File size: 10,764 Bytes
a6ce454
dcb2a99
 
a6ce454
dcb2a99
a6ce454
 
 
 
 
dcb2a99
 
 
a6ce454
 
 
 
 
 
 
 
 
dcb2a99
a6ce454
 
 
 
 
 
 
 
 
 
 
 
 
 
1671ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6ce454
1671ec3
a6ce454
 
 
 
 
1671ec3
dcb2a99
 
a6ce454
 
 
 
 
 
 
 
 
 
dcb2a99
a6ce454
dcb2a99
 
a6ce454
dcb2a99
 
a6ce454
dcb2a99
 
a6ce454
dcb2a99
 
 
a6ce454
 
 
 
 
dcb2a99
a6ce454
dcb2a99
a6ce454
 
 
 
 
 
 
 
 
 
 
dcb2a99
a6ce454
dcb2a99
a6ce454
 
 
dcb2a99
a6ce454
 
 
dcb2a99
a6ce454
 
 
dcb2a99
a6ce454
 
 
dcb2a99
a6ce454
 
 
dcb2a99
a6ce454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb2a99
a6ce454
 
 
 
 
 
 
 
 
 
 
 
dcb2a99
a6ce454
 
 
 
 
 
 
 
 
 
 
dcb2a99
a6ce454
 
 
 
 
dcb2a99
a6ce454
 
 
 
 
 
 
 
 
dcb2a99
a6ce454
 
 
 
dcb2a99
a6ce454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb2a99
a6ce454
 
 
 
 
 
 
 
 
 
dcb2a99
a6ce454
 
 
 
dcb2a99
a6ce454
 
dcb2a99
a6ce454
 
 
 
dcb2a99
a6ce454
 
 
dcb2a99
a6ce454
 
 
dcb2a99
a6ce454
 
 
 
 
 
 
 
dcb2a99
a6ce454
 
 
 
dcb2a99
a6ce454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
"""Advanced multimodal reasoning combining different types of information."""

import logging
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict

from .base import ReasoningStrategy

@dataclass
class ModalityFeatures:
    """Features extracted from different modalities."""
    text: List[Dict[str, Any]]
    image: Optional[List[Dict[str, Any]]] = None
    audio: Optional[List[Dict[str, Any]]] = None
    video: Optional[List[Dict[str, Any]]] = None
    structured: Optional[List[Dict[str, Any]]] = None

class MultiModalReasoning(ReasoningStrategy):
    """
    Advanced multimodal reasoning that:
    1. Processes different types of information
    2. Aligns cross-modal features
    3. Integrates multimodal context
    4. Generates coherent responses
    5. Handles uncertainty
    """
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        """Initialize multimodal reasoning."""
        super().__init__()
        self.config = config or {}
        
        # Standard reasoning parameters
        self.min_confidence = self.config.get('min_confidence', 0.7)
        self.parallel_threshold = self.config.get('parallel_threshold', 3)
        self.learning_rate = self.config.get('learning_rate', 0.1)
        self.strategy_weights = self.config.get('strategy_weights', {
            "LOCAL_LLM": 0.8,
            "CHAIN_OF_THOUGHT": 0.6,
            "TREE_OF_THOUGHTS": 0.5,
            "META_LEARNING": 0.4
        })
        
        # Configure model repositories
        self.models = self.config.get('models', {
            'img2img': {
                'repo_id': 'enhanceaiteam/Flux-Uncensored-V2',
                'filename': 'Flux-Uncensored-V2.safetensors'
            },
            'img2vid': {
                'repo_id': 'stabilityai/stable-video-diffusion-img2vid-xt',
                'filename': 'svd_xt.safetensors'
            },
            'any2any': {
                'repo_id': 'deepseek-ai/JanusFlow-1.3B',
                'filename': 'janusflow-1.3b.safetensors'
            }
        })
        
        # Configure modality weights
        self.weights = self.config.get('modality_weights', {
            'text': 0.4,
            'image': 0.3,
            'audio': 0.1,
            'video': 0.1,
            'structured': 0.1
        })
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """
        Apply multimodal reasoning to process and integrate different types of information.
        
        Args:
            query: The input query to reason about
            context: Additional context and parameters
            
        Returns:
            Dict containing reasoning results and confidence scores
        """
        try:
            # Process across modalities
            modalities = await self._process_modalities(query, context)
            
            # Align cross-modal information
            alignment = await self._cross_modal_alignment(modalities, context)
            
            # Integrate aligned information
            integration = await self._integrated_analysis(alignment, context)
            
            # Generate final response
            response = await self._generate_response(integration, context)
            
            return {
                'answer': response.get('text', ''),
                'confidence': self._calculate_confidence(integration),
                'modalities': modalities,
                'alignment': alignment,
                'integration': integration
            }
            
        except Exception as e:
            logging.error(f"Multimodal reasoning failed: {str(e)}")
            return {
                'error': f"Multimodal reasoning failed: {str(e)}",
                'confidence': 0.0
            }
    
    async def _process_modalities(
        self,
        query: str,
        context: Dict[str, Any]
    ) -> Dict[str, List[Dict[str, Any]]]:
        """Process query across different modalities."""
        modalities = {}
        
        # Process text
        if 'text' in context:
            modalities['text'] = self._process_text(context['text'])
            
        # Process images
        if 'images' in context:
            modalities['image'] = self._process_images(context['images'])
            
        # Process audio
        if 'audio' in context:
            modalities['audio'] = self._process_audio(context['audio'])
            
        # Process video
        if 'video' in context:
            modalities['video'] = self._process_video(context['video'])
            
        # Process structured data
        if 'structured' in context:
            modalities['structured'] = self._process_structured(context['structured'])
            
        return modalities
    
    async def _cross_modal_alignment(
        self,
        modalities: Dict[str, List[Dict[str, Any]]],
        context: Dict[str, Any]
    ) -> List[Dict[str, Any]]:
        """Align information across different modalities."""
        alignments = []
        
        # Get all modality pairs
        modality_pairs = [
            (m1, m2) for i, m1 in enumerate(modalities.keys())
            for m2 in list(modalities.keys())[i+1:]
        ]
        
        # Align each pair
        for mod1, mod2 in modality_pairs:
            items1 = modalities[mod1]
            items2 = modalities[mod2]
            
            # Calculate cross-modal similarities
            for item1 in items1:
                for item2 in items2:
                    similarity = self._calculate_similarity(item1, item2)
                    if similarity > 0.7:  # Alignment threshold
                        alignments.append({
                            'modality1': mod1,
                            'modality2': mod2,
                            'item1': item1,
                            'item2': item2,
                            'similarity': similarity
                        })
        
        return alignments
    
    def _calculate_similarity(
        self,
        item1: Dict[str, Any],
        item2: Dict[str, Any]
    ) -> float:
        """Calculate similarity between two items from different modalities."""
        # Simple feature overlap for now
        features1 = set(str(v) for v in item1.values())
        features2 = set(str(v) for v in item2.values())
        
        if not features1 or not features2:
            return 0.0
            
        overlap = len(features1.intersection(features2))
        total = len(features1.union(features2))
        
        return overlap / total if total > 0 else 0.0
    
    async def _integrated_analysis(
        self,
        alignment: List[Dict[str, Any]],
        context: Dict[str, Any]
    ) -> List[Dict[str, Any]]:
        """Perform integrated analysis of aligned information."""
        integrated = []
        
        # Group alignments by similarity
        similarity_groups = defaultdict(list)
        for align in alignment:
            similarity_groups[align['similarity']].append(align)
        
        # Process groups in order of similarity
        for similarity, group in sorted(
            similarity_groups.items(),
            key=lambda x: x[0],
            reverse=True
        ):
            # Combine aligned features
            for align in group:
                integrated.append({
                    'features': {
                        **align['item1'],
                        **align['item2']
                    },
                    'modalities': [align['modality1'], align['modality2']],
                    'confidence': align['similarity']
                })
        
        return integrated
    
    async def _generate_response(
        self,
        integration: List[Dict[str, Any]],
        context: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Generate coherent response from integrated analysis."""
        if not integration:
            return {'text': '', 'confidence': 0.0}
        
        # Combine all integrated features
        all_features = {}
        for item in integration:
            all_features.update(item['features'])
        
        # Generate response text
        response_text = []
        
        # Add main findings
        response_text.append("Main findings across modalities:")
        for feature, value in all_features.items():
            response_text.append(f"- {feature}: {value}")
        
        # Add confidence
        confidence = sum(item['confidence'] for item in integration) / len(integration)
        response_text.append(f"\nOverall confidence: {confidence:.2f}")
        
        return {
            'text': "\n".join(response_text),
            'confidence': confidence
        }
    
    def _calculate_confidence(self, integration: List[Dict[str, Any]]) -> float:
        """Calculate overall confidence score."""
        if not integration:
            return 0.0
        
        # Base confidence
        confidence = 0.5
        
        # Adjust based on number of modalities
        unique_modalities = set()
        for item in integration:
            unique_modalities.update(item['modalities'])
        
        modality_bonus = len(unique_modalities) * 0.1
        confidence += min(modality_bonus, 0.3)
        
        # Adjust based on integration quality
        avg_similarity = sum(
            item['confidence'] for item in integration
        ) / len(integration)
        confidence += avg_similarity * 0.2
        
        return min(confidence, 1.0)

    def _process_text(self, text: str) -> List[Dict[str, Any]]:
        """Process text modality."""
        # Simple text processing for now
        return [{'text': text}]

    def _process_images(self, images: List[str]) -> List[Dict[str, Any]]:
        """Process image modality."""
        # Simple image processing for now
        return [{'image': image} for image in images]

    def _process_audio(self, audio: List[str]) -> List[Dict[str, Any]]:
        """Process audio modality."""
        # Simple audio processing for now
        return [{'audio': audio_file} for audio_file in audio]

    def _process_video(self, video: List[str]) -> List[Dict[str, Any]]:
        """Process video modality."""
        # Simple video processing for now
        return [{'video': video_file} for video_file in video]

    def _process_structured(self, structured: Dict[str, Any]) -> List[Dict[str, Any]]:
        """Process structured data modality."""
        # Simple structured data processing for now
        return [{'structured': structured}]