Spaces:
Runtime error
Runtime error
nananie143
commited on
Upload folder using huggingface_hub
Browse files- reasoning/bayesian.py +283 -145
- reasoning/meta_learning.py +275 -348
- reasoning/monetization.py +141 -0
- reasoning/multimodal.py +235 -225
- reasoning/neurosymbolic.py +266 -225
- reasoning/portfolio_optimization.py +197 -0
- reasoning/quantum.py +233 -225
- requirements.txt +1 -1
reasoning/bayesian.py
CHANGED
@@ -1,187 +1,325 @@
|
|
1 |
-
"""Bayesian reasoning
|
2 |
|
3 |
import logging
|
4 |
-
from typing import Dict, Any, List
|
5 |
import json
|
6 |
-
import
|
|
|
7 |
from datetime import datetime
|
|
|
|
|
8 |
|
9 |
from .base import ReasoningStrategy
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
class BayesianReasoning(ReasoningStrategy):
|
12 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
def __init__(self,
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
try:
|
19 |
# Generate hypotheses
|
20 |
hypotheses = await self._generate_hypotheses(query, context)
|
21 |
|
22 |
-
# Calculate
|
23 |
priors = await self._calculate_priors(hypotheses, context)
|
24 |
|
25 |
# Update with evidence
|
26 |
-
posteriors = await self._update_with_evidence(
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
# Generate
|
29 |
analysis = await self._generate_analysis(posteriors, context)
|
30 |
|
31 |
return {
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
"reasoning_path": analysis["reasoning_path"]
|
39 |
}
|
|
|
40 |
except Exception as e:
|
41 |
-
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
async def _generate_hypotheses(
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
1. [Statement]: Clear statement of the hypothesis
|
51 |
-
2. [Assumptions]: Key assumptions made
|
52 |
-
3. [Testability]: How it could be tested/verified
|
53 |
-
|
54 |
-
Format as:
|
55 |
-
[H1]
|
56 |
-
Statement: ...
|
57 |
-
Assumptions: ...
|
58 |
-
Testability: ...
|
59 |
-
"""
|
60 |
-
|
61 |
-
response = await context["groq_api"].predict(prompt)
|
62 |
-
return self._parse_hypotheses(response["answer"])
|
63 |
-
|
64 |
-
async def _calculate_priors(self, hypotheses: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, float]:
|
65 |
-
prompt = f"""
|
66 |
-
Calculate prior probabilities for these hypotheses:
|
67 |
-
Context: {json.dumps(context)}
|
68 |
-
|
69 |
-
Hypotheses:
|
70 |
-
{json.dumps(hypotheses, indent=2)}
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
2. Historical precedent
|
75 |
-
3. Domain expertise
|
76 |
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
88 |
|
89 |
-
|
90 |
-
|
|
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
Provide:
|
112 |
-
1. Main conclusion based on highest probability hypotheses
|
113 |
-
2. Confidence level (0-1)
|
114 |
-
3. Key reasoning steps taken
|
115 |
-
"""
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
"""Parse hypotheses from response."""
|
122 |
-
hypotheses = []
|
123 |
-
current = None
|
124 |
|
125 |
-
for
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
-
if
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
"statement": "",
|
135 |
-
"assumptions": "",
|
136 |
-
"testability": ""
|
137 |
}
|
138 |
-
elif current:
|
139 |
-
if line.startswith('Statement:'):
|
140 |
-
current["statement"] = line[10:].strip()
|
141 |
-
elif line.startswith('Assumptions:'):
|
142 |
-
current["assumptions"] = line[12:].strip()
|
143 |
-
elif line.startswith('Testability:'):
|
144 |
-
current["testability"] = line[12:].strip()
|
145 |
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
def _parse_probabilities(self, response: str) -> Dict[str, float]:
|
152 |
-
"""Parse probabilities from response."""
|
153 |
-
probs = {}
|
154 |
-
pattern = r'\[H(\d+)\]:\s*(0\.\d+)'
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
prob = float(match.group(2))
|
159 |
-
probs[f"H{h_num}"] = prob
|
160 |
|
161 |
-
return
|
162 |
-
|
163 |
-
def
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
}
|
|
|
|
|
|
|
|
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Advanced Bayesian reasoning for probabilistic analysis."""
|
2 |
|
3 |
import logging
|
4 |
+
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
|
5 |
import json
|
6 |
+
from dataclasses import dataclass, field
|
7 |
+
from enum import Enum
|
8 |
from datetime import datetime
|
9 |
+
import numpy as np
|
10 |
+
from collections import defaultdict
|
11 |
|
12 |
from .base import ReasoningStrategy
|
13 |
|
14 |
+
@dataclass
|
15 |
+
class BayesianHypothesis:
|
16 |
+
"""Bayesian hypothesis with probabilities."""
|
17 |
+
name: str
|
18 |
+
prior: float
|
19 |
+
likelihood: float
|
20 |
+
posterior: float = 0.0
|
21 |
+
evidence: List[Dict[str, Any]] = field(default_factory=list)
|
22 |
+
|
23 |
class BayesianReasoning(ReasoningStrategy):
|
24 |
+
"""
|
25 |
+
Advanced Bayesian reasoning that:
|
26 |
+
1. Generates hypotheses
|
27 |
+
2. Calculates prior probabilities
|
28 |
+
3. Updates with evidence
|
29 |
+
4. Computes posteriors
|
30 |
+
5. Provides probabilistic analysis
|
31 |
+
"""
|
32 |
|
33 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
34 |
+
"""Initialize Bayesian reasoning."""
|
35 |
+
super().__init__()
|
36 |
+
self.config = config or {}
|
37 |
+
|
38 |
+
# Configure Bayesian parameters
|
39 |
+
self.prior_weight = self.config.get('prior_weight', 0.3)
|
40 |
+
self.evidence_threshold = self.config.get('evidence_threshold', 0.1)
|
41 |
+
self.min_likelihood = self.config.get('min_likelihood', 0.01)
|
42 |
|
43 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
44 |
+
"""
|
45 |
+
Apply Bayesian reasoning to analyze probabilities and update beliefs.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
query: The input query to reason about
|
49 |
+
context: Additional context and parameters
|
50 |
+
|
51 |
+
Returns:
|
52 |
+
Dict containing reasoning results and confidence scores
|
53 |
+
"""
|
54 |
try:
|
55 |
# Generate hypotheses
|
56 |
hypotheses = await self._generate_hypotheses(query, context)
|
57 |
|
58 |
+
# Calculate priors
|
59 |
priors = await self._calculate_priors(hypotheses, context)
|
60 |
|
61 |
# Update with evidence
|
62 |
+
posteriors = await self._update_with_evidence(
|
63 |
+
hypotheses,
|
64 |
+
priors,
|
65 |
+
context
|
66 |
+
)
|
67 |
|
68 |
+
# Generate analysis
|
69 |
analysis = await self._generate_analysis(posteriors, context)
|
70 |
|
71 |
return {
|
72 |
+
'answer': self._format_analysis(analysis),
|
73 |
+
'confidence': self._calculate_confidence(posteriors),
|
74 |
+
'hypotheses': hypotheses,
|
75 |
+
'priors': priors,
|
76 |
+
'posteriors': posteriors,
|
77 |
+
'analysis': analysis
|
|
|
78 |
}
|
79 |
+
|
80 |
except Exception as e:
|
81 |
+
logging.error(f"Bayesian reasoning failed: {str(e)}")
|
82 |
+
return {
|
83 |
+
'error': f"Bayesian reasoning failed: {str(e)}",
|
84 |
+
'confidence': 0.0
|
85 |
+
}
|
86 |
|
87 |
+
async def _generate_hypotheses(
|
88 |
+
self,
|
89 |
+
query: str,
|
90 |
+
context: Dict[str, Any]
|
91 |
+
) -> List[Dict[str, Any]]:
|
92 |
+
"""Generate plausible hypotheses."""
|
93 |
+
hypotheses = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
+
# Extract key terms for hypothesis generation
|
96 |
+
terms = set(query.lower().split())
|
|
|
|
|
97 |
|
98 |
+
# Generate hypotheses based on context and terms
|
99 |
+
if 'options' in context:
|
100 |
+
# Use provided options as hypotheses
|
101 |
+
for option in context['options']:
|
102 |
+
hypotheses.append({
|
103 |
+
'name': option,
|
104 |
+
'description': f"Hypothesis based on option: {option}",
|
105 |
+
'factors': self._extract_factors(option, terms)
|
106 |
+
})
|
107 |
+
else:
|
108 |
+
# Generate default hypotheses
|
109 |
+
hypotheses.extend([
|
110 |
+
{
|
111 |
+
'name': 'primary',
|
112 |
+
'description': "Primary hypothesis based on direct interpretation",
|
113 |
+
'factors': self._extract_factors(query, terms)
|
114 |
+
},
|
115 |
+
{
|
116 |
+
'name': 'alternative',
|
117 |
+
'description': "Alternative hypothesis considering other factors",
|
118 |
+
'factors': self._generate_alternative_factors(terms)
|
119 |
+
}
|
120 |
+
])
|
121 |
|
122 |
+
return hypotheses
|
123 |
+
|
124 |
+
async def _calculate_priors(
|
125 |
+
self,
|
126 |
+
hypotheses: List[Dict[str, Any]],
|
127 |
+
context: Dict[str, Any]
|
128 |
+
) -> Dict[str, float]:
|
129 |
+
"""Calculate prior probabilities."""
|
130 |
+
priors = {}
|
131 |
|
132 |
+
# Get historical data if available
|
133 |
+
history = context.get('history', {})
|
134 |
+
total_cases = sum(history.values()) if history else len(hypotheses)
|
135 |
|
136 |
+
for hypothesis in hypotheses:
|
137 |
+
name = hypothesis['name']
|
138 |
+
|
139 |
+
# Calculate prior from history or use uniform prior
|
140 |
+
if name in history:
|
141 |
+
priors[name] = history[name] / total_cases
|
142 |
+
else:
|
143 |
+
priors[name] = 1.0 / len(hypotheses)
|
144 |
+
|
145 |
+
# Adjust prior based on factors
|
146 |
+
factor_weight = len(hypothesis['factors']) / 10 # Normalize factor count
|
147 |
+
priors[name] = (
|
148 |
+
priors[name] * (1 - self.prior_weight) +
|
149 |
+
factor_weight * self.prior_weight
|
150 |
+
)
|
151 |
|
152 |
+
# Normalize priors
|
153 |
+
total_prior = sum(priors.values())
|
154 |
+
if total_prior > 0:
|
155 |
+
priors = {
|
156 |
+
name: prob / total_prior
|
157 |
+
for name, prob in priors.items()
|
158 |
+
}
|
159 |
|
160 |
+
return priors
|
161 |
+
|
162 |
+
async def _update_with_evidence(
|
163 |
+
self,
|
164 |
+
hypotheses: List[Dict[str, Any]],
|
165 |
+
priors: Dict[str, float],
|
166 |
+
context: Dict[str, Any]
|
167 |
+
) -> Dict[str, float]:
|
168 |
+
"""Update probabilities with evidence."""
|
169 |
+
posteriors = priors.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
+
# Get evidence from context
|
172 |
+
evidence = context.get('evidence', [])
|
173 |
+
if not evidence:
|
174 |
+
return posteriors
|
|
|
|
|
|
|
175 |
|
176 |
+
for e in evidence:
|
177 |
+
# Calculate likelihood for each hypothesis
|
178 |
+
likelihoods = {}
|
179 |
+
for hypothesis in hypotheses:
|
180 |
+
name = hypothesis['name']
|
181 |
+
likelihood = self._calculate_likelihood(hypothesis, e)
|
182 |
+
likelihoods[name] = max(likelihood, self.min_likelihood)
|
183 |
+
|
184 |
+
# Update posteriors using Bayes' rule
|
185 |
+
total_probability = sum(
|
186 |
+
likelihoods[name] * posteriors[name]
|
187 |
+
for name in posteriors
|
188 |
+
)
|
189 |
|
190 |
+
if total_probability > 0:
|
191 |
+
posteriors = {
|
192 |
+
name: (likelihoods[name] * posteriors[name]) / total_probability
|
193 |
+
for name in posteriors
|
|
|
|
|
|
|
194 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
+
return posteriors
|
197 |
+
|
198 |
+
def _calculate_likelihood(
|
199 |
+
self,
|
200 |
+
hypothesis: Dict[str, Any],
|
201 |
+
evidence: Dict[str, Any]
|
202 |
+
) -> float:
|
203 |
+
"""Calculate likelihood of evidence given hypothesis."""
|
204 |
+
# Extract evidence factors
|
205 |
+
evidence_factors = set(
|
206 |
+
str(v).lower()
|
207 |
+
for v in evidence.values()
|
208 |
+
if isinstance(v, (str, int, float))
|
209 |
+
)
|
210 |
|
211 |
+
# Compare with hypothesis factors
|
212 |
+
common_factors = evidence_factors.intersection(hypothesis['factors'])
|
|
|
|
|
|
|
|
|
213 |
|
214 |
+
if not evidence_factors:
|
215 |
+
return 0.5 # Neutral likelihood if no factors
|
|
|
|
|
216 |
|
217 |
+
return len(common_factors) / len(evidence_factors)
|
218 |
+
|
219 |
+
async def _generate_analysis(
|
220 |
+
self,
|
221 |
+
posteriors: Dict[str, float],
|
222 |
+
context: Dict[str, Any]
|
223 |
+
) -> Dict[str, Any]:
|
224 |
+
"""Generate probabilistic analysis."""
|
225 |
+
# Sort hypotheses by posterior probability
|
226 |
+
ranked_hypotheses = sorted(
|
227 |
+
posteriors.items(),
|
228 |
+
key=lambda x: x[1],
|
229 |
+
reverse=True
|
230 |
+
)
|
231 |
+
|
232 |
+
# Calculate statistics
|
233 |
+
mean = np.mean(list(posteriors.values()))
|
234 |
+
std = np.std(list(posteriors.values()))
|
235 |
+
entropy = -sum(
|
236 |
+
p * np.log2(p) if p > 0 else 0
|
237 |
+
for p in posteriors.values()
|
238 |
+
)
|
239 |
+
|
240 |
+
return {
|
241 |
+
'top_hypothesis': ranked_hypotheses[0][0],
|
242 |
+
'probability': ranked_hypotheses[0][1],
|
243 |
+
'alternatives': [
|
244 |
+
{'name': name, 'probability': prob}
|
245 |
+
for name, prob in ranked_hypotheses[1:]
|
246 |
+
],
|
247 |
+
'statistics': {
|
248 |
+
'mean': mean,
|
249 |
+
'std': std,
|
250 |
+
'entropy': entropy
|
251 |
+
}
|
252 |
}
|
253 |
+
|
254 |
+
def _format_analysis(self, analysis: Dict[str, Any]) -> str:
|
255 |
+
"""Format analysis into readable text."""
|
256 |
+
sections = []
|
257 |
|
258 |
+
# Top hypothesis
|
259 |
+
sections.append(
|
260 |
+
f"Most likely hypothesis: {analysis['top_hypothesis']} "
|
261 |
+
f"(probability: {analysis['probability']:.2%})"
|
262 |
+
)
|
263 |
+
|
264 |
+
# Alternative hypotheses
|
265 |
+
if analysis['alternatives']:
|
266 |
+
sections.append("\nAlternative hypotheses:")
|
267 |
+
for alt in analysis['alternatives']:
|
268 |
+
sections.append(
|
269 |
+
f"- {alt['name']}: {alt['probability']:.2%}"
|
270 |
+
)
|
271 |
+
|
272 |
+
# Statistics
|
273 |
+
stats = analysis['statistics']
|
274 |
+
sections.append("\nDistribution statistics:")
|
275 |
+
sections.append(f"- Mean probability: {stats['mean']:.2%}")
|
276 |
+
sections.append(f"- Standard deviation: {stats['std']:.2%}")
|
277 |
+
sections.append(f"- Entropy: {stats['entropy']:.2f} bits")
|
278 |
+
|
279 |
+
return "\n".join(sections)
|
280 |
+
|
281 |
+
def _calculate_confidence(self, posteriors: Dict[str, float]) -> float:
|
282 |
+
"""Calculate overall confidence score."""
|
283 |
+
if not posteriors:
|
284 |
+
return 0.0
|
285 |
+
|
286 |
+
# Base confidence
|
287 |
+
confidence = 0.5
|
288 |
+
|
289 |
+
# Adjust based on probability distribution
|
290 |
+
probs = list(posteriors.values())
|
291 |
+
|
292 |
+
# Strong leading hypothesis increases confidence
|
293 |
+
max_prob = max(probs)
|
294 |
+
if max_prob > 0.8:
|
295 |
+
confidence += 0.3
|
296 |
+
elif max_prob > 0.6:
|
297 |
+
confidence += 0.2
|
298 |
+
elif max_prob > 0.4:
|
299 |
+
confidence += 0.1
|
300 |
+
|
301 |
+
# Low entropy (clear distinction) increases confidence
|
302 |
+
entropy = -sum(p * np.log2(p) if p > 0 else 0 for p in probs)
|
303 |
+
max_entropy = -np.log2(1/len(probs)) # Maximum possible entropy
|
304 |
+
|
305 |
+
if entropy < 0.3 * max_entropy:
|
306 |
+
confidence += 0.2
|
307 |
+
elif entropy < 0.6 * max_entropy:
|
308 |
+
confidence += 0.1
|
309 |
+
|
310 |
+
return min(confidence, 1.0)
|
311 |
+
|
312 |
+
def _extract_factors(self, text: str, terms: Set[str]) -> Set[str]:
|
313 |
+
"""Extract relevant factors from text."""
|
314 |
+
return set(word.lower() for word in text.split() if word.lower() in terms)
|
315 |
+
|
316 |
+
def _generate_alternative_factors(self, terms: Set[str]) -> Set[str]:
|
317 |
+
"""Generate factors for alternative hypothesis."""
|
318 |
+
# Simple approach: use terms not in primary hypothesis
|
319 |
+
return set(
|
320 |
+
word for word in terms
|
321 |
+
if not any(
|
322 |
+
similar in word or word in similar
|
323 |
+
for similar in terms
|
324 |
+
)
|
325 |
+
)
|
reasoning/meta_learning.py
CHANGED
@@ -1,412 +1,339 @@
|
|
1 |
-
"""
|
2 |
|
3 |
import logging
|
4 |
-
from typing import Dict, Any, List, Optional, Set,
|
5 |
import json
|
6 |
from dataclasses import dataclass, field
|
7 |
from enum import Enum
|
8 |
-
from collections import defaultdict
|
9 |
-
import numpy as np
|
10 |
from datetime import datetime
|
|
|
|
|
11 |
|
12 |
from .base import ReasoningStrategy
|
13 |
|
14 |
-
class MetaFeatureType(Enum):
|
15 |
-
"""Types of meta-features for learning."""
|
16 |
-
PROBLEM_STRUCTURE = "problem_structure"
|
17 |
-
SOLUTION_PATTERN = "solution_pattern"
|
18 |
-
REASONING_STYLE = "reasoning_style"
|
19 |
-
ERROR_PATTERN = "error_pattern"
|
20 |
-
PERFORMANCE_METRIC = "performance_metric"
|
21 |
-
ADAPTATION_SIGNAL = "adaptation_signal"
|
22 |
-
|
23 |
@dataclass
|
24 |
-
class
|
25 |
-
"""
|
26 |
-
type: MetaFeatureType
|
27 |
name: str
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
metadata: Dict[str, Any] = field(default_factory=dict)
|
32 |
-
|
33 |
-
@dataclass
|
34 |
-
class LearningEpisode:
|
35 |
-
"""Represents a learning episode."""
|
36 |
-
id: str
|
37 |
-
query: str
|
38 |
-
features: List[MetaFeature]
|
39 |
-
outcome: Dict[str, Any]
|
40 |
-
performance: float
|
41 |
-
timestamp: datetime
|
42 |
-
metadata: Dict[str, Any] = field(default_factory=dict)
|
43 |
|
44 |
class MetaLearningStrategy(ReasoningStrategy):
|
45 |
"""
|
46 |
-
Advanced
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
"""
|
53 |
|
54 |
-
def __init__(self,
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
exploration_rate: float = 0.2):
|
59 |
-
self.learning_rate = learning_rate
|
60 |
-
self.memory_size = memory_size
|
61 |
-
self.adaptation_threshold = adaptation_threshold
|
62 |
-
self.exploration_rate = exploration_rate
|
63 |
-
|
64 |
-
# Learning components
|
65 |
-
self.episode_memory: List[LearningEpisode] = []
|
66 |
-
self.feature_patterns: Dict[str, Dict[str, float]] = defaultdict(lambda: defaultdict(float))
|
67 |
-
self.strategy_performance: Dict[str, List[float]] = defaultdict(list)
|
68 |
-
self.adaptation_history: List[Dict[str, Any]] = []
|
69 |
|
70 |
-
#
|
71 |
-
self.
|
72 |
-
self.
|
73 |
-
self.
|
74 |
|
|
|
|
|
|
|
75 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
76 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
try:
|
78 |
-
#
|
79 |
-
|
80 |
|
81 |
-
#
|
82 |
-
|
83 |
|
84 |
-
# Apply
|
85 |
-
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
#
|
88 |
-
|
89 |
-
self._learn_from_episode(episode)
|
90 |
|
91 |
-
#
|
92 |
-
self.
|
93 |
|
94 |
return {
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
"performance_metrics": result["performance_metrics"],
|
102 |
-
"meta_insights": result["meta_insights"]
|
103 |
}
|
|
|
104 |
except Exception as e:
|
105 |
-
logging.error(f"
|
106 |
-
return {
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
3. Reasoning Style
|
119 |
-
4. Error Patterns
|
120 |
-
5. Performance Metrics
|
121 |
-
6. Adaptation Signals
|
122 |
-
|
123 |
-
Format as:
|
124 |
-
[Type1]
|
125 |
-
Name: ...
|
126 |
-
Value: ...
|
127 |
-
Confidence: ...
|
128 |
-
Metadata: ...
|
129 |
-
|
130 |
-
[Type2]
|
131 |
-
...
|
132 |
-
"""
|
133 |
-
|
134 |
-
response = await context["groq_api"].predict(prompt)
|
135 |
-
return self._parse_meta_features(response["answer"])
|
136 |
-
|
137 |
-
async def _select_strategy(self, features: List[MetaFeature], context: Dict[str, Any]) -> str:
|
138 |
-
"""Select optimal reasoning strategy based on meta-features."""
|
139 |
-
prompt = f"""
|
140 |
-
Select optimal reasoning strategy:
|
141 |
-
Features: {json.dumps([self._feature_to_dict(f) for f in features])}
|
142 |
-
Context: {json.dumps(context)}
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
2. Feature relevance
|
147 |
-
3. Adaptation potential
|
148 |
-
4. Resource constraints
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
prompt = f"""
|
164 |
-
Apply strategy with meta-learning:
|
165 |
-
Strategy: {strategy}
|
166 |
-
Query: {query}
|
167 |
-
Features: {json.dumps([self._feature_to_dict(f) for f in features])}
|
168 |
-
Context: {json.dumps(context)}
|
169 |
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
|
|
182 |
|
183 |
-
|
184 |
-
Answer: ...
|
185 |
-
Confidence: ...
|
186 |
-
"""
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
"""Create a learning episode from the current interaction."""
|
193 |
-
return LearningEpisode(
|
194 |
-
id=f"episode_{len(self.episode_memory)}",
|
195 |
-
query=query,
|
196 |
-
features=features,
|
197 |
-
outcome=result,
|
198 |
-
performance=result.get("confidence", 0.0),
|
199 |
-
timestamp=datetime.now(),
|
200 |
-
metadata={
|
201 |
-
"adaptations": result.get("adaptations", []),
|
202 |
-
"metrics": result.get("performance_metrics", {})
|
203 |
-
}
|
204 |
)
|
205 |
-
|
206 |
-
def _learn_from_episode(self, episode: LearningEpisode):
|
207 |
-
"""Learn from a completed episode."""
|
208 |
-
# Update episode memory
|
209 |
-
self.episode_memory.append(episode)
|
210 |
-
if len(self.episode_memory) > self.memory_size:
|
211 |
-
self.episode_memory.pop(0)
|
212 |
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
|
|
|
|
|
|
|
|
|
|
218 |
|
219 |
-
|
220 |
-
|
221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
-
#
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
|
|
229 |
|
230 |
-
#
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
|
|
|
|
243 |
|
244 |
-
|
245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
|
247 |
-
#
|
248 |
-
|
249 |
-
if stats["count"] > 10 and stats["success"] / stats["count"] < 0.3:
|
250 |
-
del self.feature_patterns[pattern]
|
251 |
|
252 |
-
#
|
253 |
-
|
254 |
-
|
255 |
-
self.
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
-
#
|
263 |
-
|
264 |
-
|
|
|
|
|
|
|
265 |
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
|
|
275 |
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
features.append(current_feature)
|
284 |
-
current_feature = None
|
285 |
-
try:
|
286 |
-
type_str = line[1:-1].lower()
|
287 |
-
current_type = MetaFeatureType(type_str)
|
288 |
-
except ValueError:
|
289 |
-
current_type = None
|
290 |
-
elif current_type and line.startswith('Name:'):
|
291 |
-
current_feature = MetaFeature(
|
292 |
-
type=current_type,
|
293 |
-
name=line[5:].strip(),
|
294 |
-
value=None,
|
295 |
-
confidence=0.0,
|
296 |
-
timestamp=datetime.now(),
|
297 |
-
metadata={}
|
298 |
-
)
|
299 |
-
elif current_feature:
|
300 |
-
if line.startswith('Value:'):
|
301 |
-
current_feature.value = line[6:].strip()
|
302 |
-
elif line.startswith('Confidence:'):
|
303 |
-
try:
|
304 |
-
current_feature.confidence = float(line[11:].strip())
|
305 |
-
except:
|
306 |
-
pass
|
307 |
-
elif line.startswith('Metadata:'):
|
308 |
-
try:
|
309 |
-
current_feature.metadata = json.loads(line[9:].strip())
|
310 |
-
except:
|
311 |
-
pass
|
312 |
|
313 |
-
|
314 |
-
|
|
|
|
|
|
|
|
|
315 |
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
"
|
320 |
-
lines = response.split('\n')
|
321 |
-
strategy = "default"
|
322 |
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
|
|
|
|
327 |
|
328 |
-
|
329 |
-
|
330 |
-
def _parse_strategy_application(self, response: str) -> Dict[str, Any]:
|
331 |
-
"""Parse strategy application results."""
|
332 |
-
result = {
|
333 |
-
"answer": "",
|
334 |
-
"confidence": 0.0,
|
335 |
-
"steps": [],
|
336 |
-
"adaptations": [],
|
337 |
-
"performance_metrics": {},
|
338 |
-
"meta_insights": []
|
339 |
-
}
|
340 |
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
elif line.startswith('[Result]'):
|
350 |
-
section = "result"
|
351 |
-
elif section == "application":
|
352 |
-
if line.startswith('Steps:'):
|
353 |
-
result["steps"] = [s.strip() for s in line[6:].split(',')]
|
354 |
-
elif line.startswith('Adaptations:'):
|
355 |
-
result["adaptations"] = [a.strip() for a in line[12:].split(',')]
|
356 |
-
elif line.startswith('Metrics:'):
|
357 |
-
try:
|
358 |
-
result["performance_metrics"] = json.loads(line[8:].strip())
|
359 |
-
except:
|
360 |
-
pass
|
361 |
-
elif line.startswith('Insights:'):
|
362 |
-
result["meta_insights"] = [i.strip() for i in line[9:].split(',')]
|
363 |
-
elif section == "result":
|
364 |
-
if line.startswith('Answer:'):
|
365 |
-
result["answer"] = line[7:].strip()
|
366 |
-
elif line.startswith('Confidence:'):
|
367 |
-
try:
|
368 |
-
result["confidence"] = float(line[11:].strip())
|
369 |
-
except:
|
370 |
-
result["confidence"] = 0.5
|
371 |
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
"confidence": feature.confidence,
|
381 |
-
"timestamp": feature.timestamp.isoformat(),
|
382 |
-
"metadata": feature.metadata
|
383 |
-
}
|
384 |
|
385 |
def get_performance_metrics(self) -> Dict[str, Any]:
|
386 |
"""Get current performance metrics."""
|
387 |
return {
|
388 |
-
"success_rate":
|
389 |
-
"adaptation_rate":
|
390 |
-
"exploration_count":
|
391 |
-
"episode_count": len(self.
|
392 |
-
"pattern_count":
|
393 |
"learning_rate": self.learning_rate,
|
394 |
-
"exploration_rate":
|
395 |
}
|
396 |
|
397 |
def get_top_patterns(self, n: int = 10) -> List[Tuple[str, float]]:
|
398 |
"""Get top performing patterns."""
|
399 |
-
|
400 |
-
for pattern, stats in self.feature_patterns.items():
|
401 |
-
if stats["count"] > 0:
|
402 |
-
score = stats["success"] / stats["count"]
|
403 |
-
pattern_scores.append((pattern, score))
|
404 |
-
|
405 |
-
return sorted(pattern_scores, key=lambda x: x[1], reverse=True)[:n]
|
406 |
|
407 |
def clear_memory(self):
|
408 |
"""Clear learning memory."""
|
409 |
-
self.
|
410 |
-
self.feature_patterns.clear()
|
411 |
-
self.strategy_performance.clear()
|
412 |
-
self.adaptation_history.clear()
|
|
|
1 |
+
"""Advanced meta-learning strategy for adaptive reasoning."""
|
2 |
|
3 |
import logging
|
4 |
+
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
|
5 |
import json
|
6 |
from dataclasses import dataclass, field
|
7 |
from enum import Enum
|
|
|
|
|
8 |
from datetime import datetime
|
9 |
+
import numpy as np
|
10 |
+
from collections import defaultdict
|
11 |
|
12 |
from .base import ReasoningStrategy
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
@dataclass
|
15 |
+
class MetaTask:
|
16 |
+
"""Meta-learning task with parameters and performance metrics."""
|
|
|
17 |
name: str
|
18 |
+
parameters: Dict[str, Any]
|
19 |
+
metrics: Dict[str, float]
|
20 |
+
history: List[Dict[str, Any]] = field(default_factory=list)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
class MetaLearningStrategy(ReasoningStrategy):
|
23 |
"""
|
24 |
+
Advanced meta-learning strategy that:
|
25 |
+
1. Adapts to new tasks
|
26 |
+
2. Learns from experience
|
27 |
+
3. Optimizes parameters
|
28 |
+
4. Transfers knowledge
|
29 |
+
5. Improves over time
|
30 |
"""
|
31 |
|
32 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
33 |
+
"""Initialize meta-learning strategy."""
|
34 |
+
super().__init__()
|
35 |
+
self.config = config or {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
# Configure parameters
|
38 |
+
self.learning_rate = self.config.get('learning_rate', 0.01)
|
39 |
+
self.memory_size = self.config.get('memory_size', 100)
|
40 |
+
self.adaptation_threshold = self.config.get('adaptation_threshold', 0.7)
|
41 |
|
42 |
+
# Initialize task memory
|
43 |
+
self.task_memory: List[MetaTask] = []
|
44 |
+
|
45 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
46 |
+
"""
|
47 |
+
Apply meta-learning to adapt and optimize reasoning.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
query: The input query to reason about
|
51 |
+
context: Additional context and parameters
|
52 |
+
|
53 |
+
Returns:
|
54 |
+
Dict containing reasoning results and confidence scores
|
55 |
+
"""
|
56 |
try:
|
57 |
+
# Identify similar tasks
|
58 |
+
similar_tasks = await self._find_similar_tasks(query, context)
|
59 |
|
60 |
+
# Adapt parameters
|
61 |
+
adapted_params = await self._adapt_parameters(similar_tasks, context)
|
62 |
|
63 |
+
# Apply meta-learning
|
64 |
+
results = await self._apply_meta_learning(
|
65 |
+
query,
|
66 |
+
adapted_params,
|
67 |
+
context
|
68 |
+
)
|
69 |
|
70 |
+
# Update memory
|
71 |
+
await self._update_memory(query, results, context)
|
|
|
72 |
|
73 |
+
# Generate analysis
|
74 |
+
analysis = await self._generate_analysis(results, context)
|
75 |
|
76 |
return {
|
77 |
+
'answer': self._format_analysis(analysis),
|
78 |
+
'confidence': self._calculate_confidence(results),
|
79 |
+
'similar_tasks': similar_tasks,
|
80 |
+
'adapted_params': adapted_params,
|
81 |
+
'results': results,
|
82 |
+
'analysis': analysis
|
|
|
|
|
83 |
}
|
84 |
+
|
85 |
except Exception as e:
|
86 |
+
logging.error(f"Meta-learning failed: {str(e)}")
|
87 |
+
return {
|
88 |
+
'error': f"Meta-learning failed: {str(e)}",
|
89 |
+
'confidence': 0.0
|
90 |
+
}
|
91 |
+
|
92 |
+
async def _find_similar_tasks(
|
93 |
+
self,
|
94 |
+
query: str,
|
95 |
+
context: Dict[str, Any]
|
96 |
+
) -> List[MetaTask]:
|
97 |
+
"""Find similar tasks in memory."""
|
98 |
+
similar_tasks = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
+
# Extract query features
|
101 |
+
query_features = self._extract_features(query)
|
|
|
|
|
|
|
102 |
|
103 |
+
for task in self.task_memory:
|
104 |
+
# Calculate similarity
|
105 |
+
similarity = self._calculate_similarity(
|
106 |
+
query_features,
|
107 |
+
self._extract_features(task.name)
|
108 |
+
)
|
109 |
+
|
110 |
+
if similarity > self.adaptation_threshold:
|
111 |
+
similar_tasks.append(task)
|
112 |
|
113 |
+
# Sort by similarity
|
114 |
+
similar_tasks.sort(
|
115 |
+
key=lambda x: np.mean(list(x.metrics.values())),
|
116 |
+
reverse=True
|
117 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
return similar_tasks
|
120 |
+
|
121 |
+
def _extract_features(self, text: str) -> np.ndarray:
|
122 |
+
"""Extract features from text."""
|
123 |
+
# Simple bag of words for now
|
124 |
+
words = set(text.lower().split())
|
125 |
+
return np.array([hash(word) % 100 for word in words])
|
126 |
+
|
127 |
+
def _calculate_similarity(
|
128 |
+
self,
|
129 |
+
features1: np.ndarray,
|
130 |
+
features2: np.ndarray
|
131 |
+
) -> float:
|
132 |
+
"""Calculate similarity between feature sets."""
|
133 |
+
# Simple Jaccard similarity
|
134 |
+
intersection = np.intersect1d(features1, features2)
|
135 |
+
union = np.union1d(features1, features2)
|
136 |
|
137 |
+
return len(intersection) / len(union) if len(union) > 0 else 0
|
138 |
+
|
139 |
+
async def _adapt_parameters(
|
140 |
+
self,
|
141 |
+
similar_tasks: List[MetaTask],
|
142 |
+
context: Dict[str, Any]
|
143 |
+
) -> Dict[str, Any]:
|
144 |
+
"""Adapt parameters based on similar tasks."""
|
145 |
+
if not similar_tasks:
|
146 |
+
return self.config.copy()
|
147 |
|
148 |
+
adapted_params = {}
|
|
|
|
|
|
|
149 |
|
150 |
+
# Weight tasks by performance
|
151 |
+
total_performance = sum(
|
152 |
+
np.mean(list(task.metrics.values()))
|
153 |
+
for task in similar_tasks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
+
if total_performance > 0:
|
157 |
+
# Weighted average of parameters
|
158 |
+
for param_name in self.config:
|
159 |
+
adapted_params[param_name] = sum(
|
160 |
+
task.parameters.get(param_name, self.config[param_name]) *
|
161 |
+
(np.mean(list(task.metrics.values())) / total_performance)
|
162 |
+
for task in similar_tasks
|
163 |
+
)
|
164 |
+
else:
|
165 |
+
adapted_params = self.config.copy()
|
166 |
|
167 |
+
return adapted_params
|
168 |
+
|
169 |
+
async def _apply_meta_learning(
|
170 |
+
self,
|
171 |
+
query: str,
|
172 |
+
parameters: Dict[str, Any],
|
173 |
+
context: Dict[str, Any]
|
174 |
+
) -> Dict[str, Any]:
|
175 |
+
"""Apply meta-learning with adapted parameters."""
|
176 |
+
results = {
|
177 |
+
'query': query,
|
178 |
+
'parameters': parameters,
|
179 |
+
'metrics': {}
|
180 |
+
}
|
181 |
|
182 |
+
# Apply learning rate
|
183 |
+
for param_name, value in parameters.items():
|
184 |
+
if isinstance(value, (int, float)):
|
185 |
+
results['parameters'][param_name] = (
|
186 |
+
value * (1 - self.learning_rate) +
|
187 |
+
self.config[param_name] * self.learning_rate
|
188 |
+
)
|
189 |
|
190 |
+
# Calculate performance metrics
|
191 |
+
results['metrics'] = {
|
192 |
+
'adaptation_score': np.mean([
|
193 |
+
p / self.config[name]
|
194 |
+
for name, p in results['parameters'].items()
|
195 |
+
if isinstance(p, (int, float)) and self.config[name] != 0
|
196 |
+
]),
|
197 |
+
'novelty_score': 1 - max(
|
198 |
+
self._calculate_similarity(
|
199 |
+
self._extract_features(query),
|
200 |
+
self._extract_features(task.name)
|
201 |
+
)
|
202 |
+
for task in self.task_memory
|
203 |
+
) if self.task_memory else 1.0
|
204 |
+
}
|
205 |
|
206 |
+
return results
|
207 |
+
|
208 |
+
async def _update_memory(
|
209 |
+
self,
|
210 |
+
query: str,
|
211 |
+
results: Dict[str, Any],
|
212 |
+
context: Dict[str, Any]
|
213 |
+
) -> None:
|
214 |
+
"""Update task memory."""
|
215 |
+
# Create new task
|
216 |
+
task = MetaTask(
|
217 |
+
name=query,
|
218 |
+
parameters=results['parameters'],
|
219 |
+
metrics=results['metrics'],
|
220 |
+
history=[{
|
221 |
+
'timestamp': datetime.now().isoformat(),
|
222 |
+
'context': context,
|
223 |
+
'results': results
|
224 |
+
}]
|
225 |
+
)
|
226 |
|
227 |
+
# Add to memory
|
228 |
+
self.task_memory.append(task)
|
|
|
|
|
229 |
|
230 |
+
# Maintain memory size
|
231 |
+
if len(self.task_memory) > self.memory_size:
|
232 |
+
# Remove worst performing task
|
233 |
+
self.task_memory.sort(
|
234 |
+
key=lambda x: np.mean(list(x.metrics.values()))
|
235 |
+
)
|
236 |
+
self.task_memory.pop(0)
|
237 |
+
|
238 |
+
async def _generate_analysis(
|
239 |
+
self,
|
240 |
+
results: Dict[str, Any],
|
241 |
+
context: Dict[str, Any]
|
242 |
+
) -> Dict[str, Any]:
|
243 |
+
"""Generate meta-learning analysis."""
|
244 |
+
# Calculate statistics
|
245 |
+
param_stats = {
|
246 |
+
name: {
|
247 |
+
'value': value,
|
248 |
+
'adaptation': value / self.config[name]
|
249 |
+
if isinstance(value, (int, float)) and self.config[name] != 0
|
250 |
+
else 1.0
|
251 |
+
}
|
252 |
+
for name, value in results['parameters'].items()
|
253 |
+
}
|
254 |
|
255 |
+
# Calculate overall metrics
|
256 |
+
metrics = {
|
257 |
+
'adaptation_score': results['metrics']['adaptation_score'],
|
258 |
+
'novelty_score': results['metrics']['novelty_score'],
|
259 |
+
'memory_usage': len(self.task_memory) / self.memory_size
|
260 |
+
}
|
261 |
|
262 |
+
return {
|
263 |
+
'parameters': param_stats,
|
264 |
+
'metrics': metrics,
|
265 |
+
'memory_size': len(self.task_memory),
|
266 |
+
'total_tasks_seen': len(self.task_memory)
|
267 |
+
}
|
268 |
+
|
269 |
+
def _format_analysis(self, analysis: Dict[str, Any]) -> str:
|
270 |
+
"""Format analysis into readable text."""
|
271 |
+
sections = []
|
272 |
|
273 |
+
# Parameter adaptations
|
274 |
+
sections.append("Parameter adaptations:")
|
275 |
+
for name, stats in analysis['parameters'].items():
|
276 |
+
sections.append(
|
277 |
+
f"- {name}: {stats['value']:.2f} "
|
278 |
+
f"({stats['adaptation']:.1%} of original)"
|
279 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
|
281 |
+
# Performance metrics
|
282 |
+
sections.append("\nPerformance metrics:")
|
283 |
+
metrics = analysis['metrics']
|
284 |
+
sections.append(f"- Adaptation score: {metrics['adaptation_score']:.1%}")
|
285 |
+
sections.append(f"- Novelty score: {metrics['novelty_score']:.1%}")
|
286 |
+
sections.append(f"- Memory usage: {metrics['memory_usage']:.1%}")
|
287 |
|
288 |
+
# Memory statistics
|
289 |
+
sections.append("\nMemory statistics:")
|
290 |
+
sections.append(f"- Current tasks in memory: {analysis['memory_size']}")
|
291 |
+
sections.append(f"- Total tasks seen: {analysis['total_tasks_seen']}")
|
|
|
|
|
292 |
|
293 |
+
return "\n".join(sections)
|
294 |
+
|
295 |
+
def _calculate_confidence(self, results: Dict[str, Any]) -> float:
|
296 |
+
"""Calculate overall confidence score."""
|
297 |
+
if not results.get('metrics'):
|
298 |
+
return 0.0
|
299 |
|
300 |
+
# Base confidence
|
301 |
+
confidence = 0.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
|
303 |
+
# Adjust based on adaptation score
|
304 |
+
adaptation_score = results['metrics']['adaptation_score']
|
305 |
+
if adaptation_score > 0.8:
|
306 |
+
confidence += 0.3
|
307 |
+
elif adaptation_score > 0.6:
|
308 |
+
confidence += 0.2
|
309 |
+
elif adaptation_score > 0.4:
|
310 |
+
confidence += 0.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
|
312 |
+
# Adjust based on novelty
|
313 |
+
novelty_score = results['metrics']['novelty_score']
|
314 |
+
if novelty_score < 0.2: # Very similar to known tasks
|
315 |
+
confidence += 0.2
|
316 |
+
elif novelty_score < 0.4:
|
317 |
+
confidence += 0.1
|
318 |
+
|
319 |
+
return min(confidence, 1.0)
|
|
|
|
|
|
|
|
|
320 |
|
321 |
def get_performance_metrics(self) -> Dict[str, Any]:
|
322 |
"""Get current performance metrics."""
|
323 |
return {
|
324 |
+
"success_rate": 0.0,
|
325 |
+
"adaptation_rate": 0.0,
|
326 |
+
"exploration_count": 0,
|
327 |
+
"episode_count": len(self.task_memory),
|
328 |
+
"pattern_count": 0,
|
329 |
"learning_rate": self.learning_rate,
|
330 |
+
"exploration_rate": 0.0
|
331 |
}
|
332 |
|
333 |
def get_top_patterns(self, n: int = 10) -> List[Tuple[str, float]]:
|
334 |
"""Get top performing patterns."""
|
335 |
+
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
|
337 |
def clear_memory(self):
|
338 |
"""Clear learning memory."""
|
339 |
+
self.task_memory.clear()
|
|
|
|
|
|
reasoning/monetization.py
CHANGED
@@ -9,6 +9,8 @@ from datetime import datetime
|
|
9 |
import numpy as np
|
10 |
from collections import defaultdict
|
11 |
|
|
|
|
|
12 |
@dataclass
|
13 |
class MonetizationModel:
|
14 |
"""Monetization model configuration."""
|
@@ -276,3 +278,142 @@ class MonetizationOptimizer:
|
|
276 |
) if self.streams else 0
|
277 |
}
|
278 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
import numpy as np
|
10 |
from collections import defaultdict
|
11 |
|
12 |
+
from .base import ReasoningStrategy
|
13 |
+
|
14 |
@dataclass
|
15 |
class MonetizationModel:
|
16 |
"""Monetization model configuration."""
|
|
|
278 |
) if self.streams else 0
|
279 |
}
|
280 |
}
|
281 |
+
|
282 |
+
class MonetizationStrategy(ReasoningStrategy):
|
283 |
+
"""
|
284 |
+
Advanced monetization strategy that:
|
285 |
+
1. Designs optimal pricing models
|
286 |
+
2. Optimizes revenue streams
|
287 |
+
3. Maximizes customer lifetime value
|
288 |
+
4. Reduces churn
|
289 |
+
5. Increases profitability
|
290 |
+
"""
|
291 |
+
|
292 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
293 |
+
"""Initialize monetization strategy."""
|
294 |
+
super().__init__()
|
295 |
+
self.config = config or {}
|
296 |
+
self.optimizer = MonetizationOptimizer()
|
297 |
+
|
298 |
+
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
299 |
+
"""
|
300 |
+
Generate monetization strategy based on query and context.
|
301 |
+
|
302 |
+
Args:
|
303 |
+
query: The monetization query
|
304 |
+
context: Additional context and parameters
|
305 |
+
|
306 |
+
Returns:
|
307 |
+
Dict containing monetization strategy and confidence scores
|
308 |
+
"""
|
309 |
+
try:
|
310 |
+
# Extract venture type
|
311 |
+
venture_type = self._extract_venture_type(query, context)
|
312 |
+
|
313 |
+
# Optimize monetization
|
314 |
+
optimization_result = await self.optimizer.optimize_monetization(
|
315 |
+
venture_type=venture_type,
|
316 |
+
context=context
|
317 |
+
)
|
318 |
+
|
319 |
+
# Format results
|
320 |
+
formatted_result = self._format_strategy(optimization_result)
|
321 |
+
|
322 |
+
return {
|
323 |
+
'answer': formatted_result,
|
324 |
+
'confidence': self._calculate_confidence(optimization_result),
|
325 |
+
'optimization': optimization_result
|
326 |
+
}
|
327 |
+
|
328 |
+
except Exception as e:
|
329 |
+
logging.error(f"Monetization strategy generation failed: {str(e)}")
|
330 |
+
return {
|
331 |
+
'error': f"Monetization strategy generation failed: {str(e)}",
|
332 |
+
'confidence': 0.0
|
333 |
+
}
|
334 |
+
|
335 |
+
def _extract_venture_type(self, query: str, context: Dict[str, Any]) -> str:
|
336 |
+
"""Extract venture type from query and context."""
|
337 |
+
# Use context if available
|
338 |
+
if 'venture_type' in context:
|
339 |
+
return context['venture_type']
|
340 |
+
|
341 |
+
# Simple keyword matching
|
342 |
+
query_lower = query.lower()
|
343 |
+
if any(term in query_lower for term in ['ai', 'ml', 'model']):
|
344 |
+
return 'ai_startup'
|
345 |
+
elif any(term in query_lower for term in ['saas', 'software']):
|
346 |
+
return 'saas'
|
347 |
+
elif any(term in query_lower for term in ['api', 'service']):
|
348 |
+
return 'api_service'
|
349 |
+
elif any(term in query_lower for term in ['data', 'analytics']):
|
350 |
+
return 'data_analytics'
|
351 |
+
|
352 |
+
# Default to SaaS if unclear
|
353 |
+
return 'saas'
|
354 |
+
|
355 |
+
def _calculate_confidence(self, result: Dict[str, Any]) -> float:
|
356 |
+
"""Calculate confidence score based on optimization quality."""
|
357 |
+
# Base confidence
|
358 |
+
confidence = 0.5
|
359 |
+
|
360 |
+
# Adjust based on optimization completeness
|
361 |
+
if result.get('models'):
|
362 |
+
confidence += 0.1
|
363 |
+
if result.get('pricing'):
|
364 |
+
confidence += 0.1
|
365 |
+
if result.get('revenue'):
|
366 |
+
confidence += 0.1
|
367 |
+
if result.get('value'):
|
368 |
+
confidence += 0.1
|
369 |
+
|
370 |
+
# Adjust based on projected performance
|
371 |
+
performance = result.get('performance', {})
|
372 |
+
if performance.get('roi', 0) > 2.0:
|
373 |
+
confidence += 0.1
|
374 |
+
if performance.get('ltv', 0) > 1000:
|
375 |
+
confidence += 0.1
|
376 |
+
|
377 |
+
return min(confidence, 1.0)
|
378 |
+
|
379 |
+
def _format_strategy(self, result: Dict[str, Any]) -> str:
|
380 |
+
"""Format monetization strategy into readable text."""
|
381 |
+
sections = []
|
382 |
+
|
383 |
+
# Monetization models
|
384 |
+
if 'models' in result:
|
385 |
+
models = result['models']
|
386 |
+
sections.append("Monetization Models:")
|
387 |
+
for model in models:
|
388 |
+
sections.append(f"- {model['name']}: {model['type']}")
|
389 |
+
if 'pricing_tiers' in model:
|
390 |
+
sections.append(" Pricing Tiers:")
|
391 |
+
for tier in model['pricing_tiers']:
|
392 |
+
sections.append(f" * {tier['name']}: ${tier['price']}/mo")
|
393 |
+
|
394 |
+
# Revenue optimization
|
395 |
+
if 'revenue' in result:
|
396 |
+
revenue = result['revenue']
|
397 |
+
sections.append("\nRevenue Optimization:")
|
398 |
+
for stream, details in revenue.items():
|
399 |
+
sections.append(f"- {stream.replace('_', ' ').title()}:")
|
400 |
+
sections.append(f" * Projected Revenue: ${details['projected_revenue']:,.2f}")
|
401 |
+
sections.append(f" * Growth Rate: {details['growth_rate']*100:.1f}%")
|
402 |
+
|
403 |
+
# Customer value optimization
|
404 |
+
if 'value' in result:
|
405 |
+
value = result['value']
|
406 |
+
sections.append("\nCustomer Value Optimization:")
|
407 |
+
sections.append(f"- Customer Acquisition Cost: ${value['cac']:,.2f}")
|
408 |
+
sections.append(f"- Lifetime Value: ${value['ltv']:,.2f}")
|
409 |
+
sections.append(f"- Churn Rate: {value['churn_rate']*100:.1f}%")
|
410 |
+
|
411 |
+
# Performance projections
|
412 |
+
if 'performance' in result:
|
413 |
+
perf = result['performance']
|
414 |
+
sections.append("\nPerformance Projections:")
|
415 |
+
sections.append(f"- ROI: {perf['roi']*100:.1f}%")
|
416 |
+
sections.append(f"- Payback Period: {perf['payback_months']:.1f} months")
|
417 |
+
sections.append(f"- Break-even Point: ${perf['breakeven']:,.2f}")
|
418 |
+
|
419 |
+
return "\n".join(sections)
|
reasoning/multimodal.py
CHANGED
@@ -1,268 +1,278 @@
|
|
1 |
-
"""
|
2 |
|
3 |
import logging
|
4 |
-
from typing import Dict, Any, List
|
5 |
import json
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
from .base import ReasoningStrategy
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
class MultiModalReasoning(ReasoningStrategy):
|
10 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
try:
|
14 |
-
# Process
|
15 |
modalities = await self._process_modalities(query, context)
|
16 |
|
17 |
-
#
|
18 |
alignment = await self._cross_modal_alignment(modalities, context)
|
19 |
|
20 |
-
#
|
21 |
integration = await self._integrated_analysis(alignment, context)
|
22 |
|
23 |
-
# Generate
|
24 |
response = await self._generate_response(integration, context)
|
25 |
|
26 |
return {
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
"confidence": response["confidence"]
|
33 |
}
|
|
|
34 |
except Exception as e:
|
35 |
-
logging.error(f"
|
36 |
-
return {
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
"""Process query across different modalities."""
|
40 |
-
|
41 |
-
Process query across modalities:
|
42 |
-
Query: {query}
|
43 |
-
Context: {json.dumps(context)}
|
44 |
-
|
45 |
-
For each modality extract:
|
46 |
-
1. [Type]: Modality type
|
47 |
-
2. [Content]: Relevant content
|
48 |
-
3. [Features]: Key features
|
49 |
-
4. [Quality]: Content quality
|
50 |
-
|
51 |
-
Format as:
|
52 |
-
[M1]
|
53 |
-
Type: ...
|
54 |
-
Content: ...
|
55 |
-
Features: ...
|
56 |
-
Quality: ...
|
57 |
-
"""
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
async def _cross_modal_alignment(self, modalities: Dict[str, List[Dict[str, Any]]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
|
63 |
-
"""Align information across different modalities."""
|
64 |
-
try:
|
65 |
-
# Extract modality types
|
66 |
-
modal_types = list(modalities.keys())
|
67 |
-
|
68 |
-
# Initialize alignment results
|
69 |
-
alignments = []
|
70 |
-
|
71 |
-
# Process each modality pair
|
72 |
-
for i in range(len(modal_types)):
|
73 |
-
for j in range(i + 1, len(modal_types)):
|
74 |
-
type1, type2 = modal_types[i], modal_types[j]
|
75 |
-
|
76 |
-
# Get items from each modality
|
77 |
-
items1 = modalities[type1]
|
78 |
-
items2 = modalities[type2]
|
79 |
-
|
80 |
-
# Find alignments between items
|
81 |
-
for item1 in items1:
|
82 |
-
for item2 in items2:
|
83 |
-
similarity = self._calculate_similarity(item1, item2)
|
84 |
-
if similarity > 0.5: # Threshold for alignment
|
85 |
-
alignments.append({
|
86 |
-
"type1": type1,
|
87 |
-
"type2": type2,
|
88 |
-
"item1": item1,
|
89 |
-
"item2": item2,
|
90 |
-
"similarity": similarity
|
91 |
-
})
|
92 |
|
93 |
-
|
94 |
-
|
|
|
95 |
|
96 |
-
|
|
|
|
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
def _calculate_similarity(self, item1: Dict[str, Any], item2: Dict[str, Any]) -> float:
|
103 |
-
"""Calculate similarity between two items from different modalities."""
|
104 |
-
try:
|
105 |
-
# Extract content from items
|
106 |
-
content1 = str(item1.get("content", ""))
|
107 |
-
content2 = str(item2.get("content", ""))
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
Confidence: ...
|
140 |
-
"""
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
4. Confidence level (0-1)
|
156 |
-
"""
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
current_modality = {
|
177 |
-
"type": "",
|
178 |
-
"content": "",
|
179 |
-
"features": "",
|
180 |
-
"quality": ""
|
181 |
-
}
|
182 |
-
elif current_modality:
|
183 |
-
if line.startswith('Type:'):
|
184 |
-
current_modality["type"] = line[5:].strip()
|
185 |
-
elif line.startswith('Content:'):
|
186 |
-
current_modality["content"] = line[8:].strip()
|
187 |
-
elif line.startswith('Features:'):
|
188 |
-
current_modality["features"] = line[9:].strip()
|
189 |
-
elif line.startswith('Quality:'):
|
190 |
-
current_modality["quality"] = line[8:].strip()
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
|
197 |
-
|
198 |
-
|
199 |
-
def _parse_integration(self, response: str) -> List[Dict[str, Any]]:
|
200 |
-
"""Parse integration from response."""
|
201 |
-
integration = []
|
202 |
-
current_insight = None
|
203 |
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
if line.startswith('[I'):
|
210 |
-
if current_insight:
|
211 |
-
integration.append(current_insight)
|
212 |
-
current_insight = {
|
213 |
-
"insight": "",
|
214 |
-
"sources": "",
|
215 |
-
"support": "",
|
216 |
-
"confidence": 0.0
|
217 |
-
}
|
218 |
-
elif current_insight:
|
219 |
-
if line.startswith('Insight:'):
|
220 |
-
current_insight["insight"] = line[8:].strip()
|
221 |
-
elif line.startswith('Sources:'):
|
222 |
-
current_insight["sources"] = line[8:].strip()
|
223 |
-
elif line.startswith('Support:'):
|
224 |
-
current_insight["support"] = line[8:].strip()
|
225 |
-
elif line.startswith('Confidence:'):
|
226 |
-
try:
|
227 |
-
current_insight["confidence"] = float(line[11:].strip())
|
228 |
-
except:
|
229 |
-
pass
|
230 |
|
231 |
-
|
232 |
-
|
|
|
233 |
|
234 |
-
return
|
235 |
-
|
236 |
-
|
237 |
-
"""Parse response from response."""
|
238 |
-
response_dict = {
|
239 |
-
"conclusion": "",
|
240 |
-
"modal_contributions": [],
|
241 |
-
"integration_benefits": [],
|
242 |
-
"confidence": 0.0
|
243 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
continue
|
250 |
-
|
251 |
-
if line.startswith('Conclusion:'):
|
252 |
-
response_dict["conclusion"] = line[11:].strip()
|
253 |
-
elif line.startswith('Modal Contributions:'):
|
254 |
-
mode = "modal"
|
255 |
-
elif line.startswith('Integration Benefits:'):
|
256 |
-
mode = "integration"
|
257 |
-
elif line.startswith('Confidence:'):
|
258 |
-
try:
|
259 |
-
response_dict["confidence"] = float(line[11:].strip())
|
260 |
-
except:
|
261 |
-
response_dict["confidence"] = 0.5
|
262 |
-
mode = None
|
263 |
-
elif mode == "modal" and line.startswith('- '):
|
264 |
-
response_dict["modal_contributions"].append(line[2:].strip())
|
265 |
-
elif mode == "integration" and line.startswith('- '):
|
266 |
-
response_dict["integration_benefits"].append(line[2:].strip())
|
267 |
|
268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Advanced multimodal reasoning combining different types of information."""
|
2 |
|
3 |
import logging
|
4 |
+
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
|
5 |
import json
|
6 |
+
from dataclasses import dataclass, field
|
7 |
+
from enum import Enum
|
8 |
+
from datetime import datetime
|
9 |
+
import numpy as np
|
10 |
+
from collections import defaultdict
|
11 |
|
12 |
from .base import ReasoningStrategy
|
13 |
|
14 |
+
@dataclass
|
15 |
+
class ModalityFeatures:
|
16 |
+
"""Features extracted from different modalities."""
|
17 |
+
text: List[Dict[str, Any]]
|
18 |
+
image: Optional[List[Dict[str, Any]]] = None
|
19 |
+
audio: Optional[List[Dict[str, Any]]] = None
|
20 |
+
video: Optional[List[Dict[str, Any]]] = None
|
21 |
+
structured: Optional[List[Dict[str, Any]]] = None
|
22 |
+
|
23 |
class MultiModalReasoning(ReasoningStrategy):
|
24 |
+
"""
|
25 |
+
Advanced multimodal reasoning that:
|
26 |
+
1. Processes different types of information
|
27 |
+
2. Aligns cross-modal features
|
28 |
+
3. Integrates multimodal context
|
29 |
+
4. Generates coherent responses
|
30 |
+
5. Handles uncertainty
|
31 |
+
"""
|
32 |
+
|
33 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
34 |
+
"""Initialize multimodal reasoning."""
|
35 |
+
super().__init__()
|
36 |
+
self.config = config or {}
|
37 |
+
|
38 |
+
# Configure modality weights
|
39 |
+
self.weights = {
|
40 |
+
'text': 0.4,
|
41 |
+
'image': 0.3,
|
42 |
+
'audio': 0.1,
|
43 |
+
'video': 0.1,
|
44 |
+
'structured': 0.1
|
45 |
+
}
|
46 |
|
47 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
48 |
+
"""
|
49 |
+
Apply multimodal reasoning to process and integrate different types of information.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
query: The input query to reason about
|
53 |
+
context: Additional context and parameters
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
Dict containing reasoning results and confidence scores
|
57 |
+
"""
|
58 |
try:
|
59 |
+
# Process across modalities
|
60 |
modalities = await self._process_modalities(query, context)
|
61 |
|
62 |
+
# Align cross-modal information
|
63 |
alignment = await self._cross_modal_alignment(modalities, context)
|
64 |
|
65 |
+
# Integrate aligned information
|
66 |
integration = await self._integrated_analysis(alignment, context)
|
67 |
|
68 |
+
# Generate final response
|
69 |
response = await self._generate_response(integration, context)
|
70 |
|
71 |
return {
|
72 |
+
'answer': response.get('text', ''),
|
73 |
+
'confidence': self._calculate_confidence(integration),
|
74 |
+
'modalities': modalities,
|
75 |
+
'alignment': alignment,
|
76 |
+
'integration': integration
|
|
|
77 |
}
|
78 |
+
|
79 |
except Exception as e:
|
80 |
+
logging.error(f"Multimodal reasoning failed: {str(e)}")
|
81 |
+
return {
|
82 |
+
'error': f"Multimodal reasoning failed: {str(e)}",
|
83 |
+
'confidence': 0.0
|
84 |
+
}
|
85 |
+
|
86 |
+
async def _process_modalities(
|
87 |
+
self,
|
88 |
+
query: str,
|
89 |
+
context: Dict[str, Any]
|
90 |
+
) -> Dict[str, List[Dict[str, Any]]]:
|
91 |
"""Process query across different modalities."""
|
92 |
+
modalities = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
# Process text
|
95 |
+
if 'text' in context:
|
96 |
+
modalities['text'] = self._process_text(context['text'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
# Process images
|
99 |
+
if 'images' in context:
|
100 |
+
modalities['image'] = self._process_images(context['images'])
|
101 |
|
102 |
+
# Process audio
|
103 |
+
if 'audio' in context:
|
104 |
+
modalities['audio'] = self._process_audio(context['audio'])
|
105 |
|
106 |
+
# Process video
|
107 |
+
if 'video' in context:
|
108 |
+
modalities['video'] = self._process_video(context['video'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
# Process structured data
|
111 |
+
if 'structured' in context:
|
112 |
+
modalities['structured'] = self._process_structured(context['structured'])
|
113 |
|
114 |
+
return modalities
|
115 |
+
|
116 |
+
async def _cross_modal_alignment(
|
117 |
+
self,
|
118 |
+
modalities: Dict[str, List[Dict[str, Any]]],
|
119 |
+
context: Dict[str, Any]
|
120 |
+
) -> List[Dict[str, Any]]:
|
121 |
+
"""Align information across different modalities."""
|
122 |
+
alignments = []
|
123 |
+
|
124 |
+
# Get all modality pairs
|
125 |
+
modality_pairs = [
|
126 |
+
(m1, m2) for i, m1 in enumerate(modalities.keys())
|
127 |
+
for m2 in list(modalities.keys())[i+1:]
|
128 |
+
]
|
129 |
+
|
130 |
+
# Align each pair
|
131 |
+
for mod1, mod2 in modality_pairs:
|
132 |
+
items1 = modalities[mod1]
|
133 |
+
items2 = modalities[mod2]
|
134 |
|
135 |
+
# Calculate cross-modal similarities
|
136 |
+
for item1 in items1:
|
137 |
+
for item2 in items2:
|
138 |
+
similarity = self._calculate_similarity(item1, item2)
|
139 |
+
if similarity > 0.7: # Alignment threshold
|
140 |
+
alignments.append({
|
141 |
+
'modality1': mod1,
|
142 |
+
'modality2': mod2,
|
143 |
+
'item1': item1,
|
144 |
+
'item2': item2,
|
145 |
+
'similarity': similarity
|
146 |
+
})
|
147 |
|
148 |
+
return alignments
|
149 |
+
|
150 |
+
def _calculate_similarity(
|
151 |
+
self,
|
152 |
+
item1: Dict[str, Any],
|
153 |
+
item2: Dict[str, Any]
|
154 |
+
) -> float:
|
155 |
+
"""Calculate similarity between two items from different modalities."""
|
156 |
+
# Simple feature overlap for now
|
157 |
+
features1 = set(str(v) for v in item1.values())
|
158 |
+
features2 = set(str(v) for v in item2.values())
|
159 |
|
160 |
+
if not features1 or not features2:
|
161 |
+
return 0.0
|
162 |
+
|
163 |
+
overlap = len(features1.intersection(features2))
|
164 |
+
total = len(features1.union(features2))
|
|
|
|
|
165 |
|
166 |
+
return overlap / total if total > 0 else 0.0
|
167 |
+
|
168 |
+
async def _integrated_analysis(
|
169 |
+
self,
|
170 |
+
alignment: List[Dict[str, Any]],
|
171 |
+
context: Dict[str, Any]
|
172 |
+
) -> List[Dict[str, Any]]:
|
173 |
+
"""Perform integrated analysis of aligned information."""
|
174 |
+
integrated = []
|
175 |
|
176 |
+
# Group alignments by similarity
|
177 |
+
similarity_groups = defaultdict(list)
|
178 |
+
for align in alignment:
|
179 |
+
similarity_groups[align['similarity']].append(align)
|
|
|
|
|
180 |
|
181 |
+
# Process groups in order of similarity
|
182 |
+
for similarity, group in sorted(
|
183 |
+
similarity_groups.items(),
|
184 |
+
key=lambda x: x[0],
|
185 |
+
reverse=True
|
186 |
+
):
|
187 |
+
# Combine aligned features
|
188 |
+
for align in group:
|
189 |
+
integrated.append({
|
190 |
+
'features': {
|
191 |
+
**align['item1'],
|
192 |
+
**align['item2']
|
193 |
+
},
|
194 |
+
'modalities': [align['modality1'], align['modality2']],
|
195 |
+
'confidence': align['similarity']
|
196 |
+
})
|
197 |
|
198 |
+
return integrated
|
199 |
+
|
200 |
+
async def _generate_response(
|
201 |
+
self,
|
202 |
+
integration: List[Dict[str, Any]],
|
203 |
+
context: Dict[str, Any]
|
204 |
+
) -> Dict[str, Any]:
|
205 |
+
"""Generate coherent response from integrated analysis."""
|
206 |
+
if not integration:
|
207 |
+
return {'text': '', 'confidence': 0.0}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
+
# Combine all integrated features
|
210 |
+
all_features = {}
|
211 |
+
for item in integration:
|
212 |
+
all_features.update(item['features'])
|
213 |
|
214 |
+
# Generate response text
|
215 |
+
response_text = []
|
|
|
|
|
|
|
|
|
216 |
|
217 |
+
# Add main findings
|
218 |
+
response_text.append("Main findings across modalities:")
|
219 |
+
for feature, value in all_features.items():
|
220 |
+
response_text.append(f"- {feature}: {value}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
+
# Add confidence
|
223 |
+
confidence = sum(item['confidence'] for item in integration) / len(integration)
|
224 |
+
response_text.append(f"\nOverall confidence: {confidence:.2f}")
|
225 |
|
226 |
+
return {
|
227 |
+
'text': "\n".join(response_text),
|
228 |
+
'confidence': confidence
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
}
|
230 |
+
|
231 |
+
def _calculate_confidence(self, integration: List[Dict[str, Any]]) -> float:
|
232 |
+
"""Calculate overall confidence score."""
|
233 |
+
if not integration:
|
234 |
+
return 0.0
|
235 |
+
|
236 |
+
# Base confidence
|
237 |
+
confidence = 0.5
|
238 |
|
239 |
+
# Adjust based on number of modalities
|
240 |
+
unique_modalities = set()
|
241 |
+
for item in integration:
|
242 |
+
unique_modalities.update(item['modalities'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
|
244 |
+
modality_bonus = len(unique_modalities) * 0.1
|
245 |
+
confidence += min(modality_bonus, 0.3)
|
246 |
+
|
247 |
+
# Adjust based on integration quality
|
248 |
+
avg_similarity = sum(
|
249 |
+
item['confidence'] for item in integration
|
250 |
+
) / len(integration)
|
251 |
+
confidence += avg_similarity * 0.2
|
252 |
+
|
253 |
+
return min(confidence, 1.0)
|
254 |
+
|
255 |
+
def _process_text(self, text: str) -> List[Dict[str, Any]]:
|
256 |
+
"""Process text modality."""
|
257 |
+
# Simple text processing for now
|
258 |
+
return [{'text': text}]
|
259 |
+
|
260 |
+
def _process_images(self, images: List[str]) -> List[Dict[str, Any]]:
|
261 |
+
"""Process image modality."""
|
262 |
+
# Simple image processing for now
|
263 |
+
return [{'image': image} for image in images]
|
264 |
+
|
265 |
+
def _process_audio(self, audio: List[str]) -> List[Dict[str, Any]]:
|
266 |
+
"""Process audio modality."""
|
267 |
+
# Simple audio processing for now
|
268 |
+
return [{'audio': audio_file} for audio_file in audio]
|
269 |
+
|
270 |
+
def _process_video(self, video: List[str]) -> List[Dict[str, Any]]:
|
271 |
+
"""Process video modality."""
|
272 |
+
# Simple video processing for now
|
273 |
+
return [{'video': video_file} for video_file in video]
|
274 |
+
|
275 |
+
def _process_structured(self, structured: Dict[str, Any]) -> List[Dict[str, Any]]:
|
276 |
+
"""Process structured data modality."""
|
277 |
+
# Simple structured data processing for now
|
278 |
+
return [{'structured': structured}]
|
reasoning/neurosymbolic.py
CHANGED
@@ -1,264 +1,305 @@
|
|
1 |
-
"""
|
2 |
|
3 |
import logging
|
4 |
-
from typing import Dict, Any, List, Tuple
|
5 |
import json
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
from .base import ReasoningStrategy
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
class NeurosymbolicReasoning(ReasoningStrategy):
|
10 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
try:
|
14 |
-
#
|
15 |
-
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
|
26 |
return {
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
"explanation": conclusion["explanation"]
|
34 |
}
|
|
|
35 |
except Exception as e:
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
2. [Value]: Extracted value
|
47 |
-
3. [Confidence]: Extraction confidence
|
48 |
-
4. [Relations]: Related concepts
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
async def _symbolic_reasoning(self, features: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
|
62 |
-
prompt = f"""
|
63 |
-
Generate symbolic rules from features:
|
64 |
-
Features: {json.dumps(features)}
|
65 |
-
Context: {json.dumps(context)}
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
Draw final conclusions from integrated reasoning:
|
111 |
-
Integrated: {json.dumps(integrated)}
|
112 |
-
Context: {json.dumps(context)}
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
if line.startswith('[F'):
|
135 |
-
if current:
|
136 |
-
features.append(current)
|
137 |
-
current = {
|
138 |
-
"type": "",
|
139 |
-
"value": "",
|
140 |
-
"confidence": 0.0,
|
141 |
-
"relations": []
|
142 |
-
}
|
143 |
-
elif current:
|
144 |
-
if line.startswith('Type:'):
|
145 |
-
current["type"] = line[5:].strip()
|
146 |
-
elif line.startswith('Value:'):
|
147 |
-
current["value"] = line[6:].strip()
|
148 |
-
elif line.startswith('Confidence:'):
|
149 |
-
try:
|
150 |
-
current["confidence"] = float(line[11:].strip())
|
151 |
-
except:
|
152 |
-
pass
|
153 |
-
elif line.startswith('Relations:'):
|
154 |
-
current["relations"] = [r.strip() for r in line[10:].split(',')]
|
155 |
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
158 |
|
159 |
-
return
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
if current:
|
173 |
-
rules.append(current)
|
174 |
-
current = {
|
175 |
-
"condition": "",
|
176 |
-
"implication": "",
|
177 |
-
"certainty": 0.0,
|
178 |
-
"source": ""
|
179 |
-
}
|
180 |
-
elif current:
|
181 |
-
if line.startswith('Condition:'):
|
182 |
-
current["condition"] = line[10:].strip()
|
183 |
-
elif line.startswith('Implication:'):
|
184 |
-
current["implication"] = line[12:].strip()
|
185 |
-
elif line.startswith('Certainty:'):
|
186 |
-
try:
|
187 |
-
current["certainty"] = float(line[10:].strip())
|
188 |
-
except:
|
189 |
-
pass
|
190 |
-
elif line.startswith('Source:'):
|
191 |
-
current["source"] = line[7:].strip()
|
192 |
|
193 |
-
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
"
|
200 |
-
|
201 |
-
|
202 |
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
if current:
|
210 |
-
integrations.append(current)
|
211 |
-
current = {
|
212 |
-
"components": "",
|
213 |
-
"method": "",
|
214 |
-
"result": "",
|
215 |
-
"confidence": 0.0
|
216 |
-
}
|
217 |
-
elif current:
|
218 |
-
if line.startswith('Components:'):
|
219 |
-
current["components"] = line[11:].strip()
|
220 |
-
elif line.startswith('Method:'):
|
221 |
-
current["method"] = line[7:].strip()
|
222 |
-
elif line.startswith('Result:'):
|
223 |
-
current["result"] = line[7:].strip()
|
224 |
-
elif line.startswith('Confidence:'):
|
225 |
-
try:
|
226 |
-
current["confidence"] = float(line[11:].strip())
|
227 |
-
except:
|
228 |
-
pass
|
229 |
|
230 |
-
|
231 |
-
|
232 |
|
233 |
-
|
234 |
-
|
235 |
-
def _parse_conclusion(self, response: str) -> Dict[str, Any]:
|
236 |
-
"""Parse final conclusion from response."""
|
237 |
-
conclusion = {
|
238 |
-
"answer": "",
|
239 |
-
"confidence": 0.0,
|
240 |
-
"explanation": "",
|
241 |
-
"factors": []
|
242 |
-
}
|
243 |
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
elif mode == "factors" and line.startswith('- '):
|
262 |
-
conclusion["factors"].append(line[2:].strip())
|
263 |
|
264 |
-
return
|
|
|
1 |
+
"""Advanced neurosymbolic reasoning combining neural and symbolic approaches."""
|
2 |
|
3 |
import logging
|
4 |
+
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
|
5 |
import json
|
6 |
+
from dataclasses import dataclass, field
|
7 |
+
from enum import Enum
|
8 |
+
from datetime import datetime
|
9 |
+
import numpy as np
|
10 |
+
from collections import defaultdict
|
11 |
|
12 |
from .base import ReasoningStrategy
|
13 |
|
14 |
+
@dataclass
|
15 |
+
class NeuralFeature:
|
16 |
+
"""Neural features extracted from data."""
|
17 |
+
name: str
|
18 |
+
values: np.ndarray
|
19 |
+
importance: float
|
20 |
+
metadata: Dict[str, Any] = field(default_factory=dict)
|
21 |
+
|
22 |
+
@dataclass
|
23 |
+
class SymbolicRule:
|
24 |
+
"""Symbolic rule with conditions and confidence."""
|
25 |
+
name: str
|
26 |
+
conditions: List[str]
|
27 |
+
conclusion: str
|
28 |
+
confidence: float
|
29 |
+
metadata: Dict[str, Any] = field(default_factory=dict)
|
30 |
+
|
31 |
class NeurosymbolicReasoning(ReasoningStrategy):
|
32 |
+
"""
|
33 |
+
Advanced neurosymbolic reasoning that:
|
34 |
+
1. Extracts neural features
|
35 |
+
2. Generates symbolic rules
|
36 |
+
3. Combines approaches
|
37 |
+
4. Handles uncertainty
|
38 |
+
5. Provides interpretable results
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
42 |
+
"""Initialize neurosymbolic reasoning."""
|
43 |
+
super().__init__()
|
44 |
+
self.config = config or {}
|
45 |
+
|
46 |
+
# Configure parameters
|
47 |
+
self.feature_threshold = self.config.get('feature_threshold', 0.1)
|
48 |
+
self.rule_confidence_threshold = self.config.get('rule_confidence', 0.7)
|
49 |
+
self.max_rules = self.config.get('max_rules', 10)
|
50 |
|
51 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
52 |
+
"""
|
53 |
+
Apply neurosymbolic reasoning to combine neural and symbolic approaches.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
query: The input query to reason about
|
57 |
+
context: Additional context and parameters
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
Dict containing reasoning results and confidence scores
|
61 |
+
"""
|
62 |
try:
|
63 |
+
# Extract neural features
|
64 |
+
features = await self._extract_features(query, context)
|
65 |
|
66 |
+
# Generate symbolic rules
|
67 |
+
rules = await self._generate_rules(features, context)
|
68 |
|
69 |
+
# Combine approaches
|
70 |
+
combined = await self._combine_approaches(features, rules, context)
|
71 |
|
72 |
+
# Generate analysis
|
73 |
+
analysis = await self._generate_analysis(combined, context)
|
74 |
|
75 |
return {
|
76 |
+
'answer': self._format_analysis(analysis),
|
77 |
+
'confidence': self._calculate_confidence(combined),
|
78 |
+
'features': features,
|
79 |
+
'rules': rules,
|
80 |
+
'combined': combined,
|
81 |
+
'analysis': analysis
|
|
|
82 |
}
|
83 |
+
|
84 |
except Exception as e:
|
85 |
+
logging.error(f"Neurosymbolic reasoning failed: {str(e)}")
|
86 |
+
return {
|
87 |
+
'error': f"Neurosymbolic reasoning failed: {str(e)}",
|
88 |
+
'confidence': 0.0
|
89 |
+
}
|
90 |
+
|
91 |
+
async def _extract_features(
|
92 |
+
self,
|
93 |
+
query: str,
|
94 |
+
context: Dict[str, Any]
|
95 |
+
) -> List[NeuralFeature]:
|
96 |
+
"""Extract neural features from input."""
|
97 |
+
features = []
|
98 |
|
99 |
+
# Extract key terms
|
100 |
+
terms = query.lower().split()
|
|
|
|
|
|
|
101 |
|
102 |
+
# Process each term
|
103 |
+
for term in terms:
|
104 |
+
# Simple feature extraction for now
|
105 |
+
values = np.random.randn(10) # Placeholder for real feature extraction
|
106 |
+
importance = np.abs(values).mean()
|
107 |
+
|
108 |
+
if importance > self.feature_threshold:
|
109 |
+
features.append(NeuralFeature(
|
110 |
+
name=term,
|
111 |
+
values=values,
|
112 |
+
importance=importance,
|
113 |
+
metadata={'source': 'term_extraction'}
|
114 |
+
))
|
115 |
|
116 |
+
# Sort by importance
|
117 |
+
features.sort(key=lambda x: x.importance, reverse=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
return features
|
120 |
+
|
121 |
+
async def _generate_rules(
|
122 |
+
self,
|
123 |
+
features: List[NeuralFeature],
|
124 |
+
context: Dict[str, Any]
|
125 |
+
) -> List[SymbolicRule]:
|
126 |
+
"""Generate symbolic rules from features."""
|
127 |
+
rules = []
|
128 |
|
129 |
+
# Process feature combinations
|
130 |
+
for i, feature1 in enumerate(features):
|
131 |
+
for j, feature2 in enumerate(features[i+1:], i+1):
|
132 |
+
# Calculate correlation
|
133 |
+
correlation = np.corrcoef(feature1.values, feature2.values)[0, 1]
|
134 |
+
|
135 |
+
if abs(correlation) > self.rule_confidence_threshold:
|
136 |
+
# Create rule based on correlation
|
137 |
+
if correlation > 0:
|
138 |
+
condition = f"{feature1.name} AND {feature2.name}"
|
139 |
+
conclusion = "positively_correlated"
|
140 |
+
else:
|
141 |
+
condition = f"{feature1.name} XOR {feature2.name}"
|
142 |
+
conclusion = "negatively_correlated"
|
143 |
+
|
144 |
+
rules.append(SymbolicRule(
|
145 |
+
name=f"rule_{len(rules)}",
|
146 |
+
conditions=[condition],
|
147 |
+
conclusion=conclusion,
|
148 |
+
confidence=abs(correlation),
|
149 |
+
metadata={
|
150 |
+
'features': [feature1.name, feature2.name],
|
151 |
+
'correlation': correlation
|
152 |
+
}
|
153 |
+
))
|
154 |
+
|
155 |
+
if len(rules) >= self.max_rules:
|
156 |
+
break
|
157 |
+
|
158 |
+
if len(rules) >= self.max_rules:
|
159 |
+
break
|
160 |
|
161 |
+
return rules
|
162 |
+
|
163 |
+
async def _combine_approaches(
|
164 |
+
self,
|
165 |
+
features: List[NeuralFeature],
|
166 |
+
rules: List[SymbolicRule],
|
167 |
+
context: Dict[str, Any]
|
168 |
+
) -> Dict[str, Any]:
|
169 |
+
"""Combine neural and symbolic approaches."""
|
170 |
+
combined = {
|
171 |
+
'neural_weights': {},
|
172 |
+
'symbolic_weights': {},
|
173 |
+
'combined_scores': {}
|
174 |
+
}
|
175 |
|
176 |
+
# Calculate neural weights
|
177 |
+
total_importance = sum(f.importance for f in features)
|
178 |
+
if total_importance > 0:
|
179 |
+
combined['neural_weights'] = {
|
180 |
+
f.name: f.importance / total_importance
|
181 |
+
for f in features
|
182 |
+
}
|
183 |
|
184 |
+
# Calculate symbolic weights
|
185 |
+
total_confidence = sum(r.confidence for r in rules)
|
186 |
+
if total_confidence > 0:
|
187 |
+
combined['symbolic_weights'] = {
|
188 |
+
r.name: r.confidence / total_confidence
|
189 |
+
for r in rules
|
190 |
+
}
|
191 |
|
192 |
+
# Combine scores
|
193 |
+
all_elements = set(
|
194 |
+
list(combined['neural_weights'].keys()) +
|
195 |
+
list(combined['symbolic_weights'].keys())
|
196 |
+
)
|
|
|
|
|
|
|
197 |
|
198 |
+
for element in all_elements:
|
199 |
+
neural_score = combined['neural_weights'].get(element, 0)
|
200 |
+
symbolic_score = combined['symbolic_weights'].get(element, 0)
|
201 |
+
|
202 |
+
# Simple weighted average
|
203 |
+
combined['combined_scores'][element] = (
|
204 |
+
neural_score * 0.6 + # Favor neural slightly
|
205 |
+
symbolic_score * 0.4
|
206 |
+
)
|
207 |
|
208 |
+
return combined
|
209 |
+
|
210 |
+
async def _generate_analysis(
|
211 |
+
self,
|
212 |
+
combined: Dict[str, Any],
|
213 |
+
context: Dict[str, Any]
|
214 |
+
) -> Dict[str, Any]:
|
215 |
+
"""Generate neurosymbolic analysis."""
|
216 |
+
# Sort elements by combined score
|
217 |
+
ranked_elements = sorted(
|
218 |
+
combined['combined_scores'].items(),
|
219 |
+
key=lambda x: x[1],
|
220 |
+
reverse=True
|
221 |
+
)
|
222 |
|
223 |
+
# Calculate statistics
|
224 |
+
scores = list(combined['combined_scores'].values())
|
225 |
+
mean = np.mean(scores) if scores else 0
|
226 |
+
std = np.std(scores) if scores else 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
+
# Calculate entropy
|
229 |
+
entropy = -sum(
|
230 |
+
s * np.log2(s) if s > 0 else 0
|
231 |
+
for s in combined['combined_scores'].values()
|
232 |
+
)
|
233 |
|
234 |
+
return {
|
235 |
+
'top_element': ranked_elements[0][0] if ranked_elements else '',
|
236 |
+
'score': ranked_elements[0][1] if ranked_elements else 0,
|
237 |
+
'alternatives': [
|
238 |
+
{'name': name, 'score': score}
|
239 |
+
for name, score in ranked_elements[1:]
|
240 |
+
],
|
241 |
+
'statistics': {
|
242 |
+
'mean': mean,
|
243 |
+
'std': std,
|
244 |
+
'entropy': entropy
|
245 |
+
}
|
246 |
+
}
|
247 |
+
|
248 |
+
def _format_analysis(self, analysis: Dict[str, Any]) -> str:
|
249 |
+
"""Format analysis into readable text."""
|
250 |
+
sections = []
|
251 |
|
252 |
+
# Top element
|
253 |
+
if analysis['top_element']:
|
254 |
+
sections.append(
|
255 |
+
f"Most significant element: {analysis['top_element']} "
|
256 |
+
f"(score: {analysis['score']:.2%})"
|
257 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
+
# Alternative elements
|
260 |
+
if analysis['alternatives']:
|
261 |
+
sections.append("\nAlternative elements:")
|
262 |
+
for alt in analysis['alternatives']:
|
263 |
+
sections.append(
|
264 |
+
f"- {alt['name']}: {alt['score']:.2%}"
|
265 |
+
)
|
266 |
|
267 |
+
# Statistics
|
268 |
+
stats = analysis['statistics']
|
269 |
+
sections.append("\nAnalysis statistics:")
|
270 |
+
sections.append(f"- Mean score: {stats['mean']:.2%}")
|
271 |
+
sections.append(f"- Standard deviation: {stats['std']:.2%}")
|
272 |
+
sections.append(f"- Information entropy: {stats['entropy']:.2f} bits")
|
273 |
|
274 |
+
return "\n".join(sections)
|
275 |
+
|
276 |
+
def _calculate_confidence(self, combined: Dict[str, Any]) -> float:
|
277 |
+
"""Calculate overall confidence score."""
|
278 |
+
if not combined['combined_scores']:
|
279 |
+
return 0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
|
281 |
+
# Base confidence
|
282 |
+
confidence = 0.5
|
283 |
|
284 |
+
# Get scores
|
285 |
+
scores = list(combined['combined_scores'].values())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
+
# Strong leading score increases confidence
|
288 |
+
max_score = max(scores)
|
289 |
+
if max_score > 0.8:
|
290 |
+
confidence += 0.3
|
291 |
+
elif max_score > 0.6:
|
292 |
+
confidence += 0.2
|
293 |
+
elif max_score > 0.4:
|
294 |
+
confidence += 0.1
|
295 |
+
|
296 |
+
# Low entropy (clear distinction) increases confidence
|
297 |
+
entropy = -sum(s * np.log2(s) if s > 0 else 0 for s in scores)
|
298 |
+
max_entropy = -np.log2(1/len(scores)) # Maximum possible entropy
|
299 |
+
|
300 |
+
if entropy < 0.3 * max_entropy:
|
301 |
+
confidence += 0.2
|
302 |
+
elif entropy < 0.6 * max_entropy:
|
303 |
+
confidence += 0.1
|
|
|
|
|
304 |
|
305 |
+
return min(confidence, 1.0)
|
reasoning/portfolio_optimization.py
CHANGED
@@ -9,6 +9,8 @@ from datetime import datetime
|
|
9 |
import numpy as np
|
10 |
from collections import defaultdict
|
11 |
|
|
|
|
|
12 |
@dataclass
|
13 |
class VentureMetrics:
|
14 |
"""Venture performance metrics."""
|
@@ -350,3 +352,198 @@ class PortfolioOptimizer:
|
|
350 |
})
|
351 |
|
352 |
return opportunities
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
import numpy as np
|
10 |
from collections import defaultdict
|
11 |
|
12 |
+
from .base import ReasoningStrategy
|
13 |
+
|
14 |
@dataclass
|
15 |
class VentureMetrics:
|
16 |
"""Venture performance metrics."""
|
|
|
352 |
})
|
353 |
|
354 |
return opportunities
|
355 |
+
|
356 |
+
class PortfolioOptimizationStrategy(ReasoningStrategy):
|
357 |
+
"""
|
358 |
+
Advanced portfolio optimization strategy that:
|
359 |
+
1. Analyzes venture metrics
|
360 |
+
2. Optimizes resource allocation
|
361 |
+
3. Balances risk-reward
|
362 |
+
4. Maximizes portfolio synergies
|
363 |
+
5. Provides actionable recommendations
|
364 |
+
"""
|
365 |
+
|
366 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
367 |
+
"""Initialize portfolio optimization strategy."""
|
368 |
+
super().__init__()
|
369 |
+
self.config = config or {}
|
370 |
+
self.optimizer = PortfolioOptimizer()
|
371 |
+
|
372 |
+
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
373 |
+
"""
|
374 |
+
Generate portfolio optimization strategy based on query and context.
|
375 |
+
|
376 |
+
Args:
|
377 |
+
query: The portfolio optimization query
|
378 |
+
context: Additional context and parameters
|
379 |
+
|
380 |
+
Returns:
|
381 |
+
Dict containing optimization strategy and confidence scores
|
382 |
+
"""
|
383 |
+
try:
|
384 |
+
# Extract portfolio parameters
|
385 |
+
params = self._extract_parameters(query, context)
|
386 |
+
|
387 |
+
# Optimize portfolio
|
388 |
+
optimization_result = self.optimizer.optimize_portfolio(
|
389 |
+
ventures=params.get('ventures', []),
|
390 |
+
constraints=params.get('constraints', []),
|
391 |
+
objectives=params.get('objectives', [])
|
392 |
+
)
|
393 |
+
|
394 |
+
# Get metrics
|
395 |
+
metrics = self.optimizer.get_portfolio_metrics()
|
396 |
+
|
397 |
+
# Generate recommendations
|
398 |
+
recommendations = self._generate_recommendations(
|
399 |
+
optimization_result,
|
400 |
+
metrics
|
401 |
+
)
|
402 |
+
|
403 |
+
return {
|
404 |
+
'answer': self._format_strategy(optimization_result, metrics, recommendations),
|
405 |
+
'confidence': self._calculate_confidence(optimization_result),
|
406 |
+
'optimization': optimization_result,
|
407 |
+
'metrics': metrics,
|
408 |
+
'recommendations': recommendations
|
409 |
+
}
|
410 |
+
|
411 |
+
except Exception as e:
|
412 |
+
logging.error(f"Portfolio optimization failed: {str(e)}")
|
413 |
+
return {
|
414 |
+
'error': f"Portfolio optimization failed: {str(e)}",
|
415 |
+
'confidence': 0.0
|
416 |
+
}
|
417 |
+
|
418 |
+
def _extract_parameters(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
419 |
+
"""Extract optimization parameters from query and context."""
|
420 |
+
params = {}
|
421 |
+
|
422 |
+
# Extract ventures
|
423 |
+
if 'ventures' in context:
|
424 |
+
params['ventures'] = context['ventures']
|
425 |
+
else:
|
426 |
+
# Default empty portfolio
|
427 |
+
params['ventures'] = []
|
428 |
+
|
429 |
+
# Extract constraints
|
430 |
+
if 'constraints' in context:
|
431 |
+
params['constraints'] = context['constraints']
|
432 |
+
else:
|
433 |
+
# Default constraints
|
434 |
+
params['constraints'] = [
|
435 |
+
'budget_limit',
|
436 |
+
'risk_tolerance',
|
437 |
+
'resource_capacity'
|
438 |
+
]
|
439 |
+
|
440 |
+
# Extract objectives
|
441 |
+
if 'objectives' in context:
|
442 |
+
params['objectives'] = context['objectives']
|
443 |
+
else:
|
444 |
+
# Default objectives
|
445 |
+
params['objectives'] = [
|
446 |
+
'maximize_returns',
|
447 |
+
'minimize_risk',
|
448 |
+
'maximize_synergies'
|
449 |
+
]
|
450 |
+
|
451 |
+
return params
|
452 |
+
|
453 |
+
def _generate_recommendations(
|
454 |
+
self,
|
455 |
+
optimization_result: Dict[str, Any],
|
456 |
+
metrics: Dict[str, Any]
|
457 |
+
) -> List[str]:
|
458 |
+
"""Generate actionable recommendations."""
|
459 |
+
recommendations = []
|
460 |
+
|
461 |
+
# Portfolio composition recommendations
|
462 |
+
if 'allocation' in optimization_result:
|
463 |
+
allocation = optimization_result['allocation']
|
464 |
+
recommendations.extend([
|
465 |
+
f"Allocate {alloc['percentage']:.1f}% to {alloc['venture']}"
|
466 |
+
for alloc in allocation
|
467 |
+
])
|
468 |
+
|
469 |
+
# Risk management recommendations
|
470 |
+
if 'risk_analysis' in metrics:
|
471 |
+
risk = metrics['risk_analysis']
|
472 |
+
if risk.get('total_risk', 0) > 0.7:
|
473 |
+
recommendations.append(
|
474 |
+
"Consider reducing exposure to high-risk ventures"
|
475 |
+
)
|
476 |
+
if risk.get('correlation', 0) > 0.8:
|
477 |
+
recommendations.append(
|
478 |
+
"Increase portfolio diversification to reduce correlation"
|
479 |
+
)
|
480 |
+
|
481 |
+
# Performance optimization recommendations
|
482 |
+
if 'performance' in metrics:
|
483 |
+
perf = metrics['performance']
|
484 |
+
if perf.get('sharpe_ratio', 0) < 1.0:
|
485 |
+
recommendations.append(
|
486 |
+
"Optimize risk-adjusted returns through better venture selection"
|
487 |
+
)
|
488 |
+
if perf.get('efficiency', 0) < 0.8:
|
489 |
+
recommendations.append(
|
490 |
+
"Improve resource allocation efficiency across ventures"
|
491 |
+
)
|
492 |
+
|
493 |
+
return recommendations
|
494 |
+
|
495 |
+
def _calculate_confidence(self, optimization_result: Dict[str, Any]) -> float:
|
496 |
+
"""Calculate confidence score based on optimization quality."""
|
497 |
+
# Base confidence
|
498 |
+
confidence = 0.5
|
499 |
+
|
500 |
+
# Adjust based on optimization completeness
|
501 |
+
if optimization_result.get('allocation'):
|
502 |
+
confidence += 0.1
|
503 |
+
if optimization_result.get('risk_analysis'):
|
504 |
+
confidence += 0.1
|
505 |
+
if optimization_result.get('performance_metrics'):
|
506 |
+
confidence += 0.1
|
507 |
+
|
508 |
+
# Adjust based on solution quality
|
509 |
+
if optimization_result.get('convergence_status') == 'optimal':
|
510 |
+
confidence += 0.2
|
511 |
+
elif optimization_result.get('convergence_status') == 'suboptimal':
|
512 |
+
confidence += 0.1
|
513 |
+
|
514 |
+
return min(confidence, 1.0)
|
515 |
+
|
516 |
+
def _format_strategy(
|
517 |
+
self,
|
518 |
+
optimization_result: Dict[str, Any],
|
519 |
+
metrics: Dict[str, Any],
|
520 |
+
recommendations: List[str]
|
521 |
+
) -> str:
|
522 |
+
"""Format optimization strategy into readable text."""
|
523 |
+
sections = []
|
524 |
+
|
525 |
+
# Portfolio allocation
|
526 |
+
if 'allocation' in optimization_result:
|
527 |
+
allocation = optimization_result['allocation']
|
528 |
+
sections.append("Portfolio Allocation:")
|
529 |
+
for alloc in allocation:
|
530 |
+
sections.append(
|
531 |
+
f"- {alloc['venture']}: {alloc['percentage']:.1f}%"
|
532 |
+
)
|
533 |
+
|
534 |
+
# Key metrics
|
535 |
+
if metrics:
|
536 |
+
sections.append("\nKey Metrics:")
|
537 |
+
for key, value in metrics.items():
|
538 |
+
if isinstance(value, (int, float)):
|
539 |
+
sections.append(f"- {key.replace('_', ' ').title()}: {value:.2f}")
|
540 |
+
else:
|
541 |
+
sections.append(f"- {key.replace('_', ' ').title()}: {value}")
|
542 |
+
|
543 |
+
# Recommendations
|
544 |
+
if recommendations:
|
545 |
+
sections.append("\nKey Recommendations:")
|
546 |
+
for rec in recommendations:
|
547 |
+
sections.append(f"- {rec}")
|
548 |
+
|
549 |
+
return "\n".join(sections)
|
reasoning/quantum.py
CHANGED
@@ -1,268 +1,276 @@
|
|
1 |
"""Quantum-inspired reasoning implementations."""
|
2 |
|
3 |
import logging
|
4 |
-
from typing import Dict, Any, List
|
5 |
import json
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
from .base import ReasoningStrategy
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
class QuantumReasoning(ReasoningStrategy):
|
10 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
try:
|
14 |
-
#
|
15 |
-
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
|
26 |
return {
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
"confidence": solution["confidence"]
|
34 |
}
|
|
|
35 |
except Exception as e:
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
2. [Amplitude]: Relative strength (0-1)
|
47 |
-
3. [Phase]: Relationship to other states
|
48 |
-
4. [Basis]: Underlying assumptions
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
async def _analyze_entanglements(self, superposition: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
|
62 |
-
prompt = f"""
|
63 |
-
Analyze entanglements between possibilities:
|
64 |
-
Superposition: {json.dumps(superposition)}
|
65 |
-
Context: {json.dumps(context)}
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
Type: ...
|
77 |
-
Strength: ...
|
78 |
-
Impact: ...
|
79 |
-
"""
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
Effect: ...
|
103 |
-
"""
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
Interference: {json.dumps(interference)}
|
112 |
-
Context: {json.dumps(context)}
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
"""Parse superposition states from response."""
|
127 |
-
superposition = []
|
128 |
-
current_state = None
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
if
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
current_state["phase"] = line[6:].strip()
|
154 |
-
elif line.startswith('Basis:'):
|
155 |
-
current_state["basis"] = line[6:].strip()
|
156 |
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
if current_entanglement:
|
174 |
-
entanglements.append(current_entanglement)
|
175 |
-
current_entanglement = {
|
176 |
-
"states": "",
|
177 |
-
"type": "",
|
178 |
-
"strength": 0.0,
|
179 |
-
"impact": ""
|
180 |
-
}
|
181 |
-
elif current_entanglement:
|
182 |
-
if line.startswith('States:'):
|
183 |
-
current_entanglement["states"] = line[7:].strip()
|
184 |
-
elif line.startswith('Type:'):
|
185 |
-
current_entanglement["type"] = line[5:].strip()
|
186 |
-
elif line.startswith('Strength:'):
|
187 |
-
try:
|
188 |
-
current_entanglement["strength"] = float(line[9:].strip())
|
189 |
-
except:
|
190 |
-
pass
|
191 |
-
elif line.startswith('Impact:'):
|
192 |
-
current_entanglement["impact"] = line[7:].strip()
|
193 |
|
194 |
-
|
195 |
-
|
|
|
|
|
|
|
|
|
196 |
|
197 |
-
|
198 |
-
|
199 |
-
def _parse_interference(self, response: str) -> List[Dict[str, Any]]:
|
200 |
-
"""Parse interference patterns from response."""
|
201 |
-
interference = []
|
202 |
-
current_pattern = None
|
203 |
|
204 |
-
|
205 |
-
|
206 |
-
if not line:
|
207 |
-
continue
|
208 |
-
|
209 |
-
if line.startswith('[I'):
|
210 |
-
if current_pattern:
|
211 |
-
interference.append(current_pattern)
|
212 |
-
current_pattern = {
|
213 |
-
"pattern": "",
|
214 |
-
"amplitude": 0.0,
|
215 |
-
"phase": "",
|
216 |
-
"effect": ""
|
217 |
-
}
|
218 |
-
elif current_pattern:
|
219 |
-
if line.startswith('Pattern:'):
|
220 |
-
current_pattern["pattern"] = line[8:].strip()
|
221 |
-
elif line.startswith('Amplitude:'):
|
222 |
-
try:
|
223 |
-
current_pattern["amplitude"] = float(line[10:].strip())
|
224 |
-
except:
|
225 |
-
pass
|
226 |
-
elif line.startswith('Phase:'):
|
227 |
-
current_pattern["phase"] = line[6:].strip()
|
228 |
-
elif line.startswith('Effect:'):
|
229 |
-
current_pattern["effect"] = line[7:].strip()
|
230 |
|
231 |
-
|
232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
"""Parse collapse to solution from response."""
|
238 |
-
collapse = {
|
239 |
-
"measurement": "",
|
240 |
-
"confidence": 0.0,
|
241 |
-
"quantum_effects": [],
|
242 |
-
"conclusion": ""
|
243 |
-
}
|
244 |
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
continue
|
250 |
-
|
251 |
-
if line.startswith('Measurement:'):
|
252 |
-
collapse["measurement"] = line[12:].strip()
|
253 |
-
elif line.startswith('Confidence:'):
|
254 |
-
try:
|
255 |
-
collapse["confidence"] = float(line[11:].strip())
|
256 |
-
except:
|
257 |
-
collapse["confidence"] = 0.5
|
258 |
-
elif line.startswith('Quantum Effects:'):
|
259 |
-
mode = "effects"
|
260 |
-
elif mode == "effects" and line.startswith('- '):
|
261 |
-
collapse["quantum_effects"].append(line[2:].strip())
|
262 |
-
elif line.startswith('Conclusion:'):
|
263 |
-
collapse["conclusion"] = line[11:].strip()
|
264 |
|
265 |
-
return
|
266 |
|
267 |
|
268 |
class QuantumInspiredStrategy(ReasoningStrategy):
|
|
|
1 |
"""Quantum-inspired reasoning implementations."""
|
2 |
|
3 |
import logging
|
4 |
+
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
|
5 |
import json
|
6 |
+
from dataclasses import dataclass, field
|
7 |
+
from enum import Enum
|
8 |
+
from datetime import datetime
|
9 |
+
import numpy as np
|
10 |
+
from collections import defaultdict
|
11 |
|
12 |
from .base import ReasoningStrategy
|
13 |
|
14 |
+
@dataclass
|
15 |
+
class QuantumState:
|
16 |
+
"""Quantum state with superposition and entanglement."""
|
17 |
+
name: str
|
18 |
+
amplitude: complex
|
19 |
+
phase: float
|
20 |
+
entangled_states: List[str] = field(default_factory=list)
|
21 |
+
|
22 |
class QuantumReasoning(ReasoningStrategy):
|
23 |
+
"""
|
24 |
+
Advanced quantum reasoning that:
|
25 |
+
1. Creates quantum states
|
26 |
+
2. Applies quantum operations
|
27 |
+
3. Measures outcomes
|
28 |
+
4. Handles superposition
|
29 |
+
5. Models entanglement
|
30 |
+
"""
|
31 |
+
|
32 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
33 |
+
"""Initialize quantum reasoning."""
|
34 |
+
super().__init__()
|
35 |
+
self.config = config or {}
|
36 |
+
|
37 |
+
# Configure quantum parameters
|
38 |
+
self.num_qubits = self.config.get('num_qubits', 3)
|
39 |
+
self.measurement_threshold = self.config.get('measurement_threshold', 0.1)
|
40 |
+
self.decoherence_rate = self.config.get('decoherence_rate', 0.01)
|
41 |
|
42 |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
43 |
+
"""
|
44 |
+
Apply quantum reasoning to analyze complex decisions.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
query: The input query to reason about
|
48 |
+
context: Additional context and parameters
|
49 |
+
|
50 |
+
Returns:
|
51 |
+
Dict containing reasoning results and confidence scores
|
52 |
+
"""
|
53 |
try:
|
54 |
+
# Initialize quantum states
|
55 |
+
states = await self._initialize_states(query, context)
|
56 |
|
57 |
+
# Apply quantum operations
|
58 |
+
evolved_states = await self._apply_operations(states, context)
|
59 |
|
60 |
+
# Measure outcomes
|
61 |
+
measurements = await self._measure_states(evolved_states, context)
|
62 |
|
63 |
+
# Generate analysis
|
64 |
+
analysis = await self._generate_analysis(measurements, context)
|
65 |
|
66 |
return {
|
67 |
+
'answer': self._format_analysis(analysis),
|
68 |
+
'confidence': self._calculate_confidence(measurements),
|
69 |
+
'states': states,
|
70 |
+
'evolved_states': evolved_states,
|
71 |
+
'measurements': measurements,
|
72 |
+
'analysis': analysis
|
|
|
73 |
}
|
74 |
+
|
75 |
except Exception as e:
|
76 |
+
logging.error(f"Quantum reasoning failed: {str(e)}")
|
77 |
+
return {
|
78 |
+
'error': f"Quantum reasoning failed: {str(e)}",
|
79 |
+
'confidence': 0.0
|
80 |
+
}
|
81 |
+
|
82 |
+
async def _initialize_states(
|
83 |
+
self,
|
84 |
+
query: str,
|
85 |
+
context: Dict[str, Any]
|
86 |
+
) -> List[QuantumState]:
|
87 |
+
"""Initialize quantum states."""
|
88 |
+
states = []
|
89 |
|
90 |
+
# Extract key terms for state initialization
|
91 |
+
terms = set(query.lower().split())
|
|
|
|
|
|
|
92 |
|
93 |
+
# Create quantum states based on terms
|
94 |
+
for i, term in enumerate(terms):
|
95 |
+
if i >= self.num_qubits:
|
96 |
+
break
|
97 |
+
|
98 |
+
# Calculate initial amplitude and phase
|
99 |
+
amplitude = 1.0 / np.sqrt(len(terms[:self.num_qubits]))
|
100 |
+
phase = 2 * np.pi * i / len(terms[:self.num_qubits])
|
101 |
+
|
102 |
+
states.append(QuantumState(
|
103 |
+
name=term,
|
104 |
+
amplitude=complex(amplitude * np.cos(phase), amplitude * np.sin(phase)),
|
105 |
+
phase=phase
|
106 |
+
))
|
107 |
|
108 |
+
# Create entangled states if specified
|
109 |
+
if context.get('entangle', False):
|
110 |
+
self._entangle_states(states)
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
+
return states
|
113 |
+
|
114 |
+
async def _apply_operations(
|
115 |
+
self,
|
116 |
+
states: List[QuantumState],
|
117 |
+
context: Dict[str, Any]
|
118 |
+
) -> List[QuantumState]:
|
119 |
+
"""Apply quantum operations to states."""
|
120 |
+
evolved_states = []
|
121 |
|
122 |
+
# Get operation parameters
|
123 |
+
rotation = context.get('rotation', 0.0)
|
124 |
+
phase_shift = context.get('phase_shift', 0.0)
|
|
|
|
|
|
|
|
|
125 |
|
126 |
+
for state in states:
|
127 |
+
# Apply rotation
|
128 |
+
rotated_amplitude = state.amplitude * np.exp(1j * rotation)
|
129 |
+
|
130 |
+
# Apply phase shift
|
131 |
+
shifted_phase = (state.phase + phase_shift) % (2 * np.pi)
|
132 |
+
|
133 |
+
# Apply decoherence
|
134 |
+
decohered_amplitude = rotated_amplitude * (1 - self.decoherence_rate)
|
135 |
+
|
136 |
+
evolved_states.append(QuantumState(
|
137 |
+
name=state.name,
|
138 |
+
amplitude=decohered_amplitude,
|
139 |
+
phase=shifted_phase,
|
140 |
+
entangled_states=state.entangled_states.copy()
|
141 |
+
))
|
142 |
|
143 |
+
return evolved_states
|
144 |
+
|
145 |
+
async def _measure_states(
|
146 |
+
self,
|
147 |
+
states: List[QuantumState],
|
148 |
+
context: Dict[str, Any]
|
149 |
+
) -> Dict[str, float]:
|
150 |
+
"""Measure quantum states."""
|
151 |
+
measurements = {}
|
152 |
|
153 |
+
# Calculate total probability
|
154 |
+
total_probability = sum(
|
155 |
+
abs(state.amplitude) ** 2
|
156 |
+
for state in states
|
157 |
+
)
|
|
|
|
|
158 |
|
159 |
+
if total_probability > 0:
|
160 |
+
# Normalize and store measurements
|
161 |
+
for state in states:
|
162 |
+
probability = (abs(state.amplitude) ** 2) / total_probability
|
163 |
+
if probability > self.measurement_threshold:
|
164 |
+
measurements[state.name] = probability
|
|
|
|
|
165 |
|
166 |
+
return measurements
|
167 |
+
|
168 |
+
def _entangle_states(self, states: List[QuantumState]) -> None:
|
169 |
+
"""Create entanglement between states."""
|
170 |
+
if len(states) < 2:
|
171 |
+
return
|
172 |
+
|
173 |
+
# Simple entanglement: connect adjacent states
|
174 |
+
for i in range(len(states) - 1):
|
175 |
+
states[i].entangled_states.append(states[i + 1].name)
|
176 |
+
states[i + 1].entangled_states.append(states[i].name)
|
177 |
+
|
178 |
+
async def _generate_analysis(
|
179 |
+
self,
|
180 |
+
measurements: Dict[str, float],
|
181 |
+
context: Dict[str, Any]
|
182 |
+
) -> Dict[str, Any]:
|
183 |
+
"""Generate quantum analysis."""
|
184 |
+
# Sort states by measurement probability
|
185 |
+
ranked_states = sorted(
|
186 |
+
measurements.items(),
|
187 |
+
key=lambda x: x[1],
|
188 |
+
reverse=True
|
189 |
+
)
|
190 |
|
191 |
+
# Calculate quantum statistics
|
192 |
+
amplitudes = list(measurements.values())
|
193 |
+
mean = np.mean(amplitudes) if amplitudes else 0
|
194 |
+
std = np.std(amplitudes) if amplitudes else 0
|
|
|
|
|
|
|
195 |
|
196 |
+
# Calculate quantum entropy
|
197 |
+
entropy = -sum(
|
198 |
+
p * np.log2(p) if p > 0 else 0
|
199 |
+
for p in measurements.values()
|
200 |
+
)
|
201 |
+
|
202 |
+
return {
|
203 |
+
'top_state': ranked_states[0][0] if ranked_states else '',
|
204 |
+
'probability': ranked_states[0][1] if ranked_states else 0,
|
205 |
+
'alternatives': [
|
206 |
+
{'name': name, 'probability': prob}
|
207 |
+
for name, prob in ranked_states[1:]
|
208 |
+
],
|
209 |
+
'statistics': {
|
210 |
+
'mean': mean,
|
211 |
+
'std': std,
|
212 |
+
'entropy': entropy
|
213 |
+
}
|
214 |
+
}
|
215 |
+
|
216 |
+
def _format_analysis(self, analysis: Dict[str, Any]) -> str:
|
217 |
+
"""Format analysis into readable text."""
|
218 |
+
sections = []
|
|
|
|
|
|
|
219 |
|
220 |
+
# Top quantum state
|
221 |
+
if analysis['top_state']:
|
222 |
+
sections.append(
|
223 |
+
f"Most probable quantum state: {analysis['top_state']} "
|
224 |
+
f"(probability: {analysis['probability']:.2%})"
|
225 |
+
)
|
226 |
|
227 |
+
# Alternative states
|
228 |
+
if analysis['alternatives']:
|
229 |
+
sections.append("\nAlternative quantum states:")
|
230 |
+
for alt in analysis['alternatives']:
|
231 |
+
sections.append(
|
232 |
+
f"- {alt['name']}: {alt['probability']:.2%}"
|
233 |
+
)
|
234 |
|
235 |
+
# Quantum statistics
|
236 |
+
stats = analysis['statistics']
|
237 |
+
sections.append("\nQuantum statistics:")
|
238 |
+
sections.append(f"- Mean amplitude: {stats['mean']:.2%}")
|
239 |
+
sections.append(f"- Standard deviation: {stats['std']:.2%}")
|
240 |
+
sections.append(f"- Quantum entropy: {stats['entropy']:.2f} bits")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
|
242 |
+
return "\n".join(sections)
|
243 |
+
|
244 |
+
def _calculate_confidence(self, measurements: Dict[str, float]) -> float:
|
245 |
+
"""Calculate overall confidence score."""
|
246 |
+
if not measurements:
|
247 |
+
return 0.0
|
248 |
|
249 |
+
# Base confidence
|
250 |
+
confidence = 0.5
|
|
|
|
|
|
|
|
|
251 |
|
252 |
+
# Adjust based on measurement distribution
|
253 |
+
probs = list(measurements.values())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
|
255 |
+
# Strong leading measurement increases confidence
|
256 |
+
max_prob = max(probs)
|
257 |
+
if max_prob > 0.8:
|
258 |
+
confidence += 0.3
|
259 |
+
elif max_prob > 0.6:
|
260 |
+
confidence += 0.2
|
261 |
+
elif max_prob > 0.4:
|
262 |
+
confidence += 0.1
|
263 |
|
264 |
+
# Low entropy (clear distinction) increases confidence
|
265 |
+
entropy = -sum(p * np.log2(p) if p > 0 else 0 for p in probs)
|
266 |
+
max_entropy = -np.log2(1/len(probs)) # Maximum possible entropy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
+
if entropy < 0.3 * max_entropy:
|
269 |
+
confidence += 0.2
|
270 |
+
elif entropy < 0.6 * max_entropy:
|
271 |
+
confidence += 0.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
|
273 |
+
return min(confidence, 1.0)
|
274 |
|
275 |
|
276 |
class QuantumInspiredStrategy(ReasoningStrategy):
|
requirements.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
fastapi>=0.68.0
|
2 |
uvicorn>=0.15.0
|
3 |
pydantic>=2.0.0
|
4 |
-
gradio
|
5 |
llama-cpp-python>=0.2.23
|
6 |
huggingface-hub>=0.19.4
|
7 |
numpy>=1.24.0
|
|
|
1 |
fastapi>=0.68.0
|
2 |
uvicorn>=0.15.0
|
3 |
pydantic>=2.0.0
|
4 |
+
gradio==5.11.0
|
5 |
llama-cpp-python>=0.2.23
|
6 |
huggingface-hub>=0.19.4
|
7 |
numpy>=1.24.0
|