Update app.py
Browse files
app.py
CHANGED
@@ -8,207 +8,231 @@ import tempfile
|
|
8 |
import sys
|
9 |
from io import StringIO
|
10 |
import matplotlib.pyplot as plt
|
11 |
-
import
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
25 |
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
for node in ast.walk(tree):
|
34 |
-
if isinstance(node, (ast.Import, ast.ImportFrom)):
|
35 |
-
for name in node.names:
|
36 |
-
module = name.name.split('.')[0]
|
37 |
-
if module not in self.allowed_imports:
|
38 |
-
raise ValueError(f"Import of '{module}' is not allowed. Allowed imports: {self.allowed_imports}")
|
39 |
-
return True
|
40 |
-
except Exception as e:
|
41 |
-
raise ValueError(f"Code validation error: {str(e)}")
|
42 |
-
|
43 |
-
def execute_code(self, code: str, globals_dict: Dict[str, Any] = None) -> Tuple[Any, str]:
|
44 |
-
"""Execute code safely and return the output"""
|
45 |
-
if globals_dict is None:
|
46 |
-
globals_dict = {}
|
47 |
-
|
48 |
-
# Add safe imports to globals
|
49 |
-
for module in self.allowed_imports:
|
50 |
-
try:
|
51 |
-
globals_dict[module] = __import__(module)
|
52 |
-
except ImportError:
|
53 |
-
pass
|
54 |
-
|
55 |
-
# Redirect stdout to capture print outputs
|
56 |
-
old_stdout = sys.stdout
|
57 |
-
redirected_output = StringIO()
|
58 |
-
sys.stdout = redirected_output
|
59 |
-
|
60 |
-
try:
|
61 |
-
# Validate imports first
|
62 |
-
self.validate_imports(code)
|
63 |
-
|
64 |
-
# Execute the code
|
65 |
-
exec(code, globals_dict)
|
66 |
-
output = redirected_output.getvalue()
|
67 |
-
|
68 |
-
# Handle matplotlib figures
|
69 |
-
if plt.get_figs():
|
70 |
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp:
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
sys.stdout = old_stdout
|
81 |
|
82 |
-
def
|
83 |
-
"""Send a prompt to
|
84 |
headers = {
|
85 |
"Content-Type": "application/json",
|
86 |
"Authorization": f"Bearer {api_key}"
|
87 |
}
|
88 |
|
|
|
|
|
|
|
|
|
|
|
89 |
payload = {
|
90 |
-
"
|
91 |
-
|
92 |
-
|
93 |
-
]
|
94 |
}
|
95 |
|
96 |
try:
|
97 |
-
response = requests.post(
|
|
|
|
|
98 |
response.raise_for_status()
|
99 |
return response.json()["choices"][0]["message"]["content"]
|
100 |
-
except
|
101 |
return f"API Error: {str(e)}"
|
102 |
|
103 |
-
def
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
system_prompt: str
|
108 |
-
) -> Tuple[str, str, str, Optional[str]]:
|
109 |
-
"""Analyze uploaded CSV data using the API and execute the generated code"""
|
110 |
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
try:
|
115 |
-
# Create safe executor
|
116 |
-
executor = SafeExecutor()
|
117 |
-
|
118 |
# Read the CSV file
|
119 |
df = pd.read_csv(csv_file.name)
|
120 |
-
|
121 |
-
sample_data = df.head(3).to_dict()
|
122 |
-
|
123 |
# Build the prompt
|
124 |
-
prompt = f"""
|
125 |
-
|
126 |
|
127 |
-
|
128 |
-
1. Creates insightful visualizations using matplotlib or seaborn
|
129 |
-
2. Performs relevant statistical analysis
|
130 |
-
3. Identifies key patterns or insights
|
131 |
-
4. Properly handles potential data issues
|
132 |
|
133 |
-
|
|
|
|
|
|
|
|
|
134 |
|
135 |
# Get code from API
|
136 |
-
generated_code =
|
137 |
-
|
138 |
-
# Create execution environment
|
139 |
-
globals_dict = {'df': df, 'pd': pd, 'np': np, 'plt': plt, 'sns': sns}
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
# Execute the code
|
142 |
-
|
143 |
|
144 |
-
|
145 |
-
|
|
|
|
|
146 |
|
147 |
except Exception as e:
|
148 |
-
return f"Error during analysis: {str(e)}", None, None,
|
149 |
|
150 |
def create_interface():
|
151 |
-
"""Create the Gradio interface"""
|
152 |
with gr.Blocks() as interface:
|
153 |
-
gr.Markdown("# AI
|
154 |
|
155 |
with gr.Row():
|
156 |
-
with
|
157 |
-
|
158 |
-
label="API URL",
|
159 |
-
placeholder="Enter API endpoint URL",
|
160 |
-
type="text"
|
161 |
-
)
|
162 |
api_key = gr.Textbox(
|
163 |
-
label="API Key",
|
164 |
-
|
165 |
-
|
166 |
)
|
167 |
system_prompt = gr.Textbox(
|
168 |
label="System Prompt",
|
169 |
-
|
170 |
-
value="You are an AI assistant specialized in data analysis and visualization.",
|
171 |
lines=3
|
172 |
)
|
173 |
csv_file = gr.File(
|
174 |
label="Upload CSV File",
|
175 |
file_types=[".csv"]
|
176 |
)
|
177 |
-
|
178 |
-
|
179 |
-
with gr.Column():
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
|
200 |
gr.Markdown("""
|
201 |
## How to Use
|
202 |
-
1. Enter your API
|
203 |
-
2.
|
204 |
-
3.
|
205 |
-
|
|
|
206 |
|
207 |
The tool will:
|
208 |
-
- Generate Python code
|
209 |
-
-
|
210 |
-
-
|
211 |
-
- Support common data science libraries
|
212 |
""")
|
213 |
|
214 |
return interface
|
|
|
8 |
import sys
|
9 |
from io import StringIO
|
10 |
import matplotlib.pyplot as plt
|
11 |
+
import base64
|
12 |
+
from pathlib import Path
|
13 |
+
|
14 |
+
def install_package(package_name):
|
15 |
+
"""Dynamically install any Python package"""
|
16 |
+
try:
|
17 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", package_name])
|
18 |
+
return True
|
19 |
+
except:
|
20 |
+
return False
|
21 |
+
|
22 |
+
def safe_execute_code(code: str, globals_dict=None):
|
23 |
+
"""Execute code safely and capture all outputs"""
|
24 |
+
if globals_dict is None:
|
25 |
+
globals_dict = {}
|
26 |
|
27 |
+
# Redirect stdout to capture print outputs
|
28 |
+
old_stdout = sys.stdout
|
29 |
+
redirected_output = StringIO()
|
30 |
+
sys.stdout = redirected_output
|
31 |
+
|
32 |
+
try:
|
33 |
+
# First pass: collect and install required imports
|
34 |
+
import_lines = [line for line in code.split('\n') if 'import' in line]
|
35 |
+
for line in import_lines:
|
36 |
+
parts = line.split()
|
37 |
+
if parts[0] == 'import':
|
38 |
+
package = parts[1].split('.')[0]
|
39 |
+
install_package(package)
|
40 |
+
elif parts[0] == 'from':
|
41 |
+
package = parts[1].split('.')[0]
|
42 |
+
install_package(package)
|
43 |
+
|
44 |
+
# Execute the code
|
45 |
+
exec(code, globals_dict)
|
46 |
+
output = redirected_output.getvalue()
|
47 |
|
48 |
+
# Handle any matplotlib figures
|
49 |
+
figures = []
|
50 |
+
if plt.get_figs():
|
51 |
+
for i, fig in enumerate(plt.get_figs()):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp:
|
53 |
+
fig.savefig(tmp.name)
|
54 |
+
figures.append(tmp.name)
|
55 |
+
plt.close('all')
|
56 |
+
|
57 |
+
return True, output, figures
|
58 |
+
except Exception as e:
|
59 |
+
return False, f"Error executing code:\n{str(e)}", []
|
60 |
+
finally:
|
61 |
+
sys.stdout = old_stdout
|
|
|
62 |
|
63 |
+
def query_deepseek(prompt: str, api_key: str, system_prompt: str = None):
|
64 |
+
"""Send a prompt to DeepSeek API"""
|
65 |
headers = {
|
66 |
"Content-Type": "application/json",
|
67 |
"Authorization": f"Bearer {api_key}"
|
68 |
}
|
69 |
|
70 |
+
messages = []
|
71 |
+
if system_prompt:
|
72 |
+
messages.append({"role": "system", "content": system_prompt})
|
73 |
+
messages.append({"role": "user", "content": prompt})
|
74 |
+
|
75 |
payload = {
|
76 |
+
"model": "deepseek-reasoner",
|
77 |
+
"messages": messages,
|
78 |
+
"stream": False
|
|
|
79 |
}
|
80 |
|
81 |
try:
|
82 |
+
response = requests.post("https://api.deepseek.com/chat/completions",
|
83 |
+
headers=headers,
|
84 |
+
json=payload)
|
85 |
response.raise_for_status()
|
86 |
return response.json()["choices"][0]["message"]["content"]
|
87 |
+
except Exception as e:
|
88 |
return f"API Error: {str(e)}"
|
89 |
|
90 |
+
def chat_function(message, history, csv_file, api_key, system_prompt):
|
91 |
+
"""Handle chat interactions"""
|
92 |
+
if not api_key:
|
93 |
+
return "Please provide your DeepSeek API key first."
|
|
|
|
|
|
|
94 |
|
95 |
+
context = ""
|
96 |
+
if csv_file:
|
97 |
+
df = pd.read_csv(csv_file.name)
|
98 |
+
context = f"\nContext: I have loaded a CSV file with columns: {df.columns.tolist()}\n"
|
99 |
+
context += f"First few rows: {df.head(3).to_dict()}\n"
|
100 |
+
|
101 |
+
full_prompt = context + message
|
102 |
+
response = query_deepseek(full_prompt, api_key, system_prompt)
|
103 |
+
return response
|
104 |
|
105 |
+
def analyze_data(csv_file, api_key, system_prompt, code_request):
|
106 |
+
"""Generate and execute code for data analysis"""
|
107 |
+
if not csv_file:
|
108 |
+
return "Please upload a CSV file first.", None, None, []
|
109 |
+
|
110 |
+
if not api_key:
|
111 |
+
return "Please provide your DeepSeek API key.", None, None, []
|
112 |
+
|
113 |
try:
|
|
|
|
|
|
|
114 |
# Read the CSV file
|
115 |
df = pd.read_csv(csv_file.name)
|
116 |
+
|
|
|
|
|
117 |
# Build the prompt
|
118 |
+
prompt = f"""I have a CSV file with columns: {df.columns.tolist()}.
|
119 |
+
First few rows: {df.head(3).to_dict()}.
|
120 |
|
121 |
+
User request: {code_request}
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
Please generate Python code that:
|
124 |
+
1. Analyzes the data according to the request
|
125 |
+
2. Creates relevant visualizations
|
126 |
+
3. Handles potential errors and edge cases
|
127 |
+
4. Includes helpful comments"""
|
128 |
|
129 |
# Get code from API
|
130 |
+
generated_code = query_deepseek(prompt, api_key, system_prompt)
|
|
|
|
|
|
|
131 |
|
132 |
+
# Set up execution environment
|
133 |
+
globals_dict = {
|
134 |
+
'pd': pd,
|
135 |
+
'plt': plt,
|
136 |
+
'df': df,
|
137 |
+
'np': __import__('numpy')
|
138 |
+
}
|
139 |
+
|
140 |
# Execute the code
|
141 |
+
success, execution_output, figures = safe_execute_code(generated_code, globals_dict)
|
142 |
|
143 |
+
if not success:
|
144 |
+
return f"Execution failed: {execution_output}", generated_code, None, []
|
145 |
+
|
146 |
+
return "Analysis completed successfully.", generated_code, execution_output, figures
|
147 |
|
148 |
except Exception as e:
|
149 |
+
return f"Error during analysis: {str(e)}", None, None, []
|
150 |
|
151 |
def create_interface():
|
152 |
+
"""Create the dual-channel Gradio interface"""
|
153 |
with gr.Blocks() as interface:
|
154 |
+
gr.Markdown("# AI Data Analysis Assistant")
|
155 |
|
156 |
with gr.Row():
|
157 |
+
# Sidebar with common inputs
|
158 |
+
with gr.Column(scale=1):
|
|
|
|
|
|
|
|
|
159 |
api_key = gr.Textbox(
|
160 |
+
label="DeepSeek API Key",
|
161 |
+
type="password",
|
162 |
+
placeholder="Enter your API key"
|
163 |
)
|
164 |
system_prompt = gr.Textbox(
|
165 |
label="System Prompt",
|
166 |
+
value="You are an AI assistant specialized in data analysis and Python programming.",
|
|
|
167 |
lines=3
|
168 |
)
|
169 |
csv_file = gr.File(
|
170 |
label="Upload CSV File",
|
171 |
file_types=[".csv"]
|
172 |
)
|
173 |
+
|
174 |
+
# Main content area with tabs
|
175 |
+
with gr.Column(scale=3):
|
176 |
+
with gr.Tabs():
|
177 |
+
# Chat Interface Tab
|
178 |
+
with gr.TabItem("Chat"):
|
179 |
+
chatbot = gr.Chatbot()
|
180 |
+
msg = gr.Textbox(label="Your Message")
|
181 |
+
clear = gr.Button("Clear Chat")
|
182 |
+
|
183 |
+
msg.submit(
|
184 |
+
chat_function,
|
185 |
+
[msg, chatbot, csv_file, api_key, system_prompt],
|
186 |
+
chatbot
|
187 |
+
)
|
188 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
189 |
+
|
190 |
+
# Code Generation Tab
|
191 |
+
with gr.TabItem("Code Generation"):
|
192 |
+
code_request = gr.Textbox(
|
193 |
+
label="What analysis would you like to perform?",
|
194 |
+
placeholder="e.g., Create a correlation matrix and visualize key relationships",
|
195 |
+
lines=3
|
196 |
+
)
|
197 |
+
analyze_button = gr.Button("Generate & Execute Code")
|
198 |
+
|
199 |
+
with gr.Row():
|
200 |
+
with gr.Column():
|
201 |
+
status_output = gr.Textbox(label="Status")
|
202 |
+
code_output = gr.Code(
|
203 |
+
label="Generated Code",
|
204 |
+
language="python"
|
205 |
+
)
|
206 |
+
execution_output = gr.Textbox(
|
207 |
+
label="Execution Output",
|
208 |
+
lines=10
|
209 |
+
)
|
210 |
+
with gr.Column():
|
211 |
+
gallery = gr.Gallery(
|
212 |
+
label="Visualizations",
|
213 |
+
columns=2,
|
214 |
+
rows=2,
|
215 |
+
height="auto"
|
216 |
+
)
|
217 |
+
|
218 |
+
analyze_button.click(
|
219 |
+
analyze_data,
|
220 |
+
inputs=[csv_file, api_key, system_prompt, code_request],
|
221 |
+
outputs=[status_output, code_output, execution_output, gallery]
|
222 |
+
)
|
223 |
|
224 |
gr.Markdown("""
|
225 |
## How to Use
|
226 |
+
1. Enter your DeepSeek API key
|
227 |
+
2. Upload a CSV file for analysis
|
228 |
+
3. Use either:
|
229 |
+
- Chat tab: Have a conversation about your data
|
230 |
+
- Code Generation tab: Get executable Python code for specific analyses
|
231 |
|
232 |
The tool will:
|
233 |
+
- Generate and execute Python code
|
234 |
+
- Create visualizations
|
235 |
+
- Allow interactive exploration of your data
|
|
|
236 |
""")
|
237 |
|
238 |
return interface
|