Spaces:
Running
Running
File size: 11,750 Bytes
5fe83da 40fd629 5fe83da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
# Cloud Deployment Guide for SmolLM3 DPO Training
This guide provides the exact sequence of commands to deploy and run SmolLM3 DPO training on a cloud computing instance with 6 epochs.
## Prerequisites
### Cloud Instance Requirements
- **GPU**: NVIDIA A100, H100, or similar (16GB+ VRAM)
- **RAM**: 64GB+ system memory
- **Storage**: 100GB+ SSD storage
- **OS**: Ubuntu 20.04 or 22.04
### Required Information
Before starting, gather these details:
- Your Hugging Face username
- Your Hugging Face token (with write permissions)
- Your Trackio Space URL (if using monitoring)
## Step-by-Step Deployment
### Step 1: Launch Cloud Instance
Choose your cloud provider and launch an instance:
#### AWS (g5.2xlarge or g5.4xlarge)
```bash
# Launch instance with Ubuntu 22.04 and appropriate GPU
aws ec2 run-instances \
--image-id ami-0c7217cdde317cfec \
--instance-type g5.2xlarge \
--key-name your-key-pair \
--security-group-ids sg-xxxxxxxxx
```
#### Google Cloud (n1-standard-8 with T4/V100)
```bash
gcloud compute instances create smollm3-dpo \
--zone=us-central1-a \
--machine-type=n1-standard-8 \
--accelerator="type=nvidia-tesla-t4,count=1" \
--image-family=ubuntu-2204-lts \
--image-project=ubuntu-os-cloud
```
#### Azure (Standard_NC6s_v3)
```bash
az vm create \
--resource-group your-rg \
--name smollm3-dpo \
--image Canonical:0001-com-ubuntu-server-jammy:22_04-lts:latest \
--size Standard_NC6s_v3 \
--admin-username azureuser
```
### Step 2: Connect to Instance
```bash
# SSH to your instance
ssh -i your-key.pem ubuntu@your-instance-ip
# Or for Azure
ssh azureuser@your-instance-ip
```
### Step 3: Update System and Install Dependencies
```bash
# Update system
sudo apt-get update
sudo apt-get upgrade -y
# Install system dependencies
sudo apt-get install -y git curl wget unzip python3 python3-pip python3-venv
# Install NVIDIA drivers (if not pre-installed)
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
sudo apt-get install -y nvidia-container-toolkit
```
### Step 4: Clone Repository and Setup Environment
```bash
# Clone your repository
git clone https://github.com/your-username/flexai-finetune.git
cd flexai-finetune
# Create virtual environment
python3 -m venv smollm3_env
source smollm3_env/bin/activate
# Install PyTorch with CUDA
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
# Install project dependencies
pip install -r requirements.txt
# Install additional DPO dependencies
pip install trl>=0.7.0
pip install peft>=0.4.0
pip install accelerate>=0.20.0
```
### Step 5: Configure Authentication
```bash
# Set your Hugging Face token
export HF_TOKEN="your_huggingface_token_here"
# Login to Hugging Face
hf login --token $HF_TOKEN
```
### Step 6: Create Configuration Files
Create the DPO configuration file:
```bash
cat > config/train_smollm3_dpo_6epochs.py << 'EOF'
"""
SmolLM3 DPO Training Configuration - 6 Epochs
Optimized for cloud deployment
"""
from config.train_smollm3_dpo import SmolLM3DPOConfig
config = SmolLM3DPOConfig(
# Model configuration
model_name="HuggingFaceTB/SmolLM3-3B",
max_seq_length=4096,
use_flash_attention=True,
use_gradient_checkpointing=True,
# Training configuration
batch_size=2,
gradient_accumulation_steps=8,
learning_rate=5e-6,
weight_decay=0.01,
warmup_steps=100,
max_iters=None, # Will be calculated based on epochs
eval_interval=100,
log_interval=10,
save_interval=500,
# DPO configuration
beta=0.1,
max_prompt_length=2048,
# Optimizer configuration
optimizer="adamw",
beta1=0.9,
beta2=0.95,
eps=1e-8,
# Scheduler configuration
scheduler="cosine",
min_lr=1e-6,
# Mixed precision
fp16=True,
bf16=False,
# Logging and saving
save_steps=500,
eval_steps=100,
logging_steps=10,
save_total_limit=3,
# Evaluation
eval_strategy="steps",
metric_for_best_model="eval_loss",
greater_is_better=False,
load_best_model_at_end=True,
# Data configuration
data_dir="smoltalk_dataset",
train_file="train.json",
validation_file="validation.json",
# Chat template configuration
use_chat_template=True,
chat_template_kwargs={
"enable_thinking": False,
"add_generation_prompt": True
},
# Trackio monitoring configuration
enable_tracking=True,
trackio_url="https://your-trackio-space.hf.space", # Change this
trackio_token=None,
log_artifacts=True,
log_metrics=True,
log_config=True,
experiment_name="smollm3_dpo_6epochs"
)
EOF
```
### Step 7: Download and Prepare Dataset
```bash
# Create dataset preparation script
cat > prepare_dataset.py << 'EOF'
from datasets import load_dataset
import json
import os
# Load SmolTalk dataset
print('Loading SmolTalk dataset...')
dataset = load_dataset('HuggingFaceTB/smoltalk')
# Create dataset directory
os.makedirs('smoltalk_dataset', exist_ok=True)
# Convert to DPO format (preference pairs)
def convert_to_dpo_format(example):
# For SmolTalk, we'll create preference pairs based on response quality
# This is a simplified example - you may need to adjust based on your needs
return {
'prompt': example.get('prompt', ''),
'chosen': example.get('chosen', ''),
'rejected': example.get('rejected', '')
}
# Process train split
train_data = []
for example in dataset['train']:
dpo_example = convert_to_dpo_format(example)
if dpo_example['prompt'] and dpo_example['chosen'] and dpo_example['rejected']:
train_data.append(dpo_example)
# Process validation split
val_data = []
for example in dataset['validation']:
dpo_example = convert_to_dpo_format(example)
if dpo_example['prompt'] and dpo_example['chosen'] and dpo_example['rejected']:
val_data.append(dpo_example)
# Save to files
with open('smoltalk_dataset/train.json', 'w') as f:
json.dump(train_data, f, indent=2)
with open('smoltalk_dataset/validation.json', 'w') as f:
json.dump(val_data, f, indent=2)
print(f'Dataset prepared: {len(train_data)} train samples, {len(val_data)} validation samples')
EOF
# Run dataset preparation
python prepare_dataset.py
```
### Step 8: Calculate Training Parameters
```bash
# Calculate training steps based on epochs
TOTAL_SAMPLES=$(python -c "import json; data=json.load(open('smoltalk_dataset/train.json')); print(len(data))")
BATCH_SIZE=2
GRADIENT_ACCUMULATION_STEPS=8
MAX_EPOCHS=6
EFFECTIVE_BATCH_SIZE=$((BATCH_SIZE * GRADIENT_ACCUMULATION_STEPS))
STEPS_PER_EPOCH=$((TOTAL_SAMPLES / EFFECTIVE_BATCH_SIZE))
MAX_STEPS=$((STEPS_PER_EPOCH * MAX_EPOCHS))
echo "Training Configuration:"
echo " Total samples: $TOTAL_SAMPLES"
echo " Effective batch size: $EFFECTIVE_BATCH_SIZE"
echo " Steps per epoch: $STEPS_PER_EPOCH"
echo " Total training steps: $MAX_STEPS"
echo " Training epochs: $MAX_EPOCHS"
```
### Step 9: Start DPO Training
```bash
# Start training with all parameters
python train.py config/train_smollm3_dpo_6epochs.py \
--dataset_dir smoltalk_dataset \
--out_dir /output-checkpoint \
--init_from scratch \
--max_iters $MAX_STEPS \
--batch_size $BATCH_SIZE \
--learning_rate 5e-6 \
--gradient_accumulation_steps $GRADIENT_ACCUMULATION_STEPS \
--max_seq_length 4096 \
--save_steps 500 \
--eval_steps 100 \
--logging_steps 10 \
--enable_tracking \
--trackio_url "https://your-trackio-space.hf.space" \
--experiment_name "smollm3_dpo_6epochs"
```
### Step 10: Push Model to Hugging Face Hub
```bash
# Push the trained model
python push_to_huggingface.py /output-checkpoint "your-username/smollm3-dpo-6epochs" \
--token "$HF_TOKEN" \
--trackio-url "https://your-trackio-space.hf.space" \
--experiment-name "smollm3_dpo_6epochs"
```
### Step 11: Test the Uploaded Model
```bash
# Test the model
python -c "
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
print('Loading uploaded model...')
model = AutoModelForCausalLM.from_pretrained('your-username/smollm3-dpo-6epochs', torch_dtype=torch.float16, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained('your-username/smollm3-dpo-6epochs')
print('Testing model generation...')
prompt = 'Hello, how are you?'
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True, temperature=0.7)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(f'Prompt: {prompt}')
print(f'Response: {response}')
print('✅ Model test completed successfully!')
"
```
## Complete One-Line Deployment
If you want to run everything automatically, use the deployment script:
```bash
# Make script executable
chmod +x cloud_deployment.sh
# Edit configuration in the script first
nano cloud_deployment.sh
# Change these variables:
# - REPO_NAME="your-username/smollm3-dpo-6epochs"
# - TRACKIO_URL="https://your-trackio-space.hf.space"
# - HF_TOKEN="your_hf_token_here"
# Run the complete deployment
./cloud_deployment.sh
```
## Monitoring and Debugging
### Check GPU Usage
```bash
# Monitor GPU usage during training
watch -n 1 nvidia-smi
```
### Check Training Logs
```bash
# Monitor training progress
tail -f training.log
# Check system resources
htop
```
### Monitor Trackio
```bash
# Check if Trackio is logging properly
curl -s "https://your-trackio-space.hf.space" | grep -i "experiment"
```
## Expected Timeline
- **Setup**: 15-30 minutes
- **Dataset preparation**: 5-10 minutes
- **Training (6 epochs)**: 4-8 hours (depending on GPU)
- **Model upload**: 10-30 minutes
- **Testing**: 5-10 minutes
## Troubleshooting
### Common Issues
#### 1. Out of Memory (OOM)
```bash
# Reduce batch size
BATCH_SIZE=1
GRADIENT_ACCUMULATION_STEPS=16
# Or use gradient checkpointing
# Already enabled in config
```
#### 2. Slow Training
```bash
# Check GPU utilization
nvidia-smi
# Check if mixed precision is working
# Look for "fp16" in training logs
```
#### 3. Dataset Issues
```bash
# Check dataset format
head -n 5 smoltalk_dataset/train.json
# Verify dataset size
wc -l smoltalk_dataset/train.json
```
#### 4. Authentication Issues
```bash
# Test HF token
python -c "
from huggingface_hub import HfApi
api = HfApi(token='$HF_TOKEN')
print('Token is valid!')
"
```
## Cost Estimation
### AWS (g5.2xlarge)
- **Instance**: $0.526/hour
- **Training time**: 6 hours
- **Total cost**: ~$3.16
### Google Cloud (n1-standard-8 + T4)
- **Instance**: $0.38/hour
- **Training time**: 6 hours
- **Total cost**: ~$2.28
### Azure (Standard_NC6s_v3)
- **Instance**: $0.90/hour
- **Training time**: 6 hours
- **Total cost**: ~$5.40
## Next Steps
After successful deployment:
1. **Monitor training** in your Trackio Space
2. **Check model repository** on Hugging Face Hub
3. **Test the model** with different prompts
4. **Share your model** with the community
5. **Iterate and improve** based on results
## Support
- **Training issues**: Check logs and GPU utilization
- **Upload issues**: Verify HF token and repository permissions
- **Monitoring issues**: Check Trackio Space configuration
- **Performance issues**: Adjust batch size and learning rate
Your SmolLM3 DPO model will be ready for use after training completes! |