Spaces:
Build error
Build error
File size: 15,636 Bytes
37336a7 eb04de8 882008c eb04de8 7cdbd20 eb04de8 a5d47f2 eb04de8 069bc6a eb04de8 069bc6a eb04de8 a5d47f2 eb04de8 a5d47f2 eb04de8 a5d47f2 eb04de8 a5d47f2 069bc6a eb04de8 37336a7 eb04de8 069bc6a eb04de8 069bc6a eb04de8 e7486fb 882008c eb04de8 069bc6a eb04de8 37336a7 eb04de8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
from typing import List, Tuple
from dataclasses import dataclass
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class ModelConfig:
hidden_size: int = 768
num_heads: int = 8
segment_size: int = 512
memory_size: int = 1024
max_length: int = 2048
model_name: str = "gpt2"
device: str = "cuda" if torch.cuda.is_available() else "cpu"
class CompressiveMemory(nn.Module):
"""Long-term memory component that compresses and stores information"""
def __init__(self, config: ModelConfig):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.memory_size = config.memory_size
# Initialize memory components
self.memory = nn.Parameter(torch.randn(config.memory_size, config.hidden_size))
self.memory_key = nn.Linear(config.hidden_size, config.hidden_size)
self.memory_value = nn.Linear(config.hidden_size, config.hidden_size)
# Memory statistics
self.updates = 0
self.memory_usage = torch.zeros(config.memory_size)
# Initialize on specified device
self.to(config.device)
def forward(self, query: torch.Tensor) -> torch.Tensor:
"""Retrieve information from memory using attention"""
# Scale query for stable attention
query = query / torch.sqrt(torch.tensor(self.hidden_size, dtype=torch.float32))
# Compute attention scores
attention = torch.matmul(query, self.memory.T)
attention_weights = F.softmax(attention, dim=-1)
# Update memory usage statistics
with torch.no_grad():
self.memory_usage += attention_weights.sum(dim=0)
# Retrieve from memory
retrieved = torch.matmul(attention_weights, self.memory)
return retrieved
def update_memory(self, keys: torch.Tensor, values: torch.Tensor):
"""Update memory with new information"""
# Compress inputs
compressed_keys = self.memory_key(keys)
compressed_values = self.memory_value(values)
# Compute update
with torch.no_grad():
update = torch.matmul(compressed_keys.T, compressed_values)
# Progressive update with decay
decay = 0.9
update_rate = 0.1
self.memory.data = decay * self.memory.data + update_rate * update[:self.memory_size]
# Track updates
self.updates += 1
# Optional: Reset rarely used memory locations
if self.updates % 1000 == 0:
rarely_used = self.memory_usage < (self.memory_usage.mean() / 10)
self.memory.data[rarely_used] = torch.randn_like(
self.memory.data[rarely_used]
) * 0.1
self.memory_usage[rarely_used] = 0
def reset_memory(self):
"""Reset memory to initial state"""
self.memory.data = torch.randn_like(self.memory.data) * 0.1
self.memory_usage.zero_()
self.updates = 0
class InfiniteAttention(nn.Module):
"""Main attention module combining local and long-term memory attention"""
def __init__(self, config: ModelConfig):
super().__init__()
self.config = config
# Core attention components
self.query = nn.Linear(config.hidden_size, config.hidden_size)
self.key = nn.Linear(config.hidden_size, config.hidden_size)
self.value = nn.Linear(config.hidden_size, config.hidden_size)
# Multi-head attention setup
self.num_heads = config.num_heads
self.head_dim = config.hidden_size // config.num_heads
assert self.head_dim * config.num_heads == config.hidden_size, "hidden_size must be divisible by num_heads"
# Memory component
self.memory = CompressiveMemory(config)
# Output and gating
self.output = nn.Linear(config.hidden_size * 2, config.hidden_size)
self.gate = nn.Parameter(torch.zeros(1))
# Load base language model and tokenizer
try:
self.tokenizer = AutoTokenizer.from_pretrained(config.model_name)
self.base_model = AutoModelForCausalLM.from_pretrained(config.model_name)
self.base_model.to(config.device)
except Exception as e:
logger.error(f"Error loading base model: {str(e)}")
raise
# Move model to specified device
self.to(config.device)
def split_heads(self, x: torch.Tensor) -> torch.Tensor:
"""Split tensor into attention heads"""
batch_size, seq_length, _ = x.size()
return x.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
def merge_heads(self, x: torch.Tensor) -> torch.Tensor:
"""Merge attention heads back together"""
batch_size, _, seq_length, _ = x.size()
return x.transpose(1, 2).contiguous().view(batch_size, seq_length, self.config.hidden_size)
def get_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
"""Get embeddings from base model"""
return self.base_model.transformer.wte(input_ids)
def process_segment(self, segment: torch.Tensor, mask: torch.Tensor = None) -> torch.Tensor:
"""Process a single segment with attention"""
# Compute Q, K, V
q = self.split_heads(self.query(segment))
k = self.split_heads(self.key(segment))
v = self.split_heads(self.value(segment))
# Scale query
q = q / torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32))
# Compute local attention scores
local_attn = torch.matmul(q, k.transpose(-2, -1))
if mask is not None:
local_attn = local_attn.masked_fill(mask == 0, float('-inf'))
# Apply softmax
local_attn = F.softmax(local_attn, dim=-1)
# Compute local attention output
local_output = self.merge_heads(torch.matmul(local_attn, v))
# Get memory output
memory_output = self.memory(q.view(-1, self.config.hidden_size))
memory_output = memory_output.view(segment.size())
# Update memory
self.memory.update_memory(k.view(-1, self.config.hidden_size),
v.view(-1, self.config.hidden_size))
# Combine outputs using learned gate
gate = torch.sigmoid(self.gate)
combined = torch.cat([
gate * local_output,
(1 - gate) * memory_output
], dim=-1)
return self.output(combined)
def forward(self, x: torch.Tensor, mask: torch.Tensor = None) -> torch.Tensor:
"""Process input sequence by segments"""
batch_size = x.size(0)
# Split into segments
segments = x.unfold(1, self.config.segment_size,
step=self.config.segment_size)
output_segments = []
# Process each segment
for segment in segments.unbind(1):
segment_output = self.process_segment(segment, mask)
output_segments.append(segment_output)
# Handle any remaining tokens
remainder_start = segments.size(1) * self.config.segment_size
if remainder_start < x.size(1):
remainder = x[:, remainder_start:]
if remainder.size(1) > 0:
remainder_output = self.process_segment(remainder, mask)
output_segments.append(remainder_output)
# Combine all segments
return torch.cat(output_segments, dim=1)
def generate_response(self, input_text: str, max_new_tokens: int = 100) -> str:
"""Generate response from input text"""
try:
# Prepare input
inputs = self.tokenizer(input_text,
return_tensors="pt",
truncation=False)
input_ids = inputs["input_ids"].to(self.config.device)
# Get embeddings
embeddings = self.get_embeddings(input_ids)
# Process through infinite attention
attended = self.forward(embeddings)
# Generate response using base model with attended context
outputs = self.base_model.generate(
input_ids,
max_new_tokens=max_new_tokens,
num_return_sequences=1,
pad_token_id=self.tokenizer.eos_token_id,
do_sample=True,
temperature=0.7,
top_p=0.9,
)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
logger.error(f"Error in generate_response: {str(e)}")
return f"Error generating response: {str(e)}"
class ChatBot:
"""Manages chat history and message processing"""
def __init__(self, config: ModelConfig):
self.config = config
self.model = InfiniteAttention(config)
self.history: List[Tuple[str, str]] = []
self.max_history_tokens = 4096 # Adjust based on your needs
def count_tokens(self, text: str) -> int:
"""Count tokens in text using model's tokenizer"""
return len(self.model.tokenizer.encode(text))
def get_truncated_history(self) -> str:
"""Get history truncated to max tokens"""
history_text = ""
token_count = 0
for msg, response in reversed(self.history):
new_text = f"User: {msg}\nAssistant: {response}\n"
new_tokens = self.count_tokens(new_text)
if token_count + new_tokens > self.max_history_tokens:
break
history_text = new_text + history_text
token_count += new_tokens
return history_text.strip()
def process_message(self, message: str) -> Tuple[str, List[Tuple[str, str]]]:
"""Process a message and return response with updated history"""
try:
# Skip empty messages
if not message.strip():
return "", self.history
# Prepare context with history
history_text = self.get_truncated_history()
context = f"{history_text}\nUser: {message}\nAssistant:"
# Generate response
full_response = self.model.generate_response(context)
# Extract just the new response (after "Assistant:")
response = full_response.split("Assistant:")[-1].strip()
# Update history
self.history.append((message, response))
return response, self.history
except Exception as e:
error_msg = f"Error processing message: {str(e)}"
logger.error(error_msg)
return error_msg, self.history
def save_conversation(self, filename: str):
"""Save conversation history to file"""
try:
with open(filename, 'w', encoding='utf-8') as f:
for msg, response in self.history:
f.write(f"User: {msg}\n")
f.write(f"Assistant: {response}\n\n")
except Exception as e:
logger.error(f"Error saving conversation: {str(e)}")
def load_conversation(self, filename: str):
"""Load conversation history from file"""
try:
with open(filename, 'r', encoding='utf-8') as f:
content = f.read()
# Reset history
self.history = []
# Parse content
conversations = content.strip().split('\n\n')
for conv in conversations:
if 'User:' in conv and 'Assistant:' in conv:
parts = conv.split('Assistant:')
msg = parts[0].replace('User:', '').strip()
response = parts[1].strip()
self.history.append((msg, response))
except Exception as e:
logger.error(f"Error loading conversation: {str(e)}")
def create_gradio_interface():
"""Create and configure Gradio interface"""
# Initialize config and chatbot
config = ModelConfig()
chatbot = ChatBot(config)
def user_message(message: str, history: List[Tuple[str, str]]) -> Tuple[str, List[Tuple[str, str]]]:
"""Handle incoming user messages"""
response, updated_history = chatbot.process_message(message)
return response, updated_history
def save_chat(filename: str):
"""Save chat history to file"""
if not filename.endswith('.txt'):
filename += '.txt'
chatbot.save_conversation(filename)
return f"Conversation saved to {filename}"
def load_chat(filename: str):
"""Load chat history from file"""
if not filename.endswith('.txt'):
filename += '.txt'
chatbot.load_conversation(filename)
return f"Conversation loaded from {filename}"
# Create main chat interface
chat_interface = gr.ChatInterface(
fn=user_message,
title="Long Context AI Chat",
description="Chat with an AI that can handle very long conversations",
examples=[
["Tell me a story about space exploration"],
["What were the key points from our earlier discussion?"],
["Can you summarize everything we've talked about so far?"]
],
retry_btn=None,
undo_btn="Delete Last",
clear_btn="Clear"
)
# Add save/load functionality
with gr.Blocks() as interface:
chat_interface.render()
with gr.Row():
save_file = gr.Textbox(
label="Save conversation to file",
placeholder="conversation.txt"
)
save_btn = gr.Button("Save")
save_output = gr.Textbox(label="Save Status")
load_file = gr.Textbox(
label="Load conversation from file",
placeholder="conversation.txt"
)
load_btn = gr.Button("Load")
load_output = gr.Textbox(label="Load Status")
save_btn.click(
fn=save_chat,
inputs=[save_file],
outputs=[save_output]
)
load_btn.click(
fn=load_chat,
inputs=[load_file],
outputs=[load_output]
)
return interface
def main():
"""Main application entry point"""
try:
# Create interface
interface = create_gradio_interface()
# Launch with configuration
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=True,
auth=None, # Add authentication if needed
ssl_keyfile=None, # Add SSL if needed
ssl_certfile=None
)
except Exception as e:
logger.error(f"Error launching application: {str(e)}")
raise
if __name__ == "__main__":
main() |