Spaces:
Running
Running
# Cloud Deployment Guide for SmolLM3 DPO Training | |
This guide provides the exact sequence of commands to deploy and run SmolLM3 DPO training on a cloud computing instance with 6 epochs. | |
## Prerequisites | |
### Cloud Instance Requirements | |
- **GPU**: NVIDIA A100, H100, or similar (16GB+ VRAM) | |
- **RAM**: 64GB+ system memory | |
- **Storage**: 100GB+ SSD storage | |
- **OS**: Ubuntu 20.04 or 22.04 | |
### Required Information | |
Before starting, gather these details: | |
- Your Hugging Face username | |
- Your Hugging Face token (with write permissions) | |
- Your Trackio Space URL (if using monitoring) | |
## Step-by-Step Deployment | |
### Step 1: Launch Cloud Instance | |
Choose your cloud provider and launch an instance: | |
#### AWS (g5.2xlarge or g5.4xlarge) | |
```bash | |
# Launch instance with Ubuntu 22.04 and appropriate GPU | |
aws ec2 run-instances \ | |
--image-id ami-0c7217cdde317cfec \ | |
--instance-type g5.2xlarge \ | |
--key-name your-key-pair \ | |
--security-group-ids sg-xxxxxxxxx | |
``` | |
#### Google Cloud (n1-standard-8 with T4/V100) | |
```bash | |
gcloud compute instances create smollm3-dpo \ | |
--zone=us-central1-a \ | |
--machine-type=n1-standard-8 \ | |
--accelerator="type=nvidia-tesla-t4,count=1" \ | |
--image-family=ubuntu-2204-lts \ | |
--image-project=ubuntu-os-cloud | |
``` | |
#### Azure (Standard_NC6s_v3) | |
```bash | |
az vm create \ | |
--resource-group your-rg \ | |
--name smollm3-dpo \ | |
--image Canonical:0001-com-ubuntu-server-jammy:22_04-lts:latest \ | |
--size Standard_NC6s_v3 \ | |
--admin-username azureuser | |
``` | |
### Step 2: Connect to Instance | |
```bash | |
# SSH to your instance | |
ssh -i your-key.pem ubuntu@your-instance-ip | |
# Or for Azure | |
ssh azureuser@your-instance-ip | |
``` | |
### Step 3: Update System and Install Dependencies | |
```bash | |
# Update system | |
sudo apt-get update | |
sudo apt-get upgrade -y | |
# Install system dependencies | |
sudo apt-get install -y git curl wget unzip python3 python3-pip python3-venv | |
# Install NVIDIA drivers (if not pre-installed) | |
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg | |
curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \ | |
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \ | |
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list | |
sudo apt-get update | |
sudo apt-get install -y nvidia-container-toolkit | |
``` | |
### Step 4: Clone Repository and Setup Environment | |
```bash | |
# Clone your repository | |
git clone https://github.com/your-username/flexai-finetune.git | |
cd flexai-finetune | |
# Create virtual environment | |
python3 -m venv smollm3_env | |
source smollm3_env/bin/activate | |
# Install PyTorch with CUDA | |
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 | |
# Install project dependencies | |
pip install -r requirements.txt | |
# Install additional DPO dependencies | |
pip install trl>=0.7.0 | |
pip install peft>=0.4.0 | |
pip install accelerate>=0.20.0 | |
``` | |
### Step 5: Configure Authentication | |
```bash | |
# Set your Hugging Face token | |
export HF_TOKEN="your_huggingface_token_here" | |
# Login to Hugging Face | |
hf login --token $HF_TOKEN | |
``` | |
### Step 6: Create Configuration Files | |
Create the DPO configuration file: | |
```bash | |
cat > config/train_smollm3_dpo_6epochs.py << 'EOF' | |
""" | |
SmolLM3 DPO Training Configuration - 6 Epochs | |
Optimized for cloud deployment | |
""" | |
from config.train_smollm3_dpo import SmolLM3DPOConfig | |
config = SmolLM3DPOConfig( | |
# Model configuration | |
model_name="HuggingFaceTB/SmolLM3-3B", | |
max_seq_length=4096, | |
use_flash_attention=True, | |
use_gradient_checkpointing=True, | |
# Training configuration | |
batch_size=2, | |
gradient_accumulation_steps=8, | |
learning_rate=5e-6, | |
weight_decay=0.01, | |
warmup_steps=100, | |
max_iters=None, # Will be calculated based on epochs | |
eval_interval=100, | |
log_interval=10, | |
save_interval=500, | |
# DPO configuration | |
beta=0.1, | |
max_prompt_length=2048, | |
# Optimizer configuration | |
optimizer="adamw", | |
beta1=0.9, | |
beta2=0.95, | |
eps=1e-8, | |
# Scheduler configuration | |
scheduler="cosine", | |
min_lr=1e-6, | |
# Mixed precision | |
fp16=True, | |
bf16=False, | |
# Logging and saving | |
save_steps=500, | |
eval_steps=100, | |
logging_steps=10, | |
save_total_limit=3, | |
# Evaluation | |
eval_strategy="steps", | |
metric_for_best_model="eval_loss", | |
greater_is_better=False, | |
load_best_model_at_end=True, | |
# Data configuration | |
data_dir="smoltalk_dataset", | |
train_file="train.json", | |
validation_file="validation.json", | |
# Chat template configuration | |
use_chat_template=True, | |
chat_template_kwargs={ | |
"enable_thinking": False, | |
"add_generation_prompt": True | |
}, | |
# Trackio monitoring configuration | |
enable_tracking=True, | |
trackio_url="https://your-trackio-space.hf.space", # Change this | |
trackio_token=None, | |
log_artifacts=True, | |
log_metrics=True, | |
log_config=True, | |
experiment_name="smollm3_dpo_6epochs" | |
) | |
EOF | |
``` | |
### Step 7: Download and Prepare Dataset | |
```bash | |
# Create dataset preparation script | |
cat > prepare_dataset.py << 'EOF' | |
from datasets import load_dataset | |
import json | |
import os | |
# Load SmolTalk dataset | |
print('Loading SmolTalk dataset...') | |
dataset = load_dataset('HuggingFaceTB/smoltalk') | |
# Create dataset directory | |
os.makedirs('smoltalk_dataset', exist_ok=True) | |
# Convert to DPO format (preference pairs) | |
def convert_to_dpo_format(example): | |
# For SmolTalk, we'll create preference pairs based on response quality | |
# This is a simplified example - you may need to adjust based on your needs | |
return { | |
'prompt': example.get('prompt', ''), | |
'chosen': example.get('chosen', ''), | |
'rejected': example.get('rejected', '') | |
} | |
# Process train split | |
train_data = [] | |
for example in dataset['train']: | |
dpo_example = convert_to_dpo_format(example) | |
if dpo_example['prompt'] and dpo_example['chosen'] and dpo_example['rejected']: | |
train_data.append(dpo_example) | |
# Process validation split | |
val_data = [] | |
for example in dataset['validation']: | |
dpo_example = convert_to_dpo_format(example) | |
if dpo_example['prompt'] and dpo_example['chosen'] and dpo_example['rejected']: | |
val_data.append(dpo_example) | |
# Save to files | |
with open('smoltalk_dataset/train.json', 'w') as f: | |
json.dump(train_data, f, indent=2) | |
with open('smoltalk_dataset/validation.json', 'w') as f: | |
json.dump(val_data, f, indent=2) | |
print(f'Dataset prepared: {len(train_data)} train samples, {len(val_data)} validation samples') | |
EOF | |
# Run dataset preparation | |
python prepare_dataset.py | |
``` | |
### Step 8: Calculate Training Parameters | |
```bash | |
# Calculate training steps based on epochs | |
TOTAL_SAMPLES=$(python -c "import json; data=json.load(open('smoltalk_dataset/train.json')); print(len(data))") | |
BATCH_SIZE=2 | |
GRADIENT_ACCUMULATION_STEPS=8 | |
MAX_EPOCHS=6 | |
EFFECTIVE_BATCH_SIZE=$((BATCH_SIZE * GRADIENT_ACCUMULATION_STEPS)) | |
STEPS_PER_EPOCH=$((TOTAL_SAMPLES / EFFECTIVE_BATCH_SIZE)) | |
MAX_STEPS=$((STEPS_PER_EPOCH * MAX_EPOCHS)) | |
echo "Training Configuration:" | |
echo " Total samples: $TOTAL_SAMPLES" | |
echo " Effective batch size: $EFFECTIVE_BATCH_SIZE" | |
echo " Steps per epoch: $STEPS_PER_EPOCH" | |
echo " Total training steps: $MAX_STEPS" | |
echo " Training epochs: $MAX_EPOCHS" | |
``` | |
### Step 9: Start DPO Training | |
```bash | |
# Start training with all parameters | |
python train.py config/train_smollm3_dpo_6epochs.py \ | |
--dataset_dir smoltalk_dataset \ | |
--out_dir /output-checkpoint \ | |
--init_from scratch \ | |
--max_iters $MAX_STEPS \ | |
--batch_size $BATCH_SIZE \ | |
--learning_rate 5e-6 \ | |
--gradient_accumulation_steps $GRADIENT_ACCUMULATION_STEPS \ | |
--max_seq_length 4096 \ | |
--save_steps 500 \ | |
--eval_steps 100 \ | |
--logging_steps 10 \ | |
--enable_tracking \ | |
--trackio_url "https://your-trackio-space.hf.space" \ | |
--experiment_name "smollm3_dpo_6epochs" | |
``` | |
### Step 10: Push Model to Hugging Face Hub | |
```bash | |
# Push the trained model | |
python push_to_huggingface.py /output-checkpoint "your-username/smollm3-dpo-6epochs" \ | |
--token "$HF_TOKEN" \ | |
--trackio-url "https://your-trackio-space.hf.space" \ | |
--experiment-name "smollm3_dpo_6epochs" | |
``` | |
### Step 11: Test the Uploaded Model | |
```bash | |
# Test the model | |
python -c " | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
print('Loading uploaded model...') | |
model = AutoModelForCausalLM.from_pretrained('your-username/smollm3-dpo-6epochs', torch_dtype=torch.float16, device_map='auto') | |
tokenizer = AutoTokenizer.from_pretrained('your-username/smollm3-dpo-6epochs') | |
print('Testing model generation...') | |
prompt = 'Hello, how are you?' | |
inputs = tokenizer(prompt, return_tensors='pt').to(model.device) | |
outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True, temperature=0.7) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
print(f'Prompt: {prompt}') | |
print(f'Response: {response}') | |
print('✅ Model test completed successfully!') | |
" | |
``` | |
## Complete One-Line Deployment | |
If you want to run everything automatically, use the deployment script: | |
```bash | |
# Make script executable | |
chmod +x cloud_deployment.sh | |
# Edit configuration in the script first | |
nano cloud_deployment.sh | |
# Change these variables: | |
# - REPO_NAME="your-username/smollm3-dpo-6epochs" | |
# - TRACKIO_URL="https://your-trackio-space.hf.space" | |
# - HF_TOKEN="your_hf_token_here" | |
# Run the complete deployment | |
./cloud_deployment.sh | |
``` | |
## Monitoring and Debugging | |
### Check GPU Usage | |
```bash | |
# Monitor GPU usage during training | |
watch -n 1 nvidia-smi | |
``` | |
### Check Training Logs | |
```bash | |
# Monitor training progress | |
tail -f training.log | |
# Check system resources | |
htop | |
``` | |
### Monitor Trackio | |
```bash | |
# Check if Trackio is logging properly | |
curl -s "https://your-trackio-space.hf.space" | grep -i "experiment" | |
``` | |
## Expected Timeline | |
- **Setup**: 15-30 minutes | |
- **Dataset preparation**: 5-10 minutes | |
- **Training (6 epochs)**: 4-8 hours (depending on GPU) | |
- **Model upload**: 10-30 minutes | |
- **Testing**: 5-10 minutes | |
## Troubleshooting | |
### Common Issues | |
#### 1. Out of Memory (OOM) | |
```bash | |
# Reduce batch size | |
BATCH_SIZE=1 | |
GRADIENT_ACCUMULATION_STEPS=16 | |
# Or use gradient checkpointing | |
# Already enabled in config | |
``` | |
#### 2. Slow Training | |
```bash | |
# Check GPU utilization | |
nvidia-smi | |
# Check if mixed precision is working | |
# Look for "fp16" in training logs | |
``` | |
#### 3. Dataset Issues | |
```bash | |
# Check dataset format | |
head -n 5 smoltalk_dataset/train.json | |
# Verify dataset size | |
wc -l smoltalk_dataset/train.json | |
``` | |
#### 4. Authentication Issues | |
```bash | |
# Test HF token | |
python -c " | |
from huggingface_hub import HfApi | |
api = HfApi(token='$HF_TOKEN') | |
print('Token is valid!') | |
" | |
``` | |
## Cost Estimation | |
### AWS (g5.2xlarge) | |
- **Instance**: $0.526/hour | |
- **Training time**: 6 hours | |
- **Total cost**: ~$3.16 | |
### Google Cloud (n1-standard-8 + T4) | |
- **Instance**: $0.38/hour | |
- **Training time**: 6 hours | |
- **Total cost**: ~$2.28 | |
### Azure (Standard_NC6s_v3) | |
- **Instance**: $0.90/hour | |
- **Training time**: 6 hours | |
- **Total cost**: ~$5.40 | |
## Next Steps | |
After successful deployment: | |
1. **Monitor training** in your Trackio Space | |
2. **Check model repository** on Hugging Face Hub | |
3. **Test the model** with different prompts | |
4. **Share your model** with the community | |
5. **Iterate and improve** based on results | |
## Support | |
- **Training issues**: Check logs and GPU utilization | |
- **Upload issues**: Verify HF token and repository permissions | |
- **Monitoring issues**: Check Trackio Space configuration | |
- **Performance issues**: Adjust batch size and learning rate | |
Your SmolLM3 DPO model will be ready for use after training completes! |