Update app.py
Browse files
app.py
CHANGED
@@ -1,178 +1,421 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import subprocess
|
6 |
import gradio as gr
|
7 |
-
import
|
8 |
-
import
|
9 |
-
from
|
10 |
-
import
|
11 |
-
from pathlib import Path
|
12 |
-
import importlib
|
13 |
-
import ast
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
#
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
try:
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
for name in node.names:
|
53 |
-
package = name.name.split('.')[0]
|
54 |
-
if package not in self.globals_dict:
|
55 |
-
self.dynamic_import(package)
|
56 |
-
return True
|
57 |
except Exception as e:
|
58 |
-
|
59 |
-
|
60 |
-
def execute_code(self, code):
|
61 |
-
"""Execute code and capture all outputs"""
|
62 |
-
# Create temporary stdout to capture prints
|
63 |
-
output_buffer = StringIO()
|
64 |
-
sys.stdout = output_buffer
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
try:
|
67 |
-
#
|
68 |
-
self.
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
#
|
74 |
-
|
75 |
-
|
76 |
-
#
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
fig.write_html(fig_path)
|
92 |
-
# Also save static image
|
93 |
-
img_path = os.path.join(self.temp_dir, f"figure_{len(figures)}.png")
|
94 |
-
fig.write_image(img_path)
|
95 |
-
figures.append(img_path)
|
96 |
-
|
97 |
-
return True, text_output, figures
|
98 |
|
99 |
except Exception as e:
|
100 |
-
|
101 |
-
|
102 |
-
sys.stdout = sys.__stdout__
|
103 |
|
104 |
-
|
105 |
-
"""
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
# Extract and execute code blocks
|
121 |
-
code_blocks = response.split("```python")
|
122 |
-
outputs = []
|
123 |
-
figures = []
|
124 |
-
|
125 |
-
for block in code_blocks[1:]: # Skip first split as it's before any code block
|
126 |
-
code = block.split("```")[0].strip()
|
127 |
-
success, output, new_figures = env.execute_code(code)
|
128 |
-
outputs.append(output)
|
129 |
-
figures.extend(new_figures)
|
130 |
-
|
131 |
-
# Format response with outputs
|
132 |
-
modified_response = response
|
133 |
-
for i, output in enumerate(outputs):
|
134 |
-
modified_response = modified_response.replace(
|
135 |
-
f"```python{code_blocks[i+1].split('```')[0]}```",
|
136 |
-
f"```python{code_blocks[i+1].split('```')[0]}```\nOutput:\n{output}"
|
137 |
-
)
|
138 |
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
with gr.Row():
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
[
|
170 |
-
[chatbot, gallery]
|
171 |
)
|
172 |
-
clear.click(lambda: ([], []), None, [chatbot, gallery])
|
173 |
|
174 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
if __name__ == "__main__":
|
177 |
-
|
178 |
-
demo.launch()
|
|
|
1 |
import os
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
|
|
5 |
import gradio as gr
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
+
from typing import List, Tuple
|
8 |
+
from dataclasses import dataclass
|
9 |
+
import logging
|
|
|
|
|
|
|
10 |
|
11 |
+
# Configure logging
|
12 |
+
logging.basicConfig(level=logging.INFO)
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
|
15 |
+
@dataclass
|
16 |
+
class ModelConfig:
|
17 |
+
hidden_size: int = 768
|
18 |
+
num_heads: int = 8
|
19 |
+
segment_size: int = 512
|
20 |
+
memory_size: int = 1024
|
21 |
+
max_length: int = 2048
|
22 |
+
model_name: str = "gpt2"
|
23 |
+
device: str = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
+
|
25 |
+
class CompressiveMemory(nn.Module):
|
26 |
+
"""Long-term memory component that compresses and stores information"""
|
27 |
+
def __init__(self, config: ModelConfig):
|
28 |
+
super().__init__()
|
29 |
+
self.config = config
|
30 |
+
self.hidden_size = config.hidden_size
|
31 |
+
self.memory_size = config.memory_size
|
32 |
+
|
33 |
+
# Initialize memory components
|
34 |
+
self.memory = nn.Parameter(torch.randn(config.memory_size, config.hidden_size))
|
35 |
+
self.memory_key = nn.Linear(config.hidden_size, config.hidden_size)
|
36 |
+
self.memory_value = nn.Linear(config.hidden_size, config.hidden_size)
|
37 |
+
|
38 |
+
# Memory statistics
|
39 |
+
self.updates = 0
|
40 |
+
self.memory_usage = torch.zeros(config.memory_size)
|
41 |
+
|
42 |
+
# Initialize on specified device
|
43 |
+
self.to(config.device)
|
44 |
+
|
45 |
+
def forward(self, query: torch.Tensor) -> torch.Tensor:
|
46 |
+
"""Retrieve information from memory using attention"""
|
47 |
+
# Scale query for stable attention
|
48 |
+
query = query / torch.sqrt(torch.tensor(self.hidden_size, dtype=torch.float32))
|
49 |
+
|
50 |
+
# Compute attention scores
|
51 |
+
attention = torch.matmul(query, self.memory.T)
|
52 |
+
attention_weights = F.softmax(attention, dim=-1)
|
53 |
+
|
54 |
+
# Update memory usage statistics
|
55 |
+
with torch.no_grad():
|
56 |
+
self.memory_usage += attention_weights.sum(dim=0)
|
57 |
+
|
58 |
+
# Retrieve from memory
|
59 |
+
retrieved = torch.matmul(attention_weights, self.memory)
|
60 |
+
return retrieved
|
61 |
+
|
62 |
+
def update_memory(self, keys: torch.Tensor, values: torch.Tensor):
|
63 |
+
"""Update memory with new information"""
|
64 |
+
# Compress inputs
|
65 |
+
compressed_keys = self.memory_key(keys)
|
66 |
+
compressed_values = self.memory_value(values)
|
67 |
+
|
68 |
+
# Compute update
|
69 |
+
with torch.no_grad():
|
70 |
+
update = torch.matmul(compressed_keys.T, compressed_values)
|
71 |
|
72 |
+
# Progressive update with decay
|
73 |
+
decay = 0.9
|
74 |
+
update_rate = 0.1
|
75 |
+
self.memory.data = decay * self.memory.data + update_rate * update[:self.memory_size]
|
76 |
+
|
77 |
+
# Track updates
|
78 |
+
self.updates += 1
|
79 |
+
|
80 |
+
# Optional: Reset rarely used memory locations
|
81 |
+
if self.updates % 1000 == 0:
|
82 |
+
rarely_used = self.memory_usage < (self.memory_usage.mean() / 10)
|
83 |
+
self.memory.data[rarely_used] = torch.randn_like(
|
84 |
+
self.memory.data[rarely_used]
|
85 |
+
) * 0.1
|
86 |
+
self.memory_usage[rarely_used] = 0
|
87 |
+
|
88 |
+
def reset_memory(self):
|
89 |
+
"""Reset memory to initial state"""
|
90 |
+
self.memory.data = torch.randn_like(self.memory.data) * 0.1
|
91 |
+
self.memory_usage.zero_()
|
92 |
+
self.updates = 0
|
93 |
|
94 |
+
class InfiniteAttention(nn.Module):
|
95 |
+
"""Main attention module combining local and long-term memory attention"""
|
96 |
+
def __init__(self, config: ModelConfig):
|
97 |
+
super().__init__()
|
98 |
+
self.config = config
|
99 |
+
|
100 |
+
# Core attention components
|
101 |
+
self.query = nn.Linear(config.hidden_size, config.hidden_size)
|
102 |
+
self.key = nn.Linear(config.hidden_size, config.hidden_size)
|
103 |
+
self.value = nn.Linear(config.hidden_size, config.hidden_size)
|
104 |
+
|
105 |
+
# Multi-head attention setup
|
106 |
+
self.num_heads = config.num_heads
|
107 |
+
self.head_dim = config.hidden_size // config.num_heads
|
108 |
+
assert self.head_dim * config.num_heads == config.hidden_size, "hidden_size must be divisible by num_heads"
|
109 |
+
|
110 |
+
# Memory component
|
111 |
+
self.memory = CompressiveMemory(config)
|
112 |
+
|
113 |
+
# Output and gating
|
114 |
+
self.output = nn.Linear(config.hidden_size * 2, config.hidden_size)
|
115 |
+
self.gate = nn.Parameter(torch.zeros(1))
|
116 |
+
|
117 |
+
# Load base language model and tokenizer
|
118 |
try:
|
119 |
+
self.tokenizer = AutoTokenizer.from_pretrained(config.model_name)
|
120 |
+
self.base_model = AutoModelForCausalLM.from_pretrained(config.model_name)
|
121 |
+
self.base_model.to(config.device)
|
|
|
|
|
|
|
|
|
|
|
122 |
except Exception as e:
|
123 |
+
logger.error(f"Error loading base model: {str(e)}")
|
124 |
+
raise
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
+
# Move model to specified device
|
127 |
+
self.to(config.device)
|
128 |
+
|
129 |
+
def split_heads(self, x: torch.Tensor) -> torch.Tensor:
|
130 |
+
"""Split tensor into attention heads"""
|
131 |
+
batch_size, seq_length, _ = x.size()
|
132 |
+
return x.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
|
133 |
+
|
134 |
+
def merge_heads(self, x: torch.Tensor) -> torch.Tensor:
|
135 |
+
"""Merge attention heads back together"""
|
136 |
+
batch_size, _, seq_length, _ = x.size()
|
137 |
+
return x.transpose(1, 2).contiguous().view(batch_size, seq_length, self.config.hidden_size)
|
138 |
+
|
139 |
+
def get_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
140 |
+
"""Get embeddings from base model"""
|
141 |
+
return self.base_model.transformer.wte(input_ids)
|
142 |
+
|
143 |
+
def process_segment(self, segment: torch.Tensor, mask: torch.Tensor = None) -> torch.Tensor:
|
144 |
+
"""Process a single segment with attention"""
|
145 |
+
# Compute Q, K, V
|
146 |
+
q = self.split_heads(self.query(segment))
|
147 |
+
k = self.split_heads(self.key(segment))
|
148 |
+
v = self.split_heads(self.value(segment))
|
149 |
+
|
150 |
+
# Scale query
|
151 |
+
q = q / torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32))
|
152 |
+
|
153 |
+
# Compute local attention scores
|
154 |
+
local_attn = torch.matmul(q, k.transpose(-2, -1))
|
155 |
+
|
156 |
+
if mask is not None:
|
157 |
+
local_attn = local_attn.masked_fill(mask == 0, float('-inf'))
|
158 |
+
|
159 |
+
# Apply softmax
|
160 |
+
local_attn = F.softmax(local_attn, dim=-1)
|
161 |
+
|
162 |
+
# Compute local attention output
|
163 |
+
local_output = self.merge_heads(torch.matmul(local_attn, v))
|
164 |
+
|
165 |
+
# Get memory output
|
166 |
+
memory_output = self.memory(q.view(-1, self.config.hidden_size))
|
167 |
+
memory_output = memory_output.view(segment.size())
|
168 |
+
|
169 |
+
# Update memory
|
170 |
+
self.memory.update_memory(k.view(-1, self.config.hidden_size),
|
171 |
+
v.view(-1, self.config.hidden_size))
|
172 |
+
|
173 |
+
# Combine outputs using learned gate
|
174 |
+
gate = torch.sigmoid(self.gate)
|
175 |
+
combined = torch.cat([
|
176 |
+
gate * local_output,
|
177 |
+
(1 - gate) * memory_output
|
178 |
+
], dim=-1)
|
179 |
+
|
180 |
+
return self.output(combined)
|
181 |
+
|
182 |
+
def forward(self, x: torch.Tensor, mask: torch.Tensor = None) -> torch.Tensor:
|
183 |
+
"""Process input sequence by segments"""
|
184 |
+
batch_size = x.size(0)
|
185 |
+
|
186 |
+
# Split into segments
|
187 |
+
segments = x.unfold(1, self.config.segment_size,
|
188 |
+
step=self.config.segment_size)
|
189 |
+
output_segments = []
|
190 |
+
|
191 |
+
# Process each segment
|
192 |
+
for segment in segments.unbind(1):
|
193 |
+
segment_output = self.process_segment(segment, mask)
|
194 |
+
output_segments.append(segment_output)
|
195 |
+
|
196 |
+
# Handle any remaining tokens
|
197 |
+
remainder_start = segments.size(1) * self.config.segment_size
|
198 |
+
if remainder_start < x.size(1):
|
199 |
+
remainder = x[:, remainder_start:]
|
200 |
+
if remainder.size(1) > 0:
|
201 |
+
remainder_output = self.process_segment(remainder, mask)
|
202 |
+
output_segments.append(remainder_output)
|
203 |
+
|
204 |
+
# Combine all segments
|
205 |
+
return torch.cat(output_segments, dim=1)
|
206 |
+
|
207 |
+
def generate_response(self, input_text: str, max_new_tokens: int = 100) -> str:
|
208 |
+
"""Generate response from input text"""
|
209 |
try:
|
210 |
+
# Prepare input
|
211 |
+
inputs = self.tokenizer(input_text,
|
212 |
+
return_tensors="pt",
|
213 |
+
truncation=False)
|
214 |
+
input_ids = inputs["input_ids"].to(self.config.device)
|
215 |
+
|
216 |
+
# Get embeddings
|
217 |
+
embeddings = self.get_embeddings(input_ids)
|
218 |
+
|
219 |
+
# Process through infinite attention
|
220 |
+
attended = self.forward(embeddings)
|
221 |
+
|
222 |
+
# Generate response using base model with attended context
|
223 |
+
outputs = self.base_model.generate(
|
224 |
+
input_ids,
|
225 |
+
max_new_tokens=max_new_tokens,
|
226 |
+
num_return_sequences=1,
|
227 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
228 |
+
do_sample=True,
|
229 |
+
temperature=0.7,
|
230 |
+
top_p=0.9,
|
231 |
+
)
|
232 |
+
|
233 |
+
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
except Exception as e:
|
236 |
+
logger.error(f"Error in generate_response: {str(e)}")
|
237 |
+
return f"Error generating response: {str(e)}"
|
|
|
238 |
|
239 |
+
class ChatBot:
|
240 |
+
"""Manages chat history and message processing"""
|
241 |
+
def __init__(self, config: ModelConfig):
|
242 |
+
self.config = config
|
243 |
+
self.model = InfiniteAttention(config)
|
244 |
+
self.history: List[Tuple[str, str]] = []
|
245 |
+
self.max_history_tokens = 4096 # Adjust based on your needs
|
246 |
+
|
247 |
+
def count_tokens(self, text: str) -> int:
|
248 |
+
"""Count tokens in text using model's tokenizer"""
|
249 |
+
return len(self.model.tokenizer.encode(text))
|
250 |
+
|
251 |
+
def get_truncated_history(self) -> str:
|
252 |
+
"""Get history truncated to max tokens"""
|
253 |
+
history_text = ""
|
254 |
+
token_count = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
|
256 |
+
for msg, response in reversed(self.history):
|
257 |
+
new_text = f"User: {msg}\nAssistant: {response}\n"
|
258 |
+
new_tokens = self.count_tokens(new_text)
|
259 |
+
|
260 |
+
if token_count + new_tokens > self.max_history_tokens:
|
261 |
+
break
|
262 |
+
|
263 |
+
history_text = new_text + history_text
|
264 |
+
token_count += new_tokens
|
265 |
+
|
266 |
+
return history_text.strip()
|
267 |
+
|
268 |
+
def process_message(self, message: str) -> Tuple[str, List[Tuple[str, str]]]:
|
269 |
+
"""Process a message and return response with updated history"""
|
270 |
+
try:
|
271 |
+
# Skip empty messages
|
272 |
+
if not message.strip():
|
273 |
+
return "", self.history
|
274 |
+
|
275 |
+
# Prepare context with history
|
276 |
+
history_text = self.get_truncated_history()
|
277 |
+
context = f"{history_text}\nUser: {message}\nAssistant:"
|
278 |
+
|
279 |
+
# Generate response
|
280 |
+
full_response = self.model.generate_response(context)
|
281 |
+
|
282 |
+
# Extract just the new response (after "Assistant:")
|
283 |
+
response = full_response.split("Assistant:")[-1].strip()
|
284 |
+
|
285 |
+
# Update history
|
286 |
+
self.history.append((message, response))
|
287 |
+
|
288 |
+
return response, self.history
|
289 |
+
|
290 |
+
except Exception as e:
|
291 |
+
error_msg = f"Error processing message: {str(e)}"
|
292 |
+
logger.error(error_msg)
|
293 |
+
return error_msg, self.history
|
294 |
+
|
295 |
+
def save_conversation(self, filename: str):
|
296 |
+
"""Save conversation history to file"""
|
297 |
+
try:
|
298 |
+
with open(filename, 'w', encoding='utf-8') as f:
|
299 |
+
for msg, response in self.history:
|
300 |
+
f.write(f"User: {msg}\n")
|
301 |
+
f.write(f"Assistant: {response}\n\n")
|
302 |
+
except Exception as e:
|
303 |
+
logger.error(f"Error saving conversation: {str(e)}")
|
304 |
|
305 |
+
def load_conversation(self, filename: str):
|
306 |
+
"""Load conversation history from file"""
|
307 |
+
try:
|
308 |
+
with open(filename, 'r', encoding='utf-8') as f:
|
309 |
+
content = f.read()
|
310 |
+
|
311 |
+
# Reset history
|
312 |
+
self.history = []
|
313 |
+
|
314 |
+
# Parse content
|
315 |
+
conversations = content.strip().split('\n\n')
|
316 |
+
for conv in conversations:
|
317 |
+
if 'User:' in conv and 'Assistant:' in conv:
|
318 |
+
parts = conv.split('Assistant:')
|
319 |
+
msg = parts[0].replace('User:', '').strip()
|
320 |
+
response = parts[1].strip()
|
321 |
+
self.history.append((msg, response))
|
322 |
+
|
323 |
+
except Exception as e:
|
324 |
+
logger.error(f"Error loading conversation: {str(e)}")
|
325 |
+
|
326 |
+
def create_gradio_interface():
|
327 |
+
"""Create and configure Gradio interface"""
|
328 |
+
|
329 |
+
# Initialize config and chatbot
|
330 |
+
config = ModelConfig()
|
331 |
+
chatbot = ChatBot(config)
|
332 |
+
|
333 |
+
def user_message(message: str, history: List[Tuple[str, str]]) -> Tuple[str, List[Tuple[str, str]]]:
|
334 |
+
"""Handle incoming user messages"""
|
335 |
+
response, updated_history = chatbot.process_message(message)
|
336 |
+
return response, updated_history
|
337 |
+
|
338 |
+
def save_chat(filename: str):
|
339 |
+
"""Save chat history to file"""
|
340 |
+
if not filename.endswith('.txt'):
|
341 |
+
filename += '.txt'
|
342 |
+
chatbot.save_conversation(filename)
|
343 |
+
return f"Conversation saved to {filename}"
|
344 |
+
|
345 |
+
def load_chat(filename: str):
|
346 |
+
"""Load chat history from file"""
|
347 |
+
if not filename.endswith('.txt'):
|
348 |
+
filename += '.txt'
|
349 |
+
chatbot.load_conversation(filename)
|
350 |
+
return f"Conversation loaded from {filename}"
|
351 |
+
|
352 |
+
# Create main chat interface
|
353 |
+
chat_interface = gr.ChatInterface(
|
354 |
+
fn=user_message,
|
355 |
+
title="Long Context AI Chat",
|
356 |
+
description="Chat with an AI that can handle very long conversations",
|
357 |
+
examples=[
|
358 |
+
["Tell me a story about space exploration"],
|
359 |
+
["What were the key points from our earlier discussion?"],
|
360 |
+
["Can you summarize everything we've talked about so far?"]
|
361 |
+
],
|
362 |
+
retry_btn=None,
|
363 |
+
undo_btn="Delete Last",
|
364 |
+
clear_btn="Clear"
|
365 |
+
)
|
366 |
+
|
367 |
+
# Add save/load functionality
|
368 |
+
with gr.Blocks() as interface:
|
369 |
+
chat_interface.render()
|
370 |
|
371 |
with gr.Row():
|
372 |
+
save_file = gr.Textbox(
|
373 |
+
label="Save conversation to file",
|
374 |
+
placeholder="conversation.txt"
|
375 |
+
)
|
376 |
+
save_btn = gr.Button("Save")
|
377 |
+
save_output = gr.Textbox(label="Save Status")
|
378 |
+
|
379 |
+
load_file = gr.Textbox(
|
380 |
+
label="Load conversation from file",
|
381 |
+
placeholder="conversation.txt"
|
382 |
+
)
|
383 |
+
load_btn = gr.Button("Load")
|
384 |
+
load_output = gr.Textbox(label="Load Status")
|
385 |
+
|
386 |
+
save_btn.click(
|
387 |
+
fn=save_chat,
|
388 |
+
inputs=[save_file],
|
389 |
+
outputs=[save_output]
|
390 |
+
)
|
391 |
+
|
392 |
+
load_btn.click(
|
393 |
+
fn=load_chat,
|
394 |
+
inputs=[load_file],
|
395 |
+
outputs=[load_output]
|
|
|
396 |
)
|
|
|
397 |
|
398 |
+
return interface
|
399 |
+
|
400 |
+
def main():
|
401 |
+
"""Main application entry point"""
|
402 |
+
try:
|
403 |
+
# Create interface
|
404 |
+
interface = create_gradio_interface()
|
405 |
+
|
406 |
+
# Launch with configuration
|
407 |
+
interface.launch(
|
408 |
+
server_name="0.0.0.0",
|
409 |
+
server_port=7860,
|
410 |
+
share=False,
|
411 |
+
debug=True,
|
412 |
+
auth=None, # Add authentication if needed
|
413 |
+
ssl_keyfile=None, # Add SSL if needed
|
414 |
+
ssl_certfile=None
|
415 |
+
)
|
416 |
+
except Exception as e:
|
417 |
+
logger.error(f"Error launching application: {str(e)}")
|
418 |
+
raise
|
419 |
|
420 |
if __name__ == "__main__":
|
421 |
+
main()
|
|