Spaces:
Runtime error
Runtime error
File size: 15,884 Bytes
dcb2a99 a6ce454 dcb2a99 1671ec3 dcb2a99 a6ce454 1671ec3 a6ce454 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
"""Advanced monetization strategies for venture optimization."""
import logging
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict
from .base import ReasoningStrategy
@dataclass
class MonetizationModel:
"""Monetization model configuration."""
name: str
type: str
pricing_tiers: List[Dict[str, Any]]
features: List[str]
constraints: List[str]
metrics: Dict[str, float]
@dataclass
class RevenueStream:
"""Revenue stream configuration."""
name: str
type: str
volume: float
unit_economics: Dict[str, float]
growth_rate: float
churn_rate: float
class MonetizationOptimizer:
"""
Advanced monetization optimization that:
1. Designs pricing models
2. Optimizes revenue streams
3. Maximizes customer value
4. Reduces churn
5. Increases lifetime value
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""Initialize monetization optimizer."""
self.config = config or {}
# Configure optimization parameters
self.min_revenue = self.config.get('min_revenue', 1_000_000)
self.min_margin = self.config.get('min_margin', 0.3)
self.max_churn = self.config.get('max_churn', 0.1)
self.target_ltv = self.config.get('target_ltv', 1000)
self.models: Dict[str, MonetizationModel] = {}
self.streams: Dict[str, RevenueStream] = {}
async def optimize_monetization(self,
venture_type: str,
context: Dict[str, Any]) -> Dict[str, Any]:
"""Optimize monetization strategy."""
try:
# Design models
models = await self._design_models(venture_type, context)
# Optimize pricing
pricing = await self._optimize_pricing(models, context)
# Revenue optimization
revenue = await self._optimize_revenue(pricing, context)
# Value optimization
value = await self._optimize_value(revenue, context)
# Performance projections
projections = await self._project_performance(value, context)
return {
"success": projections["annual_revenue"] >= 1_000_000,
"models": models,
"pricing": pricing,
"revenue": revenue,
"value": value,
"projections": projections
}
except Exception as e:
logging.error(f"Error in monetization optimization: {str(e)}")
return {"success": False, "error": str(e)}
async def _design_models(self,
venture_type: str,
context: Dict[str, Any]) -> Dict[str, Any]:
"""Design monetization models."""
prompt = f"""
Design monetization models:
Venture: {venture_type}
Context: {json.dumps(context)}
Design models for:
1. Subscription tiers
2. Usage-based pricing
3. Hybrid models
4. Enterprise pricing
5. Marketplace fees
Format as:
[Model1]
Name: ...
Type: ...
Tiers: ...
Features: ...
Constraints: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_model_design(response["answer"])
async def _optimize_pricing(self,
models: Dict[str, Any],
context: Dict[str, Any]) -> Dict[str, Any]:
"""Optimize pricing strategy."""
prompt = f"""
Optimize pricing strategy:
Models: {json.dumps(models)}
Context: {json.dumps(context)}
Optimize for:
1. Market positioning
2. Value perception
3. Competitive dynamics
4. Customer segments
5. Growth potential
Format as:
[Strategy1]
Model: ...
Positioning: ...
Value_Props: ...
Segments: ...
Growth: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_pricing_strategy(response["answer"])
async def _optimize_revenue(self,
pricing: Dict[str, Any],
context: Dict[str, Any]) -> Dict[str, Any]:
"""Optimize revenue streams."""
prompt = f"""
Optimize revenue streams:
Pricing: {json.dumps(pricing)}
Context: {json.dumps(context)}
Optimize for:
1. Revenue mix
2. Growth drivers
3. Retention factors
4. Expansion potential
5. Risk mitigation
Format as:
[Stream1]
Type: ...
Drivers: ...
Retention: ...
Expansion: ...
Risks: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_revenue_optimization(response["answer"])
async def _optimize_value(self,
revenue: Dict[str, Any],
context: Dict[str, Any]) -> Dict[str, Any]:
"""Optimize customer value."""
prompt = f"""
Optimize customer value:
Revenue: {json.dumps(revenue)}
Context: {json.dumps(context)}
Optimize for:
1. Acquisition cost
2. Lifetime value
3. Churn reduction
4. Upsell potential
5. Network effects
Format as:
[Value1]
Metric: ...
Strategy: ...
Potential: ...
Actions: ...
Timeline: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_value_optimization(response["answer"])
async def _project_performance(self,
value: Dict[str, Any],
context: Dict[str, Any]) -> Dict[str, Any]:
"""Project monetization performance."""
prompt = f"""
Project performance:
Value: {json.dumps(value)}
Context: {json.dumps(context)}
Project:
1. Revenue growth
2. Customer metrics
3. Unit economics
4. Profitability
5. Scale effects
Format as:
[Projections]
Revenue: ...
Metrics: ...
Economics: ...
Profit: ...
Scale: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_performance_projections(response["answer"])
def _calculate_revenue_potential(self, model: MonetizationModel) -> float:
"""Calculate revenue potential for model."""
base_potential = sum(
tier.get("price", 0) * tier.get("volume", 0)
for tier in model.pricing_tiers
)
growth_factor = 1.0 + (model.metrics.get("growth_rate", 0) / 100)
retention_factor = 1.0 - (model.metrics.get("churn_rate", 0) / 100)
return base_potential * growth_factor * retention_factor
def _calculate_customer_ltv(self, stream: RevenueStream) -> float:
"""Calculate customer lifetime value."""
monthly_revenue = stream.volume * stream.unit_economics.get("arpu", 0)
churn_rate = stream.churn_rate / 100
discount_rate = 0.1 # 10% annual discount rate
if churn_rate > 0:
ltv = monthly_revenue / churn_rate
else:
ltv = monthly_revenue * 12 # Assume 1 year if no churn
return ltv / (1 + discount_rate)
def get_monetization_metrics(self) -> Dict[str, Any]:
"""Get comprehensive monetization metrics."""
return {
"model_metrics": {
model.name: {
"revenue_potential": self._calculate_revenue_potential(model),
"tier_count": len(model.pricing_tiers),
"feature_count": len(model.features),
"constraint_count": len(model.constraints)
}
for model in self.models.values()
},
"stream_metrics": {
stream.name: {
"monthly_revenue": stream.volume * stream.unit_economics.get("arpu", 0),
"ltv": self._calculate_customer_ltv(stream),
"growth_rate": stream.growth_rate,
"churn_rate": stream.churn_rate
}
for stream in self.streams.values()
},
"aggregate_metrics": {
"total_revenue_potential": sum(
self._calculate_revenue_potential(model)
for model in self.models.values()
),
"average_ltv": np.mean([
self._calculate_customer_ltv(stream)
for stream in self.streams.values()
]) if self.streams else 0,
"weighted_growth_rate": np.average(
[stream.growth_rate for stream in self.streams.values()],
weights=[stream.volume for stream in self.streams.values()]
) if self.streams else 0
}
}
class MonetizationStrategy(ReasoningStrategy):
"""
Advanced monetization strategy that:
1. Designs optimal pricing models
2. Optimizes revenue streams
3. Maximizes customer lifetime value
4. Reduces churn
5. Increases profitability
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""Initialize monetization strategy."""
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.parallel_threshold = self.config.get('parallel_threshold', 3)
self.learning_rate = self.config.get('learning_rate', 0.1)
self.strategy_weights = self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
# Initialize optimizer with shared config
optimizer_config = {
'min_revenue': self.config.get('min_revenue', 1_000_000),
'min_margin': self.config.get('min_margin', 0.3),
'max_churn': self.config.get('max_churn', 0.1),
'target_ltv': self.config.get('target_ltv', 1000)
}
self.optimizer = MonetizationOptimizer(optimizer_config)
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""
Generate monetization strategy based on query and context.
Args:
query: The monetization query
context: Additional context and parameters
Returns:
Dict containing monetization strategy and confidence scores
"""
try:
# Extract venture type
venture_type = self._extract_venture_type(query, context)
# Optimize monetization
optimization_result = await self.optimizer.optimize_monetization(
venture_type=venture_type,
context=context
)
# Format results
formatted_result = self._format_strategy(optimization_result)
return {
'answer': formatted_result,
'confidence': self._calculate_confidence(optimization_result),
'optimization': optimization_result
}
except Exception as e:
logging.error(f"Monetization strategy generation failed: {str(e)}")
return {
'error': f"Monetization strategy generation failed: {str(e)}",
'confidence': 0.0
}
def _extract_venture_type(self, query: str, context: Dict[str, Any]) -> str:
"""Extract venture type from query and context."""
# Use context if available
if 'venture_type' in context:
return context['venture_type']
# Simple keyword matching
query_lower = query.lower()
if any(term in query_lower for term in ['ai', 'ml', 'model']):
return 'ai_startup'
elif any(term in query_lower for term in ['saas', 'software']):
return 'saas'
elif any(term in query_lower for term in ['api', 'service']):
return 'api_service'
elif any(term in query_lower for term in ['data', 'analytics']):
return 'data_analytics'
# Default to SaaS if unclear
return 'saas'
def _calculate_confidence(self, result: Dict[str, Any]) -> float:
"""Calculate confidence score based on optimization quality."""
# Base confidence
confidence = 0.5
# Adjust based on optimization completeness
if result.get('models'):
confidence += 0.1
if result.get('pricing'):
confidence += 0.1
if result.get('revenue'):
confidence += 0.1
if result.get('value'):
confidence += 0.1
# Adjust based on projected performance
performance = result.get('performance', {})
if performance.get('roi', 0) > 2.0:
confidence += 0.1
if performance.get('ltv', 0) > 1000:
confidence += 0.1
return min(confidence, 1.0)
def _format_strategy(self, result: Dict[str, Any]) -> str:
"""Format monetization strategy into readable text."""
sections = []
# Monetization models
if 'models' in result:
models = result['models']
sections.append("Monetization Models:")
for model in models:
sections.append(f"- {model['name']}: {model['type']}")
if 'pricing_tiers' in model:
sections.append(" Pricing Tiers:")
for tier in model['pricing_tiers']:
sections.append(f" * {tier['name']}: ${tier['price']}/mo")
# Revenue optimization
if 'revenue' in result:
revenue = result['revenue']
sections.append("\nRevenue Optimization:")
for stream, details in revenue.items():
sections.append(f"- {stream.replace('_', ' ').title()}:")
sections.append(f" * Projected Revenue: ${details['projected_revenue']:,.2f}")
sections.append(f" * Growth Rate: {details['growth_rate']*100:.1f}%")
# Customer value optimization
if 'value' in result:
value = result['value']
sections.append("\nCustomer Value Optimization:")
sections.append(f"- Customer Acquisition Cost: ${value['cac']:,.2f}")
sections.append(f"- Lifetime Value: ${value['ltv']:,.2f}")
sections.append(f"- Churn Rate: {value['churn_rate']*100:.1f}%")
# Performance projections
if 'performance' in result:
perf = result['performance']
sections.append("\nPerformance Projections:")
sections.append(f"- ROI: {perf['roi']*100:.1f}%")
sections.append(f"- Payback Period: {perf['payback_months']:.1f} months")
sections.append(f"- Break-even Point: ${perf['breakeven']:,.2f}")
return "\n".join(sections)
|