winglian commited on
Commit
1901025
·
verified ·
1 Parent(s): cbde317

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: other
4
+ base_model: axolotl-quants/Llama-4-Scout-17B-16E-Linearized-bnb-nf4-bf16
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - mlabonne/FineTome-100k
9
+ model-index:
10
+ - name: outputs/out
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
18
+ <details><summary>See axolotl config</summary>
19
+
20
+ axolotl version: `0.8.0`
21
+ ```yaml
22
+ base_model: axolotl-quants/Llama-4-Scout-17B-16E-Linearized-bnb-nf4-bf16
23
+ model_type: Llama4ForConditionalGeneration
24
+ # Automatically upload checkpoint and final model to HF
25
+ # hub_model_id: username/custom_model_name
26
+
27
+ strict: false
28
+
29
+ # torch_compile: true
30
+ plugins:
31
+ - axolotl.integrations.liger.LigerPlugin
32
+
33
+ liger_glu_activation: true
34
+ liger_rms_norm: true
35
+ liger_layer_norm: true
36
+
37
+ llama4_linearized_experts: true
38
+ load_in_4bit: true
39
+ adapter: qlora
40
+ lora_r: 32
41
+ lora_alpha: 64
42
+ lora_target_modules:
43
+ - self_attn.q_proj
44
+ - self_attn.k_proj
45
+ - self_attn.v_proj
46
+ - self_attn.o_proj
47
+ - shared_expert.gate_proj
48
+ - shared_expert.up_proj
49
+ - shared_expert.down_proj
50
+ # - experts.gate_projs.[0-9]+$
51
+ # - experts.up_projs.[0-9]+$
52
+ # - experts.down_projs.[0-9]+$
53
+ lora_modules_to_save:
54
+ # - lm_head
55
+ # - embed_tokens
56
+
57
+ chat_template: llama4
58
+ datasets:
59
+ - path: mlabonne/FineTome-100k
60
+ type: chat_template
61
+ split: train[:20%]
62
+ field_messages: conversations
63
+ message_property_mappings:
64
+ role: from
65
+ content: value
66
+
67
+ dataset_prepared_path: last_run_prepared
68
+ val_set_size: 0.0
69
+ output_dir: ./outputs/out
70
+
71
+ sequence_len: 8192
72
+ sample_packing: true
73
+ pad_to_sequence_len: true
74
+
75
+ wandb_project:
76
+ wandb_entity:
77
+ wandb_watch:
78
+ wandb_name:
79
+ wandb_log_model:
80
+
81
+ gradient_accumulation_steps: 1
82
+ micro_batch_size: 2
83
+ num_epochs: 3
84
+ optimizer: adamw_torch_fused
85
+ lr_scheduler: cosine
86
+ learning_rate: 1e-4
87
+
88
+ bf16: true
89
+ tf32: true
90
+
91
+ logging_steps: 1
92
+ flash_attention: true
93
+
94
+ warmup_steps: 10
95
+ evals_per_epoch: 1
96
+ saves_per_epoch: 1
97
+ weight_decay: 0.0
98
+ fsdp:
99
+ - auto_wrap
100
+ - full_shard
101
+ fsdp_config:
102
+ fsdp_transformer_layer_cls_to_wrap: Llama4TextDecoderLayer
103
+ fsdp_limit_all_gathers: true
104
+ fsdp_sync_module_states: true
105
+ fsdp_offload_params: true
106
+ fsdp_use_orig_params: false
107
+ fsdp_cpu_ram_efficient_loading: true
108
+ fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
109
+ fsdp_state_dict_type: FULL_STATE_DICT
110
+ fsdp_sharding_strategy: FULL_SHARD
111
+ fsdp_activation_checkpointing: true
112
+ special_tokens:
113
+ pad_token: <|finetune_right_pad_id|>
114
+ eos_token: <|eot|>
115
+
116
+ ```
117
+
118
+ </details><br>
119
+
120
+ # outputs/out
121
+
122
+ This model is a fine-tuned version of [axolotl-quants/Llama-4-Scout-17B-16E-Linearized-bnb-nf4-bf16](https://huggingface.co/axolotl-quants/Llama-4-Scout-17B-16E-Linearized-bnb-nf4-bf16) on the mlabonne/FineTome-100k dataset.
123
+
124
+ ## Model description
125
+
126
+ More information needed
127
+
128
+ ## Intended uses & limitations
129
+
130
+ More information needed
131
+
132
+ ## Training and evaluation data
133
+
134
+ More information needed
135
+
136
+ ## Training procedure
137
+
138
+ ### Training hyperparameters
139
+
140
+ The following hyperparameters were used during training:
141
+ - learning_rate: 0.0001
142
+ - train_batch_size: 2
143
+ - eval_batch_size: 2
144
+ - seed: 42
145
+ - distributed_type: multi-GPU
146
+ - num_devices: 8
147
+ - total_train_batch_size: 16
148
+ - total_eval_batch_size: 16
149
+ - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
150
+ - lr_scheduler_type: cosine
151
+ - lr_scheduler_warmup_steps: 10
152
+ - num_epochs: 3.0
153
+
154
+ ### Training results
155
+
156
+
157
+
158
+ ### Framework versions
159
+
160
+ - PEFT 0.15.1
161
+ - Transformers 4.51.1
162
+ - Pytorch 2.6.0+cu124
163
+ - Datasets 3.5.0
164
+ - Tokenizers 0.21.1
adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "axolotl-quants/Llama-4-Scout-17B-16E-Linearized-bnb-nf4-bf16",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": null,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 64,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.0,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 32,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "self_attn.o_proj",
28
+ "self_attn.v_proj",
29
+ "shared_expert.gate_proj",
30
+ "self_attn.q_proj",
31
+ "self_attn.k_proj",
32
+ "shared_expert.up_proj",
33
+ "shared_expert.down_proj"
34
+ ],
35
+ "task_type": "CAUSAL_LM",
36
+ "trainable_token_indices": null,
37
+ "use_dora": false,
38
+ "use_rslora": false
39
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:649ac65f3b96ae7f8dc3cbec6a97a5e1b5972d28f45a906475b9dd26e1b079d7
3
+ size 495862304
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %} \n {%- if messages[0]['content'] is string %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- else %}\n {#- FIXME: The processor requires an array, always. #}\n {%- set system_message = messages[0]['content'][0]['text']|trim %}\n {%- endif %}\n {%- set messages = messages[1:] %}\n {%- set user_supplied_system_message = true %}\n{%- else %}\n {%- set system_message = \"\" %}\n {%- set user_supplied_system_message = false %}\n{%- endif %}\n\n{#- System message if the user supplied one #}\n{%- if user_supplied_system_message %}\n {{- \"<|header_start|>system<|header_end|>\n\n\" }}\n {%- if tools is not none %}\n {{- \"Environment: ipython\n\" }}\n {%- endif %}\n {%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\n\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\n\n\" }}\n {%- endfor %}\n {%- endif %}\n {{- system_message }}\n {{- \"<|eot|>\" }}\n{%- endif %}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|header_start|>user<|header_end|>\n\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\n\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\n\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\n\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|header_start|>' + message['role'] + '<|header_end|>\n\n' }}\n {%- if message['content'] is string %}\n {{- message['content'] }}\n {%- else %}\n {%- for content in message['content'] %}\n {%- if content['type'] == 'image' %}\n {{- '<|image|>' }}\n {%- elif content['type'] == 'text' %}\n {{- content['text'] }}\n {%- endif %}\n {%- endfor %}\n {%- endif %}\n {{- \"<|eot|>\" }}\n {%- elif 'tool_calls' in message and message.tool_calls|length > 0 %}\n {{- '<|header_start|>assistant<|header_end|>\n\n' -}}\n {{- '<|python_start|>' }}\n {%- if message['content'] is string %}\n {{- message['content'] }}\n {%- else %}\n {%- for content in message['content'] %}\n {%- if content['type'] == 'image' %}\n {{- '<|image|>' }}\n {%- elif content['type'] == 'text' %}\n {{- content['text'] }}\n {%- endif %}\n {%- endfor %}\n {%- endif %}\n {{- '<|python_end|>' }}\n {%- for tool_call in message.tool_calls %}\n {{- '{\"name\": \"' + tool_call.function.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.function.arguments | tojson }}\n {{- \"}\" }}\n {%- endfor %}\n {{- \"<|eot|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|header_start|>ipython<|header_end|>\n\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|header_start|>assistant<|header_end|>\n\n' }}\n{%- endif %}\n"
3
+ }
config.json ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_attn_implementation_autoset": true,
3
+ "architectures": [
4
+ "Llama4ForConditionalGeneration"
5
+ ],
6
+ "boi_token_index": 200080,
7
+ "eoi_token_index": 200081,
8
+ "image_token_index": 200092,
9
+ "model_type": "llama4",
10
+ "quantization_config": {
11
+ "_load_in_4bit": true,
12
+ "_load_in_8bit": false,
13
+ "bnb_4bit_compute_dtype": "bfloat16",
14
+ "bnb_4bit_quant_storage": "bfloat16",
15
+ "bnb_4bit_quant_type": "nf4",
16
+ "bnb_4bit_use_double_quant": true,
17
+ "llm_int8_enable_fp32_cpu_offload": false,
18
+ "llm_int8_has_fp16_weight": false,
19
+ "llm_int8_skip_modules": null,
20
+ "llm_int8_threshold": 6.0,
21
+ "load_in_4bit": true,
22
+ "load_in_8bit": false,
23
+ "quant_method": "bitsandbytes"
24
+ },
25
+ "text_config": {
26
+ "_attn_implementation_autoset": true,
27
+ "attention_bias": false,
28
+ "attention_chunk_size": 8192,
29
+ "attention_dropout": 0.0,
30
+ "attn_scale": 0.1,
31
+ "attn_temperature_tuning": 4,
32
+ "bos_token_id": 200000,
33
+ "cache_implementation": "hybrid",
34
+ "eos_token_id": 200001,
35
+ "floor_scale": 8192,
36
+ "for_llm_compressor": false,
37
+ "head_dim": 128,
38
+ "hidden_act": "silu",
39
+ "hidden_size": 5120,
40
+ "initializer_range": 0.02,
41
+ "interleave_moe_layer_step": 1,
42
+ "intermediate_size": 8192,
43
+ "intermediate_size_mlp": 16384,
44
+ "max_position_embeddings": 262144,
45
+ "model_type": "llama4_text",
46
+ "moe_layers": [
47
+ 0,
48
+ 1,
49
+ 2,
50
+ 3,
51
+ 4,
52
+ 5,
53
+ 6,
54
+ 7,
55
+ 8,
56
+ 9,
57
+ 10,
58
+ 11,
59
+ 12,
60
+ 13,
61
+ 14,
62
+ 15,
63
+ 16,
64
+ 17,
65
+ 18,
66
+ 19,
67
+ 20,
68
+ 21,
69
+ 22,
70
+ 23,
71
+ 24,
72
+ 25,
73
+ 26,
74
+ 27,
75
+ 28,
76
+ 29,
77
+ 30,
78
+ 31,
79
+ 32,
80
+ 33,
81
+ 34,
82
+ 35,
83
+ 36,
84
+ 37,
85
+ 38,
86
+ 39,
87
+ 40,
88
+ 41,
89
+ 42,
90
+ 43,
91
+ 44,
92
+ 45,
93
+ 46,
94
+ 47
95
+ ],
96
+ "no_rope_layers": [
97
+ 1,
98
+ 1,
99
+ 1,
100
+ 0,
101
+ 1,
102
+ 1,
103
+ 1,
104
+ 0,
105
+ 1,
106
+ 1,
107
+ 1,
108
+ 0,
109
+ 1,
110
+ 1,
111
+ 1,
112
+ 0,
113
+ 1,
114
+ 1,
115
+ 1,
116
+ 0,
117
+ 1,
118
+ 1,
119
+ 1,
120
+ 0,
121
+ 1,
122
+ 1,
123
+ 1,
124
+ 0,
125
+ 1,
126
+ 1,
127
+ 1,
128
+ 0,
129
+ 1,
130
+ 1,
131
+ 1,
132
+ 0,
133
+ 1,
134
+ 1,
135
+ 1,
136
+ 0,
137
+ 1,
138
+ 1,
139
+ 1,
140
+ 0,
141
+ 1,
142
+ 1,
143
+ 1,
144
+ 0
145
+ ],
146
+ "num_attention_heads": 40,
147
+ "num_experts_per_tok": 1,
148
+ "num_hidden_layers": 48,
149
+ "num_key_value_heads": 8,
150
+ "num_local_experts": 16,
151
+ "output_router_logits": false,
152
+ "pad_token_id": 200018,
153
+ "rms_norm_eps": 1e-05,
154
+ "rope_scaling": {
155
+ "factor": 8.0,
156
+ "high_freq_factor": 4.0,
157
+ "low_freq_factor": 1.0,
158
+ "original_max_position_embeddings": 8192,
159
+ "rope_type": "llama3"
160
+ },
161
+ "rope_theta": 500000.0,
162
+ "router_aux_loss_coef": 0.001,
163
+ "router_jitter_noise": 0.0,
164
+ "torch_dtype": "bfloat16",
165
+ "use_cache": false,
166
+ "use_qk_norm": true,
167
+ "vocab_size": 202048
168
+ },
169
+ "tie_word_embeddings": false,
170
+ "torch_dtype": "bfloat16",
171
+ "transformers_version": "4.51.1",
172
+ "vision_config": {
173
+ "_attn_implementation_autoset": true,
174
+ "attention_dropout": 0.0,
175
+ "hidden_act": "gelu",
176
+ "hidden_size": 1408,
177
+ "image_size": 336,
178
+ "initializer_range": 0.02,
179
+ "intermediate_size": 5632,
180
+ "model_type": "llama4_vision_model",
181
+ "multi_modal_projector_bias": false,
182
+ "norm_eps": 1e-05,
183
+ "num_attention_heads": 16,
184
+ "num_channels": 3,
185
+ "num_hidden_layers": 34,
186
+ "patch_size": 14,
187
+ "pixel_shuffle_ratio": 0.5,
188
+ "projector_dropout": 0.0,
189
+ "projector_input_dim": 4096,
190
+ "projector_output_dim": 4096,
191
+ "rope_theta": 10000,
192
+ "torch_dtype": "bfloat16",
193
+ "vision_feature_layer": -1,
194
+ "vision_feature_select_strategy": "default",
195
+ "vision_output_dim": 4096
196
+ }
197
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": null,
3
+ "data_format": "channels_first",
4
+ "default_to_square": true,
5
+ "device": null,
6
+ "do_center_crop": null,
7
+ "do_convert_rgb": true,
8
+ "do_normalize": true,
9
+ "do_rescale": true,
10
+ "do_resize": true,
11
+ "image_mean": [
12
+ 0.5,
13
+ 0.5,
14
+ 0.5
15
+ ],
16
+ "image_processor_type": "Llama4ImageProcessorFast",
17
+ "image_std": [
18
+ 0.5,
19
+ 0.5,
20
+ 0.5
21
+ ],
22
+ "input_data_format": null,
23
+ "max_patches": 16,
24
+ "processor_class": "Llama4Processor",
25
+ "resample": 2,
26
+ "rescale_factor": 0.00392156862745098,
27
+ "resize_to_max_canvas": false,
28
+ "return_tensors": null,
29
+ "size": {
30
+ "height": 336,
31
+ "width": 336
32
+ }
33
+ }
processor_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "fake_image_token": "<|image|>",
3
+ "image_token": "<|image|>",
4
+ "patch_size": 14,
5
+ "processor_class": "Llama4Processor"
6
+ }
scout-qlora-fsdp1.yaml ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base_model: axolotl-quants/Llama-4-Scout-17B-16E-Linearized-bnb-nf4-bf16
2
+ model_type: Llama4ForConditionalGeneration
3
+ # Automatically upload checkpoint and final model to HF
4
+ # hub_model_id: username/custom_model_name
5
+
6
+ strict: false
7
+
8
+ # torch_compile: true
9
+ plugins:
10
+ - axolotl.integrations.liger.LigerPlugin
11
+
12
+ liger_glu_activation: true
13
+ liger_rms_norm: true
14
+ liger_layer_norm: true
15
+
16
+ llama4_linearized_experts: true
17
+ load_in_4bit: true
18
+ adapter: qlora
19
+ lora_r: 32
20
+ lora_alpha: 64
21
+ lora_target_modules:
22
+ - self_attn.q_proj
23
+ - self_attn.k_proj
24
+ - self_attn.v_proj
25
+ - self_attn.o_proj
26
+ - shared_expert.gate_proj
27
+ - shared_expert.up_proj
28
+ - shared_expert.down_proj
29
+ # - experts.gate_projs.[0-9]+$
30
+ # - experts.up_projs.[0-9]+$
31
+ # - experts.down_projs.[0-9]+$
32
+ lora_modules_to_save:
33
+ # - lm_head
34
+ # - embed_tokens
35
+
36
+ chat_template: llama4
37
+ datasets:
38
+ - path: mlabonne/FineTome-100k
39
+ type: chat_template
40
+ split: train[:20%]
41
+ field_messages: conversations
42
+ message_property_mappings:
43
+ role: from
44
+ content: value
45
+
46
+ dataset_prepared_path: last_run_prepared
47
+ val_set_size: 0.0
48
+ output_dir: ./outputs/out
49
+
50
+ sequence_len: 8192
51
+ sample_packing: true
52
+ pad_to_sequence_len: true
53
+
54
+ wandb_project:
55
+ wandb_entity:
56
+ wandb_watch:
57
+ wandb_name:
58
+ wandb_log_model:
59
+
60
+ gradient_accumulation_steps: 1
61
+ micro_batch_size: 2
62
+ num_epochs: 3
63
+ optimizer: adamw_torch_fused
64
+ lr_scheduler: cosine
65
+ learning_rate: 1e-4
66
+
67
+ bf16: true
68
+ tf32: true
69
+
70
+ logging_steps: 1
71
+ flash_attention: true
72
+
73
+ warmup_steps: 10
74
+ evals_per_epoch: 1
75
+ saves_per_epoch: 1
76
+ weight_decay: 0.0
77
+ fsdp:
78
+ - auto_wrap
79
+ - full_shard
80
+ fsdp_config:
81
+ fsdp_transformer_layer_cls_to_wrap: Llama4TextDecoderLayer
82
+ fsdp_limit_all_gathers: true
83
+ fsdp_sync_module_states: true
84
+ fsdp_offload_params: true
85
+ fsdp_use_orig_params: false
86
+ fsdp_cpu_ram_efficient_loading: true
87
+ fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
88
+ fsdp_state_dict_type: FULL_STATE_DICT
89
+ fsdp_sharding_strategy: FULL_SHARD
90
+ fsdp_activation_checkpointing: true
91
+ special_tokens:
92
+ pad_token: <|finetune_right_pad_id|>
93
+ eos_token: <|eot|>
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|finetune_right_pad_id|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:172c9eb4beafc72601690da3ccfcede5c2e6806a8d5ec1fca33e22acea8023a4
3
+ size 27948578
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f13ea91ea4b5dc7acf92da33df85eca7c2f53d25be0fab39b3b30aa671fc2c0
3
+ size 11960