Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed's picture
Add dataset card
d08eca0 verified
metadata
annotations_creators:
  - human-annotated
language:
  - abs
  - bbc
  - bew
  - bhp
  - ind
  - jav
  - mad
  - mak
  - min
  - mui
  - rej
  - sun
license: cc-by-sa-4.0
multilinguality: multilingual
task_categories:
  - translation
task_ids: []
dataset_info:
  - config_name: ind-abs
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
    splits:
      - name: train
        num_bytes: 303680
        num_examples: 1000
    download_size: 210436
    dataset_size: 303680
  - config_name: ind-bew
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
    splits:
      - name: train
        num_bytes: 2011337
        num_examples: 6600
    download_size: 1444897
    dataset_size: 2011337
  - config_name: ind-bhp
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
    splits:
      - name: train
        num_bytes: 269696
        num_examples: 1000
    download_size: 193136
    dataset_size: 269696
  - config_name: ind-btk
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
    splits:
      - name: train
        num_bytes: 1980708
        num_examples: 6600
    download_size: 1423174
    dataset_size: 1980708
  - config_name: ind-jav
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
    splits:
      - name: train
        num_bytes: 1975071
        num_examples: 6600
    download_size: 1421290
    dataset_size: 1975071
  - config_name: ind-mad
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
    splits:
      - name: train
        num_bytes: 2026101
        num_examples: 6600
    download_size: 1472021
    dataset_size: 2026101
  - config_name: ind-mak
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
    splits:
      - name: train
        num_bytes: 2013926
        num_examples: 6600
    download_size: 1415636
    dataset_size: 2013926
  - config_name: ind-min
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
    splits:
      - name: train
        num_bytes: 1989833
        num_examples: 6600
    download_size: 1410623
    dataset_size: 1989833
  - config_name: ind-mui
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
    splits:
      - name: train
        num_bytes: 309449
        num_examples: 1000
    download_size: 220594
    dataset_size: 309449
  - config_name: ind-rej
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
    splits:
      - name: train
        num_bytes: 306437
        num_examples: 1000
    download_size: 215862
    dataset_size: 306437
  - config_name: ind-sun
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
    splits:
      - name: train
        num_bytes: 2009207
        num_examples: 6600
    download_size: 1420271
    dataset_size: 2009207
configs:
  - config_name: ind-abs
    data_files:
      - split: train
        path: ind-abs/train-*
  - config_name: ind-bew
    data_files:
      - split: train
        path: ind-bew/train-*
  - config_name: ind-bhp
    data_files:
      - split: train
        path: ind-bhp/train-*
  - config_name: ind-btk
    data_files:
      - split: train
        path: ind-btk/train-*
  - config_name: ind-jav
    data_files:
      - split: train
        path: ind-jav/train-*
  - config_name: ind-mad
    data_files:
      - split: train
        path: ind-mad/train-*
  - config_name: ind-mak
    data_files:
      - split: train
        path: ind-mak/train-*
  - config_name: ind-min
    data_files:
      - split: train
        path: ind-min/train-*
  - config_name: ind-mui
    data_files:
      - split: train
        path: ind-mui/train-*
  - config_name: ind-rej
    data_files:
      - split: train
        path: ind-rej/train-*
  - config_name: ind-sun
    data_files:
      - split: train
        path: ind-sun/train-*
tags:
  - mteb
  - text

NusaTranslationBitextMining

An MTEB dataset
Massive Text Embedding Benchmark

NusaTranslation is a parallel dataset for machine translation on 11 Indonesia languages and English.

Task category t2t
Domains Social, Written
Reference https://huggingface.co/datasets/indonlp/nusatranslation_mt

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["NusaTranslationBitextMining"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{cahyawijaya2023nusawrites,
  author = {Cahyawijaya, Samuel and Lovenia, Holy and Koto, Fajri and Adhista, Dea and Dave, Emmanuel and Oktavianti, Sarah and Akbar, Salsabil and Lee, Jhonson and Shadieq, Nuur and Cenggoro, Tjeng Wawan and others},
  booktitle = {Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)},
  pages = {921--945},
  title = {NusaWrites: Constructing High-Quality Corpora for Underrepresented and Extremely Low-Resource Languages},
  year = {2023},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("NusaTranslationBitextMining")

desc_stats = task.metadata.descriptive_stats
{
    "train": {
        "num_samples": 50200,
        "number_of_characters": 14759870,
        "unique_pairs": 50140,
        "min_sentence1_length": 5,
        "average_sentence1_length": 145.4552390438247,
        "max_sentence1_length": 873,
        "unique_sentence1": 8258,
        "min_sentence2_length": 5,
        "average_sentence2_length": 148.56607569721115,
        "max_sentence2_length": 980,
        "unique_sentence2": 50102
    }
}

This dataset card was automatically generated using MTEB