File size: 3,822 Bytes
1901025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
---
library_name: peft
license: other
base_model: axolotl-quants/Llama-4-Scout-17B-16E-Linearized-bnb-nf4-bf16
tags:
- generated_from_trainer
datasets:
- mlabonne/FineTome-100k
model-index:
- name: outputs/out
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.8.0`
```yaml
base_model: axolotl-quants/Llama-4-Scout-17B-16E-Linearized-bnb-nf4-bf16
model_type: Llama4ForConditionalGeneration
  # Automatically upload checkpoint and final model to HF
  # hub_model_id: username/custom_model_name

strict: false

# torch_compile: true
plugins:
  - axolotl.integrations.liger.LigerPlugin

liger_glu_activation: true
liger_rms_norm: true
liger_layer_norm: true

llama4_linearized_experts: true
load_in_4bit: true
adapter: qlora
lora_r: 32
lora_alpha: 64
lora_target_modules:
  - self_attn.q_proj
  - self_attn.k_proj
  - self_attn.v_proj
  - self_attn.o_proj
  - shared_expert.gate_proj
  - shared_expert.up_proj
  - shared_expert.down_proj
    # - experts.gate_projs.[0-9]+$
    # - experts.up_projs.[0-9]+$
    # - experts.down_projs.[0-9]+$
lora_modules_to_save:
  # - lm_head
  # - embed_tokens

chat_template: llama4
datasets:
  - path: mlabonne/FineTome-100k
    type: chat_template
    split: train[:20%]
    field_messages: conversations
    message_property_mappings:
      role: from
      content: value

dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./outputs/out

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 1e-4

bf16: true
tf32: true

logging_steps: 1
flash_attention: true

warmup_steps: 10
evals_per_epoch: 1
saves_per_epoch: 1
weight_decay: 0.0
fsdp:
  - auto_wrap
  - full_shard
fsdp_config:
  fsdp_transformer_layer_cls_to_wrap: Llama4TextDecoderLayer
  fsdp_limit_all_gathers: true
  fsdp_sync_module_states: true
  fsdp_offload_params: true
  fsdp_use_orig_params: false
  fsdp_cpu_ram_efficient_loading: true
  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_sharding_strategy: FULL_SHARD
  fsdp_activation_checkpointing: true
special_tokens:
  pad_token: <|finetune_right_pad_id|>
  eos_token: <|eot|>

```

</details><br>

# outputs/out

This model is a fine-tuned version of [axolotl-quants/Llama-4-Scout-17B-16E-Linearized-bnb-nf4-bf16](https://huggingface.co/axolotl-quants/Llama-4-Scout-17B-16E-Linearized-bnb-nf4-bf16) on the mlabonne/FineTome-100k dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3.0

### Training results



### Framework versions

- PEFT 0.15.1
- Transformers 4.51.1
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1