--- annotations_creators: - human-annotated language: - abs - bbc - bew - bhp - ind - jav - mad - mak - min - mui - rej - sun license: cc-by-sa-4.0 multilinguality: multilingual task_categories: - translation task_ids: [] dataset_info: - config_name: ind-abs features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: train num_bytes: 303680 num_examples: 1000 download_size: 210436 dataset_size: 303680 - config_name: ind-bew features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: train num_bytes: 2011337 num_examples: 6600 download_size: 1444897 dataset_size: 2011337 - config_name: ind-bhp features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: train num_bytes: 269696 num_examples: 1000 download_size: 193136 dataset_size: 269696 - config_name: ind-btk features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: train num_bytes: 1980708 num_examples: 6600 download_size: 1423174 dataset_size: 1980708 - config_name: ind-jav features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: train num_bytes: 1975071 num_examples: 6600 download_size: 1421290 dataset_size: 1975071 - config_name: ind-mad features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: train num_bytes: 2026101 num_examples: 6600 download_size: 1472021 dataset_size: 2026101 - config_name: ind-mak features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: train num_bytes: 2013926 num_examples: 6600 download_size: 1415636 dataset_size: 2013926 - config_name: ind-min features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: train num_bytes: 1989833 num_examples: 6600 download_size: 1410623 dataset_size: 1989833 - config_name: ind-mui features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: train num_bytes: 309449 num_examples: 1000 download_size: 220594 dataset_size: 309449 - config_name: ind-rej features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: train num_bytes: 306437 num_examples: 1000 download_size: 215862 dataset_size: 306437 - config_name: ind-sun features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: train num_bytes: 2009207 num_examples: 6600 download_size: 1420271 dataset_size: 2009207 configs: - config_name: ind-abs data_files: - split: train path: ind-abs/train-* - config_name: ind-bew data_files: - split: train path: ind-bew/train-* - config_name: ind-bhp data_files: - split: train path: ind-bhp/train-* - config_name: ind-btk data_files: - split: train path: ind-btk/train-* - config_name: ind-jav data_files: - split: train path: ind-jav/train-* - config_name: ind-mad data_files: - split: train path: ind-mad/train-* - config_name: ind-mak data_files: - split: train path: ind-mak/train-* - config_name: ind-min data_files: - split: train path: ind-min/train-* - config_name: ind-mui data_files: - split: train path: ind-mui/train-* - config_name: ind-rej data_files: - split: train path: ind-rej/train-* - config_name: ind-sun data_files: - split: train path: ind-sun/train-* tags: - mteb - text ---
NusaTranslation is a parallel dataset for machine translation on 11 Indonesia languages and English. | | | |---------------|---------------------------------------------| | Task category | t2t | | Domains | Social, Written | | Reference | https://huggingface.co/datasets/indonlp/nusatranslation_mt | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["NusaTranslationBitextMining"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @inproceedings{cahyawijaya2023nusawrites, author = {Cahyawijaya, Samuel and Lovenia, Holy and Koto, Fajri and Adhista, Dea and Dave, Emmanuel and Oktavianti, Sarah and Akbar, Salsabil and Lee, Jhonson and Shadieq, Nuur and Cenggoro, Tjeng Wawan and others}, booktitle = {Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)}, pages = {921--945}, title = {NusaWrites: Constructing High-Quality Corpora for Underrepresented and Extremely Low-Resource Languages}, year = {2023}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics