File size: 47,365 Bytes
bf16aca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
---

language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- asymmetric
- inference-free
- splade
- generated_from_trainer
- dataset_size:99000
- loss:SpladeLoss
- loss:SparseMultipleNegativesRankingLoss
- loss:FlopsLoss
widget:
- text: Rollin' (Limp Bizkit song) The music video was filmed atop the South Tower
    of the former World Trade Center in New York City. The introduction features Ben
    Stiller and Stephen Dorff mistaking Fred Durst for the valet and giving him the
    keys to their Bentley Azure. Also making a cameo is break dancer Mr. Wiggles.
    The rest of the video has several cuts to Durst and his bandmates hanging out
    of the Bentley as they drive about Manhattan. The song Ben Stiller is playing
    at the beginning is "My Generation" from the same album. The video also features
    scenes of Fred Durst with five girls dancing in a room. The video was filmed around
    the same time as the film Zoolander, which explains Stiller and Dorff's appearance.
    Fred Durst has a small cameo in that film.
- text: 'Maze Runner: The Death Cure On April 22, 2017, the studio delayed the release

    date once again, to February 9, 2018, in order to allow more time for post-production;

    months later, on August 25, the studio moved the release forward two weeks.[17]

    The film will premiere on January 26, 2018 in 3D, IMAX and IMAX 3D.[18][19]'
- text: who played the dj in the movie the warriors
- text: Lionel Messi Born and raised in central Argentina, Messi was diagnosed with
    a growth hormone deficiency as a child. At age 13, he relocated to Spain to join
    Barcelona, who agreed to pay for his medical treatment. After a fast progression
    through Barcelona's youth academy, Messi made his competitive debut aged 17 in
    October 2004. Despite being injury-prone during his early career, he established
    himself as an integral player for the club within the next three years, finishing
    2007 as a finalist for both the Ballon d'Or and FIFA World Player of the Year
    award, a feat he repeated the following year. His first uninterrupted campaign
    came in the 2008–09 season, during which he helped Barcelona achieve the first
    treble in Spanish football. At 22 years old, Messi won the Ballon d'Or and FIFA
    World Player of the Year award by record voting margins.
- text: 'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim

    for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman''s

    film Smiles of a Summer Night. It is a ballad from Act Two, in which the character

    Desirée reflects on the ironies and disappointments of her life. Among other things,

    she looks back on an affair years earlier with the lawyer Fredrik, who was deeply

    in love with her but whose marriage proposals she had rejected. Meeting him after

    so long, she realizes she is in love with him and finally ready to marry him,

    but now it is he who rejects her: he is in an unconsummated marriage with a much

    younger woman. Desirée proposes marriage to rescue him from this situation, but

    he declines, citing his dedication to his bride. Reacting to his rejection, Desirée

    sings this song. The song is later reprised as a coda after Fredrik''s young wife

    runs away with his son, and Fredrik is finally free to accept Desirée''s offer.[1]'
datasets:
- sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
co2_eq_emissions:
  emissions: 12.160208585908531
  energy_consumed: 0.03128414205717627
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.09
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: Inference-free SPLADE BERT-tiny trained on Natural-Questions tuples
  results:
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoMSMARCO
      type: NanoMSMARCO
    metrics:
    - type: dot_accuracy@1
      value: 0.28
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.48
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.54
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.68
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.28
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.15999999999999998
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.10800000000000003
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.068
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.28
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.48
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.54
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.68
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.4712098455669033
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4061269841269841
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.42123222050853626
      name: Dot Map@100
    - type: query_active_dims
      value: 7.360000133514404
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9997588624554906
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 181.48126220703125
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9940540835395113
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNFCorpus
      type: NanoNFCorpus
    metrics:
    - type: dot_accuracy@1
      value: 0.46
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.6
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.64
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.7
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.46
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.38666666666666666
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.34
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.264
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.04441960931285628
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.07855216438081768
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.11501385338572513
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.13799680508768822
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.3363725092471443
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5348571428571429
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.14273057100379044
      name: Dot Map@100
    - type: query_active_dims
      value: 5.739999771118164
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9998119389367958
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 267.9966125488281
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9912195592507428
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNQ
      type: NanoNQ
    metrics:
    - type: dot_accuracy@1
      value: 0.3
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.56
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.7
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.7
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.3
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.18666666666666665
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.14
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.07200000000000001
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.3
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.54
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.66
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.67
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.498972350043216
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4476666666666666
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.44805918373861153
      name: Dot Map@100
    - type: query_active_dims
      value: 10.420000076293945
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.999658606903994
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 156.2409210205078
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9948810392169416
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-nano-beir
      name: Sparse Nano BEIR
    dataset:
      name: NanoBEIR mean
      type: NanoBEIR_mean
    metrics:
    - type: dot_accuracy@1
      value: 0.3466666666666667
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.5466666666666667
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.6266666666666667
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.6933333333333334
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.3466666666666667
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.24444444444444444
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.19600000000000004
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.13466666666666668
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.20813986977095209
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.3661840547936059
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.43833795112857504
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.4959989350292295
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.4355182349524212
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4628835978835979
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.33734065841697936
      name: Dot Map@100
    - type: query_active_dims
      value: 7.839999993642171
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9997431360987601
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 191.33428282595386
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9937312665347632
      name: Corpus Sparsity Ratio
---


# Inference-free SPLADE BERT-tiny trained on Natural-Questions tuples

This is a [Asymmetric Inference-free SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model trained on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space   and can be used for semantic search and sparse retrieval.
## Model Details

### Model Description
- **Model Type:** Asymmetric Inference-free SPLADE Sparse Encoder
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 30522 dimensions
- **Similarity Function:** Dot Product
- **Training Dataset:**
    - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)

### Full Model Architecture

```

SparseEncoder(

  (0): Router(

    (query_0_IDF): IDF ({'frozen': False}, dim:30522, tokenizer: BertTokenizerFast)

    (document_0_MLMTransformer): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 

    (document_1_SpladePooling): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})

  )

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SparseEncoder



# Download from the 🤗 Hub

model = SparseEncoder("tomaarsen/inference-free-splade-bert-tiny-nq-fresh-3e-2-lambda-corpus-1e-3-idf-lr-2e-5-lr")

# Run inference

sentences = [

    'is send in the clowns from a musical',

    'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman\'s film Smiles of a Summer Night. It is a ballad from Act Two, in which the character Desirée reflects on the ironies and disappointments of her life. Among other things, she looks back on an affair years earlier with the lawyer Fredrik, who was deeply in love with her but whose marriage proposals she had rejected. Meeting him after so long, she realizes she is in love with him and finally ready to marry him, but now it is he who rejects her: he is in an unconsummated marriage with a much younger woman. Desirée proposes marriage to rescue him from this situation, but he declines, citing his dedication to his bride. Reacting to his rejection, Desirée sings this song. The song is later reprised as a coda after Fredrik\'s young wife runs away with his son, and Fredrik is finally free to accept Desirée\'s offer.[1]',

    'The Suite Life on Deck The Suite Life on Deck is an American sitcom that aired on Disney Channel from September 26, 2008 to May 6, 2011. It is a sequel/spin-off of the Disney Channel Original Series The Suite Life of Zack & Cody. The series follows twin brothers Zack and Cody Martin and hotel heiress London Tipton in a new setting, the SS Tipton, where they attend classes at "Seven Seas High School" and meet Bailey Pickett while Mr. Moseby manages the ship. The ship travels around the world to nations such as Italy, France, Greece, India, Sweden and the United Kingdom where the characters experience different cultures, adventures, and situations.[1]',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# (3, 30522)



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Sparse Information Retrieval

* Datasets: `NanoMSMARCO`, `NanoNFCorpus` and `NanoNQ`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)

| Metric                | NanoMSMARCO | NanoNFCorpus | NanoNQ    |
|:----------------------|:------------|:-------------|:----------|
| dot_accuracy@1        | 0.28        | 0.46         | 0.3       |

| dot_accuracy@3        | 0.48        | 0.6          | 0.56      |
| dot_accuracy@5        | 0.54        | 0.64         | 0.7       |

| dot_accuracy@10       | 0.68        | 0.7          | 0.7       |
| dot_precision@1       | 0.28        | 0.46         | 0.3       |

| dot_precision@3       | 0.16        | 0.3867       | 0.1867    |
| dot_precision@5       | 0.108       | 0.34         | 0.14      |

| dot_precision@10      | 0.068       | 0.264        | 0.072     |
| dot_recall@1          | 0.28        | 0.0444       | 0.3       |

| dot_recall@3          | 0.48        | 0.0786       | 0.54      |
| dot_recall@5          | 0.54        | 0.115        | 0.66      |

| dot_recall@10         | 0.68        | 0.138        | 0.67      |
| **dot_ndcg@10**       | **0.4712**  | **0.3364**   | **0.499** |

| dot_mrr@10            | 0.4061      | 0.5349       | 0.4477    |

| dot_map@100           | 0.4212      | 0.1427       | 0.4481    |

| query_active_dims     | 7.36        | 5.74         | 10.42     |

| query_sparsity_ratio  | 0.9998      | 0.9998       | 0.9997    |

| corpus_active_dims    | 181.4813    | 267.9966     | 156.2409  |

| corpus_sparsity_ratio | 0.9941      | 0.9912       | 0.9949    |



#### Sparse Nano BEIR



* Dataset: `NanoBEIR_mean`

* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:

  ```json

  {

      "dataset_names": [

          "msmarco",

          "nfcorpus",

          "nq"

      ]

  }

  ```



| Metric                | Value      |

|:----------------------|:-----------|

| dot_accuracy@1        | 0.3467     |

| dot_accuracy@3        | 0.5467     |

| dot_accuracy@5        | 0.6267     |

| dot_accuracy@10       | 0.6933     |

| dot_precision@1       | 0.3467     |

| dot_precision@3       | 0.2444     |

| dot_precision@5       | 0.196      |

| dot_precision@10      | 0.1347     |

| dot_recall@1          | 0.2081     |

| dot_recall@3          | 0.3662     |

| dot_recall@5          | 0.4383     |

| dot_recall@10         | 0.496      |

| **dot_ndcg@10**       | **0.4355** |
| dot_mrr@10            | 0.4629     |

| dot_map@100           | 0.3373     |
| query_active_dims     | 7.84       |
| query_sparsity_ratio  | 0.9997     |
| corpus_active_dims    | 191.3343   |
| corpus_sparsity_ratio | 0.9937     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### natural-questions

* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 99,000 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                              | answer                                                                              |
  |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                              |
  | details | <ul><li>min: 10 tokens</li><li>mean: 11.71 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 131.81 tokens</li><li>max: 450 tokens</li></ul> |
* Samples:
  | query                                                         | answer                                                                                                                                                                                                                                                                                                                                                                                                                                  |
  |:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>who played the father in papa don't preach</code>       | <code>Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.</code>                                                                                                                                                                                                                                                                                                                                                     |
  | <code>where was the location of the battle of hastings</code> | <code>Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.</code> |
  | <code>how many puppies can a dog give birth to</code>         | <code>Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]</code>                                                                                                                                                                                                                                                      |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
  ```json

  {

      "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",

      "lambda_corpus": 0.03,

      "lambda_query": 0

  }

  ```

### Evaluation Dataset

#### natural-questions

* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 1,000 evaluation samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                              | answer                                                                               |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 10 tokens</li><li>mean: 11.69 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 134.01 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | query                                                  | answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
  |:-------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>where is the tiber river located in italy</code> | <code>Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.</code> |
  | <code>what kind of car does jay gatsby drive</code>    | <code>Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.</code>                                       |
  | <code>who sings if i can dream about you</code>        | <code>I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]</code>                                                                                                                                                                                                                   |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
  ```json

  {

      "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",

      "lambda_corpus": 0.03,

      "lambda_query": 0

  }

  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates

- `router_mapping`: {'query': 'query', 'answer': 'document'}
- `learning_rate_mapping`: {'IDF\\.weight': 0.001}

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch

- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: None

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {'query': 'query', 'answer': 'document'}
- `learning_rate_mapping`: {'IDF\\.weight': 0.001}

</details>

### Training Logs
| Epoch  | Step | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 |

|:------:|:----:|:-------------:|:---------------:|:-----------------------:|:------------------------:|:------------------:|:-------------------------:|

| 0.0129 | 20   | 1.8729        | -               | -                       | -                        | -                  | -                         |

| 0.0259 | 40   | 4.3293        | -               | -                       | -                        | -                  | -                         |

| 0.0388 | 60   | 7.3157        | -               | -                       | -                        | -                  | -                         |

| 0.0517 | 80   | 7.3718        | -               | -                       | -                        | -                  | -                         |

| 0.0646 | 100  | 5.171         | -               | -                       | -                        | -                  | -                         |

| 0.0776 | 120  | 3.5119        | -               | -                       | -                        | -                  | -                         |

| 0.0905 | 140  | 2.6883        | -               | -                       | -                        | -                  | -                         |

| 0.1034 | 160  | 2.2642        | -               | -                       | -                        | -                  | -                         |

| 0.1164 | 180  | 1.9244        | -               | -                       | -                        | -                  | -                         |

| 0.1293 | 200  | 1.6712        | 1.2603          | 0.3854                  | 0.3158                   | 0.4024             | 0.3679                    |

| 0.1422 | 220  | 1.4993        | -               | -                       | -                        | -                  | -                         |

| 0.1551 | 240  | 1.3321        | -               | -                       | -                        | -                  | -                         |

| 0.1681 | 260  | 1.2798        | -               | -                       | -                        | -                  | -                         |

| 0.1810 | 280  | 1.1572        | -               | -                       | -                        | -                  | -                         |

| 0.1939 | 300  | 1.0751        | -               | -                       | -                        | -                  | -                         |

| 0.2069 | 320  | 1.0125        | -               | -                       | -                        | -                  | -                         |

| 0.2198 | 340  | 0.9666        | -               | -                       | -                        | -                  | -                         |

| 0.2327 | 360  | 0.935         | -               | -                       | -                        | -                  | -                         |

| 0.2456 | 380  | 0.8799        | -               | -                       | -                        | -                  | -                         |

| 0.2586 | 400  | 0.8102        | 0.7086          | 0.4184                  | 0.3178                   | 0.4684             | 0.4015                    |

| 0.2715 | 420  | 0.7882        | -               | -                       | -                        | -                  | -                         |

| 0.2844 | 440  | 0.8081        | -               | -                       | -                        | -                  | -                         |

| 0.2973 | 460  | 0.7592        | -               | -                       | -                        | -                  | -                         |

| 0.3103 | 480  | 0.7707        | -               | -                       | -                        | -                  | -                         |

| 0.3232 | 500  | 0.7704        | -               | -                       | -                        | -                  | -                         |

| 0.3361 | 520  | 0.7467        | -               | -                       | -                        | -                  | -                         |

| 0.3491 | 540  | 0.7128        | -               | -                       | -                        | -                  | -                         |

| 0.3620 | 560  | 0.7659        | -               | -                       | -                        | -                  | -                         |

| 0.3749 | 580  | 0.6987        | -               | -                       | -                        | -                  | -                         |

| 0.3878 | 600  | 0.7579        | 0.6132          | 0.4346                  | 0.3186                   | 0.4910             | 0.4147                    |

| 0.4008 | 620  | 0.7029        | -               | -                       | -                        | -                  | -                         |

| 0.4137 | 640  | 0.6148        | -               | -                       | -                        | -                  | -                         |

| 0.4266 | 660  | 0.6393        | -               | -                       | -                        | -                  | -                         |

| 0.4396 | 680  | 0.6764        | -               | -                       | -                        | -                  | -                         |

| 0.4525 | 700  | 0.6586        | -               | -                       | -                        | -                  | -                         |

| 0.4654 | 720  | 0.5964        | -               | -                       | -                        | -                  | -                         |

| 0.4783 | 740  | 0.6263        | -               | -                       | -                        | -                  | -                         |

| 0.4913 | 760  | 0.6045        | -               | -                       | -                        | -                  | -                         |

| 0.5042 | 780  | 0.5662        | -               | -                       | -                        | -                  | -                         |

| 0.5171 | 800  | 0.6092        | 0.5510          | 0.4367                  | 0.3269                   | 0.4902             | 0.4179                    |

| 0.5301 | 820  | 0.6066        | -               | -                       | -                        | -                  | -                         |

| 0.5430 | 840  | 0.5914        | -               | -                       | -                        | -                  | -                         |

| 0.5559 | 860  | 0.608         | -               | -                       | -                        | -                  | -                         |

| 0.5688 | 880  | 0.5745        | -               | -                       | -                        | -                  | -                         |

| 0.5818 | 900  | 0.5733        | -               | -                       | -                        | -                  | -                         |

| 0.5947 | 920  | 0.5631        | -               | -                       | -                        | -                  | -                         |

| 0.6076 | 940  | 0.5444        | -               | -                       | -                        | -                  | -                         |

| 0.6206 | 960  | 0.5588        | -               | -                       | -                        | -                  | -                         |

| 0.6335 | 980  | 0.5975        | -               | -                       | -                        | -                  | -                         |

| 0.6464 | 1000 | 0.5211        | 0.5213          | 0.4450                  | 0.3315                   | 0.4922             | 0.4229                    |

| 0.6593 | 1020 | 0.5496        | -               | -                       | -                        | -                  | -                         |

| 0.6723 | 1040 | 0.5321        | -               | -                       | -                        | -                  | -                         |

| 0.6852 | 1060 | 0.5474        | -               | -                       | -                        | -                  | -                         |

| 0.6981 | 1080 | 0.5752        | -               | -                       | -                        | -                  | -                         |

| 0.7111 | 1100 | 0.5567        | -               | -                       | -                        | -                  | -                         |

| 0.7240 | 1120 | 0.5332        | -               | -                       | -                        | -                  | -                         |

| 0.7369 | 1140 | 0.5591        | -               | -                       | -                        | -                  | -                         |

| 0.7498 | 1160 | 0.5345        | -               | -                       | -                        | -                  | -                         |

| 0.7628 | 1180 | 0.5521        | -               | -                       | -                        | -                  | -                         |

| 0.7757 | 1200 | 0.5581        | 0.5031          | 0.4640                  | 0.3333                   | 0.4904             | 0.4292                    |

| 0.7886 | 1220 | 0.538         | -               | -                       | -                        | -                  | -                         |

| 0.8016 | 1240 | 0.5487        | -               | -                       | -                        | -                  | -                         |

| 0.8145 | 1260 | 0.5273        | -               | -                       | -                        | -                  | -                         |

| 0.8274 | 1280 | 0.5431        | -               | -                       | -                        | -                  | -                         |

| 0.8403 | 1300 | 0.5618        | -               | -                       | -                        | -                  | -                         |

| 0.8533 | 1320 | 0.5379        | -               | -                       | -                        | -                  | -                         |

| 0.8662 | 1340 | 0.5302        | -               | -                       | -                        | -                  | -                         |

| 0.8791 | 1360 | 0.5268        | -               | -                       | -                        | -                  | -                         |

| 0.8920 | 1380 | 0.5336        | -               | -                       | -                        | -                  | -                         |

| 0.9050 | 1400 | 0.5189        | 0.4937          | 0.4716                  | 0.3359                   | 0.4971             | 0.4348                    |

| 0.9179 | 1420 | 0.5221        | -               | -                       | -                        | -                  | -                         |

| 0.9308 | 1440 | 0.4935        | -               | -                       | -                        | -                  | -                         |

| 0.9438 | 1460 | 0.5454        | -               | -                       | -                        | -                  | -                         |

| 0.9567 | 1480 | 0.5224        | -               | -                       | -                        | -                  | -                         |

| 0.9696 | 1500 | 0.5315        | -               | -                       | -                        | -                  | -                         |

| 0.9825 | 1520 | 0.5307        | -               | -                       | -                        | -                  | -                         |

| 0.9955 | 1540 | 0.5303        | -               | -                       | -                        | -                  | -                         |

| -1     | -1   | -             | -               | 0.4712                  | 0.3364                   | 0.4990             | 0.4355                    |





### Environmental Impact

Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).

- **Energy Consumed**: 0.031 kWh

- **Carbon Emitted**: 0.012 kg of CO2

- **Hours Used**: 0.09 hours



### Training Hardware

- **On Cloud**: No

- **GPU Model**: 1 x NVIDIA GeForce RTX 3090

- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K

- **RAM Size**: 31.78 GB



### Framework Versions

- Python: 3.11.6

- Sentence Transformers: 4.2.0.dev0

- Transformers: 4.52.3

- PyTorch: 2.6.0+cu124

- Accelerate: 1.5.1

- Datasets: 2.21.0

- Tokenizers: 0.21.1



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### SpladeLoss

```bibtex

@misc{formal2022distillationhardnegativesampling,

      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},

      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},

      year={2022},

      eprint={2205.04733},

      archivePrefix={arXiv},

      primaryClass={cs.IR},

      url={https://arxiv.org/abs/2205.04733},

}

```



#### SparseMultipleNegativesRankingLoss

```bibtex

@misc{henderson2017efficient,

    title={Efficient Natural Language Response Suggestion for Smart Reply},

    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},

    year={2017},

    eprint={1705.00652},

    archivePrefix={arXiv},

    primaryClass={cs.CL}

}

```



#### FlopsLoss

```bibtex

@article{paria2020minimizing,

    title={Minimizing flops to learn efficient sparse representations},

    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},

    journal={arXiv preprint arXiv:2004.05665},

    year={2020}

    }

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->