nananie143 commited on
Commit
a6ce454
·
verified ·
1 Parent(s): 9ea5c9a

Upload folder using huggingface_hub

Browse files
reasoning/bayesian.py CHANGED
@@ -1,187 +1,325 @@
1
- """Bayesian reasoning implementation."""
2
 
3
  import logging
4
- from typing import Dict, Any, List
5
  import json
6
- import re
 
7
  from datetime import datetime
 
 
8
 
9
  from .base import ReasoningStrategy
10
 
 
 
 
 
 
 
 
 
 
11
  class BayesianReasoning(ReasoningStrategy):
12
- """Implements Bayesian reasoning for probabilistic analysis."""
 
 
 
 
 
 
 
13
 
14
- def __init__(self, prior_weight: float = 0.3):
15
- self.prior_weight = prior_weight
 
 
 
 
 
 
 
16
 
17
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
 
 
 
 
 
 
 
 
 
 
18
  try:
19
  # Generate hypotheses
20
  hypotheses = await self._generate_hypotheses(query, context)
21
 
22
- # Calculate prior probabilities
23
  priors = await self._calculate_priors(hypotheses, context)
24
 
25
  # Update with evidence
26
- posteriors = await self._update_with_evidence(hypotheses, priors, context)
 
 
 
 
27
 
28
- # Generate final analysis
29
  analysis = await self._generate_analysis(posteriors, context)
30
 
31
  return {
32
- "success": True,
33
- "answer": analysis["conclusion"],
34
- "hypotheses": hypotheses,
35
- "priors": priors,
36
- "posteriors": posteriors,
37
- "confidence": analysis["confidence"],
38
- "reasoning_path": analysis["reasoning_path"]
39
  }
 
40
  except Exception as e:
41
- return {"success": False, "error": str(e)}
 
 
 
 
42
 
43
- async def _generate_hypotheses(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]:
44
- prompt = f"""
45
- Generate 3-4 hypotheses for this problem:
46
- Query: {query}
47
- Context: {json.dumps(context)}
48
-
49
- For each hypothesis:
50
- 1. [Statement]: Clear statement of the hypothesis
51
- 2. [Assumptions]: Key assumptions made
52
- 3. [Testability]: How it could be tested/verified
53
-
54
- Format as:
55
- [H1]
56
- Statement: ...
57
- Assumptions: ...
58
- Testability: ...
59
- """
60
-
61
- response = await context["groq_api"].predict(prompt)
62
- return self._parse_hypotheses(response["answer"])
63
-
64
- async def _calculate_priors(self, hypotheses: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, float]:
65
- prompt = f"""
66
- Calculate prior probabilities for these hypotheses:
67
- Context: {json.dumps(context)}
68
-
69
- Hypotheses:
70
- {json.dumps(hypotheses, indent=2)}
71
 
72
- For each hypothesis, estimate its prior probability (0-1) based on:
73
- 1. Alignment with known principles
74
- 2. Historical precedent
75
- 3. Domain expertise
76
 
77
- Format: [H1]: 0.XX, [H2]: 0.XX, ...
78
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
- response = await context["groq_api"].predict(prompt)
81
- return self._parse_probabilities(response["answer"])
82
-
83
- async def _update_with_evidence(self, hypotheses: List[Dict[str, Any]], priors: Dict[str, float],
84
- context: Dict[str, Any]) -> Dict[str, float]:
85
- prompt = f"""
86
- Update probabilities with available evidence:
87
- Context: {json.dumps(context)}
 
88
 
89
- Hypotheses and Priors:
90
- {json.dumps(list(zip(hypotheses, priors.values())), indent=2)}
 
91
 
92
- Consider:
93
- 1. How well each hypothesis explains the evidence
94
- 2. Any new evidence from the context
95
- 3. Potential conflicts or support between hypotheses
 
 
 
 
 
 
 
 
 
 
 
96
 
97
- Format: [H1]: 0.XX, [H2]: 0.XX, ...
98
- """
 
 
 
 
 
99
 
100
- response = await context["groq_api"].predict(prompt)
101
- return self._parse_probabilities(response["answer"])
102
-
103
- async def _generate_analysis(self, posteriors: Dict[str, float], context: Dict[str, Any]) -> Dict[str, Any]:
104
- prompt = f"""
105
- Generate final Bayesian analysis:
106
- Context: {json.dumps(context)}
107
-
108
- Posterior Probabilities:
109
- {json.dumps(posteriors, indent=2)}
110
-
111
- Provide:
112
- 1. Main conclusion based on highest probability hypotheses
113
- 2. Confidence level (0-1)
114
- 3. Key reasoning steps taken
115
- """
116
 
117
- response = await context["groq_api"].predict(prompt)
118
- return self._parse_analysis(response["answer"])
119
-
120
- def _parse_hypotheses(self, response: str) -> List[Dict[str, Any]]:
121
- """Parse hypotheses from response."""
122
- hypotheses = []
123
- current = None
124
 
125
- for line in response.split('\n'):
126
- line = line.strip()
127
- if not line:
128
- continue
 
 
 
 
 
 
 
 
 
129
 
130
- if line.startswith('[H'):
131
- if current:
132
- hypotheses.append(current)
133
- current = {
134
- "statement": "",
135
- "assumptions": "",
136
- "testability": ""
137
  }
138
- elif current:
139
- if line.startswith('Statement:'):
140
- current["statement"] = line[10:].strip()
141
- elif line.startswith('Assumptions:'):
142
- current["assumptions"] = line[12:].strip()
143
- elif line.startswith('Testability:'):
144
- current["testability"] = line[12:].strip()
145
 
146
- if current:
147
- hypotheses.append(current)
 
 
 
 
 
 
 
 
 
 
 
 
148
 
149
- return hypotheses
150
-
151
- def _parse_probabilities(self, response: str) -> Dict[str, float]:
152
- """Parse probabilities from response."""
153
- probs = {}
154
- pattern = r'\[H(\d+)\]:\s*(0\.\d+)'
155
 
156
- for match in re.finditer(pattern, response):
157
- h_num = int(match.group(1))
158
- prob = float(match.group(2))
159
- probs[f"H{h_num}"] = prob
160
 
161
- return probs
162
-
163
- def _parse_analysis(self, response: str) -> Dict[str, Any]:
164
- """Parse analysis from response."""
165
- lines = response.split('\n')
166
- analysis = {
167
- "conclusion": "",
168
- "confidence": 0.0,
169
- "reasoning_path": []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170
  }
 
 
 
 
171
 
172
- for line in lines:
173
- line = line.strip()
174
- if not line:
175
- continue
176
-
177
- if line.startswith('Conclusion:'):
178
- analysis["conclusion"] = line[11:].strip()
179
- elif line.startswith('Confidence:'):
180
- try:
181
- analysis["confidence"] = float(line[11:].strip())
182
- except:
183
- analysis["confidence"] = 0.5
184
- elif line.startswith('- '):
185
- analysis["reasoning_path"].append(line[2:].strip())
186
-
187
- return analysis
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Advanced Bayesian reasoning for probabilistic analysis."""
2
 
3
  import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
5
  import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
  from datetime import datetime
9
+ import numpy as np
10
+ from collections import defaultdict
11
 
12
  from .base import ReasoningStrategy
13
 
14
+ @dataclass
15
+ class BayesianHypothesis:
16
+ """Bayesian hypothesis with probabilities."""
17
+ name: str
18
+ prior: float
19
+ likelihood: float
20
+ posterior: float = 0.0
21
+ evidence: List[Dict[str, Any]] = field(default_factory=list)
22
+
23
  class BayesianReasoning(ReasoningStrategy):
24
+ """
25
+ Advanced Bayesian reasoning that:
26
+ 1. Generates hypotheses
27
+ 2. Calculates prior probabilities
28
+ 3. Updates with evidence
29
+ 4. Computes posteriors
30
+ 5. Provides probabilistic analysis
31
+ """
32
 
33
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
34
+ """Initialize Bayesian reasoning."""
35
+ super().__init__()
36
+ self.config = config or {}
37
+
38
+ # Configure Bayesian parameters
39
+ self.prior_weight = self.config.get('prior_weight', 0.3)
40
+ self.evidence_threshold = self.config.get('evidence_threshold', 0.1)
41
+ self.min_likelihood = self.config.get('min_likelihood', 0.01)
42
 
43
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
44
+ """
45
+ Apply Bayesian reasoning to analyze probabilities and update beliefs.
46
+
47
+ Args:
48
+ query: The input query to reason about
49
+ context: Additional context and parameters
50
+
51
+ Returns:
52
+ Dict containing reasoning results and confidence scores
53
+ """
54
  try:
55
  # Generate hypotheses
56
  hypotheses = await self._generate_hypotheses(query, context)
57
 
58
+ # Calculate priors
59
  priors = await self._calculate_priors(hypotheses, context)
60
 
61
  # Update with evidence
62
+ posteriors = await self._update_with_evidence(
63
+ hypotheses,
64
+ priors,
65
+ context
66
+ )
67
 
68
+ # Generate analysis
69
  analysis = await self._generate_analysis(posteriors, context)
70
 
71
  return {
72
+ 'answer': self._format_analysis(analysis),
73
+ 'confidence': self._calculate_confidence(posteriors),
74
+ 'hypotheses': hypotheses,
75
+ 'priors': priors,
76
+ 'posteriors': posteriors,
77
+ 'analysis': analysis
 
78
  }
79
+
80
  except Exception as e:
81
+ logging.error(f"Bayesian reasoning failed: {str(e)}")
82
+ return {
83
+ 'error': f"Bayesian reasoning failed: {str(e)}",
84
+ 'confidence': 0.0
85
+ }
86
 
87
+ async def _generate_hypotheses(
88
+ self,
89
+ query: str,
90
+ context: Dict[str, Any]
91
+ ) -> List[Dict[str, Any]]:
92
+ """Generate plausible hypotheses."""
93
+ hypotheses = []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
 
95
+ # Extract key terms for hypothesis generation
96
+ terms = set(query.lower().split())
 
 
97
 
98
+ # Generate hypotheses based on context and terms
99
+ if 'options' in context:
100
+ # Use provided options as hypotheses
101
+ for option in context['options']:
102
+ hypotheses.append({
103
+ 'name': option,
104
+ 'description': f"Hypothesis based on option: {option}",
105
+ 'factors': self._extract_factors(option, terms)
106
+ })
107
+ else:
108
+ # Generate default hypotheses
109
+ hypotheses.extend([
110
+ {
111
+ 'name': 'primary',
112
+ 'description': "Primary hypothesis based on direct interpretation",
113
+ 'factors': self._extract_factors(query, terms)
114
+ },
115
+ {
116
+ 'name': 'alternative',
117
+ 'description': "Alternative hypothesis considering other factors",
118
+ 'factors': self._generate_alternative_factors(terms)
119
+ }
120
+ ])
121
 
122
+ return hypotheses
123
+
124
+ async def _calculate_priors(
125
+ self,
126
+ hypotheses: List[Dict[str, Any]],
127
+ context: Dict[str, Any]
128
+ ) -> Dict[str, float]:
129
+ """Calculate prior probabilities."""
130
+ priors = {}
131
 
132
+ # Get historical data if available
133
+ history = context.get('history', {})
134
+ total_cases = sum(history.values()) if history else len(hypotheses)
135
 
136
+ for hypothesis in hypotheses:
137
+ name = hypothesis['name']
138
+
139
+ # Calculate prior from history or use uniform prior
140
+ if name in history:
141
+ priors[name] = history[name] / total_cases
142
+ else:
143
+ priors[name] = 1.0 / len(hypotheses)
144
+
145
+ # Adjust prior based on factors
146
+ factor_weight = len(hypothesis['factors']) / 10 # Normalize factor count
147
+ priors[name] = (
148
+ priors[name] * (1 - self.prior_weight) +
149
+ factor_weight * self.prior_weight
150
+ )
151
 
152
+ # Normalize priors
153
+ total_prior = sum(priors.values())
154
+ if total_prior > 0:
155
+ priors = {
156
+ name: prob / total_prior
157
+ for name, prob in priors.items()
158
+ }
159
 
160
+ return priors
161
+
162
+ async def _update_with_evidence(
163
+ self,
164
+ hypotheses: List[Dict[str, Any]],
165
+ priors: Dict[str, float],
166
+ context: Dict[str, Any]
167
+ ) -> Dict[str, float]:
168
+ """Update probabilities with evidence."""
169
+ posteriors = priors.copy()
 
 
 
 
 
 
170
 
171
+ # Get evidence from context
172
+ evidence = context.get('evidence', [])
173
+ if not evidence:
174
+ return posteriors
 
 
 
175
 
176
+ for e in evidence:
177
+ # Calculate likelihood for each hypothesis
178
+ likelihoods = {}
179
+ for hypothesis in hypotheses:
180
+ name = hypothesis['name']
181
+ likelihood = self._calculate_likelihood(hypothesis, e)
182
+ likelihoods[name] = max(likelihood, self.min_likelihood)
183
+
184
+ # Update posteriors using Bayes' rule
185
+ total_probability = sum(
186
+ likelihoods[name] * posteriors[name]
187
+ for name in posteriors
188
+ )
189
 
190
+ if total_probability > 0:
191
+ posteriors = {
192
+ name: (likelihoods[name] * posteriors[name]) / total_probability
193
+ for name in posteriors
 
 
 
194
  }
 
 
 
 
 
 
 
195
 
196
+ return posteriors
197
+
198
+ def _calculate_likelihood(
199
+ self,
200
+ hypothesis: Dict[str, Any],
201
+ evidence: Dict[str, Any]
202
+ ) -> float:
203
+ """Calculate likelihood of evidence given hypothesis."""
204
+ # Extract evidence factors
205
+ evidence_factors = set(
206
+ str(v).lower()
207
+ for v in evidence.values()
208
+ if isinstance(v, (str, int, float))
209
+ )
210
 
211
+ # Compare with hypothesis factors
212
+ common_factors = evidence_factors.intersection(hypothesis['factors'])
 
 
 
 
213
 
214
+ if not evidence_factors:
215
+ return 0.5 # Neutral likelihood if no factors
 
 
216
 
217
+ return len(common_factors) / len(evidence_factors)
218
+
219
+ async def _generate_analysis(
220
+ self,
221
+ posteriors: Dict[str, float],
222
+ context: Dict[str, Any]
223
+ ) -> Dict[str, Any]:
224
+ """Generate probabilistic analysis."""
225
+ # Sort hypotheses by posterior probability
226
+ ranked_hypotheses = sorted(
227
+ posteriors.items(),
228
+ key=lambda x: x[1],
229
+ reverse=True
230
+ )
231
+
232
+ # Calculate statistics
233
+ mean = np.mean(list(posteriors.values()))
234
+ std = np.std(list(posteriors.values()))
235
+ entropy = -sum(
236
+ p * np.log2(p) if p > 0 else 0
237
+ for p in posteriors.values()
238
+ )
239
+
240
+ return {
241
+ 'top_hypothesis': ranked_hypotheses[0][0],
242
+ 'probability': ranked_hypotheses[0][1],
243
+ 'alternatives': [
244
+ {'name': name, 'probability': prob}
245
+ for name, prob in ranked_hypotheses[1:]
246
+ ],
247
+ 'statistics': {
248
+ 'mean': mean,
249
+ 'std': std,
250
+ 'entropy': entropy
251
+ }
252
  }
253
+
254
+ def _format_analysis(self, analysis: Dict[str, Any]) -> str:
255
+ """Format analysis into readable text."""
256
+ sections = []
257
 
258
+ # Top hypothesis
259
+ sections.append(
260
+ f"Most likely hypothesis: {analysis['top_hypothesis']} "
261
+ f"(probability: {analysis['probability']:.2%})"
262
+ )
263
+
264
+ # Alternative hypotheses
265
+ if analysis['alternatives']:
266
+ sections.append("\nAlternative hypotheses:")
267
+ for alt in analysis['alternatives']:
268
+ sections.append(
269
+ f"- {alt['name']}: {alt['probability']:.2%}"
270
+ )
271
+
272
+ # Statistics
273
+ stats = analysis['statistics']
274
+ sections.append("\nDistribution statistics:")
275
+ sections.append(f"- Mean probability: {stats['mean']:.2%}")
276
+ sections.append(f"- Standard deviation: {stats['std']:.2%}")
277
+ sections.append(f"- Entropy: {stats['entropy']:.2f} bits")
278
+
279
+ return "\n".join(sections)
280
+
281
+ def _calculate_confidence(self, posteriors: Dict[str, float]) -> float:
282
+ """Calculate overall confidence score."""
283
+ if not posteriors:
284
+ return 0.0
285
+
286
+ # Base confidence
287
+ confidence = 0.5
288
+
289
+ # Adjust based on probability distribution
290
+ probs = list(posteriors.values())
291
+
292
+ # Strong leading hypothesis increases confidence
293
+ max_prob = max(probs)
294
+ if max_prob > 0.8:
295
+ confidence += 0.3
296
+ elif max_prob > 0.6:
297
+ confidence += 0.2
298
+ elif max_prob > 0.4:
299
+ confidence += 0.1
300
+
301
+ # Low entropy (clear distinction) increases confidence
302
+ entropy = -sum(p * np.log2(p) if p > 0 else 0 for p in probs)
303
+ max_entropy = -np.log2(1/len(probs)) # Maximum possible entropy
304
+
305
+ if entropy < 0.3 * max_entropy:
306
+ confidence += 0.2
307
+ elif entropy < 0.6 * max_entropy:
308
+ confidence += 0.1
309
+
310
+ return min(confidence, 1.0)
311
+
312
+ def _extract_factors(self, text: str, terms: Set[str]) -> Set[str]:
313
+ """Extract relevant factors from text."""
314
+ return set(word.lower() for word in text.split() if word.lower() in terms)
315
+
316
+ def _generate_alternative_factors(self, terms: Set[str]) -> Set[str]:
317
+ """Generate factors for alternative hypothesis."""
318
+ # Simple approach: use terms not in primary hypothesis
319
+ return set(
320
+ word for word in terms
321
+ if not any(
322
+ similar in word or word in similar
323
+ for similar in terms
324
+ )
325
+ )
reasoning/meta_learning.py CHANGED
@@ -1,412 +1,339 @@
1
- """Meta-learning reasoning implementation with advanced adaptation capabilities."""
2
 
3
  import logging
4
- from typing import Dict, Any, List, Optional, Set, Tuple, Callable
5
  import json
6
  from dataclasses import dataclass, field
7
  from enum import Enum
8
- from collections import defaultdict
9
- import numpy as np
10
  from datetime import datetime
 
 
11
 
12
  from .base import ReasoningStrategy
13
 
14
- class MetaFeatureType(Enum):
15
- """Types of meta-features for learning."""
16
- PROBLEM_STRUCTURE = "problem_structure"
17
- SOLUTION_PATTERN = "solution_pattern"
18
- REASONING_STYLE = "reasoning_style"
19
- ERROR_PATTERN = "error_pattern"
20
- PERFORMANCE_METRIC = "performance_metric"
21
- ADAPTATION_SIGNAL = "adaptation_signal"
22
-
23
  @dataclass
24
- class MetaFeature:
25
- """Represents a meta-feature for learning."""
26
- type: MetaFeatureType
27
  name: str
28
- value: Any
29
- confidence: float
30
- timestamp: datetime
31
- metadata: Dict[str, Any] = field(default_factory=dict)
32
-
33
- @dataclass
34
- class LearningEpisode:
35
- """Represents a learning episode."""
36
- id: str
37
- query: str
38
- features: List[MetaFeature]
39
- outcome: Dict[str, Any]
40
- performance: float
41
- timestamp: datetime
42
- metadata: Dict[str, Any] = field(default_factory=dict)
43
 
44
  class MetaLearningStrategy(ReasoningStrategy):
45
  """
46
- Advanced Meta-Learning reasoning implementation with:
47
- - Dynamic strategy adaptation
48
- - Performance tracking
49
- - Pattern recognition
50
- - Automated optimization
51
- - Cross-episode learning
52
  """
53
 
54
- def __init__(self,
55
- learning_rate: float = 0.1,
56
- memory_size: int = 1000,
57
- adaptation_threshold: float = 0.7,
58
- exploration_rate: float = 0.2):
59
- self.learning_rate = learning_rate
60
- self.memory_size = memory_size
61
- self.adaptation_threshold = adaptation_threshold
62
- self.exploration_rate = exploration_rate
63
-
64
- # Learning components
65
- self.episode_memory: List[LearningEpisode] = []
66
- self.feature_patterns: Dict[str, Dict[str, float]] = defaultdict(lambda: defaultdict(float))
67
- self.strategy_performance: Dict[str, List[float]] = defaultdict(list)
68
- self.adaptation_history: List[Dict[str, Any]] = []
69
 
70
- # Performance tracking
71
- self.success_rate: float = 0.0
72
- self.adaptation_rate: float = 0.0
73
- self.exploration_count: int = 0
74
 
 
 
 
75
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
76
- """Main reasoning method implementing meta-learning."""
 
 
 
 
 
 
 
 
 
77
  try:
78
- # Extract meta-features
79
- features = await self._extract_meta_features(query, context)
80
 
81
- # Select optimal strategy
82
- strategy = await self._select_strategy(features, context)
83
 
84
- # Apply strategy with adaptation
85
- result = await self._apply_strategy(strategy, query, features, context)
 
 
 
 
86
 
87
- # Learn from episode
88
- episode = self._create_episode(query, features, result)
89
- self._learn_from_episode(episode)
90
 
91
- # Optimize performance
92
- self._optimize_performance()
93
 
94
  return {
95
- "success": True,
96
- "answer": result["answer"],
97
- "confidence": result["confidence"],
98
- "meta_features": [self._feature_to_dict(f) for f in features],
99
- "selected_strategy": strategy,
100
- "adaptations": result["adaptations"],
101
- "performance_metrics": result["performance_metrics"],
102
- "meta_insights": result["meta_insights"]
103
  }
 
104
  except Exception as e:
105
- logging.error(f"Error in meta-learning reasoning: {str(e)}")
106
- return {"success": False, "error": str(e)}
107
-
108
- async def _extract_meta_features(self, query: str, context: Dict[str, Any]) -> List[MetaFeature]:
109
- """Extract meta-features from query and context."""
110
- prompt = f"""
111
- Extract meta-features for learning:
112
- Query: {query}
113
- Context: {json.dumps(context)}
114
-
115
- For each feature type:
116
- 1. Problem Structure
117
- 2. Solution Patterns
118
- 3. Reasoning Style
119
- 4. Error Patterns
120
- 5. Performance Metrics
121
- 6. Adaptation Signals
122
-
123
- Format as:
124
- [Type1]
125
- Name: ...
126
- Value: ...
127
- Confidence: ...
128
- Metadata: ...
129
-
130
- [Type2]
131
- ...
132
- """
133
-
134
- response = await context["groq_api"].predict(prompt)
135
- return self._parse_meta_features(response["answer"])
136
-
137
- async def _select_strategy(self, features: List[MetaFeature], context: Dict[str, Any]) -> str:
138
- """Select optimal reasoning strategy based on meta-features."""
139
- prompt = f"""
140
- Select optimal reasoning strategy:
141
- Features: {json.dumps([self._feature_to_dict(f) for f in features])}
142
- Context: {json.dumps(context)}
143
 
144
- Consider:
145
- 1. Past performance patterns
146
- 2. Feature relevance
147
- 3. Adaptation potential
148
- 4. Resource constraints
149
 
150
- Format as:
151
- [Selection]
152
- Strategy: ...
153
- Rationale: ...
154
- Confidence: ...
155
- Adaptations: ...
156
- """
 
 
157
 
158
- response = await context["groq_api"].predict(prompt)
159
- return self._parse_strategy_selection(response["answer"])
160
-
161
- async def _apply_strategy(self, strategy: str, query: str, features: List[MetaFeature], context: Dict[str, Any]) -> Dict[str, Any]:
162
- """Apply selected strategy with dynamic adaptation."""
163
- prompt = f"""
164
- Apply strategy with meta-learning:
165
- Strategy: {strategy}
166
- Query: {query}
167
- Features: {json.dumps([self._feature_to_dict(f) for f in features])}
168
- Context: {json.dumps(context)}
169
 
170
- Provide:
171
- 1. Main reasoning steps
172
- 2. Adaptation points
173
- 3. Performance metrics
174
- 4. Meta-insights
 
 
 
 
 
 
 
 
 
 
 
 
175
 
176
- Format as:
177
- [Application]
178
- Steps: ...
179
- Adaptations: ...
180
- Metrics: ...
181
- Insights: ...
 
 
 
 
182
 
183
- [Result]
184
- Answer: ...
185
- Confidence: ...
186
- """
187
 
188
- response = await context["groq_api"].predict(prompt)
189
- return self._parse_strategy_application(response["answer"])
190
-
191
- def _create_episode(self, query: str, features: List[MetaFeature], result: Dict[str, Any]) -> LearningEpisode:
192
- """Create a learning episode from the current interaction."""
193
- return LearningEpisode(
194
- id=f"episode_{len(self.episode_memory)}",
195
- query=query,
196
- features=features,
197
- outcome=result,
198
- performance=result.get("confidence", 0.0),
199
- timestamp=datetime.now(),
200
- metadata={
201
- "adaptations": result.get("adaptations", []),
202
- "metrics": result.get("performance_metrics", {})
203
- }
204
  )
205
-
206
- def _learn_from_episode(self, episode: LearningEpisode):
207
- """Learn from a completed episode."""
208
- # Update episode memory
209
- self.episode_memory.append(episode)
210
- if len(self.episode_memory) > self.memory_size:
211
- self.episode_memory.pop(0)
212
 
213
- # Update feature patterns
214
- for feature in episode.features:
215
- pattern_key = f"{feature.type.value}:{feature.name}"
216
- self.feature_patterns[pattern_key]["count"] += 1
217
- self.feature_patterns[pattern_key]["success"] += episode.performance
 
 
 
 
 
218
 
219
- # Update strategy performance
220
- strategy = episode.metadata.get("selected_strategy", "default")
221
- self.strategy_performance[strategy].append(episode.performance)
 
 
 
 
 
 
 
 
 
 
 
222
 
223
- # Track adaptations
224
- self.adaptation_history.append({
225
- "timestamp": episode.timestamp,
226
- "adaptations": episode.metadata.get("adaptations", []),
227
- "performance": episode.performance
228
- })
 
229
 
230
- # Update performance metrics
231
- self._update_performance_metrics(episode)
232
-
233
- def _optimize_performance(self):
234
- """Optimize meta-learning performance."""
235
- # Adjust learning rate
236
- recent_performance = [e.performance for e in self.episode_memory[-10:]]
237
- if recent_performance:
238
- avg_performance = sum(recent_performance) / len(recent_performance)
239
- if avg_performance > 0.8:
240
- self.learning_rate *= 0.9 # Reduce learning rate when performing well
241
- elif avg_performance < 0.5:
242
- self.learning_rate *= 1.1 # Increase learning rate when performing poorly
 
 
243
 
244
- # Adjust exploration rate
245
- self.exploration_rate = max(0.1, self.exploration_rate * 0.995) # Gradually reduce exploration
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
246
 
247
- # Prune ineffective patterns
248
- for pattern, stats in list(self.feature_patterns.items()):
249
- if stats["count"] > 10 and stats["success"] / stats["count"] < 0.3:
250
- del self.feature_patterns[pattern]
251
 
252
- # Update adaptation threshold
253
- recent_adaptations = [a["performance"] for a in self.adaptation_history[-10:]]
254
- if recent_adaptations:
255
- self.adaptation_threshold = sum(recent_adaptations) / len(recent_adaptations)
256
-
257
- def _update_performance_metrics(self, episode: LearningEpisode):
258
- """Update performance tracking metrics."""
259
- # Update success rate
260
- self.success_rate = (self.success_rate * len(self.episode_memory) + episode.performance) / (len(self.episode_memory) + 1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261
 
262
- # Update adaptation rate
263
- adaptations = len(episode.metadata.get("adaptations", []))
264
- self.adaptation_rate = (self.adaptation_rate * len(self.adaptation_history) + (adaptations > 0)) / (len(self.adaptation_history) + 1)
 
 
 
265
 
266
- # Track exploration
267
- if episode.metadata.get("exploration", False):
268
- self.exploration_count += 1
269
-
270
- def _parse_meta_features(self, response: str) -> List[MetaFeature]:
271
- """Parse meta-features from response."""
272
- features = []
273
- current_type = None
274
- current_feature = None
 
275
 
276
- for line in response.split('\n'):
277
- line = line.strip()
278
- if not line:
279
- continue
280
-
281
- if line.startswith('[Type'):
282
- if current_feature:
283
- features.append(current_feature)
284
- current_feature = None
285
- try:
286
- type_str = line[1:-1].lower()
287
- current_type = MetaFeatureType(type_str)
288
- except ValueError:
289
- current_type = None
290
- elif current_type and line.startswith('Name:'):
291
- current_feature = MetaFeature(
292
- type=current_type,
293
- name=line[5:].strip(),
294
- value=None,
295
- confidence=0.0,
296
- timestamp=datetime.now(),
297
- metadata={}
298
- )
299
- elif current_feature:
300
- if line.startswith('Value:'):
301
- current_feature.value = line[6:].strip()
302
- elif line.startswith('Confidence:'):
303
- try:
304
- current_feature.confidence = float(line[11:].strip())
305
- except:
306
- pass
307
- elif line.startswith('Metadata:'):
308
- try:
309
- current_feature.metadata = json.loads(line[9:].strip())
310
- except:
311
- pass
312
 
313
- if current_feature:
314
- features.append(current_feature)
 
 
 
 
315
 
316
- return features
317
-
318
- def _parse_strategy_selection(self, response: str) -> str:
319
- """Parse strategy selection from response."""
320
- lines = response.split('\n')
321
- strategy = "default"
322
 
323
- for line in lines:
324
- if line.startswith('Strategy:'):
325
- strategy = line[9:].strip()
326
- break
 
 
327
 
328
- return strategy
329
-
330
- def _parse_strategy_application(self, response: str) -> Dict[str, Any]:
331
- """Parse strategy application results."""
332
- result = {
333
- "answer": "",
334
- "confidence": 0.0,
335
- "steps": [],
336
- "adaptations": [],
337
- "performance_metrics": {},
338
- "meta_insights": []
339
- }
340
 
341
- section = None
342
- for line in response.split('\n'):
343
- line = line.strip()
344
- if not line:
345
- continue
346
-
347
- if line.startswith('[Application]'):
348
- section = "application"
349
- elif line.startswith('[Result]'):
350
- section = "result"
351
- elif section == "application":
352
- if line.startswith('Steps:'):
353
- result["steps"] = [s.strip() for s in line[6:].split(',')]
354
- elif line.startswith('Adaptations:'):
355
- result["adaptations"] = [a.strip() for a in line[12:].split(',')]
356
- elif line.startswith('Metrics:'):
357
- try:
358
- result["performance_metrics"] = json.loads(line[8:].strip())
359
- except:
360
- pass
361
- elif line.startswith('Insights:'):
362
- result["meta_insights"] = [i.strip() for i in line[9:].split(',')]
363
- elif section == "result":
364
- if line.startswith('Answer:'):
365
- result["answer"] = line[7:].strip()
366
- elif line.startswith('Confidence:'):
367
- try:
368
- result["confidence"] = float(line[11:].strip())
369
- except:
370
- result["confidence"] = 0.5
371
 
372
- return result
373
-
374
- def _feature_to_dict(self, feature: MetaFeature) -> Dict[str, Any]:
375
- """Convert feature to dictionary for serialization."""
376
- return {
377
- "type": feature.type.value,
378
- "name": feature.name,
379
- "value": feature.value,
380
- "confidence": feature.confidence,
381
- "timestamp": feature.timestamp.isoformat(),
382
- "metadata": feature.metadata
383
- }
384
 
385
  def get_performance_metrics(self) -> Dict[str, Any]:
386
  """Get current performance metrics."""
387
  return {
388
- "success_rate": self.success_rate,
389
- "adaptation_rate": self.adaptation_rate,
390
- "exploration_count": self.exploration_count,
391
- "episode_count": len(self.episode_memory),
392
- "pattern_count": len(self.feature_patterns),
393
  "learning_rate": self.learning_rate,
394
- "exploration_rate": self.exploration_rate
395
  }
396
 
397
  def get_top_patterns(self, n: int = 10) -> List[Tuple[str, float]]:
398
  """Get top performing patterns."""
399
- pattern_scores = []
400
- for pattern, stats in self.feature_patterns.items():
401
- if stats["count"] > 0:
402
- score = stats["success"] / stats["count"]
403
- pattern_scores.append((pattern, score))
404
-
405
- return sorted(pattern_scores, key=lambda x: x[1], reverse=True)[:n]
406
 
407
  def clear_memory(self):
408
  """Clear learning memory."""
409
- self.episode_memory.clear()
410
- self.feature_patterns.clear()
411
- self.strategy_performance.clear()
412
- self.adaptation_history.clear()
 
1
+ """Advanced meta-learning strategy for adaptive reasoning."""
2
 
3
  import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
5
  import json
6
  from dataclasses import dataclass, field
7
  from enum import Enum
 
 
8
  from datetime import datetime
9
+ import numpy as np
10
+ from collections import defaultdict
11
 
12
  from .base import ReasoningStrategy
13
 
 
 
 
 
 
 
 
 
 
14
  @dataclass
15
+ class MetaTask:
16
+ """Meta-learning task with parameters and performance metrics."""
 
17
  name: str
18
+ parameters: Dict[str, Any]
19
+ metrics: Dict[str, float]
20
+ history: List[Dict[str, Any]] = field(default_factory=list)
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  class MetaLearningStrategy(ReasoningStrategy):
23
  """
24
+ Advanced meta-learning strategy that:
25
+ 1. Adapts to new tasks
26
+ 2. Learns from experience
27
+ 3. Optimizes parameters
28
+ 4. Transfers knowledge
29
+ 5. Improves over time
30
  """
31
 
32
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
33
+ """Initialize meta-learning strategy."""
34
+ super().__init__()
35
+ self.config = config or {}
 
 
 
 
 
 
 
 
 
 
 
36
 
37
+ # Configure parameters
38
+ self.learning_rate = self.config.get('learning_rate', 0.01)
39
+ self.memory_size = self.config.get('memory_size', 100)
40
+ self.adaptation_threshold = self.config.get('adaptation_threshold', 0.7)
41
 
42
+ # Initialize task memory
43
+ self.task_memory: List[MetaTask] = []
44
+
45
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
46
+ """
47
+ Apply meta-learning to adapt and optimize reasoning.
48
+
49
+ Args:
50
+ query: The input query to reason about
51
+ context: Additional context and parameters
52
+
53
+ Returns:
54
+ Dict containing reasoning results and confidence scores
55
+ """
56
  try:
57
+ # Identify similar tasks
58
+ similar_tasks = await self._find_similar_tasks(query, context)
59
 
60
+ # Adapt parameters
61
+ adapted_params = await self._adapt_parameters(similar_tasks, context)
62
 
63
+ # Apply meta-learning
64
+ results = await self._apply_meta_learning(
65
+ query,
66
+ adapted_params,
67
+ context
68
+ )
69
 
70
+ # Update memory
71
+ await self._update_memory(query, results, context)
 
72
 
73
+ # Generate analysis
74
+ analysis = await self._generate_analysis(results, context)
75
 
76
  return {
77
+ 'answer': self._format_analysis(analysis),
78
+ 'confidence': self._calculate_confidence(results),
79
+ 'similar_tasks': similar_tasks,
80
+ 'adapted_params': adapted_params,
81
+ 'results': results,
82
+ 'analysis': analysis
 
 
83
  }
84
+
85
  except Exception as e:
86
+ logging.error(f"Meta-learning failed: {str(e)}")
87
+ return {
88
+ 'error': f"Meta-learning failed: {str(e)}",
89
+ 'confidence': 0.0
90
+ }
91
+
92
+ async def _find_similar_tasks(
93
+ self,
94
+ query: str,
95
+ context: Dict[str, Any]
96
+ ) -> List[MetaTask]:
97
+ """Find similar tasks in memory."""
98
+ similar_tasks = []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
 
100
+ # Extract query features
101
+ query_features = self._extract_features(query)
 
 
 
102
 
103
+ for task in self.task_memory:
104
+ # Calculate similarity
105
+ similarity = self._calculate_similarity(
106
+ query_features,
107
+ self._extract_features(task.name)
108
+ )
109
+
110
+ if similarity > self.adaptation_threshold:
111
+ similar_tasks.append(task)
112
 
113
+ # Sort by similarity
114
+ similar_tasks.sort(
115
+ key=lambda x: np.mean(list(x.metrics.values())),
116
+ reverse=True
117
+ )
 
 
 
 
 
 
118
 
119
+ return similar_tasks
120
+
121
+ def _extract_features(self, text: str) -> np.ndarray:
122
+ """Extract features from text."""
123
+ # Simple bag of words for now
124
+ words = set(text.lower().split())
125
+ return np.array([hash(word) % 100 for word in words])
126
+
127
+ def _calculate_similarity(
128
+ self,
129
+ features1: np.ndarray,
130
+ features2: np.ndarray
131
+ ) -> float:
132
+ """Calculate similarity between feature sets."""
133
+ # Simple Jaccard similarity
134
+ intersection = np.intersect1d(features1, features2)
135
+ union = np.union1d(features1, features2)
136
 
137
+ return len(intersection) / len(union) if len(union) > 0 else 0
138
+
139
+ async def _adapt_parameters(
140
+ self,
141
+ similar_tasks: List[MetaTask],
142
+ context: Dict[str, Any]
143
+ ) -> Dict[str, Any]:
144
+ """Adapt parameters based on similar tasks."""
145
+ if not similar_tasks:
146
+ return self.config.copy()
147
 
148
+ adapted_params = {}
 
 
 
149
 
150
+ # Weight tasks by performance
151
+ total_performance = sum(
152
+ np.mean(list(task.metrics.values()))
153
+ for task in similar_tasks
 
 
 
 
 
 
 
 
 
 
 
 
154
  )
 
 
 
 
 
 
 
155
 
156
+ if total_performance > 0:
157
+ # Weighted average of parameters
158
+ for param_name in self.config:
159
+ adapted_params[param_name] = sum(
160
+ task.parameters.get(param_name, self.config[param_name]) *
161
+ (np.mean(list(task.metrics.values())) / total_performance)
162
+ for task in similar_tasks
163
+ )
164
+ else:
165
+ adapted_params = self.config.copy()
166
 
167
+ return adapted_params
168
+
169
+ async def _apply_meta_learning(
170
+ self,
171
+ query: str,
172
+ parameters: Dict[str, Any],
173
+ context: Dict[str, Any]
174
+ ) -> Dict[str, Any]:
175
+ """Apply meta-learning with adapted parameters."""
176
+ results = {
177
+ 'query': query,
178
+ 'parameters': parameters,
179
+ 'metrics': {}
180
+ }
181
 
182
+ # Apply learning rate
183
+ for param_name, value in parameters.items():
184
+ if isinstance(value, (int, float)):
185
+ results['parameters'][param_name] = (
186
+ value * (1 - self.learning_rate) +
187
+ self.config[param_name] * self.learning_rate
188
+ )
189
 
190
+ # Calculate performance metrics
191
+ results['metrics'] = {
192
+ 'adaptation_score': np.mean([
193
+ p / self.config[name]
194
+ for name, p in results['parameters'].items()
195
+ if isinstance(p, (int, float)) and self.config[name] != 0
196
+ ]),
197
+ 'novelty_score': 1 - max(
198
+ self._calculate_similarity(
199
+ self._extract_features(query),
200
+ self._extract_features(task.name)
201
+ )
202
+ for task in self.task_memory
203
+ ) if self.task_memory else 1.0
204
+ }
205
 
206
+ return results
207
+
208
+ async def _update_memory(
209
+ self,
210
+ query: str,
211
+ results: Dict[str, Any],
212
+ context: Dict[str, Any]
213
+ ) -> None:
214
+ """Update task memory."""
215
+ # Create new task
216
+ task = MetaTask(
217
+ name=query,
218
+ parameters=results['parameters'],
219
+ metrics=results['metrics'],
220
+ history=[{
221
+ 'timestamp': datetime.now().isoformat(),
222
+ 'context': context,
223
+ 'results': results
224
+ }]
225
+ )
226
 
227
+ # Add to memory
228
+ self.task_memory.append(task)
 
 
229
 
230
+ # Maintain memory size
231
+ if len(self.task_memory) > self.memory_size:
232
+ # Remove worst performing task
233
+ self.task_memory.sort(
234
+ key=lambda x: np.mean(list(x.metrics.values()))
235
+ )
236
+ self.task_memory.pop(0)
237
+
238
+ async def _generate_analysis(
239
+ self,
240
+ results: Dict[str, Any],
241
+ context: Dict[str, Any]
242
+ ) -> Dict[str, Any]:
243
+ """Generate meta-learning analysis."""
244
+ # Calculate statistics
245
+ param_stats = {
246
+ name: {
247
+ 'value': value,
248
+ 'adaptation': value / self.config[name]
249
+ if isinstance(value, (int, float)) and self.config[name] != 0
250
+ else 1.0
251
+ }
252
+ for name, value in results['parameters'].items()
253
+ }
254
 
255
+ # Calculate overall metrics
256
+ metrics = {
257
+ 'adaptation_score': results['metrics']['adaptation_score'],
258
+ 'novelty_score': results['metrics']['novelty_score'],
259
+ 'memory_usage': len(self.task_memory) / self.memory_size
260
+ }
261
 
262
+ return {
263
+ 'parameters': param_stats,
264
+ 'metrics': metrics,
265
+ 'memory_size': len(self.task_memory),
266
+ 'total_tasks_seen': len(self.task_memory)
267
+ }
268
+
269
+ def _format_analysis(self, analysis: Dict[str, Any]) -> str:
270
+ """Format analysis into readable text."""
271
+ sections = []
272
 
273
+ # Parameter adaptations
274
+ sections.append("Parameter adaptations:")
275
+ for name, stats in analysis['parameters'].items():
276
+ sections.append(
277
+ f"- {name}: {stats['value']:.2f} "
278
+ f"({stats['adaptation']:.1%} of original)"
279
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280
 
281
+ # Performance metrics
282
+ sections.append("\nPerformance metrics:")
283
+ metrics = analysis['metrics']
284
+ sections.append(f"- Adaptation score: {metrics['adaptation_score']:.1%}")
285
+ sections.append(f"- Novelty score: {metrics['novelty_score']:.1%}")
286
+ sections.append(f"- Memory usage: {metrics['memory_usage']:.1%}")
287
 
288
+ # Memory statistics
289
+ sections.append("\nMemory statistics:")
290
+ sections.append(f"- Current tasks in memory: {analysis['memory_size']}")
291
+ sections.append(f"- Total tasks seen: {analysis['total_tasks_seen']}")
 
 
292
 
293
+ return "\n".join(sections)
294
+
295
+ def _calculate_confidence(self, results: Dict[str, Any]) -> float:
296
+ """Calculate overall confidence score."""
297
+ if not results.get('metrics'):
298
+ return 0.0
299
 
300
+ # Base confidence
301
+ confidence = 0.5
 
 
 
 
 
 
 
 
 
 
302
 
303
+ # Adjust based on adaptation score
304
+ adaptation_score = results['metrics']['adaptation_score']
305
+ if adaptation_score > 0.8:
306
+ confidence += 0.3
307
+ elif adaptation_score > 0.6:
308
+ confidence += 0.2
309
+ elif adaptation_score > 0.4:
310
+ confidence += 0.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311
 
312
+ # Adjust based on novelty
313
+ novelty_score = results['metrics']['novelty_score']
314
+ if novelty_score < 0.2: # Very similar to known tasks
315
+ confidence += 0.2
316
+ elif novelty_score < 0.4:
317
+ confidence += 0.1
318
+
319
+ return min(confidence, 1.0)
 
 
 
 
320
 
321
  def get_performance_metrics(self) -> Dict[str, Any]:
322
  """Get current performance metrics."""
323
  return {
324
+ "success_rate": 0.0,
325
+ "adaptation_rate": 0.0,
326
+ "exploration_count": 0,
327
+ "episode_count": len(self.task_memory),
328
+ "pattern_count": 0,
329
  "learning_rate": self.learning_rate,
330
+ "exploration_rate": 0.0
331
  }
332
 
333
  def get_top_patterns(self, n: int = 10) -> List[Tuple[str, float]]:
334
  """Get top performing patterns."""
335
+ return []
 
 
 
 
 
 
336
 
337
  def clear_memory(self):
338
  """Clear learning memory."""
339
+ self.task_memory.clear()
 
 
 
reasoning/monetization.py CHANGED
@@ -9,6 +9,8 @@ from datetime import datetime
9
  import numpy as np
10
  from collections import defaultdict
11
 
 
 
12
  @dataclass
13
  class MonetizationModel:
14
  """Monetization model configuration."""
@@ -276,3 +278,142 @@ class MonetizationOptimizer:
276
  ) if self.streams else 0
277
  }
278
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  import numpy as np
10
  from collections import defaultdict
11
 
12
+ from .base import ReasoningStrategy
13
+
14
  @dataclass
15
  class MonetizationModel:
16
  """Monetization model configuration."""
 
278
  ) if self.streams else 0
279
  }
280
  }
281
+
282
+ class MonetizationStrategy(ReasoningStrategy):
283
+ """
284
+ Advanced monetization strategy that:
285
+ 1. Designs optimal pricing models
286
+ 2. Optimizes revenue streams
287
+ 3. Maximizes customer lifetime value
288
+ 4. Reduces churn
289
+ 5. Increases profitability
290
+ """
291
+
292
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
293
+ """Initialize monetization strategy."""
294
+ super().__init__()
295
+ self.config = config or {}
296
+ self.optimizer = MonetizationOptimizer()
297
+
298
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
299
+ """
300
+ Generate monetization strategy based on query and context.
301
+
302
+ Args:
303
+ query: The monetization query
304
+ context: Additional context and parameters
305
+
306
+ Returns:
307
+ Dict containing monetization strategy and confidence scores
308
+ """
309
+ try:
310
+ # Extract venture type
311
+ venture_type = self._extract_venture_type(query, context)
312
+
313
+ # Optimize monetization
314
+ optimization_result = await self.optimizer.optimize_monetization(
315
+ venture_type=venture_type,
316
+ context=context
317
+ )
318
+
319
+ # Format results
320
+ formatted_result = self._format_strategy(optimization_result)
321
+
322
+ return {
323
+ 'answer': formatted_result,
324
+ 'confidence': self._calculate_confidence(optimization_result),
325
+ 'optimization': optimization_result
326
+ }
327
+
328
+ except Exception as e:
329
+ logging.error(f"Monetization strategy generation failed: {str(e)}")
330
+ return {
331
+ 'error': f"Monetization strategy generation failed: {str(e)}",
332
+ 'confidence': 0.0
333
+ }
334
+
335
+ def _extract_venture_type(self, query: str, context: Dict[str, Any]) -> str:
336
+ """Extract venture type from query and context."""
337
+ # Use context if available
338
+ if 'venture_type' in context:
339
+ return context['venture_type']
340
+
341
+ # Simple keyword matching
342
+ query_lower = query.lower()
343
+ if any(term in query_lower for term in ['ai', 'ml', 'model']):
344
+ return 'ai_startup'
345
+ elif any(term in query_lower for term in ['saas', 'software']):
346
+ return 'saas'
347
+ elif any(term in query_lower for term in ['api', 'service']):
348
+ return 'api_service'
349
+ elif any(term in query_lower for term in ['data', 'analytics']):
350
+ return 'data_analytics'
351
+
352
+ # Default to SaaS if unclear
353
+ return 'saas'
354
+
355
+ def _calculate_confidence(self, result: Dict[str, Any]) -> float:
356
+ """Calculate confidence score based on optimization quality."""
357
+ # Base confidence
358
+ confidence = 0.5
359
+
360
+ # Adjust based on optimization completeness
361
+ if result.get('models'):
362
+ confidence += 0.1
363
+ if result.get('pricing'):
364
+ confidence += 0.1
365
+ if result.get('revenue'):
366
+ confidence += 0.1
367
+ if result.get('value'):
368
+ confidence += 0.1
369
+
370
+ # Adjust based on projected performance
371
+ performance = result.get('performance', {})
372
+ if performance.get('roi', 0) > 2.0:
373
+ confidence += 0.1
374
+ if performance.get('ltv', 0) > 1000:
375
+ confidence += 0.1
376
+
377
+ return min(confidence, 1.0)
378
+
379
+ def _format_strategy(self, result: Dict[str, Any]) -> str:
380
+ """Format monetization strategy into readable text."""
381
+ sections = []
382
+
383
+ # Monetization models
384
+ if 'models' in result:
385
+ models = result['models']
386
+ sections.append("Monetization Models:")
387
+ for model in models:
388
+ sections.append(f"- {model['name']}: {model['type']}")
389
+ if 'pricing_tiers' in model:
390
+ sections.append(" Pricing Tiers:")
391
+ for tier in model['pricing_tiers']:
392
+ sections.append(f" * {tier['name']}: ${tier['price']}/mo")
393
+
394
+ # Revenue optimization
395
+ if 'revenue' in result:
396
+ revenue = result['revenue']
397
+ sections.append("\nRevenue Optimization:")
398
+ for stream, details in revenue.items():
399
+ sections.append(f"- {stream.replace('_', ' ').title()}:")
400
+ sections.append(f" * Projected Revenue: ${details['projected_revenue']:,.2f}")
401
+ sections.append(f" * Growth Rate: {details['growth_rate']*100:.1f}%")
402
+
403
+ # Customer value optimization
404
+ if 'value' in result:
405
+ value = result['value']
406
+ sections.append("\nCustomer Value Optimization:")
407
+ sections.append(f"- Customer Acquisition Cost: ${value['cac']:,.2f}")
408
+ sections.append(f"- Lifetime Value: ${value['ltv']:,.2f}")
409
+ sections.append(f"- Churn Rate: {value['churn_rate']*100:.1f}%")
410
+
411
+ # Performance projections
412
+ if 'performance' in result:
413
+ perf = result['performance']
414
+ sections.append("\nPerformance Projections:")
415
+ sections.append(f"- ROI: {perf['roi']*100:.1f}%")
416
+ sections.append(f"- Payback Period: {perf['payback_months']:.1f} months")
417
+ sections.append(f"- Break-even Point: ${perf['breakeven']:,.2f}")
418
+
419
+ return "\n".join(sections)
reasoning/multimodal.py CHANGED
@@ -1,268 +1,278 @@
1
- """Multi-modal reasoning implementation."""
2
 
3
  import logging
4
- from typing import Dict, Any, List
5
  import json
 
 
 
 
 
6
 
7
  from .base import ReasoningStrategy
8
 
 
 
 
 
 
 
 
 
 
9
  class MultiModalReasoning(ReasoningStrategy):
10
- """Implements multi-modal reasoning across different types of information."""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
 
 
 
 
 
 
 
 
 
 
13
  try:
14
- # Process different modalities
15
  modalities = await self._process_modalities(query, context)
16
 
17
- # Cross-modal alignment
18
  alignment = await self._cross_modal_alignment(modalities, context)
19
 
20
- # Integrated analysis
21
  integration = await self._integrated_analysis(alignment, context)
22
 
23
- # Generate unified response
24
  response = await self._generate_response(integration, context)
25
 
26
  return {
27
- "success": True,
28
- "answer": response["conclusion"],
29
- "modalities": modalities,
30
- "alignment": alignment,
31
- "integration": integration,
32
- "confidence": response["confidence"]
33
  }
 
34
  except Exception as e:
35
- logging.error(f"Error in multi-modal reasoning: {str(e)}")
36
- return {"success": False, "error": str(e)}
37
-
38
- async def _process_modalities(self, query: str, context: Dict[str, Any]) -> Dict[str, List[Dict[str, Any]]]:
 
 
 
 
 
 
 
39
  """Process query across different modalities."""
40
- prompt = f"""
41
- Process query across modalities:
42
- Query: {query}
43
- Context: {json.dumps(context)}
44
-
45
- For each modality extract:
46
- 1. [Type]: Modality type
47
- 2. [Content]: Relevant content
48
- 3. [Features]: Key features
49
- 4. [Quality]: Content quality
50
-
51
- Format as:
52
- [M1]
53
- Type: ...
54
- Content: ...
55
- Features: ...
56
- Quality: ...
57
- """
58
 
59
- response = await context["groq_api"].predict(prompt)
60
- return self._parse_modalities(response["answer"])
61
-
62
- async def _cross_modal_alignment(self, modalities: Dict[str, List[Dict[str, Any]]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
63
- """Align information across different modalities."""
64
- try:
65
- # Extract modality types
66
- modal_types = list(modalities.keys())
67
-
68
- # Initialize alignment results
69
- alignments = []
70
-
71
- # Process each modality pair
72
- for i in range(len(modal_types)):
73
- for j in range(i + 1, len(modal_types)):
74
- type1, type2 = modal_types[i], modal_types[j]
75
-
76
- # Get items from each modality
77
- items1 = modalities[type1]
78
- items2 = modalities[type2]
79
-
80
- # Find alignments between items
81
- for item1 in items1:
82
- for item2 in items2:
83
- similarity = self._calculate_similarity(item1, item2)
84
- if similarity > 0.5: # Threshold for alignment
85
- alignments.append({
86
- "type1": type1,
87
- "type2": type2,
88
- "item1": item1,
89
- "item2": item2,
90
- "similarity": similarity
91
- })
92
 
93
- # Sort alignments by similarity
94
- alignments.sort(key=lambda x: x["similarity"], reverse=True)
 
95
 
96
- return alignments
 
 
97
 
98
- except Exception as e:
99
- logging.error(f"Error in cross-modal alignment: {str(e)}")
100
- return []
101
-
102
- def _calculate_similarity(self, item1: Dict[str, Any], item2: Dict[str, Any]) -> float:
103
- """Calculate similarity between two items from different modalities."""
104
- try:
105
- # Extract content from items
106
- content1 = str(item1.get("content", ""))
107
- content2 = str(item2.get("content", ""))
108
 
109
- # Calculate basic similarity (can be enhanced with more sophisticated methods)
110
- common_words = set(content1.lower().split()) & set(content2.lower().split())
111
- total_words = set(content1.lower().split()) | set(content2.lower().split())
112
 
113
- if not total_words:
114
- return 0.0
115
-
116
- return len(common_words) / len(total_words)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117
 
118
- except Exception as e:
119
- logging.error(f"Error calculating similarity: {str(e)}")
120
- return 0.0
121
-
122
- async def _integrated_analysis(self, alignment: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
123
- prompt = f"""
124
- Perform integrated multi-modal analysis:
125
- Alignment: {json.dumps(alignment)}
126
- Context: {json.dumps(context)}
 
 
 
127
 
128
- For each insight:
129
- 1. [Insight]: Key finding
130
- 2. [Sources]: Contributing modalities
131
- 3. [Support]: Supporting evidence
132
- 4. [Confidence]: Confidence level
 
 
 
 
 
 
133
 
134
- Format as:
135
- [I1]
136
- Insight: ...
137
- Sources: ...
138
- Support: ...
139
- Confidence: ...
140
- """
141
 
142
- response = await context["groq_api"].predict(prompt)
143
- return self._parse_integration(response["answer"])
144
-
145
- async def _generate_response(self, integration: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]:
146
- prompt = f"""
147
- Generate unified multi-modal response:
148
- Integration: {json.dumps(integration)}
149
- Context: {json.dumps(context)}
 
150
 
151
- Provide:
152
- 1. Main conclusion
153
- 2. Modal contributions
154
- 3. Integration benefits
155
- 4. Confidence level (0-1)
156
- """
157
 
158
- response = await context["groq_api"].predict(prompt)
159
- return self._parse_response(response["answer"])
160
-
161
- def _parse_modalities(self, response: str) -> Dict[str, List[Dict[str, Any]]]:
162
- """Parse modalities from response."""
163
- modalities = {}
164
- current_modality = None
 
 
 
 
 
 
 
 
 
165
 
166
- for line in response.split('\n'):
167
- line = line.strip()
168
- if not line:
169
- continue
170
-
171
- if line.startswith('[M'):
172
- if current_modality:
173
- if current_modality["type"] not in modalities:
174
- modalities[current_modality["type"]] = []
175
- modalities[current_modality["type"]].append(current_modality)
176
- current_modality = {
177
- "type": "",
178
- "content": "",
179
- "features": "",
180
- "quality": ""
181
- }
182
- elif current_modality:
183
- if line.startswith('Type:'):
184
- current_modality["type"] = line[5:].strip()
185
- elif line.startswith('Content:'):
186
- current_modality["content"] = line[8:].strip()
187
- elif line.startswith('Features:'):
188
- current_modality["features"] = line[9:].strip()
189
- elif line.startswith('Quality:'):
190
- current_modality["quality"] = line[8:].strip()
191
 
192
- if current_modality:
193
- if current_modality["type"] not in modalities:
194
- modalities[current_modality["type"]] = []
195
- modalities[current_modality["type"]].append(current_modality)
196
 
197
- return modalities
198
-
199
- def _parse_integration(self, response: str) -> List[Dict[str, Any]]:
200
- """Parse integration from response."""
201
- integration = []
202
- current_insight = None
203
 
204
- for line in response.split('\n'):
205
- line = line.strip()
206
- if not line:
207
- continue
208
-
209
- if line.startswith('[I'):
210
- if current_insight:
211
- integration.append(current_insight)
212
- current_insight = {
213
- "insight": "",
214
- "sources": "",
215
- "support": "",
216
- "confidence": 0.0
217
- }
218
- elif current_insight:
219
- if line.startswith('Insight:'):
220
- current_insight["insight"] = line[8:].strip()
221
- elif line.startswith('Sources:'):
222
- current_insight["sources"] = line[8:].strip()
223
- elif line.startswith('Support:'):
224
- current_insight["support"] = line[8:].strip()
225
- elif line.startswith('Confidence:'):
226
- try:
227
- current_insight["confidence"] = float(line[11:].strip())
228
- except:
229
- pass
230
 
231
- if current_insight:
232
- integration.append(current_insight)
 
233
 
234
- return integration
235
-
236
- def _parse_response(self, response: str) -> Dict[str, Any]:
237
- """Parse response from response."""
238
- response_dict = {
239
- "conclusion": "",
240
- "modal_contributions": [],
241
- "integration_benefits": [],
242
- "confidence": 0.0
243
  }
 
 
 
 
 
 
 
 
244
 
245
- mode = None
246
- for line in response.split('\n'):
247
- line = line.strip()
248
- if not line:
249
- continue
250
-
251
- if line.startswith('Conclusion:'):
252
- response_dict["conclusion"] = line[11:].strip()
253
- elif line.startswith('Modal Contributions:'):
254
- mode = "modal"
255
- elif line.startswith('Integration Benefits:'):
256
- mode = "integration"
257
- elif line.startswith('Confidence:'):
258
- try:
259
- response_dict["confidence"] = float(line[11:].strip())
260
- except:
261
- response_dict["confidence"] = 0.5
262
- mode = None
263
- elif mode == "modal" and line.startswith('- '):
264
- response_dict["modal_contributions"].append(line[2:].strip())
265
- elif mode == "integration" and line.startswith('- '):
266
- response_dict["integration_benefits"].append(line[2:].strip())
267
 
268
- return response_dict
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Advanced multimodal reasoning combining different types of information."""
2
 
3
  import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
5
  import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import numpy as np
10
+ from collections import defaultdict
11
 
12
  from .base import ReasoningStrategy
13
 
14
+ @dataclass
15
+ class ModalityFeatures:
16
+ """Features extracted from different modalities."""
17
+ text: List[Dict[str, Any]]
18
+ image: Optional[List[Dict[str, Any]]] = None
19
+ audio: Optional[List[Dict[str, Any]]] = None
20
+ video: Optional[List[Dict[str, Any]]] = None
21
+ structured: Optional[List[Dict[str, Any]]] = None
22
+
23
  class MultiModalReasoning(ReasoningStrategy):
24
+ """
25
+ Advanced multimodal reasoning that:
26
+ 1. Processes different types of information
27
+ 2. Aligns cross-modal features
28
+ 3. Integrates multimodal context
29
+ 4. Generates coherent responses
30
+ 5. Handles uncertainty
31
+ """
32
+
33
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
34
+ """Initialize multimodal reasoning."""
35
+ super().__init__()
36
+ self.config = config or {}
37
+
38
+ # Configure modality weights
39
+ self.weights = {
40
+ 'text': 0.4,
41
+ 'image': 0.3,
42
+ 'audio': 0.1,
43
+ 'video': 0.1,
44
+ 'structured': 0.1
45
+ }
46
 
47
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
48
+ """
49
+ Apply multimodal reasoning to process and integrate different types of information.
50
+
51
+ Args:
52
+ query: The input query to reason about
53
+ context: Additional context and parameters
54
+
55
+ Returns:
56
+ Dict containing reasoning results and confidence scores
57
+ """
58
  try:
59
+ # Process across modalities
60
  modalities = await self._process_modalities(query, context)
61
 
62
+ # Align cross-modal information
63
  alignment = await self._cross_modal_alignment(modalities, context)
64
 
65
+ # Integrate aligned information
66
  integration = await self._integrated_analysis(alignment, context)
67
 
68
+ # Generate final response
69
  response = await self._generate_response(integration, context)
70
 
71
  return {
72
+ 'answer': response.get('text', ''),
73
+ 'confidence': self._calculate_confidence(integration),
74
+ 'modalities': modalities,
75
+ 'alignment': alignment,
76
+ 'integration': integration
 
77
  }
78
+
79
  except Exception as e:
80
+ logging.error(f"Multimodal reasoning failed: {str(e)}")
81
+ return {
82
+ 'error': f"Multimodal reasoning failed: {str(e)}",
83
+ 'confidence': 0.0
84
+ }
85
+
86
+ async def _process_modalities(
87
+ self,
88
+ query: str,
89
+ context: Dict[str, Any]
90
+ ) -> Dict[str, List[Dict[str, Any]]]:
91
  """Process query across different modalities."""
92
+ modalities = {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
+ # Process text
95
+ if 'text' in context:
96
+ modalities['text'] = self._process_text(context['text'])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
 
98
+ # Process images
99
+ if 'images' in context:
100
+ modalities['image'] = self._process_images(context['images'])
101
 
102
+ # Process audio
103
+ if 'audio' in context:
104
+ modalities['audio'] = self._process_audio(context['audio'])
105
 
106
+ # Process video
107
+ if 'video' in context:
108
+ modalities['video'] = self._process_video(context['video'])
 
 
 
 
 
 
 
109
 
110
+ # Process structured data
111
+ if 'structured' in context:
112
+ modalities['structured'] = self._process_structured(context['structured'])
113
 
114
+ return modalities
115
+
116
+ async def _cross_modal_alignment(
117
+ self,
118
+ modalities: Dict[str, List[Dict[str, Any]]],
119
+ context: Dict[str, Any]
120
+ ) -> List[Dict[str, Any]]:
121
+ """Align information across different modalities."""
122
+ alignments = []
123
+
124
+ # Get all modality pairs
125
+ modality_pairs = [
126
+ (m1, m2) for i, m1 in enumerate(modalities.keys())
127
+ for m2 in list(modalities.keys())[i+1:]
128
+ ]
129
+
130
+ # Align each pair
131
+ for mod1, mod2 in modality_pairs:
132
+ items1 = modalities[mod1]
133
+ items2 = modalities[mod2]
134
 
135
+ # Calculate cross-modal similarities
136
+ for item1 in items1:
137
+ for item2 in items2:
138
+ similarity = self._calculate_similarity(item1, item2)
139
+ if similarity > 0.7: # Alignment threshold
140
+ alignments.append({
141
+ 'modality1': mod1,
142
+ 'modality2': mod2,
143
+ 'item1': item1,
144
+ 'item2': item2,
145
+ 'similarity': similarity
146
+ })
147
 
148
+ return alignments
149
+
150
+ def _calculate_similarity(
151
+ self,
152
+ item1: Dict[str, Any],
153
+ item2: Dict[str, Any]
154
+ ) -> float:
155
+ """Calculate similarity between two items from different modalities."""
156
+ # Simple feature overlap for now
157
+ features1 = set(str(v) for v in item1.values())
158
+ features2 = set(str(v) for v in item2.values())
159
 
160
+ if not features1 or not features2:
161
+ return 0.0
162
+
163
+ overlap = len(features1.intersection(features2))
164
+ total = len(features1.union(features2))
 
 
165
 
166
+ return overlap / total if total > 0 else 0.0
167
+
168
+ async def _integrated_analysis(
169
+ self,
170
+ alignment: List[Dict[str, Any]],
171
+ context: Dict[str, Any]
172
+ ) -> List[Dict[str, Any]]:
173
+ """Perform integrated analysis of aligned information."""
174
+ integrated = []
175
 
176
+ # Group alignments by similarity
177
+ similarity_groups = defaultdict(list)
178
+ for align in alignment:
179
+ similarity_groups[align['similarity']].append(align)
 
 
180
 
181
+ # Process groups in order of similarity
182
+ for similarity, group in sorted(
183
+ similarity_groups.items(),
184
+ key=lambda x: x[0],
185
+ reverse=True
186
+ ):
187
+ # Combine aligned features
188
+ for align in group:
189
+ integrated.append({
190
+ 'features': {
191
+ **align['item1'],
192
+ **align['item2']
193
+ },
194
+ 'modalities': [align['modality1'], align['modality2']],
195
+ 'confidence': align['similarity']
196
+ })
197
 
198
+ return integrated
199
+
200
+ async def _generate_response(
201
+ self,
202
+ integration: List[Dict[str, Any]],
203
+ context: Dict[str, Any]
204
+ ) -> Dict[str, Any]:
205
+ """Generate coherent response from integrated analysis."""
206
+ if not integration:
207
+ return {'text': '', 'confidence': 0.0}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208
 
209
+ # Combine all integrated features
210
+ all_features = {}
211
+ for item in integration:
212
+ all_features.update(item['features'])
213
 
214
+ # Generate response text
215
+ response_text = []
 
 
 
 
216
 
217
+ # Add main findings
218
+ response_text.append("Main findings across modalities:")
219
+ for feature, value in all_features.items():
220
+ response_text.append(f"- {feature}: {value}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221
 
222
+ # Add confidence
223
+ confidence = sum(item['confidence'] for item in integration) / len(integration)
224
+ response_text.append(f"\nOverall confidence: {confidence:.2f}")
225
 
226
+ return {
227
+ 'text': "\n".join(response_text),
228
+ 'confidence': confidence
 
 
 
 
 
 
229
  }
230
+
231
+ def _calculate_confidence(self, integration: List[Dict[str, Any]]) -> float:
232
+ """Calculate overall confidence score."""
233
+ if not integration:
234
+ return 0.0
235
+
236
+ # Base confidence
237
+ confidence = 0.5
238
 
239
+ # Adjust based on number of modalities
240
+ unique_modalities = set()
241
+ for item in integration:
242
+ unique_modalities.update(item['modalities'])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243
 
244
+ modality_bonus = len(unique_modalities) * 0.1
245
+ confidence += min(modality_bonus, 0.3)
246
+
247
+ # Adjust based on integration quality
248
+ avg_similarity = sum(
249
+ item['confidence'] for item in integration
250
+ ) / len(integration)
251
+ confidence += avg_similarity * 0.2
252
+
253
+ return min(confidence, 1.0)
254
+
255
+ def _process_text(self, text: str) -> List[Dict[str, Any]]:
256
+ """Process text modality."""
257
+ # Simple text processing for now
258
+ return [{'text': text}]
259
+
260
+ def _process_images(self, images: List[str]) -> List[Dict[str, Any]]:
261
+ """Process image modality."""
262
+ # Simple image processing for now
263
+ return [{'image': image} for image in images]
264
+
265
+ def _process_audio(self, audio: List[str]) -> List[Dict[str, Any]]:
266
+ """Process audio modality."""
267
+ # Simple audio processing for now
268
+ return [{'audio': audio_file} for audio_file in audio]
269
+
270
+ def _process_video(self, video: List[str]) -> List[Dict[str, Any]]:
271
+ """Process video modality."""
272
+ # Simple video processing for now
273
+ return [{'video': video_file} for video_file in video]
274
+
275
+ def _process_structured(self, structured: Dict[str, Any]) -> List[Dict[str, Any]]:
276
+ """Process structured data modality."""
277
+ # Simple structured data processing for now
278
+ return [{'structured': structured}]
reasoning/neurosymbolic.py CHANGED
@@ -1,264 +1,305 @@
1
- """Neurosymbolic reasoning implementation."""
2
 
3
  import logging
4
- from typing import Dict, Any, List, Tuple
5
  import json
 
 
 
 
 
6
 
7
  from .base import ReasoningStrategy
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  class NeurosymbolicReasoning(ReasoningStrategy):
10
- """Implements neurosymbolic reasoning combining neural and symbolic approaches."""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
 
 
 
 
 
 
 
 
 
 
13
  try:
14
- # Neural processing
15
- neural_features = await self._neural_processing(query, context)
16
 
17
- # Symbolic reasoning
18
- symbolic_rules = await self._symbolic_reasoning(neural_features, context)
19
 
20
- # Integration
21
- integrated = await self._neurosymbolic_integration(neural_features, symbolic_rules, context)
22
 
23
- # Final inference
24
- conclusion = await self._final_inference(integrated, context)
25
 
26
  return {
27
- "success": True,
28
- "answer": conclusion["answer"],
29
- "neural_features": neural_features,
30
- "symbolic_rules": symbolic_rules,
31
- "integrated_reasoning": integrated,
32
- "confidence": conclusion["confidence"],
33
- "explanation": conclusion["explanation"]
34
  }
 
35
  except Exception as e:
36
- return {"success": False, "error": str(e)}
37
-
38
- async def _neural_processing(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]:
39
- prompt = f"""
40
- Extract neural features from query:
41
- Query: {query}
42
- Context: {json.dumps(context)}
 
 
 
 
 
 
43
 
44
- For each feature:
45
- 1. [Type]: Feature type
46
- 2. [Value]: Extracted value
47
- 3. [Confidence]: Extraction confidence
48
- 4. [Relations]: Related concepts
49
 
50
- Format as:
51
- [F1]
52
- Type: ...
53
- Value: ...
54
- Confidence: ...
55
- Relations: ...
56
- """
 
 
 
 
 
 
57
 
58
- response = await context["groq_api"].predict(prompt)
59
- return self._parse_features(response["answer"])
60
-
61
- async def _symbolic_reasoning(self, features: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
62
- prompt = f"""
63
- Generate symbolic rules from features:
64
- Features: {json.dumps(features)}
65
- Context: {json.dumps(context)}
66
 
67
- For each rule:
68
- 1. [Condition]: Rule condition
69
- 2. [Implication]: What it implies
70
- 3. [Certainty]: Rule certainty
71
- 4. [Source]: Derivation source
 
 
 
 
72
 
73
- Format as:
74
- [R1]
75
- Condition: ...
76
- Implication: ...
77
- Certainty: ...
78
- Source: ...
79
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
 
81
- response = await context["groq_api"].predict(prompt)
82
- return self._parse_rules(response["answer"])
83
-
84
- async def _neurosymbolic_integration(self, features: List[Dict[str, Any]], rules: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
85
- prompt = f"""
86
- Integrate neural and symbolic components:
87
- Features: {json.dumps(features)}
88
- Rules: {json.dumps(rules)}
89
- Context: {json.dumps(context)}
 
 
 
 
 
90
 
91
- For each integration:
92
- 1. [Components]: What is being integrated
93
- 2. [Method]: How they are combined
94
- 3. [Result]: Integration outcome
95
- 4. [Confidence]: Integration confidence
 
 
96
 
97
- Format as:
98
- [I1]
99
- Components: ...
100
- Method: ...
101
- Result: ...
102
- Confidence: ...
103
- """
104
 
105
- response = await context["groq_api"].predict(prompt)
106
- return self._parse_integration(response["answer"])
107
-
108
- async def _final_inference(self, integrated: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]:
109
- prompt = f"""
110
- Draw final conclusions from integrated reasoning:
111
- Integrated: {json.dumps(integrated)}
112
- Context: {json.dumps(context)}
113
 
114
- Provide:
115
- 1. Final answer/conclusion
116
- 2. Confidence level (0-1)
117
- 3. Explanation of reasoning
118
- 4. Key factors considered
119
- """
 
 
 
120
 
121
- response = await context["groq_api"].predict(prompt)
122
- return self._parse_conclusion(response["answer"])
123
-
124
- def _parse_features(self, response: str) -> List[Dict[str, Any]]:
125
- """Parse neural features from response."""
126
- features = []
127
- current = None
 
 
 
 
 
 
 
128
 
129
- for line in response.split('\n'):
130
- line = line.strip()
131
- if not line:
132
- continue
133
-
134
- if line.startswith('[F'):
135
- if current:
136
- features.append(current)
137
- current = {
138
- "type": "",
139
- "value": "",
140
- "confidence": 0.0,
141
- "relations": []
142
- }
143
- elif current:
144
- if line.startswith('Type:'):
145
- current["type"] = line[5:].strip()
146
- elif line.startswith('Value:'):
147
- current["value"] = line[6:].strip()
148
- elif line.startswith('Confidence:'):
149
- try:
150
- current["confidence"] = float(line[11:].strip())
151
- except:
152
- pass
153
- elif line.startswith('Relations:'):
154
- current["relations"] = [r.strip() for r in line[10:].split(',')]
155
 
156
- if current:
157
- features.append(current)
 
 
 
158
 
159
- return features
160
-
161
- def _parse_rules(self, response: str) -> List[Dict[str, Any]]:
162
- """Parse symbolic rules from response."""
163
- rules = []
164
- current = None
 
 
 
 
 
 
 
 
 
 
 
165
 
166
- for line in response.split('\n'):
167
- line = line.strip()
168
- if not line:
169
- continue
170
-
171
- if line.startswith('[R'):
172
- if current:
173
- rules.append(current)
174
- current = {
175
- "condition": "",
176
- "implication": "",
177
- "certainty": 0.0,
178
- "source": ""
179
- }
180
- elif current:
181
- if line.startswith('Condition:'):
182
- current["condition"] = line[10:].strip()
183
- elif line.startswith('Implication:'):
184
- current["implication"] = line[12:].strip()
185
- elif line.startswith('Certainty:'):
186
- try:
187
- current["certainty"] = float(line[10:].strip())
188
- except:
189
- pass
190
- elif line.startswith('Source:'):
191
- current["source"] = line[7:].strip()
192
 
193
- if current:
194
- rules.append(current)
 
 
 
 
 
195
 
196
- return rules
197
-
198
- def _parse_integration(self, response: str) -> List[Dict[str, Any]]:
199
- """Parse integration results from response."""
200
- integrations = []
201
- current = None
202
 
203
- for line in response.split('\n'):
204
- line = line.strip()
205
- if not line:
206
- continue
207
-
208
- if line.startswith('[I'):
209
- if current:
210
- integrations.append(current)
211
- current = {
212
- "components": "",
213
- "method": "",
214
- "result": "",
215
- "confidence": 0.0
216
- }
217
- elif current:
218
- if line.startswith('Components:'):
219
- current["components"] = line[11:].strip()
220
- elif line.startswith('Method:'):
221
- current["method"] = line[7:].strip()
222
- elif line.startswith('Result:'):
223
- current["result"] = line[7:].strip()
224
- elif line.startswith('Confidence:'):
225
- try:
226
- current["confidence"] = float(line[11:].strip())
227
- except:
228
- pass
229
 
230
- if current:
231
- integrations.append(current)
232
 
233
- return integrations
234
-
235
- def _parse_conclusion(self, response: str) -> Dict[str, Any]:
236
- """Parse final conclusion from response."""
237
- conclusion = {
238
- "answer": "",
239
- "confidence": 0.0,
240
- "explanation": "",
241
- "factors": []
242
- }
243
 
244
- mode = None
245
- for line in response.split('\n'):
246
- line = line.strip()
247
- if not line:
248
- continue
249
-
250
- if line.startswith('Answer:'):
251
- conclusion["answer"] = line[7:].strip()
252
- elif line.startswith('Confidence:'):
253
- try:
254
- conclusion["confidence"] = float(line[11:].strip())
255
- except:
256
- conclusion["confidence"] = 0.5
257
- elif line.startswith('Explanation:'):
258
- conclusion["explanation"] = line[12:].strip()
259
- elif line.startswith('Factors:'):
260
- mode = "factors"
261
- elif mode == "factors" and line.startswith('- '):
262
- conclusion["factors"].append(line[2:].strip())
263
 
264
- return conclusion
 
1
+ """Advanced neurosymbolic reasoning combining neural and symbolic approaches."""
2
 
3
  import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
5
  import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import numpy as np
10
+ from collections import defaultdict
11
 
12
  from .base import ReasoningStrategy
13
 
14
+ @dataclass
15
+ class NeuralFeature:
16
+ """Neural features extracted from data."""
17
+ name: str
18
+ values: np.ndarray
19
+ importance: float
20
+ metadata: Dict[str, Any] = field(default_factory=dict)
21
+
22
+ @dataclass
23
+ class SymbolicRule:
24
+ """Symbolic rule with conditions and confidence."""
25
+ name: str
26
+ conditions: List[str]
27
+ conclusion: str
28
+ confidence: float
29
+ metadata: Dict[str, Any] = field(default_factory=dict)
30
+
31
  class NeurosymbolicReasoning(ReasoningStrategy):
32
+ """
33
+ Advanced neurosymbolic reasoning that:
34
+ 1. Extracts neural features
35
+ 2. Generates symbolic rules
36
+ 3. Combines approaches
37
+ 4. Handles uncertainty
38
+ 5. Provides interpretable results
39
+ """
40
+
41
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
42
+ """Initialize neurosymbolic reasoning."""
43
+ super().__init__()
44
+ self.config = config or {}
45
+
46
+ # Configure parameters
47
+ self.feature_threshold = self.config.get('feature_threshold', 0.1)
48
+ self.rule_confidence_threshold = self.config.get('rule_confidence', 0.7)
49
+ self.max_rules = self.config.get('max_rules', 10)
50
 
51
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
52
+ """
53
+ Apply neurosymbolic reasoning to combine neural and symbolic approaches.
54
+
55
+ Args:
56
+ query: The input query to reason about
57
+ context: Additional context and parameters
58
+
59
+ Returns:
60
+ Dict containing reasoning results and confidence scores
61
+ """
62
  try:
63
+ # Extract neural features
64
+ features = await self._extract_features(query, context)
65
 
66
+ # Generate symbolic rules
67
+ rules = await self._generate_rules(features, context)
68
 
69
+ # Combine approaches
70
+ combined = await self._combine_approaches(features, rules, context)
71
 
72
+ # Generate analysis
73
+ analysis = await self._generate_analysis(combined, context)
74
 
75
  return {
76
+ 'answer': self._format_analysis(analysis),
77
+ 'confidence': self._calculate_confidence(combined),
78
+ 'features': features,
79
+ 'rules': rules,
80
+ 'combined': combined,
81
+ 'analysis': analysis
 
82
  }
83
+
84
  except Exception as e:
85
+ logging.error(f"Neurosymbolic reasoning failed: {str(e)}")
86
+ return {
87
+ 'error': f"Neurosymbolic reasoning failed: {str(e)}",
88
+ 'confidence': 0.0
89
+ }
90
+
91
+ async def _extract_features(
92
+ self,
93
+ query: str,
94
+ context: Dict[str, Any]
95
+ ) -> List[NeuralFeature]:
96
+ """Extract neural features from input."""
97
+ features = []
98
 
99
+ # Extract key terms
100
+ terms = query.lower().split()
 
 
 
101
 
102
+ # Process each term
103
+ for term in terms:
104
+ # Simple feature extraction for now
105
+ values = np.random.randn(10) # Placeholder for real feature extraction
106
+ importance = np.abs(values).mean()
107
+
108
+ if importance > self.feature_threshold:
109
+ features.append(NeuralFeature(
110
+ name=term,
111
+ values=values,
112
+ importance=importance,
113
+ metadata={'source': 'term_extraction'}
114
+ ))
115
 
116
+ # Sort by importance
117
+ features.sort(key=lambda x: x.importance, reverse=True)
 
 
 
 
 
 
118
 
119
+ return features
120
+
121
+ async def _generate_rules(
122
+ self,
123
+ features: List[NeuralFeature],
124
+ context: Dict[str, Any]
125
+ ) -> List[SymbolicRule]:
126
+ """Generate symbolic rules from features."""
127
+ rules = []
128
 
129
+ # Process feature combinations
130
+ for i, feature1 in enumerate(features):
131
+ for j, feature2 in enumerate(features[i+1:], i+1):
132
+ # Calculate correlation
133
+ correlation = np.corrcoef(feature1.values, feature2.values)[0, 1]
134
+
135
+ if abs(correlation) > self.rule_confidence_threshold:
136
+ # Create rule based on correlation
137
+ if correlation > 0:
138
+ condition = f"{feature1.name} AND {feature2.name}"
139
+ conclusion = "positively_correlated"
140
+ else:
141
+ condition = f"{feature1.name} XOR {feature2.name}"
142
+ conclusion = "negatively_correlated"
143
+
144
+ rules.append(SymbolicRule(
145
+ name=f"rule_{len(rules)}",
146
+ conditions=[condition],
147
+ conclusion=conclusion,
148
+ confidence=abs(correlation),
149
+ metadata={
150
+ 'features': [feature1.name, feature2.name],
151
+ 'correlation': correlation
152
+ }
153
+ ))
154
+
155
+ if len(rules) >= self.max_rules:
156
+ break
157
+
158
+ if len(rules) >= self.max_rules:
159
+ break
160
 
161
+ return rules
162
+
163
+ async def _combine_approaches(
164
+ self,
165
+ features: List[NeuralFeature],
166
+ rules: List[SymbolicRule],
167
+ context: Dict[str, Any]
168
+ ) -> Dict[str, Any]:
169
+ """Combine neural and symbolic approaches."""
170
+ combined = {
171
+ 'neural_weights': {},
172
+ 'symbolic_weights': {},
173
+ 'combined_scores': {}
174
+ }
175
 
176
+ # Calculate neural weights
177
+ total_importance = sum(f.importance for f in features)
178
+ if total_importance > 0:
179
+ combined['neural_weights'] = {
180
+ f.name: f.importance / total_importance
181
+ for f in features
182
+ }
183
 
184
+ # Calculate symbolic weights
185
+ total_confidence = sum(r.confidence for r in rules)
186
+ if total_confidence > 0:
187
+ combined['symbolic_weights'] = {
188
+ r.name: r.confidence / total_confidence
189
+ for r in rules
190
+ }
191
 
192
+ # Combine scores
193
+ all_elements = set(
194
+ list(combined['neural_weights'].keys()) +
195
+ list(combined['symbolic_weights'].keys())
196
+ )
 
 
 
197
 
198
+ for element in all_elements:
199
+ neural_score = combined['neural_weights'].get(element, 0)
200
+ symbolic_score = combined['symbolic_weights'].get(element, 0)
201
+
202
+ # Simple weighted average
203
+ combined['combined_scores'][element] = (
204
+ neural_score * 0.6 + # Favor neural slightly
205
+ symbolic_score * 0.4
206
+ )
207
 
208
+ return combined
209
+
210
+ async def _generate_analysis(
211
+ self,
212
+ combined: Dict[str, Any],
213
+ context: Dict[str, Any]
214
+ ) -> Dict[str, Any]:
215
+ """Generate neurosymbolic analysis."""
216
+ # Sort elements by combined score
217
+ ranked_elements = sorted(
218
+ combined['combined_scores'].items(),
219
+ key=lambda x: x[1],
220
+ reverse=True
221
+ )
222
 
223
+ # Calculate statistics
224
+ scores = list(combined['combined_scores'].values())
225
+ mean = np.mean(scores) if scores else 0
226
+ std = np.std(scores) if scores else 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
227
 
228
+ # Calculate entropy
229
+ entropy = -sum(
230
+ s * np.log2(s) if s > 0 else 0
231
+ for s in combined['combined_scores'].values()
232
+ )
233
 
234
+ return {
235
+ 'top_element': ranked_elements[0][0] if ranked_elements else '',
236
+ 'score': ranked_elements[0][1] if ranked_elements else 0,
237
+ 'alternatives': [
238
+ {'name': name, 'score': score}
239
+ for name, score in ranked_elements[1:]
240
+ ],
241
+ 'statistics': {
242
+ 'mean': mean,
243
+ 'std': std,
244
+ 'entropy': entropy
245
+ }
246
+ }
247
+
248
+ def _format_analysis(self, analysis: Dict[str, Any]) -> str:
249
+ """Format analysis into readable text."""
250
+ sections = []
251
 
252
+ # Top element
253
+ if analysis['top_element']:
254
+ sections.append(
255
+ f"Most significant element: {analysis['top_element']} "
256
+ f"(score: {analysis['score']:.2%})"
257
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258
 
259
+ # Alternative elements
260
+ if analysis['alternatives']:
261
+ sections.append("\nAlternative elements:")
262
+ for alt in analysis['alternatives']:
263
+ sections.append(
264
+ f"- {alt['name']}: {alt['score']:.2%}"
265
+ )
266
 
267
+ # Statistics
268
+ stats = analysis['statistics']
269
+ sections.append("\nAnalysis statistics:")
270
+ sections.append(f"- Mean score: {stats['mean']:.2%}")
271
+ sections.append(f"- Standard deviation: {stats['std']:.2%}")
272
+ sections.append(f"- Information entropy: {stats['entropy']:.2f} bits")
273
 
274
+ return "\n".join(sections)
275
+
276
+ def _calculate_confidence(self, combined: Dict[str, Any]) -> float:
277
+ """Calculate overall confidence score."""
278
+ if not combined['combined_scores']:
279
+ return 0.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280
 
281
+ # Base confidence
282
+ confidence = 0.5
283
 
284
+ # Get scores
285
+ scores = list(combined['combined_scores'].values())
 
 
 
 
 
 
 
 
286
 
287
+ # Strong leading score increases confidence
288
+ max_score = max(scores)
289
+ if max_score > 0.8:
290
+ confidence += 0.3
291
+ elif max_score > 0.6:
292
+ confidence += 0.2
293
+ elif max_score > 0.4:
294
+ confidence += 0.1
295
+
296
+ # Low entropy (clear distinction) increases confidence
297
+ entropy = -sum(s * np.log2(s) if s > 0 else 0 for s in scores)
298
+ max_entropy = -np.log2(1/len(scores)) # Maximum possible entropy
299
+
300
+ if entropy < 0.3 * max_entropy:
301
+ confidence += 0.2
302
+ elif entropy < 0.6 * max_entropy:
303
+ confidence += 0.1
 
 
304
 
305
+ return min(confidence, 1.0)
reasoning/portfolio_optimization.py CHANGED
@@ -9,6 +9,8 @@ from datetime import datetime
9
  import numpy as np
10
  from collections import defaultdict
11
 
 
 
12
  @dataclass
13
  class VentureMetrics:
14
  """Venture performance metrics."""
@@ -350,3 +352,198 @@ class PortfolioOptimizer:
350
  })
351
 
352
  return opportunities
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  import numpy as np
10
  from collections import defaultdict
11
 
12
+ from .base import ReasoningStrategy
13
+
14
  @dataclass
15
  class VentureMetrics:
16
  """Venture performance metrics."""
 
352
  })
353
 
354
  return opportunities
355
+
356
+ class PortfolioOptimizationStrategy(ReasoningStrategy):
357
+ """
358
+ Advanced portfolio optimization strategy that:
359
+ 1. Analyzes venture metrics
360
+ 2. Optimizes resource allocation
361
+ 3. Balances risk-reward
362
+ 4. Maximizes portfolio synergies
363
+ 5. Provides actionable recommendations
364
+ """
365
+
366
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
367
+ """Initialize portfolio optimization strategy."""
368
+ super().__init__()
369
+ self.config = config or {}
370
+ self.optimizer = PortfolioOptimizer()
371
+
372
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
373
+ """
374
+ Generate portfolio optimization strategy based on query and context.
375
+
376
+ Args:
377
+ query: The portfolio optimization query
378
+ context: Additional context and parameters
379
+
380
+ Returns:
381
+ Dict containing optimization strategy and confidence scores
382
+ """
383
+ try:
384
+ # Extract portfolio parameters
385
+ params = self._extract_parameters(query, context)
386
+
387
+ # Optimize portfolio
388
+ optimization_result = self.optimizer.optimize_portfolio(
389
+ ventures=params.get('ventures', []),
390
+ constraints=params.get('constraints', []),
391
+ objectives=params.get('objectives', [])
392
+ )
393
+
394
+ # Get metrics
395
+ metrics = self.optimizer.get_portfolio_metrics()
396
+
397
+ # Generate recommendations
398
+ recommendations = self._generate_recommendations(
399
+ optimization_result,
400
+ metrics
401
+ )
402
+
403
+ return {
404
+ 'answer': self._format_strategy(optimization_result, metrics, recommendations),
405
+ 'confidence': self._calculate_confidence(optimization_result),
406
+ 'optimization': optimization_result,
407
+ 'metrics': metrics,
408
+ 'recommendations': recommendations
409
+ }
410
+
411
+ except Exception as e:
412
+ logging.error(f"Portfolio optimization failed: {str(e)}")
413
+ return {
414
+ 'error': f"Portfolio optimization failed: {str(e)}",
415
+ 'confidence': 0.0
416
+ }
417
+
418
+ def _extract_parameters(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
419
+ """Extract optimization parameters from query and context."""
420
+ params = {}
421
+
422
+ # Extract ventures
423
+ if 'ventures' in context:
424
+ params['ventures'] = context['ventures']
425
+ else:
426
+ # Default empty portfolio
427
+ params['ventures'] = []
428
+
429
+ # Extract constraints
430
+ if 'constraints' in context:
431
+ params['constraints'] = context['constraints']
432
+ else:
433
+ # Default constraints
434
+ params['constraints'] = [
435
+ 'budget_limit',
436
+ 'risk_tolerance',
437
+ 'resource_capacity'
438
+ ]
439
+
440
+ # Extract objectives
441
+ if 'objectives' in context:
442
+ params['objectives'] = context['objectives']
443
+ else:
444
+ # Default objectives
445
+ params['objectives'] = [
446
+ 'maximize_returns',
447
+ 'minimize_risk',
448
+ 'maximize_synergies'
449
+ ]
450
+
451
+ return params
452
+
453
+ def _generate_recommendations(
454
+ self,
455
+ optimization_result: Dict[str, Any],
456
+ metrics: Dict[str, Any]
457
+ ) -> List[str]:
458
+ """Generate actionable recommendations."""
459
+ recommendations = []
460
+
461
+ # Portfolio composition recommendations
462
+ if 'allocation' in optimization_result:
463
+ allocation = optimization_result['allocation']
464
+ recommendations.extend([
465
+ f"Allocate {alloc['percentage']:.1f}% to {alloc['venture']}"
466
+ for alloc in allocation
467
+ ])
468
+
469
+ # Risk management recommendations
470
+ if 'risk_analysis' in metrics:
471
+ risk = metrics['risk_analysis']
472
+ if risk.get('total_risk', 0) > 0.7:
473
+ recommendations.append(
474
+ "Consider reducing exposure to high-risk ventures"
475
+ )
476
+ if risk.get('correlation', 0) > 0.8:
477
+ recommendations.append(
478
+ "Increase portfolio diversification to reduce correlation"
479
+ )
480
+
481
+ # Performance optimization recommendations
482
+ if 'performance' in metrics:
483
+ perf = metrics['performance']
484
+ if perf.get('sharpe_ratio', 0) < 1.0:
485
+ recommendations.append(
486
+ "Optimize risk-adjusted returns through better venture selection"
487
+ )
488
+ if perf.get('efficiency', 0) < 0.8:
489
+ recommendations.append(
490
+ "Improve resource allocation efficiency across ventures"
491
+ )
492
+
493
+ return recommendations
494
+
495
+ def _calculate_confidence(self, optimization_result: Dict[str, Any]) -> float:
496
+ """Calculate confidence score based on optimization quality."""
497
+ # Base confidence
498
+ confidence = 0.5
499
+
500
+ # Adjust based on optimization completeness
501
+ if optimization_result.get('allocation'):
502
+ confidence += 0.1
503
+ if optimization_result.get('risk_analysis'):
504
+ confidence += 0.1
505
+ if optimization_result.get('performance_metrics'):
506
+ confidence += 0.1
507
+
508
+ # Adjust based on solution quality
509
+ if optimization_result.get('convergence_status') == 'optimal':
510
+ confidence += 0.2
511
+ elif optimization_result.get('convergence_status') == 'suboptimal':
512
+ confidence += 0.1
513
+
514
+ return min(confidence, 1.0)
515
+
516
+ def _format_strategy(
517
+ self,
518
+ optimization_result: Dict[str, Any],
519
+ metrics: Dict[str, Any],
520
+ recommendations: List[str]
521
+ ) -> str:
522
+ """Format optimization strategy into readable text."""
523
+ sections = []
524
+
525
+ # Portfolio allocation
526
+ if 'allocation' in optimization_result:
527
+ allocation = optimization_result['allocation']
528
+ sections.append("Portfolio Allocation:")
529
+ for alloc in allocation:
530
+ sections.append(
531
+ f"- {alloc['venture']}: {alloc['percentage']:.1f}%"
532
+ )
533
+
534
+ # Key metrics
535
+ if metrics:
536
+ sections.append("\nKey Metrics:")
537
+ for key, value in metrics.items():
538
+ if isinstance(value, (int, float)):
539
+ sections.append(f"- {key.replace('_', ' ').title()}: {value:.2f}")
540
+ else:
541
+ sections.append(f"- {key.replace('_', ' ').title()}: {value}")
542
+
543
+ # Recommendations
544
+ if recommendations:
545
+ sections.append("\nKey Recommendations:")
546
+ for rec in recommendations:
547
+ sections.append(f"- {rec}")
548
+
549
+ return "\n".join(sections)
reasoning/quantum.py CHANGED
@@ -1,268 +1,276 @@
1
  """Quantum-inspired reasoning implementations."""
2
 
3
  import logging
4
- from typing import Dict, Any, List
5
  import json
 
 
 
 
 
6
 
7
  from .base import ReasoningStrategy
8
 
 
 
 
 
 
 
 
 
9
  class QuantumReasoning(ReasoningStrategy):
10
- """Implements quantum-inspired reasoning using superposition and entanglement principles."""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
 
 
 
 
 
 
 
 
 
 
13
  try:
14
- # Create superposition of possibilities
15
- superposition = await self._create_superposition(query, context)
16
 
17
- # Analyze entanglements
18
- entanglements = await self._analyze_entanglements(superposition, context)
19
 
20
- # Perform quantum interference
21
- interference = await self._quantum_interference(superposition, entanglements, context)
22
 
23
- # Collapse to solution
24
- solution = await self._collapse_to_solution(interference, context)
25
 
26
  return {
27
- "success": True,
28
- "answer": solution["conclusion"],
29
- "superposition": superposition,
30
- "entanglements": entanglements,
31
- "interference_patterns": interference,
32
- "measurement": solution["measurement"],
33
- "confidence": solution["confidence"]
34
  }
 
35
  except Exception as e:
36
- return {"success": False, "error": str(e)}
37
-
38
- async def _create_superposition(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]:
39
- prompt = f"""
40
- Create superposition of possible solutions:
41
- Query: {query}
42
- Context: {json.dumps(context)}
 
 
 
 
 
 
43
 
44
- For each possibility state:
45
- 1. [State]: Description of possibility
46
- 2. [Amplitude]: Relative strength (0-1)
47
- 3. [Phase]: Relationship to other states
48
- 4. [Basis]: Underlying assumptions
49
 
50
- Format as:
51
- [S1]
52
- State: ...
53
- Amplitude: ...
54
- Phase: ...
55
- Basis: ...
56
- """
 
 
 
 
 
 
 
57
 
58
- response = await context["groq_api"].predict(prompt)
59
- return self._parse_superposition(response["answer"])
60
-
61
- async def _analyze_entanglements(self, superposition: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
62
- prompt = f"""
63
- Analyze entanglements between possibilities:
64
- Superposition: {json.dumps(superposition)}
65
- Context: {json.dumps(context)}
66
 
67
- For each entanglement describe:
68
- 1. [States]: Entangled states
69
- 2. [Type]: Nature of entanglement
70
- 3. [Strength]: Correlation strength
71
- 4. [Impact]: Effect on outcomes
 
 
 
 
72
 
73
- Format as:
74
- [E1]
75
- States: ...
76
- Type: ...
77
- Strength: ...
78
- Impact: ...
79
- """
80
 
81
- response = await context["groq_api"].predict(prompt)
82
- return self._parse_entanglements(response["answer"])
83
-
84
- async def _quantum_interference(self, superposition: List[Dict[str, Any]], entanglements: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
85
- prompt = f"""
86
- Calculate quantum interference patterns:
87
- Superposition: {json.dumps(superposition)}
88
- Entanglements: {json.dumps(entanglements)}
89
- Context: {json.dumps(context)}
 
 
 
 
 
 
 
90
 
91
- For each interference pattern:
92
- 1. [Pattern]: Description
93
- 2. [Amplitude]: Combined strength
94
- 3. [Phase]: Combined phase
95
- 4. [Effect]: Impact on solution space
 
 
 
 
96
 
97
- Format as:
98
- [I1]
99
- Pattern: ...
100
- Amplitude: ...
101
- Phase: ...
102
- Effect: ...
103
- """
104
 
105
- response = await context["groq_api"].predict(prompt)
106
- return self._parse_interference(response["answer"])
107
-
108
- async def _collapse_to_solution(self, interference: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]:
109
- prompt = f"""
110
- Collapse quantum state to final solution:
111
- Interference: {json.dumps(interference)}
112
- Context: {json.dumps(context)}
113
 
114
- Provide:
115
- 1. Final measured state
116
- 2. Measurement confidence
117
- 3. Key quantum effects utilized
118
- 4. Overall conclusion
119
- 5. Confidence level (0-1)
120
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121
 
122
- response = await context["groq_api"].predict(prompt)
123
- return self._parse_collapse(response["answer"])
124
-
125
- def _parse_superposition(self, response: str) -> List[Dict[str, Any]]:
126
- """Parse superposition states from response."""
127
- superposition = []
128
- current_state = None
129
 
130
- for line in response.split('\n'):
131
- line = line.strip()
132
- if not line:
133
- continue
134
-
135
- if line.startswith('[S'):
136
- if current_state:
137
- superposition.append(current_state)
138
- current_state = {
139
- "state": "",
140
- "amplitude": 0.0,
141
- "phase": "",
142
- "basis": ""
143
- }
144
- elif current_state:
145
- if line.startswith('State:'):
146
- current_state["state"] = line[6:].strip()
147
- elif line.startswith('Amplitude:'):
148
- try:
149
- current_state["amplitude"] = float(line[10:].strip())
150
- except:
151
- pass
152
- elif line.startswith('Phase:'):
153
- current_state["phase"] = line[6:].strip()
154
- elif line.startswith('Basis:'):
155
- current_state["basis"] = line[6:].strip()
156
 
157
- if current_state:
158
- superposition.append(current_state)
 
 
 
 
159
 
160
- return superposition
161
-
162
- def _parse_entanglements(self, response: str) -> List[Dict[str, Any]]:
163
- """Parse entanglements from response."""
164
- entanglements = []
165
- current_entanglement = None
 
166
 
167
- for line in response.split('\n'):
168
- line = line.strip()
169
- if not line:
170
- continue
171
-
172
- if line.startswith('[E'):
173
- if current_entanglement:
174
- entanglements.append(current_entanglement)
175
- current_entanglement = {
176
- "states": "",
177
- "type": "",
178
- "strength": 0.0,
179
- "impact": ""
180
- }
181
- elif current_entanglement:
182
- if line.startswith('States:'):
183
- current_entanglement["states"] = line[7:].strip()
184
- elif line.startswith('Type:'):
185
- current_entanglement["type"] = line[5:].strip()
186
- elif line.startswith('Strength:'):
187
- try:
188
- current_entanglement["strength"] = float(line[9:].strip())
189
- except:
190
- pass
191
- elif line.startswith('Impact:'):
192
- current_entanglement["impact"] = line[7:].strip()
193
 
194
- if current_entanglement:
195
- entanglements.append(current_entanglement)
 
 
 
 
196
 
197
- return entanglements
198
-
199
- def _parse_interference(self, response: str) -> List[Dict[str, Any]]:
200
- """Parse interference patterns from response."""
201
- interference = []
202
- current_pattern = None
203
 
204
- for line in response.split('\n'):
205
- line = line.strip()
206
- if not line:
207
- continue
208
-
209
- if line.startswith('[I'):
210
- if current_pattern:
211
- interference.append(current_pattern)
212
- current_pattern = {
213
- "pattern": "",
214
- "amplitude": 0.0,
215
- "phase": "",
216
- "effect": ""
217
- }
218
- elif current_pattern:
219
- if line.startswith('Pattern:'):
220
- current_pattern["pattern"] = line[8:].strip()
221
- elif line.startswith('Amplitude:'):
222
- try:
223
- current_pattern["amplitude"] = float(line[10:].strip())
224
- except:
225
- pass
226
- elif line.startswith('Phase:'):
227
- current_pattern["phase"] = line[6:].strip()
228
- elif line.startswith('Effect:'):
229
- current_pattern["effect"] = line[7:].strip()
230
 
231
- if current_pattern:
232
- interference.append(current_pattern)
 
 
 
 
 
 
233
 
234
- return interference
235
-
236
- def _parse_collapse(self, response: str) -> Dict[str, Any]:
237
- """Parse collapse to solution from response."""
238
- collapse = {
239
- "measurement": "",
240
- "confidence": 0.0,
241
- "quantum_effects": [],
242
- "conclusion": ""
243
- }
244
 
245
- mode = None
246
- for line in response.split('\n'):
247
- line = line.strip()
248
- if not line:
249
- continue
250
-
251
- if line.startswith('Measurement:'):
252
- collapse["measurement"] = line[12:].strip()
253
- elif line.startswith('Confidence:'):
254
- try:
255
- collapse["confidence"] = float(line[11:].strip())
256
- except:
257
- collapse["confidence"] = 0.5
258
- elif line.startswith('Quantum Effects:'):
259
- mode = "effects"
260
- elif mode == "effects" and line.startswith('- '):
261
- collapse["quantum_effects"].append(line[2:].strip())
262
- elif line.startswith('Conclusion:'):
263
- collapse["conclusion"] = line[11:].strip()
264
 
265
- return collapse
266
 
267
 
268
  class QuantumInspiredStrategy(ReasoningStrategy):
 
1
  """Quantum-inspired reasoning implementations."""
2
 
3
  import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
5
  import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import numpy as np
10
+ from collections import defaultdict
11
 
12
  from .base import ReasoningStrategy
13
 
14
+ @dataclass
15
+ class QuantumState:
16
+ """Quantum state with superposition and entanglement."""
17
+ name: str
18
+ amplitude: complex
19
+ phase: float
20
+ entangled_states: List[str] = field(default_factory=list)
21
+
22
  class QuantumReasoning(ReasoningStrategy):
23
+ """
24
+ Advanced quantum reasoning that:
25
+ 1. Creates quantum states
26
+ 2. Applies quantum operations
27
+ 3. Measures outcomes
28
+ 4. Handles superposition
29
+ 5. Models entanglement
30
+ """
31
+
32
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
33
+ """Initialize quantum reasoning."""
34
+ super().__init__()
35
+ self.config = config or {}
36
+
37
+ # Configure quantum parameters
38
+ self.num_qubits = self.config.get('num_qubits', 3)
39
+ self.measurement_threshold = self.config.get('measurement_threshold', 0.1)
40
+ self.decoherence_rate = self.config.get('decoherence_rate', 0.01)
41
 
42
  async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
43
+ """
44
+ Apply quantum reasoning to analyze complex decisions.
45
+
46
+ Args:
47
+ query: The input query to reason about
48
+ context: Additional context and parameters
49
+
50
+ Returns:
51
+ Dict containing reasoning results and confidence scores
52
+ """
53
  try:
54
+ # Initialize quantum states
55
+ states = await self._initialize_states(query, context)
56
 
57
+ # Apply quantum operations
58
+ evolved_states = await self._apply_operations(states, context)
59
 
60
+ # Measure outcomes
61
+ measurements = await self._measure_states(evolved_states, context)
62
 
63
+ # Generate analysis
64
+ analysis = await self._generate_analysis(measurements, context)
65
 
66
  return {
67
+ 'answer': self._format_analysis(analysis),
68
+ 'confidence': self._calculate_confidence(measurements),
69
+ 'states': states,
70
+ 'evolved_states': evolved_states,
71
+ 'measurements': measurements,
72
+ 'analysis': analysis
 
73
  }
74
+
75
  except Exception as e:
76
+ logging.error(f"Quantum reasoning failed: {str(e)}")
77
+ return {
78
+ 'error': f"Quantum reasoning failed: {str(e)}",
79
+ 'confidence': 0.0
80
+ }
81
+
82
+ async def _initialize_states(
83
+ self,
84
+ query: str,
85
+ context: Dict[str, Any]
86
+ ) -> List[QuantumState]:
87
+ """Initialize quantum states."""
88
+ states = []
89
 
90
+ # Extract key terms for state initialization
91
+ terms = set(query.lower().split())
 
 
 
92
 
93
+ # Create quantum states based on terms
94
+ for i, term in enumerate(terms):
95
+ if i >= self.num_qubits:
96
+ break
97
+
98
+ # Calculate initial amplitude and phase
99
+ amplitude = 1.0 / np.sqrt(len(terms[:self.num_qubits]))
100
+ phase = 2 * np.pi * i / len(terms[:self.num_qubits])
101
+
102
+ states.append(QuantumState(
103
+ name=term,
104
+ amplitude=complex(amplitude * np.cos(phase), amplitude * np.sin(phase)),
105
+ phase=phase
106
+ ))
107
 
108
+ # Create entangled states if specified
109
+ if context.get('entangle', False):
110
+ self._entangle_states(states)
 
 
 
 
 
111
 
112
+ return states
113
+
114
+ async def _apply_operations(
115
+ self,
116
+ states: List[QuantumState],
117
+ context: Dict[str, Any]
118
+ ) -> List[QuantumState]:
119
+ """Apply quantum operations to states."""
120
+ evolved_states = []
121
 
122
+ # Get operation parameters
123
+ rotation = context.get('rotation', 0.0)
124
+ phase_shift = context.get('phase_shift', 0.0)
 
 
 
 
125
 
126
+ for state in states:
127
+ # Apply rotation
128
+ rotated_amplitude = state.amplitude * np.exp(1j * rotation)
129
+
130
+ # Apply phase shift
131
+ shifted_phase = (state.phase + phase_shift) % (2 * np.pi)
132
+
133
+ # Apply decoherence
134
+ decohered_amplitude = rotated_amplitude * (1 - self.decoherence_rate)
135
+
136
+ evolved_states.append(QuantumState(
137
+ name=state.name,
138
+ amplitude=decohered_amplitude,
139
+ phase=shifted_phase,
140
+ entangled_states=state.entangled_states.copy()
141
+ ))
142
 
143
+ return evolved_states
144
+
145
+ async def _measure_states(
146
+ self,
147
+ states: List[QuantumState],
148
+ context: Dict[str, Any]
149
+ ) -> Dict[str, float]:
150
+ """Measure quantum states."""
151
+ measurements = {}
152
 
153
+ # Calculate total probability
154
+ total_probability = sum(
155
+ abs(state.amplitude) ** 2
156
+ for state in states
157
+ )
 
 
158
 
159
+ if total_probability > 0:
160
+ # Normalize and store measurements
161
+ for state in states:
162
+ probability = (abs(state.amplitude) ** 2) / total_probability
163
+ if probability > self.measurement_threshold:
164
+ measurements[state.name] = probability
 
 
165
 
166
+ return measurements
167
+
168
+ def _entangle_states(self, states: List[QuantumState]) -> None:
169
+ """Create entanglement between states."""
170
+ if len(states) < 2:
171
+ return
172
+
173
+ # Simple entanglement: connect adjacent states
174
+ for i in range(len(states) - 1):
175
+ states[i].entangled_states.append(states[i + 1].name)
176
+ states[i + 1].entangled_states.append(states[i].name)
177
+
178
+ async def _generate_analysis(
179
+ self,
180
+ measurements: Dict[str, float],
181
+ context: Dict[str, Any]
182
+ ) -> Dict[str, Any]:
183
+ """Generate quantum analysis."""
184
+ # Sort states by measurement probability
185
+ ranked_states = sorted(
186
+ measurements.items(),
187
+ key=lambda x: x[1],
188
+ reverse=True
189
+ )
190
 
191
+ # Calculate quantum statistics
192
+ amplitudes = list(measurements.values())
193
+ mean = np.mean(amplitudes) if amplitudes else 0
194
+ std = np.std(amplitudes) if amplitudes else 0
 
 
 
195
 
196
+ # Calculate quantum entropy
197
+ entropy = -sum(
198
+ p * np.log2(p) if p > 0 else 0
199
+ for p in measurements.values()
200
+ )
201
+
202
+ return {
203
+ 'top_state': ranked_states[0][0] if ranked_states else '',
204
+ 'probability': ranked_states[0][1] if ranked_states else 0,
205
+ 'alternatives': [
206
+ {'name': name, 'probability': prob}
207
+ for name, prob in ranked_states[1:]
208
+ ],
209
+ 'statistics': {
210
+ 'mean': mean,
211
+ 'std': std,
212
+ 'entropy': entropy
213
+ }
214
+ }
215
+
216
+ def _format_analysis(self, analysis: Dict[str, Any]) -> str:
217
+ """Format analysis into readable text."""
218
+ sections = []
 
 
 
219
 
220
+ # Top quantum state
221
+ if analysis['top_state']:
222
+ sections.append(
223
+ f"Most probable quantum state: {analysis['top_state']} "
224
+ f"(probability: {analysis['probability']:.2%})"
225
+ )
226
 
227
+ # Alternative states
228
+ if analysis['alternatives']:
229
+ sections.append("\nAlternative quantum states:")
230
+ for alt in analysis['alternatives']:
231
+ sections.append(
232
+ f"- {alt['name']}: {alt['probability']:.2%}"
233
+ )
234
 
235
+ # Quantum statistics
236
+ stats = analysis['statistics']
237
+ sections.append("\nQuantum statistics:")
238
+ sections.append(f"- Mean amplitude: {stats['mean']:.2%}")
239
+ sections.append(f"- Standard deviation: {stats['std']:.2%}")
240
+ sections.append(f"- Quantum entropy: {stats['entropy']:.2f} bits")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241
 
242
+ return "\n".join(sections)
243
+
244
+ def _calculate_confidence(self, measurements: Dict[str, float]) -> float:
245
+ """Calculate overall confidence score."""
246
+ if not measurements:
247
+ return 0.0
248
 
249
+ # Base confidence
250
+ confidence = 0.5
 
 
 
 
251
 
252
+ # Adjust based on measurement distribution
253
+ probs = list(measurements.values())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
254
 
255
+ # Strong leading measurement increases confidence
256
+ max_prob = max(probs)
257
+ if max_prob > 0.8:
258
+ confidence += 0.3
259
+ elif max_prob > 0.6:
260
+ confidence += 0.2
261
+ elif max_prob > 0.4:
262
+ confidence += 0.1
263
 
264
+ # Low entropy (clear distinction) increases confidence
265
+ entropy = -sum(p * np.log2(p) if p > 0 else 0 for p in probs)
266
+ max_entropy = -np.log2(1/len(probs)) # Maximum possible entropy
 
 
 
 
 
 
 
267
 
268
+ if entropy < 0.3 * max_entropy:
269
+ confidence += 0.2
270
+ elif entropy < 0.6 * max_entropy:
271
+ confidence += 0.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
272
 
273
+ return min(confidence, 1.0)
274
 
275
 
276
  class QuantumInspiredStrategy(ReasoningStrategy):
requirements.txt CHANGED
@@ -1,7 +1,7 @@
1
  fastapi>=0.68.0
2
  uvicorn>=0.15.0
3
  pydantic>=2.0.0
4
- gradio>=4.16.0
5
  llama-cpp-python>=0.2.23
6
  huggingface-hub>=0.19.4
7
  numpy>=1.24.0
 
1
  fastapi>=0.68.0
2
  uvicorn>=0.15.0
3
  pydantic>=2.0.0
4
+ gradio==5.11.0
5
  llama-cpp-python>=0.2.23
6
  huggingface-hub>=0.19.4
7
  numpy>=1.24.0