File size: 5,818 Bytes
9a40e4f
 
 
 
 
 
 
 
 
 
 
 
 
 
47097db
9a40e4f
 
 
922e0e8
9a40e4f
 
 
47097db
9a40e4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47097db
9a40e4f
 
47097db
9a40e4f
 
 
47097db
9a40e4f
 
 
 
 
47097db
9a40e4f
 
 
 
8a9e562
9a40e4f
 
588af69
715fc3c
 
 
9a40e4f
 
 
 
 
fc126c5
9a40e4f
 
 
 
 
 
5f6073b
9a40e4f
 
47097db
9a40e4f
47097db
 
 
e7fd469
9a40e4f
47097db
9a40e4f
 
47097db
9a40e4f
 
5f6073b
9a40e4f
 
8a9e562
922e0e8
8c6fc5d
922e0e8
 
8c6fc5d
922e0e8
9a40e4f
922e0e8
8a9e562
922e0e8
9a40e4f
922e0e8
 
2f89158
 
922e0e8
 
 
 
47097db
 
 
 
 
922e0e8
 
 
47097db
fc126c5
9a40e4f
 
 
a2fa930
9a40e4f
588af69
 
9a40e4f
8538649
5f6073b
9a40e4f
47097db
9a40e4f
 
 
 
 
e7fd469
47097db
9a40e4f
47097db
9a40e4f
 
922e0e8
8a9e562
922e0e8
9a40e4f
 
922e0e8
 
47097db
9a40e4f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import openai
import numpy as np
from tempfile import NamedTemporaryFile
import copy
import shapely
from shapely.geometry import *
from shapely.affinity import *
from omegaconf import OmegaConf
from moviepy.editor import ImageSequenceClip
import gradio as gr

from lmp import LMP, LMPFGen
from sim import PickPlaceEnv, LMP_wrapper
from consts import ALL_BLOCKS, ALL_BOWLS
from md_logger import MarkdownLogger


class DemoRunner:
        
    def __init__(self):
        self._cfg = OmegaConf.to_container(OmegaConf.load('cfg.yaml'), resolve=True)
        self._env = None
        self._md_logger = MarkdownLogger()

    def make_LMP(self, env):
        # LMP env wrapper
        cfg = copy.deepcopy(self._cfg)
        cfg['env'] = {
            'init_objs': list(env.obj_name_to_id.keys()),
            'coords': cfg['tabletop_coords']
        }

        LMP_env = LMP_wrapper(env, cfg)
        # creating APIs that the LMPs can interact with
        fixed_vars = {
            'np': np
        }
        fixed_vars.update({
            name: eval(name)
            for name in shapely.geometry.__all__ + shapely.affinity.__all__
        })
        variable_vars = {
            k: getattr(LMP_env, k)
            for k in [
                'get_bbox', 'get_obj_pos', 'get_color', 'is_obj_visible', 'denormalize_xy',
                'put_first_on_second', 'get_obj_names',
                'get_corner_name', 'get_side_name',
            ]
        }
        variable_vars['say'] = lambda msg: self._md_logger.log_text(f'Robot says: "{msg}"')

        # creating the function-generating LMP
        lmp_fgen = LMPFGen(cfg['lmps']['fgen'], fixed_vars, variable_vars, self._md_logger)

        # creating other low-level LMPs
        variable_vars.update({
            k: LMP(k, cfg['lmps'][k], lmp_fgen, fixed_vars, variable_vars, self._md_logger)
            for k in ['parse_obj_name', 'parse_position', 'parse_question', 'transform_shape_pts']
        })

        # creating the LMP that deals w/ high-level language commands
        lmp_tabletop_ui = LMP(
            'tabletop_ui', cfg['lmps']['tabletop_ui'], lmp_fgen, fixed_vars, variable_vars, self._md_logger
        )

        return lmp_tabletop_ui

    def setup(self, api_key, n_blocks, n_bowls):
        openai.api_key = api_key

        self._env = PickPlaceEnv(render=True, high_res=True, high_frame_rate=False)
        list_idxs = np.random.choice(len(ALL_BLOCKS), size=max(n_blocks, n_bowls), replace=False)
        block_list = [ALL_BLOCKS[i] for i in list_idxs[:n_blocks]]
        bowl_list = [ALL_BOWLS[i] for i in list_idxs[:n_bowls]]
        obj_list = block_list + bowl_list
        self._env.reset(obj_list)

        self._lmp_tabletop_ui = self.make_LMP(self._env)

        info = '### Available Objects: \n- ' + '\n- '.join(obj_list)
        img = self._env.get_camera_image()

        return info, img

    def run(self, instruction):
        if self._env is None:
            return 'Please run setup first!', None, None

        self._env.cache_video = []
        self._md_logger.clear()

        try:
            self._lmp_tabletop_ui(instruction, f'objects = {self._env.object_list}')
        except Exception as e:
            return f'Error: {e}', None, None

        video_file_name = None
        if self._env.cache_video:
            rendered_clip = ImageSequenceClip(self._env.cache_video, fps=25)
            video_file_name = NamedTemporaryFile(suffix='.mp4').name
            rendered_clip.write_videofile(video_file_name, fps=25)

        return self._md_logger.get_log(), self._env.get_camera_image(), video_file_name


def setup(api_key, n_blocks, n_bowls):
    if not api_key:
        return 'Please enter your OpenAI API key!', None, None
    
    if n_blocks + n_bowls == 0:
        return 'Please select at least one object!', None, None

    demo_runner = DemoRunner()
    
    info, img = demo_runner.setup(api_key, n_blocks, n_bowls)
    return info, img, demo_runner


def run(instruction, demo_runner):
    if demo_runner is None:
        return 'Please run setup first!', None, None
    return demo_runner.run(instruction)


if __name__ == '__main__':
    with open('README.md', 'r') as f:
        for _ in range(12):
            next(f)
        readme_text = f.read()

    with gr.Blocks() as demo:
        state = gr.State(None)

        gr.Markdown(readme_text)
        gr.Markdown('# Interactive Demo')
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    inp_api_key = gr.Textbox(label='OpenAI API Key (this is not stored anywhere)', lines=1)
                with gr.Row():
                    inp_n_blocks = gr.Slider(label='Number of Blocks', minimum=0, maximum=4, value=3, step=1)
                    inp_n_bowls = gr.Slider(label='Number of Bowls', minimum=0, maximum=4, value=3, step=1)
            
                btn_setup = gr.Button("Setup/Reset Simulation")
                info_setup = gr.Markdown(label='Setup Info')
            with gr.Column():
                img_setup = gr.Image(label='Current Simulation')

        with gr.Row():
            with gr.Column():
                
                inp_instruction = gr.Textbox(label='Instruction', lines=1) 
                btn_run = gr.Button("Run (this may take 30+ seconds)")
                info_run = gr.Markdown(label='Generated Code')
            with gr.Column():
                video_run = gr.Video(label='Video of Last Instruction')
        
        btn_setup.click(
            setup, 
            inputs=[inp_api_key, inp_n_blocks, inp_n_bowls], 
            outputs=[info_setup, img_setup, state]
        )
        btn_run.click(
            run, 
            inputs=[inp_instruction, state], 
            outputs=[info_run, img_setup, video_run]
        )
        
    demo.launch()