Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
d08eca0
·
verified ·
1 Parent(s): d7ea91b

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +129 -0
README.md CHANGED
@@ -1,4 +1,24 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  - config_name: ind-abs
4
  features:
@@ -177,4 +197,113 @@ configs:
177
  data_files:
178
  - split: train
179
  path: ind-sun/train-*
 
 
 
180
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - human-annotated
4
+ language:
5
+ - abs
6
+ - bbc
7
+ - bew
8
+ - bhp
9
+ - ind
10
+ - jav
11
+ - mad
12
+ - mak
13
+ - min
14
+ - mui
15
+ - rej
16
+ - sun
17
+ license: cc-by-sa-4.0
18
+ multilinguality: multilingual
19
+ task_categories:
20
+ - translation
21
+ task_ids: []
22
  dataset_info:
23
  - config_name: ind-abs
24
  features:
 
197
  data_files:
198
  - split: train
199
  path: ind-sun/train-*
200
+ tags:
201
+ - mteb
202
+ - text
203
  ---
204
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
205
+
206
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
207
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">NusaTranslationBitextMining</h1>
208
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
209
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
210
+ </div>
211
+
212
+ NusaTranslation is a parallel dataset for machine translation on 11 Indonesia languages and English.
213
+
214
+ | | |
215
+ |---------------|---------------------------------------------|
216
+ | Task category | t2t |
217
+ | Domains | Social, Written |
218
+ | Reference | https://huggingface.co/datasets/indonlp/nusatranslation_mt |
219
+
220
+
221
+ ## How to evaluate on this task
222
+
223
+ You can evaluate an embedding model on this dataset using the following code:
224
+
225
+ ```python
226
+ import mteb
227
+
228
+ task = mteb.get_tasks(["NusaTranslationBitextMining"])
229
+ evaluator = mteb.MTEB(task)
230
+
231
+ model = mteb.get_model(YOUR_MODEL)
232
+ evaluator.run(model)
233
+ ```
234
+
235
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
236
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
237
+
238
+ ## Citation
239
+
240
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
241
+
242
+ ```bibtex
243
+
244
+ @inproceedings{cahyawijaya2023nusawrites,
245
+ author = {Cahyawijaya, Samuel and Lovenia, Holy and Koto, Fajri and Adhista, Dea and Dave, Emmanuel and Oktavianti, Sarah and Akbar, Salsabil and Lee, Jhonson and Shadieq, Nuur and Cenggoro, Tjeng Wawan and others},
246
+ booktitle = {Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)},
247
+ pages = {921--945},
248
+ title = {NusaWrites: Constructing High-Quality Corpora for Underrepresented and Extremely Low-Resource Languages},
249
+ year = {2023},
250
+ }
251
+
252
+
253
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
254
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
255
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
256
+ publisher = {arXiv},
257
+ journal={arXiv preprint arXiv:2502.13595},
258
+ year={2025},
259
+ url={https://arxiv.org/abs/2502.13595},
260
+ doi = {10.48550/arXiv.2502.13595},
261
+ }
262
+
263
+ @article{muennighoff2022mteb,
264
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
265
+ title = {MTEB: Massive Text Embedding Benchmark},
266
+ publisher = {arXiv},
267
+ journal={arXiv preprint arXiv:2210.07316},
268
+ year = {2022}
269
+ url = {https://arxiv.org/abs/2210.07316},
270
+ doi = {10.48550/ARXIV.2210.07316},
271
+ }
272
+ ```
273
+
274
+ # Dataset Statistics
275
+ <details>
276
+ <summary> Dataset Statistics</summary>
277
+
278
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
279
+
280
+ ```python
281
+ import mteb
282
+
283
+ task = mteb.get_task("NusaTranslationBitextMining")
284
+
285
+ desc_stats = task.metadata.descriptive_stats
286
+ ```
287
+
288
+ ```json
289
+ {
290
+ "train": {
291
+ "num_samples": 50200,
292
+ "number_of_characters": 14759870,
293
+ "unique_pairs": 50140,
294
+ "min_sentence1_length": 5,
295
+ "average_sentence1_length": 145.4552390438247,
296
+ "max_sentence1_length": 873,
297
+ "unique_sentence1": 8258,
298
+ "min_sentence2_length": 5,
299
+ "average_sentence2_length": 148.56607569721115,
300
+ "max_sentence2_length": 980,
301
+ "unique_sentence2": 50102
302
+ }
303
+ }
304
+ ```
305
+
306
+ </details>
307
+
308
+ ---
309
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*