|
--- |
|
library_name: peft |
|
license: other |
|
base_model: axolotl-quants/Llama-4-Scout-17B-16E-Linearized-bnb-nf4-bf16 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- mlabonne/FineTome-100k |
|
model-index: |
|
- name: outputs/out |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.8.0` |
|
```yaml |
|
base_model: axolotl-quants/Llama-4-Scout-17B-16E-Linearized-bnb-nf4-bf16 |
|
model_type: Llama4ForConditionalGeneration |
|
# Automatically upload checkpoint and final model to HF |
|
# hub_model_id: username/custom_model_name |
|
|
|
strict: false |
|
|
|
# torch_compile: true |
|
plugins: |
|
- axolotl.integrations.liger.LigerPlugin |
|
|
|
liger_glu_activation: true |
|
liger_rms_norm: true |
|
liger_layer_norm: true |
|
|
|
llama4_linearized_experts: true |
|
load_in_4bit: true |
|
adapter: qlora |
|
lora_r: 32 |
|
lora_alpha: 64 |
|
lora_target_modules: |
|
- self_attn.q_proj |
|
- self_attn.k_proj |
|
- self_attn.v_proj |
|
- self_attn.o_proj |
|
- shared_expert.gate_proj |
|
- shared_expert.up_proj |
|
- shared_expert.down_proj |
|
# - experts.gate_projs.[0-9]+$ |
|
# - experts.up_projs.[0-9]+$ |
|
# - experts.down_projs.[0-9]+$ |
|
lora_modules_to_save: |
|
# - lm_head |
|
# - embed_tokens |
|
|
|
chat_template: llama4 |
|
datasets: |
|
- path: mlabonne/FineTome-100k |
|
type: chat_template |
|
split: train[:20%] |
|
field_messages: conversations |
|
message_property_mappings: |
|
role: from |
|
content: value |
|
|
|
dataset_prepared_path: last_run_prepared |
|
val_set_size: 0.0 |
|
output_dir: ./outputs/out |
|
|
|
sequence_len: 8192 |
|
sample_packing: true |
|
pad_to_sequence_len: true |
|
|
|
wandb_project: |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 1 |
|
micro_batch_size: 2 |
|
num_epochs: 3 |
|
optimizer: adamw_torch_fused |
|
lr_scheduler: cosine |
|
learning_rate: 1e-4 |
|
|
|
bf16: true |
|
tf32: true |
|
|
|
logging_steps: 1 |
|
flash_attention: true |
|
|
|
warmup_steps: 10 |
|
evals_per_epoch: 1 |
|
saves_per_epoch: 1 |
|
weight_decay: 0.0 |
|
fsdp: |
|
- auto_wrap |
|
- full_shard |
|
fsdp_config: |
|
fsdp_transformer_layer_cls_to_wrap: Llama4TextDecoderLayer |
|
fsdp_limit_all_gathers: true |
|
fsdp_sync_module_states: true |
|
fsdp_offload_params: true |
|
fsdp_use_orig_params: false |
|
fsdp_cpu_ram_efficient_loading: true |
|
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP |
|
fsdp_state_dict_type: FULL_STATE_DICT |
|
fsdp_sharding_strategy: FULL_SHARD |
|
fsdp_activation_checkpointing: true |
|
special_tokens: |
|
pad_token: <|finetune_right_pad_id|> |
|
eos_token: <|eot|> |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# outputs/out |
|
|
|
This model is a fine-tuned version of [axolotl-quants/Llama-4-Scout-17B-16E-Linearized-bnb-nf4-bf16](https://huggingface.co/axolotl-quants/Llama-4-Scout-17B-16E-Linearized-bnb-nf4-bf16) on the mlabonne/FineTome-100k dataset. |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- total_train_batch_size: 16 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.15.1 |
|
- Transformers 4.51.1 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.5.0 |
|
- Tokenizers 0.21.1 |