Spaces:
Runtime error
Runtime error
File size: 10,925 Bytes
a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 1671ec3 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 dcb2a99 a6ce454 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
"""Advanced neurosymbolic reasoning combining neural and symbolic approaches."""
import logging
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict
from .base import ReasoningStrategy
@dataclass
class NeuralFeature:
"""Neural features extracted from data."""
name: str
values: np.ndarray
importance: float
metadata: Dict[str, Any] = field(default_factory=dict)
@dataclass
class SymbolicRule:
"""Symbolic rule with conditions and confidence."""
name: str
conditions: List[str]
conclusion: str
confidence: float
metadata: Dict[str, Any] = field(default_factory=dict)
class NeurosymbolicReasoning(ReasoningStrategy):
"""
Advanced neurosymbolic reasoning that:
1. Extracts neural features
2. Generates symbolic rules
3. Combines approaches
4. Handles uncertainty
5. Provides interpretable results
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""Initialize neurosymbolic reasoning."""
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.parallel_threshold = self.config.get('parallel_threshold', 3)
self.learning_rate = self.config.get('learning_rate', 0.1)
self.strategy_weights = self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
# Neurosymbolic specific parameters
self.feature_threshold = self.config.get('feature_threshold', 0.1)
self.rule_confidence_threshold = self.config.get('rule_confidence', 0.7)
self.max_rules = self.config.get('max_rules', 10)
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""
Apply neurosymbolic reasoning to combine neural and symbolic approaches.
Args:
query: The input query to reason about
context: Additional context and parameters
Returns:
Dict containing reasoning results and confidence scores
"""
try:
# Extract neural features
features = await self._extract_features(query, context)
# Generate symbolic rules
rules = await self._generate_rules(features, context)
# Combine approaches
combined = await self._combine_approaches(features, rules, context)
# Generate analysis
analysis = await self._generate_analysis(combined, context)
return {
'answer': self._format_analysis(analysis),
'confidence': self._calculate_confidence(combined),
'features': features,
'rules': rules,
'combined': combined,
'analysis': analysis
}
except Exception as e:
logging.error(f"Neurosymbolic reasoning failed: {str(e)}")
return {
'error': f"Neurosymbolic reasoning failed: {str(e)}",
'confidence': 0.0
}
async def _extract_features(
self,
query: str,
context: Dict[str, Any]
) -> List[NeuralFeature]:
"""Extract neural features from input."""
features = []
# Extract key terms
terms = query.lower().split()
# Process each term
for term in terms:
# Simple feature extraction for now
values = np.random.randn(10) # Placeholder for real feature extraction
importance = np.abs(values).mean()
if importance > self.feature_threshold:
features.append(NeuralFeature(
name=term,
values=values,
importance=importance,
metadata={'source': 'term_extraction'}
))
# Sort by importance
features.sort(key=lambda x: x.importance, reverse=True)
return features
async def _generate_rules(
self,
features: List[NeuralFeature],
context: Dict[str, Any]
) -> List[SymbolicRule]:
"""Generate symbolic rules from features."""
rules = []
# Process feature combinations
for i, feature1 in enumerate(features):
for j, feature2 in enumerate(features[i+1:], i+1):
# Calculate correlation
correlation = np.corrcoef(feature1.values, feature2.values)[0, 1]
if abs(correlation) > self.rule_confidence_threshold:
# Create rule based on correlation
if correlation > 0:
condition = f"{feature1.name} AND {feature2.name}"
conclusion = "positively_correlated"
else:
condition = f"{feature1.name} XOR {feature2.name}"
conclusion = "negatively_correlated"
rules.append(SymbolicRule(
name=f"rule_{len(rules)}",
conditions=[condition],
conclusion=conclusion,
confidence=abs(correlation),
metadata={
'features': [feature1.name, feature2.name],
'correlation': correlation
}
))
if len(rules) >= self.max_rules:
break
if len(rules) >= self.max_rules:
break
return rules
async def _combine_approaches(
self,
features: List[NeuralFeature],
rules: List[SymbolicRule],
context: Dict[str, Any]
) -> Dict[str, Any]:
"""Combine neural and symbolic approaches."""
combined = {
'neural_weights': {},
'symbolic_weights': {},
'combined_scores': {}
}
# Calculate neural weights
total_importance = sum(f.importance for f in features)
if total_importance > 0:
combined['neural_weights'] = {
f.name: f.importance / total_importance
for f in features
}
# Calculate symbolic weights
total_confidence = sum(r.confidence for r in rules)
if total_confidence > 0:
combined['symbolic_weights'] = {
r.name: r.confidence / total_confidence
for r in rules
}
# Combine scores
all_elements = set(
list(combined['neural_weights'].keys()) +
list(combined['symbolic_weights'].keys())
)
for element in all_elements:
neural_score = combined['neural_weights'].get(element, 0)
symbolic_score = combined['symbolic_weights'].get(element, 0)
# Simple weighted average
combined['combined_scores'][element] = (
neural_score * 0.6 + # Favor neural slightly
symbolic_score * 0.4
)
return combined
async def _generate_analysis(
self,
combined: Dict[str, Any],
context: Dict[str, Any]
) -> Dict[str, Any]:
"""Generate neurosymbolic analysis."""
# Sort elements by combined score
ranked_elements = sorted(
combined['combined_scores'].items(),
key=lambda x: x[1],
reverse=True
)
# Calculate statistics
scores = list(combined['combined_scores'].values())
mean = np.mean(scores) if scores else 0
std = np.std(scores) if scores else 0
# Calculate entropy
entropy = -sum(
s * np.log2(s) if s > 0 else 0
for s in combined['combined_scores'].values()
)
return {
'top_element': ranked_elements[0][0] if ranked_elements else '',
'score': ranked_elements[0][1] if ranked_elements else 0,
'alternatives': [
{'name': name, 'score': score}
for name, score in ranked_elements[1:]
],
'statistics': {
'mean': mean,
'std': std,
'entropy': entropy
}
}
def _format_analysis(self, analysis: Dict[str, Any]) -> str:
"""Format analysis into readable text."""
sections = []
# Top element
if analysis['top_element']:
sections.append(
f"Most significant element: {analysis['top_element']} "
f"(score: {analysis['score']:.2%})"
)
# Alternative elements
if analysis['alternatives']:
sections.append("\nAlternative elements:")
for alt in analysis['alternatives']:
sections.append(
f"- {alt['name']}: {alt['score']:.2%}"
)
# Statistics
stats = analysis['statistics']
sections.append("\nAnalysis statistics:")
sections.append(f"- Mean score: {stats['mean']:.2%}")
sections.append(f"- Standard deviation: {stats['std']:.2%}")
sections.append(f"- Information entropy: {stats['entropy']:.2f} bits")
return "\n".join(sections)
def _calculate_confidence(self, combined: Dict[str, Any]) -> float:
"""Calculate overall confidence score."""
if not combined['combined_scores']:
return 0.0
# Base confidence
confidence = 0.5
# Get scores
scores = list(combined['combined_scores'].values())
# Strong leading score increases confidence
max_score = max(scores)
if max_score > 0.8:
confidence += 0.3
elif max_score > 0.6:
confidence += 0.2
elif max_score > 0.4:
confidence += 0.1
# Low entropy (clear distinction) increases confidence
entropy = -sum(s * np.log2(s) if s > 0 else 0 for s in scores)
max_entropy = -np.log2(1/len(scores)) # Maximum possible entropy
if entropy < 0.3 * max_entropy:
confidence += 0.2
elif entropy < 0.6 * max_entropy:
confidence += 0.1
return min(confidence, 1.0)
|