Datasets:
File size: 9,594 Bytes
09665d1 d08eca0 09665d1 5d2ac9f 09665d1 e401c6b 89ac26b 5d2ac9f 8e6f98e 99bf25c 5f1186c cb1552d 634470f 1a38263 d7ea91b 09665d1 e401c6b 89ac26b 5d2ac9f 8e6f98e 99bf25c 5f1186c cb1552d 634470f 1a38263 d7ea91b d08eca0 09665d1 d08eca0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
---
annotations_creators:
- human-annotated
language:
- abs
- bbc
- bew
- bhp
- ind
- jav
- mad
- mak
- min
- mui
- rej
- sun
license: cc-by-sa-4.0
multilinguality: multilingual
task_categories:
- translation
task_ids: []
dataset_info:
- config_name: ind-abs
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
splits:
- name: train
num_bytes: 303680
num_examples: 1000
download_size: 210436
dataset_size: 303680
- config_name: ind-bew
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
splits:
- name: train
num_bytes: 2011337
num_examples: 6600
download_size: 1444897
dataset_size: 2011337
- config_name: ind-bhp
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
splits:
- name: train
num_bytes: 269696
num_examples: 1000
download_size: 193136
dataset_size: 269696
- config_name: ind-btk
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
splits:
- name: train
num_bytes: 1980708
num_examples: 6600
download_size: 1423174
dataset_size: 1980708
- config_name: ind-jav
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
splits:
- name: train
num_bytes: 1975071
num_examples: 6600
download_size: 1421290
dataset_size: 1975071
- config_name: ind-mad
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
splits:
- name: train
num_bytes: 2026101
num_examples: 6600
download_size: 1472021
dataset_size: 2026101
- config_name: ind-mak
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
splits:
- name: train
num_bytes: 2013926
num_examples: 6600
download_size: 1415636
dataset_size: 2013926
- config_name: ind-min
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
splits:
- name: train
num_bytes: 1989833
num_examples: 6600
download_size: 1410623
dataset_size: 1989833
- config_name: ind-mui
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
splits:
- name: train
num_bytes: 309449
num_examples: 1000
download_size: 220594
dataset_size: 309449
- config_name: ind-rej
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
splits:
- name: train
num_bytes: 306437
num_examples: 1000
download_size: 215862
dataset_size: 306437
- config_name: ind-sun
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
splits:
- name: train
num_bytes: 2009207
num_examples: 6600
download_size: 1420271
dataset_size: 2009207
configs:
- config_name: ind-abs
data_files:
- split: train
path: ind-abs/train-*
- config_name: ind-bew
data_files:
- split: train
path: ind-bew/train-*
- config_name: ind-bhp
data_files:
- split: train
path: ind-bhp/train-*
- config_name: ind-btk
data_files:
- split: train
path: ind-btk/train-*
- config_name: ind-jav
data_files:
- split: train
path: ind-jav/train-*
- config_name: ind-mad
data_files:
- split: train
path: ind-mad/train-*
- config_name: ind-mak
data_files:
- split: train
path: ind-mak/train-*
- config_name: ind-min
data_files:
- split: train
path: ind-min/train-*
- config_name: ind-mui
data_files:
- split: train
path: ind-mui/train-*
- config_name: ind-rej
data_files:
- split: train
path: ind-rej/train-*
- config_name: ind-sun
data_files:
- split: train
path: ind-sun/train-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">NusaTranslationBitextMining</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
NusaTranslation is a parallel dataset for machine translation on 11 Indonesia languages and English.
| | |
|---------------|---------------------------------------------|
| Task category | t2t |
| Domains | Social, Written |
| Reference | https://huggingface.co/datasets/indonlp/nusatranslation_mt |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["NusaTranslationBitextMining"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@inproceedings{cahyawijaya2023nusawrites,
author = {Cahyawijaya, Samuel and Lovenia, Holy and Koto, Fajri and Adhista, Dea and Dave, Emmanuel and Oktavianti, Sarah and Akbar, Salsabil and Lee, Jhonson and Shadieq, Nuur and Cenggoro, Tjeng Wawan and others},
booktitle = {Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)},
pages = {921--945},
title = {NusaWrites: Constructing High-Quality Corpora for Underrepresented and Extremely Low-Resource Languages},
year = {2023},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("NusaTranslationBitextMining")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"train": {
"num_samples": 50200,
"number_of_characters": 14759870,
"unique_pairs": 50140,
"min_sentence1_length": 5,
"average_sentence1_length": 145.4552390438247,
"max_sentence1_length": 873,
"unique_sentence1": 8258,
"min_sentence2_length": 5,
"average_sentence2_length": 148.56607569721115,
"max_sentence2_length": 980,
"unique_sentence2": 50102
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)* |