File size: 10,925 Bytes
a6ce454
dcb2a99
 
a6ce454
dcb2a99
a6ce454
 
 
 
 
dcb2a99
 
 
a6ce454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb2a99
a6ce454
 
 
 
 
 
 
 
 
 
 
 
 
 
1671ec3
 
 
 
 
 
 
 
 
 
 
 
a6ce454
 
 
dcb2a99
 
a6ce454
 
 
 
 
 
 
 
 
 
dcb2a99
a6ce454
 
dcb2a99
a6ce454
 
dcb2a99
a6ce454
 
dcb2a99
a6ce454
 
dcb2a99
 
a6ce454
 
 
 
 
 
dcb2a99
a6ce454
dcb2a99
a6ce454
 
 
 
 
 
 
 
 
 
 
 
 
dcb2a99
a6ce454
 
dcb2a99
a6ce454
 
 
 
 
 
 
 
 
 
 
 
 
dcb2a99
a6ce454
 
dcb2a99
a6ce454
 
 
 
 
 
 
 
 
dcb2a99
a6ce454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb2a99
a6ce454
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb2a99
a6ce454
 
 
 
 
 
 
dcb2a99
a6ce454
 
 
 
 
 
 
dcb2a99
a6ce454
 
 
 
 
dcb2a99
a6ce454
 
 
 
 
 
 
 
 
dcb2a99
a6ce454
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb2a99
a6ce454
 
 
 
dcb2a99
a6ce454
 
 
 
 
dcb2a99
a6ce454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb2a99
a6ce454
 
 
 
 
 
dcb2a99
a6ce454
 
 
 
 
 
 
dcb2a99
a6ce454
 
 
 
 
 
dcb2a99
a6ce454
 
 
 
 
 
dcb2a99
a6ce454
 
dcb2a99
a6ce454
 
dcb2a99
a6ce454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb2a99
a6ce454
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
"""Advanced neurosymbolic reasoning combining neural and symbolic approaches."""

import logging
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict

from .base import ReasoningStrategy

@dataclass
class NeuralFeature:
    """Neural features extracted from data."""
    name: str
    values: np.ndarray
    importance: float
    metadata: Dict[str, Any] = field(default_factory=dict)

@dataclass
class SymbolicRule:
    """Symbolic rule with conditions and confidence."""
    name: str
    conditions: List[str]
    conclusion: str
    confidence: float
    metadata: Dict[str, Any] = field(default_factory=dict)

class NeurosymbolicReasoning(ReasoningStrategy):
    """
    Advanced neurosymbolic reasoning that:
    1. Extracts neural features
    2. Generates symbolic rules
    3. Combines approaches
    4. Handles uncertainty
    5. Provides interpretable results
    """
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        """Initialize neurosymbolic reasoning."""
        super().__init__()
        self.config = config or {}
        
        # Standard reasoning parameters
        self.min_confidence = self.config.get('min_confidence', 0.7)
        self.parallel_threshold = self.config.get('parallel_threshold', 3)
        self.learning_rate = self.config.get('learning_rate', 0.1)
        self.strategy_weights = self.config.get('strategy_weights', {
            "LOCAL_LLM": 0.8,
            "CHAIN_OF_THOUGHT": 0.6,
            "TREE_OF_THOUGHTS": 0.5,
            "META_LEARNING": 0.4
        })
        
        # Neurosymbolic specific parameters
        self.feature_threshold = self.config.get('feature_threshold', 0.1)
        self.rule_confidence_threshold = self.config.get('rule_confidence', 0.7)
        self.max_rules = self.config.get('max_rules', 10)
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """
        Apply neurosymbolic reasoning to combine neural and symbolic approaches.
        
        Args:
            query: The input query to reason about
            context: Additional context and parameters
            
        Returns:
            Dict containing reasoning results and confidence scores
        """
        try:
            # Extract neural features
            features = await self._extract_features(query, context)
            
            # Generate symbolic rules
            rules = await self._generate_rules(features, context)
            
            # Combine approaches
            combined = await self._combine_approaches(features, rules, context)
            
            # Generate analysis
            analysis = await self._generate_analysis(combined, context)
            
            return {
                'answer': self._format_analysis(analysis),
                'confidence': self._calculate_confidence(combined),
                'features': features,
                'rules': rules,
                'combined': combined,
                'analysis': analysis
            }
            
        except Exception as e:
            logging.error(f"Neurosymbolic reasoning failed: {str(e)}")
            return {
                'error': f"Neurosymbolic reasoning failed: {str(e)}",
                'confidence': 0.0
            }
    
    async def _extract_features(
        self,
        query: str,
        context: Dict[str, Any]
    ) -> List[NeuralFeature]:
        """Extract neural features from input."""
        features = []
        
        # Extract key terms
        terms = query.lower().split()
        
        # Process each term
        for term in terms:
            # Simple feature extraction for now
            values = np.random.randn(10)  # Placeholder for real feature extraction
            importance = np.abs(values).mean()
            
            if importance > self.feature_threshold:
                features.append(NeuralFeature(
                    name=term,
                    values=values,
                    importance=importance,
                    metadata={'source': 'term_extraction'}
                ))
        
        # Sort by importance
        features.sort(key=lambda x: x.importance, reverse=True)
        
        return features
    
    async def _generate_rules(
        self,
        features: List[NeuralFeature],
        context: Dict[str, Any]
    ) -> List[SymbolicRule]:
        """Generate symbolic rules from features."""
        rules = []
        
        # Process feature combinations
        for i, feature1 in enumerate(features):
            for j, feature2 in enumerate(features[i+1:], i+1):
                # Calculate correlation
                correlation = np.corrcoef(feature1.values, feature2.values)[0, 1]
                
                if abs(correlation) > self.rule_confidence_threshold:
                    # Create rule based on correlation
                    if correlation > 0:
                        condition = f"{feature1.name} AND {feature2.name}"
                        conclusion = "positively_correlated"
                    else:
                        condition = f"{feature1.name} XOR {feature2.name}"
                        conclusion = "negatively_correlated"
                    
                    rules.append(SymbolicRule(
                        name=f"rule_{len(rules)}",
                        conditions=[condition],
                        conclusion=conclusion,
                        confidence=abs(correlation),
                        metadata={
                            'features': [feature1.name, feature2.name],
                            'correlation': correlation
                        }
                    ))
                
                if len(rules) >= self.max_rules:
                    break
            
            if len(rules) >= self.max_rules:
                break
        
        return rules
    
    async def _combine_approaches(
        self,
        features: List[NeuralFeature],
        rules: List[SymbolicRule],
        context: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Combine neural and symbolic approaches."""
        combined = {
            'neural_weights': {},
            'symbolic_weights': {},
            'combined_scores': {}
        }
        
        # Calculate neural weights
        total_importance = sum(f.importance for f in features)
        if total_importance > 0:
            combined['neural_weights'] = {
                f.name: f.importance / total_importance
                for f in features
            }
        
        # Calculate symbolic weights
        total_confidence = sum(r.confidence for r in rules)
        if total_confidence > 0:
            combined['symbolic_weights'] = {
                r.name: r.confidence / total_confidence
                for r in rules
            }
        
        # Combine scores
        all_elements = set(
            list(combined['neural_weights'].keys()) +
            list(combined['symbolic_weights'].keys())
        )
        
        for element in all_elements:
            neural_score = combined['neural_weights'].get(element, 0)
            symbolic_score = combined['symbolic_weights'].get(element, 0)
            
            # Simple weighted average
            combined['combined_scores'][element] = (
                neural_score * 0.6 +  # Favor neural slightly
                symbolic_score * 0.4
            )
        
        return combined
    
    async def _generate_analysis(
        self,
        combined: Dict[str, Any],
        context: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Generate neurosymbolic analysis."""
        # Sort elements by combined score
        ranked_elements = sorted(
            combined['combined_scores'].items(),
            key=lambda x: x[1],
            reverse=True
        )
        
        # Calculate statistics
        scores = list(combined['combined_scores'].values())
        mean = np.mean(scores) if scores else 0
        std = np.std(scores) if scores else 0
        
        # Calculate entropy
        entropy = -sum(
            s * np.log2(s) if s > 0 else 0
            for s in combined['combined_scores'].values()
        )
        
        return {
            'top_element': ranked_elements[0][0] if ranked_elements else '',
            'score': ranked_elements[0][1] if ranked_elements else 0,
            'alternatives': [
                {'name': name, 'score': score}
                for name, score in ranked_elements[1:]
            ],
            'statistics': {
                'mean': mean,
                'std': std,
                'entropy': entropy
            }
        }
    
    def _format_analysis(self, analysis: Dict[str, Any]) -> str:
        """Format analysis into readable text."""
        sections = []
        
        # Top element
        if analysis['top_element']:
            sections.append(
                f"Most significant element: {analysis['top_element']} "
                f"(score: {analysis['score']:.2%})"
            )
        
        # Alternative elements
        if analysis['alternatives']:
            sections.append("\nAlternative elements:")
            for alt in analysis['alternatives']:
                sections.append(
                    f"- {alt['name']}: {alt['score']:.2%}"
                )
        
        # Statistics
        stats = analysis['statistics']
        sections.append("\nAnalysis statistics:")
        sections.append(f"- Mean score: {stats['mean']:.2%}")
        sections.append(f"- Standard deviation: {stats['std']:.2%}")
        sections.append(f"- Information entropy: {stats['entropy']:.2f} bits")
        
        return "\n".join(sections)
    
    def _calculate_confidence(self, combined: Dict[str, Any]) -> float:
        """Calculate overall confidence score."""
        if not combined['combined_scores']:
            return 0.0
        
        # Base confidence
        confidence = 0.5
        
        # Get scores
        scores = list(combined['combined_scores'].values())
        
        # Strong leading score increases confidence
        max_score = max(scores)
        if max_score > 0.8:
            confidence += 0.3
        elif max_score > 0.6:
            confidence += 0.2
        elif max_score > 0.4:
            confidence += 0.1
        
        # Low entropy (clear distinction) increases confidence
        entropy = -sum(s * np.log2(s) if s > 0 else 0 for s in scores)
        max_entropy = -np.log2(1/len(scores))  # Maximum possible entropy
        
        if entropy < 0.3 * max_entropy:
            confidence += 0.2
        elif entropy < 0.6 * max_entropy:
            confidence += 0.1
        
        return min(confidence, 1.0)