Update app.py
Browse files
app.py
CHANGED
@@ -1,289 +1,210 @@
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
import
|
|
|
4 |
import pandas as pd
|
5 |
-
import numpy as np
|
6 |
import plotly.express as px
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
for your analysis and include visualizations when appropriate.
|
19 |
-
"""
|
20 |
-
max_iterations: int = 10
|
21 |
-
temperature: float = 0.7
|
22 |
-
model_name: str = "gpt-4" # Use GPT-4 or another valid model
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
class AnalysisState:
|
27 |
-
"""Maintains state for ongoing analysis"""
|
28 |
-
df: Optional[pd.DataFrame] = None
|
29 |
-
current_analysis: Dict = None
|
30 |
-
visualizations: List[Dict] = None
|
31 |
-
error_log: List[str] = None
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
self.current_analysis = None
|
36 |
-
self.visualizations = None
|
37 |
-
self.error_log = []
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
"""Process uploaded file and return DataFrame with info"""
|
47 |
try:
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
else:
|
55 |
-
return None, {"error": "Unsupported file format"}
|
56 |
-
|
57 |
-
info = {
|
58 |
-
"shape": df.shape,
|
59 |
-
"columns": list(df.columns),
|
60 |
-
"dtypes": df.dtypes.to_dict(),
|
61 |
-
"missing_values": df.isnull().sum().to_dict(),
|
62 |
-
"numeric_columns": list(df.select_dtypes(include=[np.number]).columns),
|
63 |
-
"categorical_columns": list(df.select_dtypes(exclude=[np.number]).columns)
|
64 |
-
}
|
65 |
|
66 |
-
|
|
|
67 |
except Exception as e:
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
try:
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
y=params["y"],
|
78 |
-
color=params.get("color"),
|
79 |
-
title=params.get("title", "Scatter Plot")
|
80 |
-
)
|
81 |
-
elif viz_type == "histogram":
|
82 |
-
fig = px.histogram(
|
83 |
-
data,
|
84 |
-
x=params["x"],
|
85 |
-
nbins=params.get("nbins", 30),
|
86 |
-
title=params.get("title", "Distribution")
|
87 |
-
)
|
88 |
-
elif viz_type == "heatmap":
|
89 |
-
numeric_cols = data.select_dtypes(include=[np.number]).columns
|
90 |
-
corr = data[numeric_cols].corr()
|
91 |
-
fig = px.imshow(
|
92 |
-
corr,
|
93 |
-
labels=dict(color="Correlation"),
|
94 |
-
title=params.get("title", "Correlation Heatmap")
|
95 |
-
)
|
96 |
-
else:
|
97 |
-
return None
|
98 |
-
|
99 |
-
# Convert Plotly figure to HTML
|
100 |
-
return fig.to_html(full_html=False)
|
101 |
except Exception as e:
|
102 |
-
|
|
|
103 |
|
104 |
-
def
|
105 |
-
"
|
106 |
-
|
107 |
-
if dataset_name == "iris":
|
108 |
-
data = load_iris()
|
109 |
-
df = pd.DataFrame(data.data, columns=data.feature_names)
|
110 |
-
df['target'] = data.target
|
111 |
-
elif dataset_name == "diabetes":
|
112 |
-
data = load_diabetes()
|
113 |
-
df = pd.DataFrame(data.data, columns=data.feature_names)
|
114 |
-
df['target'] = data.target
|
115 |
-
else:
|
116 |
-
return None, {"error": "Invalid dataset name"}
|
117 |
|
118 |
-
|
119 |
-
"shape": df.shape,
|
120 |
-
"columns": list(df.columns),
|
121 |
-
"dtypes": df.dtypes.to_dict(),
|
122 |
-
"missing_values": df.isnull().sum().to_dict(),
|
123 |
-
"numeric_columns": list(df.select_dtypes(include=[np.number]).columns),
|
124 |
-
"categorical_columns": list(df.select_dtypes(exclude=[np.number]).columns)
|
125 |
-
}
|
126 |
-
|
127 |
-
return df, info
|
128 |
-
except Exception as e:
|
129 |
-
return None, {"error": str(e)}
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
]
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
config = AgentConfig()
|
151 |
-
analysis_state = AnalysisState()
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
api_key = gr.Textbox(
|
159 |
-
label="OpenAI API Key",
|
160 |
-
type="password",
|
161 |
-
placeholder="Enter your OpenAI API key"
|
162 |
-
)
|
163 |
-
|
164 |
-
file_input = gr.File(
|
165 |
-
label="Upload Data",
|
166 |
-
file_types=[".csv", ".xlsx", ".json"]
|
167 |
-
)
|
168 |
-
|
169 |
-
example_btn = gr.Button("Load Example Dataset")
|
170 |
-
|
171 |
-
with gr.Accordion("Visualization Settings", open=False):
|
172 |
-
viz_type = gr.Dropdown(
|
173 |
-
choices=["scatter", "histogram", "heatmap"],
|
174 |
-
label="Visualization Type",
|
175 |
-
value="scatter"
|
176 |
-
)
|
177 |
-
x_axis = gr.Dropdown(label="X-axis", interactive=True)
|
178 |
-
y_axis = gr.Dropdown(label="Y-axis", interactive=True)
|
179 |
-
color_column = gr.Dropdown(label="Color Column", interactive=True)
|
180 |
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
if
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
def handle_example_data():
|
214 |
-
df, info = load_example_data("iris")
|
215 |
-
if df is not None:
|
216 |
-
analysis_state.df = df
|
217 |
-
analysis_state.current_analysis = info
|
218 |
-
return info, list(df.columns), list(df.columns), None
|
219 |
-
return None, None, None, "Failed to load example data"
|
220 |
-
|
221 |
-
def handle_visualization(viz_type, x_axis, y_axis, color_column):
|
222 |
-
if analysis_state.df is None:
|
223 |
-
return None, "No data available"
|
224 |
-
params = {"x": x_axis, "y": y_axis, "color": color_column}
|
225 |
-
fig_html = create_visualization(analysis_state.df, viz_type, params)
|
226 |
-
if fig_html is not None:
|
227 |
-
return fig_html, None
|
228 |
-
return None, "Failed to create visualization"
|
229 |
-
|
230 |
-
def handle_chat_message(api_key, system_prompt, message, chat_history):
|
231 |
-
if analysis_state.df is None:
|
232 |
-
return chat_history + [(message, "Please upload a data file first.")], ""
|
233 |
-
if not api_key:
|
234 |
-
return chat_history + [(message, "Please enter your OpenAI API key.")], ""
|
235 |
-
|
236 |
-
# Query OpenAI API
|
237 |
-
response = query_openai(api_key, system_prompt, message)
|
238 |
-
return chat_history + [(message, response)], ""
|
239 |
-
|
240 |
-
# Connect event handlers
|
241 |
-
file_input.change(
|
242 |
-
handle_file_upload,
|
243 |
-
inputs=[file_input],
|
244 |
-
outputs=[results_json, x_axis, y_axis, error_output]
|
245 |
-
)
|
246 |
-
|
247 |
-
example_btn.click(
|
248 |
-
handle_example_data,
|
249 |
-
outputs=[results_json, x_axis, y_axis, error_output]
|
250 |
-
)
|
251 |
-
|
252 |
-
viz_type.change(
|
253 |
-
handle_visualization,
|
254 |
-
inputs=[viz_type, x_axis, y_axis, color_column],
|
255 |
-
outputs=[plot_output, error_output]
|
256 |
-
)
|
257 |
-
|
258 |
-
x_axis.change(
|
259 |
-
handle_visualization,
|
260 |
-
inputs=[viz_type, x_axis, y_axis, color_column],
|
261 |
-
outputs=[plot_output, error_output]
|
262 |
-
)
|
263 |
-
|
264 |
-
y_axis.change(
|
265 |
-
handle_visualization,
|
266 |
-
inputs=[viz_type, x_axis, y_axis, color_column],
|
267 |
-
outputs=[plot_output, error_output]
|
268 |
-
)
|
269 |
-
|
270 |
-
color_column.change(
|
271 |
-
handle_visualization,
|
272 |
-
inputs=[viz_type, x_axis, y_axis, color_column],
|
273 |
-
outputs=[plot_output, error_output]
|
274 |
-
)
|
275 |
-
|
276 |
-
submit_btn.click(
|
277 |
-
handle_chat_message,
|
278 |
-
inputs=[api_key, system_prompt, chat_input, chatbot],
|
279 |
-
outputs=[chatbot, chat_input]
|
280 |
-
)
|
281 |
-
|
282 |
-
return demo
|
283 |
|
284 |
if __name__ == "__main__":
|
285 |
-
|
286 |
-
demo.launch(share=True)
|
287 |
-
else:
|
288 |
-
demo = create_demo()
|
289 |
-
demo.launch(show_api=False)
|
|
|
1 |
+
# app.py
|
2 |
+
import streamlit as st
|
3 |
+
import google.generativeai as generativeai
|
4 |
import os
|
5 |
+
import re
|
6 |
+
import json
|
7 |
+
import logging
|
8 |
import pandas as pd
|
|
|
9 |
import plotly.express as px
|
10 |
+
import plotly.graph_objects as go
|
11 |
+
import seaborn as sns
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
import numpy as np
|
14 |
+
from io import StringIO
|
15 |
|
16 |
+
def load_data(uploaded_file):
|
17 |
+
try:
|
18 |
+
df = pd.read_csv(uploaded_file)
|
19 |
+
return df
|
20 |
+
except Exception as e:
|
21 |
+
st.error(f"Error: {str(e)}")
|
22 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
def get_numeric_columns(df):
|
25 |
+
return df.select_dtypes(include=['float64', 'int64']).columns
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
def get_categorical_columns(df):
|
28 |
+
return df.select_dtypes(include=['object', 'category']).columns
|
|
|
|
|
|
|
29 |
|
30 |
+
# Configure logging
|
31 |
+
logging.basicConfig(
|
32 |
+
level=logging.INFO,
|
33 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
34 |
+
handlers=[logging.StreamHandler()]
|
35 |
+
)
|
36 |
+
logger = logging.getLogger(__name__)
|
37 |
|
38 |
+
def configure_gemini():
|
39 |
+
"""Configure Google's Gemini AI model."""
|
|
|
40 |
try:
|
41 |
+
from dotenv import load_dotenv
|
42 |
+
load_dotenv()
|
43 |
+
api_key = os.getenv("GOOGLE_API_KEY")
|
44 |
+
if not api_key:
|
45 |
+
st.error("Please set your GOOGLE_API_KEY in the .env file")
|
46 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
generativeai.configure(api_key=api_key)
|
49 |
+
return generativeai.GenerativeModel('gemini-1.0-pro')
|
50 |
except Exception as e:
|
51 |
+
st.error(f"Error configuring Gemini: {str(e)}")
|
52 |
+
return None
|
53 |
+
|
54 |
+
def get_ai_visualization_suggestion(df, user_query):
|
55 |
+
"""Get AI-powered visualization suggestions based on the data and user query."""
|
56 |
+
model = configure_gemini()
|
57 |
+
if not model:
|
58 |
+
return None
|
59 |
+
|
60 |
+
# Create a prompt for the AI
|
61 |
+
columns_info = {
|
62 |
+
'column_names': list(df.columns),
|
63 |
+
'data_types': {col: str(df[col].dtype) for col in df.columns},
|
64 |
+
'sample_values': {col: df[col].head().tolist() for col in df.columns}
|
65 |
+
}
|
66 |
+
|
67 |
+
prompt = f"""
|
68 |
+
Analyze this dataset and the user's query to suggest the best visualization approach:
|
69 |
+
|
70 |
+
User Query: {user_query}
|
71 |
+
|
72 |
+
Dataset Information:
|
73 |
+
{json.dumps(columns_info, indent=2)}
|
74 |
+
|
75 |
+
Please suggest:
|
76 |
+
1. The most appropriate type of visualization
|
77 |
+
2. Which columns should be used
|
78 |
+
3. Any data transformations needed
|
79 |
+
4. Visualization parameters (like color schemes, labels, etc.)
|
80 |
+
|
81 |
+
Format your response as JSON with the following structure:
|
82 |
+
{{
|
83 |
+
"viz_type": "type of visualization",
|
84 |
+
"columns": ["column1", "column2"],
|
85 |
+
"transformations": ["transformation1", "transformation2"],
|
86 |
+
"parameters": {{
|
87 |
+
"param1": "value1",
|
88 |
+
"param2": "value2"
|
89 |
+
}}
|
90 |
+
}}
|
91 |
+
"""
|
92 |
+
|
93 |
try:
|
94 |
+
response = model.generate_content(prompt)
|
95 |
+
# Extract JSON from response
|
96 |
+
suggestion = json.loads(response.text)
|
97 |
+
return suggestion
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
except Exception as e:
|
99 |
+
logger.error(f"Error getting AI suggestion: {str(e)}")
|
100 |
+
return None
|
101 |
|
102 |
+
def main():
|
103 |
+
st.title("📊 AI-Powered Data Visualization Dashboard")
|
104 |
+
st.write("Upload your CSV file and explore the data through various visualizations!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
+
if uploaded_file is not None:
|
109 |
+
df = load_data(uploaded_file)
|
110 |
+
|
111 |
+
if df is not None:
|
112 |
+
st.success("File successfully loaded!")
|
113 |
+
|
114 |
+
# Basic Data Info
|
115 |
+
st.header("📝 Data Overview")
|
116 |
+
st.write(f"Number of rows: {df.shape[0]}")
|
117 |
+
st.write(f"Number of columns: {df.shape[1]}")
|
118 |
+
|
119 |
+
# Data Preview
|
120 |
+
st.subheader("Data Preview")
|
121 |
+
st.dataframe(df.head())
|
122 |
+
|
123 |
+
# Missing Values Analysis
|
124 |
+
st.subheader("Missing Values Analysis")
|
125 |
+
missing_data = df.isnull().sum()
|
126 |
+
if missing_data.sum() > 0:
|
127 |
+
st.write("Missing values by column:")
|
128 |
+
st.write(missing_data[missing_data > 0])
|
129 |
+
else:
|
130 |
+
st.write("No missing values found in the dataset!")
|
131 |
+
|
132 |
+
# User Query for AI Suggestions
|
133 |
+
st.header("🤖 AI-Powered Visualization")
|
134 |
+
user_query = st.text_input("Describe what you want to visualize",
|
135 |
+
"Show me trends in the data")
|
136 |
+
|
137 |
+
if st.button("Get AI Suggestion"):
|
138 |
+
with st.spinner("Getting AI visualization
|
139 |
+
|
140 |
+
viz_type = st.selectbox(
|
141 |
+
"Choose visualization type",
|
142 |
+
["Scatter Plot", "Line Plot", "Bar Plot", "Histogram", "Box Plot", "Correlation Heatmap"]
|
143 |
+
)
|
144 |
|
145 |
+
numeric_columns = get_numeric_columns(df)
|
146 |
+
categorical_columns = get_categorical_columns(df)
|
|
|
|
|
147 |
|
148 |
+
if viz_type == "Scatter Plot" and len(numeric_columns) >= 2:
|
149 |
+
x_col = st.selectbox("Select X axis", numeric_columns)
|
150 |
+
y_col = st.selectbox("Select Y axis", numeric_columns)
|
151 |
+
color_col = st.selectbox("Select Color variable (optional)",
|
152 |
+
["None"] + list(df.columns))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
+
if color_col == "None":
|
155 |
+
fig = px.scatter(df, x=x_col, y=y_col)
|
156 |
+
else:
|
157 |
+
fig = px.scatter(df, x=x_col, y=y_col, color=color_col)
|
158 |
+
st.plotly_chart(fig)
|
159 |
+
|
160 |
+
elif viz_type == "Line Plot" and len(numeric_columns) >= 1:
|
161 |
+
x_col = st.selectbox("Select X axis", df.columns)
|
162 |
+
y_col = st.selectbox("Select Y axis", numeric_columns)
|
163 |
+
fig = px.line(df, x=x_col, y=y_col)
|
164 |
+
st.plotly_chart(fig)
|
165 |
+
|
166 |
+
elif viz_type == "Bar Plot":
|
167 |
+
x_col = st.selectbox("Select X axis", df.columns)
|
168 |
+
y_col = st.selectbox("Select Y axis", numeric_columns)
|
169 |
+
fig = px.bar(df, x=x_col, y=y_col)
|
170 |
+
st.plotly_chart(fig)
|
171 |
+
|
172 |
+
elif viz_type == "Histogram" and len(numeric_columns) >= 1:
|
173 |
+
col = st.selectbox("Select column", numeric_columns)
|
174 |
+
bins = st.slider("Number of bins", min_value=5, max_value=100, value=30)
|
175 |
+
fig = px.histogram(df, x=col, nbins=bins)
|
176 |
+
st.plotly_chart(fig)
|
177 |
+
|
178 |
+
elif viz_type == "Box Plot" and len(numeric_columns) >= 1:
|
179 |
+
y_col = st.selectbox("Select column for box plot", numeric_columns)
|
180 |
+
x_col = st.selectbox("Select grouping variable (optional)",
|
181 |
+
["None"] + list(categorical_columns))
|
182 |
|
183 |
+
if x_col == "None":
|
184 |
+
fig = px.box(df, y=y_col)
|
185 |
+
else:
|
186 |
+
fig = px.box(df, x=x_col, y=y_col)
|
187 |
+
st.plotly_chart(fig)
|
188 |
+
|
189 |
+
elif viz_type == "Correlation Heatmap" and len(numeric_columns) >= 2:
|
190 |
+
corr_matrix = df[numeric_columns].corr()
|
191 |
+
fig = px.imshow(corr_matrix,
|
192 |
+
labels=dict(color="Correlation"),
|
193 |
+
x=corr_matrix.columns,
|
194 |
+
y=corr_matrix.columns)
|
195 |
+
st.plotly_chart(fig)
|
196 |
+
|
197 |
+
# Data Summary
|
198 |
+
st.header("📊 Data Summary")
|
199 |
+
if len(numeric_columns) > 0:
|
200 |
+
st.subheader("Numerical Columns Summary")
|
201 |
+
st.write(df[numeric_columns].describe())
|
202 |
+
|
203 |
+
if len(categorical_columns) > 0:
|
204 |
+
st.subheader("Categorical Columns Summary")
|
205 |
+
for col in categorical_columns:
|
206 |
+
st.write(f"\nValue counts for {col}:")
|
207 |
+
st.write(df[col].value_counts())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
if __name__ == "__main__":
|
210 |
+
main()
|
|
|
|
|
|
|
|