2, 'bounding_box2 height': height2} for size_name, size_val in sizes.items(): if size_val < 0: raise ArgumentError("collided expected {} to be greater or equal to 0, got {}".format(size_name, size_val)) overlap_on_equal = len(args) == 3 and args[2] return self.axis_overlapped(x1, width1, x2, width2, overlap_on_equal) and self.axis_overlapped(y1, height1, y2, height2, overlap_on_equal) @validate_args([Real, Real, Real, Real], [Real, Real, Real, Real, bool]) @ignite_global def helper_axis_overlapped(self, *args): point1, length1, point2, length2 = args[:4] if len(args) == 5 and args[4]: return point1 + length1 >= point2 and point2 + length2 >= point1 else: return point1 + length1 > point2 and point2 + length2 > point1 @validate_args([Real, Real, Real, Real]) @ignite_global def helper_dist(self, *args): x1, y1, x2, y2 = args[:4] return sqrt((y2 - y1)**2 + (x2 - x1)**2)
/schulich_ignite-0.1.3-py3-none-any.whl/spark/util/helper_functions/misc_functions.py
0.577614
0.356055
misc_functions.py
pypi
from __future__ import annotations from typing import TYPE_CHECKING, Dict if TYPE_CHECKING: from ...core import Core from functools import reduce from operator import and_ from ..decorators import * _phys_to_typed = { "Backquote": ('`', '~'), "Digit1": ('1', '!'), "Digit2": ('2', '@'), "Digit3": ('3', '#'), "Digit4": ('4', '$'), "Digit5": ('5', '%'), "Digit6": ('6', '^'), "Digit7": ('7', '&'), "Digit8": ('8', '*'), "Digit9": ('9', '('), "Digit0": ('0', ')'), "Minus": ('-', '_'), "Equal": ('=', '+'), "BracketLeft": ('[', '{'), "BracketRight": (']', '}'), "Backslash": ('\\', '|'), "Semicolon": (';', ':'), "Quote": ('\'', '"'), "Comma": (',', '<'), "Period": ('.', '>'), "Slash": ('/', '?') } def helper_handle_kb_event(self: Core, event: Dict[str, str]): self.refresh_last_activity() key_pressed = self._methods.get("key_pressed", None) key_released = self._methods.get("key_released", None) key_repeated = self._methods.get("key_repeated", None) self.key = event['key'] if event['type'] == "keydown": if not event['repeat']: self._keys_held[self.key] = True if key_pressed: key_pressed() else: if key_repeated: key_repeated() else: if event['code'].isalpha() and len(event['code']) == 1: self._keys_held[event['code'].lower()] = False self._keys_held[event['code'].upper()] = False elif event['code'] in _phys_to_typed: for k in _phys_to_typed[event['code']]: self._keys_held[k] = False else: self._keys_held[self.key] = False if key_released: key_released() @ignite_global def helper_keys_held(self: Core, *keys, pattern=None): if pattern is None: pattern = [True]*len(keys) match = [self._keys_held.get(key, False) == want for key, want in zip(keys, pattern)] return reduce(and_, match) @validate_args([str], [str, bool]) @ignite_global def helper_key_held(self: Core, *args): if len(args) == 1: args.append(True) return self.keys_held(args[0], pattern=[args[1]])
/schulich_ignite-0.1.3-py3-none-any.whl/spark/util/helper_functions/keyboard_functions.py
0.655557
0.314392
keyboard_functions.py
pypi
import itertools from gettext import gettext as _ from typing import ( Collection, Container, List, Mapping, Tuple, Sequence ) from schulze_condorcet.util import as_vote_string, as_vote_tuples from schulze_condorcet.strength import winning_votes from schulze_condorcet.types import ( Candidate, DetailedResultLevel, LinkStrength, PairwisePreference, SchulzeResult, StrengthCallback, VoteString ) def _schulze_winners(d: Mapping[Tuple[Candidate, Candidate], int], candidates: Sequence[Candidate]) -> List[Candidate]: """This is the abstract part of the Schulze method doing the actual work. The candidates are the vertices of a graph and the metric (in form of ``d``) describes the strength of the links between the candidates, that is edge weights. We determine the strongest path from each vertex to each other vertex. This gives a transitive relation, which enables us thus to determine winners as maximal elements. """ # First determine the strongest paths # This is a variant of the Floyd–Warshall algorithm to determine the # widest path. p = {(x, y): d[(x, y)] for x in candidates for y in candidates} for i in candidates: for j in candidates: if i == j: continue for k in candidates: if k in {i, j}: continue p[(j, k)] = max(p[(j, k)], min(p[(j, i)], p[(i, k)])) # Second determine winners winners = [] for i in candidates: if all(p[(i, j)] >= p[(j, i)] for j in candidates): winners.append(i) return winners def _check_consistency(votes: Collection[VoteString], candidates: Sequence[Candidate]) -> None: """Check that the given vote strings are consistent with the provided candidates. This means, each vote string contains exactly the given candidates, separated by '>' and '=', and each candidate occurs in each vote string exactly once. """ if any(">" in candidate or "=" in candidate for candidate in candidates): raise ValueError(_("A candidate contains a forbidden character.")) candidates_set = set(candidates) for vote in as_vote_tuples(votes): vote_candidates = [c for c in itertools.chain.from_iterable(vote)] vote_candidates_set = set(vote_candidates) if candidates_set != vote_candidates_set: if candidates_set < vote_candidates_set: raise ValueError(_("Superfluous candidate in vote string.")) else: raise ValueError(_("Missing candidate in vote string.")) if not len(vote_candidates) == len(vote_candidates_set): raise ValueError(_("Every candidate must occur exactly once in each vote.")) def _subindex(alist: Collection[Container[str]], element: str) -> int: """The element is in the list at which position in the big list. :returns: ``ret`` such that ``element in alist[ret]`` """ for index, sublist in enumerate(alist): if element in sublist: return index raise ValueError(_("Not in list.")) def _pairwise_preference( votes: Collection[VoteString], candidates: Sequence[Candidate], ) -> PairwisePreference: """Calculate the pairwise preference of all candidates from all given votes.""" counts = {(x, y): 0 for x in candidates for y in candidates} for vote in as_vote_tuples(votes): for x in candidates: for y in candidates: if _subindex(vote, x) < _subindex(vote, y): counts[(x, y)] += 1 return counts def _schulze_evaluate_routine( votes: Collection[VoteString], candidates: Sequence[Candidate], strength: StrengthCallback ) -> Tuple[PairwisePreference, SchulzeResult]: """The routine to determine the result of the schulze-condorcet method. This is outsourced into this helper function to avoid duplicate code or duplicate calculations inside the schulze_evaluate and schulze_evaluate_detailed functions. """ # First we count the number of votes preferring x to y counts = _pairwise_preference(votes, candidates) # Second we calculate a numeric link strength abstracting the problem into the realm # of graphs with one vertex per candidate d: LinkStrength = {(x, y): strength(support=counts[(x, y)], opposition=counts[(y, x)], totalvotes=len(votes)) for x in candidates for y in candidates} # Third we execute the Schulze method by iteratively determining winners result: SchulzeResult = [] while True: done = {x for level in result for x in level} # avoid sets to preserve ordering remaining = tuple(c for c in candidates if c not in done) if not remaining: break winners = _schulze_winners(d, remaining) result.append(winners) return counts, result def schulze_evaluate( votes: Collection[VoteString], candidates: Sequence[Candidate], strength: StrengthCallback = winning_votes ) -> VoteString: """Use the Schulze method to cumulate preference lists (votes) into one list (vote). The Schulze method is described here: http://www.9mail.de/m-schulze/schulze1.pdf. Also the Wikipedia article is pretty nice. One thing to mention is, that we do not do any tie breaking. For a nice set of examples see the test suite. Note that the candidates should already be sorted meaningful. The return of this function is stable under arbitrary sorting of the candidates, but only identical if the candidates are passed in the same order. This roots in the fact that the result ``1=2>0`` and ``2=1>0`` carry the same meaning but are not identical. Therefore, we determine the order of candidates equal to each other in the final result by the order of those in the explicitly passed in candidates. The return of this function is identical under arbitrary sorting of the votes passed in. Moreover, the order of equal candidates in the passed in votes does not matter. :param votes: The vote strings on which base we want to determine the overall preference. One vote has the form ``3>0>1=2>4``, where the names between the relation signs are exactly those passed in with the ``candidates`` parameter. :param candidates: We require that the candidates be explicitly passed. This allows for more flexibility (like returning a useful result for zero votes). :param strength: A function which will be used as the metric on the graph of all candidates. See `strength.py` for more detailed information. :returns: A vote string, reflecting the overall preference. """ # Validate votes and candidate input to be consistent _check_consistency(votes, candidates) _, result = _schulze_evaluate_routine(votes, candidates, strength) # Construct a vote string reflecting the overall preference return as_vote_string(result) def schulze_evaluate_detailed( votes: Collection[VoteString], candidates: Sequence[Candidate], strength: StrengthCallback = winning_votes ) -> List[DetailedResultLevel]: """Construct a more detailed representation of the result by adding some stats. This works equally to the schulze_evaluate function but constructs a more detailed result, including how much of a difference there was between the individual levels of preference in the overall result. """ # Validate votes and candidate input to be consistent _check_consistency(votes, candidates) counts, result = _schulze_evaluate_routine(votes, candidates, strength) # Construct the DetailedResult. This contains a list of dicts, one for each # level of preference, containing the preferred and rejected candidates and the # numbers of support and opposition (the pairwise preference) between all # pairwise combinations of preferred and rejected candidates. detailed: List[DetailedResultLevel] = list() for preferred_candidates, rejected_candidates in zip(result, result[1:]): level: DetailedResultLevel = { # TODO maybe use simply tuples instead of lists here? 'preferred': list(preferred_candidates), 'rejected': list(rejected_candidates), 'support': { (preferred, rejected): counts[preferred, rejected] for preferred in preferred_candidates for rejected in rejected_candidates}, 'opposition': { (preferred, rejected): counts[rejected, preferred] for preferred in preferred_candidates for rejected in rejected_candidates} } detailed.append(level) return detailed def pairwise_preference( votes: Collection[VoteString], candidates: Sequence[Candidate], ) -> PairwisePreference: """Calculate the pairwise preference of all candidates from all given votes. While this does not yet reveal the overall preference, it can give some more insights in the sentiments of the voters regarding two candidates compared to each other. """ # Validate votes and candidate input to be consistent _check_consistency(votes, candidates) return _pairwise_preference(votes, candidates)
/schulze-condorcet-2.0.0.tar.gz/schulze-condorcet-2.0.0/schulze_condorcet/schulze_condorcet.py
0.907072
0.453625
schulze_condorcet.py
pypi
# schupy -- A python package for modeling and analyzing Schumann resonances schupy is an open-source python package aimed at modeling and analyzing Schumann resonances (SRs), the global electromagnetic resonances of the Earth-ionosphere cavity resonator in the lowest part of the extremely low frequency band (<100 Hz). ## Usage #### `forward_tdte` function The `forward_tdte` function of schupy uses the analytical solution of the 2-D telegraph equation (TDTE) obtained for uniform cavity and is able to determine SRs generated by an arbitrary number of sources located in given positions and returns the theoretical power spectral density of the field components for an arbitrarily located observing station. The sources can be either pointsources or extended ones with a specified size. The function takes the following arguments: | Name | Type | Description | Unit | Default value | | ------------- |:-------------:| ------------- | ------------ | ---------- | | `s_lat` | LIST | Geographical latitude(s) of the source(s) | deg | | `s_lon` | LIST | Geographical longitude(s) of the source(s) | deg | | `s_int` | LIST | Intensiti(es) of the source(s) | C^2 km^2 s^-1 | | `m_lat` | FLOAT | Geographical latitude of the observing station | deg | | `m_lon` | FLOAT | Geographical longitude of the observing station | deg | | `freq` | LIST | Field components are calculated on these frequencies | Hz | | `radius` | FLOAT | Radius of the extended sources (0 in the case of pointsource(s)) | Mm | 0 | | `n` | INT | Maximal order of Legendre-polynomials to sum | | 500 | | `mapshow` | BOOL | Sets whether to show a map of the sources and the station or not | | False | | `mapsave` | BOOL | Sets whether to save the map of the sources and the station or not | | False | | `mapfilename` | STR | Name of the file to save the map into | | schupy_map.png | `plotshow` | BOOL | Sets whether to plot the power spectral densities or not | | False | | Name | Type | Description | Default value | Possible values | | ------------- |:-------------:| ------------- | ------------ | ---------- | | `h` | STRING | Method of calculating complex ionospheric heights | mushtak | mushtak, kulak | | `ret` | STRING | Returned field components | all | all, Er, Btheta, Bphi | By setting the `radius` value to any number grater than zero, the user can model extended sources with randomly distributed pointsources inside a circle having the given radius, whose intensities sum up to the given `s_int`. By specifying `h` the user can choose the preferred method of calculating complex ionospheric heights. The two methods are described in: *V. C. Mushtak and E. R. Williams (2002): Elf propagation parameters for uniform models of the earth-ionosphere waveguide, Journal of Atmospheric and Solar-Terrestrial Physics, 64.* and in: *A. Kulak and J. Mlynarczyk (2013): Elf propagation parameters for the ground-ionosphere waveguide with finite ground conductivity, IEEE Transactions on Antennas and Propagation, 61.*. schupy can visualize the specified sources and observing station on a world map. The station is shown as a rectangle while the sources are indicated by circles whose sizes are proportional to their intensities. Visualization relies on the `cartopy` package: https://scitools.org.uk/cartopy/docs/latest/ The function plots and returns the following quantities at the location of the given observing station: - `Er`: the vertical component of the electric field - `Btheta`: the N-S component of the magnetic field measured by E-W orianted magnetic coils - `Bphi`: the E-W component of the magnetic field measured by N-S orianted magnetic coils An exaple to how to run the function: ~~~~ import schupy as sp import numpy as np source_latitudes = [10.0, 0.0, 0.0] source_longitudes = [10.0, -80.0, 110.0] source_intensities = [1e5, 8e4, 7e4] frequencies = np.arange(5, 30, 0.1) obs_latitude = 47.6 obs_longitude = 16.7 sp.forward_tdte(source_latitudes, source_longitudes, source_intensities, obs_latitude, obs_longitude, frequencies, h='mushtak', ret='Bphi', radius = 0, mapshow = False, mapsave = False, plotshow = True) ~~~~ ## Acknowledgement The schupy package is developed by G. Dalya, T. Bozoki, K. Kapas, J. Takatsy, E. Pracser and G. Satori. Please send your questions and comments to `[email protected]`. If you use the Schupy package for your research, please cite our paper: @article{BOZOKI2019105144, title = "Modeling Schumann resonances with schupy", journal = "Journal of Atmospheric and Solar-Terrestrial Physics", volume = "196", pages = "105144", year = "2019", issn = "1364-6826", doi = "https://doi.org/10.1016/j.jastp.2019.105144", url = "http://www.sciencedirect.com/science/article/pii/S1364682619304134", author = "Tamás Bozoki and Erno Pracser and Gabriella Satori and Gergely Dalya and Kornel Kapas and Janos Takatsy", keywords = "Schumann resonances, Earth-ionosphere cavity, Numerical model, Python package", abstract = "Schupy is an open-source python package aimed at modeling and analyzing Schumann resonances (SRs), the global electromagnetic resonances of the Earth-ionosphere cavity resonator in the lowest part of the extremely low frequency band (<100 Hz). Its very-first function forward_tdte applies the solution of the 2-D telegraph equation introduced recently by Prácser et al. (2019) for a uniform cavity and is able to determine theoretical SR spectra for arbitrary source-observer configurations. It can be applied for both modeling extraordinarily large SR-transients or “background” SRs excited by incoherently superimposed lightning strokes within an extended source region. Three short studies are presented which might be important for SR related research. With the forward_tdte function our aim is to provide a medium complexity numerical background for the interpretation of SR observations. We would like to encourage the community to join our project in developing open-source analyzing capacities for SR research as part of the schupy package." }
/schupy-1.0.12.tar.gz/schupy-1.0.12/README.md
0.929136
0.955444
README.md
pypi
import json import urllib.parse from . import urls from .account_information import Position, Account from .authentication import SessionManager class Schwab(SessionManager): def __init__(self, **kwargs): """ The Schwab class. Used to interact with schwab. """ self.headless = kwargs.get("headless", True) self.browserType = kwargs.get("browserType", "firefox") super(Schwab, self).__init__() def get_account_info(self): """ Returns a dictionary of Account objects where the key is the account number """ account_info = dict() r = self.session.get(urls.positions_data()) response = json.loads(r.text) for account in response['Accounts']: positions = list() for security_group in account["SecurityGroupings"]: for position in security_group["Positions"]: positions.append( Position( position["DefaultSymbol"], position["Description"], int(position["Quantity"]), float(position["Cost"]), float(position["MarketValue"]) )._as_dict() ) account_info[int(account["AccountId"])] = Account( account["AccountId"], positions, account["Totals"]["MarketValue"], account["Totals"]["CashInvestments"], account["Totals"]["AccountValue"], account["Totals"]["Cost"], )._as_dict() return account_info def trade(self, ticker, side, qty, account_id, dry_run=True): """ ticker (Str) - The symbol you want to trade, side (str) - Either 'Buy' or 'Sell', qty (int) - The amount of shares to buy/sell, account_id (int) - The account ID to place the trade on. If the ID is XXXX-XXXX, we're looking for just XXXXXXXX. Returns messages (list of strings), is_success (boolean) """ if side == "Buy": buySellCode = 1 elif side == "Sell": buySellCode = 2 else: raise Exception("side must be either Buy or Sell") data = { "IsMinQty":False, "CustomerId":str(account_id), "BuySellCode":buySellCode, "Quantity":str(qty), "IsReinvestDividends":False, "SecurityId":ticker, "TimeInForce":"1", # Day Only "OrderType":1, # Market Order "CblMethod":"FIFO", "CblDefault":"FIFO", "CostBasis":"FIFO", } r = self.session.post(urls.order_verification(), data) if r.status_code != 200: return [r.text], False response = json.loads(r.text) messages = list() for message in response["Messages"]: messages.append(message["Message"]) if dry_run: return messages, True data = { "AccountId": str(account_id), "ActionType": side, "ActionTypeText": side, "BuyAction": side == "Buy", "CostBasis": "FIFO", "CostBasisMethod": "FIFO", "IsMarketHours": True, "ItemIssueId": int(response['IssueId']), "NetAmount": response['NetAmount'], "OrderId": int(response["Id"]), "OrderType": "Market", "Principal": response['QuoteAmount'], "Quantity": str(qty), "ShortDescription": urllib.parse.quote_plus(response['IssueShortDescription']), "Symbol": response["IssueSymbol"], "Timing": "Day Only" } r = self.session.post(urls.order_confirmation(), data) if r.status_code != 200: messages.append(r.text) return messages, False response = json.loads(r.text) if response["ReturnCode"] == 0: return messages, True return messages, False
/schwab_api-0.2.3.tar.gz/schwab_api-0.2.3/schwab_api/schwab.py
0.575349
0.228931
schwab.py
pypi
import logging import sys __all__ = ['contextfile_logger', 'ForwardingLogger'] class ForwardingLogger(logging.Logger): """ This logger forwards messages above a certain level (by default: all messages) to a configured parent logger. Optionally it can prepend the configured "forward_prefix" to all *forwarded* log messages. "forward_suffix" works like "forward_prefix" but appends some string. Python's default logging module can not handle this because a) a logger's log level is only applied for messages emitted directly on that logger (not for propagated log messages), see https://mg.pov.lt/blog/logging-levels.html b) adding a log prefix only for certain loggers can only by done by duplicating handler configuration. Python's handlers are quite basic so if the duplicated handlers access a shared resource (e.g. a log file) Python will open it twice (which causes data loss if mode='w' is used). c) and last but not least we often need to configure the specific logging handlers dynamically (e.g. log to a context-dependent file) which is not doable via Python's fileConfig either - so we can go fully dynamic here... """ def __init__(self, *args, **kwargs): self._forward_to = kwargs.pop('forward_to') self._forward_prefix = kwargs.pop('forward_prefix', None) self._forward_suffix = kwargs.pop('forward_suffix', None) self._forward_minlevel = kwargs.pop('forward_minlevel', logging.NOTSET) if (not args) and ('name' not in kwargs): name = self.__class__.__name__ args = (name, ) super(ForwardingLogger, self).__init__(*args, **kwargs) def callHandlers(self, record): nr_handlers = self._call_handlers(record) if self._forward_to is None: self._emit_last_resort_message(record, nr_handlers) # "logging.NOTSET" (default) is defined as 0 so that works here just fine if (record.levelno >= self._forward_minlevel) and (self._forward_to is not None): msg = record.msg if self._forward_prefix: msg = self._forward_prefix + msg if self._forward_suffix: msg += self._forward_suffix record_kwargs = { 'exc_info': record.exc_info, } if hasattr(record, 'stack_info'): # Python 3 record_kwargs['stack_info'] = record.stack_info self._forward_to.log(record.levelno, msg, *record.args, **record_kwargs) def _call_handlers(self, record): # ,--- mostly copied from logging.Logger.callHandlers ----------------- logger = self nr_found = 0 while logger: for handler in logger.handlers: nr_found = nr_found + 1 if record.levelno >= handler.level: handler.handle(record) if logger.propagate: logger = logger.parent else: break return nr_found # `--- end copy ------------------------------------------------------- def _emit_last_resort_message(self, record, nr_handlers): # ,--- mostly copied from logging.Logger.callHandlers ----------------- if nr_handlers > 0: return if logging.lastResort: if record.levelno >= logging.lastResort.level: logging.lastResort.handle(record) elif logging.raiseExceptions and not self.manager.emittedNoHandlerWarning: sys.stderr.write("No handlers could be found for logger" " \"%s\"\n" % self.name) self.manager.emittedNoHandlerWarning = True # `--- end copy ------------------------------------------------------- def contextfile_logger(logger_name, log_path=None, handler=None, **kwargs): """ Return a ForwardingLogger which logs to the given logfile. This is a generic example how to use the ForwardingLogger and can be used to create log files which are placed near the data they are referring to. """ log = ForwardingLogger(logger_name, forward_to=kwargs.pop('forward_to', None), forward_prefix=kwargs.pop('forward_prefix', None), forward_minlevel=kwargs.pop('forward_minlevel', logging.NOTSET), **kwargs ) if handler is None: # The logging module does not keep a reference to this FileHandler anywhere # as we are instantiating it directly (not by name or fileconfig). # That means Python's garbage collection will work just fine and the # underlying log file will be closed when our batch-specific # ForwardingLogger goes out of scope. handler = logging.FileHandler(log_path, delay=True) handler.setFormatter(logging.Formatter( fmt='%(asctime)s %(message)s', datefmt='%Y-%m-%d %H:%M:%S' )) log.addHandler(handler) return log
/schwarzlog-0.6.2.tar.gz/schwarzlog-0.6.2/schwarz/log_utils/forwarding_logger.py
0.562177
0.196402
forwarding_logger.py
pypi
import json from typing import Tuple import pandas as pd import requests BRANCH_URL = "https://bank.gov.ua/NBU_BankInfo/get_data_branch?json" PARENT_URL = "https://bank.gov.ua/NBU_BankInfo/get_data_branch_glbank?json" def split_names(s) -> Tuple[str, str]: """This will split the `NAME_E` line from the API into a name and a short name""" name, short_name = [name.strip() for name in s[:-1].split(" (скорочена назва - ")] return name, short_name def get_data(filter_insolvent: bool = True) -> pd.DataFrame: # Get raw dataframes for parent banks and branches with requests.get(PARENT_URL) as r: parents = pd.read_json(r.text) with requests.get(BRANCH_URL) as r: branches = pd.read_json(r.text) # Filter out insolvent branches and branches of insolvent banks if filter_insolvent: branches = branches.loc[ (branches["N_STAN"] == "Нормальний") & (branches["NSTAN_GOL"] == "Нормальний") ] # Note that the National Bank of Ukraine provides English names for banking # institutions, but not for branches. Therefore we enrich the `branches` # dataframe with the English name for the parent bank # Add empty column to `branches` for full and short English name for head bank branches["NGOL_E"] = "" branches["NGOL_E_SHORT"] = "" for idx, row in branches.iterrows(): # Get parent bank identifier glmfo = row["GLMFO"] # Get the name of parent bank from parent_names = parents.loc[parents["GLMFO"] == glmfo]["NAME_E"].iloc[0] parent_full_name, parent_short_name = split_names(parent_names) branches.loc[idx, "NGOL_E"] = parent_full_name # type: ignore branches.loc[idx, "NGOL_E_SHORT"] = parent_short_name # type: ignore return branches def process(): branches = get_data() registry = [] for idx, row in branches.iterrows(): registry.append( { "country_code": "UA", "primary": row["TYP"] == 0, "bic": "", "bank_code": str(row["MFO"]), "name": row["FULLNAME"], "short_name": row["NGOL_E_SHORT"], } ) print(f"Fetched {len(registry)} bank records") return registry if __name__ == "__main__": with open("schwifty/bank_registry/generated_ua.json", "w+") as fp: json.dump(process(), fp, indent=2, ensure_ascii=False)
/schwifty-2023.6.0.tar.gz/schwifty-2023.6.0/scripts/get_bank_registry_ua.py
0.673729
0.286263
get_bank_registry_ua.py
pypi
import json import re from urllib.parse import urljoin import requests from bs4 import BeautifulSoup COUNTRY_CODE_PATTERN = r"[A-Z]{2}" EMPTY_RANGE = (0, 0) URL = "https://www.swift.com/standards/data-standards/iban" def get_raw(): soup = BeautifulSoup(requests.get(URL).content, "html.parser") link = soup.find("a", attrs={"data-tracking-title": "IBAN Registry (TXT)"}) return requests.get(urljoin(URL, link["href"])).content.decode(encoding="latin1") def parse_int(raw): return int(re.search(r"\d+", raw).group()) def parse_range(raw): pattern = r".*?(?P<from>\d+)\s*-\s*(?P<to>\d+)" match = re.search(pattern, raw) if not match: return EMPTY_RANGE return (int(match["from"]) - 1, int(match["to"])) def parse(raw): columns = {} for line in raw.split("\r\n"): header, *rows = line.split("\t") if header == "IBAN prefix country code (ISO 3166)": columns["country"] = [re.search(COUNTRY_CODE_PATTERN, item).group() for item in rows] elif header == "Country code includes other countries/territories": columns["other_countries"] = [re.findall(COUNTRY_CODE_PATTERN, item) for item in rows] elif header == "BBAN structure": columns["bban_spec"] = rows elif header == "BBAN length": columns["bban_length"] = [parse_int(item) for item in rows] elif header == "Bank identifier position within the BBAN": columns["bank_code_position"] = [parse_range(item) for item in rows] elif header == "Branch identifier position within the BBAN": columns["branch_code_position"] = [parse_range(item) for item in rows] elif header == "IBAN structure": columns["iban_spec"] = rows elif header == "IBAN length": columns["iban_length"] = [parse_int(item) for item in rows] return [dict(zip(columns.keys(), row)) for row in zip(*columns.values())] def process(records): registry = {} for record in records: country_codes = [record["country"]] country_codes.extend(record["other_countries"]) for code in country_codes: registry[code] = { "bban_spec": record["bban_spec"], "iban_spec": record["iban_spec"], "bban_length": record["bban_length"], "iban_length": record["iban_length"], "positions": process_positions(record), } return registry def process_positions(record): bank_code = record["bank_code_position"] branch_code = record["branch_code_position"] if branch_code == EMPTY_RANGE: branch_code = (bank_code[1], bank_code[1]) return { "account_code": (max(bank_code[1], branch_code[1]), record["bban_length"]), "bank_code": bank_code, "branch_code": branch_code, } if __name__ == "__main__": with open("schwifty/iban_registry/generated.json", "w+") as fp: json.dump(process(parse(get_raw())), fp, indent=2)
/schwifty-2023.6.0.tar.gz/schwifty-2023.6.0/scripts/get_iban_registry.py
0.447219
0.293664
get_iban_registry.py
pypi
from math import sqrt # Pandas imports from pandas import DataFrame # Numpy imports from numpy import mean, std, median, amin, amax, percentile # Scipy imports from scipy.stats import skew, kurtosis, sem from .base import Analysis, std_output from .exc import NoDataError, MinimumSizeError from ..data import Vector, Categorical, is_dict, is_group, is_categorical, is_vector, is_tuple class VectorStatistics(Analysis): """Reports basic summary stats for a provided vector.""" _min_size = 1 _name = 'Statistics' _n = 'n' _mean = 'Mean' _std = 'Std Dev' _ste = 'Std Error' _range = 'Range' _skew = 'Skewness' _kurt = 'Kurtosis' _iqr = 'IQR' _q1 = '25%' _q2 = '50%' _q3 = '75%' _min = 'Minimum' _max = "Maximum" def __init__(self, data, sample=True, display=True): self._sample = sample d = Vector(data) if d.is_empty(): raise NoDataError("Cannot perform the test because there is no data") if len(d) <= self._min_size: raise MinimumSizeError("length of data is less than the minimum size {}".format(self._min_size)) super(VectorStatistics, self).__init__(d, display=display) self.logic() def run(self): dof = 1 if self._sample else 0 vmin = amin(self._data.data) vmax = amax(self._data.data) vrange = vmax - vmin q1 = percentile(self._data.data, 25) q3 = percentile(self._data.data, 75) iqr = q3 - q1 self._results = {self._n: len(self._data.data), self._mean: mean(self._data.data), self._std: std(self._data.data, ddof=dof), self._ste: sem(self._data.data, 0, dof), self._q2: median(self._data.data), self._min: vmin, self._max: vmax, self._range: vrange, self._skew: skew(self._data.data), self._kurt: kurtosis(self._data.data), self._q1: q1, self._q3: q3, self._iqr: iqr, } @property def count(self): return self._results[self._n] @property def mean(self): return self._results[self._mean] @property def std_dev(self): return self._results[self._std] @property def std_err(self): return self._results[self._ste] @property def median(self): return self._results[self._q2] @property def minimum(self): return self._results[self._min] @property def maximum(self): return self._results[self._max] @property def range(self): return self._results[self._range] @property def skewness(self): return self._results[self._skew] @property def kurtosis(self): return self._results[self._kurt] @property def q1(self): return self._results[self._q1] @property def q3(self): return self._results[self._q3] @property def iqr(self): return self._results[self._iqr] def __str__(self): order = [self._n, self._mean, self._std, self._ste, self._skew, self._kurt, self._max, self._q3, self._q2, self._q1, self._min, self._iqr, self._range, ] return std_output(self._name, results=self._results, order=order) class GroupStatistics(Analysis): """Reports basic summary stats for a group of vectors.""" _min_size = 1 _name = 'Group Statistics' _group = 'Group' _n = 'n' _mean = 'Mean' _std = 'Std Dev' _max = 'Max' _q2 = 'Median' _min = 'Min' _total = 'Total' _pooled = 'Pooled Std Dev' _gmean = 'Grand Mean' _gmedian = 'Grand Median' _num_of_groups = 'Number of Groups' def __init__(self, *args, **kwargs): groups = kwargs.get('groups', None) display = kwargs.get('display', False) if is_dict(args[0]): _data, = args elif is_group(args,): _data = dict(zip(groups, args)) if groups else dict(zip(list(range(1, len(args) + 1)), args)) else: _data = None data = Vector() for g, d in _data.items(): if len(d) == 0: raise NoDataError("Cannot perform test because there is no data") if len(d) <= self._min_size: raise MinimumSizeError("length of data is less than the minimum size {}".format(self._min_size)) data.append(Vector(d, groups=[g for _ in range(0, len(d))])) if data.is_empty(): raise NoDataError("Cannot perform test because there is no data") self.k = None self.total = None self.pooled = None self.gmean = None self.gmedian = None super(GroupStatistics, self).__init__(data, display=display) self.logic() def logic(self): if not self._data: pass self._results = [] self.run() if self._display: print(self) def run(self): out = [] for group, vector in self._data.groups.items(): row_result = {self._group: str(group), self._n: len(vector), self._mean: mean(vector), self._std: std(vector, ddof=1), self._max: amax(vector), self._q2: median(vector), self._min: amin(vector), } out.append(row_result) summ = DataFrame(out).sort_values(self._group) self.total = len(self._data.data) self.k = len(summ) if self.k > 1: self.pooled = sqrt(((summ[self._n] - 1) * summ[self._std] ** 2).sum() / (summ[self._n].sum() - self.k)) self.gmean = summ[self._mean].mean() self.gmedian = median(summ[self._q2]) self._results = ({ self._num_of_groups: self.k, self._total: self.total, self._pooled: self.pooled, self._gmean: self.gmean, self._gmedian: self.gmedian, }, summ) else: self._results = summ def __str__(self): order = ( self._num_of_groups, self._total, self._gmean, self._pooled, self._gmedian, ) group_order = ( self._n, self._mean, self._std, self._min, self._q2, self._max, self._group, ) if is_tuple(self._results): out = '{}\n{}'.format( std_output('Overall Statistics', self._results[0], order=order), std_output(self._name, self._results[1].to_dict(orient='records'), order=group_order), ) else: out = std_output(self._name, self._results.to_dict(orient='records'), order=group_order) return out @property def grand_mean(self): return self.gmean @property def grand_median(self): return self.gmedian @property def pooled_std(self): return self.pooled class GroupStatisticsStacked(Analysis): _min_size = 1 _name = 'Group Statistics' _agg_name = 'Overall Statistics' _group = 'Group' _n = 'n' _mean = 'Mean' _std = 'Std Dev' _max = 'Max' _q2 = 'Median' _min = 'Min' _total = 'Total' _pooled = 'Pooled Std Dev' _gmean = 'Grand Mean' _gmedian = 'Grand Median' _num_of_groups = 'Number of Groups' def __init__(self, values, groups=None, **kwargs): display = kwargs['display'] if 'display' in kwargs else True if groups is None: if is_vector(values): data = values else: raise AttributeError('ydata argument cannot be None.') else: data = Vector(values, groups=groups) if data.is_empty(): raise NoDataError("Cannot perform test because there is no data") self.pooled = None self.gmean = None self.gmedian = None self.total = None self.k = None super(GroupStatisticsStacked, self).__init__(data, display=display) self.logic() def logic(self): if not self._data: pass self._results = [] self.run() if self._display: print(self) def run(self): out = [] for group, vector in self._data.groups.items(): if len(vector) <= self._min_size: raise MinimumSizeError("length of data is less than the minimum size {}".format(self._min_size)) row_result = {self._group: group, self._n: len(vector), self._mean: mean(vector), self._std: std(vector, ddof=1), self._max: amax(vector), self._q2: median(vector), self._min: amin(vector), } out.append(row_result) summ = DataFrame(out).sort_values(self._group) self.total = len(self._data.data) self.k = len(summ) if self.k > 1: self.pooled = sqrt(((summ[self._n] - 1) * summ[self._std] ** 2).sum() / (summ[self._n].sum() - self.k)) self.gmean = summ[self._mean].mean() self.gmedian = median(summ[self._q2]) self._results = ({ self._num_of_groups: self.k, self._total: self.total, self._pooled: self.pooled, self._gmean: self.gmean, self._gmedian: self.gmedian, }, summ) else: self._results = summ def __str__(self): order = ( self._num_of_groups, self._total, self._gmean, self._pooled, self._gmedian, ) group_order = ( self._n, self._mean, self._std, self._min, self._q2, self._max, self._group, ) if is_tuple(self._results): out = '{}\n{}'.format( std_output(self._agg_name, self._results[0], order=order), std_output(self._name, self._results[1].to_dict(orient='records'), order=group_order), ) else: out = std_output(self._name, self._results.to_dict(orient='records'), order=group_order) return out @property def grand_mean(self): return self.gmean @property def grand_median(self): return self.gmedian @property def pooled_std(self): return self.pooled class CategoricalStatistics(Analysis): """Reports basic summary stats for Categorical data.""" _min_size = 1 _name = 'Statistics' _agg_name = 'Overall Statistics' _rank = 'Rank' _cat = 'Category' _freq = 'Frequency' _perc = 'Percent' _total = 'Total' _num_of_grps = 'Number of Groups' def __init__(self, data, **kwargs): order = kwargs['order'] if 'order' in kwargs else None dropna = kwargs['dropna'] if 'dropna' in kwargs else False display = kwargs['display'] if 'display' in kwargs else True self.ordered = True if order is not None else False d = data if is_categorical(data) else Categorical(data, order=order, dropna=dropna) if d.is_empty(): raise NoDataError("Cannot perform the test because there is no data") super(CategoricalStatistics, self).__init__(d, display=display) self.logic() def run(self): col = dict(categories=self._cat, counts=self._freq, percents=self._perc, ranks=self._rank) self.data.summary.rename(columns=col, inplace=True) if self.data.num_of_groups > 1: self._results = ({ self._total: self.data.total, self._num_of_grps: self.data.num_of_groups, }, self.data.summary.to_dict(orient='records')) else: self._results = self.data.summary.to_dict(orient='records') def __str__(self): order = ( self._total, self._num_of_grps, ) grp_order = ( self._rank, self._freq, self._perc, self._cat, ) if is_tuple(self._results): out = '{}\n{}'.format( std_output(self._agg_name, self._results[0], order=order), std_output(self._name, self._results[1], order=grp_order), ) else: out = std_output(self._name, self._results, order=grp_order) return out
/sci_analysis-2.2.1rc0.tar.gz/sci_analysis-2.2.1rc0/sci_analysis/analysis/stats.py
0.906564
0.328341
stats.py
pypi
from numpy import float_, int_ class Analysis(object): """Generic analysis root class. Members: _data - the data used for analysis. _display - flag for whether to display the analysis output. _results - A dict of the results of the test. Methods: logic - This method needs to run the analysis, set the results member, and display the output at bare minimum. run - This method should return the results of the specific analysis. output - This method shouldn't return a value and only produce a side-effect. """ _name = "Analysis" def __init__(self, data, display=True): """Initialize the data and results members. Override this method to initialize additional members or perform checks on data. """ self._data = data self._display = display self._results = {} @property def name(self): """The name of the test class""" return self._name @property def data(self): """The data used for analysis""" return self._data @property def results(self): """A dict of the results returned by the run method""" return self._results def logic(self): """This method needs to run the analysis, set the results member, and display the output at bare minimum. Override this method to modify the execution sequence of the analysis. """ if self._data is None: return self.run() if self._display: print(self) def run(self): """This method should perform the specific analysis and set the results dict. Override this method to perform a specific analysis or calculation. """ raise NotImplementedError def __str__(self): return std_output(self._name, self._results, tuple(self._results.keys())) def std_output(name, results, order, precision=4, spacing=14): """ Parameters ---------- name : str The name of the analysis report. results : dict or list The input dict or list to print. order : list or tuple The list of keys in results to display and the order to display them in. precision : int The number of decimal places to show for float values. spacing : int The max number of characters for each printed column. Returns ------- output_string : str The report to be printed to stdout. """ def format_header(col_names): line = "" for n in col_names: line += '{:{}s}'.format(n, spacing) return line def format_row(_row, _order): line = "" for column in _order: value = _row[column] t = type(value) if t in [float, float_]: line += '{:< {}.{}f}'.format(value, spacing, precision) elif t in [float, float_]: line += '{:< {}d}'.format(value, spacing) else: line += '{:<{}s}'.format(str(value), spacing) return line def format_items(label, value): if type(value) in {float, float_}: line = '{:{}s}'.format(label, max_length) + ' = ' + '{:< .{}f}'.format(value, precision) elif type(value) in {int, int_}: line = '{:{}s}'.format(label, max_length) + ' = ' + '{:< d}'.format(value) else: line = '{:{}s}'.format(label, max_length) + ' = ' + str(value) return line table = list() header = '' if isinstance(results, list): header = format_header(order) for row in results: table.append(format_row(row, order)) elif isinstance(results, dict): max_length = max([len(label) for label in results.keys()]) for key in order: table.append(format_items(key, results[key])) out = [ '', '', name, '-' * len(name), '' ] if len(header) > 0: out.extend([ header, '-' * len(header) ]) out.append('\n'.join(table)) return '\n'.join(out)
/sci_analysis-2.2.1rc0.tar.gz/sci_analysis-2.2.1rc0/sci_analysis/analysis/base.py
0.899621
0.594845
base.py
pypi
from scipy.stats import linregress, pearsonr, spearmanr from pandas import DataFrame from ..data import Vector, is_vector from .base import Analysis, std_output from .exc import NoDataError, MinimumSizeError from .hypo_tests import NormTest class Comparison(Analysis): """Perform a test on two independent vectors of equal length.""" _min_size = 3 _name = "Comparison" _h0 = "H0: " _ha = "HA: " _default_alpha = 0.05 def __init__(self, xdata, ydata=None, alpha=None, display=True): self._alpha = alpha or self._default_alpha if ydata is None: if is_vector(xdata): v = xdata else: raise AttributeError('ydata argument cannot be None.') else: v = Vector(xdata, other=ydata) if v.data.empty or v.other.empty: raise NoDataError("Cannot perform test because there is no data") if len(v.data) <= self._min_size or len(v.other) <= self._min_size: raise MinimumSizeError("length of data is less than the minimum size {}".format(self._min_size)) super(Comparison, self).__init__(v, display=display) self.logic() @property def xdata(self): """The predictor vector for comparison tests""" return self.data.data @property def ydata(self): """The response vector for comparison tests""" return self.data.other @property def predictor(self): """The predictor vector for comparison tests""" return self.data.data @property def response(self): """The response vector for comparison tests""" return self.data.other @property def statistic(self): """The test statistic returned by the function called in the run method""" # TODO: Need to catch the case where self._results is an empty dictionary. return self._results['statistic'] @property def p_value(self): """The p-value returned by the function called in the run method""" return self._results['p value'] def __str__(self): out = list() order = list() res = list(self._results.keys()) if 'p value' in res: order.append('p value') res.remove('p value') order.extend(res) out.append(std_output(self.name, self._results, reversed(order))) out.append('') out.append(self._h0 if self.p_value > self._alpha else self._ha) out.append('') return '\n'.join(out) def run(self): raise NotImplementedError class LinearRegression(Comparison): """Performs a linear regression between two vectors.""" _name = "Linear Regression" _n = 'n' _slope = 'Slope' _intercept = 'Intercept' _r_value = 'r' _r_squared = 'r^2' _std_err = 'Std Err' _p_value = 'p value' def __init__(self, xdata, ydata=None, alpha=None, display=True): super(LinearRegression, self).__init__(xdata, ydata, alpha=alpha, display=display) def run(self): slope, intercept, r, p_value, std_err = linregress(self.xdata, self.ydata) count = len(self.xdata) self._results.update({ self._n: count, self._slope: slope, self._intercept: intercept, self._r_value: r, self._r_squared: r ** 2, self._std_err: std_err, self._p_value: p_value }) @property def slope(self): return self._results[self._slope] @property def intercept(self): return self._results[self._intercept] @property def r_squared(self): return self._results[self._r_squared] @property def r_value(self): return self._results[self._r_value] @property def statistic(self): return self._results[self._r_squared] @property def std_err(self): return self._results[self._std_err] def __str__(self): """If the result is greater than the significance, print the null hypothesis, otherwise, the alternate hypothesis""" out = list() order = [ self._n, self._slope, self._intercept, self._r_value, self._r_squared, self._std_err, self._p_value ] out.append(std_output(self._name, self._results, order=order)) out.append('') return '\n'.join(out) class Correlation(Comparison): """Performs a pearson or spearman correlation between two vectors.""" _names = {'pearson': 'Pearson Correlation Coefficient', 'spearman': 'Spearman Correlation Coefficient'} _h0 = "H0: There is no significant relationship between predictor and response" _ha = "HA: There is a significant relationship between predictor and response" _r_value = 'r value' _p_value = 'p value' _alpha_name = 'alpha' def __init__(self, xdata, ydata=None, alpha=None, display=True): self._test = None super(Correlation, self).__init__(xdata, ydata, alpha=alpha, display=display) def run(self): if NormTest(self.xdata, self.ydata, display=False, alpha=self._alpha).p_value > self._alpha: r_value, p_value = pearsonr(self.xdata, self.ydata) r = "pearson" else: r_value, p_value = spearmanr(self.xdata, self.ydata) r = "spearman" self._name = self._names[r] self._test = r self._results.update({ self._r_value: r_value, self._p_value: p_value, self._alpha_name: self._alpha }) @property def r_value(self): """The correlation coefficient returned by the the determined test type""" return self._results[self._r_value] @property def statistic(self): return self._results[self._r_value] @property def test_type(self): """The test that was used to determine the correlation coefficient""" return self._test def __str__(self): out = list() out.append(std_output(self.name, self._results, [self._alpha_name, self._r_value, self._p_value])) out.append('') out.append(self._h0 if self.p_value > self._alpha else self._ha) out.append('') return '\n'.join(out) class GroupComparison(Analysis): _min_size = 1 _name = 'Group Comparison' _default_alpha = 0.05 def __init__(self, xdata, ydata=None, groups=None, alpha=None, display=True): if ydata is None: if is_vector(xdata): vector = xdata else: raise AttributeError("ydata argument cannot be None.") else: vector = Vector(xdata, other=ydata, groups=groups) if vector.is_empty(): raise NoDataError("Cannot perform test because there is no data") super(GroupComparison, self).__init__(vector, display=display) self._alpha = alpha or self._default_alpha self.logic() def run(self): raise NotImplementedError class GroupCorrelation(GroupComparison): _names = { 'pearson': 'Pearson Correlation Coefficient', 'spearman': 'Spearman Correlation Coefficient', } _min_size = 2 _r_value = 'r value' _p_value = 'p value' _group_name = 'Group' _n = 'n' def __init__(self, xdata, ydata=None, groups=None, alpha=None, display=True): self._test = None super(GroupCorrelation, self).__init__(xdata, ydata=ydata, groups=groups, alpha=alpha, display=display) def run(self): out = [] # Remove any groups that are less than or equal to the minimum value from analysis. small_grps = [grp for grp, seq in self.data.groups.items() if len(seq) <= self._min_size] self.data.drop_groups(small_grps) if NormTest(*self.data.flatten(), display=False, alpha=self._alpha).p_value > self._alpha: r = "pearson" func = pearsonr else: r = 'spearman' func = spearmanr self._name = self._names[r] self._test = r for grp, pairs in self.data.paired_groups.items(): r_value, p_value = func(*pairs) row_results = ({self._r_value: r_value, self._p_value: p_value, self._group_name: str(grp), self._n: str(len(pairs[0]))}) out.append(row_results) self._results = DataFrame(out).sort_values(self._group_name).to_dict(orient='records') def __str__(self): order = ( self._n, self._r_value, self._p_value, self._group_name ) return std_output(self._name, self._results, order=order) @property def counts(self): return tuple(s[self._n] for s in self._results) @property def r_value(self): return tuple(s[self._r_value] for s in self._results) @property def statistic(self): return tuple(s[self._r_value] for s in self._results) @property def p_value(self): return tuple(s[self._p_value] for s in self._results) class GroupLinearRegression(GroupComparison): _name = "Linear Regression" _n = 'n' _slope = 'Slope' _intercept = 'Intercept' _r_value = 'r' _r_squared = 'r^2' _std_err = 'Std Err' _p_value = 'p value' _group_name = 'Group' def run(self): out = [] # Remove any groups that are less than or equal to the minimum value from analysis. small_grps = [grp for grp, seq in self.data.groups.items() if len(seq) <= self._min_size] self.data.drop_groups(small_grps) for grp, pairs in self.data.paired_groups.items(): slope, intercept, r, p_value, std_err = linregress(*pairs) count = len(pairs[0]) out.append({ self._n: str(count), self._slope: slope, self._intercept: intercept, self._r_value: r, self._r_squared: r ** 2, self._std_err: std_err, self._p_value: p_value, self._group_name: str(grp) }) if not out: raise NoDataError self._results = DataFrame(out).sort_values(self._group_name).to_dict(orient='records') def __str__(self): order = ( self._n, self._slope, self._intercept, self._r_squared, self._std_err, self._p_value, self._group_name ) return std_output(self._name, self._results, order=order) @property def counts(self): return tuple(s[self._n] for s in self._results) @property def r_value(self): return tuple(s[self._r_value] for s in self._results) @property def statistic(self): return tuple(s[self._r_squared] for s in self._results) @property def p_value(self): return tuple(s[self._p_value] for s in self._results) @property def slope(self): return tuple(s[self._slope] for s in self._results) @property def intercept(self): return tuple(s[self._intercept] for s in self._results) @property def r_squared(self): return tuple(s[self._r_squared] for s in self._results) @property def std_err(self): return tuple(s[self._std_err] for s in self._results)
/sci_analysis-2.2.1rc0.tar.gz/sci_analysis-2.2.1rc0/sci_analysis/analysis/comparison.py
0.80213
0.474509
comparison.py
pypi
from .hypo_tests import NormTest, KSTest, TwoSampleKSTest, MannWhitney, TTest, Anova, Kruskal, EqualVariance from .comparison import LinearRegression, Correlation, GroupCorrelation, GroupLinearRegression from .stats import VectorStatistics, GroupStatistics, GroupStatisticsStacked, CategoricalStatistics def determine_analysis_type(data, other=None, groups=None, labels=None): """Attempts to determine the type of data and returns the corresponding sci_analysis Data object. Parameters ---------- data : array-like The sequence of unknown data type. other : array-like or None A second sequence of unknown data type. groups : array-like or None The group names to include if data is determined to be a Vector. labels : array-like or None The sequence of data point labels. Returns ------- data : sci_analysis.data.Data A subclass of sci_analysis Data that corresponds to the analysis type to perform. """ from numpy import ( float16, float32, float64, int8, int16, int32, int64 ) from pandas import Series from ..data import is_iterable, is_vector, is_categorical, Vector, Categorical from .exc import NoDataError numeric_types = [float16, float32, float64, int8, int16, int32, int64] if not is_iterable(data): raise ValueError('data cannot be a scalar value.') elif len(data) == 0: raise NoDataError elif is_vector(data): return data elif is_categorical(data): return data else: if not hasattr(data, 'dtype'): data = Series(data) if other is not None: if not hasattr(other, 'dtype'): other = Series(other) if data.dtype in numeric_types: if other is not None and other.dtype in numeric_types: if groups is not None: return Vector(data, other=other, groups=groups, labels=labels) else: return Vector(data, other=other, labels=labels) else: if groups is not None: return Vector(data, groups=groups, labels=labels) else: return Vector(data, labels=labels) else: return Categorical(data) def analyse(xdata, ydata=None, groups=None, labels=None, **kwargs): """ Alias for analyze. Parameters ---------- xdata : array-like The primary set of data. ydata : array-like The response or secondary set of data. groups : array-like The group names used for location testing or Bivariate analysis. labels : array-like or None The sequence of data point labels. alpha : float The sensitivity to use for hypothesis tests. Returns ------- xdata, ydata : tuple(array-like, array-like) The input xdata and ydata. Notes ----- xdata : array-like(num), ydata : None --- Distribution xdata : array-like(str), ydata : None --- Frequencies xdata : array-like(num), ydata : array-like(num) --- Bivariate xdata : array-like(num), ydata : array-like(num), groups : array-like --- Group Bivariate xdata : list(array-like(num)), ydata : None --- Location Test(unstacked) xdata : list(array-like(num)), ydata : None, groups : array-like --- Location Test(unstacked) xdata : dict(array-like(num)), ydata : None --- Location Test(unstacked) xdata : array-like(num), ydata : None, groups : array-like --- Location Test(stacked) """ return analyze(xdata, ydata=ydata, groups=groups, labels=labels, **kwargs) def analyze(xdata, ydata=None, groups=None, labels=None, alpha=0.05, **kwargs): """ Automatically performs a statistical analysis based on the input arguments. Parameters ---------- xdata : array-like The primary set of data. ydata : array-like The response or secondary set of data. groups : array-like The group names used for location testing or Bivariate analysis. labels : array-like or None The sequence of data point labels. alpha : float The sensitivity to use for hypothesis tests. Returns ------- xdata, ydata : tuple(array-like, array-like) The input xdata and ydata. Notes ----- xdata : array-like(num), ydata : None --- Distribution xdata : array-like(str), ydata : None --- Frequencies xdata : array-like(num), ydata : array-like(num) --- Bivariate xdata : array-like(num), ydata : array-like(num), groups : array-like --- Group Bivariate xdata : list(array-like(num)), ydata : None --- Location Test(unstacked) xdata : list(array-like(num)), ydata : None, groups : array-like --- Location Test(unstacked) xdata : dict(array-like(num)), ydata : None --- Location Test(unstacked) xdata : array-like(num), ydata : None, groups : array-like --- Location Test(stacked) """ from ..graphs import GraphHisto, GraphScatter, GraphBoxplot, GraphFrequency, GraphGroupScatter from ..data import (is_dict, is_iterable, is_group, is_dict_group, is_vector) from .exc import NoDataError debug = True if 'debug' in kwargs else False tested = list() if xdata is None: raise ValueError("xdata was not provided.") if not is_iterable(xdata): raise TypeError("xdata is not an array.") if len(xdata) == 0: raise NoDataError("No data was passed to analyze") # Compare Group Means and Variance if is_group(xdata) or is_dict_group(xdata): tested.append('Oneway') if is_dict(xdata): if groups is not None: GraphBoxplot(xdata, groups=groups, **kwargs) else: GraphBoxplot(xdata, **kwargs) groups = list(xdata.keys()) xdata = list(xdata.values()) else: if groups is not None: GraphBoxplot(*xdata, groups=groups, **kwargs) else: GraphBoxplot(*xdata, **kwargs) out_stats = GroupStatistics(*xdata, groups=groups, display=False) # Show the box plot and stats print(out_stats) if len(xdata) == 2: norm = NormTest(*xdata, alpha=alpha, display=False) if norm.p_value > alpha: TTest(xdata[0], xdata[1], alpha=alpha) tested.append('TTest') elif len(xdata[0]) > 20 and len(xdata[1]) > 20: MannWhitney(xdata[0], xdata[1], alpha=alpha) tested.append('MannWhitney') else: TwoSampleKSTest(xdata[0], xdata[1], alpha=alpha) tested.append('TwoSampleKSTest') else: e = EqualVariance(*xdata, alpha=alpha) # If normally distributed and variances are equal, perform one-way ANOVA # Otherwise, perform a non-parametric Kruskal-Wallis test if e.test_type == 'Bartlett' and e.p_value > alpha: Anova(*xdata, alpha=alpha) tested.append('Anova') else: Kruskal(*xdata, alpha=alpha) tested.append('Kruskal') return tested if debug else None if ydata is not None: _data = determine_analysis_type(xdata, other=ydata, groups=groups, labels=labels) else: _data = determine_analysis_type(xdata, groups=groups, labels=labels) if is_vector(_data) and not _data.other.empty: # Correlation and Linear Regression if len(_data.groups) > 1: tested.append('Group Bivariate') # Show the scatter plot, correlation and regression stats GraphGroupScatter(_data, **kwargs) GroupLinearRegression(_data, alpha=alpha) GroupCorrelation(_data, alpha=alpha) return tested if debug else None else: tested.append('Bivariate') # Show the scatter plot, correlation and regression stats GraphScatter(_data, **kwargs) LinearRegression(_data, alpha=alpha) Correlation(_data, alpha=alpha) return tested if debug else None elif is_vector(_data) and len(_data.groups) > 1: # Compare Stacked Group Means and Variance tested.append('Stacked Oneway') # Show the box plot and stats out_stats = GroupStatisticsStacked(_data, display=False) GraphBoxplot(_data, gmean=out_stats.gmean, gmedian=out_stats.gmedian, **kwargs) print(out_stats) group_data = tuple(_data.groups.values()) if len(group_data) == 2: norm = NormTest(*group_data, alpha=alpha, display=False) if norm.p_value > alpha: TTest(*group_data) tested.append('TTest') elif len(group_data[0]) > 20 and len(group_data[1]) > 20: MannWhitney(*group_data) tested.append('MannWhitney') else: TwoSampleKSTest(*group_data) tested.append('TwoSampleKSTest') else: e = EqualVariance(*group_data, alpha=alpha) if e.test_type == 'Bartlett' and e.p_value > alpha: Anova(*group_data, alpha=alpha) tested.append('Anova') else: Kruskal(*group_data, alpha=alpha) tested.append('Kruskal') return tested if debug else None else: # Histogram and Basic Stats or Categories and Frequencies if is_vector(_data): tested.append('Distribution') # Show the histogram and stats out_stats = VectorStatistics(_data, sample=kwargs.get('sample', False), display=False) if 'distribution' in kwargs: distro = kwargs['distribution'] distro_class = getattr( __import__( 'scipy.stats', globals(), locals(), [distro], 0, ), distro, ) parms = distro_class.fit(xdata) fit = KSTest(xdata, distribution=distro, parms=parms, alpha=alpha, display=False) tested.append('KSTest') else: fit = NormTest(xdata, alpha=alpha, display=False) tested.append('NormTest') GraphHisto(_data, mean=out_stats.mean, std_dev=out_stats.std_dev, **kwargs) print(out_stats) print(fit) return tested if debug else None else: tested.append('Frequencies') # Show the histogram and stats GraphFrequency(_data, **kwargs) CategoricalStatistics(xdata, **kwargs) return tested if debug else None
/sci_analysis-2.2.1rc0.tar.gz/sci_analysis-2.2.1rc0/sci_analysis/analysis/__init__.py
0.898785
0.709227
__init__.py
pypi
import warnings import six from math import sqrt, fabs # matplotlib imports from matplotlib.pyplot import ( show, subplot, yticks, xlabel, ylabel, figure, setp, savefig, close, xticks, subplots_adjust ) from matplotlib.gridspec import GridSpec from matplotlib.patches import Circle # Numpy imports from numpy import ( polyfit, polyval, sort, arange, array, linspace, mgrid, vstack, std, sum, mean, median ) # Scipy imports from scipy.stats import probplot, gaussian_kde, t # local imports from .base import Graph from ..data import Vector, is_dict, is_group, is_vector from ..analysis.exc import NoDataError def future(message): warnings.warn(message, FutureWarning, stacklevel=2) class VectorGraph(Graph): def __init__(self, sequence, **kwargs): """Converts the data argument to a Vector object and sets it to the Graph object's vector member. Sets the xname and yname arguments as the axis labels. The default values are "x" and "y". """ if is_vector(sequence): super(VectorGraph, self).__init__(sequence, **kwargs) else: super(VectorGraph, self).__init__(Vector(sequence), **kwargs) if len(self._data.groups.keys()) == 0: raise NoDataError("Cannot draw graph because there is no data.") self.draw() def draw(self): """ Prepares and displays the graph based on the set class members. """ raise NotImplementedError class GraphHisto(VectorGraph): """Draws a histogram. New class members are bins, color and box_plot. The bins member is the number of histogram bins to draw. The color member is the color of the histogram area. The box_plot member is a boolean flag for whether to draw the corresponding box plot. """ _xsize = 5 _ysize = 4 def __init__(self, data, **kwargs): """GraphHisto constructor. :param data: The data to be graphed. :param _bins: The number of histogram bins to draw. This arg sets the bins member. :param _name: The optional x-axis label. :param _distribution: The theoretical distribution to fit. :param _box_plot: Toggle the display of the optional boxplot. :param _cdf: Toggle the display of the optional cumulative density function plot. :param _fit: Toggle the display of the best fit line for the specified distribution. :param _mean: The mean to be displayed on the graph title. :param _std: The standard deviation to be displayed on the graph title. :param _sample: Sets x-bar and s if true, else mu and sigma for displaying on the graph title. :param _title: The title of the graph. :param _save_to: Save the graph to the specified path. :return: pass """ self._bins = kwargs.get('bins', 20) self._distribution = kwargs.get('distribution', 'norm') self._box_plot = kwargs.get('boxplot', True) self._cdf = kwargs.get('cdf', False) self._fit = kwargs.get('fit', False) self._mean = kwargs.get('mean') self._std = kwargs.get('std_dev') self._sample = kwargs.get('sample', False) self._title = kwargs.get('title', 'Distribution') self._save_to = kwargs.get('save_to') yname = kwargs.get('yname', 'Probability') name = kwargs.get('name') or kwargs.get('xname') or 'Data' super(GraphHisto, self).__init__(data, xname=name, yname=yname) def fit_distro(self): """ Calculate the fit points for a specified distribution. Returns ------- fit_parms : tuple First value - The x-axis points Second value - The pdf y-axis points Third value - The cdf y-axis points """ distro_class = getattr( __import__( 'scipy.stats', globals(), locals(), [self._distribution], 0, ), self._distribution ) parms = distro_class.fit(self._data.data) distro = linspace(distro_class.ppf(0.001, *parms), distro_class.ppf(0.999, *parms), 100) distro_pdf = distro_class.pdf(distro, *parms) distro_cdf = distro_class.cdf(distro, *parms) return distro, distro_pdf, distro_cdf def calc_cdf(self): """ Calcuate the cdf points. Returns ------- coordinates : tuple First value - The cdf x-axis points Second value - The cdf y-axis points """ x_sorted_vector = sort(self._data.data) if len(x_sorted_vector) == 0: return 0, 0 y_sorted_vector = arange(len(x_sorted_vector) + 1) / float(len(x_sorted_vector)) x_cdf = array([x_sorted_vector, x_sorted_vector]).T.flatten() y_cdf = array([y_sorted_vector[:(len(y_sorted_vector)-1)], y_sorted_vector[1:]]).T.flatten() return x_cdf, y_cdf def draw(self): """ Draws the histogram based on the set parameters. Returns ------- pass """ # Setup the grid variables histo_span = 3 box_plot_span = 1 cdf_span = 3 h_ratios = [histo_span] p = [] if self._box_plot: self._ysize += 0.5 self._nrows += 1 h_ratios.insert(0, box_plot_span) if self._cdf: self._ysize += 2 self._nrows += 1 h_ratios.insert(0, cdf_span) # Create the figure and grid spec f = figure(figsize=(self._xsize, self._ysize)) gs = GridSpec(self._nrows, self._ncols, height_ratios=h_ratios, hspace=0) # Set the title title = self._title if self._mean and self._std: if self._sample: title = r"{}{}$\bar x = {:.4f}, s = {:.4f}$".format(title, "\n", self._mean, self._std) else: title = r"{}{}$\mu = {:.4f}$, $\sigma = {:.4f}$".format(title, "\n", self._mean, self._std) f.suptitle(title, fontsize=14) # Adjust the bin size if it's greater than the vector size if len(self._data.data) < self._bins: self._bins = len(self._data.data) # Fit the distribution if self._fit: distro, distro_pdf, distro_cdf = self.fit_distro() else: distro, distro_pdf, distro_cdf = None, None, None # Draw the cdf if self._cdf: x_cdf, y_cdf = self.calc_cdf() ax_cdf = subplot(gs[0]) ax_cdf.plot(x_cdf, y_cdf, 'k-') ax_cdf.xaxis.grid(True, linestyle='-', which='major', color='grey', alpha=0.75) ax_cdf.yaxis.grid(True, linestyle='-', which='major', color='grey', alpha=0.75) p.append(ax_cdf.get_xticklabels()) if self._fit: ax_cdf.plot(distro, distro_cdf, 'r--', linewidth=2) yticks(arange(11) * 0.1) ylabel("Cumulative Probability") else: ax_cdf = None # Draw the box plot if self._box_plot: if self._cdf: ax_box = subplot(gs[len(h_ratios) - 2], sharex=ax_cdf) else: ax_box = subplot(gs[len(h_ratios) - 2]) bp = ax_box.boxplot(self._data.data, vert=False, showmeans=True) setp(bp['boxes'], color='k') setp(bp['whiskers'], color='k') vp = ax_box.violinplot(self._data.data, vert=False, showextrema=False, showmedians=False, showmeans=False) setp(vp['bodies'], facecolors=self.get_color(0)) ax_box.xaxis.grid(True, linestyle='-', which='major', color='grey', alpha=0.75) yticks([]) p.append(ax_box.get_xticklabels()) ax_hist = subplot(gs[len(h_ratios) - 1], sharex=ax_box) else: ax_hist = subplot(gs[len(h_ratios) - 1]) # Draw the histogram # First try to use the density arg which replaced normed (which is now depricated) in matplotlib 2.2.2 try: ax_hist.hist(self._data.data, self._bins, density=True, color=self.get_color(0), zorder=0) except TypeError: ax_hist.hist(self._data.data, self._bins, normed=True, color=self.get_color(0), zorder=0) ax_hist.xaxis.grid(True, linestyle='-', which='major', color='grey', alpha=0.75) ax_hist.yaxis.grid(True, linestyle='-', which='major', color='grey', alpha=0.75) if self._fit: ax_hist.plot(distro, distro_pdf, 'r--', linewidth=2) if len(p) > 0: setp(p, visible=False) # set the labels and display the figure ylabel(self._yname) xlabel(self._xname) if self._save_to: savefig(self._save_to) close(f) else: show() pass class GraphScatter(VectorGraph): """Draws an x-by-y scatter plot. Unique class members are fit and style. The fit member is a boolean flag for whether to draw the linear best fit line. The style member is a tuple of formatted strings that set the matplotlib point style and line style. It is also worth noting that the vector member for the GraphScatter class is a tuple of xdata and ydata. """ _nrows = 1 _ncols = 1 _xsize = 6 _ysize = 5 def __init__(self, xdata, ydata=None, **kwargs): """GraphScatter constructor. :param xdata: The x-axis data. :param ydata: The y-axis data. :param fit: Display the optional line fit. :param points: Display the scatter points. :param contours: Display the density contours :param boxplot_borders: Display the boxplot borders :param highlight: an array-like with points to highlight based on labels :param labels: a vector object with the graph labels :param title: The title of the graph. :param save_to: Save the graph to the specified path. :return: pass """ self._fit = kwargs.get('fit', True) self._points = kwargs.get('points', True) self._labels = kwargs.get('labels', None) self._highlight = kwargs.get('highlight', None) self._contours = kwargs.get('contours', False) self._contour_props = (31, 1.1) self._boxplot_borders = kwargs.get('boxplot_borders', False) self._title = kwargs['title'] if 'title' in kwargs else 'Bivariate' self._save_to = kwargs.get('save_to', None) yname = kwargs.get('yname', 'y Data') xname = kwargs.get('xname', 'x Data') if ydata is None: if is_vector(xdata): super(GraphScatter, self).__init__(xdata, xname=xname, yname=yname) else: raise AttributeError('ydata argument cannot be None.') else: super(GraphScatter, self).__init__( Vector(xdata, other=ydata, labels=self._labels), xname=xname, yname=yname, ) def calc_contours(self): """ Calculates the density contours. Returns ------- contour_parms : tuple First value - x-axis points Second value - y-axis points Third value - z-axis points Fourth value - The contour levels """ xmin = self._data.data.min() xmax = self._data.data.max() ymin = self._data.other.min() ymax = self._data.other.max() values = vstack([self._data.data, self._data.other]) kernel = gaussian_kde(values) _x, _y = mgrid[xmin:xmax:100j, ymin:ymax:100j] positions = vstack([_x.ravel(), _y.ravel()]) _z = kernel.evaluate(positions).T.reshape(_x.shape) return _x, _y, _z, arange(_z.min(), _z.max(), (_z.max() - _z.min()) / self._contour_props[0]) def calc_fit(self): """ Calculates the best fit line using sum of squares. Returns ------- fit_coordinates : list A list of the min and max fit points. """ x = self._data.data y = self._data.other p = polyfit(x, y, 1) fit = polyval(p, x) if p[0] > 0: return (x.min(), x.max()), (fit.min(), fit.max()) else: return (x.min(), x.max()), (fit.max(), fit.min()) def draw(self): """ Draws the scatter plot based on the set parameters. Returns ------- pass """ # Setup the grid variables x = self._data.data y = self._data.other h_ratio = [1, 1] w_ratio = [1, 1] # Setup the figure and gridspec if self._boxplot_borders: self._nrows, self._ncols = 2, 2 self._xsize = self._xsize + 0.5 self._ysize = self._ysize + 0.5 h_ratio, w_ratio = (1.5, 5.5), (5.5, 1.5) main_plot = 2 else: main_plot = 0 # Setup the figure f = figure(figsize=(self._xsize, self._ysize)) f.suptitle(self._title, fontsize=14) if self._boxplot_borders: gs = GridSpec(self._nrows, self._ncols, height_ratios=h_ratio, width_ratios=w_ratio, hspace=0, wspace=0) else: gs = GridSpec(self._nrows, self._ncols) ax1 = None ax3 = None # Draw the boxplot borders if self._boxplot_borders: ax1 = subplot(gs[0]) ax3 = subplot(gs[3]) bpx = ax1.boxplot(x, vert=False, showmeans=True) bpy = ax3.boxplot(y, vert=True, showmeans=True) setp(bpx['boxes'], color='k') setp(bpx['whiskers'], color='k') setp(bpy['boxes'], color='k') setp(bpy['whiskers'], color='k') vpx = ax1.violinplot(x, vert=False, showmedians=False, showmeans=False, showextrema=False) vpy = ax3.violinplot(y, vert=True, showmedians=False, showmeans=False, showextrema=False) setp(vpx['bodies'], facecolors=self.get_color(0)) setp(vpy['bodies'], facecolors=self.get_color(0)) ax1.xaxis.grid(True, linestyle='-', which='major', color='grey', alpha=0.75) ax3.yaxis.grid(True, linestyle='-', which='major', color='grey', alpha=0.75) setp( [ ax1.get_xticklabels(), ax1.get_yticklabels(), ax3.get_xticklabels(), ax3.get_yticklabels() ], visible=False ) # Draw the main graph ax2 = subplot(gs[main_plot], sharex=ax1, sharey=ax3) # Draw the points if self._points: # A 2-D array needs to be passed to prevent matplotlib from applying the default cmap if the size < 4. color = (self.get_color(0),) alpha_trans = 0.7 if self._highlight is not None: # Find index of the labels which are in the highlight list labelmask = self._data.labels.isin(self._highlight) # Get x and y position of those labels x_labels = x.loc[labelmask] y_labels = y.loc[labelmask] x_nolabels = x.loc[~labelmask] y_nolabels = y.loc[~labelmask] ax2.scatter(x_labels, y_labels, c=color, marker='o', linewidths=0, alpha=alpha_trans, zorder=1) ax2.scatter(x_nolabels, y_nolabels, c=color, marker='o', linewidths=0, alpha=.2, zorder=1) for k in self._data.labels[labelmask].index: ax2.annotate(self._data.labels[k], xy=(x[k], y[k]), alpha=1, color=color[0]) else: ax2.scatter(x, y, c=color, marker='o', linewidths=0, alpha=alpha_trans, zorder=1) # Draw the contours if self._contours: x_prime, y_prime, z, levels = self.calc_contours() ax2.contour(x_prime, y_prime, z, levels, linewidths=self._contour_props[1], nchunk=16, extend='both', zorder=2) # Draw the fit line if self._fit: fit_x, fit_y = self.calc_fit() ax2.plot(fit_x, fit_y, 'r--', linewidth=2, zorder=3) # Draw the grid lines and labels ax2.xaxis.grid(True, linestyle='-', which='major', color='grey', alpha=0.75) ax2.yaxis.grid(True, linestyle='-', which='major', color='grey', alpha=0.75) xlabel(self._xname) ylabel(self._yname) # Save the figure to disk or display if self._save_to: savefig(self._save_to) close(f) else: show() pass class GraphGroupScatter(VectorGraph): """Draws an x-by-y scatter plot with more than a single group. Unique class members are fit and style. The fit member is a boolean flag for whether to draw the linear best fit line. The style member is a tuple of formatted strings that set the matplotlib point style and line style. It is also worth noting that the vector member for the GraphScatter class is a tuple of xdata and ydata. """ _nrows = 1 _ncols = 1 _xsize = 6 _ysize = 5 def __init__(self, xdata, ydata=None, groups=None, **kwargs): """GraphScatter constructor. :param xdata: The x-axis data. :param ydata: The y-axis data. :param _fit: Display the optional line fit. :param _highlight: Give list of groups to highlight in scatter. :param _points: Display the scatter points. :param _contours: Display the density contours :param _boxplot_borders: Display the boxplot borders :param _labels: a vector object with the graph labels :param _title: The title of the graph. :param _save_to: Save the graph to the specified path. :return: pass """ self._fit = kwargs['fit'] if 'fit' in kwargs else True self._points = kwargs['points'] if 'points' in kwargs else True self._labels = kwargs['labels'] if 'labels' in kwargs else None self._highlight = kwargs['highlight'] if 'highlight' in kwargs else None self._boxplot_borders = kwargs['boxplot_borders'] if 'boxplot_borders' in kwargs else True self._title = kwargs['title'] if 'title' in kwargs else 'Group Bivariate' self._save_to = kwargs['save_to'] if 'save_to' in kwargs else None yname = kwargs['yname'] if 'yname' in kwargs else 'y Data' xname = kwargs['xname'] if 'xname' in kwargs else 'x Data' if ydata is None: if is_vector(xdata): super(GraphGroupScatter, self).__init__(xdata, xname=xname, yname=yname) else: raise AttributeError('ydata argument cannot be None.') else: super(GraphGroupScatter, self).__init__(Vector( xdata, other=ydata, groups=groups, labels=self._labels ), xname=xname, yname=yname) @staticmethod def calc_fit(x, y): """ Calculates the best fit line using sum of squares. Returns ------- fit_coordinates : list A list of the min and max fit points. """ p = polyfit(x, y, 1) fit = polyval(p, x) if p[0] > 0: return (x.min(), x.max()), (fit.min(), fit.max()) else: return (x.min(), x.max()), (fit.max(), fit.min()) def draw(self): """ Draws the scatter plot based on the set parameters. Returns ------- pass """ # Setup the grid variables x = self._data.data y = self._data.other groups = sorted(self._data.groups.keys()) h_ratio = [1, 1] w_ratio = [1, 1] # Setup the figure and gridspec if self._boxplot_borders: self._nrows, self._ncols = 2, 2 self._xsize = self._xsize + 0.5 self._ysize = self._ysize + 0.5 h_ratio, w_ratio = (1.5, 5.5), (5.5, 1.5) main_plot = 2 else: main_plot = 0 # Setup the figure f = figure(figsize=(self._xsize, self._ysize)) f.suptitle(self._title, fontsize=14) if self._boxplot_borders: gs = GridSpec(self._nrows, self._ncols, height_ratios=h_ratio, width_ratios=w_ratio, hspace=0, wspace=0) else: gs = GridSpec(self._nrows, self._ncols) ax1 = None ax3 = None # Draw the boxplot borders if self._boxplot_borders: ax1 = subplot(gs[0]) ax3 = subplot(gs[3]) bpx = ax1.boxplot(x, vert=False, showmeans=True) bpy = ax3.boxplot(y, vert=True, showmeans=True) setp(bpx['boxes'], color='k') setp(bpx['whiskers'], color='k') setp(bpy['boxes'], color='k') setp(bpy['whiskers'], color='k') vpx = ax1.violinplot(x, vert=False, showmedians=False, showmeans=False, showextrema=False) vpy = ax3.violinplot(y, vert=True, showmedians=False, showmeans=False, showextrema=False) setp(vpx['bodies'], facecolors=self.get_color(0)) setp(vpy['bodies'], facecolors=self.get_color(0)) ax1.xaxis.grid(True, linestyle='-', which='major', color='grey', alpha=0.75) ax3.yaxis.grid(True, linestyle='-', which='major', color='grey', alpha=0.75) setp([ax1.get_xticklabels(), ax1.get_yticklabels(), ax3.get_xticklabels(), ax3.get_yticklabels()], visible=False) # Draw the main graph ax2 = subplot(gs[main_plot], sharex=ax1, sharey=ax3) for grp, (grp_x, grp_y) in self._data.paired_groups.items(): i = groups.index(grp) alpha_trans = 0.65 if self._highlight is not None: try: if grp not in self._highlight: alpha_trans = 0.2 except TypeError: pass if isinstance(grp, six.string_types) and len(grp) > 20: grp = grp[0:21] + '...' # Draw the points if self._points: # A 2-D array needs to be passed to prevent matplotlib from applying the default cmap if the size < 4. color = (self.get_color(i),) scatter_kwargs = dict( c=color, marker='o', linewidths=0, zorder=1, ) # Draw the point labels if self._data.has_labels and self._highlight is not None: # If a group is in highlights and labels are also given if grp in self._highlight: scatter_kwargs.update( dict( alpha=alpha_trans, label=grp ) ) ax2.scatter(grp_x, grp_y, **scatter_kwargs) # Highlight the specified labels else: labelmask = self._data.group_labels[grp].isin(self._highlight) # Get x and y position of those labels x_labels = grp_x.loc[labelmask] y_labels = grp_y.loc[labelmask] x_nolabels = grp_x.loc[~labelmask] y_nolabels = grp_y.loc[~labelmask] scatter_kwargs.update( dict( alpha=0.65, label=grp if any(labelmask) else None, ) ) ax2.scatter(x_labels, y_labels, **scatter_kwargs) scatter_kwargs.update( dict( alpha=0.2, label=None if any(labelmask) else grp, ) ) ax2.scatter(x_nolabels, y_nolabels, **scatter_kwargs) # Add the annotations for k in self._data.group_labels[grp][labelmask].index: clr = color[0] ax2.annotate(self._data.group_labels[grp][k], xy=(grp_x[k], grp_y[k]), alpha=1, color=clr) else: scatter_kwargs.update( dict( alpha=alpha_trans, label=grp, ) ) ax2.scatter(grp_x, grp_y, **scatter_kwargs) # Draw the fit line if self._fit: fit_x, fit_y = self.calc_fit(grp_x, grp_y) if self._points: ax2.plot(fit_x, fit_y, linestyle='--', color=self.get_color(i), linewidth=2, zorder=2) else: ax2.plot(fit_x, fit_y, linestyle='--', color=self.get_color(i), linewidth=2, zorder=2, label=grp) # Draw the legend if (self._fit or self._points) and len(groups) > 1: ax2.legend(loc='best') # Draw the grid lines and labels ax2.xaxis.grid(True, linestyle='-', which='major', color='grey', alpha=0.75) ax2.yaxis.grid(True, linestyle='-', which='major', color='grey', alpha=0.75) xlabel(self._xname) ylabel(self._yname) # Save the figure to disk or display if self._save_to: savefig(self._save_to) close(f) else: show() pass class GraphBoxplot(VectorGraph): """Draws box plots of the provided data as well as an optional probability plot. Unique class members are groups, nqp and prob. The groups member is a list of labels for each boxplot. If groups is an empty list, sequentially ascending numbers are used for each boxplot. The nqp member is a flag that turns the probability plot on or off. The prob member is a list of tuples that contains the data used to graph the probability plot. It is also worth noting that the vector member for the GraphBoxplot is a list of lists that contain the data for each boxplot. """ _nrows = 1 _ncols = 1 _xsize = 5.75 _ysize = 5 _default_alpha = 0.05 def __init__(self, *args, **kwargs): """GraphBoxplot constructor. NOTE: If vectors is a dict, the boxplots are graphed in random order instead of the provided order. :param groups: An optional list of boxplot labels. The order should match the order in vectors. :param nqp: Display the optional probability plot. :param _title: The title of the graph. :param _save_to: Save the graph to the specified path. :return: pass """ name = kwargs['name'] if 'name' in kwargs else 'Values' categories = kwargs['categories'] if 'categories' in kwargs else 'Categories' xname = kwargs['xname'] if 'xname' in kwargs else categories yname = kwargs['yname'] if 'yname' in kwargs else name self._title = kwargs['title'] if 'title' in kwargs else 'Oneway' self._nqp = kwargs['nqp'] if 'nqp' in kwargs else True self._save_to = kwargs['save_to'] if 'save_to' in kwargs else None self._gmean = kwargs['gmean'] if 'gmean' in kwargs else True self._gmedian = kwargs['gmedian'] if 'gmedian' in kwargs else True self._circles = kwargs['circles'] if 'circles' in kwargs else True self._alpha = kwargs['alpha'] if 'alpha' in kwargs else self._default_alpha if 'title' in kwargs: self._title = kwargs['title'] elif self._nqp: self._title = 'Oneway and Normal Quantile Plot' else: self._title = 'Oneway' if is_vector(args[0]): data = args[0] elif is_dict(args[0]): data = Vector() for g, d in args[0].items(): data.append(Vector(d, groups=[g] * len(d))) else: if is_group(args) and len(args) > 1: future('Graphing boxplots by passing multiple arguments will be removed in a future version. ' 'Instead, pass unstacked arguments as a dictionary.') data = Vector() if 'groups' in kwargs: if len(kwargs['groups']) != len(args): raise AttributeError('The length of passed groups does not match the number passed data.') for g, d in zip(kwargs['groups'], args): data.append(Vector(d, groups=[g] * len(d))) else: for d in args: data.append(Vector(d)) else: if 'groups' in kwargs: if len(kwargs['groups']) != len(args[0]): raise AttributeError('The length of passed groups does not match the number passed data.') data = Vector(args[0], groups=kwargs['groups']) else: data = Vector(args[0]) super(GraphBoxplot, self).__init__(data, xname=xname, yname=yname, save_to=self._save_to) @staticmethod def grand_mean(data): return mean([mean(sample) for sample in data]) @staticmethod def grand_median(data): return median([median(sample) for sample in data]) def tukey_circles(self, data): num = [] den = [] crit = [] radii = [] xbar = [] for sample in data: df = len(sample) - 1 num.append(std(sample, ddof=1) ** 2 * df) den.append(df) crit.append(t.ppf(1 - self._alpha, df)) mse = sum(num) / sum(den) for i, sample in enumerate(data): radii.append(fabs(crit[i]) * sqrt(mse / len(sample))) xbar.append(mean(sample)) return tuple(zip(xbar, radii)) def draw(self): """Draws the boxplots based on the set parameters.""" # Setup the grid variables w_ratio = [1] if self._circles: w_ratio = [4, 1] self._ncols += 1 if self._nqp: w_ratio.append(4 if self._circles else 1) self._ncols += 1 groups, data = zip(*[ (g, v['ind'].reset_index(drop=True)) for g, v in self._data.values.groupby('grp') if not v.empty] ) # Create the quantile plot arrays prob = [probplot(v) for v in data] # Create the figure and gridspec if self._nqp and len(prob) > 0: self._xsize *= 2 f = figure(figsize=(self._xsize, self._ysize)) f.suptitle(self._title, fontsize=14) gs = GridSpec(self._nrows, self._ncols, width_ratios=w_ratio, wspace=0) # Draw the boxplots ax1 = subplot(gs[0]) bp = ax1.boxplot(data, showmeans=True, labels=groups) setp(bp['boxes'], color='k') setp(bp['whiskers'], color='k') vp = ax1.violinplot(data, showextrema=False, showmedians=False, showmeans=False) for i in range(len(groups)): setp(vp['bodies'][i], facecolors=self.get_color(i)) ax1.yaxis.grid(True, linestyle='-', which='major', color='grey', alpha=0.75) if self._gmean: ax1.axhline(float(self.grand_mean(data)), c='k', linestyle='--', alpha=0.4) if self._gmedian: ax1.axhline(float(self.grand_median(data)), c='k', linestyle=':', alpha=0.4) if any([True if len(str(g)) > 9 else False for g in groups]) or len(groups) > 5: xticks(rotation=60) subplots_adjust(bottom=0.2) ylabel(self._yname) xlabel(self._xname) # Draw the Tukey-Kramer circles if self._circles: ax2 = subplot(gs[1], sharey=ax1) for i, (center, radius) in enumerate(self.tukey_circles(data)): c = Circle((0.5, center), radius=radius, facecolor='none', edgecolor=self.get_color(i)) ax2.add_patch(c) # matplotlib 2.2.2 requires adjustable='datalim' to display properly. ax2.set_aspect('equal', adjustable='datalim') setp(ax2.get_xticklabels(), visible=False) setp(ax2.get_yticklabels(), visible=False) ax2.set_xticks([]) # Draw the normal quantile plot if self._nqp and len(prob) > 0: ax3 = subplot(gs[2], sharey=ax1) if self._circles else subplot(gs[1], sharey=ax1) for i, g in enumerate(prob): osm = g[0][0] osr = g[0][1] slope = g[1][0] intercept = g[1][1] ax3.plot(osm, osr, marker='^', color=self.get_color(i), label=groups[i]) ax3.plot(osm, slope * osm + intercept, linestyle='--', linewidth=2, color=self.get_color(i)) ax3.xaxis.grid(True, linestyle='-', which='major', color='grey', alpha=0.75) ax3.yaxis.grid(True, linestyle='-', which='major', color='grey', alpha=0.75) ax3.legend(loc='best') xlabel("Quantiles") setp(ax3.get_yticklabels(), visible=False) # Save the figure to disk or display if self._save_to: savefig(self._save_to) close(f) else: show() pass
/sci_analysis-2.2.1rc0.tar.gz/sci_analysis-2.2.1rc0/sci_analysis/graphs/vector.py
0.815673
0.537163
vector.py
pypi
_colors = ( (0.0, 0.3, 0.7), # blue (1.0, 0.1, 0.1), # red (0.0, 0.7, 0.3), # green (1.0, 0.5, 0.0), # orange (0.1, 1.0, 1.0), # cyan (1.0, 1.0, 0.0), # yellow (1.0, 0.0, 1.0), # magenta (0.5, 0.0, 1.0), # purple (0.5, 1.0, 0.0), # light green (0.0, 0.0, 0.0) # black ) _color_names = ( 'blue', 'red', 'green', 'orange', 'cyan', 'yellow', 'magenta', 'purple', 'light green', 'black' ) class Graph(object): """The super class all other sci_analysis graphing classes descend from. Classes that descend from Graph should implement the draw method at bare minimum. Graph members are _nrows, _ncols, _xsize, _ysize, _data, _xname and _yname. The _nrows member is the number of graphs that will span vertically. The _ncols member is the number of graphs that will span horizontally. The _xsize member is the horizontal size of the graph area. The _ysize member is the vertical size of the graph area. The _data member the data to be plotted. The _xname member is the x-axis label. The _yname member is the y-axis label. Parameters ---------- _nrows : int, static The number of graphs that will span vertically. _ncols : int, static The number of graphs that will span horizontally. _xsize : int, static The horizontal size of the graph area. _ysize : int, static The vertical size of the graph area. _min_size : int, static The minimum required length of the data to be graphed. _xname : str The x-axis label. _yname : str The y-axis label. _data : Data or list(d1, d2, ..., dn) The data to graph. Returns ------- pass """ _nrows = 1 _ncols = 1 _xsize = 5 _ysize = 5 _min_size = 1 def __init__(self, data, **kwargs): self._xname = kwargs['xname'] if 'xname' in kwargs else 'x' self._yname = kwargs['yname'] if 'yname' in kwargs else 'y' self._data = data def get_color_by_name(self, color='black'): """Return a color array based on the string color passed. Parameters ---------- color : str A string color name. Returns ------- color : tuple A color tuple that corresponds to the passed color string. """ return self.get_color(_color_names.index(color)) @staticmethod def get_color(num): """Return a color based on the given num argument. Parameters ---------- num : int A numeric value greater than zero that returns a corresponding color. Returns ------- color : tuple A color tuple calculated from the num argument. """ desired_color = [] floor = int(num) // len(_colors) remainder = int(num) % len(_colors) selected = _colors[remainder] if floor > 0: for value in selected: desired_color.append(value / (2.0 * floor) + 0.4) return tuple(desired_color) else: return selected def draw(self): """ Prepares and displays the graph based on the set class members. """ raise NotImplementedError
/sci_analysis-2.2.1rc0.tar.gz/sci_analysis-2.2.1rc0/sci_analysis/graphs/base.py
0.840619
0.585575
base.py
pypi
import math # matplotlib imports from matplotlib.pyplot import show, xticks, savefig, close, subplots, subplots_adjust # local imports from .base import Graph from ..data import Categorical, is_group, is_categorical from ..analysis.exc import MinimumSizeError, NoDataError class CategoricalGraph(Graph): def __init__(self, *args, **kwargs): order = kwargs['order'] if 'order' in kwargs else None dropna = kwargs['dropna'] if 'dropna' in kwargs else False seq_name = kwargs['name'] if 'name' in kwargs else None data = list() for d in args: new = d if is_categorical(d) else Categorical(d, name=seq_name, order=order, dropna=dropna) if new.is_empty(): raise NoDataError('Cannot draw graph because there is no data.') if len(new) <= self._min_size: raise MinimumSizeError('Length of data is less than the minimum size {}.'.format(self._min_size)) data.append(new) if not is_group(data): raise NoDataError('Cannot draw graph because there is no data.') if len(data) == 1: data = data[0] super(CategoricalGraph, self).__init__(data, **kwargs) self.draw() def draw(self): """ Prepares and displays the graph based on the set class members. """ raise NotImplementedError class GraphFrequency(CategoricalGraph): _xsize = 8.5 _ysize = 5.5 def __init__(self, data, **kwargs): self._percent = kwargs['percent'] if 'percent' in kwargs else False self._vertical = kwargs['vertical'] if 'vertical' in kwargs else True self._grid = kwargs['grid'] if 'grid' in kwargs else False self._labels = kwargs['labels'] if 'labels' in kwargs else True self._title = kwargs['title'] if 'title' in kwargs else 'Frequencies' self._save_to = kwargs['save_to'] if 'save_to' in kwargs else None order = kwargs['order'] if 'order' in kwargs else None dropna = kwargs['dropna'] if 'dropna' in kwargs else False yname = 'Percent' if self._percent else 'Frequency' name = 'Categories' if 'name' in kwargs: name = kwargs['name'] elif 'xname' in kwargs: name = kwargs['xname'] super(GraphFrequency, self).__init__(data, xname=name, yname=yname, order=order, dropna=dropna) def add_numeric_labels(self, bars, axis): if self._vertical: if len(bars) < 3: size = 'xx-large' elif len(bars) < 9: size = 'x-large' elif len(bars) < 21: size = 'large' elif len(bars) < 31: size = 'medium' else: size = 'small' for bar in bars: x_pos = bar.get_width() y_pos = bar.get_y() + bar.get_height() / 2. x_off = x_pos + 0.05 adjust = .885 if self._percent else .95 if not self._percent and x_pos != 0: adjust = adjust - math.floor(math.log10(x_pos)) * .035 label = '{:.1f}'.format(x_pos) if self._percent else '{}'.format(x_pos) col = 'k' if x_pos != 0 and (x_off / axis.get_xlim()[1]) > .965 - math.floor(math.log10(x_pos)) * .02: x_off = x_pos * adjust col = 'w' axis.annotate(label, xy=(x_pos, y_pos), xytext=(x_off, y_pos), va='center', color=col, size=size) else: if len(bars) < 21: size = 'medium' elif len(bars) < 31: size = 'small' else: size = 'x-small' for bar in bars: y_pos = bar.get_height() x_pos = bar.get_x() + bar.get_width() / 2. y_off = y_pos + 0.05 label = '{:.1f}'.format(y_pos) if self._percent else '{}'.format(y_pos) col = 'k' if (y_off / axis.get_ylim()[1]) > 0.95: y_off = y_pos * .95 col = 'w' axis.annotate(label, xy=(x_pos, y_pos), xytext=(x_pos, y_off), ha='center', size=size, color=col) def draw(self): freq = self._data.percents if self._percent else self._data.counts categories = self._data.categories.tolist() nbars = tuple(range(1, len(freq) + 1)) grid_props = dict(linestyle='-', which='major', color='grey', alpha=0.75) bar_props = dict(color=self.get_color(0), zorder=3) # Create the figure and axes if self._vertical: f, ax = subplots(figsize=(self._ysize, self._xsize)) else: f, ax = subplots(figsize=(self._xsize, self._ysize)) # Set the title f.suptitle(self._title, fontsize=14) # Create the graph, grid and labels if self._grid: ax.xaxis.grid(True, **grid_props) if self._vertical else ax.yaxis.grid(True, **grid_props) categories = ['{}...'.format(cat[:18]) if len(str(cat)) > 20 else cat for cat in categories] max_len = max([len(str(cat)) for cat in categories]) offset = max_len / 5 * 0.09 if self._vertical: bars = ax.barh(nbars, freq.tolist(), **bar_props) ax.set_xlabel(self._yname) ax.set_yticks(nbars) ax.set_yticklabels(categories) subplots_adjust(left=offset) ax.invert_yaxis() else: bars = ax.bar(nbars, freq.tolist(), **bar_props) ax.set_ylabel(self._yname) ax.set_xticks(nbars) angle = 90 if len(nbars) > 15 else 60 xticks(rotation=angle) ax.set_xticklabels(categories) subplots_adjust(bottom=offset) if self._labels: self.add_numeric_labels(bars, ax) # Save the figure to disk or display if self._save_to: savefig(self._save_to) close(f) else: show() pass
/sci_analysis-2.2.1rc0.tar.gz/sci_analysis-2.2.1rc0/sci_analysis/graphs/categorical.py
0.532182
0.290578
categorical.py
pypi
import pandas as pd import numpy as np # Import from local from .data import Data, is_data from .data_operations import flatten, is_iterable class EmptyVectorError(Exception): """ Exception raised when the length of a Vector object is 0. """ pass class UnequalVectorLengthError(Exception): """ Exception raised when the length of two Vector objects are not equal, i.e., len(Vector1) != len(Vector2) """ pass def is_numeric(obj): """ Test if the passed array_like argument is a sci_analysis Numeric object. Parameters ---------- obj : object The input object. Returns ------- test result : bool The test result of whether seq is a sci_analysis Numeric object or not. """ return isinstance(obj, Numeric) def is_vector(obj): """ Test if the passed array_like argument is a sci_analysis Vector object. Parameters ---------- obj : object The input object. Returns ------- test result : bool The test result of whether seq is a sci_analysis Vector object or not. """ return isinstance(obj, Vector) class Numeric(Data): """An abstract class that all Data classes that represent numeric data should inherit from.""" _ind = 'ind' _dep = 'dep' _grp = 'grp' _lbl = 'lbl' _col_names = (_ind, _dep, _grp, _lbl) def __init__(self, sequence=None, other=None, groups=None, labels=None, name=None): """Takes an array-like object and converts it to a pandas Series with any non-numeric values converted to NaN. Parameters ---------- sequence : int | list | set | tuple | np.array | pd.Series The input object other : list | set | tuple | np.array | pd.Series, optional The secondary input object groups : list | set | tuple | np.array | pd.Series, optional The sequence of group names for sub-arrays labels : list | set | tuple | np.array | pd.Series, optional The sequence of data point labels name : str, optional The name of the Numeric object """ self._auto_groups = True if groups is None else False self._values = pd.DataFrame([], columns=self._col_names) if sequence is None: super(Numeric, self).__init__(v=self._values, n=name) self._type = None self._values.loc[:, self._grp] = self._values[self._grp].astype('category') elif is_data(sequence): super(Numeric, self).__init__(v=sequence.values, n=name) self._type = sequence.data_type self._auto_groups = sequence.auto_groups elif isinstance(sequence, pd.DataFrame): raise ValueError('sequence cannot be a pandas DataFrame object. Use a Series instead.') else: sequence = pd.to_numeric(self.data_prep(sequence), errors='coerce') other = pd.to_numeric(self.data_prep(other), errors='coerce') if other is not None else np.nan groups = self.data_prep(groups) if groups is not None else 1 # TODO: This try block needs some work try: self._values[self._ind] = sequence self._values[self._dep] = other self._values[self._grp] = groups self._values.loc[:, self._grp] = self._values[self._grp].astype('category') if labels is not None: self._values[self._lbl] = labels except ValueError: raise UnequalVectorLengthError('length of data does not match length of other.') if any(self._values[self._dep].notnull()): self._values = self.drop_nan_intersect() else: self._values = self.drop_nan() self._type = self._values[self._ind].dtype self._name = name @staticmethod def data_prep(seq): """ Converts the values of _name to conform to the Data object standards. Parameters ---------- seq : array-like The input array to be prepared. Returns ------- data : np.array The enclosed data represented as a numpy array. """ if hasattr(seq, 'shape'): if len(seq.shape) > 1: return flatten(seq) else: return seq else: return flatten(seq) def drop_nan(self): """ Removes NaN values from the Numeric object and returns the resulting pandas Series. The length of the returned object is the original object length minus the number of NaN values removed from the object. Returns ------- arr : pandas.Series A copy of the Numeric object's internal Series with all NaN values removed. """ return self._values.dropna(how='any', subset=[self._ind]) def drop_nan_intersect(self): """ Removes the value from the internal Vector object and seq at i where i is nan in the internal Vector object or seq. Returns ------- arr : pandas.DataFrame A copy of the Numeric object's internal DataFrame with all nan values removed. """ return self._values.dropna(how='any', subset=[self._ind, self._dep]) def drop_groups(self, grps): """Drop the specified group name from the Numeric object. Parameters ---------- grps : str|int|list[str]|list[int] The name of the group to remove. Returns ------- arr : pandas.DataFrame A copy of the Numeric object's internal DataFrame with all records belonging to the specified group removed. """ if not is_iterable(grps): grps = [grps] dropped = self._values.query("{} not in {}".format(self._grp, grps)).copy() dropped[self._grp] = dropped[self._grp].cat.remove_categories(grps) self._values = dropped return dropped @property def data_type(self): return self._type @property def data(self): return self._values[self._ind] @property def other(self): return pd.Series([]) if all(self._values[self._dep].isnull()) else self._values[self._dep] @property def groups(self): groups = self._values.groupby(self._grp) return {grp: seq[self._ind].rename(grp) for grp, seq in groups if not seq.empty} @property def labels(self): return self._values[self._lbl].fillna('None') @property def paired_groups(self): groups = self._values.groupby(self._grp) return {grp: (df[self._ind], df[self._dep]) for grp, df in groups if not df.empty} @property def group_labels(self): groups = self._values.groupby(self._grp) return {grp: df[self._lbl] for grp, df in groups if not df.empty} @property def values(self): return self._values @property def auto_groups(self): return self._auto_groups @property def has_labels(self): return any(pd.notna(self._values[self._lbl])) class Vector(Numeric): """ The sci_analysis representation of continuous, numeric data. """ def __init__(self, sequence=None, other=None, groups=None, labels=None, name=None): """ Takes an array-like object and converts it to a pandas Series of dtype float64, with any non-numeric values converted to NaN. Parameters ---------- sequence : array-like or int or float or None The input object other : array-like The secondary input object groups : array-like The sequence of group names for sub-arrays labels : list | set | tuple | np.array | pd.Series, optional The sequence of data point labels name : str, optional The name of the Vector object """ super(Vector, self).__init__(sequence=sequence, other=other, groups=groups, labels=labels, name=name) if not self._values.empty: self._values[self._ind] = self._values[self._ind].astype('float') self._values[self._dep] = self._values[self._dep].astype('float') def is_empty(self): """ Overrides the super class's method to also check for length of zero. Returns ------- test_result : bool The result of whether the length of the Vector object is 0 or not. Examples -------- >>> Vector([1, 2, 3, 4, 5]).is_empty() False >>> Vector([]).is_empty() True """ return self._values.empty def append(self, other): """ Append the values of another vector to self. Parameters ---------- other : Vector The Vector object to be appended to self. Returns ------- vector : Vector The original Vector object with new values. Examples -------- >>> Vector([1, 2, 3]).append(Vector([4, 5, 6])).data pandas.Series([1., 2., 3., 4., 5., 6.]) """ if not is_vector(other): raise ValueError("Vector object cannot be added to a non-vector object.") if other.data.empty: return self if self.auto_groups and other.auto_groups and len(self._values) > 0: new_cat = max(self._values[self._grp].cat.categories) + 1 other.values['grp'] = new_cat self._values = pd.concat([self._values, other.values], copy=False) self._values.reset_index(inplace=True, drop=True) self._values.loc[:, self._grp] = self._values[self._grp].astype('category') return self def flatten(self): """ Disassociates independent and dependent data into individual groups. Returns ------- data : tuple(Series) A tuple of pandas Series. """ if not self.other.empty: return (tuple(data[self._ind] for grp, data in self.values.groupby(self._grp)) + tuple(data[self._dep] for grp, data in self.values.groupby(self._grp))) else: return tuple(data[self._ind] for grp, data in self.values.groupby(self._grp))
/sci_analysis-2.2.1rc0.tar.gz/sci_analysis-2.2.1rc0/sci_analysis/data/numeric.py
0.818592
0.724889
numeric.py
pypi
def is_data(obj): """ Test if the passed array_like argument is a sci_analysis Data object. Parameters ---------- obj : object The input object. Returns ------- test result : bool The test result of whether seq is a sci_analysis Data object or not. """ return isinstance(obj, Data) class Data(object): """ The super class used by all objects representing data for analysis in sci_analysis. All analysis classes should expect the data provided through arguments to be a descendant of this class. Data members are data_type, data and name. data_type is used for identifying the container class. The data member stores the data provided through an argument. The name member is an optional name for the Data object. """ def __init__(self, v=None, n=None): """ Sets the data and name members. Parameters ---------- v : array_like The input object n : str The name of the Data object """ self._values = v self._name = n def is_empty(self): """ Tests if this Data object's data member equals 'None' and returns the result. Returns ------- test result : bool The result of whether self._values is set or not """ return self._values is None @property def data(self): return self._values @property def name(self): return self._name def __repr__(self): """ Prints the Data object using the same representation as its data member. Returns ------- output : str The string representation of the encapsulated data. """ return self._values.__repr__() def __len__(self): """Returns the length of the data member. If data is not defined, 0 is returned. If the data member is a scalar value, 1 is returned. Returns ------- length : int The length of the encapsulated data. """ if self._values is not None: try: return len(self._values) except TypeError: return 1 else: return 0 def __getitem__(self, item): """ Gets the value of the data member at index item and returns it. Parameters ---------- item : int An index of the encapsulating data. Returns ------- value : object The value of the encapsulated data at the specified index, otherwise None if no such index exists. """ try: return self._values[item] except (IndexError, AttributeError): return None def __contains__(self, item): """ Tests whether the encapsulated data contains the specified index or not. Parameters ---------- item : int An index of the encapsulating data. Returns ------- test result : bool The test result of whether item is a valid index of the encapsulating data or not. """ try: return item in self._values except AttributeError: return None def __iter__(self): """ Give this Data object the iterative behavior of its encapsulated data. Returns ------- itr :iterator An iterator based on the encapsulated sequence. """ return self._values.__iter__()
/sci_analysis-2.2.1rc0.tar.gz/sci_analysis-2.2.1rc0/sci_analysis/data/data.py
0.927961
0.827689
data.py
pypi
import six import numpy as np import pandas as pd def to_float(seq): """ Takes an arguement seq, tries to convert each value to a float and returns the result. If a value cannot be converted to a float, it is replaced by 'nan'. Parameters ---------- seq : array-like The input object. Returns ------- subseq : array_like seq with values converted to a float or "nan". >>> to_float(['1', '2', '3', 'four', '5']) [1.0, 2.0, 3.0, nan, 5.0] """ float_list = list() for i in range(len(seq)): try: float_list.append(float(seq[i])) except ValueError: float_list.append(float("nan")) except TypeError: float_list.append(to_float(seq[i])) return float_list def flatten(seq): """ Recursively reduces the dimension of seq to one. Parameters ---------- seq : array-like The input object. Returns ------- subseq : array_like A flattened copy of the input object. Flatten a two-dimensional list into a one-dimensional list >>> flatten([[1, 2, 3], [4, 5, 6]]) array([1, 2, 3, 4, 5, 6]) Flatten a three-dimensional list into a one-dimensional list >>> flatten([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]) array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) >>> flatten(([1, 2, 3], [4, 5, 6])) array([1, 2, 3, 4, 5, 6]) >>> flatten(list(zip([1, 2, 3], [4, 5, 6]))) array([1, 4, 2, 5, 3, 6]) >>> flatten([(1, 2), (3, 4), (5, 6), (7, 8)]) array([1, 2, 3, 4, 5, 6, 7, 8]) """ return np.array(seq).flatten() def is_tuple(obj): """ Checks if a given sequence is a tuple. Parameters ---------- obj : object The input array. Returns ------- test result : bool The test result of whether seq is a tuple or not. >>> is_tuple(('a', 'b')) True >>> is_tuple(['a', 'b']) False >>> is_tuple(4) False """ return True if isinstance(obj, tuple) else False def is_iterable(obj): """ Checks if a given variable is iterable, but not a string. Parameters ---------- obj : Any The input argument. Returns ------- test result : bool The test result of whether variable is iterable or not. >>> is_iterable([1, 2, 3]) True >>> is_iterable((1, 2, 3)) True >>> is_iterable({'one': 1, 'two': 2, 'three': 3}) True Strings arguments return False. >>> is_iterable('foobar') False Scalars return False. >>> is_iterable(42) False """ if isinstance(obj, six.string_types): return False try: obj.__iter__() return True except (AttributeError, TypeError): return False def is_array(obj): """ Checks if a given sequence is a numpy Array object. Parameters ---------- obj : object The input argument. Returns ------- test result : bool The test result of whether seq is a numpy Array or not. >>> import numpy as np >>> is_array([1, 2, 3, 4, 5]) False >>> is_array(np.array([1, 2, 3, 4, 5])) True """ return hasattr(obj, 'dtype') def is_series(obj): """ Checks if a given sequence is a Pandas Series object. Parameters ---------- obj : object The input argument. Returns ------- bool >>> is_series([1, 2, 3]) False >>> is_series(pd.Series([1, 2, 3])) True """ return isinstance(obj, pd.Series) def is_dict(obj): """ Checks if a given sequence is a dictionary. Parameters ---------- obj : object The input argument. Returns ------- test result : bool The test result of whether seq is a dictionary or not. >>> is_dict([1, 2, 3]) False >>> is_dict((1, 2, 3)) False >>> is_dict({'one': 1, 'two': 2, 'three': 3}) True >>> is_dict('foobar') False """ return isinstance(obj, dict) def is_group(seq): """ Checks if a given variable is a list of iterable objects. Parameters ---------- seq : array_like The input argument. Returns ------- test result : bool The test result of whether seq is a list of array_like values or not. >>> is_group([[1, 2, 3], [4, 5, 6]]) True >>> is_group({'one': 1, 'two': 2, 'three': 3}) False >>> is_group(([1, 2, 3], [4, 5, 6])) True >>> is_group([1, 2, 3, 4, 5, 6]) False >>> is_group({'foo': [1, 2, 3], 'bar': [4, 5, 6]}) False """ try: if any(is_iterable(x) for x in seq): return True else: return False except TypeError: return False def is_dict_group(seq): """ Checks if a given variable is a dictionary of iterable objects. Parameters ---------- seq : array-like The input argument. Returns ------- test result : bool The test result of whether seq is a dictionary of array_like values or not. >>> is_dict_group([[1, 2, 3], [4, 5, 6]]) False >>> is_dict_group(([1, 2, 3], [4, 5, 6])) False >>> is_dict_group([1, 2, 3, 4, 5, 6]) False >>> is_dict_group({'foo': [1, 2, 3], 'bar': [4, 5, 6]}) True """ try: if is_group(list(seq.values())): return True else: return False except (AttributeError, TypeError): return False def is_number(obj): """ Checks if the given object is a number. Parameters ---------- obj : Any The input argument. Returns ------- test result : bool The test result of whether obj can be converted to a number or not. >>> is_number(3) True >>> is_number(1.34) True >>> is_number('3') True >>> is_number(np.array(3)) True >>> is_number('a') False >>> is_number([1, 2, 3]) False >>> is_number(None) False """ try: float(obj) return True except (ValueError, TypeError): return False
/sci_analysis-2.2.1rc0.tar.gz/sci_analysis-2.2.1rc0/sci_analysis/data/data_operations.py
0.886439
0.695222
data_operations.py
pypi
from warnings import warn # Import packages import pandas as pd # Import from local from .data import Data, is_data from .data_operations import flatten, is_iterable class NumberOfCategoriesWarning(Warning): warn_categories = 50 def __str__(self): return "The number of categories is greater than {} which might make analysis difficult. " \ "If this isn't a mistake, consider subsetting the data first".format(self.warn_categories) def is_categorical(obj): """ Test if the passed array_like argument is a sci_analysis Categorical object. Parameters ---------- obj : object The input object. Returns ------- test result : bool The test result of whether obj is a sci_analysis Categorical object. """ return isinstance(obj, Categorical) class Categorical(Data): """ The sci_analysis representation of categorical, quantitative or textual data. """ def __init__(self, sequence=None, name=None, order=None, dropna=False): """Takes an array-like object and converts it to a pandas Categorical object. Parameters ---------- sequence : array-like or Data or Categorical The input object. name : str, optional The name of the Categorical object. order : array-like The order that categories in sequence should appear. dropna : bool Remove all occurances of numpy NaN. """ if sequence is None: self._values = pd.Series([]) self._order = order self._name = name self._summary = pd.DataFrame([], columns=['counts', 'ranks', 'percents', 'categories']) elif is_data(sequence): new_name = sequence.name or name super(Categorical, self).__init__(v=sequence.data, n=new_name) self._order = sequence.order self._values = sequence.data self._name = sequence.name self._summary = sequence.summary else: self._name = name self._values = pd.Series(sequence) try: self._values.astype('category') except TypeError: self._values = pd.Series(flatten(sequence)) except ValueError: self._values = pd.Series([]) # Try to preserve the original dtype of the categories. try: if not any(self._values % 1): self._values = self._values.astype(int) except TypeError: pass self._values = self._values.astype('category') if order is not None: if not is_iterable(order): order = [order] self._values = self._values.cat.set_categories(order).cat.reorder_categories(order, ordered=True) if dropna: self._values = self._values.dropna() try: sequence += 1 self._order = None if self._values.empty else self._values.cat.categories except TypeError: self._order = order counts = self._values.value_counts(sort=False, dropna=False, ascending=False) self._summary = pd.DataFrame({ 'counts': counts, 'ranks': counts.rank(method='dense', na_option='bottom', ascending=False).astype('int'), 'percents': (counts / counts.sum() * 100) if not all(counts == 0) else 0.0 }) self._summary['categories'] = self._summary.index.to_series() if order is not None: self._summary.sort_index(level=self._order, inplace=True, axis=0, na_position='last') else: self._summary.sort_values('ranks', inplace=True) if not self._summary.empty and len(self.categories) > NumberOfCategoriesWarning.warn_categories: warn(NumberOfCategoriesWarning()) def is_empty(self): """ Overrides the super class's method to also check for length of zero. Returns ------- test_result : bool The result of whether the length of the Vector object is 0 or not. """ return self._values.empty @property def summary(self): return self._summary @property def counts(self): return self._summary.counts @property def percents(self): return self._summary.percents @property def order(self): return self._order @property def ranks(self): return self._summary.ranks @property def categories(self): return self._summary.categories @property def total(self): return len(self._values) @property def num_of_groups(self): return len(self._summary)
/sci_analysis-2.2.1rc0.tar.gz/sci_analysis-2.2.1rc0/sci_analysis/data/categorical.py
0.883995
0.547646
categorical.py
pypi
class DefaultPreferences(type): """The type for Default Preferences that cannot be modified""" def __setattr__(cls, key, value): if key == "defaults": raise AttributeError("Cannot override defaults") else: return type.__setattr__(cls, key, value) def __delattr__(cls, item): if item == "defaults": raise AttributeError("Cannot delete defaults") else: return type.__delattr__(cls, item) class Preferences(object): """The base Preferences class""" __metaclass__ = DefaultPreferences def list(self): print(self.__dict__) return self.__dict__ def defaults(self): return tuple(self.__dict__.values()) class GraphPreferences(object): """Handles graphing preferences.""" class Plot(object): boxplot = True histogram = True cdf = False oneway = True probplot = True scatter = True tukey = False histogram_borders = False boxplot_borders = False defaults = (boxplot, histogram, cdf, oneway, probplot, scatter, tukey, histogram_borders, boxplot_borders) distribution = {'counts': False, 'violin': False, 'boxplot': True, 'fit': False, 'fit_style': 'r--', 'fit_width': '2', 'cdf_style': 'k-', 'distribution': 'norm', 'bins': 20, 'color': 'green' } bivariate = {'points': True, 'point_style': 'k.', 'contours': False, 'contour_width': 1.25, 'fit': True, 'fit_style': 'r-', 'fit_width': 1, 'boxplot': True, 'violin': True, 'bins': 20, 'color': 'green' } oneway = {'boxplot': True, 'violin': False, 'point_style': '^', 'line_style': '-' }
/sci_analysis-2.2.1rc0.tar.gz/sci_analysis-2.2.1rc0/sci_analysis/preferences/preferences.py
0.727395
0.156427
preferences.py
pypi
import pandas as pd import os from sci_annot_eval.common.bounding_box import AbsoluteBoundingBox, RelativeBoundingBox from . parsers.parserInterface import Parser from sci_annot_eval import evaluation def build_id_file_dict(path: str): result = {} for file in os.listdir(path): no_extension = file.split('.')[0] result[no_extension] = os.path.join(path, file) return result def build_3D_dict(input: dict): """ Converts the nested dictionary into an input for pandas' multiIndex. See https://stackoverflow.com/questions/24988131/nested-dictionary-to-multiindex-dataframe-where-dictionary-keys-are-column-label """ return { (outerKey, innerKey): values for outerKey, innerDict in input.items() for innerKey, values in innerDict.items() } def benchmark( render_summary_parquet_path: str, gtruth_parser: Parser, pred_parser: Parser, gtruth_dir: str, pred_dir: str, output_parquet_path: str, IOU_threshold: float = 0.8 ): result_dict = {} gtruth_file_dict = build_id_file_dict(gtruth_dir) pred_file_dict = build_id_file_dict(pred_dir) render_summ = pd.read_parquet(render_summary_parquet_path) for row in render_summ.itertuples(): id = row.Index ground_truth = [] if id in gtruth_file_dict.keys(): ground_truth = gtruth_parser.parse_file_relative(gtruth_file_dict[id]) predictions = [] if id in pred_file_dict.keys(): predictions = pred_parser.parse_file_relative(pred_file_dict[id]) result_dict[id] = evaluation.evaluate(predictions, ground_truth, IOU_threshold) """ Produces a DF in this shape: class class2 ... class_1 ... metric metric_1 metric_2 ... metric_1 metric_2 metric_3 ... id id_1 -1 -2 1 2 2 id_2 -3 -4 3 4 0 """ result_df = pd.DataFrame.from_dict(result_dict, orient='index').stack() result_df = pd.DataFrame(result_df.values.tolist(), index=result_df.index, columns=['TP', 'FP', 'FN'])\ .unstack()\ .swaplevel(axis=1)\ .sort_index(axis=1, level=0)\ .rename_axis(index='id', columns=['class', 'metric']) result_df.to_parquet(output_parquet_path)
/sci_annot_eval-0.0.9-py3-none-any.whl/sci_annot_eval/benchmarking.py
0.557845
0.216094
benchmarking.py
pypi
import argparse from sci_annot_eval.common.bounding_box import AbsoluteBoundingBox, RelativeBoundingBox from sci_annot_eval.exporters.sci_annot_exporter import SciAnnotExporter from . helpers import rasterize_pdfs, pdffigures2_page_splitter, deepfigures_prediction import coloredlogs import logging from enum import Enum from . benchmarking import benchmark from . parsers import sci_annot_parser, pdffigures2_parser, parserInterface from sci_annot_eval.common.prediction_field_mapper import Pdffigures2FieldMapper, DeepfiguresFieldMapper import os import pandas as pd # TODO: Type hint values class RegisteredParsers(Enum): SCI_ANNOT = sci_annot_parser.SciAnnotParser() PDF_FIGURES_2 = pdffigures2_parser.PdfFigures2Parser(Pdffigures2FieldMapper) DEEPFIGURES = pdffigures2_parser.PdfFigures2Parser(DeepfiguresFieldMapper) def run_benchmark( render_summary_parquet_path: str, gtruth_parser_name: str, pred_parser_name: str, gtruth_dir: str, pred_dir: str, output_parquet_path: str, IOU_threshold: float = 0.8, **kwargs ): gtruth_parser = RegisteredParsers.__getitem__(gtruth_parser_name) pred_parser = RegisteredParsers.__getitem__(pred_parser_name) benchmark( render_summary_parquet_path, gtruth_parser.value, pred_parser.value, gtruth_dir, pred_dir, output_parquet_path, IOU_threshold ) def run_deepfigures_prediction( deepfigures_root: str, input_folder: str, output_folder: str, run_summary_csv_path: str, **kwargs ): deepfigures_prediction.run_deepfigures_prediction_for_folder( deepfigures_root, input_folder, output_folder, run_summary_csv_path ) def run_transpile( input_dir: str, input_parser_name: str, render_summary_parquet_path: str, output_dir: str, **kwargs ): input_parser = RegisteredParsers.__getitem__(input_parser_name).value exporter = SciAnnotExporter() if not os.path.exists(output_dir): logging.debug('Output directory does not exist. Creating it...') os.mkdir(output_dir) files = os.listdir(input_dir) render_summ = pd.read_parquet(render_summary_parquet_path) for i, file in enumerate(files): id = file[:-5] logging.debug(f'Transpiling file {i+1}/{len(files)} with id {id}') summary_row = render_summ[render_summ.index == id] relative_input = input_parser.parse_file_relative(os.path.join(input_dir, file)) exporter.export_to_file( relative_input, int(summary_row.width.values[0]), int(summary_row.height.values[0]), os.path.join(output_dir, file) ) logging.info(f'Transpiled {len(files)} files') # TODO: Make args consistent def main(): parser = argparse.ArgumentParser(description='Command line tool for managing the sci_annot evaluator and its helper functions', argument_default=argparse.SUPPRESS) parser.add_argument('--verbose', '-v', dest='verbose', help='Enable verbose logging (info, debug)', action='count', default=0) subparsers = parser.add_subparsers() parser_rasterize = subparsers.add_parser( 'rasterize', description='Rasterize all pdfs in input folder and additionally produce a summary parquet file called render_summary.parquet in the output folder.', argument_default=argparse.SUPPRESS ) parser_rasterize.add_argument('-i', dest='input-dir', metavar='input_folder', help='Input folder containing PDFs.', required=True) parser_rasterize.add_argument('-o' ,dest='output-dir', metavar='output_folder', help='Output folder to save page rasters.', required=True) parser_rasterize.add_argument('--dpi', metavar='DPI', help='DPI to render at (default is 150).', type=int) parser_rasterize.add_argument('-f', dest='format', metavar='format', help='Output format for images (default is png).') parser_rasterize.add_argument('-t', dest='nr-threads', metavar='threads', help='Number of threads to use when rasterizing (default is 8).') parser_rasterize.set_defaults(func=rasterize_pdfs.rasterize) parser_pdffig2 = subparsers.add_parser( 'split-pdffigures2', description='Take original pdffigures2 output and split it into validator-friendly per-page files.', argument_default=argparse.SUPPRESS ) parser_pdffig2.add_argument('-i', dest='input-dir', metavar='input_folder', help='Input folder containing the original predictions.', required=True) parser_pdffig2.add_argument('-o' ,dest='output-dir', metavar='output_folder', help='Output folder to save per-page predictions.', required=True) parser_pdffig2.add_argument('-p' ,dest='run-prefix', metavar='prefix', help='Prediction prefix specified with -d when running pdffigures2', required=True) parser_pdffig2.add_argument('-s' ,dest='render_summary_path', metavar='path', help='Path to render summary parquet file', required=True) parser_pdffig2.set_defaults(func=pdffigures2_page_splitter.split_pages) parser_benchmark = subparsers.add_parser( 'benchmark', description='Evaluate predictions against a ground truth and produce TP, FP, and FN metrics for each page', argument_default=argparse.SUPPRESS ) parser_benchmark.add_argument('-g', '--ground-truth-dir', dest='gtruth_dir', metavar='DIR', help='Directory containing files with ground truth annotations. Each should be named like PDF_ID-PAGENR.EXTENSION.', required=True) parser_benchmark.add_argument('-p', '--predictions-dir', dest='pred_dir', metavar='DIR', help='Directory containing files with prediction annotations. Each should be named like: PDF_ID-PAGENR.EXTENSION.', required=True) parser_benchmark.add_argument('-G', '--ground-truth-parser', dest='gtruth_parser_name', help='Parser to use for each file in the ground truth directory.', choices=RegisteredParsers.__members__, required=True) parser_benchmark.add_argument('-P', '--predictions-parser', dest='pred_parser_name', help='Parser to use for each file in the parser directory.', choices=RegisteredParsers.__members__, required=True) parser_benchmark.add_argument('-r', '--render-summary', dest='render_summary_parquet_path', metavar='PATH', help='Path to render_summary.parquet. This table contains all of the pages to test on.', required=True) parser_benchmark.add_argument('-o', '--output-path', dest='output_parquet_path', metavar='PATH', help='Tells the tool where to create a parquet file which contains the benchmark output', required=True) parser_benchmark.add_argument('-t', '--IOU-threshold', dest='IOU_threshold', metavar='THRESHOLD', help='Area under curve threshold over which annotations count as valid (default is 0.8)', type=float) parser_benchmark.set_defaults(func= run_benchmark) parser_deepfigures_predict = subparsers.add_parser( 'deepfigures-predict', description='Use deepfigures to detect elements from each pdf in the input folder', argument_default=argparse.SUPPRESS ) parser_deepfigures_predict.add_argument('deepfigures_root', metavar='DIR', help='Folder containing manage.py and all other requirements for deepfigures-open') parser_deepfigures_predict.add_argument('input_folder', metavar='DIR', help='Folder containing input PDFs') parser_deepfigures_predict.add_argument('output_folder', metavar='DIR', help='Folder in which predictions should be saved') parser_deepfigures_predict.add_argument('run_summary_csv_path', metavar='FILE', help='Path to save run information') parser_deepfigures_predict.set_defaults(func=run_deepfigures_prediction) parser_transpile = subparsers.add_parser( 'transpile', description='Take a folder of predictions in one format and output them in another', argument_default=argparse.SUPPRESS ) parser_transpile.add_argument('-i', '--input-dir', dest='input_dir', metavar='DIR', help='Directory containing files with prediction annotations. Each should be named like: PDF_ID-PAGENR.EXTENSION.', required=True) parser_transpile.add_argument('-I', '--input-parser', dest='input_parser_name', help='Parser to use for each file in the input directory.', choices=RegisteredParsers.__members__, required=True) parser_transpile.add_argument('-o', '--output-dir', dest='output_dir', metavar='PATH', help='Where to create the transpiled files', required=True) parser_transpile.add_argument('-r', '--render-summary', dest='render_summary_parquet_path', metavar='PATH', help='Path to render_summary.parquet. This is required in order to create right absolute coordinates', required=True) parser_transpile.set_defaults(func=run_transpile) args = parser.parse_args() logging_config = {"fmt":'%(asctime)s %(levelname)s: %(message)s', "level": logging.WARNING} if(args.verbose == 1): logging_config['level'] = logging.INFO elif(args.verbose == 2): logging_config['level'] = logging.DEBUG coloredlogs.install(**logging_config) logging.debug('DEBUG LOGGING ENABLED') logging.info('INFO LOGGING ENABLED') if hasattr(args, 'func'): args.func(**vars(args)) if __name__ == '__main__': main()
/sci_annot_eval-0.0.9-py3-none-any.whl/sci_annot_eval/cli_entrypoint.py
0.446977
0.207235
cli_entrypoint.py
pypi
import cv2 as cv import numpy as np from ..common.bounding_box import AbsoluteBoundingBox, RelativeBoundingBox def delete_multiple_elements(list_object, indices): indices = sorted(indices, reverse=True) for idx in indices: list_object.pop(idx) def make_absolute( bbox_list: list[RelativeBoundingBox], canvas_width: int, canvas_height: int ) -> list[AbsoluteBoundingBox]: result_dict: dict[RelativeBoundingBox, AbsoluteBoundingBox] = {} for box in bbox_list: if type(box) is not RelativeBoundingBox: raise TypeError(f'Annotation {box} is not of type RelativeBoundingBox!') abs_box = AbsoluteBoundingBox( box.type, box.x*canvas_width, box.y*canvas_height, box.height*canvas_height, box.width*canvas_width, box.parent ) result_dict[box] = abs_box # Replace old parent references with new ones for id, annotation in result_dict.items(): if annotation.parent: annotation.parent = result_dict[annotation.parent] return list(result_dict.values()) def make_relative( bbox_list: list[AbsoluteBoundingBox], canvas_width: int, canvas_height: int ) -> list[RelativeBoundingBox]: result_dict: dict[AbsoluteBoundingBox, RelativeBoundingBox] = {} for box in bbox_list: if type(box) is not AbsoluteBoundingBox: raise TypeError(f'Annotation {box} is not of type AbsoluteBoundingBox!') abs_box = RelativeBoundingBox( box.type, box.x/float(canvas_width), box.y/float(canvas_height), box.height/float(canvas_height), box.width/float(canvas_width), box.parent ) result_dict[box] = abs_box # Replace old parent references with new ones for id, annotation in result_dict.items(): if annotation.parent: annotation.parent = result_dict[annotation.parent] return list(result_dict.values()) # TODO: Add float32 support! def crop_to_content( img: np.ndarray, orig_coords: AbsoluteBoundingBox, threshold: int= 248 ) -> tuple[float, float, float, float]: ox = int(orig_coords.x) oy = int(orig_coords.y) ow = int(orig_coords.width) oh = int(orig_coords.height) selected_slice = img[oy:oy+oh+1, ox:ox+ow+1] is_color = len(img.shape) == 3 and img.shape[2] == 3 if is_color: gray = cv.cvtColor(selected_slice, cv.COLOR_BGR2GRAY) else: gray = selected_slice gray = 255 * (gray < threshold).astype(np.uint8) coords = cv.findNonZero(gray) # Find all non-zero points (text) x, y, w, h = cv.boundingRect(coords) # Find minimum spanning bounding box return (ox+x, oy+y, w, h) def crop_all_to_content( image: bytes, orig_annots: list[AbsoluteBoundingBox], threshold: int= 248 ) -> list[AbsoluteBoundingBox]: """Takes a page as a bytes object and crops the whitespace out of the provided annotations. Args: image (bytes): _description_ orig_annots (list[AbsoluteBoundingBox]): _description_ threshold (int, optional): _description_. Defaults to 248. Returns: list[AbsoluteBoundingBox]: _description_ """ image_as_np = np.frombuffer(image, dtype=np.uint8) img = cv.imdecode(image_as_np, cv.IMREAD_COLOR) result_dict = {} for annot in orig_annots: x, y, w, h = crop_to_content(img, annot, threshold) cropped = AbsoluteBoundingBox( annot.type, x, y, h, w, annot.parent ) result_dict[annot] = cropped # Replace old parent references with new ones for id, annotation in result_dict.items(): if annotation.parent: annotation.parent = result_dict[annotation.parent] return list(result_dict.values())
/sci_annot_eval-0.0.9-py3-none-any.whl/sci_annot_eval/helpers/helpers.py
0.639624
0.354629
helpers.py
pypi
from sci_annot_eval.common.sci_annot_annotation import Annotation, SciAnnotOutput from ..common.bounding_box import AbsoluteBoundingBox, RelativeBoundingBox from . exporterInterface import Exporter import json from typing import TypedDict, Any class SciAnnotExporter(Exporter): def export_to_dict(self, input: list[RelativeBoundingBox], canvas_width: int, canvas_height: int, **kwargs) -> SciAnnotOutput: result: SciAnnotOutput = { 'canvasHeight': canvas_height, 'canvasWidth': canvas_width, 'annotations': [] } source = kwargs['source'] if 'source' in kwargs.keys() else 'Unknown' for annotation in input: if type(annotation) is not RelativeBoundingBox: raise TypeError(f'Annotation {annotation} is not of type RelativeBoundingBox!') absolute_x = annotation.x * canvas_width absolute_y = annotation.y * canvas_height absolute_height = annotation.height * canvas_height absolute_width = annotation.width * canvas_width generated_anno: Annotation = { "type": "Annotation", "body": [ { "type": "TextualBody", "purpose": "img-cap-enum", "value": f"{annotation.type}" } ], "target": { "source": source, "selector": { "type": "FragmentSelector", "conformsTo": "http://www.w3.org/TR/media-frags/", "value": f"xywh=pixel:{absolute_x},{absolute_y},{absolute_width},{absolute_height}" } }, "@context": "http://www.w3.org/ns/anno.jsonld", "id": f"#{hash(annotation)}" } if(annotation.parent): generated_anno['body'].append({ "type": "TextualBody", "purpose": "parent", "value": f"#{hash(annotation.parent)}" }) result['annotations'].append(generated_anno) return result def export_to_str(self, input: list[RelativeBoundingBox], canvas_width: int, canvas_height: int, **kwargs) -> str: res = self.export_to_dict(input, canvas_width, canvas_height, **kwargs) return json.dumps(res, indent=4) def export_to_file( self, input: list[RelativeBoundingBox], canvas_width: int, canvas_height: int, file_location: str, **kwargs ): res = self.export_to_str(input, canvas_width, canvas_height, **kwargs) with open(file_location, 'w') as f: f.write(res)
/sci_annot_eval-0.0.9-py3-none-any.whl/sci_annot_eval/exporters/sci_annot_exporter.py
0.767777
0.270817
sci_annot_exporter.py
pypi
from . parserInterface import Parser from sci_annot_eval.common.bounding_box import AbsoluteBoundingBox, BoundingBox, RelativeBoundingBox, TargetType from sci_annot_eval.common.prediction_field_mapper import PredictionFieldMapper from .. helpers import helpers import json from typing import Any, Type class PdfFigures2Parser(Parser): """This parser works for both Pdffigures2 and Deepfigures """ def __init__(self, field_mapper: Type[PredictionFieldMapper]): self.field_mapper = field_mapper def extract_x12y12(self, boundaries: dict[str, float]) -> tuple[float, float, float, float]: x = boundaries['x1'] y = boundaries['y1'] x2 = boundaries['x2'] y2 = boundaries['y2'] w = x2 - x h = y2 - y return x, y, w, h def parse_dict_absolute(self, input: dict[str, Any]) -> list[AbsoluteBoundingBox]: result: list[AbsoluteBoundingBox] = [] figures = input['figures'] for figure in figures: fig_x, fig_y, fig_w, fig_h = self.extract_x12y12(figure[self.field_mapper.region_boundary]) fig_type = figure[self.field_mapper.figure_type] fig_bbox = AbsoluteBoundingBox(fig_type, fig_x, fig_y, fig_h, fig_w, None) result.append(fig_bbox) if(self.field_mapper.caption_boundary in figure.keys()): cap_x, cap_y, cap_w, cap_h = self.extract_x12y12(figure[self.field_mapper.caption_boundary]) result.append(AbsoluteBoundingBox( TargetType.CAPTION.value, cap_x, cap_y, cap_h, cap_w, fig_bbox )) regionless_captions = [] if 'regionless-captions' in input.keys(): regionless_captions = input['regionless-captions'] for r_caption in regionless_captions: r_cap_x, r_cap_y, r_cap_w, r_cap_h = self.extract_x12y12(r_caption['boundary']) result.append(AbsoluteBoundingBox( TargetType.CAPTION.value, r_cap_x, r_cap_y, r_cap_h, r_cap_w, None )) return result def parse_dict_relative(self, input: dict[str, Any]) -> list[RelativeBoundingBox]: return helpers.make_relative(self.parse_dict_absolute(input), int(input['width']), int(input['height'])) def parse_text_absolute(self, input: str) -> list[AbsoluteBoundingBox]: return self.parse_dict_absolute(json.loads(input)) def parse_text_relative(self, input: str) -> list[RelativeBoundingBox]: return self.parse_dict_relative(json.loads(input)) def parse_file_absolute(self, path: str) -> list[AbsoluteBoundingBox]: with open(path, 'r') as fd: return self.parse_dict_absolute(json.load(fd)) def parse_file_relative(self, path: str) -> list[RelativeBoundingBox]: with open(path, 'r') as fd: return self.parse_dict_relative(json.load(fd))
/sci_annot_eval-0.0.9-py3-none-any.whl/sci_annot_eval/parsers/pdffigures2_parser.py
0.714927
0.430447
pdffigures2_parser.py
pypi
from sci_annot_eval.common.bounding_box import RelativeBoundingBox from . parserInterface import Parser from .. common.bounding_box import AbsoluteBoundingBox, BoundingBox, RelativeBoundingBox, TargetType from ..common.sci_annot_annotation import Annotation, SciAnnotOutput from .. helpers import helpers import re import json from typing import Any, Optional from typing import Mapping class SciAnnotParser(Parser): location_regex= re.compile(r'\d+(?:\.\d+)?') child_types = [TargetType.CAPTION] def get_annotation_type(self, annot: Annotation)-> TargetType: for block in annot['body']: if block['purpose'] == 'img-cap-enum': return TargetType(block['value']) raise ValueError(f'Annotation has no type: {annot}') def get_annotation_parent_id(self, annot: Annotation)-> Optional[str] : for block in annot['body']: if block['purpose'] == 'parent': return block['value'] return None def parse_location_string(self, annot: Annotation)-> tuple[float, float, float, float]: loc = annot['target']['selector']['value'] parsed_loc = self.location_regex.findall(loc) if (len(parsed_loc) != 4): raise ValueError(f'Location string couldn\'t be parsed: {loc}') # Python's typing is not so clever yet... return (float(parsed_loc[0]), float(parsed_loc[1]), float(parsed_loc[2]), float(parsed_loc[3])) def parse_dict_absolute(self, input: Mapping) -> list[AbsoluteBoundingBox]: result: dict[str, AbsoluteBoundingBox] = {} for annotation in input['annotations']: id = annotation['id'] ann_type = self.get_annotation_type(annotation) x, y, width, height = self.parse_location_string(annotation) parent_id = None if ann_type in self.child_types: parent_id = self.get_annotation_parent_id(annotation) result[id] = AbsoluteBoundingBox( ann_type.value, x, y, height, width, parent_id, ) for id, annotation in result.items(): if annotation.parent: annotation.parent = result[annotation.parent] res_list = list(result.values()) return res_list def parse_dict_relative(self, input: Mapping[str, Any]) -> list[RelativeBoundingBox]: canvas_height = int(input['canvasHeight']) canvas_width = int(input['canvasWidth']) return helpers.make_relative(self.parse_dict_absolute(input), canvas_width, canvas_height) def parse_text_absolute(self, input: str) -> list[AbsoluteBoundingBox]: return self.parse_dict_absolute(json.loads(input)) def parse_text_relative(self, input: str) -> list[RelativeBoundingBox]: return self.parse_dict_relative(json.loads(input)) def parse_file_absolute(self, path: str) -> list[AbsoluteBoundingBox]: with open(path, 'r') as fd: return self.parse_dict_absolute(json.load(fd)) def parse_file_relative(self, path: str) -> list[RelativeBoundingBox]: with open(path, 'r') as fd: return self.parse_dict_relative(json.load(fd))
/sci_annot_eval-0.0.9-py3-none-any.whl/sci_annot_eval/parsers/sci_annot_parser.py
0.81721
0.308359
sci_annot_parser.py
pypi
import datetime from sci_api_req import config from ..api_provider import ApiProvider class DONKIProvider(ApiProvider): """ The Space Weather Database Of Notifications, Knowledge, Information (DONKI) is a comprehensive on-line tool for space weather forecasters, scientists, and the general space science community. DONKI provides chronicles the daily interpretations of space weather observations, analysis, models, forecasts, and notifications provided by the Space Weather Research Center (SWRC), comprehensive knowledge-base search functionality to support anomaly resolution and space science research, intelligent linkages, relationships, cause-and-effects between space weather activities and comprehensive webservice API access to information stored in DONKI. For more information see: https://api.nasa.gov/api.html#DONKI. Requires NASA api key """ def __init__(self): super(ApiProvider).__init__() self._api_url = "https://api.nasa.gov/DONKI/" @property def api_key(self) -> str: return config.get_api_keys('NASA') def coronal_mass_ejection(self, start_date=datetime.date.today() - datetime.timedelta(30), end_date=datetime.date.today()): @self._get_request( 'CME', startDate=start_date, endDate=end_date) def inner(response): return response return inner def coronal_mass_ejection_analysis( self, start_date=datetime.date.today() - datetime.timedelta(30), end_date=datetime.date.today(), most_accurate_only=True, complete_entry_only=True, speed=0, halfAngle=0, catalog="ALL", keyword="NONE") -> dict: @self._get_request( 'CMEAnalysis', startDate=start_date, endDate=end_date, mostAccurateOnly=most_accurate_only, completeEntryOnly=complete_entry_only, speed=speed, halfAngle=halfAngle, catalog=catalog, keyword=keyword) def inner(response): return response return inner def geomagnetic_storm(self, start_date=datetime.date.today() - datetime.timedelta(30), end_date=datetime.date.today()): @self._get_request('GST', startDate=start_date, endDate=end_date) def inner(response): return response return inner def interplanetary_shock(self, start_date=datetime.date.today() - datetime.timedelta(30), end_date=datetime.date.today(), location="ALL", catalog="ALL"): @self._get_request('IPS', startDate=start_date, endDate=end_date, location=location, catalog=catalog) def inner(response): return response return inner def solar_flare(self, start_date=datetime.date.today() - datetime.timedelta(30), end_date=datetime.date.today()): @self._get_request('FLR', startDate=start_date, endDate=end_date) def inner(response): return response return inner def solar_energetic_particle(self, start_date=datetime.date.today() - datetime.timedelta(30), end_date=datetime.date.today()): @self._get_request('SEP', startDate=start_date, endDate=end_date) def inner(response): return response return inner def magnetopause_crossing(self, start_date=datetime.date.today() - datetime.timedelta(30), end_date=datetime.date.today()): @self._get_request('MPC', startDate=start_date, endDate=end_date) def inner(response): return response return inner def radiation_belt_enhancment(self, start_date=datetime.date.today() - datetime.timedelta(30), end_date=datetime.date.today()): @self._get_request('RBE', startDate=start_date, endDate=end_date) def inner(response): return response return inner def hight_speed_stream(self, start_date=datetime.date.today() - datetime.timedelta(30), end_date=datetime.date.today()): @self._get_request('HSS', startDate=start_date, endDate=end_date) def inner(response): return response return inner def wsa_enlil_simulation(self, start_date=datetime.date.today() - datetime.timedelta(30), end_date=datetime.date.today()): @self._get_request('EnlilSimulations', startDate=start_date, endDate=end_date) def inner(response): return response return inner def notifications(self, start_date: datetime.date, end_date: datetime.date, type="all"): @self._get_request('notifications', startDate=start_date, endDate=end_date, type=type) def inner(response): return response return inner
/sci_api_req-0.1.1-py3-none-any.whl/sci_api_req/providers/NASA/donki_provider.py
0.659405
0.338651
donki_provider.py
pypi
from ..api_provider import ApiProvider from sci_api_req import config import datetime class NeoWsProvider(ApiProvider): """ You can use NeoWs(Near Earth Object Web Service) to search for Asteroids based on their closest approach date to Earth, lookup a specific Asteroid with its NASA JPL small body id, as well as browse the overall data-set. Requires Nasa Key. For more information check that https://api.nasa.gov/api.html#NeoWS """ def __init__(self): super(ApiProvider).__init__() self._api_url = "https://api.nasa.gov/neo/rest/v1/" @property def api_key(self) -> str: return config.get_api_keys('NASA') """Retrieve a list of Asteroids based on their closest approach date to Earth.""" def feed(self, start_date: datetime.date, end_date: datetime.date, detailed=True) -> dict: @self._get_request('feed', start_date=start_date, end_date=end_date, detailed=detailed) def inner(response): return response return inner """Find Near Earth Objects for today""" def feed(self, detailed=True) -> dict: @self._get_request('feed/today', detailed=detailed) def inner(response): return response return inner """Lookup a specific Asteroid based on its NASA JPL small body (SPK-ID) ID""" def lookup(self, id) -> dict: @self._get_request('neo/{}'.format(id)) def inner(response): return response return inner """Browse the overall Asteroid data-set""" def browse(self) -> dict: @self._get_request('neo/browse') def inner(response): return response return inner """Retrieve Sentry (Impact Risk) Near Earth Objects""" def sentry(self, is_active=True, page=0, size=50) -> dict: @self._get_request('neo/sentry', is_active=str(is_active), page=str(page), size=str(size)) def inner(response): return response return inner """Retrieve Sentry (Impact Risk) Near Earth Objectby ID""" def sentry_by_id(self, id) -> dict: @self._get_request('neo/sentry/{}'.format(id)) def inner(response): return response return inner """Get the Near Earth Object data set totals""" def stats(self) -> dict: @self._get_request('stats') def inner(response): return response return inner
/sci_api_req-0.1.1-py3-none-any.whl/sci_api_req/providers/NASA/neows_provider.py
0.846578
0.35855
neows_provider.py
pypi
import logging from pathlib import Path import subprocess import warnings from typing import Dict, List, Optional, Tuple, Union from fab.util import string_checksum logger = logging.getLogger(__name__) class Compiler(object): """ A command-line compiler whose flags we wish to manage. """ def __init__(self, exe, compile_flag, module_folder_flag): self.exe = exe self.compile_flag = compile_flag self.module_folder_flag = module_folder_flag # We should probably extend this for fPIC, two-stage and optimisation levels. COMPILERS: Dict[str, Compiler] = { 'gfortran': Compiler(exe='gfortran', compile_flag='-c', module_folder_flag='-J'), 'ifort': Compiler(exe='ifort', compile_flag='-c', module_folder_flag='-module'), } # todo: We're not sure we actually want to do modify incoming flags. Discuss... # todo: this is compiler specific, rename - and do we want similar functions for other steps? def remove_managed_flags(compiler, flags_in): """ Remove flags which Fab manages. Fab prefers to specify a few compiler flags itself. For example, Fab wants to place module files in the `build_output` folder. The flag to do this differs with compiler. We don't want duplicate, possibly conflicting flags in our tool invocation so this function is used to remove any flags which Fab wants to manage. If the compiler is not known to Fab, we rely on the user to specify these flags in their config. .. note:: This approach is due for discussion. It might not be desirable to modify user flags at all. """ def remove_flag(flags: List[str], flag: str, len): while flag in flags: warnings.warn(f'removing managed flag {flag} for compiler {compiler}') flag_index = flags.index(flag) for _ in range(len): flags.pop(flag_index) known_compiler = COMPILERS.get(compiler) if not known_compiler: logger.warning('Unable to remove managed flags for unknown compiler. User config must specify managed flags.') return flags_in flags_out = [*flags_in] remove_flag(flags_out, known_compiler.compile_flag, 1) remove_flag(flags_out, known_compiler.module_folder_flag, 2) return flags_out def flags_checksum(flags: List[str]): """ Return a checksum of the flags. """ return string_checksum(str(flags)) def run_command(command: List[str], env=None, cwd: Optional[Union[Path, str]] = None, capture_output=True): """ Run a CLI command. :param command: List of strings to be sent to :func:`subprocess.run` as the command. :param env: Optional env for the command. By default it will use the current session's environment. :param capture_output: If True, capture and return stdout. If False, the command will print its output directly to the console. """ command = list(map(str, command)) logger.debug(f'run_command: {" ".join(command)}') res = subprocess.run(command, capture_output=capture_output, env=env, cwd=cwd) if res.returncode != 0: msg = f'Command failed with return code {res.returncode}:\n{command}' if res.stdout: msg += f'\n{res.stdout.decode()}' if res.stderr: msg += f'\n{res.stderr.decode()}' raise RuntimeError(msg) if capture_output: return res.stdout.decode() def get_tool(tool_str: Optional[str] = None) -> Tuple[str, List[str]]: """ Get the compiler, preprocessor, etc, from the given string. Separate the tool and flags for the sort of value we see in environment variables, e.g. `gfortran -c`. Returns the tool and a list of flags. :param env_var: The environment variable from which to find the tool. """ tool_str = tool_str or '' tool_split = tool_str.split() if not tool_split: raise ValueError(f"Tool not specified in '{tool_str}'. Cannot continue.") return tool_split[0], tool_split[1:] # todo: add more compilers and test with more versions of compilers def get_compiler_version(compiler: str) -> str: """ Try to get the version of the given compiler. Expects a version in a certain part of the --version output, which must adhere to the n.n.n format, with at least 2 parts. Returns a version string, e.g '6.10.1', or empty string. :param compiler: The command line tool for which we want a version. """ try: res = run_command([compiler, '--version']) except FileNotFoundError: raise ValueError(f'Compiler not found: {compiler}') except RuntimeError as err: logger.warning(f"Error asking for version of compiler '{compiler}': {err}") return '' # Pull the version string from the command output. # All the versions of gfortran and ifort we've tried follow the same pattern, it's after a ")". try: version = res.split(')')[1].split()[0] except IndexError: logger.warning(f"Unexpected version response from compiler '{compiler}': {res}") return '' # expect major.minor[.patch, ...] # validate - this may be overkill split = version.split('.') if len(split) < 2: logger.warning(f"unhandled compiler version format for compiler '{compiler}' is not <n.n[.n, ...]>: {version}") return '' # todo: do we care if the parts are integers? Not all will be, but perhaps major and minor? logger.info(f'Found compiler version for {compiler} = {version}') return version
/sci_fab-1.0-py3-none-any.whl/fab/tools.py
0.582254
0.257199
tools.py
pypi
from abc import ABC, abstractmethod from pathlib import Path from typing import Iterable, Union, Dict, List from fab.constants import BUILD_TREES from fab.dep_tree import filter_source_tree, AnalysedDependent from fab.util import suffix_filter class ArtefactsGetter(ABC): """ Abstract base class for artefact getters. """ @abstractmethod def __call__(self, artefact_store): """ :param artefact_store: The artefact store from which to retrieve. """ pass class CollectionGetter(ArtefactsGetter): """ A simple artefact getter which returns one :term:`Artefact Collection` from the artefact_store. Example:: `CollectionGetter('preprocessed_fortran')` """ def __init__(self, collection_name): """ :param collection_name: The name of the artefact collection to retrieve. """ self.collection_name = collection_name def __call__(self, artefact_store): super().__call__(artefact_store) return artefact_store.get(self.collection_name, []) class CollectionConcat(ArtefactsGetter): """ Returns a concatenated list from multiple :term:`Artefact Collections <Artefact Collection>` (each expected to be an iterable). An :class:`~fab.artefacts.ArtefactsGetter` can be provided instead of a collection_name. Example:: # The default source code getter for the Analyse step might look like this. DEFAULT_SOURCE_GETTER = CollectionConcat([ 'preprocessed_c', 'preprocessed_fortran', SuffixFilter('all_source', '.f90'), ]) """ def __init__(self, collections: Iterable[Union[str, ArtefactsGetter]]): """ :param collections: An iterable containing collection names (strings) or other ArtefactsGetters. """ self.collections = collections # todo: ensure the labelled values are iterables def __call__(self, artefact_store: Dict): super().__call__(artefact_store) # todo: this should be a set, in case a file appears in multiple collections result = [] for collection in self.collections: if isinstance(collection, str): result.extend(artefact_store.get(collection, [])) elif isinstance(collection, ArtefactsGetter): result.extend(collection(artefact_store)) return result class SuffixFilter(ArtefactsGetter): """ Returns the file paths in a :term:`Artefact Collection` (expected to be an iterable), filtered by suffix. Example:: # The default source getter for the FortranPreProcessor step. DEFAULT_SOURCE = SuffixFilter('all_source', '.F90') """ def __init__(self, collection_name: str, suffix: Union[str, List[str]]): """ :param collection_name: The name of the artefact collection. :param suffix: A suffix string including the dot, or iterable of. """ self.collection_name = collection_name self.suffixes = [suffix] if isinstance(suffix, str) else suffix def __call__(self, artefact_store): super().__call__(artefact_store) # todo: returning an empty list is probably "dishonest" if the collection doesn't exist - return None instead? fpaths: Iterable[Path] = artefact_store.get(self.collection_name, []) return suffix_filter(fpaths, self.suffixes) class FilterBuildTrees(ArtefactsGetter): """ Filter build trees by suffix. Returns one list of files to compile per build tree, of the form Dict[name, List[AnalysedDependent]] Example:: # The default source getter for the CompileFortran step. DEFAULT_SOURCE_GETTER = FilterBuildTrees(suffix='.f90') """ def __init__(self, suffix: Union[str, List[str]], collection_name: str = BUILD_TREES): """ :param suffix: A suffix string, or iterable of, including the preceding dot. :param collection_name: The name of the artefact collection where we find the source trees. Defaults to the value in :py:const:`fab.constants.BUILD_TREES`. """ self.collection_name = collection_name self.suffixes = [suffix] if isinstance(suffix, str) else suffix def __call__(self, artefact_store): super().__call__(artefact_store) build_trees = artefact_store[self.collection_name] build_lists: Dict[str, List[AnalysedDependent]] = {} for root, tree in build_trees.items(): build_lists[root] = filter_source_tree(source_tree=tree, suffixes=self.suffixes) return build_lists
/sci_fab-1.0-py3-none-any.whl/fab/artefacts.py
0.793706
0.346403
artefacts.py
pypi
from argparse import ArgumentParser from pathlib import Path from typing import Dict, Optional from fab.steps.analyse import analyse from fab.steps.c_pragma_injector import c_pragma_injector from fab.steps.compile_c import compile_c from fab.steps.link import link_exe from fab.steps.root_inc_files import root_inc_files import fab from fab.artefacts import CollectionGetter from fab.build_config import BuildConfig from fab.constants import PRAGMAD_C from fab.steps.compile_fortran import compile_fortran, get_fortran_compiler from fab.steps.find_source_files import find_source_files from fab.steps.grab.folder import grab_folder from fab.steps.preprocess import preprocess_c, preprocess_fortran def _generic_build_config(folder: Path, kwargs: Optional[Dict] = None) -> BuildConfig: folder = folder.resolve() kwargs = kwargs or {} # Within the fab workspace, we'll create a project workspace. # Ideally we'd just use folder.name, but to avoid clashes, we'll use the full absolute path. label = '/'.join(folder.parts[1:]) linker, linker_flags = calc_linker_flags() with BuildConfig(project_label=label, **kwargs) as config: grab_folder(config, folder), find_source_files(config), root_inc_files(config), # JULES helper, get rid of this eventually preprocess_fortran(config), c_pragma_injector(config), preprocess_c(config, source=CollectionGetter(PRAGMAD_C)), analyse(config, find_programs=True), compile_fortran(config), compile_c(config), link_exe(config, linker=linker, flags=linker_flags), return config def calc_linker_flags(): fc, _ = get_fortran_compiler() # linker and flags depend on compiler linkers = { 'gfortran': ('gcc', ['-lgfortran']), # todo: test this and get it running # 'ifort': (..., [...]) } try: linker, linker_flags = linkers[fc] except KeyError: raise NotImplementedError(f"Fab's zero configuration mode does not yet work with compiler '{fc}'") return linker, linker_flags def cli_fab(): """ Running Fab from the command line will attempt to build the project in the current or given folder. """ # todo: use common_arg_parser()? arg_parser = ArgumentParser() arg_parser.add_argument('folder', nargs='?', default='.', type=Path) arg_parser.add_argument('--version', action='version', version=f'%(prog)s {fab.__version__}') args = arg_parser.parse_args() _generic_build_config(args.folder)
/sci_fab-1.0-py3-none-any.whl/fab/cli.py
0.540196
0.239905
cli.py
pypi
import logging from abc import ABC, abstractmethod from pathlib import Path from typing import Union, Tuple from fparser.common.readfortran import FortranFileReader # type: ignore from fparser.two.parser import ParserFactory # type: ignore from fparser.two.utils import FortranSyntaxError # type: ignore from fab import FabException from fab.dep_tree import AnalysedDependent from fab.parse import EmptySourceFile from fab.util import log_or_dot, file_checksum logger = logging.getLogger(__name__) def iter_content(obj): """ Return a generator which yields every node in the tree. """ yield obj if hasattr(obj, "content"): for child in _iter_content(obj.content): yield child def _iter_content(content): for obj in content: yield obj if hasattr(obj, "content"): for child in _iter_content(obj.content): yield child def _has_ancestor_type(obj, obj_type): # Recursively check if an object has an ancestor of the given type. if not obj.parent: return False if type(obj.parent) == obj_type: return True return _has_ancestor_type(obj.parent, obj_type) def _typed_child(parent, child_type, must_exist=False): # Look for a child of a certain type. # Returns the child or None. # Raises ValueError if more than one child of the given type is found. children = list(filter(lambda child: type(child) == child_type, parent.children)) if len(children) > 1: raise ValueError(f"too many children found of type {child_type}") if children: return children[0] if must_exist: raise FabException(f'Could not find child of type {child_type} in {parent}') return None class FortranAnalyserBase(ABC): """ Base class for Fortran parse-tree analysers, e.g FortranAnalyser and X90Analyser. """ _intrinsic_modules = ['iso_fortran_env', 'iso_c_binding'] def __init__(self, result_class, std=None): """ :param result_class: The type (class) of the analysis result. Defined by the subclass. :param std: The Fortran standard. """ self.result_class = result_class self.f2008_parser = ParserFactory().create(std=std or "f2008") # todo: this, and perhaps other runtime variables like it, might be better set at construction # if we construct these objects at runtime instead... # runtime, for child processes to read self._config = None def run(self, fpath: Path) \ -> Union[Tuple[AnalysedDependent, Path], Tuple[EmptySourceFile, None], Tuple[Exception, None]]: """ Parse the source file and record what we're interested in (subclass specific). Reloads previous analysis results if available. Returns the analysis data and the result file where it was stored/loaded. """ # calculate the prebuild filename file_hash = file_checksum(fpath).file_hash analysis_fpath = self._get_analysis_fpath(fpath, file_hash) # do we already have analysis results for this file? if analysis_fpath.exists(): log_or_dot(logger, f"found analysis prebuild for {fpath}") # Load the result file into whatever result class we use. loaded_result = self.result_class.load(analysis_fpath) if loaded_result: # This result might have been created by another user; their prebuild folder copied to ours. # If so, the fpath in the result will *not* point to the file we eventually want to compile, # it will point to the user's original file, somewhere else. So replace it with our own path. loaded_result.fpath = fpath return loaded_result, analysis_fpath log_or_dot(logger, f"analysing {fpath}") # parse the file, get a node tree node_tree = self._parse_file(fpath=fpath) if isinstance(node_tree, Exception): return Exception(f"error parsing file '{fpath}':\n{node_tree}"), None if node_tree.content[0] is None: logger.debug(f" empty tree found when parsing {fpath}") # todo: If we don't save the empty result we'll keep analysing it every time! return EmptySourceFile(fpath), None # find things in the node tree analysed_file = self.walk_nodes(fpath=fpath, file_hash=file_hash, node_tree=node_tree) analysis_fpath = self._get_analysis_fpath(fpath, file_hash) analysed_file.save(analysis_fpath) return analysed_file, analysis_fpath def _get_analysis_fpath(self, fpath, file_hash) -> Path: return Path(self._config.prebuild_folder / f'{fpath.stem}.{file_hash}.an') def _parse_file(self, fpath): """Get a node tree from a fortran file.""" reader = FortranFileReader(str(fpath), ignore_comments=False) reader.exit_on_error = False # don't call sys.exit, it messes up the multi-processing try: tree = self.f2008_parser(reader) return tree except FortranSyntaxError as err: # we can't return the FortranSyntaxError, it breaks multiprocessing! logger.error(f"\nfparser raised a syntax error in {fpath}\n{err}") return Exception(f"syntax error in {fpath}\n{err}") except Exception as err: logger.error(f"\nunhandled error '{type(err)}' in {fpath}\n{err}") return Exception(f"unhandled error '{type(err)}' in {fpath}\n{err}") @abstractmethod def walk_nodes(self, fpath, file_hash, node_tree) -> AnalysedDependent: """ Examine the nodes in the parse tree, recording things we're interested in. Return type depends on our subclass, and will be a subclass of AnalysedDependent. """ raise NotImplementedError
/sci_fab-1.0-py3-none-any.whl/fab/parse/fortran_common.py
0.708011
0.220804
fortran_common.py
pypi
import json import logging from abc import ABC from pathlib import Path from typing import Union, Optional, Dict, Any, Set from fab.util import file_checksum logger = logging.getLogger(__name__) class ParseException(Exception): pass class AnalysedFile(ABC): """ Analysis results for a single file. Abstract base class. """ def __init__(self, fpath: Union[str, Path], file_hash: Optional[int] = None): """ :param fpath: The path of the file which was analysed. :param file_hash: The checksum of the file which was analysed. If omitted, Fab will evaluate lazily. If not provided, the `self.file_hash` property is lazily evaluated in case the file does not yet exist. """ self.fpath = Path(fpath) self._file_hash = file_hash @property def file_hash(self): if self._file_hash is None: if not self.fpath.exists(): raise ValueError(f"analysed file '{self.fpath}' does not exist") self._file_hash: int = file_checksum(self.fpath).file_hash return self._file_hash def __eq__(self, other): # todo: better to use self.field_names() instead of vars(self) in order to evaluate any lazy attributes? return vars(self) == vars(other) # persistence def to_dict(self) -> Dict[str, Any]: """ Create a dict representing the object. The dict may be written to json, so can't contain sets. Lists are sorted for reproducibility in testing. """ return { "fpath": str(self.fpath), "file_hash": self.file_hash } @classmethod def from_dict(cls, d): raise NotImplementedError def save(self, fpath: Union[str, Path]): # subclasses don't need to override this method d = self.to_dict() d["cls"] = self.__class__.__name__ json.dump(d, open(fpath, 'wt'), indent=4) @classmethod def load(cls, fpath: Union[str, Path]): # subclasses don't need to override this method d = json.load(open(fpath)) found_class = d["cls"] if found_class != cls.__name__: raise ValueError(f"Expected class name '{cls.__name__}', found '{found_class}'") return cls.from_dict(d) # human readability @classmethod def field_names(cls): """ Defines the order in which we want fields to appear in str or repr strings. Calling this helps to ensure any lazy attributes are evaluated before use, e.g when constructing a string representation of the instance, or generating a hash value. """ return ['fpath', 'file_hash'] def __str__(self): # We use self.field_names() instead of vars(self) in order to evaluate any lazy attributes. values = [getattr(self, field_name) for field_name in self.field_names()] return f'{self.__class__.__name__} ' + ' '.join(map(str, values)) def __repr__(self): params = ', '.join([f'{f}={repr(getattr(self, f))}' for f in self.field_names()]) return f'{self.__class__.__name__}({params})' # We need to be hashable before we can go into a set, which is useful for our subclasses. # Note, the numerical result will change with each Python invocation. def __hash__(self): # Build up a list of things to hash, from our attributes. # We use self.field_names() rather than vars(self) because we want to evaluate any lazy attributes. # We turn dicts and sets into sorted tuples for hashing. # todo: There's a good reason dicts and sets aren't supposed to be hashable. # Please see https://github.com/metomi/fab/issues/229 things = set() for field_name in self.field_names(): thing = getattr(self, field_name) if isinstance(thing, Dict): things.add(tuple(sorted(thing.items()))) elif isinstance(thing, Set): things.add(tuple(sorted(thing))) else: things.add(thing) return hash(tuple(things)) # todo: There's a design weakness relating to this class: # we don't save empty results, which means we'll keep reanalysing them. # We should save empty files and allow the loading to detect this, as it already reads the class name. class EmptySourceFile(AnalysedFile): """ An analysis result for a file which resulted in an empty parse tree. """ def __init__(self, fpath: Union[str, Path]): """ :param fpath: The path of the file which was analysed. """ super().__init__(fpath=fpath) @classmethod def from_dict(cls, d): # todo: load & save should be implemented here and used by the calling code, to save reanalysis. raise NotImplementedError
/sci_fab-1.0-py3-none-any.whl/fab/parse/__init__.py
0.696578
0.257552
__init__.py
pypi
import logging from typing import Optional, Iterable from fab.steps import step from fab.util import file_walk logger = logging.getLogger(__name__) class _PathFilter(object): # Simple pattern matching using string containment check. # Deems an incoming path as included or excluded. def __init__(self, *filter_strings: str, include: bool): """ :param filter_strings: One or more strings to be used as pattern matches. :param include: Set to True or False to include or exclude matching paths. """ self.filter_strings: Iterable[str] = filter_strings self.include = include def check(self, path): if any(str(i) in str(path) for i in self.filter_strings): return self.include return None class Include(_PathFilter): """ A path filter which includes matching paths, this convenience class improves config readability. """ def __init__(self, *filter_strings): """ :param filter_strings: One or more strings to be used as pattern matches. """ super().__init__(*filter_strings, include=True) def __str__(self): return f'Include({", ".join(self.filter_strings)})' class Exclude(_PathFilter): """ A path filter which excludes matching paths, this convenience class improves config readability. """ def __init__(self, *filter_strings): """ :param filter_strings: One or more strings to be used as pattern matches. """ super().__init__(*filter_strings, include=False) def __str__(self): return f'Exclude({", ".join(self.filter_strings)})' @step def find_source_files(config, source_root=None, output_collection="all_source", path_filters: Optional[Iterable[_PathFilter]] = None): """ Find the files in the source folder, with filtering. Files can be included or excluded with simple pattern matching. Every file is included by default, unless the filters say otherwise. Path filters are expected to be provided by the user in an *ordered* collection. The two convenience subclasses, :class:`~fab.steps.walk_source.Include` and :class:`~fab.steps.walk_source.Exclude`, improve readability. Order matters. For example:: path_filters = [ Exclude('my_folder'), Include('my_folder/my_file.F90'), ] In the above example, swapping the order would stop the file being included in the build. A path matches a filter string simply if it *contains* it, so the path *my_folder/my_file.F90* would match filters "my_folder", "my_file" and "er/my". :param config: The :class:`fab.build_config.BuildConfig` object where we can read settings such as the project workspace folder or the multiprocessing flag. :param source_root: Optional path to source folder, with a sensible default. :param output_collection: Name of artefact collection to create, with a sensible default. :param path_filters: Iterable of Include and/or Exclude objects, to be processed in order. :param name: Human friendly name for logger output, with sensible default. """ path_filters = path_filters or [] """ Recursively get all files in the given folder, with filtering. :param artefact_store: Contains artefacts created by previous Steps, and where we add our new artefacts. This is where the given :class:`~fab.artefacts.ArtefactsGetter` finds the artefacts to process. :param config: The :class:`fab.build_config.BuildConfig` object where we can read settings such as the project workspace folder or the multiprocessing flag. """ source_root = source_root or config.source_root # file filtering filtered_fpaths = [] # todo: we shouldn't need to ignore the prebuild folder here, it's not underneath the source root. for fpath in file_walk(source_root, ignore_folders=[config.prebuild_folder]): wanted = True for path_filter in path_filters: # did this filter have anything to say about this file? res = path_filter.check(fpath) if res is not None: wanted = res if wanted: filtered_fpaths.append(fpath) else: logger.debug(f"excluding {fpath}") if not filtered_fpaths: raise RuntimeError("no source files found after filtering") config._artefact_store[output_collection] = filtered_fpaths
/sci_fab-1.0-py3-none-any.whl/fab/steps/find_source_files.py
0.812049
0.40486
find_source_files.py
pypi
import logging from string import Template from typing import Optional from fab.build_config import BuildConfig from fab.constants import OBJECT_FILES, OBJECT_ARCHIVES from fab.steps import step from fab.util import log_or_dot from fab.tools import run_command from fab.artefacts import ArtefactsGetter, CollectionGetter logger = logging.getLogger(__name__) DEFAULT_SOURCE_GETTER = CollectionGetter(OBJECT_FILES) # todo: two diagrams showing the flow of artefacts in the exe and library use cases # show how the library has a single build target with None as the name. # todo: all this documentation for such a simple step - should we split it up somehow? @step def archive_objects(config: BuildConfig, source: Optional[ArtefactsGetter] = None, archiver='ar', output_fpath=None, output_collection=OBJECT_ARCHIVES): """ Create an object archive for every build target, from their object files. An object archive is a set of object (*.o*) files bundled into a single file, typically with a *.a* extension. Expects one or more build targets from its artefact getter, of the form Dict[name, object_files]. By default, it finds the build targets and their object files in the artefact collection named by :py:const:`fab.constants.COMPILED_FILES`. This step has three use cases: * The **object archive** is the end goal of the build. * The object archive is a convenience step before linking a **shared object**. * One or more object archives as convenience steps before linking **executables**. The benefit of creating an object archive before linking is simply to reduce the size of the linker command, which might otherwise include thousands of .o files, making any error output difficult to read. You don't have to use this step before linking. The linker step has a default artefact getter which will work with or without this preceding step. **Creating a Static or Shared Library:** When building a library there is expected to be a single build target with a `None` name. This typically happens when configuring the :class:`~fab.steps.analyser.Analyser` step *without* a root symbol. We can assume the list of object files is the entire project source, compiled. In this case you must specify an *output_fpath*. **Creating Executables:** When creating executables, there is expected to be one or more build targets, each with a name. This typically happens when configuring the :class:`~fab.steps.analyser.Analyser` step *with* a root symbol(s). We can assume each list of object files is sufficient to build each *<root_symbol>.exe*. In this case you cannot specify an *output_fpath* path because they are automatically created from the target name. :param config: The :class:`fab.build_config.BuildConfig` object where we can read settings such as the project workspace folder or the multiprocessing flag. :param source: An :class:`~fab.artefacts.ArtefactsGetter` which give us our lists of objects to archive. The artefacts are expected to be of the form `Dict[root_symbol_name, list_of_object_files]`. :param archiver: The archiver executable. Defaults to 'ar'. :param output_fpath: The file path of the archive file to create. This string can include templating, where "$output" is replaced with the output folder. * Must be specified when building a library file (no build target name). * Must not be specified when building linker input (one or more build target names). :param output_collection: The name of the artefact collection to create. Defaults to the name in :const:`fab.constants.OBJECT_ARCHIVES`. """ # todo: the output path should not be an abs fpath, it should be relative to the proj folder source_getter = source or DEFAULT_SOURCE_GETTER archiver = archiver output_fpath = str(output_fpath) if output_fpath else None output_collection = output_collection target_objects = source_getter(config._artefact_store) assert target_objects.keys() if output_fpath and list(target_objects.keys()) != [None]: raise ValueError("You must not specify an output path (library) when there are root symbols (exes)") if not output_fpath and list(target_objects.keys()) == [None]: raise ValueError("You must specify an output path when building a library.") output_archives = config._artefact_store.setdefault(output_collection, {}) for root, objects in target_objects.items(): if root: # we're building an object archive for an exe output_fpath = str(config.build_output / f'{root}.a') else: # we're building a single object archive with a given filename assert len(target_objects) == 1, "unexpected root of None with multiple build targets" output_fpath = Template(str(output_fpath)).substitute( output=config.build_output) command = [archiver] command.extend(['cr', output_fpath]) command.extend(map(str, sorted(objects))) log_or_dot(logger, 'CreateObjectArchive running command: ' + ' '.join(command)) try: run_command(command) except Exception as err: raise Exception(f"error creating object archive:\n{err}") output_archives[root] = [output_fpath]
/sci_fab-1.0-py3-none-any.whl/fab/steps/archive_objects.py
0.572723
0.47457
archive_objects.py
pypi
import logging import os from string import Template from typing import Optional from fab.constants import OBJECT_FILES, OBJECT_ARCHIVES, EXECUTABLES from fab.steps import step from fab.util import log_or_dot from fab.tools import run_command from fab.artefacts import ArtefactsGetter, CollectionGetter logger = logging.getLogger(__name__) class DefaultLinkerSource(ArtefactsGetter): """ A source getter specifically for linking. Looks for the default output from archiving objects, falls back to default compiler output. This allows a link step to work with or without a preceding object archive step. """ def __call__(self, artefact_store): return CollectionGetter(OBJECT_ARCHIVES)(artefact_store) \ or CollectionGetter(OBJECT_FILES)(artefact_store) def call_linker(linker, flags, filename, objects): assert isinstance(linker, str) command = linker.split() command.extend(['-o', filename]) # todo: we need to be able to specify flags which appear before the object files command.extend(map(str, sorted(objects))) # note: this must this come after the list of object files? command.extend(os.getenv('LDFLAGS', '').split()) command.extend(flags) log_or_dot(logger, 'Link running command: ' + ' '.join(command)) try: run_command(command) except Exception as err: raise Exception(f"error linking:\n{err}") @step def link_exe(config, linker: Optional[str] = None, flags=None, source: Optional[ArtefactsGetter] = None): """ Link object files into an executable for every build target. Expects one or more build targets from its artefact getter, of the form Dict[name, object_files]. The default artefact getter, :py:const:`~fab.steps.link_exe.DefaultLinkerSource`, looks for any output from an :class:`~fab.steps.archive_objects.ArchiveObjects` step, and falls back to using output from compiler steps. :param config: The :class:`fab.build_config.BuildConfig` object where we can read settings such as the project workspace folder or the multiprocessing flag. :param linker: E.g 'gcc' or 'ld'. :param flags: A list of flags to pass to the linker. :param source: An optional :class:`~fab.artefacts.ArtefactsGetter`. Typically not required, as there is a sensible default. """ linker = linker or os.getenv('LD', 'ld') logger.info(f'linker is {linker}') flags = flags or [] source_getter = source or DefaultLinkerSource() target_objects = source_getter(config._artefact_store) for root, objects in target_objects.items(): exe_path = config.project_workspace / f'{root}.exe' call_linker(linker=linker, flags=flags, filename=str(exe_path), objects=objects) config._artefact_store.setdefault(EXECUTABLES, []).append(exe_path) # todo: the bit about Dict[None, object_files] seems too obscure - try to rethink this. @step def link_shared_object(config, output_fpath: str, linker: Optional[str] = None, flags=None, source: Optional[ArtefactsGetter] = None): """ Produce a shared object (*.so*) file from the given build target. Expects a *single build target* from its artefact getter, of the form Dict[None, object_files]. We can assume the list of object files is the entire project source, compiled. Params are as for :class:`~fab.steps.link_exe.LinkerBase`, with the addition of: :param config: The :class:`fab.build_config.BuildConfig` object where we can read settings such as the project workspace folder or the multiprocessing flag. :param output_fpath: File path of the shared object to create. :param linker: E.g 'gcc' or 'ld'. :param flags: A list of flags to pass to the linker. :param source: An optional :class:`~fab.artefacts.ArtefactsGetter`. Typically not required, as there is a sensible default. """ linker = linker or os.getenv('LD', 'ld') logger.info(f'linker is {linker}') flags = flags or [] source_getter = source or DefaultLinkerSource() ensure_flags = ['-fPIC', '-shared'] for f in ensure_flags: if f not in flags: flags.append(f) # We expect a single build target containing the whole codebase, with no name (as it's not a root symbol). target_objects = source_getter(config._artefact_store) assert list(target_objects.keys()) == [None] objects = target_objects[None] call_linker( linker=linker, flags=flags, filename=Template(output_fpath).substitute(output=config.build_output), objects=objects)
/sci_fab-1.0-py3-none-any.whl/fab/steps/link.py
0.623606
0.227308
link.py
pypi
import logging import os import shutil from dataclasses import dataclass from pathlib import Path from typing import Collection, List, Optional, Tuple from fab.build_config import BuildConfig, FlagsConfig from fab.constants import PRAGMAD_C from fab.metrics import send_metric from fab.util import log_or_dot_finish, input_to_output_fpath, log_or_dot, suffix_filter, Timer, by_type from fab.tools import get_tool, run_command from fab.steps import check_for_errors, run_mp, step from fab.artefacts import ArtefactsGetter, SuffixFilter, CollectionGetter logger = logging.getLogger(__name__) @dataclass class MpCommonArgs(object): """Common args for calling process_artefact() using multiprocessing.""" config: BuildConfig output_suffix: str preprocessor: str flags: FlagsConfig name: str def pre_processor(config: BuildConfig, preprocessor: str, files: Collection[Path], output_collection, output_suffix, common_flags: Optional[List[str]] = None, path_flags: Optional[List] = None, name="preprocess"): """ Preprocess Fortran or C files. Uses multiprocessing, unless disabled in the config. :param config: The :class:`fab.build_config.BuildConfig` object where we can read settings such as the project workspace folder or the multiprocessing flag. :param preprocessor: The preprocessor executable. :param files: The files to preprocess. :param output_collection: The name of the output artefact collection. :param output_suffix: Suffix for output files. :param common_flags: Used to construct a :class:`~fab.config.FlagsConfig` object. :param path_flags: Used to construct a :class:`~fab.build_config.FlagsConfig` object. :param name: Human friendly name for logger output, with sensible default. """ common_flags = common_flags or [] flags = FlagsConfig(common_flags=common_flags, path_flags=path_flags) logger.info(f'preprocessor is {preprocessor}') logger.info(f'preprocessing {len(files)} files') # common args for the child process mp_common_args = MpCommonArgs( config=config, output_suffix=output_suffix, preprocessor=preprocessor, flags=flags, name=name, ) # bundle files with common args mp_args = [(file, mp_common_args) for file in files] results = run_mp(config, items=mp_args, func=process_artefact) check_for_errors(results, caller_label=name) log_or_dot_finish(logger) config._artefact_store[output_collection] = list(by_type(results, Path)) def process_artefact(arg: Tuple[Path, MpCommonArgs]): """ Expects an input file in the source folder. Writes the output file to the output folder, with a lower case extension. """ fpath, args = arg with Timer() as timer: # output_fpath = input_to_output_fpath(config=self._config, input_path=fpath).with_suffix(self.output_suffix) output_fpath = input_to_output_fpath(config=args.config, input_path=fpath).with_suffix(args.output_suffix) # already preprocessed? # todo: remove reuse_artefacts eveywhere! if args.config.reuse_artefacts and output_fpath.exists(): log_or_dot(logger, f'Preprocessor skipping: {fpath}') else: output_fpath.parent.mkdir(parents=True, exist_ok=True) command = [args.preprocessor] command.extend(args.flags.flags_for_path(path=fpath, config=args.config)) command.append(str(fpath)) command.append(str(output_fpath)) log_or_dot(logger, 'PreProcessor running command: ' + ' '.join(command)) try: run_command(command) except Exception as err: raise Exception(f"error preprocessing {fpath}:\n{err}") send_metric(args.name, str(fpath), {'time_taken': timer.taken, 'start': timer.start}) return output_fpath def get_fortran_preprocessor(): """ Identify the fortran preprocessor and any flags from the environment. Initially looks for the `FPP` environment variable, then tries to call the `fpp` and `cpp` command line tools. Returns the executable and flags. The returned flags will always include `-P` to suppress line numbers. This fparser ticket requests line number handling https://github.com/stfc/fparser/issues/390 . """ fpp: Optional[str] = None fpp_flags: Optional[List[str]] = None try: fpp, fpp_flags = get_tool(os.getenv('FPP')) logger.info(f"The environment defined FPP as '{fpp}'") except ValueError: pass if not fpp: try: run_command(['which', 'fpp']) fpp, fpp_flags = 'fpp', ['-P'] logger.info('detected fpp') except RuntimeError: # fpp not available pass if not fpp: try: run_command(['which', 'cpp']) fpp, fpp_flags = 'cpp', ['-traditional-cpp', '-P'] logger.info('detected cpp') except RuntimeError: # fpp not available pass if not fpp: raise RuntimeError('no fortran preprocessor specified or discovered') assert fpp_flags is not None if '-P' not in fpp_flags: fpp_flags.append('-P') return fpp, fpp_flags # todo: rename preprocess_fortran @step def preprocess_fortran(config: BuildConfig, source: Optional[ArtefactsGetter] = None, **kwargs): """ Wrapper to pre_processor for Fortran files. Ensures all preprocessed files are in the build output. This means *copying* already preprocessed files from source to build output. Params as per :func:`~fab.steps.preprocess._pre_processor`. The preprocessor is taken from the `FPP` environment, or falls back to `fpp -P`. If source is not provided, it defaults to `SuffixFilter('all_source', '.F90')`. """ source_getter = source or SuffixFilter('all_source', ['.F90', '.f90']) source_files = source_getter(config._artefact_store) F90s = suffix_filter(source_files, '.F90') f90s = suffix_filter(source_files, '.f90') # get the tool from FPP fpp, fpp_flags = get_fortran_preprocessor() # make sure any flags from FPP are included in any common flags specified by the config try: common_flags = kwargs.pop('common_flags') except KeyError: common_flags = [] for fpp_flag in fpp_flags: if fpp_flag not in common_flags: common_flags.append(fpp_flag) # preprocess big F90s pre_processor( config, preprocessor=fpp, common_flags=common_flags, files=F90s, output_collection='preprocessed_fortran', output_suffix='.f90', name='preprocess fortran', **kwargs, ) # todo: parallel copy? # copy little f90s from source to output folder logger.info(f'Fortran preprocessor copying {len(f90s)} files to build_output') for f90 in f90s: output_path = input_to_output_fpath(config, input_path=f90) if output_path != f90: if not output_path.parent.exists(): output_path.parent.mkdir(parents=True) log_or_dot(logger, f'copying {f90}') shutil.copyfile(str(f90), str(output_path)) class DefaultCPreprocessorSource(ArtefactsGetter): """ A source getter specifically for c preprocessing. Looks for the default output from pragma injection, falls back to default source finder. This allows the step to work with or without a preceding pragma step. """ def __call__(self, artefact_store): return CollectionGetter(PRAGMAD_C)(artefact_store) \ or SuffixFilter('all_source', '.c')(artefact_store) # todo: rename preprocess_c @step def preprocess_c(config: BuildConfig, source=None, **kwargs): """ Wrapper to pre_processor for C files. Params as per :func:`~fab.steps.preprocess._pre_processor`. The preprocessor is taken from the `CPP` environment, or falls back to `cpp`. If source is not provided, it defaults to :class:`~fab.steps.preprocess.DefaultCPreprocessorSource`. """ source_getter = source or DefaultCPreprocessorSource() source_files = source_getter(config._artefact_store) pre_processor( config, preprocessor=os.getenv('CPP', 'cpp'), files=source_files, output_collection='preprocessed_c', output_suffix='.c', name='preprocess c', **kwargs, )
/sci_fab-1.0-py3-none-any.whl/fab/steps/preprocess.py
0.727104
0.153549
preprocess.py
pypi
import re from pathlib import Path from typing import Pattern, Optional, Match from fab import FabException from fab.constants import PRAGMAD_C from fab.steps import run_mp, step from fab.artefacts import ArtefactsGetter, SuffixFilter DEFAULT_SOURCE_GETTER = SuffixFilter('all_source', '.c') # todo: test @step def c_pragma_injector(config, source: Optional[ArtefactsGetter] = None, output_name=None): """ A build step to inject custom pragmas to mark blocks of user and system include statements. By default, reads .c files from the *all_source* artefact and creates the *pragmad_c* artefact. This step does not write to the build output folder, it creates the pragmad c in the same folder as the c file. This is because a subsequent preprocessing step needs to look in the source folder for header files, including in paths relative to the c file. :param config: The :class:`fab.build_config.BuildConfig` object where we can read settings such as the project workspace folder or the multiprocessing flag. :param source: An :class:`~fab.artefacts.ArtefactsGetter` which give us our c files to process. :param output_name: The name of the artefact collection to create in the artefact store, with a sensible default """ source_getter = source or DEFAULT_SOURCE_GETTER output_name = output_name or PRAGMAD_C files = source_getter(config._artefact_store) results = run_mp(config, items=files, func=_process_artefact) config._artefact_store[output_name] = list(results) def _process_artefact(fpath: Path): prag_output_fpath = fpath.with_suffix('.prag') prag_output_fpath.open('w').writelines(inject_pragmas(fpath)) return prag_output_fpath def inject_pragmas(fpath): """ Reads a C source file but when encountering an #include preprocessor directive injects a special Fab-specific #pragma which can be picked up later by the Analyser after the preprocessing """ _include_re: str = r'^\s*#include\s+(\S+)' _include_pattern: Pattern = re.compile(_include_re) for line in open(fpath, 'rt', encoding='utf-8'): include_match: Optional[Match] = _include_pattern.match(line) if include_match: # For valid C the first character of the matched # part of the group will indicate whether this is # a system library include or a user include include: str = include_match.group(1) if include.startswith('<'): yield '#pragma FAB SysIncludeStart\n' yield line yield '#pragma FAB SysIncludeEnd\n' elif include.startswith(('"', "'")): yield '#pragma FAB UsrIncludeStart\n' yield line yield '#pragma FAB UsrIncludeEnd\n' else: msg = 'Found badly formatted #include' raise FabException(msg) else: yield line
/sci_fab-1.0-py3-none-any.whl/fab/steps/c_pragma_injector.py
0.468791
0.173831
c_pragma_injector.py
pypi
import multiprocessing from fab.metrics import send_metric from fab.util import by_type, TimerLogger from functools import wraps def step(func): """Function decorator for steps.""" @wraps(func) def wrapper(*args, **kwargs): name = func.__name__ # call the function with TimerLogger(name) as step: func(*args, **kwargs) send_metric('steps', name, step.taken) return wrapper def run_mp(config, items, func, no_multiprocessing: bool = False): """ Called from Step.run() to process multiple items in parallel. For example, a compile step would, in its run() method, find a list of source files in the artefact store. It could then pass those paths to this method, along with a function to compile a *single* file. The whole set of results are returned in a list-like, with undefined order. :param items: An iterable of items to process in parallel. :param func: A function to process a single item. Must accept a single argument. :param no_multiprocessing: Overrides the config's multiprocessing flag, disabling multiprocessing for this call. """ if config.multiprocessing and not no_multiprocessing: with multiprocessing.Pool(config.n_procs) as p: results = p.map(func, items) else: results = [func(f) for f in items] return results def run_mp_imap(config, items, func, result_handler): """ Like run_mp, but uses imap instead of map so that we can process each result as it happens. This is useful for a slow operation where we want to save our progress as we go instead of waiting for everything to finish, allowing us to pick up where we left off if the program is halted. :param items: An iterable of items to process in parallel. :param func: A function to process a single item. Must accept a single argument. :param result_handler: A function to handle a single result. Must accept a single argument. """ if config.multiprocessing: with multiprocessing.Pool(config.n_procs) as p: analysis_results = p.imap_unordered(func, items) result_handler(analysis_results) else: analysis_results = (func(a) for a in items) # generator result_handler(analysis_results) def check_for_errors(results, caller_label=None): """ Check an iterable of results for any exceptions and handle them gracefully. This is a helper function for steps which use multiprocessing, getting multiple results back from :meth:`~fab.steps.Step.run_mp` all in one go. :param results: An iterable of results. :param caller_label: Optional human-friendly name of the caller for logging. """ caller_label = f'during {caller_label}' if caller_label else '' exceptions = list(by_type(results, Exception)) if exceptions: formatted_errors = "\n\n".join(map(str, exceptions)) raise RuntimeError( f"{formatted_errors}\n\n{len(exceptions)} error(s) found {caller_label}" )
/sci_fab-1.0-py3-none-any.whl/fab/steps/__init__.py
0.809238
0.251441
__init__.py
pypi
import warnings from pathlib import Path from typing import Union from fab.steps import step from fab.tools import run_command def current_commit(folder=None): folder = folder or '.' output = run_command(['git', 'log', '--oneline', '-n', '1'], cwd=folder) commit = output.split()[0] return commit def tool_available() -> bool: """Is the command line git tool available?""" try: run_command(['git', 'help']) except FileNotFoundError: return False return True def is_working_copy(dst: Union[str, Path]) -> bool: """Is the given path is a working copy?""" try: run_command(['git', 'status'], cwd=dst) except RuntimeError: return False return True def fetch(src, revision, dst): # todo: allow shallow fetch with --depth 1 command = ['git', 'fetch', src] if revision: command.append(revision) run_command(command, cwd=str(dst)) # todo: allow cli args, e.g to set the depth @step def git_checkout(config, src: str, dst_label: str = '', revision=None): """ Checkout or update a Git repo. """ _dst = config.source_root / dst_label # create folder? if not _dst.exists(): _dst.mkdir(parents=True) run_command(['git', 'init', '.'], cwd=_dst) elif not is_working_copy(_dst): # type: ignore raise ValueError(f"destination exists but is not a working copy: '{_dst}'") fetch(src, revision, _dst) run_command(['git', 'checkout', 'FETCH_HEAD'], cwd=_dst) try: _dst.relative_to(config.project_workspace) run_command(['git', 'clean', '-f'], cwd=_dst) except ValueError: warnings.warn(f'not safe to clean git source in {_dst}') @step def git_merge(config, src: str, dst_label: str = '', revision=None): """ Merge a git repo into a local working copy. """ _dst = config.source_root / dst_label if not _dst or not is_working_copy(_dst): raise ValueError(f"destination is not a working copy: '{_dst}'") fetch(src=src, revision=revision, dst=_dst) try: run_command(['git', 'merge', 'FETCH_HEAD'], cwd=_dst) except RuntimeError as err: run_command(['git', 'merge', '--abort'], cwd=_dst) raise RuntimeError(f"Error merging {revision}. Merge aborted.\n{err}")
/sci_fab-1.0-py3-none-any.whl/fab/steps/grab/git.py
0.465873
0.198181
git.py
pypi
import mimetypes import os import shutil from typing import Optional try: import rarfile except ImportError: # pragma: no cover rarfile = None class RARExtractionNotSupported(Exception): pass def _rar_extract(filename, extract_dir): if rarfile is None: raise RARExtractionNotSupported('RAR file extraction not supported, ' 'please install \'rarfile\' package with your pip.') with rarfile.RarFile(filename) as rf: rf.extractall(path=extract_dir) try: import py7zr except ImportError: # pragma: no cover py7zr = None class SevenZipExtractionNotSupported(Exception): pass def _7z_extract(filename, extract_dir): if py7zr is None: raise SevenZipExtractionNotSupported('7z file extraction not supported, ' 'please install \'py7zr\' package with your pip.') with py7zr.SevenZipFile(filename) as rf: rf.extractall(path=extract_dir) shutil.register_unpack_format('rar', ['.rar'], _rar_extract, [], 'WinRAR file') shutil.register_unpack_format('7z', ['.7z'], _7z_extract, [], '7z file') def unpack_archive(filename, dstpath, fmt: Optional[str] = None): """ Overview: Extract from all kind of archive files, including ``.zip``, ``.tar``, ``.tar.gz``, ``.tar.xz``, ``.tar.bz2``, \ ``.rar`` (requires ``rarfile`` package) and ``.7z`` (requires ``py7zr`` package``). :param filename: Filename of the archive file. :param dstpath: Destination path of the extracted file. :param fmt: Format of the file, default is ``None`` which means the format will be auto-detected with ``filename``. :return: Destination path of this extraction. .. note:: Password is not supported at present. """ shutil.unpack_archive(filename, dstpath, fmt) return dstpath def get_archive_type(filename: str, content_type: Optional[str] = None) -> Optional[str]: """ Overview: Get archive file type of the given ``filename`` and ``content_type``. :param filename: Filename. :param content_type: Content-Type information from remote. :return: Archive format, can be used in :func:`shutils.unpack_archive` method. """ if content_type: ext_guess = mimetypes.guess_extension(content_type) if ext_guess: for name, exts, _ in shutil.get_unpack_formats(): if ext_guess in exts: return name filename = os.path.normcase(filename) for name, exts, _ in shutil.get_unpack_formats(): for ext in exts: if filename.endswith(ext): return name return None
/sci_igm-0.0.2-py3-none-any.whl/igm/utils/archive.py
0.601477
0.182826
archive.py
pypi
import hashlib import sys import logging """ ``logging_filters`` ------------------- Python uses `filters`_ to add contextural information to its :mod:`~python:logging` facility. Filters defined below are attached to :data:`settings.LOGGING` and also :class:`~.middleware.LogSetupMiddleware`. .. _filters: http://docs.python.org/2.6/library/logging.html#\ adding-contextual-information-to-your-logging-output """ class RequestFilter(object): """ Filter that adds information about a *request* to the logging record. :param request: :type request: :class:`~django.http.HttpRequest` Extra information can be substituted in the formatter string: ``http_user_agent`` The user agent string, provided by the client. ``path_info`` The requested HTTP path. ``remote_addr`` The remote IP address. ``request_method`` The HTTP request method (*e.g.* GET, POST, PUT, DELETE, *etc.*) ``server_protocol`` The server protocol (*e.g.* HTTP, HTTPS, *etc.*) ``username`` The username for the logged-in user. """ def __init__(self, request=None): """Saves *request* (a WSGIRequest object) for later.""" self.request = request def filter(self, record): """ Adds information from the request to the logging *record*. If certain information cannot be extracted from ``self.request``, a hyphen ``'-'`` is substituted as a placeholder. """ request = self.request # Basic record.request_method = getattr(request, 'method', '-') record.path_info = getattr(request, 'path_info', '-') # User user = getattr(request, 'user', None) if user and not user.is_anonymous(): # Hash it record.username = hashlib.sha1(user.username.encode()).hexdigest()[:8] record.userid = str(user.id) else: record.username = '---' record.userid = '-' # Headers META = getattr(request, 'META', {}) record.remote_addr = META.get('REMOTE_ADDR', '-') record.server_protocol = META.get('SERVER_PROTOCOL', '-') record.http_user_agent = META.get('HTTP_USER_AGENT', '-') return True import weakref weakref_type = type(weakref.ref(lambda: None)) def deref(x): return x() if x and type(x) == weakref_type else x class LogSetupMiddleware(object): """ Adds :class:`.logging_filters.RequestFilter` to every request. If *root* is a module name, only look at loggers inside that logging subtree. This filter adds useful information about `HttpRequest`\ s to log entries. See :class:`.logging_filters.RequestFilter` for details about which formatter substitutions are added. Automatically detects which handlers and logger need RequestFilter installed, by looking for an unbound RequestFilter attached to a handler or logger. To configure Django, in your :envvar:`DJANGO_SETTINGS_MODULE`:: LOGGING = { 'filters': { # Add an unbound RequestFilter. 'request': { '()': 'django_requestlogging.logging_filters.RequestFilter', }, }, 'handlers': { 'console': { 'class': 'logging.StreamHandler', 'filters': ['request'], }, }, 'loggers': { 'myapp': { # Add your handlers that have the unbound request filter 'handlers': ['console'], # Optionally, add the unbound request filter to your # application. 'filters': ['request'], }, }, } """ FILTER = RequestFilter def __init__(self, root=''): self.root = root def find_loggers(self): """ Returns a :class:`dict` of names and the associated loggers. """ # Extract the full logger tree from Logger.manager.loggerDict # that are under ``self.root``. result = {} prefix = self.root + '.' for name, logger in logging.Logger.manager.loggerDict.items(): if self.root and not name.startswith(prefix): # Does not fall under self.root continue result[name] = logger # Add the self.root logger result[self.root] = logging.getLogger(self.root) return result def find_handlers(self): """ Returns a list of handlers. """ return list(logging._handlerList) def _find_filterer_with_filter(self, filterers, filter_cls): """ Returns a :class:`dict` of filterers mapped to a list of filters. *filterers* should be a list of filterers. *filter_cls* should be a logging filter that should be matched. """ result = {} for logger in map(deref, filterers): filters = [f for f in map(deref, getattr(logger, 'filters', [])) if isinstance(f, filter_cls)] if filters: result[logger] = filters return result def find_loggers_with_filter(self, filter_cls): """ Returns a :class:`dict` of loggers mapped to a list of filters. Looks for instances of *filter_cls* attached to each logger. If the logger has at least one, it is included in the result. """ return self._find_filterer_with_filter(self.find_loggers().values(), filter_cls) def find_handlers_with_filter(self, filter_cls): """ Returns a :class:`dict` of handlers mapped to a list of filters. Looks for instances of *filter_cls* attached to each handler. If the handler has at least one, it is included in the result. """ return self._find_filterer_with_filter(self.find_handlers(), filter_cls) def add_filter(self, f, filter_cls=None): """Add filter *f* to any loggers that have *filter_cls* filters.""" if filter_cls is None: filter_cls = type(f) for logger in self.find_loggers_with_filter(filter_cls): logger.addFilter(f) for handler in self.find_handlers_with_filter(filter_cls): handler.addFilter(f) def remove_filter(self, f): """Remove filter *f* from all loggers.""" for logger in self.find_loggers_with_filter(type(f)): logger.removeFilter(f) for handler in self.find_handlers_with_filter(type(f)): handler.removeFilter(f) def process_request(self, request): """Adds a filter, bound to *request*, to the appropriate loggers.""" request.logging_filter = RequestFilter(request) self.add_filter(request.logging_filter) def process_response(self, request, response): """Removes this *request*'s filter from all loggers.""" f = getattr(request, 'logging_filter', None) if f: self.remove_filter(f) return response def process_exception(self, request, exception): """Removes this *request*'s filter from all loggers.""" f = getattr(request, 'logging_filter', None) if f: self.remove_filter(f) class LoggingConfiguration(object): def __init__(self, project='NONE'): self.django_log_config = { 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'console': { 'format': '[DJANGO] - [' + project + '] - [%(asctime)s][%(levelname)s][%(name)s.%(funcName)s:%(lineno)d]' '[%(username)s][%(userid)s] - %(message)s', }, }, 'filters': { # Add an unbound RequestFilter. 'request': { '()': 'scilogging.logging.RequestFilter', }, }, 'handlers': { 'sentry': { 'level': 'ERROR', # To capture more than ERROR, change to WARNING, INFO, etc. 'class': 'raven.contrib.django.raven_compat.handlers.SentryHandler', 'tags': {'custom-tag': 'x'}, }, 'console': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', 'formatter': 'console', 'stream': sys.stdout, 'filters': ['request'], }, }, 'root': { 'handlers': ['console'], 'level': 'DEBUG', 'filters': ['request'], }, 'loggers': { 'django': { 'handlers': ['console'], 'level': 'WARNING', 'propagate': True, }, 'raven': { 'level': 'WARNING', 'handlers': ['console'], 'propagate': False, }, 'sentry.errors': { 'level': 'WARNING', 'handlers': ['console'], 'propagate': False, }, }, }
/sci-logging-0.2.tar.gz/sci-logging-0.2/scilogging/logging.py
0.709724
0.268462
logging.py
pypi
"Utility functions for handling buffers" import sys as _sys import numpy as _numpy def _ord(byte): r"""Convert a byte to an integer. >>> buffer = b'\x00\x01\x02' >>> [_ord(b) for b in buffer] [0, 1, 2] """ if _sys.version_info >= (3,): return byte else: return ord(byte) def hex_bytes(buffer, spaces=None): r"""Pretty-printing for binary buffers. >>> hex_bytes(b'\x00\x01\x02\x03\x04') '0001020304' >>> hex_bytes(b'\x00\x01\x02\x03\x04', spaces=1) '00 01 02 03 04' >>> hex_bytes(b'\x00\x01\x02\x03\x04', spaces=2) '0001 0203 04' >>> hex_bytes(b'\x00\x01\x02\x03\x04\x05\x06', spaces=2) '0001 0203 0405 06' >>> hex_bytes(b'\x00\x01\x02\x03\x04\x05\x06', spaces=3) '000102 030405 06' """ hex_bytes = ['{:02x}'.format(_ord(x)) for x in buffer] if spaces is None: return ''.join(hex_bytes) elif spaces is 1: return ' '.join(hex_bytes) for i in range(len(hex_bytes)//spaces): hex_bytes.insert((spaces+1)*(i+1)-1, ' ') return ''.join(hex_bytes) def assert_null(buffer, strict=True): r"""Ensure an input buffer is entirely zero. >>> import sys >>> assert_null(b'') >>> assert_null(b'\x00\x00') >>> assert_null(b'\x00\x01\x02\x03') Traceback (most recent call last): ... ValueError: 00 01 02 03 >>> stderr = sys.stderr >>> sys.stderr = sys.stdout >>> assert_null(b'\x00\x01\x02\x03', strict=False) warning: post-data padding not zero: 00 01 02 03 >>> sys.stderr = stderr """ if buffer and _ord(max(buffer)) != 0: hex_string = hex_bytes(buffer, spaces=1) if strict: raise ValueError(hex_string) else: _sys.stderr.write( 'warning: post-data padding not zero: {}\n'.format(hex_string)) # From ReadWave.c def byte_order(needToReorderBytes): little_endian = _sys.byteorder == 'little' if needToReorderBytes: little_endian = not little_endian if little_endian: return '<' # little-endian return '>' # big-endian # From ReadWave.c def need_to_reorder_bytes(version): # If the low order byte of the version field of the BinHeader # structure is zero then the file is from a platform that uses # different byte-ordering and therefore all data will need to be # reordered. return version & 0xFF == 0 # From ReadWave.c def checksum(buffer, byte_order, oldcksum, numbytes): x = _numpy.ndarray( (numbytes/2,), # 2 bytes to a short -- ignore trailing odd byte dtype=_numpy.dtype(byte_order+'h'), buffer=buffer) oldcksum += x.sum() if oldcksum > 2**31: # fake the C implementation's int rollover oldcksum %= 2**32 if oldcksum > 2**31: oldcksum -= 2**31 return oldcksum & 0xffff def _bytes(obj, encoding='utf-8'): """Convert bytes or strings into bytes >>> _bytes(b'123') '123' >>> _bytes('123') '123' """ if _sys.version_info >= (3,): if isinstance(obj, bytes): return obj else: return bytes(obj, encoding) else: return bytes(obj)
/sci_memex-0.0.3-py3-none-any.whl/memex/translators/igor/util.py
0.494629
0.427337
util.py
pypi
"Read IGOR Binary Wave files into Numpy arrays." # Based on WaveMetric's Technical Note 003, "Igor Binary Format" # ftp://ftp.wavemetrics.net/IgorPro/Technical_Notes/TN003.zip # From ftp://ftp.wavemetrics.net/IgorPro/Technical_Notes/TN000.txt # We place no restrictions on copying Technical Notes, with the # exception that you cannot resell them. So read, enjoy, and # share. We hope IGOR Technical Notes will provide you with lots of # valuable information while you are developing IGOR applications. from __future__ import absolute_import import array as _array import struct as _struct import sys as _sys import types as _types import numpy as np from . import LOG as _LOG from .struct import Structure as _Structure from .struct import DynamicStructure as _DynamicStructure from .struct import Field as _Field from .struct import DynamicField as _DynamicField from .util import assert_null as _assert_null from .util import byte_order as _byte_order from .util import need_to_reorder_bytes as _need_to_reorder_bytes from .util import checksum as _checksum # Numpy doesn't support complex integers by default, see # http://mail.python.org/pipermail/python-dev/2002-April/022408.html # http://mail.scipy.org/pipermail/numpy-discussion/2007-October/029447.html # So we roll our own types. See # http://docs.scipy.org/doc/numpy/user/basics.rec.html # http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html complexInt8 = np.dtype([('real', np.int8), ('imag', np.int8)]) complexInt16 = np.dtype([('real', np.int16), ('imag', np.int16)]) complexInt32 = np.dtype([('real', np.int32), ('imag', np.int32)]) complexUInt8 = np.dtype([('real', np.uint8), ('imag', np.uint8)]) complexUInt16 = np.dtype( [('real', np.uint16), ('imag', np.uint16)]) complexUInt32 = np.dtype( [('real', np.uint32), ('imag', np.uint32)]) class StaticStringField (_DynamicField): _null_terminated = False _array_size_field = None def __init__(self, *args, **kwargs): if 'array' not in kwargs: kwargs['array'] = True super(StaticStringField, self).__init__(*args, **kwargs) def post_unpack(self, parents, data): wave_structure = parents[-1] wave_data = self._get_structure_data(parents, data, wave_structure) d = self._normalize_string(wave_data[self.name]) wave_data[self.name] = d def _normalize_string(self, d): if isinstance(d, bytes): pass elif hasattr(d, 'tobytes'): d = d.tobytes() elif hasattr(d, 'tostring'): # Python 2 compatibility d = d.tostring() else: d = b''.join(d) if self._array_size_field: start = 0 strings = [] for count in self.counts: end = start + count if end > start: strings.append(d[start:end]) if self._null_terminated: strings[-1] = strings[-1].split(b'\x00', 1)[0] start = end elif self._null_terminated: d = d.split(b'\x00', 1)[0] return d class NullStaticStringField (StaticStringField): _null_terminated = True # Begin IGOR constants and typedefs from IgorBin.h # From IgorMath.h TYPE_TABLE = { # (key: integer flag, value: numpy dtype) 0:None, # Text wave, not handled in ReadWave.c 1:complex, # NT_CMPLX, makes number complex. 2:np.float32, # NT_FP32, 32 bit fp numbers. 3:np.complex64, 4:np.float64, # NT_FP64, 64 bit fp numbers. 5:np.complex128, 8:np.int8, # NT_I8, 8 bit signed integer. Requires Igor Pro # 2.0 or later. 9:complexInt8, 0x10:np.int16,# NT_I16, 16 bit integer numbers. Requires Igor # Pro 2.0 or later. 0x11:complexInt16, 0x20:np.int32,# NT_I32, 32 bit integer numbers. Requires Igor # Pro 2.0 or later. 0x21:complexInt32, # 0x40:None, # NT_UNSIGNED, Makes above signed integers # # unsigned. Requires Igor Pro 3.0 or later. 0x48:np.uint8, 0x49:complexUInt8, 0x50:np.uint16, 0x51:complexUInt16, 0x60:np.uint32, 0x61:complexUInt32, } # From wave.h MAXDIMS = 4 # From binary.h BinHeader1 = _Structure( # `version` field pulled out into Wave name='BinHeader1', fields=[ _Field('l', 'wfmSize', help='The size of the WaveHeader2 data structure plus the wave data plus 16 bytes of padding.'), _Field('h', 'checksum', help='Checksum over this header and the wave header.'), ]) BinHeader2 = _Structure( # `version` field pulled out into Wave name='BinHeader2', fields=[ _Field('l', 'wfmSize', help='The size of the WaveHeader2 data structure plus the wave data plus 16 bytes of padding.'), _Field('l', 'noteSize', help='The size of the note text.'), _Field('l', 'pictSize', default=0, help='Reserved. Write zero. Ignore on read.'), _Field('h', 'checksum', help='Checksum over this header and the wave header.'), ]) BinHeader3 = _Structure( # `version` field pulled out into Wave name='BinHeader3', fields=[ _Field('l', 'wfmSize', help='The size of the WaveHeader2 data structure plus the wave data plus 16 bytes of padding.'), _Field('l', 'noteSize', help='The size of the note text.'), _Field('l', 'formulaSize', help='The size of the dependency formula, if any.'), _Field('l', 'pictSize', default=0, help='Reserved. Write zero. Ignore on read.'), _Field('h', 'checksum', help='Checksum over this header and the wave header.'), ]) BinHeader5 = _Structure( # `version` field pulled out into Wave name='BinHeader5', fields=[ _Field('h', 'checksum', help='Checksum over this header and the wave header.'), _Field('l', 'wfmSize', help='The size of the WaveHeader5 data structure plus the wave data.'), _Field('l', 'formulaSize', help='The size of the dependency formula, if any.'), _Field('l', 'noteSize', help='The size of the note text.'), _Field('l', 'dataEUnitsSize', help='The size of optional extended data units.'), _Field('l', 'dimEUnitsSize', help='The size of optional extended dimension units.', count=MAXDIMS, array=True), _Field('l', 'dimLabelsSize', help='The size of optional dimension labels.', count=MAXDIMS, array=True), _Field('l', 'sIndicesSize', help='The size of string indicies if this is a text wave.'), _Field('l', 'optionsSize1', default=0, help='Reserved. Write zero. Ignore on read.'), _Field('l', 'optionsSize2', default=0, help='Reserved. Write zero. Ignore on read.'), ]) # From wave.h MAX_WAVE_NAME2 = 18 # Maximum length of wave name in version 1 and 2 # files. Does not include the trailing null. MAX_WAVE_NAME5 = 31 # Maximum length of wave name in version 5 # files. Does not include the trailing null. MAX_UNIT_CHARS = 3 # Header to an array of waveform data. # `wData` field pulled out into DynamicWaveDataField1 WaveHeader2 = _DynamicStructure( name='WaveHeader2', fields=[ _Field('h', 'type', help='See types (e.g. NT_FP64) above. Zero for text waves.'), _Field('P', 'next', default=0, help='Used in memory only. Write zero. Ignore on read.'), NullStaticStringField('c', 'bname', help='Name of wave plus trailing null.', count=MAX_WAVE_NAME2+2), _Field('h', 'whVersion', default=0, help='Write 0. Ignore on read.'), _Field('h', 'srcFldr', default=0, help='Used in memory only. Write zero. Ignore on read.'), _Field('P', 'fileName', default=0, help='Used in memory only. Write zero. Ignore on read.'), _Field('c', 'dataUnits', default=0, help='Natural data units go here - null if none.', count=MAX_UNIT_CHARS+1, array=True), _Field('c', 'xUnits', default=0, help='Natural x-axis units go here - null if none.', count=MAX_UNIT_CHARS+1, array=True), _Field('l', 'npnts', help='Number of data points in wave.'), _Field('h', 'aModified', default=0, help='Used in memory only. Write zero. Ignore on read.'), _Field('d', 'hsA', help='X value for point p = hsA*p + hsB'), _Field('d', 'hsB', help='X value for point p = hsA*p + hsB'), _Field('h', 'wModified', default=0, help='Used in memory only. Write zero. Ignore on read.'), _Field('h', 'swModified', default=0, help='Used in memory only. Write zero. Ignore on read.'), _Field('h', 'fsValid', help='True if full scale values have meaning.'), _Field('d', 'topFullScale', help='The min full scale value for wave.'), # sic, 'min' should probably be 'max' _Field('d', 'botFullScale', help='The min full scale value for wave.'), _Field('c', 'useBits', default=0, help='Used in memory only. Write zero. Ignore on read.'), _Field('c', 'kindBits', default=0, help='Reserved. Write zero. Ignore on read.'), _Field('P', 'formula', default=0, help='Used in memory only. Write zero. Ignore on read.'), _Field('l', 'depID', default=0, help='Used in memory only. Write zero. Ignore on read.'), _Field('L', 'creationDate', help='DateTime of creation. Not used in version 1 files.'), _Field('c', 'wUnused', default=0, help='Reserved. Write zero. Ignore on read.', count=2, array=True), _Field('L', 'modDate', help='DateTime of last modification.'), _Field('P', 'waveNoteH', help='Used in memory only. Write zero. Ignore on read.'), ]) # `sIndices` pointer unset (use Wave5_data['sIndices'] instead). This # field is filled in by DynamicStringIndicesDataField. # `wData` field pulled out into DynamicWaveDataField5 WaveHeader5 = _DynamicStructure( name='WaveHeader5', fields=[ _Field('P', 'next', help='link to next wave in linked list.'), _Field('L', 'creationDate', help='DateTime of creation.'), _Field('L', 'modDate', help='DateTime of last modification.'), _Field('l', 'npnts', help='Total number of points (multiply dimensions up to first zero).'), _Field('h', 'type', help='See types (e.g. NT_FP64) above. Zero for text waves.'), _Field('h', 'dLock', default=0, help='Reserved. Write zero. Ignore on read.'), _Field('c', 'whpad1', default=0, help='Reserved. Write zero. Ignore on read.', count=6, array=True), _Field('h', 'whVersion', default=1, help='Write 1. Ignore on read.'), NullStaticStringField('c', 'bname', help='Name of wave plus trailing null.', count=MAX_WAVE_NAME5+1), _Field('l', 'whpad2', default=0, help='Reserved. Write zero. Ignore on read.'), _Field('P', 'dFolder', default=0, help='Used in memory only. Write zero. Ignore on read.'), # Dimensioning info. [0] == rows, [1] == cols etc _Field('l', 'nDim', help='Number of of items in a dimension -- 0 means no data.', count=MAXDIMS, array=True), _Field('d', 'sfA', help='Index value for element e of dimension d = sfA[d]*e + sfB[d].', count=MAXDIMS, array=True), _Field('d', 'sfB', help='Index value for element e of dimension d = sfA[d]*e + sfB[d].', count=MAXDIMS, array=True), # SI units _Field('c', 'dataUnits', default=0, help='Natural data units go here - null if none.', count=MAX_UNIT_CHARS+1, array=True), _Field('c', 'dimUnits', default=0, help='Natural dimension units go here - null if none.', count=(MAXDIMS, MAX_UNIT_CHARS+1), array=True), _Field('h', 'fsValid', help='TRUE if full scale values have meaning.'), _Field('h', 'whpad3', default=0, help='Reserved. Write zero. Ignore on read.'), _Field('d', 'topFullScale', help='The max and max full scale value for wave'), # sic, probably "max and min" _Field('d', 'botFullScale', help='The max and max full scale value for wave.'), # sic, probably "max and min" _Field('P', 'dataEUnits', default=0, help='Used in memory only. Write zero. Ignore on read.'), _Field('P', 'dimEUnits', default=0, help='Used in memory only. Write zero. Ignore on read.', count=MAXDIMS, array=True), _Field('P', 'dimLabels', default=0, help='Used in memory only. Write zero. Ignore on read.', count=MAXDIMS, array=True), _Field('P', 'waveNoteH', default=0, help='Used in memory only. Write zero. Ignore on read.'), _Field('l', 'whUnused', default=0, help='Reserved. Write zero. Ignore on read.', count=16, array=True), # The following stuff is considered private to Igor. _Field('h', 'aModified', default=0, help='Used in memory only. Write zero. Ignore on read.'), _Field('h', 'wModified', default=0, help='Used in memory only. Write zero. Ignore on read.'), _Field('h', 'swModified', default=0, help='Used in memory only. Write zero. Ignore on read.'), _Field('c', 'useBits', default=0, help='Used in memory only. Write zero. Ignore on read.'), _Field('c', 'kindBits', default=0, help='Reserved. Write zero. Ignore on read.'), _Field('P', 'formula', default=0, help='Used in memory only. Write zero. Ignore on read.'), _Field('l', 'depID', default=0, help='Used in memory only. Write zero. Ignore on read.'), _Field('h', 'whpad4', default=0, help='Reserved. Write zero. Ignore on read.'), _Field('h', 'srcFldr', default=0, help='Used in memory only. Write zero. Ignore on read.'), _Field('P', 'fileName', default=0, help='Used in memory only. Write zero. Ignore on read.'), _Field('P', 'sIndices', default=0, help='Used in memory only. Write zero. Ignore on read.'), ]) class DynamicWaveDataField1 (_DynamicField): def pre_pack(self, parents, data): raise NotImplementedError() def pre_unpack(self, parents, data): full_structure = parents[0] wave_structure = parents[-1] wave_header_structure = wave_structure.fields[1].format wave_data = self._get_structure_data(parents, data, wave_structure) version = data['version'] bin_header = wave_data['bin_header'] wave_header = wave_data['wave_header'] self.count = wave_header['npnts'] self.data_size = self._get_size(bin_header, wave_header_structure.size) type_ = TYPE_TABLE.get(wave_header['type'], None) if type_: self.shape = self._get_shape(bin_header, wave_header) else: # text wave type_ = np.dtype('S1') self.shape = (self.data_size,) # dtype() wrapping to avoid numpy.generic and # getset_descriptor issues with the builtin numpy types # (e.g. int32). It has no effect on our local complex # integers. self.dtype = np.dtype(type_).newbyteorder( wave_structure.byte_order) if (version == 3 and self.count > 0 and bin_header['formulaSize'] > 0 and self.data_size == 0): """From TN003: Igor Pro 2.00 included support for dependency formulae. If a wave was governed by a dependency formula then the actual wave data was not written to disk for that wave, because on loading the wave Igor could recalculate the data. However,this prevented the wave from being loaded into an experiment other than the original experiment. Consequently, in a version of Igor Pro 3.0x, we changed it so that the wave data was written even if the wave was governed by a dependency formula. When reading a binary wave file, you can detect that the wave file does not contain the wave data by examining the wfmSize, formulaSize and npnts fields. If npnts is greater than zero and formulaSize is greater than zero and the waveDataSize as calculated above is zero, then this is a file governed by a dependency formula that was written without the actual wave data. """ self.shape = (0,) elif TYPE_TABLE.get(wave_header['type'], None) is not None: assert self.data_size == self.count * self.dtype.itemsize, ( self.data_size, self.count, self.dtype.itemsize, self.dtype) else: assert self.data_size >= 0, ( bin_header['wfmSize'], wave_header_structure.size) def _get_size(self, bin_header, wave_header_size): return bin_header['wfmSize'] - wave_header_size - 16 def _get_shape(self, bin_header, wave_header): return (self.count,) def unpack(self, stream): data_b = stream.read(self.data_size) try: data = np.ndarray( shape=self.shape, dtype=self.dtype, buffer=data_b, order='F', ) except: _LOG.error( 'could not reshape data from {} to {}'.format( self.shape, data_b)) raise return data class DynamicWaveDataField5 (DynamicWaveDataField1): "Adds support for multidimensional data." def _get_size(self, bin_header, wave_header_size): return bin_header['wfmSize'] - wave_header_size def _get_shape(self, bin_header, wave_header): return [n for n in wave_header['nDim'] if n > 0] or (0,) # End IGOR constants and typedefs from IgorBin.h class DynamicStringField (StaticStringField): _size_field = None def pre_unpack(self, parents, data): size = self._get_size_data(parents, data) if self._array_size_field: self.counts = size self.count = sum(self.counts) else: self.count = size self.setup() def _get_size_data(self, parents, data): wave_structure = parents[-1] wave_data = self._get_structure_data(parents, data, wave_structure) bin_header = wave_data['bin_header'] return bin_header[self._size_field] class DynamicWaveNoteField (DynamicStringField): _size_field = 'noteSize' class DynamicDependencyFormulaField (DynamicStringField): """Optional wave dependency formula Excerpted from TN003: A wave has a dependency formula if it has been bound by a statement such as "wave0 := sin(x)". In this example, the dependency formula is "sin(x)". The formula is stored with no trailing null byte. """ _size_field = 'formulaSize' # Except when it is stored with a trailing null byte :p. See, for # example, test/data/mac-version3Dependent.ibw. _null_terminated = True class DynamicDataUnitsField (DynamicStringField): """Optional extended data units data Excerpted from TN003: dataUnits - Present in versions 1, 2, 3, 5. The dataUnits field stores the units for the data represented by the wave. It is a C string terminated with a null character. This field supports units of 0 to 3 bytes. In version 1, 2 and 3 files, longer units can not be represented. In version 5 files, longer units can be stored using the optional extended data units section of the file. """ _size_field = 'dataEUnitsSize' class DynamicDimensionUnitsField (DynamicStringField): """Optional extended dimension units data Excerpted from TN003: xUnits - Present in versions 1, 2, 3. The xUnits field stores the X units for a wave. It is a C string terminated with a null character. This field supports units of 0 to 3 bytes. In version 1, 2 and 3 files, longer units can not be represented. dimUnits - Present in version 5 only. This field is an array of 4 strings, one for each possible wave dimension. Each string supports units of 0 to 3 bytes. Longer units can be stored using the optional extended dimension units section of the file. """ _size_field = 'dimEUnitsSize' _array_size_field = True class DynamicLabelsField (DynamicStringField): """Optional dimension label data From TN003: If the wave has dimension labels for dimension d then the dimLabelsSize[d] field of the BinHeader5 structure will be non-zero. A wave will have dimension labels if a SetDimLabel command has been executed on it. A 3 point 1D wave has 4 dimension labels. The first dimension label is the label for the dimension as a whole. The next three dimension labels are the labels for rows 0, 1, and 2. When Igor writes dimension labels to disk, it writes each dimension label as a C string (null-terminated) in a field of 32 bytes. """ _size_field = 'dimLabelsSize' _array_size_field = True def post_unpack(self, parents, data): wave_structure = parents[-1] wave_data = self._get_structure_data(parents, data, wave_structure) bin_header = wave_data['bin_header'] d = wave_data[self.name] dim_labels = [] start = 0 for size in bin_header[self._size_field]: end = start + size if end > start: dim_data = d[start:end] chunks = [] for i in range(size//32): chunks.append(dim_data[32*i:32*(i+1)]) labels = [b''] for chunk in chunks: labels[-1] = labels[-1] + b''.join(chunk) if b'\x00' in chunk: labels.append(b'') labels.pop(-1) start = end else: labels = [] dim_labels.append(labels) wave_data[self.name] = dim_labels class DynamicStringIndicesDataField (_DynamicField): """String indices used for text waves only """ def pre_pack(self, parents, data): raise NotImplementedError() def pre_unpack(self, parents, data): wave_structure = parents[-1] wave_data = self._get_structure_data(parents, data, wave_structure) bin_header = wave_data['bin_header'] wave_header = wave_data['wave_header'] self.string_indices_size = bin_header['sIndicesSize'] self.count = self.string_indices_size // 4 if self.count: # make sure we're in a text wave assert TYPE_TABLE[wave_header['type']] is None, wave_header self.setup() def post_unpack(self, parents, data): if not self.count: return wave_structure = parents[-1] wave_data = self._get_structure_data(parents, data, wave_structure) wave_header = wave_data['wave_header'] wdata = wave_data['wData'] strings = [] start = 0 for i,offset in enumerate(wave_data['sIndices']): if offset > start: chars = wdata[start:offset] strings.append(b''.join(chars)) start = offset elif offset == start: strings.append(b'') else: raise ValueError((offset, wave_data['sIndices'])) wdata = np.array(strings) shape = [n for n in wave_header['nDim'] if n > 0] or (0,) try: wdata = wdata.reshape(shape) except ValueError: _LOG.error( 'could not reshape strings from {} to {}'.format( shape, wdata.shape)) raise wave_data['wData'] = wdata class DynamicVersionField (_DynamicField): def pre_pack(self, parents, byte_order): raise NotImplementedError() def post_unpack(self, parents, data): wave_structure = parents[-1] wave_data = self._get_structure_data(parents, data, wave_structure) version = wave_data['version'] if wave_structure.byte_order in '@=': need_to_reorder_bytes = _need_to_reorder_bytes(version) wave_structure.byte_order = _byte_order(need_to_reorder_bytes) _LOG.debug( 'get byte order from version: {} (reorder? {})'.format( wave_structure.byte_order, need_to_reorder_bytes)) else: need_to_reorder_bytes = False old_format = wave_structure.fields[-1].format if version == 1: wave_structure.fields[-1].format = Wave1 elif version == 2: wave_structure.fields[-1].format = Wave2 elif version == 3: wave_structure.fields[-1].format = Wave3 elif version == 5: wave_structure.fields[-1].format = Wave5 elif not need_to_reorder_bytes: raise ValueError( 'invalid binary wave version: {}'.format(version)) if wave_structure.fields[-1].format != old_format: _LOG.debug('change wave headers from {} to {}'.format( old_format, wave_structure.fields[-1].format)) wave_structure.setup() elif need_to_reorder_bytes: wave_structure.setup() # we might need to unpack again with the new byte order return need_to_reorder_bytes class DynamicWaveField (_DynamicField): def post_unpack(self, parents, data): return raise NotImplementedError() # TODO checksum_size = bin.size + wave.size wave_structure = parents[-1] if version == 5: # Version 5 checksum does not include the wData field. checksum_size -= 4 c = _checksum(b, parents[-1].byte_order, 0, checksum_size) if c != 0: raise ValueError( ('This does not appear to be a valid Igor binary wave file. ' 'Error in checksum: should be 0, is {}.').format(c)) Wave1 = _DynamicStructure( name='Wave1', fields=[ _Field(BinHeader1, 'bin_header', help='Binary wave header'), _Field(WaveHeader2, 'wave_header', help='Wave header'), DynamicWaveDataField1('f', 'wData', help='The start of the array of waveform data.', count=0, array=True), ]) Wave2 = _DynamicStructure( name='Wave2', fields=[ _Field(BinHeader2, 'bin_header', help='Binary wave header'), _Field(WaveHeader2, 'wave_header', help='Wave header'), DynamicWaveDataField1('f', 'wData', help='The start of the array of waveform data.', count=0, array=True), _Field('x', 'padding', help='16 bytes of padding in versions 2 and 3.', count=16, array=True), DynamicWaveNoteField('c', 'note', help='Optional wave note data', count=0, array=True), ]) Wave3 = _DynamicStructure( name='Wave3', fields=[ _Field(BinHeader3, 'bin_header', help='Binary wave header'), _Field(WaveHeader2, 'wave_header', help='Wave header'), DynamicWaveDataField1('f', 'wData', help='The start of the array of waveform data.', count=0, array=True), _Field('x', 'padding', help='16 bytes of padding in versions 2 and 3.', count=16, array=True), DynamicWaveNoteField('c', 'note', help='Optional wave note data', count=0, array=True), DynamicDependencyFormulaField('c', 'formula', help='Optional wave dependency formula', count=0, array=True), ]) Wave5 = _DynamicStructure( name='Wave5', fields=[ _Field(BinHeader5, 'bin_header', help='Binary wave header'), _Field(WaveHeader5, 'wave_header', help='Wave header'), DynamicWaveDataField5('f', 'wData', help='The start of the array of waveform data.', count=0, array=True), DynamicDependencyFormulaField('c', 'formula', help='Optional wave dependency formula.', count=0, array=True), DynamicWaveNoteField('c', 'note', help='Optional wave note data.', count=0, array=True), DynamicDataUnitsField('c', 'data_units', help='Optional extended data units data.', count=0, array=True), DynamicDimensionUnitsField('c', 'dimension_units', help='Optional dimension label data', count=0, array=True), DynamicLabelsField('c', 'labels', help="Optional dimension label data", count=0, array=True), DynamicStringIndicesDataField('P', 'sIndices', help='Dynamic string indices for text waves.', count=0, array=True), ]) Wave = _DynamicStructure( name='Wave', fields=[ DynamicVersionField('h', 'version', help='Version number for backwards compatibility.'), DynamicWaveField(Wave1, 'wave', help='The rest of the wave data.'), ]) def load(filename): if hasattr(filename, 'read'): f = filename # filename is actually a stream object else: f = open(filename, 'rb') try: Wave.byte_order = '=' Wave.setup() data = Wave.unpack_stream(f) finally: if not hasattr(filename, 'read'): f.close() return data def save(filename): raise NotImplementedError
/sci_memex-0.0.3-py3-none-any.whl/memex/translators/igor/binarywave.py
0.576065
0.265714
binarywave.py
pypi
"Read IGOR Packed Experiment files files into records." from . import LOG as _LOG from .struct import Structure as _Structure from .struct import Field as _Field from .util import byte_order as _byte_order from .util import need_to_reorder_bytes as _need_to_reorder_bytes from .util import _bytes from .record import RECORD_TYPE as _RECORD_TYPE from .record.base import UnknownRecord as _UnknownRecord from .record.base import UnusedRecord as _UnusedRecord from .record.folder import FolderStartRecord as _FolderStartRecord from .record.folder import FolderEndRecord as _FolderEndRecord from .record.variables import VariablesRecord as _VariablesRecord from .record.wave import WaveRecord as _WaveRecord # From PTN003: # Igor writes other kinds of records in a packed experiment file, for # storing things like pictures, page setup records, and miscellaneous # settings. The format for these records is quite complex and is not # described in PTN003. If you are writing a program to read packed # files, you must skip any record with a record type that is not # listed above. PackedFileRecordHeader = _Structure( name='PackedFileRecordHeader', fields=[ _Field('H', 'recordType', help='Record type plus superceded flag.'), _Field('h', 'version', help='Version information depends on the type of record.'), _Field('l', 'numDataBytes', help='Number of data bytes in the record following this record header.'), ]) #CR_STR = '\x15' (\r) PACKEDRECTYPE_MASK = 0x7FFF # Record type = (recordType & PACKEDREC_TYPE_MASK) SUPERCEDED_MASK = 0x8000 # Bit is set if the record is superceded by # a later record in the packed file. def load(filename, strict=True, ignore_unknown=True): _LOG.debug('loading a packed experiment file from {}'.format(filename)) records = [] if hasattr(filename, 'read'): f = filename # filename is actually a stream object else: f = open(filename, 'rb') byte_order = None initial_byte_order = '=' try: while True: PackedFileRecordHeader.byte_order = initial_byte_order PackedFileRecordHeader.setup() b = bytes(f.read(PackedFileRecordHeader.size)) if not b: break if len(b) < PackedFileRecordHeader.size: raise ValueError( ('not enough data for the next record header ({} < {})' ).format(len(b), PackedFileRecordHeader.size)) _LOG.debug('reading a new packed experiment file record') header = PackedFileRecordHeader.unpack_from(b) if header['version'] and not byte_order: need_to_reorder = _need_to_reorder_bytes(header['version']) byte_order = initial_byte_order = _byte_order(need_to_reorder) _LOG.debug( 'get byte order from version: {} (reorder? {})'.format( byte_order, need_to_reorder)) if need_to_reorder: PackedFileRecordHeader.byte_order = byte_order PackedFileRecordHeader.setup() header = PackedFileRecordHeader.unpack_from(b) _LOG.debug( 'reordered version: {}'.format(header['version'])) data = bytes(f.read(header['numDataBytes'])) if len(data) < header['numDataBytes']: raise ValueError( ('not enough data for the next record ({} < {})' ).format(len(b), header['numDataBytes'])) record_type = _RECORD_TYPE.get( header['recordType'] & PACKEDRECTYPE_MASK, _UnknownRecord) _LOG.debug('the new record has type {} ({}).'.format( record_type, header['recordType'])) if record_type in [_UnknownRecord, _UnusedRecord ] and not ignore_unknown: raise KeyError('unkown record type {}'.format( header['recordType'])) records.append(record_type(header, data, byte_order=byte_order)) finally: _LOG.debug('finished loading {} records from {}'.format( len(records), filename)) if not hasattr(filename, 'read'): f.close() filesystem = _build_filesystem(records) return (records, filesystem) def _build_filesystem(records): # From PTN003: """The name must be a valid Igor data folder name. See Object Names in the Igor Reference help file for name rules. When Igor Pro reads the data folder start record, it creates a new data folder with the specified name. Any subsequent variable, wave or data folder start records cause Igor to create data objects in this new data folder, until Igor Pro reads a corresponding data folder end record.""" # From the Igor Manual, chapter 2, section 8, page II-123 # http://www.wavemetrics.net/doc/igorman/II-08%20Data%20Folders.pdf """Like the Macintosh file system, Igor Pro's data folders use the colon character (:) to separate components of a path to an object. This is analogous to Unix which uses / and Windows which uses \. (Reminder: Igor's data folders exist wholly in memory while an experiment is open. It is not a disk file system!) A data folder named "root" always exists and contains all other data folders. """ # From the Igor Manual, chapter 4, page IV-2 # http://www.wavemetrics.net/doc/igorman/IV-01%20Commands.pdf """For waves and data folders only, you can also use "liberal" names. Liberal names can include almost any character, including spaces and dots (see Liberal Object Names on page III-415 for details). """ # From the Igor Manual, chapter 3, section 16, page III-416 # http://www.wavemetrics.net/doc/igorman/III-16%20Miscellany.pdf """Liberal names have the same rules as standard names except you may use any character except control characters and the following: " ' : ; """ filesystem = {'root': {}} dir_stack = [('root', filesystem['root'])] for record in records: cwd = dir_stack[-1][-1] if isinstance(record, _FolderStartRecord): name = record.null_terminated_text cwd[name] = {} dir_stack.append((name, cwd[name])) elif isinstance(record, _FolderEndRecord): dir_stack.pop() elif isinstance(record, (_VariablesRecord, _WaveRecord)): if isinstance(record, _VariablesRecord): sys_vars = record.variables['variables']['sysVars'].keys() for filename,value in record.namespace.items(): if len(dir_stack) > 1 and filename in sys_vars: # From PTN003: """When reading a packed file, any system variables encountered while the current data folder is not the root should be ignored. """ continue _check_filename(dir_stack, filename) cwd[filename] = value else: # WaveRecord filename = record.wave['wave']['wave_header']['bname'] _check_filename(dir_stack, filename) cwd[filename] = record return filesystem def _check_filename(dir_stack, filename): cwd = dir_stack[-1][-1] if filename in cwd: raise ValueError('collision on name {} in {}'.format( filename, ':'.join(d for d,cwd in dir_stack))) def walk(filesystem, callback, dirpath=None): """Walk a packed experiment filesystem, operating on each key,value pair. """ if dirpath is None: dirpath = [] for key,value in sorted((_bytes(k),v) for k,v in filesystem.items()): callback(dirpath, key, value) if isinstance(value, dict): walk(filesystem=value, callback=callback, dirpath=dirpath+[key])
/sci_memex-0.0.3-py3-none-any.whl/memex/translators/igor/packed.py
0.421433
0.260648
packed.py
pypi
import io as _io from .. import LOG as _LOG from ..binarywave import TYPE_TABLE as _TYPE_TABLE from ..binarywave import NullStaticStringField as _NullStaticStringField from ..binarywave import DynamicStringField as _DynamicStringField from ..struct import Structure as _Structure from ..struct import DynamicStructure as _DynamicStructure from ..struct import Field as _Field from ..struct import DynamicField as _DynamicField from ..util import byte_order as _byte_order from ..util import need_to_reorder_bytes as _need_to_reorder_bytes from .base import Record class ListedStaticStringField (_NullStaticStringField): """Handle string conversions for multi-count dynamic parents. If a field belongs to a multi-count dynamic parent, the parent is called multiple times to parse each count, and the field's post-unpack hook gets called after the field is unpacked during each iteration. This requires alternative logic for getting and setting the string data. The actual string formatting code is not affected. """ def post_unpack(self, parents, data): parent_structure = parents[-1] parent_data = self._get_structure_data(parents, data, parent_structure) d = self._normalize_string(parent_data[-1][self.name]) parent_data[-1][self.name] = d class ListedStaticStringField (_NullStaticStringField): """Handle string conversions for multi-count dynamic parents. If a field belongs to a multi-count dynamic parent, the parent is called multiple times to parse each count, and the field's post-unpack hook gets called after the field is unpacked during each iteration. This requires alternative logic for getting and setting the string data. The actual string formatting code is not affected. """ def post_unpack(self, parents, data): parent_structure = parents[-1] parent_data = self._get_structure_data(parents, data, parent_structure) d = self._normalize_string(parent_data[-1][self.name]) parent_data[-1][self.name] = d class ListedDynamicStrDataField (_DynamicStringField, ListedStaticStringField): _size_field = 'strLen' _null_terminated = False def _get_size_data(self, parents, data): parent_structure = parents[-1] parent_data = self._get_structure_data(parents, data, parent_structure) return parent_data[-1][self._size_field] class DynamicVarDataField (_DynamicField): def __init__(self, *args, **kwargs): if 'array' not in kwargs: kwargs['array'] = True super(DynamicVarDataField, self).__init__(*args, **kwargs) def pre_pack(self, parents, data): raise NotImplementedError() def post_unpack(self, parents, data): var_structure = parents[-1] var_data = self._get_structure_data(parents, data, var_structure) data = var_data[self.name] d = {} for i,value in enumerate(data): key,value = self._normalize_item(i, value) d[key] = value var_data[self.name] = d def _normalize_item(self, index, value): raise NotImplementedError() class DynamicSysVarField (DynamicVarDataField): def _normalize_item(self, index, value): name = 'K{}'.format(index) return (name, value) class DynamicUserVarField (DynamicVarDataField): def _normalize_item(self, index, value): name = value['name'] value = value['num'] return (name, value) class DynamicUserStrField (DynamicVarDataField): def _normalize_item(self, index, value): name = value['name'] value = value['data'] return (name, value) class DynamicVarNumField (_DynamicField): def post_unpack(self, parents, data): parent_structure = parents[-1] parent_data = self._get_structure_data(parents, data, parent_structure) d = self._normalize_numeric_variable(parent_data[-1][self.name]) parent_data[-1][self.name] = d def _normalize_numeric_variable(self, num_var): t = _TYPE_TABLE[num_var['numType']] if num_var['numType'] % 2: # complex number return t(complex(num_var['realPart'], num_var['imagPart'])) else: return t(num_var['realPart']) class DynamicFormulaField (_DynamicStringField): _size_field = 'formulaLen' _null_terminated = True # From Variables.h VarHeader1 = _Structure( # `version` field pulled out into VariablesRecord name='VarHeader1', fields=[ _Field('h', 'numSysVars', help='Number of system variables (K0, K1, ...).'), _Field('h', 'numUserVars', help='Number of user numeric variables -- may be zero.'), _Field('h', 'numUserStrs', help='Number of user string variables -- may be zero.'), ]) # From Variables.h VarHeader2 = _Structure( # `version` field pulled out into VariablesRecord name='VarHeader2', fields=[ _Field('h', 'numSysVars', help='Number of system variables (K0, K1, ...).'), _Field('h', 'numUserVars', help='Number of user numeric variables -- may be zero.'), _Field('h', 'numUserStrs', help='Number of user string variables -- may be zero.'), _Field('h', 'numDependentVars', help='Number of dependent numeric variables -- may be zero.'), _Field('h', 'numDependentStrs', help='Number of dependent string variables -- may be zero.'), ]) # From Variables.h UserStrVarRec1 = _DynamicStructure( name='UserStrVarRec1', fields=[ ListedStaticStringField('c', 'name', help='Name of the string variable.', count=32), _Field('h', 'strLen', help='The real size of the following array.'), ListedDynamicStrDataField('c', 'data'), ]) # From Variables.h UserStrVarRec2 = _DynamicStructure( name='UserStrVarRec2', fields=[ ListedStaticStringField('c', 'name', help='Name of the string variable.', count=32), _Field('l', 'strLen', help='The real size of the following array.'), _Field('c', 'data'), ]) # From Variables.h VarNumRec = _Structure( name='VarNumRec', fields=[ _Field('h', 'numType', help='Type from binarywave.TYPE_TABLE'), _Field('d', 'realPart', help='The real part of the number.'), _Field('d', 'imagPart', help='The imag part if the number is complex.'), _Field('l', 'reserved', help='Reserved - set to zero.'), ]) # From Variables.h UserNumVarRec = _DynamicStructure( name='UserNumVarRec', fields=[ ListedStaticStringField('c', 'name', help='Name of the string variable.', count=32), _Field('h', 'type', help='0 = string, 1 = numeric.'), DynamicVarNumField(VarNumRec, 'num', help='Type and value of the variable if it is numeric. Not used for string.'), ]) # From Variables.h UserDependentVarRec = _DynamicStructure( name='UserDependentVarRec', fields=[ ListedStaticStringField('c', 'name', help='Name of the string variable.', count=32), _Field('h', 'type', help='0 = string, 1 = numeric.'), _Field(VarNumRec, 'num', help='Type and value of the variable if it is numeric. Not used for string.'), _Field('h', 'formulaLen', help='The length of the dependency formula.'), DynamicFormulaField('c', 'formula', help='Start of the dependency formula. A C string including null terminator.'), ]) class DynamicVarHeaderField (_DynamicField): def pre_pack(self, parents, data): raise NotImplementedError() def post_unpack(self, parents, data): var_structure = parents[-1] var_data = self._get_structure_data( parents, data, var_structure) var_header_structure = self.format data = var_data['var_header'] sys_vars_field = var_structure.get_field('sysVars') sys_vars_field.count = data['numSysVars'] sys_vars_field.setup() user_vars_field = var_structure.get_field('userVars') user_vars_field.count = data['numUserVars'] user_vars_field.setup() user_strs_field = var_structure.get_field('userStrs') user_strs_field.count = data['numUserStrs'] user_strs_field.setup() if 'numDependentVars' in data: dependent_vars_field = var_structure.get_field('dependentVars') dependent_vars_field.count = data['numDependentVars'] dependent_vars_field.setup() dependent_strs_field = var_structure.get_field('dependentStrs') dependent_strs_field.count = data['numDependentStrs'] dependent_strs_field.setup() var_structure.setup() Variables1 = _DynamicStructure( name='Variables1', fields=[ DynamicVarHeaderField(VarHeader1, 'var_header', help='Variables header'), DynamicSysVarField('f', 'sysVars', help='System variables', count=0), DynamicUserVarField(UserNumVarRec, 'userVars', help='User numeric variables', count=0), DynamicUserStrField(UserStrVarRec1, 'userStrs', help='User string variables', count=0), ]) Variables2 = _DynamicStructure( name='Variables2', fields=[ DynamicVarHeaderField(VarHeader2, 'var_header', help='Variables header'), DynamicSysVarField('f', 'sysVars', help='System variables', count=0), DynamicUserVarField(UserNumVarRec, 'userVars', help='User numeric variables', count=0), DynamicUserStrField(UserStrVarRec2, 'userStrs', help='User string variables', count=0), _Field(UserDependentVarRec, 'dependentVars', help='Dependent numeric variables.', count=0, array=True), _Field(UserDependentVarRec, 'dependentStrs', help='Dependent string variables.', count=0, array=True), ]) class DynamicVersionField (_DynamicField): def pre_pack(self, parents, byte_order): raise NotImplementedError() def post_unpack(self, parents, data): variables_structure = parents[-1] variables_data = self._get_structure_data( parents, data, variables_structure) version = variables_data['version'] if variables_structure.byte_order in '@=': need_to_reorder_bytes = _need_to_reorder_bytes(version) variables_structure.byte_order = _byte_order(need_to_reorder_bytes) _LOG.debug( 'get byte order from version: {} (reorder? {})'.format( variables_structure.byte_order, need_to_reorder_bytes)) else: need_to_reorder_bytes = False old_format = variables_structure.fields[-1].format if version == 1: variables_structure.fields[-1].format = Variables1 elif version == 2: variables_structure.fields[-1].format = Variables2 elif not need_to_reorder_bytes: raise ValueError( 'invalid variables record version: {}'.format(version)) if variables_structure.fields[-1].format != old_format: _LOG.debug('change variables record from {} to {}'.format( old_format, variables_structure.fields[-1].format)) variables_structure.setup() elif need_to_reorder_bytes: variables_structure.setup() # we might need to unpack again with the new byte order return need_to_reorder_bytes VariablesRecordStructure = _DynamicStructure( name='VariablesRecord', fields=[ DynamicVersionField('h', 'version', help='Version number for this header.'), _Field(Variables1, 'variables', help='The rest of the variables data.'), ]) class VariablesRecord (Record): def __init__(self, *args, **kwargs): super(VariablesRecord, self).__init__(*args, **kwargs) # self.header['version'] # record version always 0? VariablesRecordStructure.byte_order = '=' VariablesRecordStructure.setup() stream = _io.BytesIO(bytes(self.data)) self.variables = VariablesRecordStructure.unpack_stream(stream) self.namespace = {} for key,value in self.variables['variables'].items(): if key not in ['var_header']: _LOG.debug('update namespace {} with {} for {}'.format( self.namespace, value, key)) self.namespace.update(value)
/sci_memex-0.0.3-py3-none-any.whl/memex/translators/igor/record/variables.py
0.602646
0.30005
variables.py
pypi
from typing import Container import docker import logging import os import typer import subprocess import re from collections.abc import Mapping import sys _LOGGER = logging.getLogger(__name__) def port_mapping(mapping: str, public: bool) -> Mapping: m = re.fullmatch("^(([0-9]{1,5})(?:/(?:tcp|udp))?):([0-9]{1,5})$", mapping) if not m: typer.secho( f"Invalid port specification '{mapping}'", fg=typer.colors.RED, ) raise typer.Exit(code=1) container = m.group(1) srcPort = int(m.group(2)) hostPort = int(m.group(3)) if srcPort < 0 or srcPort > 65535: typer.secho( f"Invalid port number '{srcPort}'", fg=typer.colors.RED, ) raise typer.Exit(code=1) if hostPort < 0 or hostPort > 65535: typer.secho( f"Invalid port number '{srcPort}'", fg=typer.colors.RED, ) raise typer.Exit(code=1) host = "0.0.0.0" if public else "127.0.0.1" return {container: (host, hostPort) if hostPort != 0 else None} def port_map(portList: list, public: bool) -> dict: portMapping = {} for p in portList: portMapping.update(port_mapping(p, public)) return portMapping def port_env_mapping(mapping: str) -> str: m = re.fullmatch("^(([0-9]{1,5})(?:/(?:tcp|udp))?):([0-9]{1,5})$", mapping) if not m: typer.secho( f"Invalid port specification '{mapping}'", fg=typer.colors.RED, ) raise typer.Exit(code=1) srcPort = int(m.group(2)) hostPort = int(m.group(3)) if srcPort < 0 or srcPort > 65535: typer.secho( f"Invalid port number '{srcPort}'", fg=typer.colors.RED, ) raise typer.Exit(code=1) if hostPort < 0 or hostPort > 65535: typer.secho( f"Invalid port number '{srcPort}'", fg=typer.colors.RED, ) raise typer.Exit(code=1) return f"PORT_{srcPort}={hostPort}" def port_env_map(portList: list) -> list: return [port_env_mapping(p) for p in portList] def fetch_latest(client: docker.client, repository, **kwargs): _LOGGER.info( f'pulling latest version of the "{repository}" docker image, this may take a while...' ) oldImage = None try: oldImage = client.images.get(repository) except: pass image = client.images.pull(repository) _LOGGER.info("Done pulling the latest docker image") if oldImage and oldImage.id != image.id: oldImage.remove() return image def create_container(client: docker.client, course: dict, **kwargs): try: _LOGGER.info(f"checking if image {course['image']} exists locally...") i = client.images.get(course["image"]) _LOGGER.info("Image exists locally.") except docker.errors.ImageNotFound as e: _LOGGER.info("Image is not found, start will take a while to pull first.") typer.secho( f"Course image needs to be downloaded, this may take a while...", fg=typer.colors.YELLOW, ) _LOGGER.info(f"starting `{course['image']}` container as `{course['name']}`...") try: container = client.containers.run( course["image"], ports=port_map(course["ports"], course.get("public", False)), environment=port_env_map(course["ports"]), name=f'scioer_{course["name"]}', hostname=course["name"], tty=True, detach=True, volumes=[f"{course['volume']}:/course"], ) except docker.errors.ImageNotFound as e: _LOGGER.error("Image not found.", e) typer.secho( f"Course image not found, check the config file that the image name is correct.", fg=typer.colors.RED, ) sys.exit(1) except docker.errors.APIError as e: _LOGGER.debug(f"Failed to start the container: {e}") if e.status_code == 409: typer.secho( f"Container name already in use. Please delete the container with the name `scioer_{course['name']}` before trying again.", fg=typer.colors.RED, ) sys.exit(2) elif e.status_code == 404: typer.secho( f"Course image not found, check the config file that the image name is correct.", fg=typer.colors.RED, ) sys.exit(3) typer.secho( f"Unknown error: {e.explanation}, aborting...", fg=typer.colors.RED, ) sys.exit(4) return container def start_container(client: docker.client, course: dict, **kwargs): container = None try: container = client.containers.get(f'scioer_{course["name"]}') _LOGGER.info(f'Container for `scioer_{course["name"]}` already exists.') if container.status == "running": _LOGGER.info("Container is already running, not restarting.") else: _LOGGER.info("Restarting container") container.start() _LOGGER.info("Successfully started") except: _LOGGER.info(f'Container `scioer_{course["name"]}` does not exist, starting...') container = create_container(client, course) return container def stop_container(client: docker.client, courseName: str, keep: bool, **kwargs): _LOGGER.info("stopping docker container...") try: container = client.containers.get(f"scioer_{courseName}") except: typer.secho( f"Container for course '{courseName}' is not running", fg=typer.colors.YELLOW, ) return container.stop() typer.secho( f"Container for course '{courseName}' is has been stopped", fg=typer.colors.GREEN, ) if not keep: delete_container(container) def attach(client: docker.client, courseName: str, **kwargs): _LOGGER.info("attaching to docker container...") try: container = client.containers.get(f"scioer_{courseName}") except: typer.secho( f"Container for course '{courseName}' is not running", fg=typer.colors.YELLOW, ) return os.system(f"docker exec -it scioer_{courseName} cat /scripts/motd.txt") typer.echo("Starting interactive shell in the container, type `exit` to quit.") os.system(f"docker exec -it scioer_{courseName} bash --login") def delete_container(container, **kwargs): _LOGGER.info("Deleting container...") container.remove() def setup(): client = None try: client = docker.from_env() except: typer.secho( "failed to connect to docker, check that Docker is running on the host.", fg=typer.colors.RED, ) raise typer.Exit(code=1) return client
/sci_oer-1.3.0-py3-none-any.whl/scioer/docker.py
0.540924
0.181191
docker.py
pypi
import typer from collections.abc import Mapping import click import scioer.config.load as load import scioer.config.parse as parser import os import re from typing import Optional from pathlib import Path import logging try: import readline except: import sys if sys.platform == "win32" or sys.platform == "cygwin": try: from pyreadline3 import Readline except: pass __version__ = "UNKNOWN" try: from scioer.__version__ import __version__ except: pass import scioer.docker as docker _LOGGER = logging.getLogger(__name__) app = typer.Typer( name="Self Contained Interactive Open Educational Resource Helper", help=""" A CLI tool to help configure, start, stop course resources. \b Common usage commands: 1. `scioer config` .... fill in the form 2. `scioer start <course>` 3. `scioer shell <course>` 4. `scioer stop <course>` \f """, no_args_is_help=True, context_settings={"help_option_names": ["-h", "--help"]}, ) def conf_callback(ctx: typer.Context, param: typer.CallbackParam, value: Path): if value: value = os.path.realpath(os.path.expanduser(str(value))) configFiles = load.get_config_files(value) config = load.filter_config_files(configFiles) if not value and not config: config = configFiles[0] _LOGGER.info(f"No config file found, using default: {config}") elif value and value != config: config = value _LOGGER.info(f"Config file does not exist yet, using anyway: {config}") if config: _LOGGER.info(f"Loading from config file: {config}") data = parser.load_config_file(config) ctx.default_map = ctx.default_map or {} # Initialize the default map ctx.default_map.update(data) # Merge the config dict into default_map ctx.obj = ctx.obj or {} # Initialize the object ctx.obj.update( {"config_file": config, "config": data} ) # Merge the config dict into object return config def version_callback(value: bool): if value: typer.echo(f"scioer CLI Version: {__version__}") raise typer.Exit() configOption = typer.Option( None, "--config", "-c", metavar="FILE", dir_okay=False, resolve_path=False, readable=True, writable=True, callback=conf_callback, is_eager=True, help="Path to the yaml config file", ) courseNameArgument = typer.Argument( None, metavar="COURSE_NAME", help="The name of the course" ) def load_course(config: Mapping, courseName: str, ask: bool = True): course = config.get(courseName, {}) while ask and not course: if courseName: typer.secho( f'Course "{courseName} is not found. use `scioer config` if you want to create it.', fg=typer.colors.YELLOW, ) courses = [k for k in config.keys() if isinstance(config[k], dict)] courseName = click.prompt( "Course not found, did you mean one of:", type=click.Choice(courses) ) course = config.get(courseName, {}) if course: course["name"] = courseName _LOGGER.info(f"course content: {course}") return course def print_post_start_help(courseName): typer.secho(f"Started the {courseName} course resource", fg=typer.colors.GREEN) typer.secho( f"Login for the wiki: '[email protected]' 'password'", fg=typer.colors.GREEN ) typer.echo("-----") typer.secho(f"To stop the course: scioer stop {courseName}", fg=typer.colors.YELLOW) typer.secho( f"To get a shell for the course: scioer shell {courseName}", fg=typer.colors.YELLOW, ) typer.secho( f"To re-start the course: scioer start {courseName}", fg=typer.colors.YELLOW ) typer.secho( f"To get information on the courses: scioer status", fg=typer.colors.YELLOW ) @app.command() def start( ctx: typer.Context, name: Optional[str] = courseNameArgument, pull: bool = False, configFile: Optional[Path] = configOption, ): """Start a oer container""" client = docker.setup() config = ctx.default_map if not name and len(config.keys()) == 1: name = list(config.keys())[0] course = load_course(config, name) if course.get("auto_pull", False) or pull: typer.secho( f"Pulling the latest version of the {course['name']}", fg=typer.colors.GREEN, ) typer.secho( f"This may take a while...", fg=typer.colors.YELLOW, ) docker.fetch_latest(client, course["image"]) typer.secho("Starting...", fg=typer.colors.GREEN) docker.start_container(client, course) print_post_start_help(course["name"]) @app.command() def stop( ctx: typer.Context, name: Optional[str] = courseNameArgument, keep: Optional[bool] = typer.Option(False, "--no-remove", "-k"), configFile: Optional[Path] = configOption, ): """Stop a running course container""" client = docker.setup() config = ctx.default_map if not name and len(config.keys()) == 1: name = list(config.keys())[0] course = load_course(config, name, ask=False) if course: typer.secho( f"Stopping course container, this make take a couple seconds...", fg=typer.colors.RED, ) docker.stop_container(client, course["name"], keep) else: typer.secho(f'Course "{name}" is not running.', fg=typer.colors.YELLOW) @app.command() def shell( ctx: typer.Context, name: str = courseNameArgument, configFile: Optional[Path] = configOption, ): """Start a shell in a running course container""" client = docker.setup() config = ctx.default_map if not name and len(config.keys()) == 1: name = list(config.keys())[0] course = load_course(config, name, ask=False) if course: docker.attach(client, course["name"]) else: typer.secho(f'Course "{name}" is not running.', fg=typer.colors.YELLOW) def print_container(container): indent = 2 print(f"Course: {container.name[7:]} ({container.status})") print(f'{" " * indent }Ports:') ports = list(container.ports.items()) if ports: for port in ports[:-1]: print(f'{" " * indent }├── {port[1][0]["HostPort"]} -> {port[0][:-4]}') port = ports[-1] print(f'{" " * indent }└── {port[1][0]["HostPort"]} -> {port[0][:-4]}') print(f'{" " * indent }Volumes:') volumes = [v for v in container.attrs["Mounts"] if v["Type"] == "bind"] home = os.path.expanduser("~") if volumes: for volume in volumes[:-1]: hostPath = volume["Source"].replace(home, "~") print(f'{" " * indent }├── {hostPath} as {volume["Destination"]}') volume = volumes[-1] hostPath = volume["Source"].replace(home, "~") print(f'{" " * indent }└── {hostPath} as {volume["Destination"]}') @app.command() def status( ctx: typer.Context, configFile: Optional[Path] = configOption, ): """Prints all the information about the running container""" client = docker.setup() config = ctx.default_map config_file = ctx.obj["config_file"] _LOGGER.info(f"Config contents: {config}") names = list(config.keys()) home = os.path.expanduser("~") configPath = config_file.replace(home, "~") print(f"Config file: {configPath}") # containers = client.containers.list(all=True) # containers = [c for c in containers if c.name.replace('scioer_', '') in names ] filtered = [] notRunning = [] for n in names: try: c = client.containers.get(f"scioer_{n}") _LOGGER.debug(f"Container information for course {n}: {c.attrs}") filtered.append(c) except: notRunning.append(n) for c in filtered: print_container(c) for n in notRunning: print(f"Course: {n} (Not Running)") def prompt_port(message: str, default: int) -> int: value = typer.prompt( message, default=default, type=int, ) while value < 0 or value > 65535: typer.secho( f"`{value}` is not a valid port number.", fg=typer.colors.RED, ) value = typer.prompt( message, default=default, type=int, ) return value def port_mapping(mapping: str) -> Mapping: m = re.fullmatch("^(([0-9]{1,5})(?:/(?:tcp|udp))?)(?::([0-9]{1,5}))?$", mapping) if not m: return {} container = m.group(1) srcPort = int(m.group(2)) hostPort = int(m.group(3) or m.group(2)) if srcPort < 0 or srcPort > 65535 or hostPort < 0 or hostPort > 65535: typer.secho( "Invalid port number.", fg=typer.colors.RED, ) return {} return {container: hostPort} def prompt_custom_ports() -> Mapping: value = typer.prompt( "Custom ports to expose, in the form of 'container[:host]', or no input to skip ", default="", value_proc=lambda v: v.strip(), type=str, ) mapping = port_mapping(value) if value != "" and not mapping: typer.secho( "Invalid port specification, please try again.", fg=typer.colors.RED, ) mappings = mapping while value != "": value = typer.prompt( "Custom ports to expose, in the form of 'container:host', or no input to skip ", default="", value_proc=lambda v: v.strip(), type=str, ) mapping = port_mapping(value) if value != "" and not mapping: typer.secho( "Invalid port specification, please try again.", fg=typer.colors.RED, ) continue if mapping: mappings = {**mappings, **mapping} return mappings @app.command() def config( ctx: typer.Context, configFile: Optional[Path] = configOption, ): """Setup a new course resource, or edit an existing one""" if not configFile: typer.echo( f"Config file not found, or not specified. Make sure that file exists or use `--config=FILE` to specify the file" ) raise typer.Exit(1) config = ctx.default_map _LOGGER.info(f"config contents: {config}") course_name = typer.prompt("What's the name of the course?") safe_course_name = "".join( x for x in course_name.replace(" ", "_") if x.isalnum() or x == "_" ) default_image = "scioer/oo-java:W23" default_volume = os.path.join(os.path.expanduser("~/Desktop"), safe_course_name) course = config.get(safe_course_name, {}) docker_image = typer.prompt( "What docker image does the course use?", default=course.get("image", default_image), ) auto_pull = typer.confirm( "Automatically fetch new versions", default=course.get("auto_pull", False) ) course_storage = typer.prompt( "Where should the files for the course be stored?", default=course.get("volume", default_volume), ) useDefaults = typer.confirm("Use the default ports", default=True) mappings = { "3000": 3000, "8888": 8888, "8000": 8000, "22": 2222, } if not useDefaults: wiki_port = prompt_port( "Wiki port to expose, (0 to publish a random port)", 3000, ) jupyter_port = prompt_port( "Jupyter notebooks port to expose, (0 to publish a random port)", 8888, ) lectures_port = prompt_port( "Lectures port to expose, (0 to publish a random port)", 8000, ) ssh_port = prompt_port( "ssh port to expose, (0 to publish a random port)", 2222, ) customPorts = prompt_custom_ports() mappings = { "3000": wiki_port, "8888": jupyter_port, "8000": lectures_port, "22": ssh_port, **customPorts, } ports = [f"{k}:{v}" for k, v in mappings.items()] config[safe_course_name] = { "image": docker_image, "volume": os.path.realpath(os.path.expanduser(course_storage)), "ports": ports, "auto_pull": auto_pull, "public": False, } parser.save_config_file(configFile, config) @app.callback() def setup( verbose: Optional[bool] = typer.Option(False, "--verbose", "-v"), debug: Optional[bool] = typer.Option(False, "--debug"), version: Optional[bool] = typer.Option( None, "--version", "-V", callback=version_callback, is_eager=True ), ): level = logging.WARNING if debug: level = logging.DEBUG elif verbose: level = logging.INFO logging.basicConfig(level=level) if __name__ == "__main__": app()
/sci_oer-1.3.0-py3-none-any.whl/scioer/cli.py
0.496582
0.158435
cli.py
pypi
PALETTES = { "npg_nrc": { "Cinnabar": "#E64B35", "Shakespeare": "#4DBBD5", "PersianGreen": "#00A087", "Chambray": "#3C5488", "Apricot": "#F39B7F", "WildBlueYonder": "#8491B4", "MonteCarlo": "#91D1C2", "Monza": "#DC0000", "RomanCoffee": "#7E6148", "Sandrift": "#B09C85" }, "aaas": { "Chambray": "#3B4992", "Red": "#EE0000", "FunGreen": "#008B45", "HoneyFlower": "#631879", "Teal": "#008280", "Monza": "#BB0021", "ButterflyBush": "#5F559B", "FreshEggplant": "#A20056", "Stack": "#808180", "CodGray": "#1B1919" }, "nejm": { "TallPoppy": "#BC3C29", "DeepCerulean": "#0072B5", "Zest": "#E18727", "Eucalyptus": "#20854E", "WildBlueYonder": "#7876B1", "Gothic": "#6F99AD", "Salomie": "#FFDC91", "FrenchRose": "#EE4C97" }, "lancet_lanonc": { "CongressBlue": "#00468B", "Red": "#ED0000", "Apple": "#42B540", "BondiBlue": "#0099B4", "TrendyPink": "#925E9F", "MonaLisa": "#FDAF91", "Carmine": "#AD002A", "Edward": "#ADB6B6", "CodGray": "#1B1919" }, "jama": { "Limed Spruce": "#374E55", "Anzac": "#DF8F44", "Cerulean": "#00A1D5", "Apple Blossom": "#B24745", "Acapulco": "#79AF97", "Kimberly": "#6A6599", "Makara": "#80796B" }, "jco": { "Lochmara": "#0073C2", "Corn": "#EFC000", "Gray": "#868686", "ChestnutRose": "#CD534C", "Danube": "#7AA6DC", "RegalBlue": "#003C67", "Olive": "#8F7700", "MineShaft": "#3B3B3B", "WellRead": "#A73030", "KashmirBlue": "#4A6990" }, "ucscgb": { "chr5": "#FF0000", "chr8": "#FF9900", "chr9": "#FFCC00", "chr12": "#00FF00", "chr15": "#6699FF", "chr20": "#CC33FF", "chr3": "#99991E", "chrX": "#999999", "chr6": "#FF00CC", "chr4": "#CC0000", "chr7": "#FFCCCC", "chr10": "#FFFF00", "chr11": "#CCFF00", "chr13": "#358000", "chr14": "#0000CC", "chr16": "#99CCFF", "chr17": "#00FFFF", "chr18": "#CCFFFF", "chr19": "#9900CC", "chr21": "#CC99FF", "chr1": "#996600", "chr2": "#666600", "chr22": "#666666", "chrY": "#CCCCCC", "chrUn": "#79CC3D", "chrM": "#CCCC99" }, "d3_category10": { "Matisse": "#1F77B4", "Flamenco": "#FF7F0E", "ForestGreen": "#2CA02C", "Punch": "#D62728", "Wisteria": "#9467BD", "SpicyMix": "#8C564B", "Orchid": "#E377C2", "Gray": "#7F7F7F", "KeyLimePie": "#BCBD22", "Java": "#17BECF" }, "d3_category20": { "Matisse": "#1F77B4", "Flamenco": "#FF7F0E", "ForestGreen": "#2CA02C", "Punch": "#D62728", "Wisteria": "#9467BD", "SpicyMix": "#8C564B", "Orchid": "#E377C2", "Gray": "#7F7F7F", "KeyLimePie": "#BCBD22", "Java": "#17BECF", "Spindle": "#AEC7E8", "MaC": "#FFBB78", "Feijoa": "#98DF8A", "MonaLisa": "#FF9896", "LavenderGray": "#C5B0D5", "Quicksand": "#C49C94", "Chantilly": "#F7B6D2", "Silver": "#C7C7C7", "Deco": "#DBDB8D", "RegentStBlue": "#9EDAE5" }, "d3_category20b": { "EastBay": "#393B79", "ChaletGreen": "#637939", "Pesto": "#8C6D31", "Lotus": "#843C39", "CannonPink": "#7B4173", "ButterflyBush": "#5254A3", "ChelseaCucumber": "#8CA252", "Tussock": "#BD9E39", "AppleBlossom": "#AD494A", "Tapestry": "#A55194", "MoodyBlue": "#6B6ECF", "WildWillow": "#B5CF6B", "Ronchi": "#E7BA52", "ChestnutRose": "#D6616B", "Hopbush": "#CE6DBD", "ColdPurple": "#9C9EDE", "Deco": "#CEDB9C", "Putty": "#E7CB94", "TonysPink": "#E7969C", "LightOrchid": "#DE9ED6" }, "d3_category20c": { "BostonBlue": "#3182BD", "Christine": "#E6550D", "SeaGreen": "#31A354", "Deluge": "#756BB1", "DoveGray": "#636363", "Danube": "#6BAED6", "NeonCarrot": "#FD8D3C", "DeYork": "#74C476", "BlueBell": "#9E9AC8", "DustyGray": "#969696", "RegentStBlue": "#9ECAE1", "Koromiko": "#FDAE6B", "MossGreen": "#A1D99B", "LavenderGray": "#BCBDDC", "Silver": "#BDBDBD", "Spindle": "#C6DBEF", "Flesh": "#FDD0A2", "Celadon": "#C7E9C0", "Snuff": "#DADAEB", "Alto": "#D9D9D9" }, "igv": { "chr1": "#5050FF", "chr2": "#CE3D32", "chr3": "#749B58", "chr4": "#F0E685", "chr5": "#466983", "chr6": "#BA6338", "chr7": "#5DB1DD", "chr8": "#802268", "chr9": "#6BD76B", "chr10": "#D595A7", "chr11": "#924822", "chr12": "#837B8D", "chr13": "#C75127", "chr14": "#D58F5C", "chr15": "#7A65A5", "chr16": "#E4AF69", "chr17": "#3B1B53", "chr18": "#CDDEB7", "chr19": "#612A79", "chr20": "#AE1F63", "chr21": "#E7C76F", "chr22": "#5A655E", "chrX": "#CC9900", "chrY": "#99CC00", "chrUn": "#A9A9A9", "chr23": "#CC9900", "chr24": "#99CC00", "chr25": "#33CC00", "chr26": "#00CC33", "chr27": "#00CC99", "chr28": "#0099CC", "chr29": "#0A47FF", "chr30": "#4775FF", "chr31": "#FFC20A", "chr32": "#FFD147", "chr33": "#990033", "chr34": "#991A00", "chr35": "#996600", "chr36": "#809900", "chr37": "#339900", "chr38": "#00991A", "chr39": "#009966", "chr40": "#008099", "chr41": "#003399", "chr42": "#1A0099", "chr43": "#660099", "chr44": "#990080", "chr45": "#D60047", "chr46": "#FF1463", "chr47": "#00D68F", "chr48": "#14FFB1" }, "igv_alternating": { "Indigo": "#5773CC", "SelectiveYellow": "#FFB900" }, "locuszoom": { "0.8to1.0": "#D43F3A", "0.6to0.8": "#EEA236", "0.4to0.6": "#5CB85C", "0.2to0.4": "#46B8DA", "0.0to0.2": "#357EBD", "LDRefVar": "#9632B8", "nodata": "#B8B8B8" }, "uchicago": { "Maroon": "#800000", "DarkGray": "#767676", "Yellow": "#FFA319", "LightGreen": "#8A9045", "Blue": "#155F83", "Orange": "#C16622", "Red": "#8F3931", "DarkGreen": "#58593F", "Violet": "#350E20" }, "uchicago_light": { "Maroon": "#800000", "LightGray": "#D6D6CE", "Yellow": "#FFB547", "LightGreen": "#ADB17D", "Blue": "#5B8FA8", "Orange": "#D49464", "Red": "#B1746F", "DarkGreen": "#8A8B79", "Violet": "#725663" }, "uchicago_dark": { "Maroon": "#800000", "DarkGray": "#767676", "Yellow": "#CC8214", "LightGreen": "#616530", "Blue": "#0F425C", "Orange": "#9A5324", "Red": "#642822", "DarkGreen": "#3E3E23", "Violet": "#350E20" }, "cosmic_hallmarks_dark": { "Invasion and Metastasis": "#171717", "Escaping Immunic Response to Cancer": "#7D0226", "Change of Cellular Energetics": "#300049", "Cell Replicative Immortality": "#165459", "Suppression of Growth": "#3F2327", "Genome Instability and Mutations": "#0B1948", "Angiogenesis": "#E71012", "Escaping Programmed Cell Death": "#555555", "Proliferative Signaling": "#193006", "Tumour Promoting Inflammation": "#A8450C" }, "cosmic_hallmarks_light": { "Invasion and Metastasis": "#2E2A2B", "Escaping Immunic Response to Cancer": "#CF4E9C", "Change of Cellular Energetics": "#8C57A2", "Cell Replicative Immortality": "#358DB9", "Suppression of Growth": "#82581F", "Genome Instability and Mutations": "#2F509E", "Angiogenesis": "#E5614C", "Escaping Programmed Cell Death": "#97A1A7", "Proliferative Signaling": "#3DA873", "Tumour Promoting Inflammation": "#DC9445" }, "cosmic_signature_substitutions": { "C>A": "#5ABCEB", "C>G": "#050708", "C>T": "#D33C32", "T>A": "#CBCACB", "T>C": "#ABCD72", "T>G": "#E7C9C6" }, "simpsons_springfield": { "HomerYellow": "#FED439", "HomerBlue": "#709AE1", "HomerGrey": "#8A9197", "HomerBrown": "#D2AF81", "BartOrange": "#FD7446", "MargeGreen": "#D5E4A2", "MargeBlue": "#197EC0", "LisaOrange": "#F05C3B", "NedGreen": "#46732E", "MaggieBlue": "#71D0F5", "BurnsPurple": "#370335", "BurnsGreen": "#075149", "DuffRed": "#C80813", "KentRed": "#91331F", "BobGreen": "#1A9993", "FrinkPink": "#FD8CC1" }, "futurama_planetexpress": { "FryOrange": "#FF6F00", "FryRed": "#C71000", "FryBlue": "#008EA0", "LeelaPurple": "#8A4198", "BenderIron": "#5A9599", "ZoidbergRed": "#FF6348", "ZoidbergBlue": "#84D7E1", "AmyPink": "#FF95A8", "HermesGreen": "#3D3B25", "ProfessorBlue": "#ADE2D0", "ScruffyGreen": "#1A5354", "LeelaGrey": "#3F4041" }, "rickandmorty_schwifty": { "MortyYellow": "#FAFD7C", "MortyBrown": "#82491E", "MortyBlue": "#24325F", "RickBlue": "#B7E4F9", "BethRed": "#FB6467", "JerryGreen": "#526E2D", "SummerPink": "#E762D7", "SummerOrange": "#E89242", "BethYellow": "#FAE48B", "RickGreen": "#A6EEE6", "RickBrown": "#917C5D", "MeeseeksBlue": "#69C8EC" }, "startrek_uniform": { "Engineering": "#CC0C00", "Sciences": "#5C88DA", "Senior": "#84BD00", "Command": "#FFCD00", "Teal": "#7C878E", "Cerulean": "#00B5E2", "Jade": "#00AF66" }, "tron_legacy": { "BlackGuard": "#FF410D", "Sam": "#6EE2FF", "Clu": "#F7C530", "Underclass": "#95CC5E", "KevinFlynn": "#D0DFE6", "CluFollower": "#F79D1E", "Underclass2": "#748AA6" }, "gsea": { "Purple": "#4500AD", "DarkBlue": "#2700D1", "RoyalBlue": "#6B58EF", "Malibu": "#8888FF", "Melrose": "#C7C1FF", "Fog": "#D5D5FF", "CottonCandy": "#FFC0E5", "VividTangerine": "#FF8989", "BrinkPink": "#FF7080", "Persimmon": "#FF5A5A", "Flamingo": "#EF4040", "GuardsmanRed": "#D60C00" }, "material_red": { "Red50": "#FFEBEE", "Red100": "#FFCDD2", "Red200": "#EF9A9A", "Red300": "#E57373", "Red400": "#EF5350", "Red500": "#F44336", "Red600": "#E53935", "Red700": "#D32F2F", "Red800": "#C62828", "Red900": "#B71C1C" }, "material_pink": { "Pink50": "#FCE4EC", "Pink100": "#F8BBD0", "Pink200": "#F48FB1", "Pink300": "#F06292", "Pink400": "#EC407A", "Pink500": "#E91E63", "Pink600": "#D81B60", "Pink700": "#C2185B", "Pink800": "#AD1457", "Pink900": "#880E4F" }, "material_purple": { "Purple50": "#F3E5F5", "Purple100": "#E1BEE7", "Purple200": "#CE93D8", "Purple300": "#BA68C8", "Purple400": "#AB47BC", "Purple500": "#9C27B0", "Purple600": "#8E24AA", "Purple700": "#7B1FA2", "Purple800": "#6A1B9A", "Purple900": "#4A148C" }, "material_indigo": { "Indigo50": "#E8EAF6", "Indigo100": "#C5CAE9", "Indigo200": "#9FA8DA", "Indigo300": "#7986CB", "Indigo400": "#5C6BC0", "Indigo500": "#3F51B5", "Indigo600": "#3949AB", "Indigo700": "#303F9F", "Indigo800": "#283593", "Indigo900": "#1A237E" }, "material_blue": { "Blue50": "#E3F2FD", "Blue100": "#BBDEFB", "Blue200": "#90CAF9", "Blue300": "#64B5F6", "Blue400": "#42A5F5", "Blue500": "#2196F3", "Blue600": "#1E88E5", "Blue700": "#1976D2", "Blue800": "#1565C0", "Blue900": "#0D47A1" }, "material_cyan": { "Cyan50": "#E0F7FA", "Cyan100": "#B2EBF2", "Cyan200": "#80DEEA", "Cyan300": "#4DD0E1", "Cyan400": "#26C6DA", "Cyan500": "#00BCD4", "Cyan600": "#00ACC1", "Cyan700": "#0097A7", "Cyan800": "#00838F", "Cyan900": "#006064" }, "material_teal": { "Teal50": "#E0F2F1", "Teal100": "#B2DFDB", "Teal200": "#80CBC4", "Teal300": "#4DB6AC", "Teal400": "#26A69A", "Teal500": "#009688", "Teal600": "#00897B", "Teal700": "#00796B", "Teal800": "#00695C", "Teal900": "#004D40" }, "material_green": { "Green50": "#E8F5E9", "Green100": "#C8E6C9", "Green200": "#A5D6A7", "Green300": "#81C784", "Green400": "#66BB6A", "Green500": "#4CAF50", "Green600": "#43A047", "Green700": "#388E3C", "Green800": "#2E7D32", "Green900": "#1B5E20" }, "material_lime": { "Lime50": "#F9FBE7", "Lime100": "#F0F4C3", "Lime200": "#E6EE9C", "Lime300": "#DCE775", "Lime400": "#D4E157", "Lime500": "#CDDC39", "Lime600": "#C0CA33", "Lime700": "#AFB42B", "Lime800": "#9E9D24", "Lime900": "#827717" }, "material_yellow": { "Yellow50": "#FFFDE7", "Yellow100": "#FFF9C4", "Yellow200": "#FFF59D", "Yellow300": "#FFF176", "Yellow400": "#FFEE58", "Yellow500": "#FFEB3B", "Yellow600": "#FDD835", "Yellow700": "#FBC02D", "Yellow800": "#F9A825", "Yellow900": "#F57F17" }, "material_amber": { "Amber50": "#FFF8E1", "Amber100": "#FFECB3", "Amber200": "#FFE082", "Amber300": "#FFD54F", "Amber400": "#FFCA28", "Amber500": "#FFC107", "Amber600": "#FFB300", "Amber700": "#FFA000", "Amber800": "#FF8F00", "Amber900": "#FF6F00" }, "material_orange": { "Orange50": "#FFF3E0", "Orange100": "#FFE0B2", "Orange200": "#FFCC80", "Orange300": "#FFB74D", "Orange400": "#FFA726", "Orange500": "#FF9800", "Orange600": "#FB8C00", "Orange700": "#F57C00", "Orange800": "#EF6C00", "Orange900": "#E65100" }, "material_brown": { "Brown50": "#EFEBE9", "Brown100": "#D7CCC8", "Brown200": "#BCAAA4", "Brown300": "#A1887F", "Brown400": "#8D6E63", "Brown500": "#795548", "Brown600": "#6D4C41", "Brown700": "#5D4037", "Brown800": "#4E342E", "Brown900": "#3E2723" }, "material_grey": { "Grey50": "#FAFAFA", "Grey100": "#F5F5F5", "Grey200": "#EEEEEE", "Grey300": "#E0E0E0", "Grey400": "#BDBDBD", "Grey500": "#9E9E9E", "Grey600": "#757575", "Grey700": "#616161", "Grey800": "#424242", "Grey900": "#212121" } }
/sci-palettes-1.0.1.tar.gz/sci-palettes-1.0.1/sci_palettes/palettes.py
0.432902
0.561696
palettes.py
pypi
import math import matplotlib.pyplot as plt from .Generaldistribution import Distribution class Gaussian(Distribution): """ Gaussian distribution class for calculating and visualizing a Gaussian distribution. Attributes: mean (float) representing the mean value of the distribution stdev (float) representing the standard deviation of the distribution data_list (list of floats) a list of floats extracted from the data file """ def __init__(self, mu = 0, sigma = 1): Distribution.__init__(self,mu,sigma) def calculate_mean(self): """Method to calculate the mean of the data set. Args: None Returns: float: mean of the data set """ self.mean = sum(self.data)/len(self.data) return self.mean def calculate_stdev(self, sample=True): """Method to calculate the standard deviation of the data set. Args: sample (bool): whether the data represents a sample or population Returns: float: standard deviation of the data set """ data = [(x-self.mean)**2 for x in self.data] summation = sum(data) n = len(self.data) if sample: self.stdev=math.sqrt(summation/(n -1)) else: self.stdev = math.sqrt(summation/n) return self.stdev def read_data_file(self, file_name, sample=True): """Method to read in data from a txt file. The txt file should have one number (float) per line. The numbers are stored in the data attribute. After reading in the file, the mean and standard deviation are calculated Args: file_name (string): name of a file to read from Returns: None """ Distribution.read_data_file(self,file_name,sample) self.mean = self.calculate_mean() self.stdev = self.calculate_stdev(sample) def plot_histogram(self): """Method to output a histogram of the instance variable data using matplotlib pyplot library. Args: None Returns: None """ plt.hist(self.data) plt.xlabel("data") plt.ylabel("count") plt.title("data distribution") def pdf(self, x): """Probability density function calculator for the gaussian distribution. Args: x (float): point for calculating the probability density function Returns: float: probability density function output """ coeffient = 1/(self.stdev * math.sqrt(2*math.pi)) euler_exponent = -0.5 * ((x-self.mean)/self.stdev)**2 return coeffient*math.exp(euler_exponent) def plot_histogram_pdf(self, n_spaces = 50): """Method to plot the normalized histogram of the data and a plot of the probability density function along the same range Args: n_spaces (int): number of data points Returns: list: x values for the pdf plot list: y values for the pdf plot """ mu = self.mean sigma = self.stdev min_range = min(self.data) max_range = max(self.data) # calculates the interval between x values interval = 1.0 * (max_range - min_range) / n_spaces x = [] y = [] # calculate the x values to visualize for i in range(n_spaces): tmp = min_range + interval*i x.append(tmp) y.append(self.pdf(tmp)) # make the plots fig, axes = plt.subplots(2,sharex=True) fig.subplots_adjust(hspace=.5) axes[0].hist(self.data, density=True) axes[0].set_title('Normed Histogram of Data') axes[0].set_ylabel('Density') axes[1].plot(x, y) axes[1].set_title('Normal Distribution for \n Sample Mean and Sample Standard Deviation') axes[0].set_ylabel('Density') plt.show() return x, y def __add__(self, other): """Magic method to add together two Gaussian distributions Args: other (Gaussian): Gaussian instance Returns: Gaussian: Gaussian distribution """ result = Gaussian() result.mean = self.mean+other.mean result.stdev = math.sqrt(self.stdev**2 + other.stdev**2) return result def __repr__(self): """Magic method to output the characteristics of the Gaussian instance Args: None Returns: string: characteristics of the Gaussian """ return "mean {}, standard deviation {}".format(self.mean,self.stdev)
/sci_stats_dist-0.0.2.tar.gz/sci_stats_dist-0.0.2/sci_stats_dist/Gaussiandistribution.py
0.807916
0.804598
Gaussiandistribution.py
pypi
import math import matplotlib.pyplot as plt from .Generaldistribution import Distribution class Binomial(Distribution): """ Binomial distribution class for calculating and visualizing a Binomial distribution. Attributes: mean (float) representing the mean value of the distribution stdev (float) representing the standard deviation of the distribution data_list (list of floats) a list of floats to be extracted from the data file p (float) representing the probability of an event occurring n (int) the total number of trials """ def __init__(self, prob=.5, size=20): self.p = prob self.n=size Distribution.__init__(self,self.calculate_mean() , self.calculate_stdev()) def calculate_mean(self): """Function to calculate the mean from p and n Args: None Returns: float: mean of the data set """ self.mean = self.n * self.p return self.mean def calculate_stdev(self): """Function to calculate the standard deviation from p and n. Args: None Returns: float: standard deviation of the data set """ self.stdev=math.sqrt(self.n *self.p*(1-self.p)) return self.stdev def replace_stats_with_data(self): """Function to calculate p and n from the data set Args: None Returns: float: the p value float: the n value """ self.n = len(self.data) self.p = self.data.count(1)/self.n self.mean = self.calculate_mean() self.stdev = self.calculate_stdev() return self.p,self.n def plot_bar(self): """Function to output a histogram of the instance variable data using matplotlib pyplot library. Args: None Returns: None """ plt.bar(["0","1"] , [self.n * (1-self.p) , self.n*self.p]) plt.xlabel("data") plt.ylabel("counts") plt.show() def __nCk(self,n,k): k = min(k,n-k) nchoosek=1 for i in range(1,k+1): nchoosek*=(n-i+1) nchoosek /=i return nchoosek def pdf(self, k): """Probability density function calculator for the gaussian distribution. Args: k (float): point for calculating the probability density function Returns: float: probability density function output """ return self.__nCk(self.n,k) * self.p**k * (1-self.p)**(self.n-k) def plot_bar_pdf(self): """Function to plot the pdf of the binomial distribution Args: None Returns: list: x values for the pdf plot list: y values for the pdf plot """ x= list(range(0,self.n+1)) y = [pdf(k) for k in x ] plt.bar(x,y) plt.show() plt.title('Distribution of Outcomes') plt.ylabel('Probability') plt.xlabel('Outcome') return x,y def __add__(self, other): """Function to add together two Binomial distributions with equal p Args: other (Binomial): Binomial instance Returns: Binomial: Binomial distribution """ try: assert self.p == other.p, 'p values are not equal' except AssertionError as error: raise return Binomial(self.p,self.n+other.n) def __repr__(self): """Function to output the characteristics of the Binomial instance Args: None Returns: string: characteristics of the Gaussian """ return f"mean {self.mean}, standard deviation {self.stdev}, p {self.p}, n {self.n}"
/sci_stats_dist-0.0.2.tar.gz/sci_stats_dist-0.0.2/sci_stats_dist/Binomialdistribution.py
0.830044
0.804598
Binomialdistribution.py
pypi
import traceback from typing import Union import pandas as pd import numpy as np def combine_csv_files(from_files: list, to_file: str, wanted_cols: Union[list, str, None] = None, *args, **kwargs) -> pd.DataFrame: """ Covert several csv files to ONE csv file with specified columns. :param na_vals: :param sep: :param from_files: a list of csv file paths which represent the source files to combine, <br> eg. ['path/to/source_file_1.csv', 'path/to/source_file_2.csv'] <br> <br> :param to_file: the csv file path which designate the destinate location to store the result, <br> eg. 'path/to/save_file.csv' <br> <br> :param wanted_cols: the filter columns, which will be the result csv columns, <br> no data in this column and this column will be empty, <br> no wanted_cols provided (None), all columns will be preserved. <br> :return: pd.DataFrame which is the data content store in the "to_file" csv file. """ if from_files is None: raise ValueError('from_files cannot be None') elif type(from_files) is not list: raise ValueError('from_files must be <type: list>') elif len(from_files) == 0: raise ValueError('from_files cannot be empty') if to_file is None: raise ValueError('to_file cannot be None') elif type(to_file) is not str: raise ValueError('to_file must be <type: str>') elif len(to_file) == 0: raise ValueError('to_file cannot be empty') dfs = [] for _from_file in from_files: try: _df = pd.read_csv(_from_file, *args, **kwargs) dfs.append(_df) except: print('*'*32) print(f'- pd.read_csv error with input file: "{_from_file}"') traceback.print_exc() print('*'*32) continue # combine all dfs with concat 'outer' join, # ignore_index will allow concat directly and add columns automatically, # axis=0 means concat follow vertical direction. final_combined_df = pd.concat(dfs, axis=0, ignore_index=True, sort=False) if wanted_cols is None \ or (type(wanted_cols) is list and len(wanted_cols) == 0) \ or (type(wanted_cols) is not list and type(wanted_cols) is not str): final_combined_df = final_combined_df else: current_cols = final_combined_df.columns.to_list() if type(wanted_cols) is list: for _col in wanted_cols: if _col not in current_cols: final_combined_df[_col] = np.nan elif type(wanted_cols) is str: if wanted_cols not in current_cols: final_combined_df[wanted_cols] = np.nan final_combined_df = final_combined_df[wanted_cols] final_combined_df.to_csv(to_file, header=True) return final_combined_df if __name__ == '__main__': d1 = {'A': [2, 3, 4], 'B': ['a', 'b', 'c'], 'C': ['10002', 'sss', 'msc23d']} d2 = {'A': [12, 13, 4, 15], 'B': ['1a', 'b', 'c', '1Z'], 'Z': ['333', '444', '555', 'ZZZ']} df1 = pd.DataFrame(d1) df2 = pd.DataFrame(d2) df1_pth = 'df1_test.csv' df2_pth = 'df2_test.csv' df1.to_csv(df1_pth, index=False) df2.to_csv(df2_pth, index=False) # dfNone = combine_csv_files(from_files=[df1_pth, df2_pth], to_file='dfcombine_test_None.csv', wanted_cols=None) # dfAZC = combine_csv_files(from_files=[df1_pth, df2_pth], to_file='dfcombine_test_AZC.csv', wanted_cols=['A', 'Z', 'C']) dfNone = combine_csv_files([df1_pth, df2_pth], 'dfcombine_test_None.csv', None) dfAZC = combine_csv_files([df1_pth, df2_pth], 'dfcombine_test_AZC.csv', ['A', 'Z', 'C']) dfZ = combine_csv_files([df1_pth, df2_pth], 'dfcombine_test_Z.csv', 'Z') dfZZZ = combine_csv_files([df1_pth, df2_pth], 'dfcombine_test_ZZZ.csv', 'ZZZ') print('df1 === \n', df1) print('df2 === \n', df2) print('dfNone === \n', dfNone) print('dfAZC === \n', dfAZC) print('dfZ === \n', dfZ) print('dfZZZ === \n', dfZZZ)
/sci-util-1.2.7.tar.gz/sci-util-1.2.7/sci_util/pd/csv.py
0.702632
0.382459
csv.py
pypi
def cnt_split(tar_list, cnt_per_slice): """ Yield successive n-sized(cnt_per_slice) chunks from l(tar_list). >>> x = list(range(34)) >>> for i in cnt_split(x, 5): >>> print(i) <<< print result ... <<< [0, 1, 2, 3, 4] <<< [5, 6, 7, 8, 9] <<< [10, 11, 12, 13, 14] <<< [15, 16, 17, 18, 19] <<< [20, 21, 22, 23, 24] <<< [25, 26, 27, 28, 29] <<< [30, 31, 32, 33] The targetlist can be split into slices with a NAX size of 'cnt_per_slice' ... :param tar_list: target list to split :param cnt_per_slice: slice per max size... :return: yield one result. """ for i in range(0, len(tar_list), cnt_per_slice): yield tar_list[i:i + cnt_per_slice] def n_split(tar_list, n): """ Yield successive n-sized(cnt_per_slice) chunks from l(tar_list). >>> x = list(range(33)) >>> for i in n_split(x, 5): >>> print(i) <<< print result ... <<< [0, 1, 2, 3, 4, 5, 6] <<< [7, 8, 9, 10, 11, 12, 13] <<< [14, 15, 16, 17, 18, 19, 20] <<< [21, 22, 23, 24, 25, 26] <<< [27, 28, 29, 30, 31, 32] The targetlist can be split into slices with a NAX size of 'cnt_per_slice' ... :param tar_list: target list to split :param n: slice counts ... :return: yield one result. """ slice_len = int(len(tar_list) / n) slice_len_1 = slice_len + 1 slice_remain = int(len(tar_list) % n) cur_idx = 0 for i in range(n): # print(f'{i} < {slice_remain} : [{cur_idx}: {cur_idx+(slice_len_1 if i < slice_remain else slice_len)}]') yield tar_list[cur_idx: cur_idx+(slice_len_1 if i < slice_remain else slice_len)] cur_idx += slice_len_1 if i < slice_remain else slice_len def n_split_idx(tar_list_len, n): """ Yield successive n-sized(cnt_per_slice) chunks from l(tar_list). >>> x = list(range(33)) >>> n_split_idx(len(x), 3) <<< [11, 11, 11] >>> n_split_idx(len(x), 4) <<< [9, 8, 8, 8] >>> n_split_idx(len(x), 5) <<< [7, 7, 7, 6, 6] >>> n_split_idx(len(x), 6) <<< [6, 6, 6, 5, 5, 5] >>> n_split_idx(len(x), 7) <<< [5, 5, 5, 5, 5, 4, 4] The targetlist can be split into slices with a NAX size of 'cnt_per_slice' ... :param tar_list_len: target list length to split :param n: slice counts ... :return: list of each slice length. """ slice_len = int(tar_list_len / n) slice_remain = int(tar_list_len % n) res = [] for i in range(n): if i<slice_remain: res.append(slice_len+1) else: res.append(slice_len) return res
/sci-util-1.2.7.tar.gz/sci-util-1.2.7/sci_util/list_util/split_util.py
0.459561
0.480052
split_util.py
pypi
from sklearn.metrics import ( accuracy_score, confusion_matrix, classification_report, roc_curve, roc_auc_score, ) import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt def show_classification(y_test, y_pred): r""" Confusion matrix - Binary: - y_test: [1, 0, 1, 0, 1] - y_pred: [0.1, 0.2, 0.9, 0, 0.8] - Multi: - y_test: [1, 2, 1, 0, 1] - y_pred: [[0.1, 0.8, 0.1], [0.1, 0.2, 0.7], [0.1, 0.6, 0.3], [0.5, 0.3. 0.2], [0.1, 0.6, 0.4]] """ cm = confusion_matrix(y_test, y_pred) TN = cm[0, 0] TP = cm[1, 1] FP = cm[0, 1] FN = cm[1, 0] print(sum(y_test), sum(y_pred)) print("Confusion matrix\n\n", cm) print("\nTrue Negatives(TN) = ", TN) print("\nTrue Positives(TP) = ", TP) print("\nFalse Positives(FP) = ", FP) print("\nFalse Negatives(FN) = ", FN) classification_accuracy = (TP + TN) / float(TP + TN + FP + FN) print("Classification accuracy : {0:0.4f}".format(classification_accuracy)) classification_error = (FP + FN) / float(TP + TN + FP + FN) print("Classification error : {0:0.4f}".format(classification_error)) precision = TP / float(TP + FP) print("Precision : {0:0.4f}".format(precision)) recall = TP / float(TP + FN) print("Recall or Sensitivity : {0:0.4f}".format(recall)) true_positive_rate = TP / float(TP + FN) print("True Positive Rate : {0:0.4f}".format(true_positive_rate)) false_positive_rate = FP / float(FP + TN) print("False Positive Rate : {0:0.4f}".format(false_positive_rate)) specificity = TN / (TN + FP) print("Specificity : {0:0.4f}".format(specificity)) cm_matrix = pd.DataFrame( data=cm.T, columns=["Actual Negative:0", "Actual Positive:1"], index=["Predict Negative:0", "Predict Positive:1"], ) sns.heatmap(cm_matrix, annot=True, fmt="d", cmap="YlGnBu") fpr, tpr, thresholds = roc_curve(y_test, y_pred) plt.figure(figsize=(6, 4)) plt.plot(fpr, tpr, linewidth=2) plt.plot([0, 1], [0, 1], "k--") plt.rcParams["font.size"] = 12 plt.title("ROC curve for Predicting a Pulsar Star classifier") plt.xlabel("False Positive Rate (1 - Specificity)") plt.ylabel("True Positive Rate (Sensitivity)") plt.show() ROC_AUC = roc_auc_score(y_test, y_pred) print("ROC AUC : {:.4f}".format(ROC_AUC))
/sci_ztools-0.1.4-py3-none-any.whl/z/metrics.py
0.805096
0.590012
metrics.py
pypi
from pathlib import Path import shutil from typing import Optional, Union, List try: import gzip import tarfile except: raise ImportError def get_path(path: Union[Path, str]) -> Path: """Transform to `Path`. Args: path (str): The path to be transformed. Returns: Path: the `pathlib.Path` class """ if isinstance(path, Path): return path else: return Path(path) def get_path_out( path_in: Path, rename: str, path_out: Optional[Union[Path, str]] = None ): r""" Adaptor pathout to path_in """ if path_out is None: return path_in.parent / rename else: _path_out = get_path(path_out) if _path_out.is_dir(): return _path_out / rename elif path_out.is_file(): return _path_out def zip(path_in: Union[Path, str], path_out: Optional[Union[Path, str]] = None): r""" """ _path_in = get_path(path_in) assert _path_in.is_file(), f"{path_in} is not a file" rename = _path_in.name + ".gz" _path_out = get_path_out(_path_in, rename, path_out) with open(_path_in, "rb") as f_in: with gzip.open(_path_out, "wb") as f_out: f_out.write(f_in.read()) def unzip(path_in: Union[Path, str], path_out: Optional[Union[Path, str]] = None): _path_in = get_path(path_in) assert _path_in.is_file(), f"{path_in} is not a file" assert _path_in.suffix == ".gz", f"not .gz file name" rename = _path_in.name.rstrip(".gz") # rip _path_out = get_path_out(_path_in, rename, path_out) with gzip.open(_path_in, "rb") as f_in: with open(_path_out, "wb") as f_out: f_out.write(f_in.read()) def tar( path: Union[Path, str], staffs: Union[List[Union[Path, str]], Union[Path, str]] ): _path = get_path(path) with tarfile.open(_path, "w:gz") as tar: if isinstance(staffs, (str, Path)): tar.add(staffs) print(f"add {staffs}") elif isinstance(staffs, List): for staff in staffs: tar.add(staff) print(f"add {staff}") def untar(path_in: Union[Path, str], path_out: Optional[Union[Path, str]] = None): _path_in = get_path(path_in) assert _path_in.is_file(), f"{path_in} is not a file" rename = _path_in.name.rstrip(".tar.gz") # rip _path_out = get_path_out(_path_in, rename, path_out) with tarfile.open(_path_in, "r:gz") as tar: tar.extract(_path_out)
/sci_ztools-0.1.4-py3-none-any.whl/z/sh.py
0.900157
0.292709
sh.py
pypi
import os import random from itertools import takewhile, repeat from pathlib import Path from typing import Union, List, Optional import numpy as np import pandas as pd import torch from rich import console from rich.table import Table from sklearn.model_selection import KFold # Kfold cross validation import logging from rich.logging import RichHandler from logging import FileHandler from typing import Optional from sklearn.utils import shuffle def get_logger( name: Optional[str] = None, filename: Optional[str] = None, level: str = "INFO" ) -> logging.Logger: """Get glorified Rich Logger""" name = name if name else __name__ handlers = [ RichHandler( rich_tracebacks=True, ) ] if filename: handlers.append(FileHandler(filename)) logging.basicConfig(format="%(name)s: %(message)s", handlers=handlers) log = logging.getLogger(name) log.setLevel(level) return log log = get_logger() def read_excel( paths: Union[Path, List[Path]], drop_by: Optional[str] = None ) -> pd.DataFrame: """Read excel and get pandas.DataFrame""" if isinstance(paths, List): # use openpyxl for better excel df = pd.concat([pd.read_excel(path, engine="openpyxl") for path in paths]) elif isinstance(paths, Path): df = pd.read_excel(paths, engine="openpyxl") else: raise NotImplementedError # remove blank lines in the tail of xlsx # use drop to make sure the index order if drop_by: df.dropna(subset=[drop_by], inplace=True) df.reset_index(drop=True, inplace=True) return df def get_device(): "get device (CPU or GPU)" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") n_gpu = torch.cuda.device_count() print("%s (%d GPUs)" % (device, n_gpu)) return device def iter_count(file_name): """Text lines counter""" buffer = 1024 * 1024 with open(file_name) as f: buf_gen = takewhile(lambda x: x, (f.read(buffer) for _ in repeat(None))) return sum(buf.count("\n") for buf in buf_gen) def df_to_table( pandas_dataframe: pd.DataFrame, rich_table: Table, show_index: bool = True, index_name: Optional[str] = None, ) -> Table: """Convert a pandas.DataFrame obj into a rich.Table obj. Args: pandas_dataframe (DataFrame): A Pandas DataFrame to be converted to a rich Table. rich_table (Table): A rich Table that should be populated by the DataFrame values. show_index (bool): Add a column with a row count to the table. Defaults to True. index_name (str, optional): The column name to give to the index column. Defaults to None, showing no value. Returns: Table: The rich Table instance passed, populated with the DataFrame values.""" if show_index: index_name = str(index_name) if index_name else "" rich_table.add_column(index_name) for column in pandas_dataframe.columns: rich_table.add_column(str(column)) for index, value_list in enumerate(pandas_dataframe.values.tolist()): row = [str(index)] if show_index else [] row += [str(x) for x in value_list] rich_table.add_row(*row) return rich_table def print_df( pandas_dataframe: pd.DataFrame, title: str = None, ): console.Console().print(df_to_table(pandas_dataframe, Table(title=title))) def set_seeds(seed): "set random seeds" random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) def show_ratio(df: pd.DataFrame, label="label", sort=None, n=5) -> None: """print the label proportion in pd.DataFrame Args: sort: 'value' or 'label' """ n_all = len(df) if sort == "value": n_classes = ( df[label] .value_counts() .reset_index() .sort_values(by=label, ascending=False) ) elif sort == "label": n_classes = df[label].value_counts().reset_index().sort_values(by="index") else: n_classes = df[label].value_counts().reset_index() n_classes = n_classes[:n] for i in n_classes.index: log.info( f'Label {n_classes.at[i, "index"]} takes: {n_classes.at[i, label] / n_all * 100:.2f}%, Nums: {n_classes.at[i, label]}' ) def split_df(df: pd.DataFrame, shuf=True, val=True, random_state=42): """Split df into train/val/test set and write into files ratio: 8:1:1 or 9:1 Args: - df (DataFrame): some data - shuf (bool, default=True): shuffle the DataFrame - val (bool, default=True): split into three set, train/val/test """ if shuf: df = shuffle(df, random_state=random_state) sep = int(len(df) * 0.1) if val: test_df = df.iloc[:sep] val_df = df.iloc[sep : sep * 2] train_df = df.iloc[sep * 2 :] return train_df, val_df, test_df else: test_df = df.iloc[:sep] train_df = df.iloc[sep:] return train_df, test_df def kfold(df: pd.DataFrame, n_splits=5, shuffle=True, random_state=42) -> pd.DataFrame: """ :param df: make sure the index correct :param n_splits: :param shuffle: :param random_state: :return: """ _df = df.copy() if shuffle: kf = KFold(n_splits=n_splits, shuffle=shuffle, random_state=random_state) else: kf = KFold(n_splits=n_splits) for fold in range(n_splits): _df[f"fold{fold}"] = False fold = 0 for train_idxs, test_idxs in kf.split(_df): print(train_idxs, test_idxs) for i in test_idxs: _df.loc[i, f"fold{fold}"] = True fold += 1 return _df def get_CV( df: pd.DataFrame, n_splits=5, dir: Path = Path("CV"), header=True, index=True, cols=None, ): os.makedirs(dir, exist_ok=True) for fold in range(n_splits): _df = df.copy() df_fold_test = _df[_df[f"fold{fold}"]] df_fold_train = _df[~_df[f"fold{fold}"]] if cols: df_fold_test = df_fold_test[cols] df_fold_train = df_fold_train[cols] _df = _df[cols] fold_dir = dir / f"fold{fold}" os.makedirs(fold_dir, exist_ok=True) df_fold_test.to_csv(fold_dir / "test.csv", header=header, index=index) df_fold_train.to_csv(fold_dir / "train.csv", header=header, index=index) _df.to_csv(fold_dir / "all.csv", header=header, index=index) if __name__ == "__main__": df = pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6, 7, 1, 1], "b": [4, 5, 6, 7, 8, 9, 10, 2, 1]} ) print(kfold(df))
/sci_ztools-0.1.4-py3-none-any.whl/z/utils.py
0.826116
0.332581
utils.py
pypi
import pandas as pd from sklearn.utils import shuffle from sklearn.model_selection import ( StratifiedShuffleSplit, StratifiedKFold, KFold, train_test_split, ) from typing import Optional, Union, List, Tuple from pathlib import Path import copy class DataFrame(): def __init__( self, df: pd.DataFrame, random_state: int = 42, *args, **kargs ) -> None: super(DataFrame, self).__init__() self.df = df.copy(deep=True) # get a copy of original dataframe self.random_state = random_state def __repr__(self) -> str: return repr(self.df) def split_df( self, val: bool = False, test_size: float = 0.1, val_size: Optional[float] = None, ): if val: assert val_size is not None, "val size needed" val_num, test_num = len(self.df) * [val_size, test_size] train_df, val_df = train_test_split( self.df, test_size=int(val_num), random_state=self.random_state ) train_df, test_df = train_test_split( train_df, test_size=int(test_num), random_state=self.random_state ) return train_df, val_df, test_df else: train_df, test_df = train_test_split( train_df, test_size=test_size, random_state=self.random_state ) return train_df, test_df def stratified_split_df( self, labels: Union[List[str], str], n_splits: int = 1, test_size: float = 0.1 ) -> Union[List, Tuple]: split = StratifiedShuffleSplit( n_splits=n_splits, test_size=test_size, random_state=self.random_state ) df_trains = [] df_tests = [] for train_index, test_index in split.split(self.df, self.df[labels]): strat_train_set = self.df.loc[train_index] strat_test_set = self.df.loc[test_index] df_trains.append(strat_train_set) df_tests.append(strat_test_set) return ( (strat_train_set, strat_test_set) if n_splits == 1 else (df_trains, df_tests) ) def stratified_kfold_split_df( self, labels: Union[List[str], str], n_splits: int = 2 ) -> Tuple: assert n_splits >= 2, "At least 2 fold" skf = StratifiedKFold( n_splits=n_splits, shuffle=True, random_state=self.random_state ) for train_index, test_index in skf.split(self.df, self.df[labels]): strat_train_set = self.df.loc[train_index] strat_test_set = self.df.loc[test_index] yield strat_train_set, strat_test_set def kfold_split_df(self, labels: Union[List[str], str], n_splits: int = 2) -> Tuple: assert n_splits >= 2, "At least 2 fold" df_trains = [] df_tests = [] skf = StratifiedKFold( n_splits=n_splits, shuffle=True, random_state=self.random_state ) for train_index, test_index in skf.split(self.df, self.df[labels]): strat_train_set = self.df.loc[train_index] strat_test_set = self.df.loc[test_index] df_trains.append(strat_train_set) df_tests.append(strat_test_set) return df_trains, df_tests def show_ratio(self, label="label", sort=None, n: Optional[int] = None): """print the label proportion in pd.DataFrame Args: sort: 'value' or 'label' """ n_all = len(self.df) if sort == "value": n_classes = ( self.df[label] .value_counts() .reset_index() .sort_values(by=label, ascending=False) ) elif sort == "label": n_classes = ( self.df[label].value_counts().reset_index().sort_values(by="index") ) else: n_classes = self.df[label].value_counts().reset_index() if n: n_classes = n_classes[:n] for i in n_classes.index: print( f'Label, {n_classes.at[i, "index"]} takes: {n_classes.at[i, label] / n_all * 100:.2f}%, Nums: {n_classes.at[i, label]}' ) def read_csv(path: str = "", random_state: int = 42, *args, **kargs): _path = Path(path) assert _path.is_file(), "not a file" return DataFrame(df=pd.read_csv(path, *args, **kargs), random_state=random_state) def split_df(df: pd.DataFrame, shuf=True, val=True, random_state=42): """Split df into train/val/test set and write into files ratio: 8:1:1 or 9:1 Args: - df (DataFrame): some data - shuf (bool, default=True): shuffle the DataFrame - val (bool, default=True): split into three set, train/val/test """ if shuf: df = shuffle(df, random_state=random_state) sep = int(len(df) * 0.1) if val: test_df = df.iloc[:sep] val_df = df.iloc[sep : sep * 2] train_df = df.iloc[sep * 2 :] return train_df, val_df, test_df else: test_df = df.iloc[:sep] train_df = df.iloc[sep:] return train_df, test_df def show_ratio(df: pd.DataFrame, label="label", sort=None, n=5) -> None: """print the label proportion in pd.DataFrame Args: sort: 'value' or 'label' """ n_all = len(df) if sort == "value": n_classes = ( df[label] .value_counts() .reset_index() .sort_values(by=label, ascending=False) ) elif sort == "label": n_classes = df[label].value_counts().reset_index().sort_values(by="index") else: n_classes = df[label].value_counts().reset_index() n_classes = n_classes[:n] for i in n_classes.index: print( f'Label {n_classes.at[i, "index"]} takes: {n_classes.at[i, label] / n_all * 100:.2f}%, Nums: {n_classes.at[i, label]}' )
/sci_ztools-0.1.4-py3-none-any.whl/z/pandas.py
0.813979
0.419648
pandas.py
pypi
from paraview.simple import * import paraview as pv #### disable automatic camera reset on 'Show' paraview.simple._DisableFirstRenderCameraReset() # get active source. resultfoam = GetActiveSource() # resultfoam.SkipZeroTime = 0 # check whether T exist convert_T=False alldata = pv.servermanager.Fetch(resultfoam) if(alldata.GetBlock(0).GetPointData().GetArray("T")==None): convert_T=False else: convert_T=True renderView1 = GetActiveViewOrCreate('RenderView') if(convert_T): # create a new 'Calculator' calculator1 = Calculator(Input=resultfoam) calculator1.Function = 'T-273.15' calculator1.ResultArrayName = 'T_degC' RenameSource('K2degC', calculator1) # SetActiveSource(calculator1) # get active view renderView1 = GetActiveViewOrCreate('RenderView') # show data in view resultfoamDisplay = Show(GetActiveSource(), renderView1) # get color transfer function/color map for 'p' pLUT = GetColorTransferFunction('T_degC') # get opacity transfer function/opacity map for 'p' pPWF = GetOpacityTransferFunction('T_degC') # trace defaults for the display properties. resultfoamDisplay.Representation = 'Surface' # reset view to fit data renderView1.ResetCamera() # show color bar/color legend resultfoamDisplay.SetScalarBarVisibility(renderView1, True) # update the view to ensure updated data information renderView1.Update() # set scalar coloring ColorBy(resultfoamDisplay, ('POINTS', 'T_degC')) # Hide the scalar bar for this color map if no visible data is colored by it. HideScalarBarIfNotNeeded(pLUT, renderView1) # rescale color and/or opacity maps used to include current data range resultfoamDisplay.RescaleTransferFunctionToDataRange(True, False) # show color bar/color legend resultfoamDisplay.SetScalarBarVisibility(renderView1, True) tsteps = resultfoam.TimestepValues name_time='Time_second' if(len(tsteps)>1): # create a new 'Annotate Time Filter' annotateTimeFilter1 = AnnotateTimeFilter(Input=resultfoam) # get active view renderView1 = GetActiveViewOrCreate('RenderView') # show data in view annotateTimeFilter1Display = Show(annotateTimeFilter1, renderView1) # update the view to ensure updated data information renderView1.Update() # Properties modified on annotateTimeFilter1 dt=(tsteps[-1]-tsteps[0])/(len(tsteps)-1) if(dt>(86400*365)): annotateTimeFilter1.Format = 'Time: %.0f years' annotateTimeFilter1.Scale = 3.17e-08 name_time='Time_year' elif(dt>86400): annotateTimeFilter1.Format = 'Time: %.0f days' annotateTimeFilter1.Scale = 1.1574074074074073e-05 name_time='Time_day' elif(dt>3600): annotateTimeFilter1.Format = 'Time: %.0f hours' annotateTimeFilter1.Scale = 0.0002777777777777778 name_time='Time_hour' elif(dt>60): annotateTimeFilter1.Format = 'Time: %.0f minutes' annotateTimeFilter1.Scale = 0.016666666666666666 name_time='Time_minute' else: annotateTimeFilter1.Format = 'Time: %.2f seconds' annotateTimeFilter1.Scale = 1 name_time='Time_second' # Properties modified on annotateTimeFilter1Display annotateTimeFilter1Display.Bold = 1 annotateTimeFilter1Display.FontSize = 5 # update the view to ensure updated data information renderView1.Update() # rename source object RenameSource(name_time, annotateTimeFilter1) # set active source if(convert_T): SetActiveSource(calculator1) renderView1.ResetCamera() # current camera placement for renderView1 renderView1.CameraPosition = [2000.0, -3000.0, 7965.728650875111] renderView1.CameraFocalPoint = [2000.0, -3000.0, 0.5] renderView1.CameraParallelScale = 2061.5528734427357 # #### uncomment the following to render all views # # RenderAllViews() # # alternatively, if you want to write images, you can use SaveScreenshot(...). renderView1.Update() Hide(resultfoam, renderView1)
/sciPyFoam-0.4.1.tar.gz/sciPyFoam-0.4.1/example/cases/blockMesh/showTimeYear.py
0.559049
0.399812
showTimeYear.py
pypi
# SCIAMACHY data tools [![builds](https://github.com/st-bender/sciapy/actions/workflows/ci_build_and_test.yml/badge.svg?branch=master)](https://github.com/st-bender/sciapy/actions/workflows/ci_build_and_test.yml) [![docs](https://rtfd.org/projects/sciapy/badge/?version=latest)](https://sciapy.rtfd.io/en/latest/?badge=latest) [![coveralls](https://coveralls.io/repos/github/st-bender/sciapy/badge.svg)](https://coveralls.io/github/st-bender/sciapy) [![scrutinizer](https://scrutinizer-ci.com/g/st-bender/sciapy/badges/quality-score.png?b=master)](https://scrutinizer-ci.com/g/st-bender/sciapy/?branch=master) [![doi code](https://zenodo.org/badge/DOI/10.5281/zenodo.1401370.svg)](https://doi.org/10.5281/zenodo.1401370) [![doi mcmc samples](https://zenodo.org/badge/DOI/10.5281/zenodo.1342701.svg)](https://doi.org/10.5281/zenodo.1342701) ## Overview These SCIAMACHY tools are provided as convenience tools for handling SCIAMACHY level 1c limb spectra and retrieved level 2 trace-gas densities. More extensive documentation is provided on [sciapy.rtfd.io](https://sciapy.rtfd.io). ### Level 1c tools The `sciapy.level1c` submodule provides a few [conversion tools](sciapy/level1c/README.md) for [SCIAMACHY](http://www.sciamachy.org) level 1c calibrated spectra, to be used as input for trace gas retrieval with [scia\_retrieval\_2d](https://github.com/st-bender/scia_retrieval_2d). **Note that this is *not* a level 1b to level 1c calibration tool.** For calibrating level 1b spectra (for example SCI\_NL\_\_1P version 8.02 provided by ESA via the [ESA data browser](https://earth.esa.int/web/guest/data-access/browse-data-products)) to level 1c spectra, use the [SciaL1C](https://earth.esa.int/web/guest/software-tools/content/-/article/scial1c-command-line-tool-4073) command line tool or the free software [nadc\_tools](https://github.com/rmvanhees/nadc_tools). The first produces `.child` files, the second can output to HDF5 (`.h5`). **Further note**: `.child` files are currently not supported. ### Level 2 tools The `sciapy.level2` submodule provides post-processing tools for trace-gas densities retrieved from SCIAMACHY limb scans. Support simple operations as combining files into *netcdf*, calculating and noting local solar time at the retrieval grid points, geomagnetic latitudes, etc. The level 2 tools also include a simple binning algorithm. ### Regression The `sciapy.regress` submodule can be used for regression analysis of SCIAMACHY level 2 trace gas density time series, either directly or as daily zonal means. It uses the [`regressproxy`](https://regressproxy.readthedocs.io) package for modelling the proxy input with lag and lifetime decay. The regression tools support various parameter fitting methods using [`scipy.optimize`](https://docs.scipy.org/doc/scipy/reference/optimize.html) and uncertainty evaluation using Markov-Chain Monte-Carlo sampling with [`emcee`](https://emcee.readthedocs.io). Further supports covariance modelling via [`celerite`](https://celerite.readthedocs.io) and [`george`](https://george.readthedocs.io). ## Install ### Prerequisites Sciapy uses features from a lot of different packages. All dependencies will be automatically installed when using `pip install` or `python setup.py`, see below. However, to speed up the install or for use within a `conda` environment, it may be advantageous to install some of the important packages beforehand: - `numpy` at least version 1.13.0 for general numerics, - `scipy` at least version 0.17.0 for scientific numerics, - `matplotlib` at least version 2.2 for plotting, - `netCDF4` for the low level netcdf4 interfaces, - `h5py` for the low level hdf5 interfaces, - `dask`, - `toolz`, - `pandas` and - `xarray` for the higher level data interfaces, - `astropy` for (astronomical) time conversions, - `parse` for ASCII text parsing in `level1c`, - `pybind11` C++ interface needed by `celerite` - `celerite` at least version 0.3.0 and - `george` for Gaussian process modelling, - `emcee` for MCMC sampling and - `corner` for the sample histogram plots, - `regressproxy` for the regression proxy modelling. Out of these packages, `numpy` is probably the most important one to be installed first because at least `celerite` needs it for setup. It may also be a good idea to install [`pybind11`](https://pybind11.readthedocs.io) because both `celerite` and `george` use its interface, and both may fail to install without `pybind11`. Depending on the setup, `numpy` and `pybind11` can be installed via `pip`: ```sh pip install numpy pybind11 ``` or [`conda`](https://conda.io): ```sh conda install numpy pybind11 ``` ### sciapy Official releases are available as `pip` packages from the main package repository, to be found at <https://pypi.org/project/sciapy/>, and which can be installed with: ```sh $ pip install sciapy ``` The latest development version of sciapy can be installed with [`pip`](https://pip.pypa.io) directly from github (see <https://pip.pypa.io/en/stable/reference/pip_install/#vcs-support> and <https://pip.pypa.io/en/stable/reference/pip_install/#git>): ```sh $ pip install [-e] git+https://github.com/st-bender/sciapy.git ``` The other option is to use a local clone: ```sh $ git clone https://github.com/st-bender/sciapy.git $ cd sciapy ``` and then using `pip` (optionally using `-e`, see <https://pip.pypa.io/en/stable/reference/pip_install/#install-editable>): ```sh $ pip install [-e] . ``` or using `setup.py`: ```sh $ python setup.py install ``` ## Usage The whole module as well as the individual submodules can be loaded as usual: ```python >>> import sciapy >>> import sciapy.level1c >>> import sciapy.level2 >>> import sciapy.regress ``` Basic class and method documentation is accessible via `pydoc`: ```sh $ pydoc sciapy ``` The submodules' documentation can be accessed with `pydoc` as well: ```sh $ pydoc sciapy.level1c $ pydoc sciapy.level2 $ pydoc sciapy.regress ``` ## License This python package is free software: you can redistribute it or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2 (GPLv2), see [local copy](./LICENSE) or [online version](http://www.gnu.org/licenses/gpl-2.0.html).
/sciapy-0.0.8.tar.gz/sciapy-0.0.8/README.md
0.532668
0.957477
README.md
pypi
# SCIAMACHY data tools [![builds](https://github.com/st-bender/sciapy/actions/workflows/ci_build_and_test.yml/badge.svg?branch=master)](https://github.com/st-bender/sciapy/actions/workflows/ci_build_and_test.yml) [![docs](https://rtfd.org/projects/sciapy/badge/?version=latest)](https://sciapy.rtfd.io/en/latest/?badge=latest) [![coveralls](https://coveralls.io/repos/github/st-bender/sciapy/badge.svg)](https://coveralls.io/github/st-bender/sciapy) [![scrutinizer](https://scrutinizer-ci.com/g/st-bender/sciapy/badges/quality-score.png?b=master)](https://scrutinizer-ci.com/g/st-bender/sciapy/?branch=master) [![doi code](https://zenodo.org/badge/DOI/10.5281/zenodo.1401370.svg)](https://doi.org/10.5281/zenodo.1401370) [![doi mcmc samples](https://zenodo.org/badge/DOI/10.5281/zenodo.1342701.svg)](https://doi.org/10.5281/zenodo.1342701) ## Overview These SCIAMACHY tools are provided as convenience tools for handling SCIAMACHY level 1c limb spectra and retrieved level 2 trace-gas densities. More extensive documentation is provided on [sciapy.rtfd.io](https://sciapy.rtfd.io). ### Level 1c tools The `sciapy.level1c` submodule provides a few [conversion tools](sciapy/level1c/README.md) for [SCIAMACHY](http://www.sciamachy.org) level 1c calibrated spectra, to be used as input for trace gas retrieval with [scia\_retrieval\_2d](https://github.com/st-bender/scia_retrieval_2d). **Note that this is *not* a level 1b to level 1c calibration tool.** For calibrating level 1b spectra (for example SCI\_NL\_\_1P version 8.02 provided by ESA via the [ESA data browser](https://earth.esa.int/web/guest/data-access/browse-data-products)) to level 1c spectra, use the [SciaL1C](https://earth.esa.int/web/guest/software-tools/content/-/article/scial1c-command-line-tool-4073) command line tool or the free software [nadc\_tools](https://github.com/rmvanhees/nadc_tools). The first produces `.child` files, the second can output to HDF5 (`.h5`). **Further note**: `.child` files are currently not supported. ### Level 2 tools The `sciapy.level2` submodule provides post-processing tools for trace-gas densities retrieved from SCIAMACHY limb scans. Support simple operations as combining files into *netcdf*, calculating and noting local solar time at the retrieval grid points, geomagnetic latitudes, etc. The level 2 tools also include a simple binning algorithm. ### Regression The `sciapy.regress` submodule can be used for regression analysis of SCIAMACHY level 2 trace gas density time series, either directly or as daily zonal means. It uses the [`regressproxy`](https://regressproxy.readthedocs.io) package for modelling the proxy input with lag and lifetime decay. The regression tools support various parameter fitting methods using [`scipy.optimize`](https://docs.scipy.org/doc/scipy/reference/optimize.html) and uncertainty evaluation using Markov-Chain Monte-Carlo sampling with [`emcee`](https://emcee.readthedocs.io). Further supports covariance modelling via [`celerite`](https://celerite.readthedocs.io) and [`george`](https://george.readthedocs.io). ## Install ### Prerequisites Sciapy uses features from a lot of different packages. All dependencies will be automatically installed when using `pip install` or `python setup.py`, see below. However, to speed up the install or for use within a `conda` environment, it may be advantageous to install some of the important packages beforehand: - `numpy` at least version 1.13.0 for general numerics, - `scipy` at least version 0.17.0 for scientific numerics, - `matplotlib` at least version 2.2 for plotting, - `netCDF4` for the low level netcdf4 interfaces, - `h5py` for the low level hdf5 interfaces, - `dask`, - `toolz`, - `pandas` and - `xarray` for the higher level data interfaces, - `astropy` for (astronomical) time conversions, - `parse` for ASCII text parsing in `level1c`, - `pybind11` C++ interface needed by `celerite` - `celerite` at least version 0.3.0 and - `george` for Gaussian process modelling, - `emcee` for MCMC sampling and - `corner` for the sample histogram plots, - `regressproxy` for the regression proxy modelling. Out of these packages, `numpy` is probably the most important one to be installed first because at least `celerite` needs it for setup. It may also be a good idea to install [`pybind11`](https://pybind11.readthedocs.io) because both `celerite` and `george` use its interface, and both may fail to install without `pybind11`. Depending on the setup, `numpy` and `pybind11` can be installed via `pip`: ```sh pip install numpy pybind11 ``` or [`conda`](https://conda.io): ```sh conda install numpy pybind11 ``` ### sciapy Official releases are available as `pip` packages from the main package repository, to be found at <https://pypi.org/project/sciapy/>, and which can be installed with: ```sh $ pip install sciapy ``` The latest development version of sciapy can be installed with [`pip`](https://pip.pypa.io) directly from github (see <https://pip.pypa.io/en/stable/reference/pip_install/#vcs-support> and <https://pip.pypa.io/en/stable/reference/pip_install/#git>): ```sh $ pip install [-e] git+https://github.com/st-bender/sciapy.git ``` The other option is to use a local clone: ```sh $ git clone https://github.com/st-bender/sciapy.git $ cd sciapy ``` and then using `pip` (optionally using `-e`, see <https://pip.pypa.io/en/stable/reference/pip_install/#install-editable>): ```sh $ pip install [-e] . ``` or using `setup.py`: ```sh $ python setup.py install ``` ## Usage The whole module as well as the individual submodules can be loaded as usual: ```python >>> import sciapy >>> import sciapy.level1c >>> import sciapy.level2 >>> import sciapy.regress ``` Basic class and method documentation is accessible via `pydoc`: ```sh $ pydoc sciapy ``` The submodules' documentation can be accessed with `pydoc` as well: ```sh $ pydoc sciapy.level1c $ pydoc sciapy.level2 $ pydoc sciapy.regress ``` ## License This python package is free software: you can redistribute it or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2 (GPLv2), see [local copy](./LICENSE) or [online version](http://www.gnu.org/licenses/gpl-2.0.html).
/sciapy-0.0.8.tar.gz/sciapy-0.0.8/docs/README.md
0.532668
0.957477
README.md
pypi
# Regression model intro ## Standard imports First, setup some standard modules and matplotlib. ``` %matplotlib inline %config InlineBackend.figure_format = 'png' import numpy as np import xarray as xr import matplotlib.pyplot as plt ``` Load the main `sciapy` module and its wrappers for easy access to the used proxy timeseries. ``` import regressproxy import sciapy from sciapy.regress.load_data import load_dailymeanAE, load_dailymeanLya plt.rcParams["figure.dpi"] = 120 ``` ## Model interface The model is set up part by part, beginning with the more involved proxy models. ### Lyman-$\alpha$ proxy We start with the Lyman-$\alpha$ proxy, it is not centered (mean-subtracted) and we set the rest of the parameters except `ltscan` to zero. ``` # load proxy data plat, plap = load_dailymeanLya() # setup the model lya_model = regressproxy.ProxyModel(plat, plap["Lya"], center=False, amp=0, lag=0, tau0=0, taucos1=0, tausin1=0, taucos2=0, tausin2=0, ltscan=60) ``` ### AE proxy with lifetime The AE proxy is also not centered and we start with the same parameters as above. ``` # load proxy data paet, paep = load_dailymeanAE() # setup the model ae_model = regressproxy.ProxyModel(paet, paep["AE"], center=False, amp=0, lag=0, tau0=0, taucos1=0, tausin1=0, taucos2=0, tausin2=0, ltscan=60) ``` ### Offset We use the `ConstantModel` (inherited from `celerite`) for the constant offset. ``` offset_model = regressproxy.ConstantModel(value=0.) ``` ### Optional harmonic terms The harmonic terms are not used here but we include them to show how to set them up. ``` harm1 = regressproxy.HarmonicModelCosineSine(freq=1, cos=0, sin=0) harm2 = regressproxy.HarmonicModelCosineSine(freq=2, cos=0, sin=0) # frequencies should not be fitted harm1.freeze_parameter("freq") harm2.freeze_parameter("freq") ``` ### Combined model We then combine the separate models into a `ModelSet`. ``` model = regressproxy.ProxyModelSet([("offset", offset_model), ("Lya", lya_model), ("GM", ae_model), ("f1", harm1), ("f2", harm2)]) ``` The full model has the following parameters: ``` model.get_parameter_dict() ``` But we don't need all of them, so we freeze all parameters and thaw the ones we need. This is easier than the other way around (freezing all unused parameters). ``` model.freeze_all_parameters() model.thaw_parameter("offset:value") model.thaw_parameter("Lya:amp") model.thaw_parameter("GM:amp") model.thaw_parameter("GM:tau0") model.thaw_parameter("GM:taucos1") model.thaw_parameter("GM:tausin1") ``` Cross check that only the used parameters are really active: ``` model.get_parameter_dict() ``` ## Model parameters ### Manually setting the parameters Now we set the model parameters to something non-trivial, with the same order as listed above: ``` model.set_parameter_vector([-25.6, 6.26, 0.0874, 1.54, 10.52, -0.714]) model.get_parameter_dict() ``` With the parameters properly set, we can now "predict" the density for any time we wish. Here we take 25 years half-daily: ``` times = np.arange(1992, 2017.01, 0.5 / 365.25) pred = model.get_value(times) ``` and then plot the result: ``` plt.plot(times, pred, label="model") plt.xlabel("time [Julian epoch]") # The data were scaled by 10^-6 before fitting plt.ylabel("NO number density [10$^6$ cm$^{{-3}}$]") plt.legend(); ``` ### Setting the parameters from file Instead of making up some numbers for the parameters, we can take "real" ones. We use the ones determined by fitting the model to actual data, in this case SCIAMACHY nitric oxide daily zonal mean data. We connect to zenodo and load the contents into memory. It's a rather small file so that should be no problem, but we need the requests and netCDF4 modules for that. The alternative would be to download a copy into the same folder as this notebook. ``` import requests import netCDF4 def load_data_store(store, variables=None): with xr.open_dataset(store, chunks={"lat": 9, "alt": 8}) as data_ds: if variables is not None: data_ds = data_ds[variables] data_ds.load() return data_ds def load_data_url(url, variables=None): with requests.get(url, stream=True) as response: nc4_ds = netCDF4.Dataset("data", memory=response.content) store = xr.backends.NetCDF4DataStore(nc4_ds) return load_data_store(store, variables) zenodo_url = "https://zenodo.org/record/1342701/files/NO_regress_quantiles_pGM_Lya_ltcs_exp1dscan60d_km32.nc" # If you downloaded a copy, use load_data_store() # and replace the url by "/path/to/<filename.nc>" quants = load_data_url(zenodo_url) ``` The data file contains the median together with the (0.16, 0.84), (0.025, 0.975), and (0.001, 0.999) quantiles corresponding to the 1$\sigma$, 2$\sigma$, and 3$\sigma$ confidence regions. In particular, the contents of the quantiles dataset are: ``` quants ``` The dimensions of the available parameters are: ``` quants.lat, quants.alt ``` We loop over the parameter names and set the parameters to the median values (`quantile=0.5`) for the selected altitude and latitude bin. The variables in the quantiles file were created using [celerite](https://github.com/dfm/celerite) which prepends "mean:" to the variables from the mean model. ``` # select latitude and altitude first latitude = 65 altitude = 70 for v in model.get_parameter_names(): model.set_parameter(v, quants["mean:{0}".format(v)].sel(alt=altitude, lat=latitude, quantile=0.5)) ``` The parameters from the file are (actually pretty close to the ones above): ``` model.get_parameter_dict() ``` We take the same times as above (25 years half-daily) to predict the model values: ``` pred = model.get_value(times) ``` and then plot the result again: ``` plt.plot(times, pred, label="model") plt.xlabel("time [Julian epoch]") # Again, the data were scaled by 10^-6 before fitting, so adjust the X-Axis label plt.ylabel("NO number density [10$^6$ cm$^{{-3}}$]") plt.legend(); ```
/sciapy-0.0.8.tar.gz/sciapy-0.0.8/docs/tutorials/regress_intro.ipynb
0.629775
0.940463
regress_intro.ipynb
pypi
import numpy as np import pandas as pd from scipy.sparse import csr_matrix from scib_metrics.utils import compute_simpson_index, convert_knn_graph_to_idx def lisi_knn(X: csr_matrix, labels: np.ndarray, perplexity: float = None) -> np.ndarray: """Compute the local inverse simpson index (LISI) for each cell :cite:p:`korsunsky2019harmony`. Parameters ---------- X Array of shape (n_cells, n_cells) with non-zero values representing distances to exactly each cell's k nearest neighbors. labels Array of shape (n_cells,) representing label values for each cell. perplexity Parameter controlling effective neighborhood size. If None, the perplexity is set to the number of neighbors // 3. Returns ------- lisi Array of shape (n_cells,) with the LISI score for each cell. """ labels = np.asarray(pd.Categorical(labels).codes) knn_dists, knn_idx = convert_knn_graph_to_idx(X) if perplexity is None: perplexity = np.floor(knn_idx.shape[1] / 3) n_labels = len(np.unique(labels)) simpson = compute_simpson_index(knn_dists, knn_idx, labels, n_labels, perplexity=perplexity) return 1 / simpson def ilisi_knn(X: csr_matrix, batches: np.ndarray, perplexity: float = None, scale: bool = True) -> np.ndarray: """Compute the integration local inverse simpson index (iLISI) for each cell :cite:p:`korsunsky2019harmony`. Returns a scaled version of the iLISI score for each cell, by default :cite:p:`luecken2022benchmarking`. Parameters ---------- X Array of shape (n_cells, n_cells) with non-zero values representing distances to exactly each cell's k nearest neighbors. batches Array of shape (n_cells,) representing batch values for each cell. perplexity Parameter controlling effective neighborhood size. If None, the perplexity is set to the number of neighbors // 3. scale Scale lisi into the range [0, 1]. If True, higher values are better. Returns ------- ilisi Array of shape (n_cells,) with the iLISI score for each cell. """ batches = np.asarray(pd.Categorical(batches).codes) lisi = lisi_knn(X, batches, perplexity=perplexity) ilisi = np.nanmedian(lisi) if scale: nbatches = len(np.unique(batches)) ilisi = (ilisi - 1) / (nbatches - 1) return ilisi def clisi_knn(X: csr_matrix, labels: np.ndarray, perplexity: float = None, scale: bool = True) -> np.ndarray: """Compute the cell-type local inverse simpson index (cLISI) for each cell :cite:p:`korsunsky2019harmony`. Returns a scaled version of the cLISI score for each cell, by default :cite:p:`luecken2022benchmarking`. Parameters ---------- X Array of shape (n_cells, n_cells) with non-zero values representing distances to exactly each cell's k nearest neighbors. labels Array of shape (n_cells,) representing cell type label values for each cell. perplexity Parameter controlling effective neighborhood size. If None, the perplexity is set to the number of neighbors // 3. scale Scale lisi into the range [0, 1]. If True, higher values are better. Returns ------- clisi Array of shape (n_cells,) with the cLISI score for each cell. """ labels = np.asarray(pd.Categorical(labels).codes) lisi = lisi_knn(X, labels, perplexity=perplexity) clisi = np.nanmedian(lisi) if scale: nlabels = len(np.unique(labels)) clisi = (nlabels - clisi) / (nlabels - 1) return clisi
/scib_metrics-0.3.3-py3-none-any.whl/scib_metrics/_lisi.py
0.928498
0.759002
_lisi.py
pypi
import logging from typing import Optional, Union import numpy as np import pandas as pd from ._silhouette import silhouette_label logger = logging.getLogger(__name__) def isolated_labels( X: np.ndarray, labels: np.ndarray, batch: np.ndarray, iso_threshold: Optional[int] = None, ) -> float: """Isolated label score :cite:p:`luecken2022benchmarking`. Score how well labels of isolated labels are distiguished in the dataset by average-width silhouette score (ASW) on isolated label vs all other labels. The default of the original scib package is to use a cluster-based F1 scoring procedure, but here we use the ASW for speed and simplicity. Parameters ---------- X Array of shape (n_cells, n_features). labels Array of shape (n_cells,) representing label values batch Array of shape (n_cells,) representing batch values iso_threshold Max number of batches per label for label to be considered as isolated, if integer. If `None`, considers minimum number of batches that labels are present in Returns ------- isolated_label_score """ scores = {} isolated_labels = _get_isolated_labels(labels, batch, iso_threshold) for label in isolated_labels: score = _score_isolated_label(X, labels, label) scores[label] = score scores = pd.Series(scores) return scores.mean() def _score_isolated_label( X: np.ndarray, labels: np.ndarray, isolated_label: Union[str, float, int], ): """Compute label score for a single label.""" mask = labels == isolated_label score = silhouette_label(X, mask.astype(np.float32)) logging.info(f"{isolated_label}: {score}") return score def _get_isolated_labels(labels: np.ndarray, batch: np.ndarray, iso_threshold: float): """Get labels that are isolated depending on the number of batches.""" tmp = pd.DataFrame() label_key = "label" batch_key = "batch" tmp[label_key] = labels tmp[batch_key] = batch tmp = tmp.drop_duplicates() batch_per_lab = tmp.groupby(label_key).agg({batch_key: "count"}) # threshold for determining when label is considered isolated if iso_threshold is None: iso_threshold = batch_per_lab.min().tolist()[0] logging.info(f"isolated labels: no more than {iso_threshold} batches per label") labels = batch_per_lab[batch_per_lab[batch_key] <= iso_threshold].index.tolist() if len(labels) == 0: logging.info(f"no isolated labels with less than {iso_threshold} batches") return np.array(labels)
/scib_metrics-0.3.3-py3-none-any.whl/scib_metrics/_isolated_labels.py
0.935125
0.570271
_isolated_labels.py
pypi
import logging import warnings from typing import Dict, Tuple import numpy as np import scanpy as sc from scipy.sparse import spmatrix from sklearn.metrics.cluster import adjusted_rand_score, normalized_mutual_info_score from sklearn.utils import check_array from .utils import KMeans, check_square logger = logging.getLogger(__name__) def _compute_clustering_kmeans(X: np.ndarray, n_clusters: int) -> np.ndarray: kmeans = KMeans(n_clusters) kmeans.fit(X) return kmeans.labels_ def _compute_clustering_leiden(connectivity_graph: spmatrix, resolution: float) -> np.ndarray: g = sc._utils.get_igraph_from_adjacency(connectivity_graph) clustering = g.community_leiden(objective_function="modularity", weights="weight", resolution_parameter=resolution) clusters = clustering.membership return np.asarray(clusters) def _compute_nmi_ari_cluster_labels( X: np.ndarray, labels: np.ndarray, resolution: float = 1.0, ) -> Tuple[float, float]: labels_pred = _compute_clustering_leiden(X, resolution) nmi = normalized_mutual_info_score(labels, labels_pred, average_method="arithmetic") ari = adjusted_rand_score(labels, labels_pred) return nmi, ari def nmi_ari_cluster_labels_kmeans(X: np.ndarray, labels: np.ndarray) -> Dict[str, float]: """Compute nmi and ari between k-means clusters and labels. This deviates from the original implementation in scib by using k-means with k equal to the known number of cell types/labels. This leads to a more efficient computation of the nmi and ari scores. Parameters ---------- X Array of shape (n_cells, n_features). labels Array of shape (n_cells,) representing label values Returns ------- nmi Normalized mutual information score ari Adjusted rand index score """ X = check_array(X, accept_sparse=False, ensure_2d=True) n_clusters = len(np.unique(labels)) labels_pred = _compute_clustering_kmeans(X, n_clusters) nmi = normalized_mutual_info_score(labels, labels_pred, average_method="arithmetic") ari = adjusted_rand_score(labels, labels_pred) return {"nmi": nmi, "ari": ari} def nmi_ari_cluster_labels_leiden( X: spmatrix, labels: np.ndarray, optimize_resolution: bool = True, resolution: float = 1.0, n_jobs: int = 1 ) -> Dict[str, float]: """Compute nmi and ari between leiden clusters and labels. This deviates from the original implementation in scib by using leiden instead of louvain clustering. Installing joblib allows for parallelization of the leiden resoution optimization. Parameters ---------- X Array of shape (n_cells, n_cells) representing a connectivity graph. Values should represent weights between pairs of neighbors, with a higher weight indicating more connected. labels Array of shape (n_cells,) representing label values optimize_resolution Whether to optimize the resolution parameter of leiden clustering by searching over 10 values resolution Resolution parameter of leiden clustering. Only used if optimize_resolution is False. n_jobs Number of jobs for parallelizing resolution optimization via joblib. If -1, all CPUs are used. Returns ------- nmi Normalized mutual information score ari Adjusted rand index score """ X = check_array(X, accept_sparse=True, ensure_2d=True) check_square(X) if optimize_resolution: n = 10 resolutions = np.array([2 * x / n for x in range(1, n + 1)]) try: from joblib import Parallel, delayed out = Parallel(n_jobs=n_jobs)(delayed(_compute_nmi_ari_cluster_labels)(X, labels, r) for r in resolutions) except ImportError: warnings.warn("Using for loop over clustering resolutions. `pip install joblib` for parallelization.") out = [_compute_nmi_ari_cluster_labels(X, labels, r) for r in resolutions] nmi_ari = np.array(out) nmi_ind = np.argmax(nmi_ari[:, 0]) nmi, ari = nmi_ari[nmi_ind, :] return {"nmi": nmi, "ari": ari} else: nmi, ari = _compute_nmi_ari_cluster_labels(X, labels, resolution) return {"nmi": nmi, "ari": ari}
/scib_metrics-0.3.3-py3-none-any.whl/scib_metrics/_nmi_ari.py
0.920016
0.636155
_nmi_ari.py
pypi
import numpy as np import pandas as pd from scib_metrics.utils import silhouette_samples def silhouette_label(X: np.ndarray, labels: np.ndarray, rescale: bool = True, chunk_size: int = 256) -> float: """Average silhouette width (ASW) :cite:p:`luecken2022benchmarking`. Parameters ---------- X Array of shape (n_cells, n_features). labels Array of shape (n_cells,) representing label values rescale Scale asw into the range [0, 1]. chunk_size Size of chunks to process at a time for distance computation. Returns ------- silhouette score """ asw = np.mean(silhouette_samples(X, labels, chunk_size=chunk_size)) if rescale: asw = (asw + 1) / 2 return np.mean(asw) def silhouette_batch( X: np.ndarray, labels: np.ndarray, batch: np.ndarray, rescale: bool = True, chunk_size: int = 256 ) -> float: """Average silhouette width (ASW) with respect to batch ids within each label :cite:p:`luecken2022benchmarking`. Parameters ---------- X Array of shape (n_cells, n_features). labels Array of shape (n_cells,) representing label values batch Array of shape (n_cells,) representing batch values rescale Scale asw into the range [0, 1]. If True, higher values are better. chunk_size Size of chunks to process at a time for distance computation. Returns ------- silhouette score """ sil_dfs = [] unique_labels = np.unique(labels) for group in unique_labels: labels_mask = labels == group X_subset = X[labels_mask] batch_subset = batch[labels_mask] n_batches = len(np.unique(batch_subset)) if (n_batches == 1) or (n_batches == X_subset.shape[0]): continue sil_per_group = silhouette_samples(X_subset, batch_subset, chunk_size=chunk_size) # take only absolute value sil_per_group = np.abs(sil_per_group) if rescale: # scale s.t. highest number is optimal sil_per_group = 1 - sil_per_group sil_dfs.append( pd.DataFrame( { "group": [group] * len(sil_per_group), "silhouette_score": sil_per_group, } ) ) sil_df = pd.concat(sil_dfs).reset_index(drop=True) sil_means = sil_df.groupby("group").mean() asw = sil_means["silhouette_score"].mean() return asw
/scib_metrics-0.3.3-py3-none-any.whl/scib_metrics/_silhouette.py
0.924108
0.721449
_silhouette.py
pypi
import os import warnings from dataclasses import asdict, dataclass from enum import Enum from functools import partial from typing import Any, Callable, Dict, List, Optional, Union import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import scanpy as sc from anndata import AnnData from plottable import ColumnDefinition, Table from plottable.cmap import normed_cmap from plottable.plots import bar from sklearn.preprocessing import MinMaxScaler from tqdm import tqdm import scib_metrics from scib_metrics.nearest_neighbors import NeighborsOutput, pynndescent Kwargs = Dict[str, Any] MetricType = Union[bool, Kwargs] _LABELS = "labels" _BATCH = "batch" _X_PRE = "X_pre" _METRIC_TYPE = "Metric Type" _AGGREGATE_SCORE = "Aggregate score" # Mapping of metric fn names to clean DataFrame column names metric_name_cleaner = { "silhouette_label": "Silhouette label", "silhouette_batch": "Silhouette batch", "isolated_labels": "Isolated labels", "nmi_ari_cluster_labels_leiden_nmi": "Leiden NMI", "nmi_ari_cluster_labels_leiden_ari": "Leiden ARI", "nmi_ari_cluster_labels_kmeans_nmi": "KMeans NMI", "nmi_ari_cluster_labels_kmeans_ari": "KMeans ARI", "clisi_knn": "cLISI", "ilisi_knn": "iLISI", "kbet_per_label": "KBET", "graph_connectivity": "Graph connectivity", "pcr_comparison": "PCR comparison", } @dataclass(frozen=True) class BioConservation: """Specification of bio conservation metrics to run in the pipeline. Metrics can be included using a boolean flag. Custom keyword args can be used by passing a dictionary here. Keyword args should not set data-related parameters, such as `X` or `labels`. """ isolated_labels: MetricType = True nmi_ari_cluster_labels_leiden: MetricType = False nmi_ari_cluster_labels_kmeans: MetricType = True silhouette_label: MetricType = True clisi_knn: MetricType = True @dataclass(frozen=True) class BatchCorrection: """Specification of which batch correction metrics to run in the pipeline. Metrics can be included using a boolean flag. Custom keyword args can be used by passing a dictionary here. Keyword args should not set data-related parameters, such as `X` or `labels`. """ silhouette_batch: MetricType = True ilisi_knn: MetricType = True kbet_per_label: MetricType = True graph_connectivity: MetricType = True pcr_comparison: MetricType = True class MetricAnnDataAPI(Enum): """Specification of the AnnData API for a metric.""" isolated_labels = lambda ad, fn: fn(ad.X, ad.obs[_LABELS], ad.obs[_BATCH]) nmi_ari_cluster_labels_leiden = lambda ad, fn: fn(ad.obsp["15_connectivities"], ad.obs[_LABELS]) nmi_ari_cluster_labels_kmeans = lambda ad, fn: fn(ad.X, ad.obs[_LABELS]) silhouette_label = lambda ad, fn: fn(ad.X, ad.obs[_LABELS]) clisi_knn = lambda ad, fn: fn(ad.obsp["90_distances"], ad.obs[_LABELS]) graph_connectivity = lambda ad, fn: fn(ad.obsp["15_distances"], ad.obs[_LABELS]) silhouette_batch = lambda ad, fn: fn(ad.X, ad.obs[_LABELS], ad.obs[_BATCH]) pcr_comparison = lambda ad, fn: fn(ad.obsm[_X_PRE], ad.X, ad.obs[_BATCH], categorical=True) ilisi_knn = lambda ad, fn: fn(ad.obsp["90_distances"], ad.obs[_BATCH]) kbet_per_label = lambda ad, fn: fn(ad.obsp["50_connectivities"], ad.obs[_BATCH], ad.obs[_LABELS]) class Benchmarker: """Benchmarking pipeline for the single-cell integration task. Parameters ---------- adata AnnData object containing the raw count data and integrated embeddings as obsm keys. batch_key Key in `adata.obs` that contains the batch information. label_key Key in `adata.obs` that contains the cell type labels. embedding_obsm_keys List of obsm keys that contain the embeddings to be benchmarked. bio_conservation_metrics Specification of which bio conservation metrics to run in the pipeline. batch_correction_metrics Specification of which batch correction metrics to run in the pipeline. pre_integrated_embedding_obsm_key Obsm key containing a non-integrated embedding of the data. If `None`, the embedding will be computed in the prepare step. See the notes below for more information. n_jobs Number of jobs to use for parallelization of neighbor search. Notes ----- `adata.X` should contain a form of the data that is not integrated, but is normalized. The `prepare` method will use `adata.X` for PCA via :func:`~scanpy.tl.pca`, which also only uses features masked via `adata.var['highly_variable']`. See further usage examples in the following tutorial: 1. :doc:`/notebooks/lung_example` """ def __init__( self, adata: AnnData, batch_key: str, label_key: str, embedding_obsm_keys: List[str], bio_conservation_metrics: Optional[BioConservation] = None, batch_correction_metrics: Optional[BatchCorrection] = None, pre_integrated_embedding_obsm_key: Optional[str] = None, n_jobs: int = 1, ): self._adata = adata self._embedding_obsm_keys = embedding_obsm_keys self._pre_integrated_embedding_obsm_key = pre_integrated_embedding_obsm_key self._bio_conservation_metrics = bio_conservation_metrics if bio_conservation_metrics else BioConservation() self._batch_correction_metrics = batch_correction_metrics if batch_correction_metrics else BatchCorrection() self._results = pd.DataFrame(columns=list(self._embedding_obsm_keys) + [_METRIC_TYPE]) self._emb_adatas = {} self._neighbor_values = (15, 50, 90) self._prepared = False self._benchmarked = False self._batch_key = batch_key self._label_key = label_key self._n_jobs = n_jobs self._metric_collection_dict = { "Bio conservation": self._bio_conservation_metrics, "Batch correction": self._batch_correction_metrics, } def prepare(self, neighbor_computer: Optional[Callable[[np.ndarray, int], NeighborsOutput]] = None) -> None: """Prepare the data for benchmarking. Parameters ---------- neighbor_computer Function that computes the neighbors of the data. If `None`, the neighbors will be computed with :func:`~scib_metrics.utils.nearest_neighbors.pynndescent`. The function should take as input the data and the number of neighbors to compute and return a :class:`~scib_metrics.utils.nearest_neighbors.NeighborsOutput` object. """ # Compute PCA if self._pre_integrated_embedding_obsm_key is None: # This is how scib does it # https://github.com/theislab/scib/blob/896f689e5fe8c57502cb012af06bed1a9b2b61d2/scib/metrics/pcr.py#L197 sc.tl.pca(self._adata, use_highly_variable=False) self._pre_integrated_embedding_obsm_key = "X_pca" for emb_key in self._embedding_obsm_keys: self._emb_adatas[emb_key] = AnnData(self._adata.obsm[emb_key], obs=self._adata.obs) self._emb_adatas[emb_key].obs[_BATCH] = np.asarray(self._adata.obs[self._batch_key].values) self._emb_adatas[emb_key].obs[_LABELS] = np.asarray(self._adata.obs[self._label_key].values) self._emb_adatas[emb_key].obsm[_X_PRE] = self._adata.obsm[self._pre_integrated_embedding_obsm_key] # Compute neighbors for ad in tqdm(self._emb_adatas.values(), desc="Computing neighbors"): if neighbor_computer is not None: neigh_output = neighbor_computer(ad.X, max(self._neighbor_values)) else: neigh_output = pynndescent( ad.X, n_neighbors=max(self._neighbor_values), random_state=0, n_jobs=self._n_jobs ) indices, distances = neigh_output.indices, neigh_output.distances for n in self._neighbor_values: sp_distances, sp_conns = sc.neighbors._compute_connectivities_umap( indices[:, :n], distances[:, :n], ad.n_obs, n_neighbors=n ) ad.obsp[f"{n}_connectivities"] = sp_conns ad.obsp[f"{n}_distances"] = sp_distances self._prepared = True def benchmark(self) -> None: """Run the pipeline.""" if self._benchmarked: warnings.warn( "The benchmark has already been run. Running it again will overwrite the previous results.", UserWarning, ) if not self._prepared: self.prepare() num_metrics = sum( [sum([v is not False for v in asdict(met_col)]) for met_col in self._metric_collection_dict.values()] ) for emb_key, ad in tqdm(self._emb_adatas.items(), desc="Embeddings", position=0, colour="green"): pbar = tqdm(total=num_metrics, desc="Metrics", position=1, leave=False, colour="blue") for metric_type, metric_collection in self._metric_collection_dict.items(): for metric_name, use_metric_or_kwargs in asdict(metric_collection).items(): if use_metric_or_kwargs: pbar.set_postfix_str(f"{metric_type}: {metric_name}") metric_fn = getattr(scib_metrics, metric_name) if isinstance(use_metric_or_kwargs, dict): # Kwargs in this case metric_fn = partial(metric_fn, **use_metric_or_kwargs) metric_value = getattr(MetricAnnDataAPI, metric_name)(ad, metric_fn) # nmi/ari metrics return a dict if isinstance(metric_value, dict): for k, v in metric_value.items(): self._results.loc[f"{metric_name}_{k}", emb_key] = v self._results.loc[f"{metric_name}_{k}", _METRIC_TYPE] = metric_type else: self._results.loc[metric_name, emb_key] = metric_value self._results.loc[metric_name, _METRIC_TYPE] = metric_type pbar.update(1) self._benchmarked = True def get_results(self, min_max_scale: bool = True, clean_names: bool = True) -> pd.DataFrame: """Return the benchmarking results. Parameters ---------- min_max_scale Whether to min max scale the results. clean_names Whether to clean the metric names. Returns ------- The benchmarking results. """ df = self._results.transpose() df.index.name = "Embedding" df = df.loc[df.index != _METRIC_TYPE] if min_max_scale: # Use sklearn to min max scale df = pd.DataFrame( MinMaxScaler().fit_transform(df), columns=df.columns, index=df.index, ) if clean_names: df = df.rename(columns=metric_name_cleaner) df = df.transpose() df[_METRIC_TYPE] = self._results[_METRIC_TYPE].values # Compute scores per_class_score = df.groupby(_METRIC_TYPE).mean().transpose() # This is the default scIB weighting from the manuscript per_class_score["Total"] = 0.4 * per_class_score["Batch correction"] + 0.6 * per_class_score["Bio conservation"] df = pd.concat([df.transpose(), per_class_score], axis=1) df.loc[_METRIC_TYPE, per_class_score.columns] = _AGGREGATE_SCORE return df def plot_results_table( self, min_max_scale: bool = True, show: bool = True, save_dir: Optional[str] = None ) -> Table: """Plot the benchmarking results. Parameters ---------- min_max_scale Whether to min max scale the results. show Whether to show the plot. save_dir The directory to save the plot to. If `None`, the plot is not saved. """ num_embeds = len(self._embedding_obsm_keys) cmap_fn = lambda col_data: normed_cmap(col_data, cmap=matplotlib.cm.PRGn, num_stds=2.5) df = self.get_results(min_max_scale=min_max_scale) # Do not want to plot what kind of metric it is plot_df = df.drop(_METRIC_TYPE, axis=0) # Sort by total score plot_df = plot_df.sort_values(by="Total", ascending=False).astype(np.float64) plot_df["Method"] = plot_df.index # Split columns by metric type, using df as it doesn't have the new method col score_cols = df.columns[df.loc[_METRIC_TYPE] == _AGGREGATE_SCORE] other_cols = df.columns[df.loc[_METRIC_TYPE] != _AGGREGATE_SCORE] column_definitions = [ ColumnDefinition("Method", width=1.5, textprops={"ha": "left", "weight": "bold"}), ] # Circles for the metric values column_definitions += [ ColumnDefinition( col, title=col.replace(" ", "\n", 1), width=1, textprops={ "ha": "center", "bbox": {"boxstyle": "circle", "pad": 0.25}, }, cmap=cmap_fn(plot_df[col]), group=df.loc[_METRIC_TYPE, col], formatter="{:.2f}", ) for i, col in enumerate(other_cols) ] # Bars for the aggregate scores column_definitions += [ ColumnDefinition( col, width=1, title=col.replace(" ", "\n", 1), plot_fn=bar, plot_kw={ "cmap": matplotlib.cm.YlGnBu, "plot_bg_bar": False, "annotate": True, "height": 0.9, "formatter": "{:.2f}", }, group=df.loc[_METRIC_TYPE, col], border="left" if i == 0 else None, ) for i, col in enumerate(score_cols) ] # Allow to manipulate text post-hoc (in illustrator) with matplotlib.rc_context({"svg.fonttype": "none"}): fig, ax = plt.subplots(figsize=(len(df.columns) * 1.25, 3 + 0.3 * num_embeds)) tab = Table( plot_df, cell_kw={ "linewidth": 0, "edgecolor": "k", }, column_definitions=column_definitions, ax=ax, row_dividers=True, footer_divider=True, textprops={"fontsize": 10, "ha": "center"}, row_divider_kw={"linewidth": 1, "linestyle": (0, (1, 5))}, col_label_divider_kw={"linewidth": 1, "linestyle": "-"}, column_border_kw={"linewidth": 1, "linestyle": "-"}, index_col="Method", ).autoset_fontcolors(colnames=plot_df.columns) if show: plt.show() if save_dir is not None: fig.savefig(os.path.join(save_dir, "scib_results.svg"), facecolor=ax.get_facecolor(), dpi=300) return tab
/scib_metrics-0.3.3-py3-none-any.whl/scib_metrics/benchmark/_core.py
0.913857
0.370595
_core.py
pypi
from typing import Optional import jax import jax.numpy as jnp import numpy as np import pandas as pd from jax import jit from scib_metrics._types import NdArray from ._pca import pca from ._utils import one_hot def principal_component_regression( X: NdArray, covariate: NdArray, categorical: bool = False, n_components: Optional[int] = None, ) -> float: """Principal component regression (PCR) :cite:p:`buttner2018`. Parameters ---------- X Array of shape (n_cells, n_features). covariate Array of shape (n_cells,) or (n_cells, 1) representing batch/covariate values. categorical If True, batch will be treated as categorical and one-hot encoded. n_components: Number of components to compute, passed into :func:`~scib_metrics.utils.pca`. If None, all components are used. Returns ------- pcr: float Principal component regression using the first n_components principal components. """ if len(X.shape) != 2: raise ValueError("Dimension mismatch: X must be 2-dimensional.") if X.shape[0] != covariate.shape[0]: raise ValueError("Dimension mismatch: X and batch must have the same number of samples.") if categorical: covariate = np.asarray(pd.Categorical(covariate).codes) else: covariate = np.asarray(covariate) covariate = one_hot(covariate) if categorical else covariate.reshape((covariate.shape[0], 1)) pca_results = pca(X, n_components=n_components) # Center inputs for no intercept covariate = covariate - jnp.mean(covariate, axis=0) pcr = _pcr(pca_results.coordinates, covariate, pca_results.variance) return float(pcr) @jit def _pcr( X_pca: NdArray, covariate: NdArray, var: NdArray, ) -> NdArray: """Principal component regression. Parameters ---------- X_pca Array of shape (n_cells, n_components) containing PCA coordinates. Must be standardized. covariate Array of shape (n_cells, 1) or (n_cells, n_classes) containing batch/covariate values. Must be standardized if not categorical (one-hot). var Array of shape (n_components,) containing the explained variance of each PC. """ def r2(pc, batch): residual_sum = jnp.linalg.lstsq(batch, pc)[1] total_sum = jnp.sum((pc - jnp.mean(pc)) ** 2) return jnp.maximum(0, 1 - residual_sum / total_sum) # Index PCs on axis = 1, don't index batch r2_ = jax.vmap(r2, in_axes=(1, None))(X_pca, covariate) return jnp.dot(jnp.ravel(r2_), var) / jnp.sum(var)
/scib_metrics-0.3.3-py3-none-any.whl/scib_metrics/utils/_pcr.py
0.958876
0.484441
_pcr.py
pypi
from functools import partial from typing import Tuple, Union import chex import jax import jax.numpy as jnp import numpy as np from ._utils import get_ndarray NdArray = Union[np.ndarray, jnp.ndarray] @chex.dataclass class _NeighborProbabilityState: H: float P: chex.ArrayDevice Hdiff: float beta: float betamin: float betamax: float tries: int @jax.jit def _Hbeta(knn_dists_row: jnp.ndarray, beta: float) -> Tuple[jnp.ndarray, jnp.ndarray]: P = jnp.exp(-knn_dists_row * beta) sumP = jnp.nansum(P) H = jnp.where(sumP == 0, 0, jnp.log(sumP) + beta * jnp.nansum(knn_dists_row * P) / sumP) P = jnp.where(sumP == 0, jnp.zeros_like(knn_dists_row), P / sumP) return H, P @jax.jit def _get_neighbor_probability( knn_dists_row: jnp.ndarray, perplexity: float, tol: float ) -> Tuple[jnp.ndarray, jnp.ndarray]: beta = 1 betamin = -jnp.inf betamax = jnp.inf H, P = _Hbeta(knn_dists_row, beta) Hdiff = H - jnp.log(perplexity) def _get_neighbor_probability_step(state): Hdiff = state.Hdiff beta = state.beta betamin = state.betamin betamax = state.betamax tries = state.tries new_betamin = jnp.where(Hdiff > 0, beta, betamin) new_betamax = jnp.where(Hdiff > 0, betamax, beta) new_beta = jnp.where( Hdiff > 0, jnp.where(betamax == jnp.inf, beta * 2, (beta + betamax) / 2), jnp.where(betamin == -jnp.inf, beta / 2, (beta + betamin) / 2), ) new_H, new_P = _Hbeta(knn_dists_row, new_beta) new_Hdiff = new_H - jnp.log(perplexity) return _NeighborProbabilityState( H=new_H, P=new_P, Hdiff=new_Hdiff, beta=new_beta, betamin=new_betamin, betamax=new_betamax, tries=tries + 1 ) def _get_neighbor_probability_convergence(state): Hdiff, tries = state.Hdiff, state.tries return jnp.logical_and(jnp.abs(Hdiff) > tol, tries < 50) init_state = _NeighborProbabilityState(H=H, P=P, Hdiff=Hdiff, beta=beta, betamin=betamin, betamax=betamax, tries=0) final_state = jax.lax.while_loop(_get_neighbor_probability_convergence, _get_neighbor_probability_step, init_state) return final_state.H, final_state.P def _compute_simpson_index_cell( knn_dists_row: jnp.ndarray, knn_labels_row: jnp.ndarray, n_batches: int, perplexity: float, tol: float ) -> jnp.ndarray: H, P = _get_neighbor_probability(knn_dists_row, perplexity, tol) def _non_zero_H_simpson(): sumP = jnp.bincount(knn_labels_row, weights=P, length=n_batches) return jnp.where(knn_labels_row.shape[0] == P.shape[0], jnp.dot(sumP, sumP), 1) return jnp.where(H == 0, -1, _non_zero_H_simpson()) def compute_simpson_index( knn_dists: NdArray, knn_idx: NdArray, labels: NdArray, n_labels: int, perplexity: float = 30, tol: float = 1e-5, ) -> np.ndarray: """Compute the Simpson index for each cell. Parameters ---------- knn_dists KNN distances of size (n_cells, n_neighbors). knn_idx KNN indices of size (n_cells, n_neighbors) corresponding to distances. labels Cell labels of size (n_cells,). n_labels Number of labels. perplexity Measure of the effective number of neighbors. tol Tolerance for binary search. Returns ------- simpson_index Simpson index of size (n_cells,). """ knn_dists = jnp.array(knn_dists) knn_idx = jnp.array(knn_idx) labels = jnp.array(labels) knn_labels = labels[knn_idx] simpson_fn = partial(_compute_simpson_index_cell, n_batches=n_labels, perplexity=perplexity, tol=tol) out = jax.vmap(simpson_fn)(knn_dists, knn_labels) return get_ndarray(out)
/scib_metrics-0.3.3-py3-none-any.whl/scib_metrics/utils/_lisi.py
0.935626
0.644267
_lisi.py
pypi
from functools import partial from typing import Literal import jax import jax.numpy as jnp import numpy as np from sklearn.utils import check_array from scib_metrics._types import IntOrKey from ._dist import cdist from ._utils import get_ndarray, validate_seed def _initialize_random(X: jnp.ndarray, n_clusters: int, key: jax.random.KeyArray) -> jnp.ndarray: """Initialize cluster centroids randomly.""" n_obs = X.shape[0] indices = jax.random.choice(key, n_obs, (n_clusters,), replace=False) initial_state = X[indices] return initial_state @partial(jax.jit, static_argnums=1) def _initialize_plus_plus(X: jnp.ndarray, n_clusters: int, key: jax.random.KeyArray) -> jnp.ndarray: """Initialize cluster centroids with k-means++ algorithm.""" n_obs = X.shape[0] key, subkey = jax.random.split(key) initial_centroid_idx = jax.random.choice(subkey, n_obs, (1,), replace=False) initial_centroid = X[initial_centroid_idx].ravel() dist_sq = jnp.square(cdist(initial_centroid[jnp.newaxis, :], X)).ravel() initial_state = {"min_dist_sq": dist_sq, "centroid": initial_centroid, "key": key} n_local_trials = 2 + int(np.log(n_clusters)) def _step(state, _): prob = state["min_dist_sq"] / jnp.sum(state["min_dist_sq"]) # note that observations already chosen as centers will have 0 probability # and will not be chosen again state["key"], subkey = jax.random.split(state["key"]) next_centroid_idx_candidates = jax.random.choice(subkey, n_obs, (n_local_trials,), replace=False, p=prob) next_centroid_candidates = X[next_centroid_idx_candidates] # candidates by observations dist_sq_candidates = jnp.square(cdist(next_centroid_candidates, X)) dist_sq_candidates = jnp.minimum(state["min_dist_sq"][jnp.newaxis, :], dist_sq_candidates) candidates_pot = dist_sq_candidates.sum(axis=1) # Decide which candidate is the best best_candidate = jnp.argmin(candidates_pot) min_dist_sq = dist_sq_candidates[best_candidate] best_candidate = next_centroid_idx_candidates[best_candidate] state["min_dist_sq"] = min_dist_sq.ravel() state["centroid"] = X[best_candidate].ravel() return state, state["centroid"] _, centroids = jax.lax.scan(_step, initial_state, jnp.arange(n_clusters - 1)) return centroids @jax.jit def _get_dist_labels(X: jnp.ndarray, centroids: jnp.ndarray) -> jnp.ndarray: """Get the distance and labels for each observation.""" dist = cdist(X, centroids) labels = jnp.argmin(dist, axis=1) return dist, labels class KMeans: """Jax implementation of :class:`sklearn.cluster.KMeans`. This implementation is limited to Euclidean distance. Parameters ---------- n_clusters Number of clusters. init Cluster centroid initialization method. One of the following: * ``'k-means++'``: Sample initial cluster centroids based on an empirical distribution of the points' contributions to the overall inertia. * ``'random'``: Uniformly sample observations as initial centroids n_init Number of times the k-means algorithm will be initialized. max_iter Maximum number of iterations of the k-means algorithm for a single run. tol Relative tolerance with regards to inertia to declare convergence. seed Random seed. """ def __init__( self, n_clusters: int = 8, init: Literal["k-means++", "random"] = "k-means++", n_init: int = 10, max_iter: int = 300, tol: float = 1e-4, seed: IntOrKey = 0, ): self.n_clusters = n_clusters self.n_init = n_init self.max_iter = max_iter self.tol = tol self.seed: jax.random.KeyArray = validate_seed(seed) if init not in ["k-means++", "random"]: raise ValueError("Invalid init method, must be one of ['k-means++' or 'random'].") if init == "k-means++": self._initialize = _initialize_plus_plus else: self._initialize = _initialize_random def fit(self, X: np.ndarray): """Fit the model to the data.""" X = check_array(X, dtype=np.float32, order="C") # Subtract mean for numerical accuracy mean = X.mean(axis=0) X -= mean self._fit(X) X += mean self.cluster_centroids_ += mean return self def _fit(self, X: np.ndarray): all_centroids, all_inertias = jax.lax.map( lambda key: self._kmeans_full_run(X, key), jax.random.split(self.seed, self.n_init) ) i = jnp.argmin(all_inertias) self.cluster_centroids_ = get_ndarray(all_centroids[i]) self.inertia_ = get_ndarray(all_inertias[i]) _, labels = _get_dist_labels(X, self.cluster_centroids_) self.labels_ = get_ndarray(labels) @partial(jax.jit, static_argnums=(0,)) def _kmeans_full_run(self, X: jnp.ndarray, key: jnp.ndarray) -> jnp.ndarray: def _kmeans_step(state): old_inertia = state[1] centroids, _, _, n_iter = state # TODO(adamgayoso): Efficiently compute argmin and min simultaneously. dist, new_labels = _get_dist_labels(X, centroids) # From https://colab.research.google.com/drive/1AwS4haUx6swF82w3nXr6QKhajdF8aSvA?usp=sharing counts = (new_labels[jnp.newaxis, :] == jnp.arange(self.n_clusters)[:, jnp.newaxis]).sum( axis=1, keepdims=True ) counts = jnp.clip(counts, a_min=1, a_max=None) # Sum over points in a centroid by zeroing others out new_centroids = ( jnp.sum( jnp.where( # axes: (data points, clusters, data dimension) new_labels[:, jnp.newaxis, jnp.newaxis] == jnp.arange(self.n_clusters)[jnp.newaxis, :, jnp.newaxis], X[:, jnp.newaxis, :], 0.0, ), axis=0, ) / counts ) new_inertia = jnp.mean(jnp.min(dist, axis=1)) n_iter = n_iter + 1 return new_centroids, new_inertia, old_inertia, n_iter def _kmeans_convergence(state): _, new_inertia, old_inertia, n_iter = state cond1 = jnp.abs(old_inertia - new_inertia) < self.tol cond2 = n_iter > self.max_iter return jnp.logical_or(cond1, cond2)[0] centroids = self._initialize(X, self.n_clusters, key) # centroids, new_inertia, old_inertia, n_iter state = (centroids, jnp.inf, jnp.inf, jnp.array([0.0])) state = _kmeans_step(state) state = jax.lax.while_loop(_kmeans_convergence, _kmeans_step, state) return state[0], state[1]
/scib_metrics-0.3.3-py3-none-any.whl/scib_metrics/utils/_kmeans.py
0.880026
0.44071
_kmeans.py
pypi
from typing import Optional, Tuple import jax.numpy as jnp from chex import dataclass from jax import jit from scib_metrics._types import NdArray from ._utils import get_ndarray @dataclass class _SVDResult: """SVD result. Attributes ---------- u Array of shape (n_cells, n_components) containing the left singular vectors. s Array of shape (n_components,) containing the singular values. v Array of shape (n_components, n_features) containing the right singular vectors. """ u: NdArray s: NdArray v: NdArray @dataclass class _PCAResult: """PCA result. Attributes ---------- coordinates Array of shape (n_cells, n_components) containing the PCA coordinates. components Array of shape (n_components, n_features) containing the PCA components. variance Array of shape (n_components,) containing the explained variance of each PC. variance_ratio Array of shape (n_components,) containing the explained variance ratio of each PC. svd Dataclass containing the SVD data. """ coordinates: NdArray components: NdArray variance: NdArray variance_ratio: NdArray svd: Optional[_SVDResult] = None def _svd_flip( u: NdArray, v: NdArray, u_based_decision: bool = True, ): """Sign correction to ensure deterministic output from SVD. Jax implementation of :func:`~sklearn.utils.extmath.svd_flip`. Parameters ---------- u Left singular vectors of shape (M, K). v Right singular vectors of shape (K, N). u_based_decision If True, use the columns of u as the basis for sign flipping. """ if u_based_decision: max_abs_cols = jnp.argmax(jnp.abs(u), axis=0) signs = jnp.sign(u[max_abs_cols, jnp.arange(u.shape[1])]) else: max_abs_rows = jnp.argmax(jnp.abs(v), axis=1) signs = jnp.sign(v[jnp.arange(v.shape[0]), max_abs_rows]) u_ = u * signs v_ = v * signs[:, None] return u_, v_ def pca( X: NdArray, n_components: Optional[int] = None, return_svd: bool = False, ) -> _PCAResult: """Principal component analysis (PCA). Parameters ---------- X Array of shape (n_cells, n_features). n_components Number of components to keep. If None, all components are kept. return_svd If True, also return the results from SVD. Returns ------- results: _PCAData """ max_components = min(X.shape) if n_components and n_components > max_components: raise ValueError(f"n_components = {n_components} must be <= min(n_cells, n_features) = {max_components}") n_components = n_components or max_components u, s, v, variance, variance_ratio = _pca(X) # Select n_components coordinates = u[:, :n_components] * s[:n_components] components = v[:n_components] variance_ = variance[:n_components] variance_ratio_ = variance_ratio[:n_components] results = _PCAResult( coordinates=get_ndarray(coordinates), components=get_ndarray(components), variance=get_ndarray(variance_), variance_ratio=get_ndarray(variance_ratio_), svd=_SVDResult(u=get_ndarray(u), s=get_ndarray(s), v=get_ndarray(v)) if return_svd else None, ) return results @jit def _pca( X: NdArray, ) -> Tuple[NdArray, NdArray, NdArray, NdArray, NdArray]: """Principal component analysis. Parameters ---------- X Array of shape (n_cells, n_features). Returns ------- u: NdArray Left singular vectors of shape (M, K). s: NdArray Singular values of shape (K,). v: NdArray Right singular vectors of shape (K, N). variance: NdArray Array of shape (K,) containing the explained variance of each PC. variance_ratio: NdArray Array of shape (K,) containing the explained variance ratio of each PC. """ X_ = X - jnp.mean(X, axis=0) u, s, v = jnp.linalg.svd(X_, full_matrices=False) u, v = _svd_flip(u, v) variance = (s**2) / (X.shape[0] - 1) total_variance = jnp.sum(variance) variance_ratio = variance / total_variance return u, s, v, variance, variance_ratio
/scib_metrics-0.3.3-py3-none-any.whl/scib_metrics/utils/_pca.py
0.975012
0.662223
_pca.py
pypi
import logging from typing import Literal import numpy as np import pynndescent import scipy from scipy.sparse import csr_matrix, issparse logger = logging.getLogger(__name__) def _compute_transitions(X: csr_matrix, density_normalize: bool = True): """Code from scanpy. https://github.com/scverse/scanpy/blob/2e98705347ea484c36caa9ba10de1987b09081bf/scanpy/neighbors/__init__.py#L899 """ # TODO(adamgayoso): Refactor this with Jax # density normalization as of Coifman et al. (2005) # ensures that kernel matrix is independent of sampling density if density_normalize: # q[i] is an estimate for the sampling density at point i # it's also the degree of the underlying graph q = np.asarray(X.sum(axis=0)) if not issparse(X): Q = np.diag(1.0 / q) else: Q = scipy.sparse.spdiags(1.0 / q, 0, X.shape[0], X.shape[0]) K = Q @ X @ Q else: K = X # z[i] is the square root of the row sum of K z = np.sqrt(np.asarray(K.sum(axis=0))) if not issparse(K): Z = np.diag(1.0 / z) else: Z = scipy.sparse.spdiags(1.0 / z, 0, K.shape[0], K.shape[0]) transitions_sym = Z @ K @ Z return transitions_sym def _compute_eigen( transitions_sym: csr_matrix, n_comps: int = 15, sort: Literal["decrease", "increase"] = "decrease", ): """Compute eigen decomposition of transition matrix. https://github.com/scverse/scanpy/blob/2e98705347ea484c36caa9ba10de1987b09081bf/scanpy/neighbors/__init__.py """ # TODO(adamgayoso): Refactor this with Jax matrix = transitions_sym # compute the spectrum if n_comps == 0: evals, evecs = scipy.linalg.eigh(matrix) else: n_comps = min(matrix.shape[0] - 1, n_comps) # ncv = max(2 * n_comps + 1, int(np.sqrt(matrix.shape[0]))) ncv = None which = "LM" if sort == "decrease" else "SM" # it pays off to increase the stability with a bit more precision matrix = matrix.astype(np.float64) evals, evecs = scipy.sparse.linalg.eigsh(matrix, k=n_comps, which=which, ncv=ncv) evals, evecs = evals.astype(np.float32), evecs.astype(np.float32) if sort == "decrease": evals = evals[::-1] evecs = evecs[:, ::-1] return evals, evecs def _get_sparse_matrix_from_indices_distances_numpy(indices, distances, n_obs, n_neighbors): """Code from scanpy.""" n_nonzero = n_obs * n_neighbors indptr = np.arange(0, n_nonzero + 1, n_neighbors) D = csr_matrix( ( distances.copy().ravel(), # copy the data, otherwise strange behavior here indices.copy().ravel(), indptr, ), shape=(n_obs, n_obs), ) D.eliminate_zeros() D.sort_indices() return D def diffusion_nn(X: csr_matrix, k: int, n_comps: int = 100): """Diffusion-based neighbors. This function generates a nearest neighbour list from a connectivities matrix. This allows us to select a consistent number of nearest neighbors across all methods. This differs from the original scIB implemenation by leveraging diffusion maps. Here we embed the data with diffusion maps in which euclidean distance represents well the diffusion distance. We then use pynndescent to find the nearest neighbours in this embedding space. Parameters ---------- X Array of shape (n_cells, n_cells) with non-zero values representing connectivities. k Number of nearest neighbours to select. n_comps Number of components for diffusion map Returns ------- Neighbors graph """ transitions = _compute_transitions(X) evals, evecs = _compute_eigen(transitions, n_comps=n_comps) evals += 1e-8 # Avoid division by zero # Multiscale such that the number of steps t gets "integrated out" embedding = evecs scaled_evals = np.array([e if e == 1 else e / (1 - e) for e in evals]) embedding *= scaled_evals nn_obj = pynndescent.NNDescent(embedding, n_neighbors=k + 1) neigh_inds, neigh_distances = nn_obj.neighbor_graph # We purposely ignore the first neighbor as it is the cell itself # It gets added back inside the kbet internal function neigh_graph = _get_sparse_matrix_from_indices_distances_numpy( neigh_inds[:, 1:], neigh_distances[:, 1:], X.shape[0], k ) return neigh_graph
/scib_metrics-0.3.3-py3-none-any.whl/scib_metrics/utils/_diffusion_nn.py
0.674587
0.588416
_diffusion_nn.py
pypi
import warnings from typing import Optional, Tuple import jax import jax.numpy as jnp import numpy as np from chex import ArrayDevice from jax import nn from scipy.sparse import csr_matrix from sklearn.neighbors import NearestNeighbors from sklearn.utils import check_array from scib_metrics._types import ArrayLike, IntOrKey, NdArray def get_ndarray(x: ArrayDevice) -> np.ndarray: """Convert Jax device array to Numpy array.""" return np.array(jax.device_get(x)) def one_hot(y: NdArray, n_classes: Optional[int] = None) -> jnp.ndarray: """One-hot encode an array. Wrapper around :func:`~jax.nn.one_hot`. Parameters ---------- y Array of shape (n_cells,) or (n_cells, 1). n_classes Number of classes. If None, inferred from the data. Returns ------- one_hot: jnp.ndarray Array of shape (n_cells, n_classes). """ n_classes = n_classes or jnp.max(y) + 1 return nn.one_hot(jnp.ravel(y), n_classes) def validate_seed(seed: IntOrKey) -> jax.random.KeyArray: """Validate a seed and return a Jax random key.""" return jax.random.PRNGKey(seed) if isinstance(seed, int) else seed def check_square(X: ArrayLike): """Check if a matrix is square.""" if X.shape[0] != X.shape[1]: raise ValueError("X must be a square matrix") def convert_knn_graph_to_idx(X: csr_matrix) -> Tuple[np.ndarray, np.ndarray]: """Convert a kNN graph to indices and distances.""" check_array(X, accept_sparse="csr") check_square(X) n_neighbors = np.unique(X.nonzero()[0], return_counts=True)[1] if len(np.unique(n_neighbors)) > 1: raise ValueError("Each cell must have the same number of neighbors.") n_neighbors = int(np.unique(n_neighbors)[0]) with warnings.catch_warnings(): warnings.filterwarnings("ignore", message="Precomputed sparse input") nn_obj = NearestNeighbors(n_neighbors=n_neighbors, metric="precomputed").fit(X) kneighbors = nn_obj.kneighbors(X) return kneighbors
/scib_metrics-0.3.3-py3-none-any.whl/scib_metrics/utils/_utils.py
0.918441
0.585012
_utils.py
pypi
from pint.quantity import _Quantity from sci import units from pint.errors import UndefinedUnitError def check_units(value, dimension: str): """ Check if units are of a certain dimension Parameters ---------- value: `pint.quantity._Quantity` The pint :class:`pint.quantity._Quantity` to check dimemension: `str` Desired dimensionality of value Returns ------- result: `bool` If the units are of the desired dimension, returns True. Raises ------ ValueError Raised if the unit dimensions are incorrrect or the the value is not a pint unit quantity. Examples -------- >>> check_units(100 * units.millilters, '[length]^3') True Notes ----- See the pint_ documentation for more examples on dimensionality. .. pint_: https://pint.readthedocs.io/en/latest/wrapping.html#checking-dimensionality """ try: if value.check(dimension): return True else: raise ValueError(f'{value} must contain pint units of dimension {dimension}.') except AttributeError: raise ValueError(f'{value} does contain pint units.(must be of dimension {dimension}).') def filter_dict_values(input: dict, filter): ''' Filter dictionary values through a function called filter This function will look recursively through nested dictionaries and call filter(value) on all dictionary values. Parameters ---------- input: `dict` Input dictionary to filter filter: `callable`` Function for filtering dictionary values. This is called in form filter(value) Returns ------- filtered: `dict` Returns filtered dictionary ''' for k, v in input.items(): if isinstance(v, dict): input[k] = filter_dict_values(v, filter) else: input[k] = filter(v) return input def stringify(input): '''Convert pint quantities into strings Parameters ---------- input: `pint.quantity._Quantity` Pint unit quantity Returns ------- output: `str`` input as a string ''' if isinstance(input, _Quantity): return str(input) else: return input def pintify(input: str): ''' Convert strings into pint quantities Parameters ---------- input: `str` String to be converted to pint quantity Returns ------- result: `pint.quantity._Quantity` input as a pint quantity ''' try: return units(input) except UndefinedUnitError: return input def check_kwargs(key, caller, **kwargs): ''' Check if kwargs has a needed field Parameters ---------- key: `str` keyword to look for in kwargs Returns ------- value The value of the kwargs[key] params: `dict`` The params dictionary (without the returned key/value pair) Raises ------ ValueError Raised if the key does not exist in kwargs ''' if not kwargs.get(key): raise ValueError('''{} needs to be an argumentwhen instantating a {}.''' .format(key, caller)) else: value = kwargs.pop(key) return value, kwargs
/scici-0.1.0.tar.gz/scici-0.1.0/sci/utils.py
0.895451
0.620507
utils.py
pypi
from sci import units from sci.utils import check_units, filter_dict_values, stringify, check_kwargs, pintify from pint.quantity import _Quantity from interface import implements, Interface from typing import Type, Union, List class _Ref: ''' Base Class for Refs Refs are physical containers (e.g., syringes, microplates). This class should not be used directly. Instead, it should be inherited by another class. Parameters ---------- name: `str` Reference name for the ref (e.g., 0.5M NaOH solution) **params The type parameter must be passed in as a keyword argument to all refs. - ``type``: Ref type ''' def __init__(self, name: str, **params): self.type, self.params = check_kwargs('type', 'Ref', **dict(params)) self.name = name def to_dict(self): ''' Convert ref to a dictionary ready for json serialization ''' str_params = filter_dict_values(self.params, stringify) return {"type": self.type, "name": self.name, "params": str_params} def __repr__(self): return f"{self.name} ({self.type.lower()})" #Create interface for refs _RefInterface = Interface.from_class(_Ref, ['__init__']) ref_type = Type[_Ref] def ref_from_dict(input: dict): ''' Create a instance of a ref from a dictionary Parameters ---------- input: `dict` Input dictionary for the ref Returns ------- ref: `_Ref` One of the subclasses of ref (e.g., Syringe) Raises ------ ValueError Raised if the "type" field not passed in input or if the passed type is not a valid ref class Examples -------- >>> input = {'type': 'Syringe', 'name': '0.5M Citric Acid', 'params': {'liquid_volume': '10 millilters'}} >>> my_syringe = from_dict(input) See also -------- _Ref.to_dict ''' #Check if "type" field in input if "type" not in input: raise ValueError(f"The 'type' field was not passed, which is required.") #Error handling when checking issubclass def check_subclass(subclass, superclass): try: if issubclass(subclass, superclass): return True except TypeError: return False #Find subclasses of _Ref subclasses = [cls.__name__ for key, cls in list(globals().items()) if check_subclass(cls, _Ref)] subclasses.remove(_Ref.__name__) #Convert dimensional values to pint quantities params = filter_dict_values(input["params"], pintify) #Create instance of class ref_type = input.get("type") ref_name = input.pop("name") if ref_type in subclasses: ref = globals()[ref_type] new_ref = ref(name=ref_name, **params) return new_ref else: raise ValueError(f"sci saying hi: {type} is not one of the available refs.") class Syringe(_Ref, implements(_RefInterface),): ''' Ref for syringes Parameters ---------- name: `str` Reference name for the syringe (e.g., 0.5M NaOH solution) **kwargs - ``liquid_volume``: Volume of liquid in the syringe, not the total volume of syringe (`pint.quantity. _Quantity`) ''' def __init__(self, name: str, **params): #Make sure liquid volume is keyword arg and that units are correct liquid_volume, _ = check_kwargs('liquid_volume', 'Syringe', **params) check_units(liquid_volume, '[length]^3') #Add type to params dictionary params.update({'type': 'Syringe'}) #Inhert superclass __init__ method super().__init__(name, **params)
/scici-0.1.0.tar.gz/scici-0.1.0/sci/refs.py
0.881538
0.32118
refs.py
pypi
Copyright (c) 2014 `Science Automation Inc. <http://www.scivm.com>`_. All rights reserved. email: [email protected] Copyright (c) 2009 `PiCloud, Inc. <http://www.picloud.com>`_. All rights reserved. email: [email protected] The cloud package is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This package is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this package; if not, see http://www.gnu.org/licenses/lgpl-2.1.html """ from scicloud import CloudTimeoutError from . import _getcloud import multiprocessing class AsyncResult(object): """Result object that emulates multiprocessing.pool.AsyncResult""" _jid = None #internal - jid (or jid list) associated with this result def __init__(self, jid): self._jid = jid def get(self, timeout=None): """ Return result when it arrives. If timeout is not None and none arrives, raise multiprocessing.TimeoutError in *timeout* seconds """ return _getcloud().result(self._jid) def wait(self, timeout=None): """ Wait until result is available or *timeout* seconds pass """ try: _getcloud().join(self._jid) except CloudTimeoutError: pass def ready(self): """Returns true if the job finished (done or errored)""" c = _getcloud() status = c.status(self._jid) if not hasattr(status, '__iter__'): return status in c.finished_statuses else: for s in status: if s not in c.finished_statuses: return False return True def successful(self): """Returns true if job finished successfully. Asserts that job has finished""" assert(self.ready()) status = _getcloud().status(self._jid) if not hasattr(status, '__iter__'): return status == 'done' else: for s in status: if s != 'done': return False return True def apply(func, args=()): """ Equivalent to Multiprocessing apply. keyword arguments are not supported """ c = _getcloud() jid = c.call(func, *args) return c.result(jid) def apply_async(func, args=(), callback=None): """ Equivalent to Multiprocessing apply_async keyword arguments are not supported callback is a list of functions that should be run on the callee's computer once this job finishes successfully. Each callback will be invoked with one argument - the jid of the complete job """ c = _getcloud() jid = c.call(func, _callback = callback, *args) return AsyncResult(jid) def map(func, iterable, chunksize=None): """ Equivalent to Multiprocessing map chunksize is not used here """ c = _getcloud() jids = c.map(func, iterable) return c.result(jids) def map_async(func, iterable, chunksize=None): """ Equivalent to Multiprocessing map_async chunksize is not used here """ c = _getcloud() jids = c.map(func, iterable) return AsyncResult(jids) def imap(func, iterable, chunksize = None): """ Equivalent to Multiprocessing imap chunksize is used only to control the cloud.iresult stage """ c = _getcloud() jids = c.map(func, iterable) return c.iresult(jids,chunksize) def imap_unordered(func, iterable, chunksize = None): """ Same as imap """ return imap(func, iterable, chunksize)
/scicloud-3.0.4.tar.gz/scicloud-3.0.4/src/pool_interface.py
0.803212
0.152001
pool_interface.py
pypi
from ..cloud import CloudException class CloudConnection(object): """Abstract connection class to deal with low-level communication of cloud adapter""" _isopen = False _adapter = None @property def opened(self): """Returns whether the connection is open""" return self._isopen def open(self): """called when this connection is to be used""" if self._adapter and not self._adapter.opened: self._adapter.open() self._isopen = True def close(self): """called when this connection is no longer needed""" if not self.opened: raise CloudException("%s: Cannot close a closed connection", str(self)) self._isopen = False @property def adapter(self): return self._adapter def needs_restart(self, **kwargs): """Called to determine if the cloud must be restarted due to different connection parameters""" return False def job_add(self, params, logdata = None): raise NotImplementedError def jobs_join(self, jids, timeout = None): """ Allows connection to manage joining If connection manages joining, it should return a list of statuses describing the finished job Else, return False """ return False def jobs_map(self, params, mapargs, mapkwargs = None, logdata = None): raise NotImplementedError def jobs_result(self, jids): raise NotImplementedError def jobs_kill(self, jids): raise NotImplementedError def jobs_delete(self, jids): raise NotImplementedError def jobs_info(self, jids, info_requested): raise NotImplementedError def is_simulated(self): raise NotImplementedError def connection_info(self): return {'opened': self.opened, 'connection_type' :None} def modules_check(self, modules): pass def modules_add(self, modules): pass def packages_list(self): """ Get list of packages from server """ return [] def force_adapter_report(self): """ Should the SerializationReport for the SerializationAdapter be coerced to be instantiated? """ return False def report_name(self): raise NotImplementedError def get_report_dir(self): raise TypeError('get_report_dir is only valid on connection hooks')
/scicloud-3.0.4.tar.gz/scicloud-3.0.4/src/transport/connection.py
0.743447
0.153042
connection.py
pypi
Why SCICO? ========== Advantages of JAX-based Design ------------------------------ The vast majority of scientific computing packages in Python are based on `NumPy <https://numpy.org/>`__ and `SciPy <https://scipy.org/>`__. SCICO, in contrast, is based on `JAX <https://jax.readthedocs.io/en/latest/>`__, which provides most of the same features, but with the addition of automatic differentiation, GPU support, and just-in-time (JIT) compilation. (The availability of these features in SCICO is subject to some :ref:`caveats <non_jax_dep>`.) SCICO users and developers are advised to become familiar with the `differences between JAX and NumPy. <https://jax.readthedocs.io/en/latest/notebooks/thinking_in_jax.html>`_. While recent advances in automatic differentiation have primarily been driven by its important role in deep learning, it is also invaluable in a functional minimization framework such as SCICO. The most obvious advantage is allowing the use of gradient-based minimization methods without the need for tedious mathematical derivation of an expression for the gradient. Equally valuable, though, is the ability to automatically compute the adjoint operator of a linear operator, the manual derivation of which is often time-consuming. GPU support and JIT compilation both offer the potential for significant code acceleration, with the speed gains that can be obtained depending on the algorithm/function to be executed. In many cases, a speed improvement by an order of magnitude or more can be obtained by running the same code on a GPU rather than a CPU, and similar speed gains can sometimes also be obtained via JIT compilation. The figure below shows timing results obtained on a compute server with an Intel Xeon Gold 6230 CPU and NVIDIA GeForce RTX 2080 Ti GPU. It is interesting to note that for :class:`.FiniteDifference` the GPU provides no acceleration, while JIT provides more than an order of magnitude of speed improvement on both CPU and GPU. For :class:`.DFT` and :class:`.Convolve`, significant JIT acceleration is limited to the GPU, which also provides significant acceleration over the CPU. .. image:: /figures/jax-timing.png :align: center :width: 95% :alt: Timing results for SCICO operators on CPU and GPU with and without JIT Related Packages ---------------- Many elements of SCICO are partially available in other packages. We briefly review them here, highlighting some of the main differences with SCICO. `GlobalBioIm <https://biomedical-imaging-group.github.io/GlobalBioIm/>`__ is similar in structure to SCICO (and a major inspiration for SCICO), providing linear operators and solvers for inverse problems in imaging. However, it is written in MATLAB and is thus not usable in a completely free environment. It also lacks the automatic adjoint calculation and simple GPU support offered by SCICO. `PyLops <https://pylops.readthedocs.io>`__ provides a linear operator class and many built-in linear operators. These operators are compatible with many `SciPy <https://scipy.org/>`__ solvers. GPU support is provided via `CuPy <https://cupy.dev>`__, which has the disadvantage that switching for a CPU to GPU requires code changes, unlike SCICO and `JAX <https://jax.readthedocs.io/en/latest/>`__. SCICO is more focused on computational imaging that PyLops and has several specialized operators that PyLops does not. `Pycsou <https://matthieumeo.github.io/pycsou/html/index>`__, like SCICO, is a Python project inspired by GlobalBioIm. Since it is based on PyLops, it shares the disadvantages with respect to SCICO of that project. `ODL <https://odlgroup.github.io/odl/>`__ provides a variety of operators and related infrastructure for prototyping of inverse problems. It is built on top of `NumPy <https://numpy.org/>`__/`SciPy <https://scipy.org/>`__, and does not support any of the advanced features of `JAX <https://jax.readthedocs.io/en/latest/>`__. `ProxImaL <http://www.proximal-lang.org/en/latest/>`__ is a Python package for image optimization problems. Like SCICO and many of the other projects listed here, problems are specified by combining objects representing, operators, functionals, and solvers. It does not support any of the advanced features of `JAX <https://jax.readthedocs.io/en/latest/>`__. `ProxMin <https://github.com/pmelchior/proxmin>`__ provides a set of proximal optimization algorithms for minimizing non-smooth functionals. It is built on top of `NumPy <https://numpy.org/>`__/`SciPy <https://scipy.org/>`__, and does not support any of the advanced features of `JAX <https://jax.readthedocs.io/en/latest/>`__ (however, an open issue suggests that `JAX <https://jax.readthedocs.io/en/latest/>`__ compatibility is planned). `CVXPY <https://www.cvxpy.org>`__ provides a flexible language for defining optimization problems and a wide selection of solvers, but has limited support for matrix-free methods. Other related projects that may be of interest include: - `ToMoBAR <https://github.com/dkazanc/ToMoBAR>`__ - `CCPi-Regularisation Toolkit <https://github.com/vais-ral/CCPi-Regularisation-Toolkit>`__ - `SPORCO <https://github.com/lanl/sporco>`__ - `SigPy <https://github.com/mikgroup/sigpy>`__ - `MIRT <https://github.com/JeffFessler/MIRT.jl>`__ - `BART <http://mrirecon.github.io/bart/>`__
/scico-0.0.4.tar.gz/scico-0.0.4/docs/source/advantages.rst
0.940463
0.909947
advantages.rst
pypi
import importlib import inspect import os import pkgutil import sys from glob import glob from runpy import run_path def run_conf_files(vardict=None, path=None): """Execute Python files in conf directory. Args: vardict: Dictionary into which variable names should be inserted. Defaults to empty dict. path: Path to conf directory. Defaults to path to this module. Returns: A dict populated with variables defined during execution of the configuration files. """ if vardict is None: vardict = {} if path is None: path = os.path.dirname(__file__) files = os.path.join(path, "conf", "*.py") for f in sorted(glob(files)): conf = run_path(f, init_globals=vardict) for k, v in conf.items(): if len(k) >= 4 and k[0:2] == "__" and k[-2:] == "__": # ignore __<name>__ variables continue vardict[k] = v return vardict def package_classes(package): """Get a list of classes in a package. Return a list of qualified names of classes in the specified package. Classes in modules with names beginning with an "_" are omitted, as are classes whose internal module name record is not the same as the module in which they are found (i.e. indicating that they have been imported from elsewhere). Args: package: Reference to package for which classes are to be listed (not package name string). Returns: A list of qualified names of classes in the specified package. """ classes = [] # Iterate over modules in package for importer, modname, _ in pkgutil.walk_packages( path=package.__path__, prefix=(package.__name__ + "."), onerror=lambda x: None ): # Skip modules whose names begin with a "_" if modname.split(".")[-1][0] == "_": continue importlib.import_module(modname) # Iterate over module members for name, obj in inspect.getmembers(sys.modules[modname]): if inspect.isclass(obj): # Get internal module name of class for comparison with working module name try: objmodname = getattr(sys.modules[modname], obj.__name__).__module__ except Exception: objmodname = None if objmodname == modname: classes.append(modname + "." + obj.__name__) return classes def get_text_indentation(text, skiplines=0): """Compute the leading whitespace indentation in a block of text. Args: text: A block of text as a string. Returns: Indentation length. """ min_indent = len(text) lines = text.splitlines() if len(lines) > skiplines: lines = lines[skiplines:] else: return None for line in lines: if len(line) > 0: indent = len(line) - len(line.lstrip()) if indent < min_indent: min_indent = indent return min_indent def add_text_indentation(text, indent): """Insert leading whitespace into a block of text. Args: text: A block of text as a string. indent: Number of leading spaces to insert on each line. Returns: Text with additional indentation. """ lines = text.splitlines() for n, line in enumerate(lines): if len(line) > 0: lines[n] = (" " * indent) + line return "\n".join(lines) def insert_inheritance_diagram(clsqname, parts=None, default_nparts=2): """Insert an inheritance diagram into a class docstring. No action is taken for classes without a base clase, and for classes without a docstring. Args: clsqname: Qualified name (i.e. including module name path) of class. parts: A dict mapping qualified class names to custom values for the ":parts:" directive. default_nparts: Default value for the ":parts:" directive. """ # Extract module name and class name from qualified class name clspth = clsqname.split(".") modname = ".".join(clspth[0:-1]) clsname = clspth[-1] # Get reference to class cls = getattr(sys.modules[modname], clsname) # Return immediately if class has no base classes if getattr(cls, "__bases__") == (object,): return # Get current docstring docstr = getattr(cls, "__doc__") # Return immediately if class has no docstring if docstr is None: return # Use class-specific parts or default parts directive value if parts and clsqname in parts: nparts = parts[clsqname] else: nparts = default_nparts # Split docstring into individual lines lines = docstr.splitlines() # Return immediately if there are no lines if not lines: return # Cut leading whitespace lines n = 0 for n, line in enumerate(lines): if line != "": break lines = lines[n:] # Define inheritance diagram insertion text idstr = f""" .. inheritance-diagram:: {clsname} :parts: {nparts} """ docstr_indent = get_text_indentation(docstr, skiplines=1) if docstr_indent is not None and docstr_indent > 4: idstr = add_text_indentation(idstr, docstr_indent - 4) # Insert inheritance diagram after summary line and whitespace line following it lines.insert(2, idstr) # Construct new docstring and attach it to the class extdocstr = "\n".join(lines) setattr(cls, "__doc__", extdocstr)
/scico-0.0.4.tar.gz/scico-0.0.4/docs/source/docsutil.py
0.567457
0.2709
docsutil.py
pypi
# Usage Examples ## Organized by Application ### Computed Tomography > - [TV-Regularized Abel Inversion](ct_abel_tv_admm.ipynb) > - [Parameter Tuning for TV-Regularized Abel > Inversion](ct_abel_tv_admm_tune.ipynb) > - [CT Reconstruction with CG and PCG](ct_astra_noreg_pcg.ipynb) > - [3D TV-Regularized Sparse-View CT > Reconstruction](ct_astra_3d_tv_admm.ipynb) > - [TV-Regularized Sparse-View CT > Reconstruction](ct_astra_tv_admm.ipynb) > - [TV-Regularized Low-Dose CT > Reconstruction](ct_astra_weighted_tv_admm.ipynb) > - [TV-Regularized CT Reconstruction (Multiple > Algorithms)](ct_svmbir_tv_multi.ipynb) > - [PPP (with BM3D) CT Reconstruction (ADMM with CG Subproblem > Solver)](ct_svmbir_ppp_bm3d_admm_cg.ipynb) > - [PPP (with BM3D) CT Reconstruction (ADMM with Fast SVMBIR > Prox)](ct_svmbir_ppp_bm3d_admm_prox.ipynb) > - [PPP (with BM3D) Fan-Beam CT > Reconstruction](ct_fan_svmbir_ppp_bm3d_admm_prox.ipynb) > - [CT Training and Reconstructions with > MoDL](ct_astra_modl_train_foam2.ipynb) > - [CT Training and Reconstructions with > ODP](ct_astra_odp_train_foam2.ipynb) > - [CT Training and Reconstructions with > UNet](ct_astra_unet_train_foam2.ipynb) ### Deconvolution > - [Circulant Blur Image Deconvolution with TV > Regularization](deconv_circ_tv_admm.ipynb) > - [Image Deconvolution with TV Regularization (ADMM > Solver)](deconv_tv_admm.ipynb) > - [Image Deconvolution with TV Regularization (Proximal ADMM > Solver)](deconv_tv_padmm.ipynb) > - [Parameter Tuning for Image Deconvolution with TV Regularization > (ADMM Solver)](deconv_tv_admm_tune.ipynb) > - [Deconvolution Microscopy (Single > Channel)](deconv_microscopy_tv_admm.ipynb) > - [Deconvolution Microscopy (All > Channels)](deconv_microscopy_allchn_tv_admm.ipynb) > - [PPP (with BM3D) Image Deconvolution (ADMM > Solver)](deconv_ppp_bm3d_admm.ipynb) > - [PPP (with BM3D) Image Deconvolution (APGM > Solver)](deconv_ppp_bm3d_pgm.ipynb) > - [PPP (with DnCNN) Image Deconvolution (ADMM > Solver)](deconv_ppp_dncnn_admm.ipynb) > - [PPP (with DnCNN) Image Deconvolution (Proximal ADMM > Solver)](deconv_ppp_dncnn_padmm.ipynb) > - [PPP (with BM4D) Volume Deconvolution](deconv_ppp_bm4d_admm.ipynb) > - [Deconvolution Training and Reconstructions with > MoDL](deconv_modl_train_foam1.ipynb) > - [Deconvolution Training and Reconstructions with > ODP](deconv_odp_train_foam1.ipynb) ### Sparse Coding > - [Non-Negative Basis Pursuit DeNoising > (ADMM)](sparsecode_admm.ipynb) > - [Convolutional Sparse Coding (ADMM)](sparsecode_conv_admm.ipynb) > - [Convolutional Sparse Coding with Mask Decoupling > (ADMM)](sparsecode_conv_md_admm.ipynb) > - [Basis Pursuit DeNoising (APGM)](sparsecode_pgm.ipynb) > - [Non-negative Poisson Loss Reconstruction > (APGM)](sparsecode_poisson_pgm.ipynb) ### Miscellaneous > - [PPP (with BM3D) Image Demosaicing](demosaic_ppp_bm3d_admm.ipynb) > - [PPP (with DnCNN) Image > Superresolution](superres_ppp_dncnn_admm.ipynb) > - [ℓ1 Total Variation Denoising](denoise_l1tv_admm.ipynb) > - [Total Variation Denoising (ADMM)](denoise_tv_admm.ipynb) > - [Total Variation Denoising with Constraint > (APGM)](denoise_tv_pgm.ipynb) > - [Comparison of Optimization Algorithms for Total Variation > Denoising](denoise_tv_multi.ipynb) > - [Complex Total Variation Denoising with NLPADMM > Solver](denoise_cplx_tv_nlpadmm.ipynb) > - [Complex Total Variation Denoising with PDHG > Solver](denoise_cplx_tv_pdhg.ipynb) > - [Comparison of DnCNN Variants for Image > Denoising](denoise_dncnn_universal.ipynb) > - [TV-Regularized 3D DiffuserCam > Reconstruction](diffusercam_tv_admm.ipynb) > - [Video Decomposition via Robust PCA](video_rpca_admm.ipynb) > - [CT Data Generation for NN Training](ct_astra_datagen_foam2.ipynb) > - [Blurred Data Generation (Natural Images) for NN > Training](deconv_datagen_bsds.ipynb) > - [Blurred Data Generation (Foams) for NN > Training](deconv_datagen_foam1.ipynb) > - [Noisy Data Generation for NN > Training](denoise_datagen_bsds.ipynb) ## Organized by Regularization ### Plug and Play Priors > - [PPP (with BM3D) CT Reconstruction (ADMM with CG Subproblem > Solver)](ct_svmbir_ppp_bm3d_admm_cg.ipynb) > - [PPP (with BM3D) CT Reconstruction (ADMM with Fast SVMBIR > Prox)](ct_svmbir_ppp_bm3d_admm_prox.ipynb) > - [PPP (with BM3D) Fan-Beam CT > Reconstruction](ct_fan_svmbir_ppp_bm3d_admm_prox.ipynb) > - [PPP (with BM3D) Image Deconvolution (ADMM > Solver)](deconv_ppp_bm3d_admm.ipynb) > - [PPP (with BM3D) Image Deconvolution (APGM > Solver)](deconv_ppp_bm3d_pgm.ipynb) > - [PPP (with DnCNN) Image Deconvolution (ADMM > Solver)](deconv_ppp_dncnn_admm.ipynb) > - [PPP (with DnCNN) Image Deconvolution (Proximal ADMM > Solver)](deconv_ppp_dncnn_padmm.ipynb) > - [PPP (with BM4D) Volume Deconvolution](deconv_ppp_bm4d_admm.ipynb) > - [PPP (with BM3D) Image Demosaicing](demosaic_ppp_bm3d_admm.ipynb) > - [PPP (with DnCNN) Image > Superresolution](superres_ppp_dncnn_admm.ipynb) ### Total Variation > - [TV-Regularized Abel Inversion](ct_abel_tv_admm.ipynb) > - [Parameter Tuning for TV-Regularized Abel > Inversion](ct_abel_tv_admm_tune.ipynb) > - [TV-Regularized Sparse-View CT > Reconstruction](ct_astra_tv_admm.ipynb) > - [3D TV-Regularized Sparse-View CT > Reconstruction](ct_astra_3d_tv_admm.ipynb) > - [TV-Regularized Low-Dose CT > Reconstruction](ct_astra_weighted_tv_admm.ipynb) > - [TV-Regularized CT Reconstruction (Multiple > Algorithms)](ct_svmbir_tv_multi.ipynb) > - [Circulant Blur Image Deconvolution with TV > Regularization](deconv_circ_tv_admm.ipynb) > - [Image Deconvolution with TV Regularization (ADMM > Solver)](deconv_tv_admm.ipynb) > - [Parameter Tuning for Image Deconvolution with TV Regularization > (ADMM Solver)](deconv_tv_admm_tune.ipynb) > - [Image Deconvolution with TV Regularization (Proximal ADMM > Solver)](deconv_tv_padmm.ipynb) > - [Deconvolution Microscopy (Single > Channel)](deconv_microscopy_tv_admm.ipynb) > - [Deconvolution Microscopy (All > Channels)](deconv_microscopy_allchn_tv_admm.ipynb) > - [ℓ1 Total Variation Denoising](denoise_l1tv_admm.ipynb) > - [Total Variation Denoising (ADMM)](denoise_tv_admm.ipynb) > - [Total Variation Denoising with Constraint > (APGM)](denoise_tv_pgm.ipynb) > - [Comparison of Optimization Algorithms for Total Variation > Denoising](denoise_tv_multi.ipynb) > - [Complex Total Variation Denoising with NLPADMM > Solver](denoise_cplx_tv_nlpadmm.ipynb) > - [Complex Total Variation Denoising with PDHG > Solver](denoise_cplx_tv_pdhg.ipynb) > - [TV-Regularized 3D DiffuserCam > Reconstruction](diffusercam_tv_admm.ipynb) ### Sparsity > - [TV-Regularized 3D DiffuserCam > Reconstruction](diffusercam_tv_admm.ipynb) > - [Non-Negative Basis Pursuit DeNoising > (ADMM)](sparsecode_admm.ipynb) > - [Convolutional Sparse Coding (ADMM)](sparsecode_conv_admm.ipynb) > - [Convolutional Sparse Coding with Mask Decoupling > (ADMM)](sparsecode_conv_md_admm.ipynb) > - [Basis Pursuit DeNoising (APGM)](sparsecode_pgm.ipynb) > - [Non-negative Poisson Loss Reconstruction > (APGM)](sparsecode_poisson_pgm.ipynb) > - [Video Decomposition via Robust PCA](video_rpca_admm.ipynb) ### Machine Learning > - [CT Data Generation for NN Training](ct_astra_datagen_foam2.ipynb) > - [CT Training and Reconstructions with > MoDL](ct_astra_modl_train_foam2.ipynb) > - [CT Training and Reconstructions with > ODP](ct_astra_odp_train_foam2.ipynb) > - [CT Training and Reconstructions with > UNet](ct_astra_unet_train_foam2.ipynb) > - [Blurred Data Generation (Natural Images) for NN > Training](deconv_datagen_bsds.ipynb) > - [Blurred Data Generation (Foams) for NN > Training](deconv_datagen_foam1.ipynb) > - [Deconvolution Training and Reconstructions with > MoDL](deconv_modl_train_foam1.ipynb) > - [Deconvolution Training and Reconstructions with > ODP](deconv_odp_train_foam1.ipynb) > - [Noisy Data Generation for NN > Training](denoise_datagen_bsds.ipynb) > - [Training of DnCNN for Denoising](denoise_dncnn_train_bsds.ipynb) > - [Comparison of DnCNN Variants for Image > Denoising](denoise_dncnn_universal.ipynb) ## Organized by Optimization Algorithm ### ADMM > - [TV-Regularized Abel Inversion](ct_abel_tv_admm.ipynb) > - [Parameter Tuning for TV-Regularized Abel > Inversion](ct_abel_tv_admm_tune.ipynb) > - [TV-Regularized Sparse-View CT > Reconstruction](ct_astra_tv_admm.ipynb) > - [3D TV-Regularized Sparse-View CT > Reconstruction](ct_astra_3d_tv_admm.ipynb) > - [TV-Regularized Low-Dose CT > Reconstruction](ct_astra_weighted_tv_admm.ipynb) > - [TV-Regularized CT Reconstruction (Multiple > Algorithms)](ct_svmbir_tv_multi.ipynb) > - [PPP (with BM3D) CT Reconstruction (ADMM with CG Subproblem > Solver)](ct_svmbir_ppp_bm3d_admm_cg.ipynb) > - [PPP (with BM3D) CT Reconstruction (ADMM with Fast SVMBIR > Prox)](ct_svmbir_ppp_bm3d_admm_prox.ipynb) > - [PPP (with BM3D) Fan-Beam CT > Reconstruction](ct_fan_svmbir_ppp_bm3d_admm_prox.ipynb) > - [Circulant Blur Image Deconvolution with TV > Regularization](deconv_circ_tv_admm.ipynb) > - [Image Deconvolution with TV Regularization (ADMM > Solver)](deconv_tv_admm.ipynb) > - [Parameter Tuning for Image Deconvolution with TV Regularization > (ADMM Solver)](deconv_tv_admm_tune.ipynb) > - [Deconvolution Microscopy (Single > Channel)](deconv_microscopy_tv_admm.ipynb) > - [Deconvolution Microscopy (All > Channels)](deconv_microscopy_allchn_tv_admm.ipynb) > - [PPP (with BM3D) Image Deconvolution (ADMM > Solver)](deconv_ppp_bm3d_admm.ipynb) > - [PPP (with DnCNN) Image Deconvolution (ADMM > Solver)](deconv_ppp_dncnn_admm.ipynb) > - [PPP (with BM4D) Volume Deconvolution](deconv_ppp_bm4d_admm.ipynb) > - [TV-Regularized 3D DiffuserCam > Reconstruction](diffusercam_tv_admm.ipynb) > - [Non-Negative Basis Pursuit DeNoising > (ADMM)](sparsecode_admm.ipynb) > - [Convolutional Sparse Coding (ADMM)](sparsecode_conv_admm.ipynb) > - [Convolutional Sparse Coding with Mask Decoupling > (ADMM)](sparsecode_conv_md_admm.ipynb) > - [PPP (with BM3D) Image Demosaicing](demosaic_ppp_bm3d_admm.ipynb) > - [PPP (with DnCNN) Image > Superresolution](superres_ppp_dncnn_admm.ipynb) > - [ℓ1 Total Variation Denoising](denoise_l1tv_admm.ipynb) > - [Total Variation Denoising (ADMM)](denoise_tv_admm.ipynb) > - [Comparison of Optimization Algorithms for Total Variation > Denoising](denoise_tv_multi.ipynb) > - [Video Decomposition via Robust PCA](video_rpca_admm.ipynb) ### Linearized ADMM > - [TV-Regularized CT Reconstruction (Multiple > Algorithms)](ct_svmbir_tv_multi.ipynb) > - [Comparison of Optimization Algorithms for Total Variation > Denoising](denoise_tv_multi.ipynb) ### Proximal ADMM > - [Image Deconvolution with TV Regularization (Proximal ADMM > Solver)](deconv_tv_padmm.ipynb) > - [Comparison of Optimization Algorithms for Total Variation > Denoising](denoise_tv_multi.ipynb) > - [Complex Total Variation Denoising with NLPADMM > Solver](denoise_cplx_tv_nlpadmm.ipynb) > - [PPP (with DnCNN) Image Deconvolution (Proximal ADMM > Solver)](deconv_ppp_dncnn_padmm.ipynb) ### Non-linear Proximal ADMM > - [Complex Total Variation Denoising with NLPADMM > Solver](denoise_cplx_tv_nlpadmm.ipynb) ### PDHG > - [TV-Regularized CT Reconstruction (Multiple > Algorithms)](ct_svmbir_tv_multi.ipynb) > - [Comparison of Optimization Algorithms for Total Variation > Denoising](denoise_tv_multi.ipynb) > - [Complex Total Variation Denoising with PDHG > Solver](denoise_cplx_tv_pdhg.ipynb) ### PGM > - [PPP (with BM3D) Image Deconvolution (APGM > Solver)](deconv_ppp_bm3d_pgm.ipynb) > - [Basis Pursuit DeNoising (APGM)](sparsecode_pgm.ipynb) > - [Non-negative Poisson Loss Reconstruction > (APGM)](sparsecode_poisson_pgm.ipynb) > - [Total Variation Denoising with Constraint > (APGM)](denoise_tv_pgm.ipynb) ### PCG > - [CT Reconstruction with CG and PCG](ct_astra_noreg_pcg.ipynb)
/scico-0.0.4.tar.gz/scico-0.0.4/docs/source/examples/index.ipynb
0.708818
0.633694
index.ipynb
pypi
Noisy Data Generation for NN Training ===================================== This example demonstrates how to generate noisy image data for training neural network models for denoising. The original images are part of the [BSDS500 dataset](http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/BSR/) provided by the Berkeley Segmentation Dataset and Benchmark project. ``` import numpy as np from scico import plot from scico.flax.examples import load_image_data plot.config_notebook_plotting() ``` Read data from cache or generate if not available. ``` size = 40 # patch size train_nimg = 400 # number of training images test_nimg = 64 # number of testing images nimg = train_nimg + test_nimg gray = True # use gray scale images data_mode = "dn" # Denoising problem noise_level = 0.1 # Standard deviation of noise noise_range = False # Use fixed noise level stride = 23 # Stride to sample multiple patches from each image train_ds, test_ds = load_image_data( train_nimg, test_nimg, size, gray, data_mode, verbose=True, noise_level=noise_level, noise_range=noise_range, stride=stride, ) ``` Plot randomly selected sample. Note that patches have small sizes, thus, plots may correspond to unidentifiable fragments. ``` indx_tr = np.random.randint(0, train_nimg) indx_te = np.random.randint(0, test_nimg) fig, axes = plot.subplots(nrows=2, ncols=2, figsize=(7, 7)) plot.imview( train_ds["label"][indx_tr, ..., 0], title="Ground truth - Training Sample", fig=fig, ax=axes[0, 0], ) plot.imview( train_ds["image"][indx_tr, ..., 0], title="Noisy Image - Training Sample", fig=fig, ax=axes[0, 1], ) plot.imview( test_ds["label"][indx_te, ..., 0], title="Ground truth - Testing Sample", fig=fig, ax=axes[1, 0], ) plot.imview( test_ds["image"][indx_te, ..., 0], title="Noisy Image - Testing Sample", fig=fig, ax=axes[1, 1] ) fig.suptitle(r"Training and Testing samples") fig.tight_layout() fig.colorbar( axes[0, 1].get_images()[0], ax=axes, shrink=0.5, pad=0.05, ) fig.show() ```
/scico-0.0.4.tar.gz/scico-0.0.4/docs/source/examples/denoise_datagen_bsds.ipynb
0.696268
0.97066
denoise_datagen_bsds.ipynb
pypi
Non-Negative Basis Pursuit DeNoising (ADMM) =========================================== This example demonstrates the solution of a non-negative sparse coding problem $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - D \mathbf{x} \|_2^2 + \lambda \| \mathbf{x} \|_1 + I(\mathbf{x} \geq 0) \;,$$ where $D$ the dictionary, $\mathbf{y}$ the signal to be represented, $\mathbf{x}$ is the sparse representation, and $I(\mathbf{x} \geq 0)$ is the non-negative indicator. ``` import numpy as np import jax from scico import functional, linop, loss, plot from scico.optimize.admm import ADMM, MatrixSubproblemSolver from scico.util import device_info plot.config_notebook_plotting() ``` Create random dictionary, reference random sparse representation, and test signal consisting of the synthesis of the reference sparse representation. ``` m = 32 # signal size n = 128 # dictionary size s = 10 # sparsity level np.random.seed(1) D = np.random.randn(m, n) D = D / np.linalg.norm(D, axis=0, keepdims=True) # normalize dictionary xt = np.zeros(n) # true signal idx = np.random.randint(low=0, high=n, size=s) # support of xt xt[idx] = np.random.rand(s) y = D @ xt + 5e-2 * np.random.randn(m) # synthetic signal xt = jax.device_put(xt) # convert to jax array, push to GPU y = jax.device_put(y) # convert to jax array, push to GPU ``` Set up the forward operator and ADMM solver object. ``` lmbda = 1e-1 A = linop.MatrixOperator(D) f = loss.SquaredL2Loss(y=y, A=A) g_list = [lmbda * functional.L1Norm(), functional.NonNegativeIndicator()] C_list = [linop.Identity((n)), linop.Identity((n))] rho_list = [1.0, 1.0] maxiter = 100 # number of ADMM iterations solver = ADMM( f=f, g_list=g_list, C_list=C_list, rho_list=rho_list, x0=A.adj(y), maxiter=maxiter, subproblem_solver=MatrixSubproblemSolver(), itstat_options={"display": True, "period": 10}, ) ``` Run the solver. ``` print(f"Solving on {device_info()}\n") x = solver.solve() ``` Plot the recovered coefficients and signal. ``` fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 5)) plot.plot( np.vstack((xt, solver.x)).T, title="Coefficients", lgnd=("Ground Truth", "Recovered"), fig=fig, ax=ax[0], ) plot.plot( np.vstack((D @ xt, y, D @ solver.x)).T, title="Signal", lgnd=("Ground Truth", "Noisy", "Recovered"), fig=fig, ax=ax[1], ) fig.show() ```
/scico-0.0.4.tar.gz/scico-0.0.4/docs/source/examples/sparsecode_admm.ipynb
0.626467
0.944944
sparsecode_admm.ipynb
pypi
Parameter Tuning for Image Deconvolution with TV Regularization (ADMM Solver) ============================================================================= This example demonstrates the use of [scico.ray.tune](../_autosummary/scico.ray.tune.rst) to tune parameters for the companion [example script](deconv_tv_admm.rst). The `ray.tune` function API is used in this example. This script is hard-coded to run on CPU only to avoid the large number of warnings that are emitted when GPU resources are requested but not available, and due to the difficulty of supressing these warnings in a way that does not force use of the CPU only. To enable GPU usage, comment out the `os.environ` statements near the beginning of the script, and change the value of the "gpu" entry in the `resources` dict from 0 to 1. Note that two environment variables are set to suppress the warnings because `JAX_PLATFORMS` was intended to replace `JAX_PLATFORM_NAME` but this change has yet to be correctly implemented (see [google/jax#6805](https://github.com/google/jax/issues/6805) and [google/jax#10272](https://github.com/google/jax/pull/10272)). ``` # isort: off import os os.environ["JAX_PLATFORM_NAME"] = "cpu" os.environ["JAX_PLATFORMS"] = "cpu" import jax from xdesign import SiemensStar, discrete_phantom import scico.numpy as snp import scico.random from scico import functional, linop, loss, metric, plot from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.ray import report, tune plot.config_notebook_plotting() ``` Create a ground truth image. ``` phantom = SiemensStar(32) N = 256 # image size x_gt = snp.pad(discrete_phantom(phantom, N - 16), 8) ``` Set up the forward operator and create a test signal consisting of a blurred signal with additive Gaussian noise. ``` n = 5 # convolution kernel size σ = 20.0 / 255 # noise level psf = snp.ones((n, n)) / (n * n) A = linop.Convolve(h=psf, input_shape=x_gt.shape) Ax = A(x_gt) # blurred image noise, key = scico.random.randn(Ax.shape, seed=0) y = Ax + σ * noise ``` Define performance evaluation function. ``` def eval_params(config, x_gt, psf, y): """Parameter evaluation function. The `config` parameter is a dict of specific parameters for evaluation of a single parameter set (a pair of parameters in this case). The remaining parameters are objects that are passed to the evaluation function via the ray object store. """ # Extract solver parameters from config dict. λ, ρ = config["lambda"], config["rho"] # Put main arrays on jax device. x_gt, psf, y = jax.device_put([x_gt, psf, y]) # Set up problem to be solved. A = linop.Convolve(h=psf, input_shape=x_gt.shape) f = loss.SquaredL2Loss(y=y, A=A) g = λ * functional.L21Norm() C = linop.FiniteDifference(input_shape=x_gt.shape, append=0) # Define solver. solver = ADMM( f=f, g_list=[g], C_list=[C], rho_list=[ρ], x0=A.adj(y), maxiter=10, subproblem_solver=LinearSubproblemSolver(), ) # Perform 50 iterations, reporting performance to ray.tune every 10 iterations. for step in range(5): x_admm = solver.solve() report({"psnr": float(metric.psnr(x_gt, x_admm))}) ``` Define parameter search space and resources per trial. ``` config = {"lambda": tune.loguniform(1e-3, 1e-1), "rho": tune.loguniform(1e-2, 1e0)} resources = {"cpu": 4, "gpu": 0} # cpus per trial, gpus per trial ``` Run parameter search. ``` tuner = tune.Tuner( tune.with_parameters(eval_params, x_gt=x_gt, psf=psf, y=y), param_space=config, resources=resources, metric="psnr", mode="max", num_samples=100, # perform 100 parameter evaluations ) results = tuner.fit() ``` Display best parameters and corresponding performance. ``` best_result = results.get_best_result() best_config = best_result.config print(f"Best PSNR: {best_result.metrics['psnr']:.2f} dB") print("Best config: " + ", ".join([f"{k}: {v:.2e}" for k, v in best_config.items()])) ``` Plot parameter values visited during parameter search. Marker sizes are proportional to number of iterations run at each parameter pair. The best point in the parameter space is indicated in red. ``` fig = plot.figure(figsize=(8, 8)) trials = results.get_dataframe() for t in trials.iloc: n = t["training_iteration"] plot.plot( t["config/lambda"], t["config/rho"], ptyp="loglog", lw=0, ms=(0.5 + 1.5 * n), marker="o", mfc="blue", mec="blue", fig=fig, ) plot.plot( best_config["lambda"], best_config["rho"], ptyp="loglog", title="Parameter search sampling locations\n(marker size proportional to number of iterations)", xlbl=r"$\rho$", ylbl=r"$\lambda$", lw=0, ms=5.0, marker="o", mfc="red", mec="red", fig=fig, ) ax = fig.axes[0] ax.set_xlim([config["rho"].lower, config["rho"].upper]) ax.set_ylim([config["lambda"].lower, config["lambda"].upper]) fig.show() ``` Plot parameter values visited during parameter search and corresponding reconstruction PSNRs.The best point in the parameter space is indicated in red. ``` 𝜌 = [t["config/rho"] for t in trials.iloc] 𝜆 = [t["config/lambda"] for t in trials.iloc] psnr = [t["psnr"] for t in trials.iloc] minpsnr = min(max(psnr), 18.0) 𝜌, 𝜆, psnr = zip(*filter(lambda x: x[2] >= minpsnr, zip(𝜌, 𝜆, psnr))) fig, ax = plot.subplots(figsize=(10, 8)) sc = ax.scatter(𝜌, 𝜆, c=psnr, cmap=plot.cm.plasma_r) fig.colorbar(sc) plot.plot( best_config["lambda"], best_config["rho"], ptyp="loglog", lw=0, ms=12.0, marker="2", mfc="red", mec="red", fig=fig, ax=ax, ) ax.set_xscale("log") ax.set_yscale("log") ax.set_xlabel(r"$\rho$") ax.set_ylabel(r"$\lambda$") ax.set_title("PSNR at each sample location\n(values below 18 dB omitted)") fig.show() ```
/scico-0.0.4.tar.gz/scico-0.0.4/docs/source/examples/deconv_tv_admm_tune.ipynb
0.734786
0.953579
deconv_tv_admm_tune.ipynb
pypi
PPP (with BM4D) Volume Deconvolution ==================================== This example demonstrates the solution of a 3D image deconvolution problem (involving recovering a 3D volume that has been convolved with a 3D kernel and corrupted by noise) using the ADMM Plug-and-Play Priors (PPP) algorithm <cite data-cite="venkatakrishnan-2013-plugandplay2"/>, with the BM4D <cite data-cite="maggioni-2012-nonlocal"/> denoiser. ``` import numpy as np import jax import scico.numpy as snp from scico import functional, linop, loss, metric, plot, random from scico.examples import create_3d_foam_phantom, downsample_volume, tile_volume_slices from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info plot.config_notebook_plotting() ``` Create a ground truth image. ``` np.random.seed(1234) N = 128 # phantom size Nx, Ny, Nz = N, N, N // 4 upsamp = 2 x_gt_hires = create_3d_foam_phantom((upsamp * Nz, upsamp * Ny, upsamp * Nx), N_sphere=100) x_gt = downsample_volume(x_gt_hires, upsamp) x_gt = jax.device_put(x_gt) # convert to jax array, push to GPU ``` Set up forward operator and test signal consisting of blurred signal with additive Gaussian noise. ``` n = 5 # convolution kernel size σ = 20.0 / 255 # noise level psf = snp.ones((n, n, n)) / (n**3) A = linop.Convolve(h=psf, input_shape=x_gt.shape) Ax = A(x_gt) # blurred image noise, key = random.randn(Ax.shape) y = Ax + σ * noise ``` Set up ADMM solver. ``` f = loss.SquaredL2Loss(y=y, A=A) C = linop.Identity(x_gt.shape) λ = 40.0 / 255 # BM4D regularization strength g = λ * functional.BM4D() ρ = 1.0 # ADMM penalty parameter maxiter = 10 # number of ADMM iterations solver = ADMM( f=f, g_list=[g], C_list=[C], rho_list=[ρ], x0=A.T @ y, maxiter=maxiter, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": 1e-3, "maxiter": 100}), itstat_options={"display": True}, ) ``` Run the solver. ``` print(f"Solving on {device_info()}\n") x = solver.solve() x = snp.clip(x, 0, 1) hist = solver.itstat_object.history(transpose=True) ``` Show slices of the recovered 3D volume. ``` show_id = Nz // 2 fig, ax = plot.subplots(nrows=1, ncols=3, figsize=(15, 5)) plot.imview(tile_volume_slices(x_gt), title="Ground truth", fig=fig, ax=ax[0]) nc = n // 2 yc = y[nc:-nc, nc:-nc, nc:-nc] yc = snp.clip(yc, 0, 1) plot.imview( tile_volume_slices(yc), title="Slices of blurred, noisy volume: %.2f (dB)" % metric.psnr(x_gt, yc), fig=fig, ax=ax[1], ) plot.imview( tile_volume_slices(x), title="Slices of deconvolved volume: %.2f (dB)" % metric.psnr(x_gt, x), fig=fig, ax=ax[2], ) fig.show() ``` Plot convergence statistics. ``` plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), ) ```
/scico-0.0.4.tar.gz/scico-0.0.4/docs/source/examples/deconv_ppp_bm4d_admm.ipynb
0.723016
0.965996
deconv_ppp_bm4d_admm.ipynb
pypi
Parameter Tuning for TV-Regularized Abel Inversion ================================================== This example demonstrates the use of [scico.ray.tune](../_autosummary/scico.ray.tune.rst) to tune parameters for the companion [example script](ct_abel_tv_admm.rst). The `ray.tune` class API is used in this example. This script is hard-coded to run on CPU only to avoid the large number of warnings that are emitted when GPU resources are requested but not available, and due to the difficulty of supressing these warnings in a way that does not force use of the CPU only. To enable GPU usage, comment out the `os.environ` statements near the beginning of the script, and change the value of the "gpu" entry in the `resources` dict from 0 to 1. Note that two environment variables are set to suppress the warnings because `JAX_PLATFORMS` was intended to replace `JAX_PLATFORM_NAME` but this change has yet to be correctly implemented (see [google/jax#6805](https://github.com/google/jax/issues/6805) and [google/jax#10272](https://github.com/google/jax/pull/10272). ``` # isort: off import os os.environ["JAX_PLATFORM_NAME"] = "cpu" os.environ["JAX_PLATFORMS"] = "cpu" import numpy as np import jax import scico.numpy as snp from scico import functional, linop, loss, metric, plot from scico.examples import create_circular_phantom from scico.linop.abel import AbelProjector from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.ray import tune plot.config_notebook_plotting() ``` Create a ground truth image. ``` N = 256 # image size x_gt = create_circular_phantom((N, N), [0.4 * N, 0.2 * N, 0.1 * N], [1, 0, 0.5]) ``` Set up the forward operator and create a test measurement. ``` A = AbelProjector(x_gt.shape) y = A @ x_gt np.random.seed(12345) y = y + np.random.normal(size=y.shape).astype(np.float32) ``` Compute inverse Abel transform solution for use as initial solution. ``` x_inv = A.inverse(y) x0 = snp.clip(x_inv, 0.0, 1.0) ``` Define performance evaluation class. ``` class Trainable(tune.Trainable): """Parameter evaluation class.""" def setup(self, config, x_gt, x0, y): """This method initializes a new parameter evaluation object. It is called once when a new parameter evaluation object is created. The `config` parameter is a dict of specific parameters for evaluation of a single parameter set (a pair of parameters in this case). The remaining parameters are objects that are passed to the evaluation function via the ray object store. """ # Put main arrays on jax device. self.x_gt, self.x0, self.y = jax.device_put([x_gt, x0, y]) # Set up problem to be solved. self.A = AbelProjector(self.x_gt.shape) self.f = loss.SquaredL2Loss(y=self.y, A=self.A) self.C = linop.FiniteDifference(input_shape=self.x_gt.shape) self.reset_config(config) def reset_config(self, config): """This method is only required when `scico.ray.tune.Tuner` is initialized with `reuse_actors` set to ``True`` (the default). In this case, a set of parameter evaluation processes and corresponding objects are created once (including initialization via a call to the `setup` method), and this method is called when switching to evaluation of a different parameter configuration. If `reuse_actors` is set to ``False``, then a new process and object are created for each parameter configuration, and this method is not used. """ # Extract solver parameters from config dict. λ, ρ = config["lambda"], config["rho"] # Set up parameter-dependent functional. g = λ * functional.L1Norm() # Define solver. cg_tol = 1e-4 cg_maxiter = 25 self.solver = ADMM( f=self.f, g_list=[g], C_list=[self.C], rho_list=[ρ], x0=self.x0, maxiter=10, subproblem_solver=LinearSubproblemSolver( cg_kwargs={"tol": cg_tol, "maxiter": cg_maxiter} ), ) return True def step(self): """This method is called for each step in the evaluation of a single parameter configuration. The maximum number of times it can be called is controlled by the `num_iterations` parameter in the initialization of a `scico.ray.tune.Tuner` object. """ # Perform 10 solver steps for every ray.tune step x_tv = snp.clip(self.solver.solve(), 0.0, 1.0) return {"psnr": float(metric.psnr(self.x_gt, x_tv))} ``` Define parameter search space and resources per trial. ``` config = {"lambda": tune.loguniform(1e0, 1e2), "rho": tune.loguniform(1e1, 1e3)} resources = {"gpu": 0, "cpu": 1} # gpus per trial, cpus per trial ``` Run parameter search. ``` tuner = tune.Tuner( tune.with_parameters(Trainable, x_gt=x_gt, x0=x0, y=y), param_space=config, resources=resources, metric="psnr", mode="max", num_samples=100, # perform 100 parameter evaluations num_iterations=10, # perform at most 10 steps for each parameter evaluation ) results = tuner.fit() ``` Display best parameters and corresponding performance. ``` best_result = results.get_best_result() best_config = best_result.config print(f"Best PSNR: {best_result.metrics['psnr']:.2f} dB") print("Best config: " + ", ".join([f"{k}: {v:.2e}" for k, v in best_config.items()])) ``` Plot parameter values visited during parameter search. Marker sizes are proportional to number of iterations run at each parameter pair. The best point in the parameter space is indicated in red. ``` fig = plot.figure(figsize=(8, 8)) trials = results.get_dataframe() for t in trials.iloc: n = t["training_iteration"] plot.plot( t["config/lambda"], t["config/rho"], ptyp="loglog", lw=0, ms=(0.5 + 1.5 * n), marker="o", mfc="blue", mec="blue", fig=fig, ) plot.plot( best_config["lambda"], best_config["rho"], ptyp="loglog", title="Parameter search sampling locations\n(marker size proportional to number of iterations)", xlbl=r"$\rho$", ylbl=r"$\lambda$", lw=0, ms=5.0, marker="o", mfc="red", mec="red", fig=fig, ) ax = fig.axes[0] ax.set_xlim([config["rho"].lower, config["rho"].upper]) ax.set_ylim([config["lambda"].lower, config["lambda"].upper]) fig.show() ``` Plot parameter values visited during parameter search and corresponding reconstruction PSNRs.The best point in the parameter space is indicated in red. ``` 𝜌 = [t["config/rho"] for t in trials.iloc] 𝜆 = [t["config/lambda"] for t in trials.iloc] psnr = [t["psnr"] for t in trials.iloc] minpsnr = min(max(psnr), 20.0) 𝜌, 𝜆, psnr = zip(*filter(lambda x: x[2] >= minpsnr, zip(𝜌, 𝜆, psnr))) fig, ax = plot.subplots(figsize=(10, 8)) sc = ax.scatter(𝜌, 𝜆, c=psnr, cmap=plot.cm.plasma_r) fig.colorbar(sc) plot.plot( best_config["lambda"], best_config["rho"], ptyp="loglog", lw=0, ms=12.0, marker="2", mfc="red", mec="red", fig=fig, ax=ax, ) ax.set_xscale("log") ax.set_yscale("log") ax.set_xlabel(r"$\rho$") ax.set_ylabel(r"$\lambda$") ax.set_title("PSNR at each sample location\n(values below 20 dB omitted)") fig.show() ```
/scico-0.0.4.tar.gz/scico-0.0.4/docs/source/examples/ct_abel_tv_admm_tune.ipynb
0.720467
0.944842
ct_abel_tv_admm_tune.ipynb
pypi
ℓ1 Total Variation Denoising ============================ This example demonstrates impulse noise removal via ℓ1 total variation <cite data-cite="alliney-1992-digital"/> <cite data-cite="esser-2010-primal"/> (Sec. 2.4.4) (i.e. total variation regularization with an ℓ1 data fidelity term), minimizing the functional $$\mathrm{argmin}_{\mathbf{x}} \; \| \mathbf{y} - \mathbf{x} \|_1 + \lambda \| C \mathbf{x} \|_{2,1} \;,$$ where $\mathbf{y}$ is the noisy image, $C$ is a 2D finite difference operator, and $\mathbf{x}$ is the denoised image. ``` import jax from xdesign import SiemensStar, discrete_phantom import scico.numpy as snp from scico import functional, linop, loss, metric, plot from scico.examples import spnoise from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info from scipy.ndimage import median_filter plot.config_notebook_plotting() ``` Create a ground truth image and impose salt & pepper noise to create a noisy test image. ``` N = 256 # image size phantom = SiemensStar(16) x_gt = snp.pad(discrete_phantom(phantom, N - 16), 8) x_gt = 0.5 * x_gt / x_gt.max() x_gt = jax.device_put(x_gt) # convert to jax type, push to GPU y = spnoise(x_gt, 0.5) ``` Denoise with median filtering. ``` x_med = median_filter(y, size=(5, 5)) ``` Denoise with ℓ1 total variation. ``` λ = 1.5e0 g_loss = loss.Loss(y=y, f=functional.L1Norm()) g_tv = λ * functional.L21Norm() # The append=0 option makes the results of horizontal and vertical finite # differences the same shape, which is required for the L21Norm. C = linop.FiniteDifference(input_shape=x_gt.shape, append=0) solver = ADMM( f=None, g_list=[g_loss, g_tv], C_list=[linop.Identity(input_shape=y.shape), C], rho_list=[5e0, 5e0], x0=y, maxiter=100, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": 1e-3, "maxiter": 20}), itstat_options={"display": True, "period": 10}, ) print(f"Solving on {device_info()}\n") x_tv = solver.solve() hist = solver.itstat_object.history(transpose=True) ``` Plot results. ``` plt_args = dict(norm=plot.matplotlib.colors.Normalize(vmin=0, vmax=1.0)) fig, ax = plot.subplots(nrows=2, ncols=2, sharex=True, sharey=True, figsize=(13, 12)) plot.imview(x_gt, title="Ground truth", fig=fig, ax=ax[0, 0], **plt_args) plot.imview(y, title="Noisy image", fig=fig, ax=ax[0, 1], **plt_args) plot.imview( x_med, title=f"Median filtering: {metric.psnr(x_gt, x_med):.2f} (dB)", fig=fig, ax=ax[1, 0], **plt_args, ) plot.imview( x_tv, title=f"ℓ1-TV denoising: {metric.psnr(x_gt, x_tv):.2f} (dB)", fig=fig, ax=ax[1, 1], **plt_args, ) fig.show() ``` Plot convergence statistics. ``` fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 5)) plot.plot( hist.Objective, title="Objective function", xlbl="Iteration", ylbl="Functional value", fig=fig, ax=ax[0], ) plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), fig=fig, ax=ax[1], ) fig.show() ```
/scico-0.0.4.tar.gz/scico-0.0.4/docs/source/examples/denoise_l1tv_admm.ipynb
0.806662
0.96856
denoise_l1tv_admm.ipynb
pypi
3D TV-Regularized Sparse-View CT Reconstruction =============================================== This example demonstrates solution of a sparse-view, 3D CT reconstruction problem with isotropic total variation (TV) regularization $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - A \mathbf{x} \|_2^2 + \lambda \| C \mathbf{x} \|_{2,1} \;,$$ where $A$ is the Radon transform, $\mathbf{y}$ is the sinogram, $C$ is a 3D finite difference operator, and $\mathbf{x}$ is the desired image. ``` import numpy as np import jax from mpl_toolkits.axes_grid1 import make_axes_locatable from scico import functional, linop, loss, metric, plot from scico.examples import create_tangle_phantom from scico.linop.radon_astra import TomographicProjector from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info plot.config_notebook_plotting() ``` Create a ground truth image and projector. ``` Nx = 128 Ny = 256 Nz = 64 tangle = create_tangle_phantom(Nx, Ny, Nz) tangle = jax.device_put(tangle) n_projection = 10 # number of projections angles = np.linspace(0, np.pi, n_projection) # evenly spaced projection angles A = TomographicProjector( tangle.shape, [1.0, 1.0], [Nz, max(Nx, Ny)], angles ) # Radon transform operator y = A @ tangle # sinogram ``` Set up ADMM solver object. ``` λ = 2e0 # L1 norm regularization parameter ρ = 5e0 # ADMM penalty parameter maxiter = 25 # number of ADMM iterations cg_tol = 1e-4 # CG relative tolerance cg_maxiter = 25 # maximum CG iterations per ADMM iteration # The append=0 option makes the results of horizontal and vertical # finite differences the same shape, which is required for the L21Norm, # which is used so that g(Cx) corresponds to isotropic TV. C = linop.FiniteDifference(input_shape=tangle.shape, append=0) g = λ * functional.L21Norm() f = loss.SquaredL2Loss(y=y, A=A) x0 = A.T(y) solver = ADMM( f=f, g_list=[g], C_list=[C], rho_list=[ρ], x0=x0, maxiter=maxiter, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": cg_tol, "maxiter": cg_maxiter}), itstat_options={"display": True, "period": 5}, ) ``` Run the solver. ``` print(f"Solving on {device_info()}\n") solver.solve() hist = solver.itstat_object.history(transpose=True) tangle_recon = solver.x print( "TV Restruction\nSNR: %.2f (dB), MAE: %.3f" % (metric.snr(tangle, tangle_recon), metric.mae(tangle, tangle_recon)) ) ``` Show the recovered image. ``` fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(7, 5)) plot.imview(tangle[32], title="Ground truth (central slice)", cbar=None, fig=fig, ax=ax[0]) plot.imview( tangle_recon[32], title="TV Reconstruction (central slice)\nSNR: %.2f (dB), MAE: %.3f" % (metric.snr(tangle, tangle_recon), metric.mae(tangle, tangle_recon)), fig=fig, ax=ax[1], ) divider = make_axes_locatable(ax[1]) cax = divider.append_axes("right", size="5%", pad=0.2) fig.colorbar(ax[1].get_images()[0], cax=cax, label="arbitrary units") fig.show() ```
/scico-0.0.4.tar.gz/scico-0.0.4/docs/source/examples/ct_astra_3d_tv_admm.ipynb
0.778649
0.973844
ct_astra_3d_tv_admm.ipynb
pypi
CT Reconstruction with CG and PCG ================================= This example demonstrates a simple iterative CT reconstruction using conjugate gradient (CG) and preconditioned conjugate gradient (PCG) algorithms to solve the problem $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - A \mathbf{x} \|_2^2 \;,$$ where $A$ is the Radon transform, $\mathbf{y}$ is the sinogram, and $\mathbf{x}$ is the reconstructed image. ``` from time import time import numpy as np import jax import jax.numpy as jnp from xdesign import Foam, discrete_phantom from scico import loss, plot from scico.linop import CircularConvolve from scico.linop.radon_astra import TomographicProjector from scico.solver import cg plot.config_notebook_plotting() ``` Create a ground truth image. ``` N = 256 # phantom size x_gt = discrete_phantom(Foam(size_range=[0.075, 0.0025], gap=1e-3, porosity=1), size=N) x_gt = jax.device_put(x_gt) # convert to jax type, push to GPU ``` Configure a CT projection operator and generate synthetic measurements. ``` n_projection = N # matches the phantom size so this is not few-view CT angles = np.linspace(0, np.pi, n_projection) # evenly spaced projection angles A = 1 / N * TomographicProjector(x_gt.shape, 1, N, angles) # Radon transform operator y = A @ x_gt # sinogram ``` Forward and back project a single pixel (Kronecker delta) to compute an approximate impulse response for $\mathbf{A}^T \mathbf{A}$. ``` H = CircularConvolve.from_operator(A.T @ A) ``` Invert in the Fourier domain to form a preconditioner $\mathbf{M} \approx (\mathbf{A}^T \mathbf{A})^{-1}$. See <cite data-cite="clinthorne-1993-preconditioning"/> Section V.A. for more details. ``` # γ limits the gain of the preconditioner; higher gives a weaker filter. γ = 1e-2 # The imaginary part comes from numerical errors in A.T and needs to be # removed to ensure H is symmetric, positive definite. frequency_response = np.real(H.h_dft) inv_frequency_response = 1 / (frequency_response + γ) # Using circular convolution without padding is sufficient here because # M is approximate anyway. M = CircularConvolve(inv_frequency_response, x_gt.shape, h_is_dft=True) ``` Check that $\mathbf{M}$ does approximately invert $\mathbf{A}^T \mathbf{A}$. ``` plot_args = dict(norm=plot.matplotlib.colors.Normalize(vmin=0, vmax=1.5)) fig, axes = plot.subplots(nrows=1, ncols=3, figsize=(12, 4.5)) plot.imview(x_gt, title="Ground truth, $x_{gt}$", fig=fig, ax=axes[0], **plot_args) plot.imview( A.T @ A @ x_gt, title=r"$\mathbf{A}^T \mathbf{A} x_{gt}$", fig=fig, ax=axes[1], **plot_args ) plot.imview( M @ A.T @ A @ x_gt, title=r"$\mathbf{M} \mathbf{A}^T \mathbf{A} x_{gt}$", fig=fig, ax=axes[2], **plot_args, ) fig.suptitle(r"$\mathbf{M}$ approximately inverts $\mathbf{A}^T \mathbf{A}$") fig.tight_layout() fig.colorbar( axes[2].get_images()[0], ax=axes, location="right", shrink=1.0, pad=0.05, label="Arbitrary Units", ) fig.show() ``` Reconstruct with both standard and preconditioned conjugate gradient. ``` start_time = time() x_cg, info_cg = cg( A.T @ A, A.T @ y, jnp.zeros(A.input_shape, dtype=A.input_dtype), tol=1e-5, info=True, ) time_cg = time() - start_time start_time = time() x_pcg, info_pcg = cg( A.T @ A, A.T @ y, jnp.zeros(A.input_shape, dtype=A.input_dtype), tol=2e-5, # preconditioning affects the problem scaling so tol differs between CG and PCG info=True, M=M, ) time_pcg = time() - start_time ``` Compare CG and PCG in terms of reconstruction time and data fidelity. ``` f_cg = loss.SquaredL2Loss(y=A.T @ y, A=A.T @ A) f_data = loss.SquaredL2Loss(y=y, A=A) print( f"{'Method':10s}{'Iterations':>15s}{'Time (s)':>15s}{'||ATAx - ATy||':>15s}{'||Ax - y||':>15s}" ) print( f"{'CG':10s}{info_cg['num_iter']:>15d}{time_cg:>15.2f}{f_cg(x_cg):>15.2e}{f_data(x_cg):>15.2e}" ) print( f"{'PCG':10s}{info_pcg['num_iter']:>15d}{time_pcg:>15.2f}{f_cg(x_pcg):>15.2e}" f"{f_data(x_pcg):>15.2e}" ) ```
/scico-0.0.4.tar.gz/scico-0.0.4/docs/source/examples/ct_astra_noreg_pcg.ipynb
0.793946
0.9838
ct_astra_noreg_pcg.ipynb
pypi
Convolutional Sparse Coding with Mask Decoupling (ADMM) ======================================================= This example demonstrates the solution of a convolutional sparse coding problem $$\mathrm{argmin}_{\mathbf{x}} \; \frac{1}{2} \Big\| \mathbf{y} - B \Big( \sum_k \mathbf{h}_k \ast \mathbf{x}_k \Big) \Big\|_2^2 + \lambda \sum_k ( \| \mathbf{x}_k \|_1 - \| \mathbf{x}_k \|_2 ) \;,$$ where the $\mathbf{h}$_k is a set of filters comprising the dictionary, the $\mathbf{x}$_k is a corrresponding set of coefficient maps, $\mathbf{y}$ is the signal to be represented, and $B$ is a cropping operator that allows the boundary artifacts resulting from circular convolution to be avoided. Following the mask decoupling approach <cite data-cite="almeida-2013-deconvolving"/>, the problem is posed in ADMM form as $$\mathrm{argmin}_{\mathbf{x}, \mathbf{z}_0, \mathbf{z}_1} \; (1/2) \| \mathbf{y} - B \mb{z}_0 \|_2^2 + \lambda \sum_k ( \| \mathbf{z}_{1,k} \|_1 - \| \mathbf{z}_{1,k} \|_2 ) \\ \;\; \text{s.t.} \;\; \mathbf{z}_0 = \sum_k \mathbf{h}_k \ast \mathbf{x}_k \;\; \mathbf{z}_{1,k} = \mathbf{x}_k\;,$$. The most computationally expensive step in the ADMM algorithm is solved using the frequency-domain approach proposed in <cite data-cite="wohlberg-2014-efficient"/>. ``` import numpy as np import jax import scico.numpy as snp from scico import plot from scico.examples import create_conv_sparse_phantom from scico.functional import L1MinusL2Norm, ZeroFunctional from scico.linop import CircularConvolve, Crop, Identity, Sum from scico.loss import SquaredL2Loss from scico.optimize.admm import ADMM, G0BlockCircularConvolveSolver from scico.util import device_info plot.config_notebook_plotting() ``` Set problem size and create random convolutional dictionary (a set of filters) and a corresponding sparse random set of coefficient maps. ``` N = 121 # image size Nnz = 128 # number of non-zeros in coefficient maps h, x0 = create_conv_sparse_phantom(N, Nnz) ``` Normalize dictionary filters and scale coefficient maps accordingly. ``` hnorm = np.sqrt(np.sum(h**2, axis=(1, 2), keepdims=True)) h /= hnorm x0 *= hnorm ``` Convert numpy arrays to jax arrays. ``` h = jax.device_put(h) x0 = jax.device_put(x0) ``` Set up required padding and corresponding crop operator. ``` h_center = (h.shape[1] // 2, h.shape[2] // 2) pad_width = ((0, 0), (h_center[0], h_center[0]), (h_center[1], h_center[1])) x0p = snp.pad(x0, pad_width=pad_width) B = Crop(pad_width[1:], input_shape=x0p.shape[1:]) ``` Set up sum-of-convolutions forward operator. ``` C = CircularConvolve(h, input_shape=x0p.shape, ndims=2, h_center=h_center) S = Sum(input_shape=C.output_shape, axis=0) A = S @ C ``` Construct test image from dictionary $\mathbf{h}$ and padded version of coefficient maps $\mathbf{x}_0$. ``` y = B(A(x0p)) ``` Set functional and solver parameters. ``` λ = 1e0 # l1-l2 norm regularization parameter ρ0 = 1e0 # ADMM penalty parameters ρ1 = 3e0 maxiter = 200 # number of ADMM iterations ``` Define loss function and regularization. Note the use of the $\ell_1 - \ell_2$ norm, which has been found to provide slightly better performance than the $\ell_1$ norm in this type of problem <cite data-cite="wohlberg-2021-psf"/>. ``` f = ZeroFunctional() g0 = SquaredL2Loss(y=y, A=B) g1 = λ * L1MinusL2Norm() C0 = A C1 = Identity(input_shape=x0p.shape) ``` Initialize ADMM solver. ``` solver = ADMM( f=f, g_list=[g0, g1], C_list=[C0, C1], rho_list=[ρ0, ρ1], alpha=1.8, maxiter=maxiter, subproblem_solver=G0BlockCircularConvolveSolver(check_solve=True), itstat_options={"display": True, "period": 10}, ) ``` Run the solver. ``` print(f"Solving on {device_info()}\n") x1 = solver.solve() hist = solver.itstat_object.history(transpose=True) ``` Show the recovered coefficient maps. ``` fig, ax = plot.subplots(nrows=2, ncols=3, figsize=(12, 8.6)) plot.imview(x0[0], title="Coef. map 0", cmap=plot.cm.Blues, fig=fig, ax=ax[0, 0]) ax[0, 0].set_ylabel("Ground truth") plot.imview(x0[1], title="Coef. map 1", cmap=plot.cm.Blues, fig=fig, ax=ax[0, 1]) plot.imview(x0[2], title="Coef. map 2", cmap=plot.cm.Blues, fig=fig, ax=ax[0, 2]) plot.imview(x1[0], cmap=plot.cm.Blues, fig=fig, ax=ax[1, 0]) ax[1, 0].set_ylabel("Recovered") plot.imview(x1[1], cmap=plot.cm.Blues, fig=fig, ax=ax[1, 1]) plot.imview(x1[2], cmap=plot.cm.Blues, fig=fig, ax=ax[1, 2]) fig.tight_layout() fig.show() ``` Show test image and reconstruction from recovered coefficient maps. Note the absence of the wrap-around effects at the boundary that can be seen in the corresponding images in the [related example](sparsecode_conv_admm.rst). ``` fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 6)) plot.imview(y, title="Test image", cmap=plot.cm.gist_heat_r, fig=fig, ax=ax[0]) plot.imview(B(A(x1)), title="Reconstructed image", cmap=plot.cm.gist_heat_r, fig=fig, ax=ax[1]) fig.show() ``` Plot convergence statistics. ``` fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 5)) plot.plot( hist.Objective, title="Objective function", xlbl="Iteration", ylbl="Functional value", fig=fig, ax=ax[0], ) plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), fig=fig, ax=ax[1], ) fig.show() ```
/scico-0.0.4.tar.gz/scico-0.0.4/docs/source/examples/sparsecode_conv_md_admm.ipynb
0.689096
0.975785
sparsecode_conv_md_admm.ipynb
pypi
Convolutional Sparse Coding (ADMM) ================================== This example demonstrates the solution of a simple convolutional sparse coding problem $$\mathrm{argmin}_{\mathbf{x}} \; \frac{1}{2} \Big\| \mathbf{y} - \sum_k \mathbf{h}_k \ast \mathbf{x}_k \Big\|_2^2 + \lambda \sum_k ( \| \mathbf{x}_k \|_1 - \| \mathbf{x}_k \|_2 ) \;,$$ where the $\mathbf{h}$_k is a set of filters comprising the dictionary, the $\mathbf{x}$_k is a corrresponding set of coefficient maps, and $\mathbf{y}$ is the signal to be represented. The problem is solved via an ADMM algorithm using the frequency-domain approach proposed in <cite data-cite="wohlberg-2014-efficient"/>. ``` import numpy as np import jax import scico.numpy as snp from scico import plot from scico.examples import create_conv_sparse_phantom from scico.functional import L1MinusL2Norm from scico.linop import CircularConvolve, Identity, Sum from scico.loss import SquaredL2Loss from scico.optimize.admm import ADMM, FBlockCircularConvolveSolver from scico.util import device_info plot.config_notebook_plotting() ``` Set problem size and create random convolutional dictionary (a set of filters) and a corresponding sparse random set of coefficient maps. ``` N = 128 # image size Nnz = 128 # number of non-zeros in coefficient maps h, x0 = create_conv_sparse_phantom(N, Nnz) ``` Normalize dictionary filters and scale coefficient maps accordingly. ``` hnorm = np.sqrt(np.sum(h**2, axis=(1, 2), keepdims=True)) h /= hnorm x0 *= hnorm ``` Convert numpy arrays to jax arrays. ``` h = jax.device_put(h) x0 = jax.device_put(x0) ``` Set up sum-of-convolutions forward operator. ``` C = CircularConvolve(h, input_shape=x0.shape, ndims=2) S = Sum(input_shape=C.output_shape, axis=0) A = S @ C ``` Construct test image from dictionary $\mathbf{h}$ and coefficient maps $\mathbf{x}_0$. ``` y = A(x0) ``` Set functional and solver parameters. ``` λ = 1e0 # l1-l2 norm regularization parameter ρ = 2e0 # ADMM penalty parameter maxiter = 200 # number of ADMM iterations ``` Define loss function and regularization. Note the use of the $\ell_1 - \ell_2$ norm, which has been found to provide slightly better performance than the $\ell_1$ norm in this type of problem <cite data-cite="wohlberg-2021-psf"/>. ``` f = SquaredL2Loss(y=y, A=A) g0 = λ * L1MinusL2Norm() C0 = Identity(input_shape=x0.shape) ``` Initialize ADMM solver. ``` solver = ADMM( f=f, g_list=[g0], C_list=[C0], rho_list=[ρ], alpha=1.8, maxiter=maxiter, subproblem_solver=FBlockCircularConvolveSolver(check_solve=True), itstat_options={"display": True, "period": 10}, ) ``` Run the solver. ``` print(f"Solving on {device_info()}\n") x1 = solver.solve() hist = solver.itstat_object.history(transpose=True) ``` Show the recovered coefficient maps. ``` fig, ax = plot.subplots(nrows=2, ncols=3, figsize=(12, 8.6)) plot.imview(x0[0], title="Coef. map 0", cmap=plot.cm.Blues, fig=fig, ax=ax[0, 0]) ax[0, 0].set_ylabel("Ground truth") plot.imview(x0[1], title="Coef. map 1", cmap=plot.cm.Blues, fig=fig, ax=ax[0, 1]) plot.imview(x0[2], title="Coef. map 2", cmap=plot.cm.Blues, fig=fig, ax=ax[0, 2]) plot.imview(x1[0], cmap=plot.cm.Blues, fig=fig, ax=ax[1, 0]) ax[1, 0].set_ylabel("Recovered") plot.imview(x1[1], cmap=plot.cm.Blues, fig=fig, ax=ax[1, 1]) plot.imview(x1[2], cmap=plot.cm.Blues, fig=fig, ax=ax[1, 2]) fig.tight_layout() fig.show() ``` Show test image and reconstruction from recovered coefficient maps. ``` fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 6)) plot.imview(y, title="Test image", cmap=plot.cm.gist_heat_r, fig=fig, ax=ax[0]) plot.imview(A(x1), title="Reconstructed image", cmap=plot.cm.gist_heat_r, fig=fig, ax=ax[1]) fig.show() ``` Plot convergence statistics. ``` fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 5)) plot.plot( hist.Objective, title="Objective function", xlbl="Iteration", ylbl="Functional value", fig=fig, ax=ax[0], ) plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), fig=fig, ax=ax[1], ) fig.show() ```
/scico-0.0.4.tar.gz/scico-0.0.4/docs/source/examples/sparsecode_conv_admm.ipynb
0.719581
0.970882
sparsecode_conv_admm.ipynb
pypi
Basis Pursuit DeNoising (APGM) ============================== This example demonstrates the solution of the the sparse coding problem $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - D \mathbf{x} \|_2^2 + \lambda \| \mathbf{x} \|_1\;,$$ where $D$ the dictionary, $\mathbf{y}$ the signal to be represented, and $\mathbf{x}$ is the sparse representation. ``` import numpy as np import jax from scico import functional, linop, loss, plot from scico.optimize.pgm import AcceleratedPGM from scico.util import device_info plot.config_notebook_plotting() ``` Construct a random dictionary, a reference random sparse representation, and a test signal consisting of the synthesis of the reference sparse representation. ``` m = 512 # Signal size n = 4 * m # Dictionary size s = 32 # Sparsity level (number of non-zeros) σ = 0.5 # Noise level np.random.seed(12345) D = np.random.randn(m, n) L0 = np.linalg.norm(D, 2) ** 2 x_gt = np.zeros(n) # true signal idx = np.random.permutation(list(range(0, n - 1))) x_gt[idx[0:s]] = np.random.randn(s) y = D @ x_gt + σ * np.random.randn(m) # synthetic signal x_gt = jax.device_put(x_gt) # convert to jax array, push to GPU y = jax.device_put(y) # convert to jax array, push to GPU ``` Set up the forward operator and AcceleratedPGM solver object. ``` maxiter = 100 λ = 2.98e1 A = linop.MatrixOperator(D) f = loss.SquaredL2Loss(y=y, A=A) g = λ * functional.L1Norm() solver = AcceleratedPGM( f=f, g=g, L0=L0, x0=A.adj(y), maxiter=maxiter, itstat_options={"display": True, "period": 10} ) ``` Run the solver. ``` print(f"Solving on {device_info()}\n") x = solver.solve() hist = solver.itstat_object.history(transpose=True) ``` Plot the recovered coefficients and convergence statistics. ``` fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 5)) plot.plot( np.vstack((x_gt, x)).T, title="Coefficients", lgnd=("Ground Truth", "Recovered"), fig=fig, ax=ax[0], ) plot.plot( np.vstack((hist.Objective, hist.Residual)).T, ptyp="semilogy", title="Convergence", xlbl="Iteration", lgnd=("Objective", "Residual"), fig=fig, ax=ax[1], ) fig.show() ```
/scico-0.0.4.tar.gz/scico-0.0.4/docs/source/examples/sparsecode_pgm.ipynb
0.659734
0.971402
sparsecode_pgm.ipynb
pypi
Training of DnCNN for Denoising =============================== This example demonstrates the training and application of the DnCNN model from <cite data-cite="zhang-2017-dncnn"/> to denoise images that have been corrupted plot.config_notebook_plotting() with additive Gaussian noise. ``` import os from time import time import numpy as np import jax from mpl_toolkits.axes_grid1 import make_axes_locatable from scico import flax as sflax from scico import metric, plot from scico.flax.examples import load_image_data ``` Prepare parallel processing. Set an arbitrary processor count (only applies if GPU is not available). ``` os.environ["XLA_FLAGS"] = "--xla_force_host_platform_device_count=8" platform = jax.lib.xla_bridge.get_backend().platform print("Platform: ", platform) ``` Read data from cache or generate if not available. ``` size = 40 # patch size train_nimg = 400 # number of training images test_nimg = 16 # number of testing images nimg = train_nimg + test_nimg gray = True # use gray scale images data_mode = "dn" # Denoising problem noise_level = 0.1 # Standard deviation of noise noise_range = False # Use fixed noise level stride = 23 # Stride to sample multiple patches from each image train_ds, test_ds = load_image_data( train_nimg, test_nimg, size, gray, data_mode, verbose=True, noise_level=noise_level, noise_range=noise_range, stride=stride, ) ``` Define configuration dictionary for model and training loop. Parameters have been selected for demonstration purposes and relatively short training. The depth of the model has been reduced to 6, instead of the 17 of the original model. The suggested settings can be found in the original paper. ``` # model configuration model_conf = { "depth": 6, "num_filters": 64, } # training configuration train_conf: sflax.ConfigDict = { "seed": 0, "opt_type": "ADAM", "batch_size": 128, "num_epochs": 50, "base_learning_rate": 1e-3, "warmup_epochs": 0, "log_every_steps": 5000, "log": True, } ``` Construct DnCNN model. ``` channels = train_ds["image"].shape[-1] model = sflax.DnCNNNet( depth=model_conf["depth"], channels=channels, num_filters=model_conf["num_filters"], ) ``` Run training loop. ``` workdir = os.path.join(os.path.expanduser("~"), ".cache", "scico", "examples", "dncnn_out") train_conf["workdir"] = workdir print(f"{'JAX process: '}{jax.process_index()}{' / '}{jax.process_count()}") print(f"{'JAX local devices: '}{jax.local_devices()}") trainer = sflax.BasicFlaxTrainer( train_conf, model, train_ds, test_ds, ) start_time = time() modvar, stats_object = trainer.train() time_train = time() - start_time ``` Evaluate on testing data. ``` test_patches = 720 start_time = time() fmap = sflax.FlaxMap(model, modvar) output = fmap(test_ds["image"][:test_patches]) time_eval = time() - start_time output = np.clip(output, a_min=0, a_max=1.0) ``` Compare trained model in terms of reconstruction time and data fidelity. ``` snr_eval = metric.snr(test_ds["label"][:test_patches], output) psnr_eval = metric.psnr(test_ds["label"][:test_patches], output) print( f"{'DnCNNNet training':18s}{'epochs:':2s}{train_conf['num_epochs']:>5d}" f"{'':21s}{'time[s]:':10s}{time_train:>7.2f}" ) print( f"{'DnCNNNet testing':18s}{'SNR:':5s}{snr_eval:>5.2f}{' dB'}{'':3s}" f"{'PSNR:':6s}{psnr_eval:>5.2f}{' dB'}{'':3s}{'time[s]:':10s}{time_eval:>7.2f}" ) ``` Plot comparison. Note that patches have small sizes, thus, plots may correspond to unidentifiable fragments. ``` np.random.seed(123) indx = np.random.randint(0, high=test_patches) fig, ax = plot.subplots(nrows=1, ncols=3, figsize=(15, 5)) plot.imview(test_ds["label"][indx, ..., 0], title="Ground truth", cbar=None, fig=fig, ax=ax[0]) plot.imview( test_ds["image"][indx, ..., 0], title="Noisy: \nSNR: %.2f (dB), PSNR: %.2f" % ( metric.snr(test_ds["label"][indx, ..., 0], test_ds["image"][indx, ..., 0]), metric.psnr(test_ds["label"][indx, ..., 0], test_ds["image"][indx, ..., 0]), ), cbar=None, fig=fig, ax=ax[1], ) plot.imview( output[indx, ..., 0], title="DnCNNNet Reconstruction\nSNR: %.2f (dB), PSNR: %.2f" % ( metric.snr(test_ds["label"][indx, ..., 0], output[indx, ..., 0]), metric.psnr(test_ds["label"][indx, ..., 0], output[indx, ..., 0]), ), fig=fig, ax=ax[2], ) divider = make_axes_locatable(ax[2]) cax = divider.append_axes("right", size="5%", pad=0.2) fig.colorbar(ax[2].get_images()[0], cax=cax, label="arbitrary units") fig.show() ``` Plot convergence statistics. Statistics only generated if a training cycle was done (i.e. not reading final epoch results from checkpoint). ``` if stats_object is not None: hist = stats_object.history(transpose=True) fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 5)) plot.plot( np.vstack((hist.Train_Loss, hist.Eval_Loss)).T, x=hist.Epoch, ptyp="semilogy", title="Loss function", xlbl="Epoch", ylbl="Loss value", lgnd=("Train", "Test"), fig=fig, ax=ax[0], ) plot.plot( np.vstack((hist.Train_SNR, hist.Eval_SNR)).T, x=hist.Epoch, title="Metric", xlbl="Epoch", ylbl="SNR (dB)", lgnd=("Train", "Test"), fig=fig, ax=ax[1], ) fig.show() ```
/scico-0.0.4.tar.gz/scico-0.0.4/docs/source/examples/denoise_dncnn_train_bsds.ipynb
0.657428
0.894329
denoise_dncnn_train_bsds.ipynb
pypi