File size: 11,399 Bytes
886f105
7d40369
d7e3825
226c832
6bcec5f
9461fdc
 
 
 
 
 
 
 
e8ea8da
9461fdc
7d40369
9dab390
bb9070f
 
3d76393
bb9070f
f8ad000
 
3295353
d45e86a
3295353
6c007e9
9dab390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0de6d5a
9dab390
0de6d5a
 
9dab390
 
 
 
 
 
0de6d5a
9dab390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d40369
9461fdc
7d40369
9461fdc
072be42
 
 
 
40e3650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9461fdc
 
40e3650
 
 
 
 
 
 
 
 
 
 
9461fdc
 
 
 
40e3650
a0e45a8
9461fdc
8f2de47
efe92e7
7d40369
b4f7f07
 
7d40369
7054a36
b4f7f07
 
9461fdc
 
e8ea8da
9461fdc
7054a36
99d1063
 
7054a36
920ac22
cdd3493
 
 
 
 
 
 
1b07bac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb9070f
795d09a
0d365b3
bb9070f
795d09a
7d40369
886f105
499951f
71c5d37
efe92e7
b4bf7d7
71c5d37
6e85f96
56d288b
 
 
 
 
 
 
 
 
3718c59
6c007e9
56d288b
6e85f96
56d288b
cdd3493
1eddd5f
b4f7f07
71c5d37
1eddd5f
9461fdc
3ddc74e
7d40369
9461fdc
7d40369
 
 
d7e3825
 
 
 
 
 
 
 
 
 
 
499951f
d7e3825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67389ac
9461fdc
3295353
0696a08
9461fdc
 
 
7d40369
3396a4f
d45e86a
 
 
 
 
 
 
 
 
3396a4f
0696a08
3396a4f
 
 
 
d45e86a
 
 
 
 
 
 
3295353
 
7d40369
 
 
bb9070f
 
 
 
 
 
 
 
 
 
 
9461fdc
795d09a
 
 
 
 
992965e
795d09a
 
 
 
992965e
795d09a
 
 
 
 
 
 
 
992965e
795d09a
992965e
795d09a
 
7d40369
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import spaces
import torch
import random
import numpy as np
from inspect import signature
from diffusers import (
    FluxPipeline,
    StableDiffusion3Pipeline,
    PixArtSigmaPipeline,
    SanaPipeline,
    AuraFlowPipeline,
    Kandinsky3Pipeline,
    HunyuanDiTPipeline,
    LuminaText2ImgPipeline,AutoPipelineForText2Image
)
import gradio as gr
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from pathlib import Path
import time
import os
from datetime import datetime
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
    

    
class ProgressPipeline(DiffusionPipeline):
    def __init__(self, original_pipeline):
        super().__init__()
        self.original_pipeline = original_pipeline
        # Register all components from the original pipeline
        for attr_name, attr_value in vars(original_pipeline).items():
            setattr(self, attr_name, attr_value)
    
    @torch.no_grad()
    def __call__(
        self,
        prompt,
        num_inference_steps=30,
        generator=None,
        guidance_scale=7.5,
        callback=None,
        callback_steps=1,
        **kwargs
    ):
        # Initialize the progress tracking
        self._num_inference_steps = num_inference_steps
        self._step = 0
        
        def progress_callback(step_index, timestep, callback_kwargs):
            if callback and step_index % callback_steps == 0:
                # Pass self (the pipeline) to the callback
                callback(self, step_index, timestep, callback_kwargs)
            return callback_kwargs
        
        # Monkey patch the original pipeline's progress tracking
        original_step = self.original_pipeline.scheduler.step
        def wrapped_step(*args, **kwargs):
            self._step += 1
            progress_callback(self._step, None, {})
            return original_step(*args, **kwargs)
        
        self.original_pipeline.scheduler.step = wrapped_step
        
        try:
            # Call the original pipeline
            result = self.original_pipeline(
                prompt=prompt,
                num_inference_steps=num_inference_steps,
                generator=generator,
                guidance_scale=guidance_scale,
                **kwargs
            )
            
            return result
        finally:
            # Restore the original step function
            self.original_pipeline.scheduler.step = original_step

cache_dir = '/workspace/hf_cache'

MODEL_CONFIGS = {
        "FLUX": {
        "repo_id": "black-forest-labs/FLUX.1-dev",
        "pipeline_class": FluxPipeline,
    },
    "Stable Diffusion 3.5": {
        "repo_id": "stabilityai/stable-diffusion-3.5-large",
        "pipeline_class": StableDiffusion3Pipeline,
         
    },
    "PixArt": {
        "repo_id": "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS",
        "pipeline_class": PixArtSigmaPipeline,
        
    },
    "SANA": {
        "repo_id": "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers",
        "pipeline_class": SanaPipeline,
         
    },
    "AuraFlow": {
        "repo_id": "fal/AuraFlow",
        "pipeline_class": AuraFlowPipeline,
         
    },
    "Kandinsky": {
        "repo_id": "kandinsky-community/kandinsky-3",
        "pipeline_class": Kandinsky3Pipeline,
        
    },
    "Hunyuan": {
        "repo_id": "Tencent-Hunyuan/HunyuanDiT-Diffusers",
        "pipeline_class": HunyuanDiTPipeline,
         
    },
    "Lumina": {
        "repo_id": "Alpha-VLLM/Lumina-Next-SFT-diffusers",
        "pipeline_class": LuminaText2ImgPipeline,
         
    }
}

def generate_image_with_progress(model_name,pipe, prompt, num_steps, guidance_scale=3.5, seed=None,negative_prompt=None,  randomize_seed=None, width=1024, height=1024, num_inference_steps=40,  progress=gr.Progress(track_tqdm=False)):
    generator = None
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    if seed is not None:
        generator = torch.Generator("cuda").manual_seed(seed)
    else:
        generator = torch.Generator("cuda")

    def callback(pipe, step_index, timestep, callback_kwargs):
        print(f" callback => {step_index}, {timestep}")
        if step_index is None:
            step_index = 0
        cur_prg = step_index / num_steps
        progress(cur_prg, desc=f"Step {step_index}/{num_steps}")
        return callback_kwargs
    print(f"START GENR ")
    # Get the signature of the pipe
    pipe_signature = signature(pipe)
    
    # Check for the presence of "guidance_scale" and "callback_on_step_end" in the signature
    has_guidance_scale = "guidance_scale" in pipe_signature.parameters
    has_callback_on_step_end = "callback_on_step_end" in pipe_signature.parameters
    
    # Define common arguments
    common_args = {
        "prompt": prompt,
        "num_inference_steps": num_steps,
        "negative_prompt": negative_prompt,
        "width": width,
        "height": height,
        "generator": generator,
    }
    
    if has_guidance_scale:
        common_args["guidance_scale"] = guidance_scale
    
    if has_callback_on_step_end:
        print("has callback_on_step_end and", "has guidance_scale" if has_guidance_scale else "NO guidance_scale")
        common_args["callback_on_step_end"] = callback
    else:
        print("NO callback_on_step_end and", "has guidance_scale" if has_guidance_scale else "NO guidance_scale")
        common_args["callback"] = callback
        common_args["callback_steps"] = 1
    
    # Generate image
    image = pipe(**common_args).images[0]
    filepath = save_generated_image(image, model_name, prompt)
    # Then, reload the gallery
    images, load_message = load_images_from_directory(model_name)
    print(f"Saved image to: {filepath}")
    return seed, image, images

@spaces.GPU(duration=170)
def create_pipeline_logic(prompt_text, model_name, negative_prompt="",  seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=4.5, num_inference_steps=40,):
    print(f"starting {model_name}")
    progress = gr.Progress(track_tqdm=False)
    config = MODEL_CONFIGS[model_name]
    pipe_class = config["pipeline_class"]
    pipe = None
    b_pipe = AutoPipelineForText2Image.from_pretrained(
        config["repo_id"],
        #variant="fp16",
        #cache_dir=config["cache_dir"],
        torch_dtype=torch.bfloat16
    ).to("cuda")
    pipe_signature = signature(b_pipe)
    # Check for the presence of "callback_on_step_end" in the signature
    has_callback_on_step_end = "callback_on_step_end" in pipe_signature.parameters
    if not has_callback_on_step_end:
        pipe = ProgressPipeline(b_pipe)
        print("ProgressPipeline specal")
    else:
        pipe = b_pipe
        
    gen_seed,image, images = generate_image_with_progress(
        model_name,pipe, prompt_text, num_steps=num_inference_steps, guidance_scale=guidance_scale, seed=seed,negative_prompt = negative_prompt,  randomize_seed = randomize_seed, width = width, height = height, progress=progress
    )
    return f"Seed: {gen_seed}", image, images
def main():

    with gr.Blocks() as app:
        gr.Markdown("# Dynamic Multiple Model Image Generation")

        prompt_text = gr.Textbox(label="Enter prompt")

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=100,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=7.5,
                    step=0.1,
                    value=4.5,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=40,
                )
        
        for model_name, config in MODEL_CONFIGS.items():
            #global gallery
            with gr.Tab(model_name) as tab_model:
                button = gr.Button(f"Run {model_name}")
                output = gr.Textbox(label="Status")
                img = gr.Image(label=model_name, height=300)

                

                gallery = gr.Gallery(
                    label="Image Gallery",
                    show_label=True,
                    columns=4,
                    rows=3,
                    height=600,
                    object_fit="contain"
                    )
                
                tab_model.select(
                    fn=load_images_from_directory,
                    inputs=[gr.Text(value= model_name,visible=False)],
                    outputs=[gallery],
                )
                button.click(fn=create_pipeline_logic, inputs=[prompt_text, gr.Text(value= model_name,visible=False), negative_prompt,
                    seed,
                    randomize_seed,
                    width,
                    height,
                    guidance_scale,
                    num_inference_steps], outputs=[output, img, gallery])
                
        

    app.launch()

def save_generated_image(image, model_name, prompt):
    """Save generated image with timestamp and model name"""
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    # Create sanitized filename from prompt (first 30 chars)
    prompt_part = "".join(c for c in prompt[:30] if c.isalnum() or c in (' ', '-', '_')).strip()
    filename = f"{timestamp}_{model_name}_{prompt_part}.png"
    path = Path(model_name)
    path.mkdir(parents=True, exist_ok=True)
    filepath = os.path.join(model_name, filename)
    image.save(filepath)
    return filepath

def load_images_from_directory(directory_path):
    """
    Load all images from the specified directory.
    Returns a list of image file paths.
    """
    print(f"Loading images {directory_path}")
    image_extensions = {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp'}
    directory = Path(directory_path)
    
    if not directory.exists():
        print(f"NO Direc {directory_path} ")
        return [], f"Error: Directory '{directory_path}' does not exist"
    
    image_files = [
        str(f) for f in directory.iterdir()
        if f.suffix.lower() in image_extensions and f.is_file()
    ]
    
    if not image_files:
        print(f"NO images {directory_path} ")
        return [], f"No images found in directory '{directory_path}'"
    print(f"has images {directory_path} {len(image_files)}")
    return image_files, f"Found {len(image_files)} images"

if __name__ == "__main__":
    main()