Spaces:
Running
Running
Cloud Deployment Guide for SmolLM3 DPO Training
This guide provides the exact sequence of commands to deploy and run SmolLM3 DPO training on a cloud computing instance with 6 epochs.
Prerequisites
Cloud Instance Requirements
- GPU: NVIDIA A100, H100, or similar (16GB+ VRAM)
- RAM: 64GB+ system memory
- Storage: 100GB+ SSD storage
- OS: Ubuntu 20.04 or 22.04
Required Information
Before starting, gather these details:
- Your Hugging Face username
- Your Hugging Face token (with write permissions)
- Your Trackio Space URL (if using monitoring)
Step-by-Step Deployment
Step 1: Launch Cloud Instance
Choose your cloud provider and launch an instance:
AWS (g5.2xlarge or g5.4xlarge)
# Launch instance with Ubuntu 22.04 and appropriate GPU
aws ec2 run-instances \
--image-id ami-0c7217cdde317cfec \
--instance-type g5.2xlarge \
--key-name your-key-pair \
--security-group-ids sg-xxxxxxxxx
Google Cloud (n1-standard-8 with T4/V100)
gcloud compute instances create smollm3-dpo \
--zone=us-central1-a \
--machine-type=n1-standard-8 \
--accelerator="type=nvidia-tesla-t4,count=1" \
--image-family=ubuntu-2204-lts \
--image-project=ubuntu-os-cloud
Azure (Standard_NC6s_v3)
az vm create \
--resource-group your-rg \
--name smollm3-dpo \
--image Canonical:0001-com-ubuntu-server-jammy:22_04-lts:latest \
--size Standard_NC6s_v3 \
--admin-username azureuser
Step 2: Connect to Instance
# SSH to your instance
ssh -i your-key.pem ubuntu@your-instance-ip
# Or for Azure
ssh azureuser@your-instance-ip
Step 3: Update System and Install Dependencies
# Update system
sudo apt-get update
sudo apt-get upgrade -y
# Install system dependencies
sudo apt-get install -y git curl wget unzip python3 python3-pip python3-venv
# Install NVIDIA drivers (if not pre-installed)
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
sudo apt-get install -y nvidia-container-toolkit
Step 4: Clone Repository and Setup Environment
# Clone your repository
git clone https://github.com/your-username/flexai-finetune.git
cd flexai-finetune
# Create virtual environment
python3 -m venv smollm3_env
source smollm3_env/bin/activate
# Install PyTorch with CUDA
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
# Install project dependencies
pip install -r requirements.txt
# Install additional DPO dependencies
pip install trl>=0.7.0
pip install peft>=0.4.0
pip install accelerate>=0.20.0
Step 5: Configure Authentication
# Set your Hugging Face token
export HF_TOKEN="your_huggingface_token_here"
# Login to Hugging Face
hf login --token $HF_TOKEN
Step 6: Create Configuration Files
Create the DPO configuration file:
cat > config/train_smollm3_dpo_6epochs.py << 'EOF'
"""
SmolLM3 DPO Training Configuration - 6 Epochs
Optimized for cloud deployment
"""
from config.train_smollm3_dpo import SmolLM3DPOConfig
config = SmolLM3DPOConfig(
# Model configuration
model_name="HuggingFaceTB/SmolLM3-3B",
max_seq_length=4096,
use_flash_attention=True,
use_gradient_checkpointing=True,
# Training configuration
batch_size=2,
gradient_accumulation_steps=8,
learning_rate=5e-6,
weight_decay=0.01,
warmup_steps=100,
max_iters=None, # Will be calculated based on epochs
eval_interval=100,
log_interval=10,
save_interval=500,
# DPO configuration
beta=0.1,
max_prompt_length=2048,
# Optimizer configuration
optimizer="adamw",
beta1=0.9,
beta2=0.95,
eps=1e-8,
# Scheduler configuration
scheduler="cosine",
min_lr=1e-6,
# Mixed precision
fp16=True,
bf16=False,
# Logging and saving
save_steps=500,
eval_steps=100,
logging_steps=10,
save_total_limit=3,
# Evaluation
eval_strategy="steps",
metric_for_best_model="eval_loss",
greater_is_better=False,
load_best_model_at_end=True,
# Data configuration
data_dir="smoltalk_dataset",
train_file="train.json",
validation_file="validation.json",
# Chat template configuration
use_chat_template=True,
chat_template_kwargs={
"enable_thinking": False,
"add_generation_prompt": True
},
# Trackio monitoring configuration
enable_tracking=True,
trackio_url="https://your-trackio-space.hf.space", # Change this
trackio_token=None,
log_artifacts=True,
log_metrics=True,
log_config=True,
experiment_name="smollm3_dpo_6epochs"
)
EOF
Step 7: Download and Prepare Dataset
# Create dataset preparation script
cat > prepare_dataset.py << 'EOF'
from datasets import load_dataset
import json
import os
# Load SmolTalk dataset
print('Loading SmolTalk dataset...')
dataset = load_dataset('HuggingFaceTB/smoltalk')
# Create dataset directory
os.makedirs('smoltalk_dataset', exist_ok=True)
# Convert to DPO format (preference pairs)
def convert_to_dpo_format(example):
# For SmolTalk, we'll create preference pairs based on response quality
# This is a simplified example - you may need to adjust based on your needs
return {
'prompt': example.get('prompt', ''),
'chosen': example.get('chosen', ''),
'rejected': example.get('rejected', '')
}
# Process train split
train_data = []
for example in dataset['train']:
dpo_example = convert_to_dpo_format(example)
if dpo_example['prompt'] and dpo_example['chosen'] and dpo_example['rejected']:
train_data.append(dpo_example)
# Process validation split
val_data = []
for example in dataset['validation']:
dpo_example = convert_to_dpo_format(example)
if dpo_example['prompt'] and dpo_example['chosen'] and dpo_example['rejected']:
val_data.append(dpo_example)
# Save to files
with open('smoltalk_dataset/train.json', 'w') as f:
json.dump(train_data, f, indent=2)
with open('smoltalk_dataset/validation.json', 'w') as f:
json.dump(val_data, f, indent=2)
print(f'Dataset prepared: {len(train_data)} train samples, {len(val_data)} validation samples')
EOF
# Run dataset preparation
python prepare_dataset.py
Step 8: Calculate Training Parameters
# Calculate training steps based on epochs
TOTAL_SAMPLES=$(python -c "import json; data=json.load(open('smoltalk_dataset/train.json')); print(len(data))")
BATCH_SIZE=2
GRADIENT_ACCUMULATION_STEPS=8
MAX_EPOCHS=6
EFFECTIVE_BATCH_SIZE=$((BATCH_SIZE * GRADIENT_ACCUMULATION_STEPS))
STEPS_PER_EPOCH=$((TOTAL_SAMPLES / EFFECTIVE_BATCH_SIZE))
MAX_STEPS=$((STEPS_PER_EPOCH * MAX_EPOCHS))
echo "Training Configuration:"
echo " Total samples: $TOTAL_SAMPLES"
echo " Effective batch size: $EFFECTIVE_BATCH_SIZE"
echo " Steps per epoch: $STEPS_PER_EPOCH"
echo " Total training steps: $MAX_STEPS"
echo " Training epochs: $MAX_EPOCHS"
Step 9: Start DPO Training
# Start training with all parameters
python train.py config/train_smollm3_dpo_6epochs.py \
--dataset_dir smoltalk_dataset \
--out_dir /output-checkpoint \
--init_from scratch \
--max_iters $MAX_STEPS \
--batch_size $BATCH_SIZE \
--learning_rate 5e-6 \
--gradient_accumulation_steps $GRADIENT_ACCUMULATION_STEPS \
--max_seq_length 4096 \
--save_steps 500 \
--eval_steps 100 \
--logging_steps 10 \
--enable_tracking \
--trackio_url "https://your-trackio-space.hf.space" \
--experiment_name "smollm3_dpo_6epochs"
Step 10: Push Model to Hugging Face Hub
# Push the trained model
python push_to_huggingface.py /output-checkpoint "your-username/smollm3-dpo-6epochs" \
--token "$HF_TOKEN" \
--trackio-url "https://your-trackio-space.hf.space" \
--experiment-name "smollm3_dpo_6epochs"
Step 11: Test the Uploaded Model
# Test the model
python -c "
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
print('Loading uploaded model...')
model = AutoModelForCausalLM.from_pretrained('your-username/smollm3-dpo-6epochs', torch_dtype=torch.float16, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained('your-username/smollm3-dpo-6epochs')
print('Testing model generation...')
prompt = 'Hello, how are you?'
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True, temperature=0.7)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(f'Prompt: {prompt}')
print(f'Response: {response}')
print('✅ Model test completed successfully!')
"
Complete One-Line Deployment
If you want to run everything automatically, use the deployment script:
# Make script executable
chmod +x cloud_deployment.sh
# Edit configuration in the script first
nano cloud_deployment.sh
# Change these variables:
# - REPO_NAME="your-username/smollm3-dpo-6epochs"
# - TRACKIO_URL="https://your-trackio-space.hf.space"
# - HF_TOKEN="your_hf_token_here"
# Run the complete deployment
./cloud_deployment.sh
Monitoring and Debugging
Check GPU Usage
# Monitor GPU usage during training
watch -n 1 nvidia-smi
Check Training Logs
# Monitor training progress
tail -f training.log
# Check system resources
htop
Monitor Trackio
# Check if Trackio is logging properly
curl -s "https://your-trackio-space.hf.space" | grep -i "experiment"
Expected Timeline
- Setup: 15-30 minutes
- Dataset preparation: 5-10 minutes
- Training (6 epochs): 4-8 hours (depending on GPU)
- Model upload: 10-30 minutes
- Testing: 5-10 minutes
Troubleshooting
Common Issues
1. Out of Memory (OOM)
# Reduce batch size
BATCH_SIZE=1
GRADIENT_ACCUMULATION_STEPS=16
# Or use gradient checkpointing
# Already enabled in config
2. Slow Training
# Check GPU utilization
nvidia-smi
# Check if mixed precision is working
# Look for "fp16" in training logs
3. Dataset Issues
# Check dataset format
head -n 5 smoltalk_dataset/train.json
# Verify dataset size
wc -l smoltalk_dataset/train.json
4. Authentication Issues
# Test HF token
python -c "
from huggingface_hub import HfApi
api = HfApi(token='$HF_TOKEN')
print('Token is valid!')
"
Cost Estimation
AWS (g5.2xlarge)
- Instance: $0.526/hour
- Training time: 6 hours
- Total cost: ~$3.16
Google Cloud (n1-standard-8 + T4)
- Instance: $0.38/hour
- Training time: 6 hours
- Total cost: ~$2.28
Azure (Standard_NC6s_v3)
- Instance: $0.90/hour
- Training time: 6 hours
- Total cost: ~$5.40
Next Steps
After successful deployment:
- Monitor training in your Trackio Space
- Check model repository on Hugging Face Hub
- Test the model with different prompts
- Share your model with the community
- Iterate and improve based on results
Support
- Training issues: Check logs and GPU utilization
- Upload issues: Verify HF token and repository permissions
- Monitoring issues: Check Trackio Space configuration
- Performance issues: Adjust batch size and learning rate
Your SmolLM3 DPO model will be ready for use after training completes!