Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 9,594 Bytes
09665d1
d08eca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09665d1
5d2ac9f
09665d1
 
 
 
 
 
 
 
 
 
 
e401c6b
 
 
 
 
 
 
 
 
 
 
 
89ac26b
 
 
 
 
 
 
 
 
 
 
 
5d2ac9f
 
 
 
 
 
 
 
 
 
 
 
8e6f98e
 
 
 
 
 
 
 
 
 
 
 
99bf25c
 
 
 
 
 
 
 
 
 
 
 
5f1186c
 
 
 
 
 
 
 
 
 
 
 
cb1552d
 
 
 
 
 
 
 
 
 
 
 
634470f
 
 
 
 
 
 
 
 
 
 
 
1a38263
 
 
 
 
 
 
 
 
 
 
 
d7ea91b
 
 
 
 
 
 
 
 
 
 
 
09665d1
 
 
 
 
e401c6b
 
 
 
89ac26b
 
 
 
5d2ac9f
 
 
 
8e6f98e
 
 
 
99bf25c
 
 
 
5f1186c
 
 
 
cb1552d
 
 
 
634470f
 
 
 
1a38263
 
 
 
d7ea91b
 
 
 
d08eca0
 
 
09665d1
d08eca0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
---
annotations_creators:
- human-annotated
language:
- abs
- bbc
- bew
- bhp
- ind
- jav
- mad
- mak
- min
- mui
- rej
- sun
license: cc-by-sa-4.0
multilinguality: multilingual
task_categories:
- translation
task_ids: []
dataset_info:
- config_name: ind-abs
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  splits:
  - name: train
    num_bytes: 303680
    num_examples: 1000
  download_size: 210436
  dataset_size: 303680
- config_name: ind-bew
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  splits:
  - name: train
    num_bytes: 2011337
    num_examples: 6600
  download_size: 1444897
  dataset_size: 2011337
- config_name: ind-bhp
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  splits:
  - name: train
    num_bytes: 269696
    num_examples: 1000
  download_size: 193136
  dataset_size: 269696
- config_name: ind-btk
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  splits:
  - name: train
    num_bytes: 1980708
    num_examples: 6600
  download_size: 1423174
  dataset_size: 1980708
- config_name: ind-jav
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  splits:
  - name: train
    num_bytes: 1975071
    num_examples: 6600
  download_size: 1421290
  dataset_size: 1975071
- config_name: ind-mad
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  splits:
  - name: train
    num_bytes: 2026101
    num_examples: 6600
  download_size: 1472021
  dataset_size: 2026101
- config_name: ind-mak
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  splits:
  - name: train
    num_bytes: 2013926
    num_examples: 6600
  download_size: 1415636
  dataset_size: 2013926
- config_name: ind-min
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  splits:
  - name: train
    num_bytes: 1989833
    num_examples: 6600
  download_size: 1410623
  dataset_size: 1989833
- config_name: ind-mui
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  splits:
  - name: train
    num_bytes: 309449
    num_examples: 1000
  download_size: 220594
  dataset_size: 309449
- config_name: ind-rej
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  splits:
  - name: train
    num_bytes: 306437
    num_examples: 1000
  download_size: 215862
  dataset_size: 306437
- config_name: ind-sun
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  splits:
  - name: train
    num_bytes: 2009207
    num_examples: 6600
  download_size: 1420271
  dataset_size: 2009207
configs:
- config_name: ind-abs
  data_files:
  - split: train
    path: ind-abs/train-*
- config_name: ind-bew
  data_files:
  - split: train
    path: ind-bew/train-*
- config_name: ind-bhp
  data_files:
  - split: train
    path: ind-bhp/train-*
- config_name: ind-btk
  data_files:
  - split: train
    path: ind-btk/train-*
- config_name: ind-jav
  data_files:
  - split: train
    path: ind-jav/train-*
- config_name: ind-mad
  data_files:
  - split: train
    path: ind-mad/train-*
- config_name: ind-mak
  data_files:
  - split: train
    path: ind-mak/train-*
- config_name: ind-min
  data_files:
  - split: train
    path: ind-min/train-*
- config_name: ind-mui
  data_files:
  - split: train
    path: ind-mui/train-*
- config_name: ind-rej
  data_files:
  - split: train
    path: ind-rej/train-*
- config_name: ind-sun
  data_files:
  - split: train
    path: ind-sun/train-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->

<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
  <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">NusaTranslationBitextMining</h1>
  <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
  <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>

NusaTranslation is a parallel dataset for machine translation on 11 Indonesia languages and English.

|               |                                             |
|---------------|---------------------------------------------|
| Task category | t2t                              |
| Domains       | Social, Written                               |
| Reference     | https://huggingface.co/datasets/indonlp/nusatranslation_mt |


## How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

```python
import mteb

task = mteb.get_tasks(["NusaTranslationBitextMining"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```

<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). 

## Citation

If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).

```bibtex

@inproceedings{cahyawijaya2023nusawrites,
  author = {Cahyawijaya, Samuel and Lovenia, Holy and Koto, Fajri and Adhista, Dea and Dave, Emmanuel and Oktavianti, Sarah and Akbar, Salsabil and Lee, Jhonson and Shadieq, Nuur and Cenggoro, Tjeng Wawan and others},
  booktitle = {Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)},
  pages = {921--945},
  title = {NusaWrites: Constructing High-Quality Corpora for Underrepresented and Extremely Low-Resource Languages},
  year = {2023},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}
```

# Dataset Statistics
<details>
  <summary> Dataset Statistics</summary>

The following code contains the descriptive statistics from the task. These can also be obtained using:

```python
import mteb

task = mteb.get_task("NusaTranslationBitextMining")

desc_stats = task.metadata.descriptive_stats
```

```json
{
    "train": {
        "num_samples": 50200,
        "number_of_characters": 14759870,
        "unique_pairs": 50140,
        "min_sentence1_length": 5,
        "average_sentence1_length": 145.4552390438247,
        "max_sentence1_length": 873,
        "unique_sentence1": 8258,
        "min_sentence2_length": 5,
        "average_sentence2_length": 148.56607569721115,
        "max_sentence2_length": 980,
        "unique_sentence2": 50102
    }
}
```

</details>

---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*