tomaarsen's picture
tomaarsen HF Staff
Add new SparseEncoder model
bf16aca verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sparse-encoder
  - sparse
  - asymmetric
  - inference-free
  - splade
  - generated_from_trainer
  - dataset_size:99000
  - loss:SpladeLoss
  - loss:SparseMultipleNegativesRankingLoss
  - loss:FlopsLoss
widget:
  - text: >-
      Rollin' (Limp Bizkit song) The music video was filmed atop the South Tower
      of the former World Trade Center in New York City. The introduction
      features Ben Stiller and Stephen Dorff mistaking Fred Durst for the valet
      and giving him the keys to their Bentley Azure. Also making a cameo is
      break dancer Mr. Wiggles. The rest of the video has several cuts to Durst
      and his bandmates hanging out of the Bentley as they drive about
      Manhattan. The song Ben Stiller is playing at the beginning is "My
      Generation" from the same album. The video also features scenes of Fred
      Durst with five girls dancing in a room. The video was filmed around the
      same time as the film Zoolander, which explains Stiller and Dorff's
      appearance. Fred Durst has a small cameo in that film.
  - text: >-
      Maze Runner: The Death Cure On April 22, 2017, the studio delayed the
      release date once again, to February 9, 2018, in order to allow more time
      for post-production; months later, on August 25, the studio moved the
      release forward two weeks.[17] The film will premiere on January 26, 2018
      in 3D, IMAX and IMAX 3D.[18][19]
  - text: who played the dj in the movie the warriors
  - text: >-
      Lionel Messi Born and raised in central Argentina, Messi was diagnosed
      with a growth hormone deficiency as a child. At age 13, he relocated to
      Spain to join Barcelona, who agreed to pay for his medical treatment.
      After a fast progression through Barcelona's youth academy, Messi made his
      competitive debut aged 17 in October 2004. Despite being injury-prone
      during his early career, he established himself as an integral player for
      the club within the next three years, finishing 2007 as a finalist for
      both the Ballon d'Or and FIFA World Player of the Year award, a feat he
      repeated the following year. His first uninterrupted campaign came in the
      2008–09 season, during which he helped Barcelona achieve the first
      treble in Spanish football. At 22 years old, Messi won the Ballon d'Or and
      FIFA World Player of the Year award by record voting margins.
  - text: >-
      Send In the Clowns "Send In the Clowns" is a song written by Stephen
      Sondheim for the 1973 musical A Little Night Music, an adaptation of
      Ingmar Bergman's film Smiles of a Summer Night. It is a ballad from Act
      Two, in which the character Desirée reflects on the ironies and
      disappointments of her life. Among other things, she looks back on an
      affair years earlier with the lawyer Fredrik, who was deeply in love with
      her but whose marriage proposals she had rejected. Meeting him after so
      long, she realizes she is in love with him and finally ready to marry him,
      but now it is he who rejects her: he is in an unconsummated marriage with
      a much younger woman. Desirée proposes marriage to rescue him from this
      situation, but he declines, citing his dedication to his bride. Reacting
      to his rejection, Desirée sings this song. The song is later reprised as a
      coda after Fredrik's young wife runs away with his son, and Fredrik is
      finally free to accept Desirée's offer.[1]
datasets:
  - sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
  - dot_accuracy@1
  - dot_accuracy@3
  - dot_accuracy@5
  - dot_accuracy@10
  - dot_precision@1
  - dot_precision@3
  - dot_precision@5
  - dot_precision@10
  - dot_recall@1
  - dot_recall@3
  - dot_recall@5
  - dot_recall@10
  - dot_ndcg@10
  - dot_mrr@10
  - dot_map@100
  - query_active_dims
  - query_sparsity_ratio
  - corpus_active_dims
  - corpus_sparsity_ratio
co2_eq_emissions:
  emissions: 12.160208585908531
  energy_consumed: 0.03128414205717627
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.09
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
  - name: Inference-free SPLADE BERT-tiny trained on Natural-Questions tuples
    results:
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO
          type: NanoMSMARCO
        metrics:
          - type: dot_accuracy@1
            value: 0.28
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.48
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.54
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.68
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.28
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.15999999999999998
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.10800000000000003
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.068
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.28
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.48
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.54
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.68
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.4712098455669033
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.4061269841269841
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.42123222050853626
            name: Dot Map@100
          - type: query_active_dims
            value: 7.360000133514404
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9997588624554906
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 181.48126220703125
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9940540835395113
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNFCorpus
          type: NanoNFCorpus
        metrics:
          - type: dot_accuracy@1
            value: 0.46
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.6
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.64
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.7
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.46
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.38666666666666666
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.34
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.264
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.04441960931285628
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.07855216438081768
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.11501385338572513
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.13799680508768822
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.3363725092471443
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5348571428571429
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.14273057100379044
            name: Dot Map@100
          - type: query_active_dims
            value: 5.739999771118164
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9998119389367958
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 267.9966125488281
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9912195592507428
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNQ
          type: NanoNQ
        metrics:
          - type: dot_accuracy@1
            value: 0.3
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.56
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.7
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.7
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.3
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.18666666666666665
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.14
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.07200000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.3
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.54
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.66
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.67
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.498972350043216
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.4476666666666666
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.44805918373861153
            name: Dot Map@100
          - type: query_active_dims
            value: 10.420000076293945
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.999658606903994
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 156.2409210205078
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9948810392169416
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean
          type: NanoBEIR_mean
        metrics:
          - type: dot_accuracy@1
            value: 0.3466666666666667
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.5466666666666667
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.6266666666666667
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.6933333333333334
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.3466666666666667
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.24444444444444444
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.19600000000000004
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.13466666666666668
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.20813986977095209
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.3661840547936059
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.43833795112857504
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.4959989350292295
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.4355182349524212
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.4628835978835979
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.33734065841697936
            name: Dot Map@100
          - type: query_active_dims
            value: 7.839999993642171
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9997431360987601
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 191.33428282595386
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9937312665347632
            name: Corpus Sparsity Ratio

Inference-free SPLADE BERT-tiny trained on Natural-Questions tuples

This is a Asymmetric Inference-free SPLADE Sparse Encoder model trained on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: Asymmetric Inference-free SPLADE Sparse Encoder
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 30522 dimensions
  • Similarity Function: Dot Product
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): Router(
    (query_0_IDF): IDF ({'frozen': False}, dim:30522, tokenizer: BertTokenizerFast)
    (document_0_MLMTransformer): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 
    (document_1_SpladePooling): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
  )
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/inference-free-splade-bert-tiny-nq-fresh-3e-2-lambda-corpus-1e-3-idf-lr-2e-5-lr")
# Run inference
sentences = [
    'is send in the clowns from a musical',
    'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman\'s film Smiles of a Summer Night. It is a ballad from Act Two, in which the character Desirée reflects on the ironies and disappointments of her life. Among other things, she looks back on an affair years earlier with the lawyer Fredrik, who was deeply in love with her but whose marriage proposals she had rejected. Meeting him after so long, she realizes she is in love with him and finally ready to marry him, but now it is he who rejects her: he is in an unconsummated marriage with a much younger woman. Desirée proposes marriage to rescue him from this situation, but he declines, citing his dedication to his bride. Reacting to his rejection, Desirée sings this song. The song is later reprised as a coda after Fredrik\'s young wife runs away with his son, and Fredrik is finally free to accept Desirée\'s offer.[1]',
    'The Suite Life on Deck The Suite Life on Deck is an American sitcom that aired on Disney Channel from September 26, 2008 to May 6, 2011. It is a sequel/spin-off of the Disney Channel Original Series The Suite Life of Zack & Cody. The series follows twin brothers Zack and Cody Martin and hotel heiress London Tipton in a new setting, the SS Tipton, where they attend classes at "Seven Seas High School" and meet Bailey Pickett while Mr. Moseby manages the ship. The ship travels around the world to nations such as Italy, France, Greece, India, Sweden and the United Kingdom where the characters experience different cultures, adventures, and situations.[1]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 30522)

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Sparse Information Retrieval

Metric NanoMSMARCO NanoNFCorpus NanoNQ
dot_accuracy@1 0.28 0.46 0.3
dot_accuracy@3 0.48 0.6 0.56
dot_accuracy@5 0.54 0.64 0.7
dot_accuracy@10 0.68 0.7 0.7
dot_precision@1 0.28 0.46 0.3
dot_precision@3 0.16 0.3867 0.1867
dot_precision@5 0.108 0.34 0.14
dot_precision@10 0.068 0.264 0.072
dot_recall@1 0.28 0.0444 0.3
dot_recall@3 0.48 0.0786 0.54
dot_recall@5 0.54 0.115 0.66
dot_recall@10 0.68 0.138 0.67
dot_ndcg@10 0.4712 0.3364 0.499
dot_mrr@10 0.4061 0.5349 0.4477
dot_map@100 0.4212 0.1427 0.4481
query_active_dims 7.36 5.74 10.42
query_sparsity_ratio 0.9998 0.9998 0.9997
corpus_active_dims 181.4813 267.9966 156.2409
corpus_sparsity_ratio 0.9941 0.9912 0.9949

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ]
    }
    
Metric Value
dot_accuracy@1 0.3467
dot_accuracy@3 0.5467
dot_accuracy@5 0.6267
dot_accuracy@10 0.6933
dot_precision@1 0.3467
dot_precision@3 0.2444
dot_precision@5 0.196
dot_precision@10 0.1347
dot_recall@1 0.2081
dot_recall@3 0.3662
dot_recall@5 0.4383
dot_recall@10 0.496
dot_ndcg@10 0.4355
dot_mrr@10 0.4629
dot_map@100 0.3373
query_active_dims 7.84
query_sparsity_ratio 0.9997
corpus_active_dims 191.3343
corpus_sparsity_ratio 0.9937

Training Details

Training Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 99,000 training samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.71 tokens
    • max: 26 tokens
    • min: 4 tokens
    • mean: 131.81 tokens
    • max: 450 tokens
  • Samples:
    query answer
    who played the father in papa don't preach Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
    where was the location of the battle of hastings Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
    how many puppies can a dog give birth to Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
  • Loss: SpladeLoss with these parameters:
    {
        "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",
        "lambda_corpus": 0.03,
        "lambda_query": 0
    }
    

Evaluation Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 1,000 evaluation samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.69 tokens
    • max: 23 tokens
    • min: 15 tokens
    • mean: 134.01 tokens
    • max: 512 tokens
  • Samples:
    query answer
    where is the tiber river located in italy Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
    what kind of car does jay gatsby drive Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
    who sings if i can dream about you I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
  • Loss: SpladeLoss with these parameters:
    {
        "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",
        "lambda_corpus": 0.03,
        "lambda_query": 0
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates
  • router_mapping: {'query': 'query', 'answer': 'document'}
  • learning_rate_mapping: {'IDF\.weight': 0.001}

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {'query': 'query', 'answer': 'document'}
  • learning_rate_mapping: {'IDF\.weight': 0.001}

Training Logs

Epoch Step Training Loss Validation Loss NanoMSMARCO_dot_ndcg@10 NanoNFCorpus_dot_ndcg@10 NanoNQ_dot_ndcg@10 NanoBEIR_mean_dot_ndcg@10
0.0129 20 1.8729 - - - - -
0.0259 40 4.3293 - - - - -
0.0388 60 7.3157 - - - - -
0.0517 80 7.3718 - - - - -
0.0646 100 5.171 - - - - -
0.0776 120 3.5119 - - - - -
0.0905 140 2.6883 - - - - -
0.1034 160 2.2642 - - - - -
0.1164 180 1.9244 - - - - -
0.1293 200 1.6712 1.2603 0.3854 0.3158 0.4024 0.3679
0.1422 220 1.4993 - - - - -
0.1551 240 1.3321 - - - - -
0.1681 260 1.2798 - - - - -
0.1810 280 1.1572 - - - - -
0.1939 300 1.0751 - - - - -
0.2069 320 1.0125 - - - - -
0.2198 340 0.9666 - - - - -
0.2327 360 0.935 - - - - -
0.2456 380 0.8799 - - - - -
0.2586 400 0.8102 0.7086 0.4184 0.3178 0.4684 0.4015
0.2715 420 0.7882 - - - - -
0.2844 440 0.8081 - - - - -
0.2973 460 0.7592 - - - - -
0.3103 480 0.7707 - - - - -
0.3232 500 0.7704 - - - - -
0.3361 520 0.7467 - - - - -
0.3491 540 0.7128 - - - - -
0.3620 560 0.7659 - - - - -
0.3749 580 0.6987 - - - - -
0.3878 600 0.7579 0.6132 0.4346 0.3186 0.4910 0.4147
0.4008 620 0.7029 - - - - -
0.4137 640 0.6148 - - - - -
0.4266 660 0.6393 - - - - -
0.4396 680 0.6764 - - - - -
0.4525 700 0.6586 - - - - -
0.4654 720 0.5964 - - - - -
0.4783 740 0.6263 - - - - -
0.4913 760 0.6045 - - - - -
0.5042 780 0.5662 - - - - -
0.5171 800 0.6092 0.5510 0.4367 0.3269 0.4902 0.4179
0.5301 820 0.6066 - - - - -
0.5430 840 0.5914 - - - - -
0.5559 860 0.608 - - - - -
0.5688 880 0.5745 - - - - -
0.5818 900 0.5733 - - - - -
0.5947 920 0.5631 - - - - -
0.6076 940 0.5444 - - - - -
0.6206 960 0.5588 - - - - -
0.6335 980 0.5975 - - - - -
0.6464 1000 0.5211 0.5213 0.4450 0.3315 0.4922 0.4229
0.6593 1020 0.5496 - - - - -
0.6723 1040 0.5321 - - - - -
0.6852 1060 0.5474 - - - - -
0.6981 1080 0.5752 - - - - -
0.7111 1100 0.5567 - - - - -
0.7240 1120 0.5332 - - - - -
0.7369 1140 0.5591 - - - - -
0.7498 1160 0.5345 - - - - -
0.7628 1180 0.5521 - - - - -
0.7757 1200 0.5581 0.5031 0.4640 0.3333 0.4904 0.4292
0.7886 1220 0.538 - - - - -
0.8016 1240 0.5487 - - - - -
0.8145 1260 0.5273 - - - - -
0.8274 1280 0.5431 - - - - -
0.8403 1300 0.5618 - - - - -
0.8533 1320 0.5379 - - - - -
0.8662 1340 0.5302 - - - - -
0.8791 1360 0.5268 - - - - -
0.8920 1380 0.5336 - - - - -
0.9050 1400 0.5189 0.4937 0.4716 0.3359 0.4971 0.4348
0.9179 1420 0.5221 - - - - -
0.9308 1440 0.4935 - - - - -
0.9438 1460 0.5454 - - - - -
0.9567 1480 0.5224 - - - - -
0.9696 1500 0.5315 - - - - -
0.9825 1520 0.5307 - - - - -
0.9955 1540 0.5303 - - - - -
-1 -1 - - 0.4712 0.3364 0.4990 0.4355

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.031 kWh
  • Carbon Emitted: 0.012 kg of CO2
  • Hours Used: 0.09 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.52.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.1
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

SpladeLoss

@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}

SparseMultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

FlopsLoss

@article{paria2020minimizing,
    title={Minimizing flops to learn efficient sparse representations},
    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
    journal={arXiv preprint arXiv:2004.05665},
    year={2020}
    }