File size: 3,822 Bytes
1901025 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
---
library_name: peft
license: other
base_model: axolotl-quants/Llama-4-Scout-17B-16E-Linearized-bnb-nf4-bf16
tags:
- generated_from_trainer
datasets:
- mlabonne/FineTome-100k
model-index:
- name: outputs/out
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.8.0`
```yaml
base_model: axolotl-quants/Llama-4-Scout-17B-16E-Linearized-bnb-nf4-bf16
model_type: Llama4ForConditionalGeneration
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
strict: false
# torch_compile: true
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_glu_activation: true
liger_rms_norm: true
liger_layer_norm: true
llama4_linearized_experts: true
load_in_4bit: true
adapter: qlora
lora_r: 32
lora_alpha: 64
lora_target_modules:
- self_attn.q_proj
- self_attn.k_proj
- self_attn.v_proj
- self_attn.o_proj
- shared_expert.gate_proj
- shared_expert.up_proj
- shared_expert.down_proj
# - experts.gate_projs.[0-9]+$
# - experts.up_projs.[0-9]+$
# - experts.down_projs.[0-9]+$
lora_modules_to_save:
# - lm_head
# - embed_tokens
chat_template: llama4
datasets:
- path: mlabonne/FineTome-100k
type: chat_template
split: train[:20%]
field_messages: conversations
message_property_mappings:
role: from
content: value
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./outputs/out
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 1e-4
bf16: true
tf32: true
logging_steps: 1
flash_attention: true
warmup_steps: 10
evals_per_epoch: 1
saves_per_epoch: 1
weight_decay: 0.0
fsdp:
- auto_wrap
- full_shard
fsdp_config:
fsdp_transformer_layer_cls_to_wrap: Llama4TextDecoderLayer
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: true
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
fsdp_activation_checkpointing: true
special_tokens:
pad_token: <|finetune_right_pad_id|>
eos_token: <|eot|>
```
</details><br>
# outputs/out
This model is a fine-tuned version of [axolotl-quants/Llama-4-Scout-17B-16E-Linearized-bnb-nf4-bf16](https://huggingface.co/axolotl-quants/Llama-4-Scout-17B-16E-Linearized-bnb-nf4-bf16) on the mlabonne/FineTome-100k dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3.0
### Training results
### Framework versions
- PEFT 0.15.1
- Transformers 4.51.1
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1 |